WO2023125279A1 - 时间校准的方法和装置 - Google Patents

时间校准的方法和装置 Download PDF

Info

Publication number
WO2023125279A1
WO2023125279A1 PCT/CN2022/141386 CN2022141386W WO2023125279A1 WO 2023125279 A1 WO2023125279 A1 WO 2023125279A1 CN 2022141386 W CN2022141386 W CN 2022141386W WO 2023125279 A1 WO2023125279 A1 WO 2023125279A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
time
difference
network element
local
Prior art date
Application number
PCT/CN2022/141386
Other languages
English (en)
French (fr)
Inventor
臧昕
周润泽
王远
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023125279A1 publication Critical patent/WO2023125279A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements

Definitions

  • the present application relates to the communication field, and more particularly, to a method and device for time calibration.
  • the base station adopted the global navigation satellite system (GNSS) to control the time error of the air interface within 1.5us, achieving a level of hundreds of nanoseconds
  • GNSS global navigation satellite system
  • the network structure of the 5th generation mobile communication system (5GS) period has changed, and the accuracy requirements for time synchronization between base stations have also been further improved.
  • incremental functions and key technologies such as high-precision positioning technology, multi-point coordination, and carrier aggregation will put forward higher requirements for the accuracy of time synchronization between base stations.
  • synchronization between base stations The demand should reach the nanosecond level. Therefore, how to realize high-precision time synchronization between base stations is an urgent problem to be solved.
  • the present application provides a time calibration method and device, which can realize high-precision time synchronization between base stations.
  • a method for time calibration is provided, and the method may be executed by a first base station, or may also be executed by a component (such as a chip or a circuit) of the first base station, which is not limited thereto.
  • a component such as a chip or a circuit
  • the implementation by the first base station is taken as an example below for description.
  • the method may include: the first base station determines a first difference according to the local time of the first base station and the satellite time, where the first difference is a time difference between the local time of the first base station and the satellite time, The satellite time corresponds to the first satellite signal specified by the first network element; the first base station receives a second difference from the second base station, and the second difference is the difference between the standard time of the second base station and the satellite time The time difference between them; the first base station calibrates the local time of the first base station according to the first difference and the second difference.
  • the first base station calculates the time difference between the local time of the first base station and the satellite time to obtain the first difference, and receives the second difference from the second base station.
  • the first base station calibrates the local time of the first base station according to the first difference and the second difference, thereby realizing time synchronization among multiple base stations, which not only ensures the real-time performance of time synchronization between base stations, but also improves Accuracy of time synchronization between base stations.
  • the first base station calibrating the local time of the first base station according to the first difference and the second difference includes: the first base station according to the The local time of the first base station, the first difference value, and the second difference value determine the standard time of the first base station.
  • the first base station can determine the standard time of the first base station according to the local time of the first base station, the first difference value, and the second difference value, so that time synchronization between multiple base stations can be realized through simple calculation.
  • the first base station calibrating the local time of the first base station according to the first difference and the second difference includes: the first base station according to the The first difference and the second difference determine a third difference, and the third difference is a time difference between the local time of the first base station and the standard time of the second base station; the first base station according to The local time of the first base station and the third difference determine the standard time of the first base station, and the standard time of the first base station is the time obtained by making a difference between the local time of the first base station and the third difference .
  • the first base station can determine the third difference according to the first difference and the second difference, and then determine the standard time of the first base station according to the local time of the first base station and the third difference, so that Realize time synchronization among multiple base stations through simple calculation.
  • the method further includes: sending the first base station to the The first network element sends first request information, where the first request information includes at least one satellite signal that can be received by the first base station, and the at least one satellite signal includes the first satellite signal.
  • the first request information further includes any one or more of the following: an identifier of the first base station, a timing range, a broadcast frequency, and encryption information.
  • the method further includes: the first base station sending first fault detection information to the first network element, where the first fault detection information includes the first fault detection information of the first base station local time and the identifier of the first base station; the first base station receives first indication information from the first network element, and learns whether the clock of the first base station is faulty according to the first indication information.
  • the first network element may determine whether the clock of the first base station is faulty.
  • the first base station determines whether the clock of the first base station can provide normal timing service according to the received first indication information from the first network element.
  • the method further includes: the first base station receiving the standard time of the second base station; The standard time of the base station is used to determine whether the clock of the first base station is faulty.
  • the first base station can determine whether the clock of the first base station is faulty according to the local time of the first base station and the standard time of the second base station, and then determine whether the clock of the first base station can provide normal time service.
  • the first base station determines whether the clock of the first base station is faulty according to the local time of the first base station and the standard time of the second base station, including: when When the time difference between the local time of the first base station and the standard time of the second base station is less than a preset threshold, the first base station determines that the clock of the first base station is not faulty; When the time difference between the standard times of the second base station is greater than or equal to the preset threshold, the first base station determines that the clock of the first base station fails.
  • the first base station can compare the time difference between the local time of the first base station and the standard time of the second base station with a preset threshold, so as to determine whether the clock of the first base station is faulty, and then determine Whether the clock of the first base station can provide normal timing service.
  • a method for time calibration including: a first base station receives a fourth difference value from a first network element, and the fourth difference value is that the first network element connects K local values of the first base station The time is obtained by fitting the K standard times of the second base station, K is an integer greater than 1, and the K local times are in one-to-one correspondence with the K standard times; the first base station calibrates the The local time of the first base station.
  • the first network element fits K local times of the first base station and K standard times of the second base station to obtain a fourth difference, and sends the fourth difference to the first base station,
  • the first base station calibrates the local time of the first base station according to the fourth difference, which can realize time synchronization between multiple base stations, not only ensure the real-time performance of time synchronization between base stations, but also improve the accuracy of time synchronization between base stations.
  • the first base station calibrating the local time of the first base station according to the fourth difference value includes: the first base station according to the local time of the first base station and the fourth difference to determine the standard time of the first base station, where the standard time of the first base station is the time obtained by making a difference between the local time of the first base station and the fourth difference.
  • the first base station determines the standard time of the first base station according to the local time of the first base station and the fourth difference, and then realizes time synchronization among multiple base stations through simple calculation.
  • the method before the first base station receives the fourth difference value from the first network element, the method further includes: sending the first base station to the The first network element sends second request information, where the second request information includes the local time of the first base station and the identifier of the first base station.
  • the first network element can update the algorithm used for fitting and the fourth difference, thereby further improving the accuracy of time synchronization between base stations.
  • the method further includes: the first base station sending first fault detection information to the first network element, where the first fault detection information includes the first fault detection information of the first base station local time and the identifier of the first base station; the first base station receives first indication information from the first network element, and learns whether the clock of the first base station is faulty according to the first indication information.
  • the first network element may determine whether the clock of the first base station is faulty.
  • the first base station determines whether the clock of the first base station can provide normal timing service according to the received first indication information from the first network element.
  • the method further includes: the first base station receiving the standard time of the second base station; The standard time of the base station is used to determine whether the clock of the first base station is faulty.
  • the first base station can determine whether the clock of the first base station is faulty according to the local time of the first base station and the standard time of the second base station, and then determine whether the clock of the first base station can provide normal time service.
  • the first base station determines whether the clock of the first base station is faulty according to the local time of the first base station and the standard time of the second base station, including: when When the time difference between the local time of the first base station and the standard time of the second base station is less than a preset threshold, the first base station determines that the clock of the first base station is not faulty; When the time difference between the standard times of the second base station is greater than or equal to the preset threshold, the first base station determines that the clock of the first base station fails.
  • the first base station can compare the time difference between the local time of the first base station and the standard time of the second base station with a preset threshold, so as to determine whether the clock of the first base station is faulty, and then determine Whether the clock of the first base station can provide normal timing service.
  • a fault detection method including: a first network element receives first fault detection information from a first base station, the first fault detection information includes the local time of the first base station and the first base station indicates that the first network element receives the standard time of the second base station; the first network element determines whether the clock of the first base station is faulty according to the local time of the first base station and the standard time of the second base station.
  • the first network element can determine whether the clock of the first base station is faulty according to the local time of the first base station and the standard time of the second base station, so as to determine whether the clock of the first base station can provide normal time service.
  • the first network element determines whether the clock of the first base station is faulty according to the local time of the first base station and the standard time of the second base station, including: When the time difference between the local time of the first base station and the standard time of the second base station is less than a preset threshold, the first network element determines that the clock of the first base station is not faulty; when the local time of the first base station When the time difference between the time and the standard time of the second base station is greater than or equal to a preset threshold, the first network element determines that the clock of the first base station fails.
  • the method further includes: the first network element sends first indication information to the first base station, and acquires the clock of the first base station according to the first indication information Is it malfunctioning.
  • a fault detection method including: the first base station receives the standard time of the second base station; the first base station determines the second Whether the clock of a base station is faulty.
  • the first base station can determine whether the clock of the first base station is faulty according to the local time of the first base station and the standard time of the second base station, and then determine whether the clock of the first base station can provide normal time service.
  • the first base station determines whether the clock of the first base station is faulty according to the local time of the first base station and the standard time of the second base station, including: when When the time difference between the local time of the first base station and the standard time of the second base station is less than a preset threshold, the first base station determines that the clock of the first base station is not faulty; When the time difference between the standard times of the second base station is greater than or equal to a preset threshold, the first base station determines that the clock of the first base station fails.
  • a communication device configured to execute the method in any one possible implementation manner of the foregoing first aspect to the fourth aspect.
  • the apparatus may include a unit and/or module for executing the method in any possible implementation manner of the first aspect to the fourth aspect, such as a processing unit and/or a communication unit.
  • the device is a first base station or a first network element.
  • the communication unit may be a transceiver, or an input/output interface;
  • the processing unit may be at least one processor.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • the device is a chip, a chip system, or a circuit used for the first base station or the first network element.
  • the communication unit may be an input/output interface, interface circuit, output circuit, input circuit, Pins or related circuits, etc.
  • the processing unit may be at least one processor, processing circuit, or logic circuit, etc.
  • a communication device includes: at least one processor configured to execute a computer program or an instruction stored in a memory, so as to execute the method in any possible implementation manner of the first aspect to the fourth aspect above.
  • the apparatus further includes a memory for storing computer programs or instructions.
  • the device further includes a communication interface, through which the processor reads the computer program or instructions stored in the memory.
  • the device is a first base station or a first network element.
  • the device is a chip, a chip system, or a circuit used for the first base station or the first network element.
  • the present application provides a processor configured to execute the methods provided in the above aspects.
  • the processor's output and reception, input and other operations can also be understood as the sending and receiving operations performed by the radio frequency circuit and the antenna, which is not limited in this application.
  • a computer-readable storage medium where the computer-readable medium stores program code for execution by a device, and the program code includes any one of the possible implementation manners for performing the above-mentioned first aspect to the fourth aspect. method.
  • a computer program product including instructions is provided, and when the computer program product is run on a computer, the computer is made to execute the method in any possible implementation manner of the above first aspect to the fourth aspect.
  • the present application also provides a system, the system includes a first base station, and the first base station can be used to perform the steps performed by the first base station in any of the methods of the first aspect, the second aspect, and the fourth aspect .
  • the system may further include a first network element, and the first network element may be configured to perform the steps performed by the first network element in the foregoing third aspect.
  • system may further include other devices and the like that interact with one or more of the first base station and the first network element in the solutions provided in the embodiments of the present application.
  • Fig. 1 shows a schematic diagram of a network architecture applicable to the embodiment of the present application.
  • FIG. 2 shows a schematic diagram of a time calibration scenario provided by the present application.
  • FIG. 3 shows a schematic diagram of another time calibration scenario provided by the present application.
  • FIG. 4 shows a schematic diagram of a time calibration method 400 provided by an embodiment of the present application.
  • FIG. 5 shows a schematic flowchart of a method 500 for time calibration provided by an embodiment of the present application.
  • FIG. 6 shows a schematic flowchart of another method 600 for time calibration provided by an embodiment of the present application.
  • FIG. 7 shows a schematic flowchart of a fault detection method 700 provided by an embodiment of the present application.
  • FIG. 8 shows a schematic flowchart of another fault detection method 800 provided by an embodiment of the present application.
  • FIG. 9 shows a schematic block diagram of a communication device 900 provided by an embodiment of the present application.
  • FIG. 10 shows a schematic block diagram of another communication device 1000 provided by an embodiment of the present application.
  • FIG. 11 shows a schematic diagram of a chip system 1100 provided by an embodiment of the present application.
  • the technical solutions of the embodiments of the present application can be applied to various communication systems, such as: fifth generation (5th generation, 5G) or new radio (new radio, NR) system, long term evolution (long term evolution, LTE) system, LTE frequency Division duplex (frequency division duplex, FDD) system, LTE time division duplex (time division duplex, TDD) system, etc.
  • 5G fifth generation
  • NR new radio
  • long term evolution long term evolution
  • LTE frequency Division duplex frequency division duplex
  • FDD frequency division duplex
  • TDD time division duplex
  • the technical solution provided by this application can also be applied to future communication systems, such as the sixth generation mobile communication system.
  • the technical solution provided by this application can also be applied to device to device (device to device, D2D) communication, vehicle to everything (vehicle-to-everything, V2X) communication, machine to machine (machine to machine, M2M) communication, machine type Communication (machine type communication, MTC), and Internet of things (internet of things, IoT) communication system or other communication systems.
  • D2D device to device
  • V2X vehicle-to-everything
  • M2M machine to machine
  • M2M machine type Communication
  • MTC machine type communication
  • IoT Internet of things
  • FIG. 1 the network architecture applicable to the embodiment of the present application is briefly introduced in conjunction with FIG. 1 , as follows.
  • the network architecture takes the 5G system (the 5th generation system, 5GS) as an example.
  • the network architecture may include but not limited to: access and mobility management function (access and mobility management function, AMF), unified data management (unified data management, UDM), radio access network (radio access network, RAN), policy Control function (policy control function, PCF), user equipment (user equipment, UE), user plane function (user plane function, UPF), data network (data network, DN), authentication service function (authentication server function, AUSF) , network slice selection function (network slice selection function, NSSF), application function (application function, AF), session management function (session management function, SMF) and so on.
  • access and mobility management function access and mobility management function, AMF
  • unified data management unified data management
  • UDM radio access network
  • policy Control function policy control function
  • PCF policy control function
  • user equipment user equipment
  • UE user plane function
  • UPF data network
  • data network data network
  • DN authentication service function
  • authentication server function authentication server
  • UE can be called terminal equipment, access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device.
  • a terminal device may be a device that provides voice/data to a user, for example, a handheld device with a wireless connection function, a vehicle-mounted device, and the like.
  • some terminals are: mobile phone (mobile phone), tablet computer, notebook computer, palmtop computer, mobile internet device (mobile internet device, MID), wearable device, virtual reality (virtual reality, VR) device, augmented reality (augmented reality, AR) equipment, wireless terminals in industrial control, wireless terminals in self driving, wireless terminals in remote medical surgery, smart grid Wireless terminals in transportation safety, wireless terminals in smart city, wireless terminals in smart home, cellular phones, cordless phones, session initiation protocol , SIP) phones, wireless local loop (wireless local loop, WLL) stations, personal digital assistants (personal digital assistant, PDA), handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, Wearable devices, terminal devices in a 5G network, or terminal devices in a future evolving public land mobile network (PLMN), etc., are not limited in this
  • RAN It can provide authorized users in a specific area with the function of accessing the communication network. Specifically, it can include wireless network equipment in the 3rd generation partnership project (3rd generation partnership project, 3GPP) network, and can also include non-3GPP (non-3GPP ) access point in the network. For the convenience of description, the RAN device is used below.
  • 3rd generation partnership project 3rd generation partnership project, 3GPP
  • non-3GPP non-3GPP
  • RAN equipment may adopt different radio access technologies.
  • 3GPP access technologies for example, wireless access technologies used in third generation (3rd generation, 3G), fourth generation (4th generation, 4G) or 5G systems
  • non- 3GPP (non-3GPP) access technology refers to the access technology that complies with the 3GPP standard specifications.
  • the access network equipment in the 5G system is called the next generation Node Base station (gNB) or RAN equipment.
  • Non-3GPP access technologies may include air interface technology represented by access point (AP) in wireless fidelity (WiFi), worldwide interoperability for microwave access (WiMAX), code Multiple access (code division multiple access, CDMA), etc.
  • the RAN device may allow non-3GPP technology interconnection and intercommunication between the terminal device and the 3GPP core network.
  • the RAN device can be responsible for functions such as radio resource management, quality of service (QoS) management, data compression and encryption on the air interface side.
  • QoS quality of service
  • the RAN equipment provides access services for the terminal equipment, and then completes the forwarding of control signals and user data between the terminal equipment and the core network.
  • RAN equipment may include but not limited to: macro base station, micro base station (also called small station), radio network controller (radio network controller, RNC), node B (Node B, NB), base station controller (base station controller) , BSC), base transceiver station (base transceiver station, BTS), home base station (for example, home evolved NodeB, or home Node B, HNB), baseband unit (baseband unit, BBU), AP in WiFi system, wireless relay Node, wireless backhaul node, transmission point (transmission point, TP) or transmission and reception point (transmission and reception point, TRP), etc., can also be gNB or transmission point (TRP or TP) in the 5G (eg, NR) system , one or a group (including multiple antenna panels) antenna panels of the base station in the 5G system, or it can also be a network node that constitutes a gNB or a transmission point, such as a distributed unit (DU), or a next-generation communication Base stations in 6
  • AMF mainly used for functions such as access control, mobility management, attachment and detachment.
  • SMF mainly used for user plane network element selection, user plane network element redirection, Internet protocol (internet protocol, IP) address allocation for terminal equipment, session establishment, modification and release, and QoS control.
  • IP Internet protocol
  • UPF mainly used for receiving and forwarding user plane data.
  • the UPF can receive user plane data from the DN, and send the user plane data to the terminal device through the AN device.
  • UPF can also receive user plane data from terminal equipment through AN equipment and forward it to DN.
  • PCF A unified policy framework mainly used to guide network behavior, and provide policy rule information for control plane network elements (such as AMF, SMF, etc.).
  • AF It is mainly used to provide services to the 3GPP network, such as interacting with the PCF for policy control.
  • the AF may be a third-party functional entity, or an application service deployed by an operator, such as an IP multimedia subsystem (IP multimedia subsystem, IMS) voice call service.
  • IP multimedia subsystem IP multimedia subsystem
  • IMS IP multimedia subsystem
  • a multi-access edge computing (MEC) platform or an application server can serve as an AF to communicate with the 5G core network.
  • MEC multi-access edge computing
  • UDM mainly used for UE subscription data management, including storage and management of UE ID, UE access authorization, etc.
  • DN mainly used for the operator's network that provides data services for the UE.
  • the Internet Internet
  • a third-party service network IP multimedia service (IP multi-media service, IMS) network, and the like.
  • IP multimedia service IP multi-media service, IMS
  • AUSF mainly used for user authentication, etc.
  • NSSF It is mainly used to determine the network slice instance that the UE is allowed to access according to the slice selection auxiliary information and subscription information of the UE.
  • network elements can communicate through the interfaces shown in the figure.
  • the UE and the AMF can communicate through the N1 interface.
  • the RAN and AMF can communicate through the N2 interface.
  • Communication between RAN and UPF can be carried out through N3 interface.
  • the SMF and UPF can communicate through the N4 interface.
  • the relationship between other interfaces and each network element is shown in FIG. 1 , and for the sake of brevity, details are not described here one by one.
  • network architecture shown above is only an example, and the network architecture applicable to the embodiment of the present application is not limited thereto, and any network architecture capable of realizing the functions of the foregoing network elements is applicable to the embodiment of the present application.
  • An independent device can also be integrated into the same device to achieve different functions, or it can be a network element in a hardware device, it can also be a software function running on dedicated hardware, or it can be instantiated on a platform (such as a cloud platform)
  • the virtualization function of the above-mentioned network element is not limited in this application.
  • network elements or functions may be divided into one or more services, and further, services that exist independently of network functions may also appear.
  • an instance of the above-mentioned function, or an instance of a service included in the above-mentioned function, or a service instance existing independently of the network function may be referred to as a service instance.
  • network elements with different functions can be co-located.
  • the access and mobility management NE can be co-located with the session management NE; the session management NE can be co-located with the user plane NE.
  • the interaction between the two network elements provided by the embodiment of the present application becomes an internal operation of the co-located network element or can be omitted.
  • the name of the interface between network elements in FIG. 1 is just an example, and the name of the interface in a specific implementation may be another name, which is not specifically limited in this application.
  • the name of the message (or signaling) transmitted between the above network elements is only an example, and does not constitute any limitation on the function of the message itself.
  • the base station in the embodiment of the present application can broadly cover various names in the following, or replace with the following names, such as: node B (NodeB), evolved base station (evolved NodeB, eNB), next generation base station (next generation NodeB) , gNB), relay station, access point (access point, AP), transmission point (transmitting and receiving point, TRP), transmission point (transmitting point, TP), primary station, secondary station, multi-standard wireless (motor slide retainer, MSR) node, home base station, network controller, access node, wireless node, access point, transmission node, transceiver node, baseband unit (BBU), remote radio unit (RRU), active antenna unit (active antenna unit, AAU), radio head (remote radio head, RRH), central unit (central unit, CU), distributed unit (distributed unit, DU), positioning nodes, etc.
  • NodeB node B
  • eNB evolved base station
  • next generation NodeB next generation NodeB
  • Base stations can be fixed or mobile.
  • a helicopter or drone can be configured to act as a mobile base station, and one or more cells can move according to the location of the mobile base station.
  • a helicopter or drone may be configured to serve as a device in communication with another base station.
  • GPS Global Positioning System
  • GPS one-way timing includes single-station single-satellite timing and single-station multi-satellite timing.
  • GPS one-way time service the base station receives satellite signals, and calibrates the local time of the base station based on the received satellite signals, so as to achieve the purpose of time service;
  • GPS common-view time transfer multiple base stations receive satellites from the same satellite at the same time Signal, and based on the received satellite signal, the local time of the base station is calibrated, so as to complete the timing of multiple base stations and realize the time synchronization between multiple base stations.
  • Fig. 2 is a schematic diagram of a time calibration scenario. As shown in Figure 2, taking the single-station single-satellite timing service as an example, the coordinates of the base station 220 are known, and the base station 220 calibrates the local time by receiving the satellite signal of the satellite 210, wherein the satellite signal of the satellite 210 can be received by the base station 220 satellite signal.
  • the specific process of single-station single-satellite timing service may include: determining the position coordinates of the base station 220; selecting a satellite signal from the satellite signals that the base station 220 can receive, thereby determining the satellite corresponding to the satellite signal, such as satellite 210; The satellite time of the base station is determined from the received satellite signal; the base station calibrates the local time according to the time difference between the local time and the satellite time, so as to achieve the purpose of time service.
  • the satellite time is the time of the satellite signal that the base station can receive, and the satellite time corresponding to different satellite signals may be the same or different. For example, taking the 24-hour system as an example, assuming that there are three base stations, which are recorded as base station one, base station two, and base station three, the satellite signals that base station one can receive include GNSS1, and the satellite signals that base station two can receive include GNSS2.
  • the satellite signals that base station three can receive include GNSS3, wherein the time of GNSS1 is 8:50, the time of GNSS2 is 9:00, and the time of GNSS3 is also 9:00, then base station one can determine the time of base station one according to the time of GNSS1
  • the satellite time is 8:50
  • base station 2 can determine the satellite time of base station 2 as 9:00 according to the time of GNSS2
  • base station 3 can determine the satellite time of base station 3 as 9:00 according to the time of GNSS3.
  • Fig. 3 is a schematic diagram of another time calibration scenario provided by the present application.
  • the range of satellite signals that base station 305 can receive is area 301, wherein area 301 includes four satellites; assuming base station
  • the range of satellite signals that can be received by 306 is an area 302, where the area 302 includes three satellites.
  • the building may be, for example, a school, a factory, or another entity with a blocking effect, which is not limited in this embodiment of the present application.
  • Antennas are set up on the building 309 , so that there are no shared satellites between the area 301 and the area 302 .
  • the base station 305 and the base station 306 view the satellite at the same time, in the scene shown in (a) in FIG. same satellite signal. Therefore, it is difficult to realize the scheme of calibrating the local time of the base station and realizing time synchronization between the base stations through common-view time transfer.
  • the local time of the base station 307 and the base station 308 can be calibrated by using common-view time transfer, and the time synchronization between the base station 307 and the base station 308 is realized.
  • there is a building 310 between the base station 307 and the base station 308, and the antenna erected on the building 310 will affect the quality of satellite signals received by the base station 307 and the base station 308 to a certain extent, thereby reducing the accuracy of time synchronization between the base stations.
  • the scheme of using GPS common-view time transfer to complete the time synchronization between base stations is affected by many factors. For example, multiple base stations need to view the same satellite at the same time. The fewer the number of satellites, the lower the quality of satellite signals will be; for another example, the time interval between two adjacent standard common view is 16 minutes, of which 13 minutes are used for data collection, and 2 minutes are used for data acquisition. For data processing, 1 minute is used to wait for the next common view, and there is a lag in the common view time transfer between multiple base stations, so the real-time performance of time synchronization among multiple base stations cannot be guaranteed.
  • the present application provides a time calibration method, through which the present application can improve the accuracy of time synchronization between base stations while ensuring the real-time performance of time synchronization between base stations.
  • the time on the first base station is local time
  • the time on the second base station is standard time
  • the local time can be understood as the time shown by the clock on the base station, and the standard time can be the time shown by the clock of the National Timekeeping Center.
  • the clock of the National Punctuality Center will not be affected by many factors such as receiver antenna coordinate error, satellite orbit error, observation station coordinate error, satellite clock error, atmospheric change error, etc. Therefore, the clock of the National Punctuality Center is always Able to provide normal time service, the time indicated by the clock of the National Timekeeping Center can be understood as the standard time.
  • the clock on the base station may fail, so in some cases, the local time of the base station may not be the standard time.
  • the time on the first base station is the local time and the time on the second base station is the standard time as an example.
  • the first base station or the second base station can receive one or more satellite signals, and the time indicated by the one or more satellite signals is recorded as satellite time.
  • the satellite signals that can be received by the second base station include one or more satellite signals that can be received by the first base station.
  • the first base station is respectively recorded as base station one, base station two, and base station three.
  • the satellite signals that the second base station can receive are GNSS1, GNSS2, GNSS3, GNSS4, GNSS5, GNSS6, and GNSS7.
  • the satellite signals that base station one can receive are GNSS1, GNSS8, the satellite signals that base station two can receive are GNSS2 and GNSS5, and the satellite signals that base station three can receive are GNSS3, GNSS6, and GNSS9.
  • the satellite signals that the second base station and base station one can receive together are GNSS1
  • the second The satellite signals that the base station and the second base station can jointly receive are GNSS2 and GNSS5
  • the satellite signals that the second base station and the third base station can jointly receive are GNSS3 and GNSS6.
  • the number of the first base station in the embodiment of the present application may be one or multiple, and the number of the first base station is not limited in the embodiment of the present application.
  • the first network element includes one or more of the following: AMF, timing-network function (timing-network function, T-NF), and network storage function (network repository function, NRF).
  • AMF timing-network function
  • T-NF timing-network function
  • NRF network repository function
  • a time calibration method provided by the embodiment of the present application is introduced below with reference to FIG. 4 to FIG. 6 .
  • FIG. 4 is a schematic diagram of a time calibration method 400 provided by an embodiment of the present application. As shown in Fig. 4, the method 400 may include the following steps.
  • the first base station determines a first difference according to the local time of the first base station and the satellite time.
  • the first difference is the time difference between the local time of the first base station and the satellite time, and the satellite time corresponds to the first satellite signal specified by the first network element.
  • the first base station can receive at least one satellite signal, and the at least one satellite signal includes the first satellite signal.
  • the satellite signals that can be received by the first base station are GNSS1, GNSS2, and GNSS3, then the first satellite signal may be GNSS1, GNSS2, or GNSS3.
  • the first satellite signals specified by the first network element for the multiple base stations may be the same or different.
  • the satellite time obtained by the multiple base stations through the first satellite signal is the same; when the first satellite signals obtained by multiple base stations are different, the multiple base stations pass the first satellite signal The resulting satellite time is different.
  • the number of the first base station is three, respectively recorded as base station one, base station two and base station three, the satellite signals that base station one can receive are GNSS1, GNSS2, GNSS3, and the satellite signals that base station two can receive are GNSS1 and GNSS5 , GNSS6, the satellite signals that base station 3 can receive are GNSS3, GNSS5, and GNSS9.
  • the first network element is one of the first satellite signals designated by base station 1 as GNSS1, GNSS2, and GNSS3, and the first network element is base station 2.
  • the designated first satellite signal is one of GNSS1, GNSS5, and GNSS6, and the first network element is one of GNSS3, GNSS5, and GNSS9 designated by the first network element for base station three.
  • the first satellite signal designated by the first network element as base station one is GNSS1
  • the first satellite signal designated by the first network element as base station two is GNSS1
  • the first satellite signal designated by the first network element as base station three is GNSS3
  • the satellite time obtained by base station 1 and base station 2 through GNSS1 is the same, and the satellite time obtained by base station 1, 2 and base station 3 is different.
  • the local time on the plurality of base stations may be the same or different, and the first base station calculates the time between the local time of the first base station and the satellite time
  • the first difference obtained by the difference may be the same or different. For example, suppose there are three first base stations, which are respectively recorded as base station one, base station two, and base station three.
  • base station one calculates The first difference obtained is 30 minutes; when the local time of base station one is 8:15 and the satellite time is 7:45, the first difference calculated by base station two is 30 minutes; when the local time of base station three is is 8:00 and the satellite time is 7:50, the first difference calculated by base station three is 10 minutes.
  • the first base station receives the second difference from the second base station.
  • the second difference is the time difference between the standard time of the second base station and the satellite time, and the satellite time corresponds to the first satellite signal specified by the first network element.
  • the first base station may be one base station, or may be multiple base stations.
  • the first base station is a base station
  • there is one first satellite signal designated by the first network element for the second base station and the first satellite signal can be received by both the first base station and the second base station The same satellite signal, so the satellite time obtained by the first base station and the second base station through the first satellite signal is also the same.
  • the satellite signals that the first base station can receive are GNSS1, GNSS2, and GNSS3
  • the satellite signals that the second base station can receive are GNSS1, GNSS2, and GNSS4
  • the first network element is the satellite designated by the first base station and the second base station
  • the signal can be GNSS1 or GNSS2.
  • the first base station is a plurality of base stations
  • the three first base stations are respectively recorded as base station one, base station two, and base station three, and the satellite signals that the second base station can receive are GNSS1, GNSS2, GNSS3, GNSS4, GNSS5 , GNSS6, the satellite signals that base station 1 can receive are GNSS1, GNSS7, the satellite signals that base station 2 can receive are GNSS2, GNSS6, and the satellite signals that base station 3 can receive are GNSS1, GNSS6, GNSS7, then the first network element is The first satellite signal designated by the second base station and base station 1 is GNSS1; the first satellite signal designated by the first network element for the second base station and base station 2 can be GNSS2 or GNSS6; the first network element is the second base station and The first satellite signal designated by base station three may be GNSS1 or GNSS6.
  • the three first satellite signals designated by the first network element for the second base station are one of GNSS1, GNSS2 or GNSS6, GNSS1 or GNSS6.
  • the three first satellite signals respectively correspond to the first satellite signals designated by the first network element for base station one, base station two, and base station three.
  • the first base station is a base station
  • there is only one first satellite signal designated by the first network element for the second base station at this time and only one satellite time is obtained by the second base station through the first satellite signal
  • the first base station is a plurality of base stations
  • the first network element is the second base station and the first satellite signal designated by base station one is GNSS1, and the first network element
  • the first satellite signal specified for the second base station and base station two is also GNSS1, assuming that the standard time of the second base station is 8:00, and the satellite time obtained by the second base station through GNSS1 is 7:40, at this time by calculating the second base station
  • the second difference obtained by the time difference between the standard time and the satellite time is 20 minutes, that is, the second difference received by the base station 1 and the base station 2 from the second base station is 20 minutes.
  • the first network element is the second base station and the first satellite signal designated by base station one is GNSS1
  • the first satellite signal designated by the first network element for the second base station and the second base station is GNSS2
  • the first satellite signal designated by the first network element for the second base station and the third base station is GNSS3.
  • the second difference obtained by calculating the time difference between the standard time of the second base station and the satellite time The value is 20 minutes, that is, as soon as the base station receives the second difference from the second base station, it is 20 minutes; assuming that the standard time of the second base station is 8:00, and the satellite time obtained by the second base station through GNSS2 is 7:30, at this time
  • the second difference obtained by calculating the time difference between the standard time of the second base station and the satellite time is 30 minutes, that is, the second difference received by the second base station from the second base station is 30 minutes; assuming the standard time of the second base station
  • the time is 8:00, and the satellite time obtained by the second base station through GNSS3 is 7:50.
  • the second difference obtained by calculating the time difference between the standard time of the second base station and the satellite time is 10 minutes, namely Base station three receives the second difference of
  • the first base station calibrates the local time of the first base station according to the first difference value and the second difference value.
  • the first difference is the time difference between the local time of the first base station and the satellite time
  • the second difference is the time difference between the standard time of the second base station and the satellite time.
  • calibrating the local time of the first base station may be understood as determining (or obtaining) the standard time of the first base station.
  • the first base station calculates the time difference between the local time of the first base station and the satellite time to obtain the first difference, and receives the second difference from the second base station.
  • the first base station calibrates the local time of the first base station according to the first difference and the second difference, thereby realizing time synchronization among multiple base stations, which not only ensures the real-time performance of time synchronization between base stations, but also improves Accuracy of time synchronization between base stations.
  • the first base station calibrates the local time of the first base station according to the first difference value and the second difference value, at least including the following two implementation manners.
  • the first base station determines the standard time of the first base station according to the local time of the first station, the first difference value, and the second difference value.
  • the first base station determines a third difference according to the first difference and the second difference, where the third difference is a time difference between the local time of the first base station and the standard time of the second base station;
  • the first base station determines the standard time of the first base station according to the local time of the first base station and the third difference, wherein the standard time of the first base station is obtained by making a difference between the local time of the first base station and the third difference time.
  • the 24-hour clock is taken as an example below to give a specific example.
  • the first base station includes two base stations, and the two base stations are respectively recorded as base station one and base station two, and the standard time of the second base station is 7:50.
  • base station 1 calculates the The first difference obtained by the time difference between the local time of one and the satellite time is 20 minutes, and the second difference received by base station one from the second base station is 10 minutes, at this time, base station one calculates the first difference and The difference of the second difference obtains the time difference between the local time of base station one and the standard time of the second base station, that is, the third difference is 10 minutes; base station one passes through the local time of base station one and the third The time obtained by making the difference between the difference values is the standard time of base station 1, that is, the standard time of base station 1 is 7:50.
  • base station 2 calculates the The first difference obtained by the time difference between the local time and the satellite time is 30 minutes, and the second difference received by base station 2 from the second base station is 5 minutes.
  • base station 2 calculates the first difference and the second difference
  • the difference of the two difference values obtains the time difference between the local time of base station two and the standard time of the second base station, that is, the third difference is 25 minutes; base station two passes the local time of base station two and the third difference
  • the time obtained by making a difference between the values is the standard time of base station 2, that is, the standard time of base station 2 is 7:50.
  • the first base station sends the local time of the first base station, the first difference value, and the second difference value to a certain device (or network element), and the device determines the standard time of the first base station, and sends the standard time sent to the first base station.
  • the device determines a third difference according to the first difference and the second difference, where the third difference is a time difference between the local time of the first base station and the standard time of the second base station; the The device determines the standard time of the first base station according to the local time of the first base station and the third difference, where the standard time of the first base station is the time obtained by making a difference between the local time of the first base station and the third difference .
  • the device can determine the third difference value and send the third difference value to the first base station ;
  • the first base station determines the standard time of the first base station according to the local time of the first base station and the third difference.
  • the method 400 further includes: before the first base station determines the first difference according to the local time of the first base station and the satellite time, the first base station sends the first request information to the first network element.
  • the first request information includes at least one satellite signal that can be received by the first base station, and the at least one satellite signal includes the first satellite signal.
  • the satellite signals that can be received by the first base station are GNSS1, GNSS2, and GNSS3, then the first satellite signal may be GNSS1, GNSS2, or GNSS3.
  • the first request information further includes any one or more of the following: RAN1's identity, timing range, broadcast frequency, and encryption information.
  • the timing range includes the satellite time range obtained by the first base station from the satellite signal that can be received;
  • the broadcast frequency is used to indicate the specific frequency used when the first base station sends the first request information to the device or network element (such as AMF);
  • the encryption information is used to encrypt the first request information to ensure the security of the first request information.
  • the first base station may send the first request information to the first network element, and after receiving the first request information from the first base station, the first network element designates the first satellite signal for the first base station, Furthermore, the first base station determines the satellite time through the satellite signal specified by the first network element. The process of specifying the first satellite signal by the first network element for the first base station will be described in detail later with reference to FIG. 5 .
  • the first base station may calibrate the local time of the first base station according to the fourth difference obtained by fitting the multiple local times of the first base station and the multiple standard times of the second base station.
  • the procedure for the first base station to calibrate the local time of the first base station according to the fourth difference obtained through fitting will be described in detail later with reference to FIG. 6 .
  • the clock of the first base station may perform fault detection, so that the clock of the first base station can provide normal timing service.
  • the flow of fault detection for the clock of the first base station will be described in detail later with reference to FIG. 7 and FIG. 8 .
  • Figure 5 and Figure 6 mainly introduce the possible process of calibrating the local time of the first base station by the first base station according to the standard time of the second base station; process.
  • the method 500 shown in FIG. 5 can be used for the first base station to receive the second difference from the second base station, obtain the satellite time according to the first satellite signal specified by the first network element for the first base station, and calculate the first The first difference obtained from the time difference between the local time of the base station and the satellite time, and then the local time of the first base station is calibrated according to the first difference and the second difference.
  • the first base station 6 can be used for the first base station to calibrate the local time of the first base station according to the fourth difference obtained by fitting the multiple local times of the first base station and the multiple standard times of the second base station.
  • the method 700 shown in FIG. 7 can be used for the first network element to perform fault detection on the clock of the first base station, and send the result of the fault detection to the first base station, so that the first base station can determine whether the clock of the first base station can provide normal timing service.
  • the method 800 shown in FIG. 8 may be used for the first base station to perform fault detection on the clock of the first base station, so that the first base station determines whether the clock of the first base station can provide normal timing service.
  • the first base station is RAN1
  • the second base station is RAN2
  • the number of first base stations may be one or multiple, which is not limited in the following examples.
  • FIG. 5 shows a schematic flowchart of a method 500 for time calibration provided by an embodiment of the present application.
  • the method 500 may include the following steps.
  • RAN1 sends first request information to AMF.
  • the first request information includes at least one satellite signal that RAN1 can receive, and the at least one satellite signal includes the first satellite signal.
  • the first request information further includes any one or more of the following: RAN1's identity, timing range, broadcast frequency, and encryption information.
  • RAN1's identity identifier
  • timing range identifier
  • broadcast frequency identifier
  • the AMF sends first request information to the NRF.
  • the NRF sends the first request information to the T-NF.
  • the T-NF may also send subscription request information to the NRF, where the subscription request information is used to instruct the NRF to send the first request information to the T-NF; after receiving the subscription request information, the NRF sends the subscription request information to the T-NF First request information.
  • the T-NF sends the first message to RAN2.
  • the first message is used to instruct RAN2 to send at least one satellite signal that RAN2 can receive to T-NF, and the at least one satellite signal includes the first satellite signal.
  • RAN2 sends a response message to the first message to the T-NF.
  • the response message of the first message includes at least one satellite signal that can be received by RAN2, and the at least one satellite signal includes the first satellite signal.
  • the response message of the first message further includes any one or more of the following: RAN2 identification, timing range, broadcast frequency, and encryption information.
  • RAN2 identification any one or more of the following: RAN2 identification, timing range, broadcast frequency, and encryption information.
  • the T-NF determines the first satellite signal.
  • the first base station when the first base station is a base station, there is one first satellite signal, and the first satellite signal is the same satellite signal that both the first base station and RAN2 can receive; when the first base station is a plurality of base stations In this case, there are multiple first satellite signals, and the multiple first satellite signals respectively correspond to the first satellite signals designated by the T-NF for multiple base stations.
  • the T-NF For an exemplary description of determining the first satellite signal by the T-NF, reference may be made to the description of step 420, which will not be repeated here.
  • the satellite signals that RAN2 can receive include one or more satellite signals that RAN1 can receive.
  • the satellite signals received by base station 2 are GNSS1 and GNSS2
  • the satellite signals that base station 2 can receive are GNSS3 and GNSS4
  • the satellite signals that base station 3 can receive are GNSS5, GNSS6, and GNSS7.
  • the satellite signals that RAN2 can receive include GNSS1 and GNSS2 Any one or more of GNSS3 and GNSS4, any one or more of GNSS5, GNSS6 and GNSS7.
  • the T-NF sends the first satellite signal to RAN1.
  • the T-NF when the first base station is a base station, the T-NF sends to the first base station the first satellite signal designated by the T-NF for the first base station and the second base station.
  • the first satellite signal designated by the T-NF for the first base station and RAN2 is GNSS1
  • the T-NF sends GNSS1 to the first base station.
  • the T-NF when the first base station is a plurality of base stations, the T-NF respectively sends the first satellite signal designated by the T-NF for the plurality of base stations and the second base station to the plurality of base stations.
  • the T-NF there are three first base stations, which are respectively recorded as base station one, base station two, and base station three.
  • T-NF is the first satellite signal designated by base station one and RAN2 as GNSS1
  • T-NF is the first satellite designated by base station two and RAN2.
  • the signal is GNSS2, T-NF is base station three and the first satellite signal designated by RAN2 is also GNSS2, then T-NF sends GNSS1 to base station one, T-NF sends GNSS2 to base station two, and T-NF sends GNSS2 to base station three.
  • the T-NF sends the first satellite signal to RAN2.
  • the T-NF when the first base station is one base station, there is one first satellite signal, and the T-NF sends to RAN2 the first satellite signal designated by the T-NF for the first base station and RAN2.
  • the first satellite signal designated by the T-NF for the first base station and RAN2 is GNSS1, and the T-NF sends GNSS1 to the RAN2.
  • the T-NF sends to RAN2 the first satellite signals designated by the T-NF for the multiple base stations and RAN2 respectively.
  • the first satellite signal assigned by T-NF for base station one and RAN2 is GNSS1
  • the first satellite signal assigned by T-NF for base station two and RAN2 is GNSS2
  • the T-NF is base station three and RAN2
  • the designated first satellite signal is also GNSS2
  • T-NF sends GNSS1, GNSS2, GNSS2 to RAN2, these three satellite signals correspond to the first satellite signal designated by T-NF for base station 1, base station 2 and base station 3 respectively .
  • step 507 and step 508 may occur at the same time or at different times, which is not limited in this embodiment of the present application.
  • T-NF sends the first satellite signal to RAN1 at the same time as T-NF sends the first satellite signal to RAN2;
  • T-NF first sends the first satellite signal to RAN1, and then sends the first satellite signal to RAN2 ;
  • the T-NF first sends the first satellite signal to RAN2, and then sends the first satellite signal to RAN1.
  • RAN1 determines the first difference.
  • RAN1 determines the first difference according to the local time of RAN1 and the satellite time.
  • the first difference is the time difference between the local time of RAN1 and the satellite time, and the satellite time corresponds to the first satellite signal specified by the T-NF.
  • the satellite time corresponds to the first satellite signal specified by the T-NF.
  • RAN2 determines the second difference.
  • the first base station is a base station
  • there is one first satellite signal designated by T-NF for RAN2 at this time and there is only one satellite time obtained by RAN2 through the first satellite signal, and RAN2 calculates the standard time of RAN2
  • the second difference obtained from the time difference with the satellite time is only one.
  • step 420 For an exemplary description of determining the second difference by RAN2, reference may be made to the description of step 420, which will not be repeated here.
  • the first base station is a plurality of base stations
  • the second difference values obtained by RAN2 by calculating the time difference between the standard time of RAN2 and the satellite time.
  • RAN2 sends the second difference to RAN1.
  • the first base station is a base station
  • RAN2 sending the second difference to the first base station reference may be made to the description of step 420, which will not be repeated here.
  • the first base station is a plurality of base stations
  • RAN2 sending the second difference to the multiple base stations, reference may be made to the description of step 420, which will not be repeated here.
  • step 509 and step 511 may occur at the same time or at different times, which is not limited in this embodiment of the present application.
  • RAN1 determines the first difference and RAN1 receives the second difference from RAN2 at the same time; for another example, RAN1 first determines the first difference, and then receives the second difference from RAN2; for another example, RAN1 first receives the second difference from RAN2; The second difference of RAN2, and then determine the first difference.
  • RAN1 calibrates the local time.
  • RAN1 calibrates the local time of RAN1 according to the first difference and the second difference.
  • the first difference is the time difference between the local time of RAN1 and the satellite time
  • the second difference is the time difference between the standard time of RAN2 and the satellite time.
  • RAN1 determines the standard time of RAN1 according to the local time of RAN1, the first difference, and the second difference.
  • RAN1 can determine the standard time of RAN1 according to the local time of RAN1, the first difference, and the second difference, so that time synchronization between multiple base stations can be realized through simple calculation.
  • RAN1 sends the local time of RAN1, the first difference, and the second difference to a certain network element or device, and the network element or device determines the standard time of RAN1, and sends the standard time to RAN1, and RAN1
  • the local time of RAN1 is calibrated based on the standard time, so as to determine the standard time of RAN1.
  • RAN1 determines a third difference according to the first difference and the second difference, wherein the third difference is the time difference between the local time of RAN1 and the standard time of RAN2;
  • the local time and the third difference determine the standard time of RAN1, wherein the standard time of RAN1 is the time obtained by making a difference between the local time of RAN1 and the third difference.
  • the standard time of RAN1 is the time obtained by making a difference between the local time of RAN1 and the third difference.
  • the first base station can determine the third difference according to the first difference and the second difference, and then determine the standard time of the first base station according to the local time of the first base station and the third difference, so that Realize time synchronization among multiple base stations through simple calculation.
  • the first base station calculates the time difference between the local time of the first base station and the satellite time, obtains the first difference, and receives the second difference from the second base station.
  • the first base station calibrates the local time of the first base station according to the first difference and the second difference, thereby realizing time synchronization among multiple base stations, which not only ensures the real-time performance of time synchronization between base stations, but also improves Accuracy of time synchronization between base stations.
  • FIG. 6 shows a schematic flowchart of another method 600 for time calibration provided by an embodiment of the present application.
  • the method 600 may include the following steps.
  • RAN1 sends second request information to AMF.
  • the RAN1 sends the second request information to the AMF every preset time interval, where the second request information includes the local time of the RAN1 and the identifier of the RAN1.
  • preset duration may be set manually or predefined by a protocol, which is not limited in this embodiment of the present application.
  • the AMF sends the second request information to the T-NF.
  • the T-NF sends the second message to RAN2.
  • the second message is used to instruct RAN2 to send the standard time of RAN2 and the identity of RAN2 to T-NF every preset time interval.
  • the RAN2 sends a response message of the second message to the T-NF.
  • RAN2 sends a response message to the second message to the T-NF at each preset time interval, wherein the response message to the second message includes the standard time of RAN2 and the identity of RAN2, and the preset time length is the same as that in step 601
  • the default duration for is the same default duration.
  • the T-NF determines a fourth difference.
  • the T-NF receives the local time from RAN1 and the standard time from RAN2 respectively at each preset time interval, and fits the K local times of RAN1 and the K standard times of RAN2 to determine the fourth difference value, K is an integer greater than 1, and K local times correspond to K standard times one by one.
  • K is an integer greater than 1
  • K local times correspond to K standard times one by one.
  • the local time received by T-NF from RAN1 is 8:00, 8:06, 8:12, 8:18 respectively
  • the standard time received by T-NF from RAN2 They are 8:00, 8:05, 8:10, and 8:15.
  • the four local times of RAN1 correspond to the four standard times of RAN2, and it can be seen that the local time of RAN1 and the standard time of RAN2 Standard time is not necessarily the same.
  • T-NF calculates the time difference between the received K local times of RAN1 and K standard times of RAN2 respectively to obtain K time differences, and then optimizes the K time differences
  • the best fitting value can be obtained by fitting the value, which is the fourth difference.
  • the optimization algorithm can be the gradient descent method, the Newton method and the quasi-Newton method, the conjugate gradient method, or other algorithms that can fit the K time differences. This is not limited.
  • the T-NF can update the algorithm used for fitting and the fourth difference, thereby further improving the accuracy of time synchronization between base stations.
  • the T-NF fits the K local times of the first base station and the K standard times of RAN2 to obtain only one fourth difference; when the first base station is When there are multiple base stations, there are multiple fourth difference values obtained by fitting the K local times of the multiple base stations and the K standard times of the RAN2 respectively by the T-NF.
  • the T-NF sends the fourth difference to RAN1.
  • the fourth difference obtained by fitting the K local times of the first base station with the K standard times of RAN2 by the T-NF is only one, and the T-NF contributes to the first base station A base station sends the fourth difference value;
  • the first base station is a plurality of base stations, the fourth difference obtained by fitting the K local times of the plurality of base stations and the K standard times of RAN2 respectively by T-NF is Multiple, the T-NF respectively sends the fourth difference to the multiple base stations.
  • RAN1 calibrates the local time.
  • RAN1 calibrates the local time of RAN1 according to the fourth difference.
  • RAN1 calibrates the local time of RAN1 according to the fourth difference value, which can realize time synchronization between multiple base stations, which can not only ensure the real-time performance of time synchronization between base stations, but also improve the accuracy of time synchronization between base stations .
  • RAN1 determines the standard time of RAN1 according to the local time of RAN1 and the fourth difference, where the standard time of RAN1 is the time obtained by difference between the local time of RAN1 and the fourth difference.
  • the local time of RAN1 is 8:00
  • the fourth difference received by RAN1 from the T-NF is 10 minutes
  • the standard time of RAN1 at this time is 7:50.
  • RAN1 determines the standard time of RAN1 according to the local time of RAN1 and the fourth difference, and then realizes time synchronization between multiple base stations through simple calculation.
  • RAN1 may send the local time of RAN1 and the fourth difference to a certain network element or device, and the network element or device determines the standard time of RAN1, and sends the standard time to RAN1, and RAN1 receives
  • the standard time of RAN1 is calibrated to the local time of RAN1 to obtain the standard time of RAN1.
  • the first network element fits K local times of the first base station and K standard times of the second base station to obtain a fourth difference, and sends the fourth difference to the second A base station
  • the first base station calibrates the local time of the first base station by receiving the fourth difference value from the first network element, which can realize time synchronization between multiple base stations, not only can ensure the real-time performance of time synchronization between base stations, but also The accuracy of time synchronization between base stations can be improved.
  • the first network element can update the algorithm for fitting the K time differences and the fourth difference, so that the accuracy of time synchronization between base stations can be further improved.
  • FIG. 7 shows a schematic flowchart of a fault detection method 700 provided by an embodiment of the present application.
  • the method 700 may include the following steps.
  • RAN1 sends first fault detection information to AMF.
  • the first fault detection information includes the local time of RAN1 and the identifier of RAN1.
  • the first fault detection information further includes a preset threshold.
  • the AMF sends first fault detection information to the T-NF.
  • the T-NF sends a third message to RAN2.
  • the third message is used to instruct RAN2 to send the standard time of RAN2 to T-NF.
  • RAN2 sends a response message to the third message to the T-NF.
  • the response message of the third message includes the standard time of RAN2.
  • the T-NF determines whether the clock of RAN1 is faulty.
  • the T-NF determines that the clock of RAN1 is faultless; when the time difference between the local time of RAN1 and the standard time of RAN2 When the difference is greater than or equal to the preset threshold, the T-NF determines that the clock of RAN1 fails.
  • the preset threshold may be predefined by the protocol, or may be included in the first fault detection information sent by RAN1, which is not limited in this embodiment of the present application.
  • the T-NF sends first indication information to RAN1.
  • RAN1 can learn whether the clock of RAN1 is faulty according to the first indication information.
  • the first network element can compare the time difference between the local time of the first base station and the standard time of the second base station with a preset threshold, so as to determine whether the clock of the first base station is faulty. According to the received first indication information from the first network element, the first base station can determine whether the clock of the first base station can provide normal timing service.
  • FIG. 8 shows a schematic flowchart of another fault detection method 800 provided by an embodiment of the present application.
  • the method 800 may include the following steps.
  • RAN1 sends second fault detection information to AMF.
  • the second fault detection information includes the identifier of RAN1.
  • the AMF sends second fault detection information to the T-NF.
  • the T-NF sends a fourth message to RAN2.
  • the fourth message is used to instruct RAN2 to send the standard time of RAN2 to RAN1.
  • RAN2 sends the standard time of RAN2 to RAN1.
  • RAN1 determines whether the clock of RAN1 is faulty.
  • RAN1 determines whether the clock of RAN1 fails according to the local time of RAN1 and the standard time of RAN2.
  • RAN1 determines that the clock of RAN1 is faultless; when the time difference between the local time of RAN1 and the standard time of RAN2 When greater than or equal to the preset threshold, RAN1 determines that the clock of RAN1 fails.
  • the preset threshold may be predefined by the protocol, or determined by the RAN1 itself, which is not limited in this embodiment of the present application.
  • the first base station can compare the time difference between the local time of the first base station and the standard time of the second base station with a preset threshold, so as to determine whether the clock of the first base station is faulty, and then determine Whether the clock of the first base station can provide normal timing service.
  • At least one (item) means one or more, and “multiple” means two or more.
  • “And/or” is used to describe the association relationship of associated objects, indicating that there can be three types of relationships, for example, “A and/or B” can mean: only A exists, only B exists, and A and B exist at the same time , where A and B can be singular or plural.
  • the character “/” generally indicates that the contextual objects are an “or” relationship.
  • At least one of the following” or similar expressions refer to any combination of these items, including any combination of single or plural items.
  • At least one item (piece) of a, b or c can mean: a, b, c, "a and b", “a and c", “b and c", or "a and b and c ", where a, b, c can be single or multiple.
  • the access and mobility management function is mainly AMF
  • the network storage function is NRF
  • the timing requirement network element function T-NF is used as an example for example description, and the present application is not limited thereto , any network element that can implement AMF, or any network element that can implement NRF, or any network element that can implement T-NF is applicable to this application.
  • the embodiments of the present application further provide corresponding devices, and the device includes corresponding modules for executing the foregoing method embodiments.
  • the module can be software, or hardware, or a combination of software and hardware. It can be understood that the technical features described in the above method embodiments are also applicable to the following device embodiments.
  • Fig. 9 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • the apparatus 900 includes a transceiver unit 910, and the transceiver unit 910 can be used to implement a corresponding communication function.
  • the transceiver unit 910 may also be called a communication interface or a communication unit.
  • the apparatus 900 may further include a processing unit 920, and the processing unit 920 may be configured to implement corresponding processing functions, such as calibrating the local time of the first base station.
  • the device 900 further includes a storage unit, which can be used to store instructions and/or data, and the processing unit 920 can read the instructions and/or data in the storage unit, so that the device implements the foregoing method embodiments Actions of the first base station or the first network element in .
  • a storage unit which can be used to store instructions and/or data
  • the processing unit 920 can read the instructions and/or data in the storage unit, so that the device implements the foregoing method embodiments Actions of the first base station or the first network element in .
  • the apparatus 900 can be used to execute the actions performed by the first base station or the first network element in the above method embodiments.
  • the apparatus 900 can be the first base station or a component of the first base station, or can be the first base station or the first base station.
  • a network element or a component of the first network element, the transceiver unit 910 is used to perform operations related to the transmission and reception of the first base station or the first network element in the method embodiments above, and the processing unit 920 is used to perform operations in the method embodiments above Processing-related operations of the first base station or the first network element.
  • the apparatus 900 is configured to perform the actions performed by the first base station in each method embodiment above.
  • the processing unit 920 is configured to determine a first difference according to the local time of the first base station and the satellite time, where the first difference is the difference between the local time of the first base station and the satellite time time difference, the satellite time corresponds to the first satellite signal specified by the first network element; the transceiver unit 910 is configured to receive a second difference from the second base station, the second difference is the standard of the second base station A time difference between the time and the satellite time; the processing unit 920 is further configured to calibrate the local time of the first base station according to the first difference and the second difference.
  • the processing unit 920 is configured to determine the standard time of the first base station according to the local time of the first base station, the first difference, and the second difference.
  • the processing unit 920 is configured to determine a third difference according to the first difference and the second difference, where the third difference is the local time of the first base station and the standard time of the second base station The time difference between them; the processing unit 920 is further configured to determine the standard time of the first base station according to the local time of the first base station and the third difference, and the standard time of the first base station is the first base station The time obtained by the difference between the local time of and the third difference.
  • the processing unit 920 is configured to, before determining the first difference according to the local time of the first base station and the satellite time, the device further includes: a transceiver unit 910, configured to send the first request information to the first network element , the first request information includes at least one satellite signal that can be received by the first base station, and the at least one satellite signal includes the first satellite signal.
  • a transceiver unit 910 configured to send the first request information to the first network element , the first request information includes at least one satellite signal that can be received by the first base station, and the at least one satellite signal includes the first satellite signal.
  • the first request information further includes any one or more of the following: the identity of the first base station, timing range, broadcast frequency, and encryption information.
  • the device further includes: a transceiver unit 910, configured to send first fault detection information to the first network element, where the first fault detection information includes the local time of the first base station and the identifier of the first base station;
  • the transceiver unit 910 is further configured to receive first indication information from the first network element, and learn whether the clock of the first base station is faulty according to the first indication information.
  • the device further includes: a transceiver unit 910, configured to receive the standard time of the second base station; a processing unit 920, configured to determine the second base station's local time according to the local time of the first base station and the standard time of the second base station Whether the clock of a base station is faulty.
  • a transceiver unit 910 configured to receive the standard time of the second base station
  • a processing unit 920 configured to determine the second base station's local time according to the local time of the first base station and the standard time of the second base station Whether the clock of a base station is faulty.
  • the processing unit 920 when the time difference between the local time of the first base station and the standard time of the second base station is less than a preset threshold, the processing unit 920 is configured to determine that the clock of the first base station is faultless; when the When the time difference between the local time of the first base station and the standard time of the second base station is greater than or equal to the preset threshold, the processing unit 920 is configured to determine that the clock of the first base station fails.
  • the transceiver unit 910 is configured to receive a fourth difference value from the first network element, where the fourth difference value is that the first network element compares the K local times of the first base station with the second base station
  • the K standard times are obtained by fitting, K is an integer greater than 1, and the K local times are in one-to-one correspondence with the K standard times;
  • the processing unit 920 is configured to calibrate the first base station according to the fourth difference local time.
  • the processing unit 920 is configured to determine the standard time of the first base station according to the fourth difference between the local time of the first base station and the standard time of the first base station, where the standard time of the first base station is the local time of the first base station and The time obtained by making a difference between the fourth difference values.
  • the device further includes: the transceiver unit 910 is configured to send a second request to the first network element every preset time interval information, the second request information includes the local time of the first base station and the identifier of the first base station.
  • the device further includes: a transceiver unit 910, configured to send first fault detection information to the first network element, where the first fault detection information includes the local time of the first base station and the identifier of the first base station;
  • the transceiver unit 910 is further configured to receive first indication information from the first network element, and learn whether the clock of the first base station is faulty according to the first indication information.
  • the device further includes: a transceiver unit 910, configured to receive the standard time of the second base station; a processing unit 920, configured to determine the second base station's local time according to the local time of the first base station and the standard time of the second base station Whether the clock of a base station is faulty.
  • a transceiver unit 910 configured to receive the standard time of the second base station
  • a processing unit 920 configured to determine the second base station's local time according to the local time of the first base station and the standard time of the second base station Whether the clock of a base station is faulty.
  • the processing unit 920 when the time difference between the local time of the first base station and the standard time of the second base station is less than a preset threshold, the processing unit 920 is configured to determine that the clock of the first base station is faultless; when the When the time difference between the local time of the first base station and the standard time of the second base station is greater than or equal to the preset threshold, the processing unit 920 is configured to determine that the clock of the first base station fails.
  • the transceiver unit 910 is configured to receive the standard time of the second base station; the processing unit 920 is configured to determine the clock of the first base station according to the local time of the first base station and the standard time of the second base station Is it malfunctioning.
  • the processing unit 920 when the time difference between the local time of the first base station and the standard time of the second base station is less than a preset threshold, the processing unit 920 is configured to determine that the clock of the first base station is faultless; when the When the time difference between the local time of the first base station and the standard time of the second base station is greater than or equal to a preset threshold, the processing unit 920 is configured to determine that the clock of the first base station fails.
  • the apparatus 900 can implement the steps or processes corresponding to the first base station in the method embodiment according to the embodiment of the present application, and the apparatus 900 can include a method for performing the first Elements of a method performed by a base station.
  • the apparatus 900 is configured to perform the actions performed by the first network element (such as the T-NF) in each method embodiment above.
  • the transceiver unit 910 is configured to receive first fault detection information from a first base station, where the first fault detection information includes the local time of the first base station and the identifier of the first base station; the transceiver unit 910 , is also used to receive the standard time of the second base station; the processing unit 920 is used to determine whether the clock of the first base station is faulty according to the local time of the first base station and the standard time of the second base station.
  • the processing unit 920 when the time difference between the local time of the first base station and the standard time of the second base station is less than a preset threshold, the processing unit 920 is configured to determine that the clock of the first base station is faultless; when the When the time difference between the local time of the first base station and the standard time of the second base station is greater than or equal to a preset threshold, the processing unit 920 is configured to determine that the clock of the first base station fails.
  • the apparatus further includes: a transceiver unit 910, configured to send first indication information to the first base station, and learn whether the clock of the first base station is faulty according to the first indication information.
  • a transceiver unit 910 configured to send first indication information to the first base station, and learn whether the clock of the first base station is faulty according to the first indication information.
  • the apparatus 900 may implement the steps or processes corresponding to the execution of the first network element in the method embodiment according to the embodiment of the present application.
  • the apparatus 900 may include units for executing the method performed by the T-NF in the embodiment shown in FIG. 6 .
  • the apparatus 900 here is embodied in the form of functional units.
  • the term "unit” here may refer to an application specific integrated circuit (ASIC), an electronic circuit, a processor for executing one or more software or firmware programs (such as a shared processor, a dedicated processor, or a group processor, etc.) and memory, incorporated logic, and/or other suitable components to support the described functionality.
  • ASIC application specific integrated circuit
  • the device 900 may specifically be the first base station or the first network element (such as T-NF) in the above embodiments, and may be used to perform the above-mentioned method embodiments related to Each process and/or steps corresponding to the first base station or the first network element (such as T-NF) will not be repeated here to avoid repetition.
  • the apparatus 900 in each of the above solutions has the function of implementing the corresponding steps performed by the first base station or the first network element (such as T-NF) in the above method.
  • the functions described above may be implemented by hardware, or may be implemented by executing corresponding software on the hardware.
  • the hardware or software includes one or more modules corresponding to the above functions; for example, the transceiver unit can be replaced by a transceiver (for example, the sending unit in the transceiver unit can be replaced by a transmitter, and the receiving unit in the transceiver unit can be replaced by a receiver computer), and other units, such as a processing unit, may be replaced by a processor to respectively perform the sending and receiving operations and related processing operations in each method embodiment.
  • the transceiver unit 910 may also be a transceiver circuit (for example, may include a receiving circuit and a sending circuit), and the processing unit may be a processing circuit.
  • the apparatus in FIG. 9 may be the network element or device in the foregoing embodiments, or may be a chip or a chip system, such as a system on chip (system on chip, SoC).
  • the transceiver unit may be an input-output circuit or a communication interface;
  • the processing unit is a processor or a microprocessor or an integrated circuit integrated on the chip. It is not limited here.
  • this embodiment of the present application provides another communication device 1000 .
  • the device 1000 includes a processor 1010, the processor 1010 is coupled with a memory 1020, the memory 1020 is used for storing computer programs or instructions and/or data, and the processor 1010 is used for executing the computer programs or instructions stored in the memory 1020, or reading the memory 1020
  • the stored data is used to execute the methods in the above method embodiments.
  • processors 1010 there are one or more processors 1010 .
  • the memory 1020 is integrated with the processor 1010, or is set separately.
  • the device 1000 further includes a transceiver 1030, and the transceiver 1030 is used for receiving and/or sending signals.
  • the processor 1010 is configured to control the transceiver 1030 to receive and/or send signals.
  • the apparatus 1000 is configured to implement the operations performed by the first base station or the first network element (such as T-NF) in each of the above method embodiments.
  • the processor 1010 is configured to execute the computer programs or instructions stored in the memory 1020, so as to implement related operations of the first base station in the various method embodiments above. For example, the method performed by the first base station in any one of the embodiments shown in FIG. 4 to FIG. 8 .
  • processors mentioned in the embodiment of the present application may be a central processing unit (central processing unit, CPU), and may also be other general purpose processors, digital signal processors (digital signal processor, DSP), application specific integrated circuits ( application specific integrated circuit (ASIC), off-the-shelf programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the memory mentioned in the embodiments of the present application may be a volatile memory and/or a nonvolatile memory.
  • the non-volatile memory can be read-only memory (read-only memory, ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically programmable Erases programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM).
  • RAM random access memory
  • RAM can be used as an external cache.
  • RAM includes the following multiple forms: static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), synchronous dynamic random access memory (synchronous DRAM, SDRAM), Double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection dynamic random access memory (synchlink DRAM, SLDRAM) and direct Memory bus random access memory (direct rambus RAM, DR RAM).
  • the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic devices, discrete gate or transistor logic devices, or discrete hardware components
  • the memory storage module may be integrated in the processor.
  • memories described herein are intended to include, but are not limited to, these and any other suitable types of memories.
  • an embodiment of the present application provides a chip system 1100 .
  • the chip system 1100 (or also called a processing system) includes a logic circuit 1110 and an input/output interface (input/output interface) 1120 .
  • the logic circuit 1110 may be a processing circuit in the chip system 1100 .
  • the logic circuit 1110 may be coupled to the storage unit, and invoke instructions in the storage unit, so that the chip system 1100 can implement the methods and functions of the embodiments of the present application.
  • the input/output interface 1120 may be an input/output circuit in the system on chip 1100, which outputs information processed by the system on chip 1100, or inputs data or signaling information to be processed to the system on chip 1100 for processing.
  • the chip system 1100 is used to implement the operations performed by the first base station or the first network element (such as T-NF) in the above various method embodiments.
  • the logic circuit 1110 is used to implement the processing-related operations performed by the first base station in the above method embodiments, such as the processing-related operations performed by the first base station in any one of the embodiments shown in FIG. 4 to FIG. 8 ;
  • the input/output interface 1120 is used to implement the sending and/or receiving related operations performed by the first base station in the above method embodiments, such as the sending performed by the first base station in any one of the embodiments shown in Figure 4 to Figure 8 and/or receive related actions.
  • the embodiment of the present application also provides a computer-readable storage medium, on which computer instructions for implementing the methods performed by the first base station or the first network element (such as T-NF) in the above method embodiments are stored.
  • the computer program when executed by a computer, the computer can implement the methods performed by the first base station in each of the foregoing method embodiments.
  • An embodiment of the present application further provides a computer program product, including instructions, and when the instructions are executed by a computer, the methods performed by the first base station or the first network element (such as T-NF) in the above method embodiments are implemented.
  • the disclosed devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer may be a personal computer, a server, or a network device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server or data center Transmission to another website site, computer, server, or data center by wired (eg, coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, DVD), or a semiconductor medium (for example, a solid state disk (SSD), etc.
  • the aforementioned available medium includes but Not limited to: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disk and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)
  • Electric Clocks (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种时间校准的方法和装置。该方法包括:第一基站根据该第一基站的本地时间与卫星时间,确定第一差值,该第一差值为该第一基站的本地时间与该卫星时间之间的时间差值,该卫星时间与第一网元指定的第一卫星信号相对应;该第一基站接收来自第二基站的第二差值,该第二差值为该第二基站的标准时间与该卫星时间之间的时间差值;该第一基站根据该第一差值和该第二差值,校准该第一基站的本地时间。通过本申请,能够实现多个基站间的时间同步,不仅可以保证基站间时间同步的实时性,也可以提高基站间时间同步的精度。

Description

时间校准的方法和装置
本申请要求于2021年12月31日提交中国专利局、申请号为202111672578.8、申请名称为“时间校准的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及一种时间校准的方法和装置。
背景技术
随着移动通信业务的迅速增长,无线网络升级演进速度逐步加快。在第四代移动通信系统(the 4th generation mobile communication system,4GS)时期,基站采用全球导航卫星系统(global navigation satellite system,GNSS)将空口时间误差控制在1.5us以内,实现了百纳秒量级的校准精度,满足了4GS时期的时间同步基本需求。
相比于4GS时期,第五代移动通信系统(the 5th generation mobile communication system,5GS)时期的网络结构发生了变化,而且对于基站间时间同步的精度要求也进一步提高。在未来时期,随着无线网络的不断升级演进,高精度定位技术、多点协作、载波聚合等增量功能和关键技术会对基站间时间同步的精度提出更高的要求,例如,基站间同步需求要达到纳秒量级。因此,如何实现基站间高精度的时间同步是亟需解决的问题。
发明内容
本申请提供一种时间校准的方法和装置,可以实现基站间高精度的时间同步。
第一方面,提供了一种时间校准的方法,该方法可以由第一基站执行,或者,也可以由第一基站的组成部件(例如芯片或者电路)执行,对此不作限定。为了便于描述,下面以由第一基站执行为例进行说明。
该方法可以包括:第一基站根据该第一基站的本地时间与卫星时间,确定第一差值,该第一差值为该第一基站的本地时间与该卫星时间之间的时间差值,该卫星时间与第一网元指定的第一卫星信号相对应;该第一基站接收来自第二基站的第二差值,该第二差值为该第二基站的标准时间与该卫星时间之间的时间差值;该第一基站根据该第一差值和该第二差值,校准该第一基站的本地时间。
基于上述技术方案,第一基站计算第一基站的本地时间与卫星时间之间的时间差值,得到第一差值,并接收来自第二基站的第二差值。第一基站根据该第一差值和该第二差值,对第一基站的本地时间进行校准,从而实现多个基站间的时间同步,不仅可以保证基站间时间同步的实时性,也可以提高基站间时间同步的精度。
结合第一方面,在第一方面的某些实现方式中,该第一基站根据该第一差值和该第二差值,校准该第一基站的本地时间,包括:该第一基站根据该第一基站的本地时间、该第一差值、该第二差值,确定该第一基站的标准时间。
基于上述技术方案,第一基站可以根据第一基站的本地时间、第一差值、第二差值,确定第一基站的标准时间,从而可以通过简单的计算实现多个基站间的时间同步。
结合第一方面,在第一方面的某些实现方式中,该第一基站根据该第一差值和该第二差值,校准该第一基站的本地时间,包括:该第一基站根据该第一差值与该第二差值,确定第三差值,该第三差值为该第一基站的本地时间与该第二基站的标准时间之间的时间差值;该第一基站根据该第一基站的本地时间与该第三差值,确定该第一基站的标准时间,该第一基站的标准时间为该第一基站的本地时间与该第三差值之间作差得到的时间。
基于上述技术方案,第一基站可以根据第一差值与第二差值,确定第三差值,再根据第一基站的本地时间与第三差值,确定第一基站的标准时间,从而可以通过简单的计算实现多个基站间的时间同步。
结合第一方面,在第一方面的某些实现方式中,该第一基站根据该第一基站的本地时间与卫星时间,确定第一差值之前,该方法还包括:该第一基站向该第一网元发送第一请求信息,该第一请求信息包括该第一基站能够接收到的至少一个卫星信号,该至少一个卫星信号包括该第一卫星信号。
结合第一方面,在第一方面的某些实现方式中,该第一请求信息还包括以下任意一项或多项:该第一基站的标识、授时范围、广播频度、加密信息。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:该第一基站向该第一网元发送第一故障检测信息,该第一故障检测信息包括该第一基站的本地时间和该第一基站的标识;该第一基站接收来自该第一网元的第一指示信息,根据该第一指示信息获知该第一基站的时钟是否故障。
基于上述技术方案,第一网元可以确定第一基站的时钟是否故障。第一基站根据接收到的来自第一网元的第一指示信息,确定第一基站的时钟是否能够提供正常的授时服务。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:该第一基站接收该第二基站的标准时间;该第一基站根据该第一基站的本地时间与该第二基站的标准时间,确定该第一基站的时钟是否故障。
基于上述技术方案,第一基站可以根据第一基站的本地时间与第二基站的标准时间,确定第一基站的时钟是否故障,进而可以确定第一基站的时钟是否能够提供正常的授时服务。
结合第一方面,在第一方面的某些实现方式中,该第一基站根据该第一基站的本地时间与该第二基站的标准时间,确定该第一基站的时钟是否故障,包括:当该第一基站的本地时间与该第二基站的标准时间之间的时间差值小于预设阈值时,该第一基站确定该第一基站的时钟无故障;当该第一基站的本地时间与该第二基站的标准时间之间的时间差值大于或者等于该预设阈值时,该第一基站确定该第一基站的时钟发生故障。
基于上述技术方案,第一基站可以对第一基站的本地时间与第二基站的标准时间之间的时间差值与预设阈值进行比较,从而可以确定第一基站的时钟是否故障,进而可以确定第一基站的时钟是否能够提供正常的授时服务。
第二方面,提供了一种时间校准的方法,包括:第一基站接收来自第一网元的第四差值,该第四差值为该第一网元将该第一基站的K个本地时间与第二基站的K个标准时间拟合得到,K为大于1的整数,且该K个本地时间与该K个标准时间一一对应;该第一基站根据该第四差值,校准该第一基站的本地时间。
基于上述技术方案,第一网元将第一基站的K个本地时间和第二基站的K个标准时间进行拟合,得到第四差值,并将该第四差值发送至第一基站,第一基站根据该第四差值对第一基站的本地时间进行校准,能够实现多个基站间的时间同步,不仅可以保证基站间时间同步的实时性,也可以提高基站间时间同步的精度。
结合第二方面,在第二方面的某些实现方式中,该第一基站根据该第四差值,校准该第一基站的本地时间,包括:该第一基站根据该第一基站的本地时间与该第四差值,确定该第一基站的标准时间,该第一基站的标准时间为该第一基站的本地时间与该第四差值之间作差得到的时间。
基于上述技术方案,第一基站根据第一基站的本地时间与第四差值,确定第一基站的标准时间,进而通过简单的计算实现多个基站间的时间同步。
结合第二方面,在第二方面的某些实现方式中,该第一基站接收来自第一网元的第四差值之前,该方法还包括:每间隔预设时长,该第一基站向该第一网元发送第二请求信息,该第二请求信息包括该第一基站的本地时间和该第一基站的标识。
基于上述技术方案,通过设置预设时长,第一网元可以对拟合使用的算法以及第四差值进行更新处理,从而可以进一步提高基站间时间同步的精度。
结合第二方面,在第二方面的某些实现方式中,该方法还包括:该第一基站向该第一网元发送第一故障检测信息,该第一故障检测信息包括该第一基站的本地时间和该第一基站的标识;该第一基站接收来自该第一网元的第一指示信息,根据该第一指示信息获知该第一基站的时钟是否故障。
基于上述技术方案,第一网元可以确定第一基站的时钟是否故障。第一基站根据接收到的来自第一网元的第一指示信息,确定第一基站的时钟是否能够提供正常的授时服务。
结合第二方面,在第二方面的某些实现方式中,该方法还包括:该第一基站接收该第二基站的标准时间;该第一基站根据该第一基站的本地时间与该第二基站的标准时间,确定该第一基站的时钟是否故障。
基于上述技术方案,第一基站可以根据第一基站的本地时间与第二基站的标准时间,确定第一基站的时钟是否故障,进而可以确定第一基站的时钟是否能够提供正常的授时服务。
结合第二方面,在第二方面的某些实现方式中,该第一基站根据该第一基站的本地时间与该第二基站的标准时间,确定该第一基站的时钟是否故障,包括:当该第一基站的本地时间与该第二基站的标准时间之间的时间差值小于预设阈值时,该第一基站确定该第一基站的时钟无故障;当该第一基站的本地时间与该第二基站的标准时间之间的时间差值大于或者等于该预设阈值时,该第一基站确定该第一基站的时钟发生故障。
基于上述技术方案,第一基站可以对第一基站的本地时间与第二基站的标准时间之间的时间差值与预设阈值进行比较,从而可以确定第一基站的时钟是否故障,进而可以确定第一基站的时钟是否能够提供正常的授时服务。
第三方面,提供了一种故障检测的方法,包括:第一网元接收来自第一基站的第一故障检测信息,该第一故障检测信息包括该第一基站的本地时间和该第一基站的标识该第一网元接收第二基站的标准时间;该第一网元根据该第一基站的本地时间与该第二基站的标准时间,确定该第一基站的时钟是否故障。
基于上述技术方案,第一网元可以根据第一基站的本地时间与第二基站的标准时间, 确定第一基站的时钟是否故障,从而确定第一基站的时钟是能够提供正常的授时服务。
结合第三方面,在第三方面的某些实现方式中,该第一网元根据该第一基站的本地时间与该第二基站的标准时间,确定该第一基站的时钟是否故障,包括:当该第一基站的本地时间与该第二基站的标准时间之间的时间差值小于预设阈值时,该第一网元确定该第一基站的时钟无故障;当该第一基站的本地时间与该第二基站的标准时间之间的时间差值大于或者等于预设阈值时,该第一网元确定该第一基站的时钟发生故障。
结合第三方面,在第三方面的某些实现方式中,该方法还包括:该第一网元向该第一基站发送第一指示信息,根据该第一指示信息获知该第一基站的时钟是否故障。
第四方面,提供了一种故障检测的方法,包括:第一基站接收第二基站的标准时间;该第一基站根据该第一基站的本地时间与该第二基站的标准时间,确定该第一基站的时钟是否故障。
基于上述技术方案,第一基站可以根据第一基站的本地时间与第二基站的标准时间,确定第一基站的时钟是否故障,进而可以确定第一基站的时钟是否能够提供正常的授时服务。
结合第四方面,在第四方面的某些实现方式中,该第一基站根据该第一基站的本地时间与该第二基站的标准时间,确定该第一基站的时钟是否故障,包括:当该第一基站的本地时间与该第二基站的标准时间之间的时间差值小于预设阈值时,该第一基站确定该第一基站的时钟无故障;当该第一基站的本地时间与该第二基站的标准时间之间的时间差值大于或者等于预设阈值时,该第一基站确定该第一基站的时钟发生故障。
第五方面,提供一种通信装置,该装置用于执行上述第一方面至第四方面任一种可能实现方式中的方法。具体地,该装置可以包括用于执行第一方面至第四方面任一种可能实现方式中的方法的单元和/或模块,如处理单元和/或通信单元。
在一种实现方式中,该装置为第一基站或第一网元。当该装置为第一基站或第一网元时,通信单元可以是收发器,或,输入/输出接口;处理单元可以是至少一个处理器。可选地,收发器可以为收发电路。可选地,输入/输出接口可以为输入/输出电路。
在另一种实现方式中,该装置为用于第一基站或第一网元的芯片、芯片系统或电路。当该装置为用于第一基站或第一网元的芯片、芯片系统或电路时,通信单元可以是该芯片、芯片系统或电路上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等;处理单元可以是至少一个处理器、处理电路或逻辑电路等。
第六方面,提供一种通信装置,该装置包括:至少一个处理器,用于执行存储器存储的计算机程序或指令,以执行上述第一方面至第四方面任一种可能实现方式中的方法。可选地,该装置还包括存储器,用于存储的计算机程序或指令。可选地,该装置还包括通信接口,处理器通过通信接口读取存储器存储的计算机程序或指令。
在一种实现方式中,该装置为第一基站或第一网元。
在另一种实现方式中,该装置为用于第一基站或第一网元的芯片、芯片系统或电路。
第七方面,本申请提供一种处理器,用于执行上述各方面提供的方法。
对于处理器所涉及的发送和获取/接收等操作,如果没有特殊说明,或者,如果未与其在相关描述中的实际作用或者内在逻辑相抵触,则可以理解为处理器输出和接收、输入等操作,也可以理解为由射频电路和天线所进行的发送和接收操作,本申请对此不做限定。
第八方面,提供一种计算机可读存储介质,该计算机可读介质存储用于设备执行的程 序代码,该程序代码包括用于执行上述第一方面至第四方面任一种可能实现方式中的方法。
第九方面,提供一种包含指令的计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行上述第一方面至第四方面任一种可能实现方式中的方法。
第十方面,本申请还提供一种系统,该系统包括第一基站,该第一基站可用于执行上述第一方面、第二方面、第四方面的任一方法中由第一基站执行的步骤。
在一些可能的实现方式中,所述系统还可以包括第一网元,该第一网元可用于执行上述第三方面中由第一网元执行的步骤。
在一些可能的实现方式中,所述系统还可以包括本申请实施例提供的方案中与该第一基站、第一网元中的一项或多项进行交互的其他设备等等。
附图说明
图1示出了适用于本申请实施例的网络架构的示意图。
图2示出了本申请提供的一种时间校准的场景示意图。
图3示出了本申请提供的又一种时间校准的场景示意图。
图4示出了本申请实施例提供的一种时间校准的方法400的示意图。
图5示出了本申请实施例提供的一种时间校准的方法500的示意性流程图。
图6示出了本申请实施例提供的又一种时间校准的方法600的示意性流程图。
图7示出了本申请实施例提供的一种故障检测的方法700的示意性流程图。
图8示出了本申请实施例提供的又一种故障检测的方法800的示意性流程图。
图9示出了本申请实施例提供的一种通信装置900的示意性框图。
图10示出了本申请实施例提供的另一种通信装置1000的示意性框图。
图11示出了本申请实施例提供的一种芯片系统1100的示意图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:第五代(5th generation,5G)或新无线(new radio,NR)系统、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)系统等。本申请提供的技术方案还可以应用于未来的通信系统,如第六代移动通信系统。本申请提供的技术方案还可以应用于设备到设备(device to device,D2D)通信,车到万物(vehicle-to-everything,V2X)通信,机器到机器(machine to machine,M2M)通信,机器类型通信(machine type communication,MTC),以及物联网(internet of things,IoT)通信系统或者其他通信系统。
首先结合图1简单介绍适用于本申请实施例的网络架构,如下。
如图1所示,该网络架构以5G系统(the 5th generation system,5GS)为例。该网络架构可以包括但不限于:接入和移动性管理功能(access and mobility management function,AMF)、统一数据管理(unified data management,UDM)、无线接入网(radio access network,RAN)、策略控制功能(policy control function,PCF)、用户设备(user equipment,UE)、用户面功能(user plane function,UPF)、数据网络(data network,DN)、鉴权服务功能 (authentication server function,AUSF)、网络切片选择功能(network slice selection function,NSSF)、应用功能(application function,AF)、会话管理功能(session management function,SMF)等等。
图1所示的各网元(或者设备)的主要功能描述如下:
1、UE:可以称终端设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。
终端设备可以是一种向用户提供语音/数据的设备,例如,具有无线连接功能的手持式设备、车载设备等。目前,一些终端的举例为:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、可穿戴设备,5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等,本申请实施例对此并不限定。
2、RAN:可以为特定区域的授权用户提供接入通信网络的功能,具体可以包括第三代合作伙伴计划(3rd generation partnership project,3GPP)网络中无线网络设备也可以包括非3GPP(non-3GPP)网络中的接入点。下文为方便描述采用RAN设备表示。
RAN设备可以为采用不同的无线接入技术。目前的无线接入技术有两种类型:3GPP接入技术(例如,第三代(3rd generation,3G)、第四代(4th generation,4G)或5G系统中采用的无线接入技术)和非3GPP(non-3GPP)接入技术。3GPP接入技术是指符合3GPP标准规范的接入技术,例如,5G系统中的接入网设备称为下一代基站节点(next generation Node Base station,gNB)或者RAN设备。非3GPP接入技术可以包括以无线保真(wireless fidelity,WiFi)中的接入点(access point,AP)为代表的空口技术、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)、码分多址(code division multiple access,CDMA)等。RAN设备可以允许终端设备和3GPP核心网之间采用非3GPP技术互连互通。
RAN设备能够负责空口侧的无线资源管理、服务质量(quality of service,QoS)管理、数据压缩和加密等功能。RAN设备为终端设备提供接入服务,进而完成控制信号和用户数据在终端设备和核心网之间的转发。
RAN设备例如可以包括但不限于:宏基站、微基站(也称为小站)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(baseband unit,BBU),WiFi系统中的AP、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为5G(如,NR)系统中的gNB或传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板, 或者,还可以为构成gNB或传输点的网络节点,如分布式单元(distributed unit,DU),或者下一代通信6G系统中的基站等。本申请实施例对RAN设备所采用的具体技术和具体设备形态不做限定。
3、AMF:主要用于接入控制、移动性管理、附着与去附着等功能。
4、SMF:主要用于用户面网元选择,用户面网元重定向,终端设备的因特网协议(internet protocol,IP)地址分配,以及会话的建立、修改和释放及QoS控制。
5、UPF:主要用于用户面数据的接收和转发。例如,UPF可以从DN接收用户面数据,并通过AN设备将用户面数据发送给终端设备。UPF还可以通过AN设备从终端设备接收用户面数据,并转发到DN。
6、PCF:主要用于指导网络行为的统一策略框架,为控制面网元(例如AMF,SMF等)提供策略规则信息等。
7、AF:主要用于向3GPP网络提供业务,如与PCF之间交互以进行策略控制等。AF可以是第三方功能实体,也可以是运营商部署的应用服务,如IP多媒体子系统(IP multimedia subsystem,IMS)语音呼叫业务。在本申请中,多接入边缘计算(multi-access edge computing,MEC)平台或应用服务器可以作为AF与5G核心网进行通信。
8、UDM:主要用于UE的签约数据管理,包括UE标识的存储和管理,UE的接入授权等。
9、DN:主要用于为UE提供数据服务的运营商网络。例如,因特网(Internet)、第三方的业务网络、IP多媒体服务业务(IP multi-media service,IMS)网络等。
10、AUSF:主要用于用户鉴权等。
11、NSSF:主要用于根据UE的切片选择辅助信息、签约信息等确定UE允许接入的网络切片实例。
在图1所示的网络架构中,各网元之间可以通过图中所示的接口通信。如图1所示,UE和AMF之间可以通过N1接口进行通信。RAN和AMF之间可以通过N2接口进行通信。RAN和UPF之间可以通过N3接口进行通信。SMF和UPF之间可以通过N4接口进行通信。其他接口与各网元之间的关系如图1中所示,为了简洁,这里不一一详述。
应理解,上述所示的网络架构仅是示例性说明,适用本申请实施例的网络架构并不局限于此,任何能够实现上述各个网元的功能的网络架构都适用于本申请实施例。
还应理解,图1中所示的AMF、SMF、UPF、PCF、UDM、NSSF、AUSF等可以理解为用于实现不同功能的网元,例如可以按需组合成网络切片,这些网元可以各自独立的设备,也可以集成于同一设备中实现不同的功能,或者可以是硬件设备中的网络元件,也可以是在专用硬件上运行的软件功能,或者是平台(例如,云平台)上实例化的虚拟化功能,本申请对于上述网元的具体形态不作限定。
还应理解,上述网元或者功能可划分出一个或多个服务,进一步,还可能会出现独立于网络功能存在的服务。在本申请中,上述功能的实例、或上述功能中包括的服务的实例、或独立于网络功能存在的服务实例均可称为服务实例。此外,在实际部署中,不同功能的网元可以合设。例如,接入与移动性管理网元可以与会话管理网元合设;会话管理网元可以与用户面网元合设。当两个网元合设的时候,本申请实施例提供的这两个网元之间的交互就成为该合设网元的内部操作或者可以省略。
还应理解,上述命名仅为便于区分不同的功能而定义,不应对本申请构成任何限定。 本申请并不排除在6G网络以及未来其它的网络中采用其他命名的可能。例如,在6G网络中,上述各个网元中的部分或全部可以沿用5G中的术语,也可能采用其他名称等。
还应理解,图1中的各个网元之间的接口名称只是一个示例,具体实现中接口的名称可能为其他的名称,本申请对此不作具体限定。此外,上述各个网元之间的所传输的消息(或信令)的名称也仅仅是一个示例,对消息本身的功能不构成任何限定。
本申请实施例中的基站可以广义的覆盖如下中的各种名称,或与如下名称进行替换,比如:节点B(NodeB)、演进型基站(evolved NodeB,eNB)、下一代基站(next generation NodeB,gNB)、中继站、接入点(access point,AP)、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、主站、辅站、多制式无线(motor slide retainer,MSR)节点、家庭基站、网络控制器、接入节点、无线节点、接入点、传输节点、收发节点、基带单元(BBU)、射频拉远单元(remote radio unit,RRU)、有源天线单元(active antenna unit,AAU)、射频头(remote radio head,RRH)、中心单元(central unit,CU)、分布式单元(distributed unit,DU)、定位节点等。基站可以是宏基站、微基站、中继节点、施主节点或类似物,或其组合。基站还可以指用于设置于前述设备或装置内的通信模块、调制解调器或芯片。基站还可以是移动交换中心以及D2D、V2X、M2M通信中承担基站功能的设备、6G网络中的网络侧设备、未来的通信系统中承担基站功能的设备等。基站可以支持相同或不同接入技术的网络。
基站可以是固定的,也可以是移动的。例如,直升机或无人机可以被配置成充当移动基站,一个或多个小区可以根据该移动基站的位置移动。在其他示例中,直升机或无人机可以被配置成用作与另一基站通信的设备。
全球定位系统(global positioning system,GPS)的授时方法包括GPS单向授时和GPS共视时间传递,其中,GPS单向授时包括单站单星授时和单站多星授时。GPS单向授时:基站接收卫星信号,并基于接收到的卫星信号对该基站的本地时间进行校准,从而达到授时的目的;GPS共视时间传递:多个基站在同一时间接收同一颗卫星的卫星信号,并基于接收到的卫星信号对基站的本地时间进行校准,从而完成多个基站的授时,实现多个基站间的时间同步。
图2是一种时间校准的场景示意图。如图2所示,以单站单星授时为例,基站220的坐标已知,基站220通过接收卫星210的卫星信号对本地时间进行校准,其中,卫星210的卫星信号为基站220可以接收到的卫星信号。单站单星授时的具体过程可以包括:确定基站220的位置坐标;从基站220可以接收到的卫星信号中选择一个卫星信号,从而确定与该卫星信号对应的卫星,例如卫星210;基站从可以接收到的卫星信号中确定基站的卫星时间;基站根据本地时间与卫星时间之间的时间差值,对该本地时间进行校准,从而达到授时的目的。
应理解,卫星时间是基站可以接收到的卫星信号的时间,不同的卫星信号所对应的卫星时间可以相同,也可以不同。例如,以二十四小时制为例,假设有三个基站,分别记为基站一、基站二、基站三,基站一能够接收到的卫星信号包括GNSS1,基站二能够接收到的卫星信号包括GNSS2,基站三能够接收到的卫星信号包括GNSS3,其中,GNSS1的时间为8:50,GNSS2的时间为9:00,GNSS3的时间也为9:00,则基站一可以根据GNSS1的时间确定基站一的卫星时间为8:50,基站二可以根据GNSS2的时间确定基站二的卫星时间为9:00,基站三可以根据GNSS3的时间确定基站三的卫星时间为9:00。
然而,对于GPS单站单星授时精度的影响因素有很多,包括接收机天线坐标误差、卫星轨道误差、观测站坐标误差、卫星钟差、大气改成误差。此外,对于多个基站来说,考虑到多个基站在接收到的卫星信号以及接收卫星信号时的时间等方面存在差异,因此,该多个基站间通过单向授时的方式难以完成高精度的时间同步。
图3是本申请提供的又一种时间校准的场景示意图。如图3所示,以共视时间传递为例,在图3中的(a)中,假设基站305可以接收到的卫星信号的范围为区域301,其中,区域301包括四颗卫星;假设基站306可以接收到的卫星信号的范围为区域302,其中,区域302包括三颗卫星。基站305与基站306之间存在建筑物309,该建筑物例如可以是学校,也可以是工厂,也可以是其它具有遮挡作用的实体,本申请实施例对此不作限定。在建筑物309上架设有天线,导致区域301与区域302之间不存在共有的卫星。当基站305和基站306在同一时间共视卫星时,在图3中的(a)所示的场景中,没有同时存在于区域301与区域302中的卫星,基站305和基站306也不能接收到同一卫星信号。因此,通过共视时间传递对基站本地时间校准、并实现基站间时间同步的方案在此场景下难以实现。
在图3中的(b)中,假设基站307可以接收到的卫星信号的范围为区域303,其中,区域303包括四颗卫星;假设基站308可以接收到的卫星信号的范围为区域304,其中,区域304包括三颗卫星。区域303与区域304之间共有两颗卫星,当基站307和基站308在同一时间共视该两颗卫星中的其中一颗时,基站307和基站308可以接收到相同的卫星信号,从而获得相同的卫星时间,在图3中的(b)所示的场景中,利用共视时间传递可以对基站307和基站308的本地时间进行校准,并实现了基站307和基站308之间的时间同步。然而,基站307与基站308之间存在建筑物310,在建筑物310上架设有天线,会在一定程度上影响基站307与基站308接收卫星信号的质量,从而降低基站间时间同步的精度。
此外,利用GPS共视时间传递完成基站间的时间同步这一方案受诸多因素影响,例如,多个基站需要在同一时间共视同一颗卫星,随着多个基站间距离的增大,共视卫星的数目也会越少,从而获得卫星信号的质量也会越低;再例如,相邻两次标准共视之间的时间间隔为16分钟,其中,13分钟用于数据采集,2分钟用于数据处理,1分钟用于等待下一次共视,多个基站间的共视时间传递存在滞后,从而多个基站间时间同步的实时性无法得到保障。
鉴于上述技术问题,本申请提供了一种时间校准的方法,通过该方法,本申请能够在保证基站间时间同步的实时性的同时,提高基站间时间同步的精度。
下面将结合附图详细说明本申请提供的各个实施例。
在下文实施例中,假设第一基站上的时间为本地时间,第二基站上的时间为标准时间。
本地时间可以理解为基站上的时钟所示的时间,标准时间可以为国家守时中心的时钟所示的时间。一般情况下,国家守时中心的时钟不会受接收机天线坐标误差、卫星轨道误差、观测站坐标误差、卫星钟差、大气改成误差等诸多因素影响,因此,国家守时中心的时钟始终能够提供正常的授时服务,国家守时中心的时钟所示的时间可以理解为是标准时间。考虑到上述因素的影响,基站上的时钟可能会发生故障,因此在某些情况下,基站的本地时间可能不是标准时间。在下文实施例中,主要以第一基站上的时间为本地时间,第二基站上的时间为标准时间为例进行的说明。
应理解,在本申请实施例中,第一基站或者第二基站能够接收一个或者多个卫星信号,该一个或者多个卫星信号所指示的时间记为卫星时间。一般情况下,第二基站能够接收到的卫星信号包括第一基站能够接收到的一个或者多个卫星信号,例如,在一个区域内,包括一个第二基站和三个第一基站,这三个第一基站分别记为基站一、基站二、基站三,第二基站能够接收到的卫星信号为GNSS1、GNSS2、GNSS3、GNSS4、GNSS5、GNSS6、GNSS7,基站一能够接收到的卫星信号为GNSS1、GNSS8,基站二能够接收到的卫星信号为GNSS2、GNSS5,基站三能够接收到的卫星信号为GNSS3、GNSS6、GNSS9,此时第二基站与基站一可以共同接收到的卫星信号为GNSS1,第二基站与基站二可以共同接收到的卫星信号为GNSS2,GNSS5,第二基站与基站三可以共同接收到的卫星信号为GNSS3,GNSS6。
还应理解,本申请实施例中的第一基站的数量可以是一个,也可以是多个,本申请实施例对第一基站的数量不作限定。
在本申请实施例中,第一网元包括以下一项或多项:AMF、定时需求网元功能(timing-network function,T-NF)、网络存储功能(network repository function,NRF)。应理解,在实际部署中,这三个网元可以作为独立的网元分别执行各自的功能;也可以进行合设,作为一个整体执行三个网元各自的功能,此时这三个网元之间的交互就成为这三个网元之间的内部操作或者可以省略。
下面结合图4至图6介绍本申请实施例提供的一种时间校准的方法。
图4是本申请实施例提供的一种时间校准的方法400的示意图。如图4所示,方法400可以包括如下步骤。
410,第一基站根据第一基站的本地时间与卫星时间,确定第一差值。
其中,第一差值为第一基站的本地时间与卫星时间之间的时间差值,该卫星时间与第一网元指定的第一卫星信号相对应。
其中,第一基站能够接收到至少一个卫星信号,该至少一个卫星信号包括该第一卫星信号。例如,第一基站能够接收到的卫星信号为GNSS1、GNSS2、GNSS3,那么第一卫星信号可能是GNSS1,也可能是GNSS2,也可能是GNSS3。
可选地,当第一基站为多个基站时,第一网元为多个基站指定的第一卫星信号可以相同,也可以不同。当多个基站获得的第一卫星信号相同时,多个基站通过第一卫星信号得到的卫星时间是相同的;当多个基站获得的第一卫星信号不同时,多个基站通过第一卫星信号得到的卫星时间是不同的。例如,第一基站的数量为三个,分别记为基站一、基站二和基站三,基站一能够接收到的卫星信号为GNSS1、GNSS2、GNSS3,基站二能够接收到的卫星信号为GNSS1、GNSS5、GNSS6,基站三能够接收到的卫星信号为GNSS3、GNSS5、GNSS9,此时第一网元为基站一指定的第一卫星信号为GNSS1、GNSS2、GNSS3中的一个,第一网元为基站二指定的第一卫星信号为GNSS1、GNSS5、GNSS6中的,第一网元为基站三指定的第一卫星信号为GNSS3、GNSS5、GNSS9中的一个。再例如,假设第一网元为基站一指定的第一卫星信号为GNSS1,第一网元为基站二指定的第一卫星信号为GNSS1,第一网元为基站三指定的第一卫星信号为GNSS3,则此时基站一与基站二通过GNSS1得到的卫星时间是相同的,基站一、二与基站三得到的卫星时间是不同的。
可选地,当第一基站为多个基站时,多个基站上的本地时间可以是相同的,也可以是不同的,第一基站通过计算第一基站的本地时间与卫星时间之间的时间差值得到的第一差 值可以是相同的,也可以是不同的。例如,假设有三个第一基站,分别记为基站一、基站二、基站三,以24小时制为例,当基站一的本地时间为8:00,卫星时间为7:30时,基站一计算得出的第一差值为30分钟;当基站一的本地时间为8:15,卫星时间为7:45时,基站二计算得出的第一差值为30分钟;当基站三的本地时间为8:00,卫星时间为7:50时,基站三计算得出的第一差值为10分钟。
420,第一基站接收来自第二基站的第二差值。
其中,第二差值为第二基站的标准时间与卫星时间之间的时间差值,卫星时间与第一网元指定的第一卫星信号相对应。
其中,第一基站可以是一个基站,也可以是多个基站。可选地,当第一基站为一个基站时,第一网元为第二基站指定的第一卫星信号有一个,该第一卫星信号为该第一基站和该第二基站都能够接收到的同一卫星信号,从而第一基站和第二基站通过该第一卫星信号得到的卫星时间也是相同的。例如,第一基站能够接收到的卫星信号为GNSS1、GNSS2、GNSS3,第二基站能够接收到的卫星信号为GNSS1、GNSS2、GNSS4,那么第一网元为第一基站和第二基站指定的卫星信号可以是GNSS1、也可以是GNSS2。
可选地,当第一基站为多个基站时,第一网元为第二基站指定的第一卫星信号有多个,该多个第一卫星信号分别与第一网元为多个基站指定的第一卫星信号相对应。例如,假设有第二基站和三个第一基站,三个第一基站分别记为基站一、基站二、基站三,第二基站能够接收到的卫星信号为GNSS1、GNSS2、GNSS3、GNSS4、GNSS5、GNSS6,基站一能够接收到的卫星信号为GNSS1、GNSS7,基站二能够接收到的卫星信号为GNSS2、GNSS6,基站三能够接收到的卫星信号为GNSS1、GNSS6、GNSS7,那么第一网元为第二基站和基站一指定的第一卫星信号为GNSS1;第一网元为第二基站和基站二指定的第一卫星信号可以是GNSS2,也可以是GNSS6;第一网元为第二基站和基站三指定的第一卫星信号可以是GNSS1,也可以是GNSS6,此时第一网元为第二基站指定的三个第一卫星信号分别为GNSS1、GNSS2或GNSS6中的一个、GNSS1或GNSS6中的一个,这三个第一卫星信号分别与第一网元为基站一、基站二、基站三指定的第一卫星信号相对应。
可选地,当第一基站为一个基站时,此时第一网元为第二基站指定的第一卫星信号有一个,第二基站通过该第一卫星信号得到的卫星时间只有一个,第二基站通过计算第二基站的标准时间与卫星时间之间的时间差值得到的第二差值只有一个。例如,以24小时制为例,假设第二基站的标准时间为8:00,第二基站通过第一卫星信号得到的卫星时间为7:40,此时第二基站计算得出的第二差值为20分钟,即第一基站接收来自第二基站的第二差值为20分钟。
可选地,当第一基站为多个基站时,此时第一网元为第二基站指定的第一卫星信号有多个,第二基站通过该多个第一卫星信号得到的卫星时间可能是相同的,也可能是不同的;第二基站通过计算第二基站的标准时间与卫星时间之间的时间差值得到的第二差值可能有一个,也可能有多个。例如,以24小时制为例,假设有两个第一基站,分别记为基站一、基站二,第一网元为第二基站和基站一指定的第一卫星信号为GNSS1,第一网元为第二基站和基站二指定的第一卫星信号也为GNSS1,假设第二基站的标准时间为8:00,第二基站通过GNSS1得到的卫星时间为7:40,此时通过计算第二基站的标准时间与卫星时间之间的时间差值得到的第二差值为20分钟,即基站一和基站二接收来自第二基站的第二差值均为20分钟。再例如,以24小时制为例,假设有三个第一基站,分别记为基站 一、基站二、基站三,第一网元为第二基站和基站一指定的第一卫星信号为GNSS1,第一网元为第二基站和基站二指定的第一卫星信号为GNSS2,第一网元为第二基站和基站三指定的第一卫星信号为GNSS3。假设第二基站的标准时间为8:00,第二基站通过GNSS1得到的卫星时间为7:40,此时通过计算第二基站的标准时间与卫星时间之间的时间差值得到的第二差值为20分钟,即基站一接收来自第二基站的第二差值为20分钟;假设第二基站的标准时间为8:00,第二基站通过GNSS2得到的卫星时间为7:30,此时通过计算第二基站的标准时间与卫星时间之间的时间差值得到的第二差值为30分钟,即基站二接收来自第二基站的第二差值为30分钟;假设第二基站的标准时间为8:00,第二基站通过GNSS3得到的卫星时间为7:50,此时通过计算第二基站的标准时间与卫星时间之间的时间差值得到的第二差值为10分钟,即基站三接收来自第二基站的第二差值为10分钟。
430,第一基站根据第一差值和第二差值,校准第一基站的本地时间。
其中,第一差值为第一基站的本地时间与卫星时间之间的时间差值,第二差值为第二基站的标准时间与卫星时间之间的时间差值。
作为示例,校准第一基站的本地时间,可以理解为,确定(或者得到)第一基站的标准时间。
基于上述技术方案,第一基站计算第一基站的本地时间与卫星时间之间的时间差值,得到第一差值,并接收来自第二基站的第二差值。第一基站根据该第一差值和该第二差值,对第一基站的本地时间进行校准,从而实现多个基站间的时间同步,不仅可以保证基站间时间同步的实时性,也可以提高基站间时间同步的精度。
可选地,步骤430中,第一基站根据第一差值和第二差值校准第一基站的本地时间,至少包括以下2种实现方式。
方式1,第一基站根据第一站的本地时间、第一差值、第二差值,确定该第一基站的标准时间。
例如,第一基站根据第一差值与第二差值,确定第三差值,其中,该第三差值为第一基站的本地时间与第二基站的标准时间之间的时间差值;第一基站根据第一基站的本地时间与该第三差值,确定第一基站的标准时间,其中,第一基站的标准时间为第一基站的本地时间与该第三差值之间作差得到的时间。
为便于理解,下面以24小时制为例,列举一具体示例。
假设第一基站包括两个基站,这两个基站分别记为基站一和基站二,第二基站的标准时间为7:50。对于基站一来说,假设基站一的本地时间为8:00,通过第一网元为基站一和第二基站指定的第一卫星信号得到的卫星时间为7:40,则基站一通过计算基站一的本地时间与卫星时间之间的时间差值得到的第一差值为20分钟,基站一接收来自第二基站的第二差值为10分钟,此时基站一通过计算第一差值和第二差值的差值,得到基站一的本地时间与第二基站的标准时间之间的时间差值,也就是第三差值为10分钟;基站一通过对基站一的本地时间与第三差值之间作差得到的时间即为基站一的标准时间,即基站一的标准时间为7:50。对于基站二来说,假设基站二的本地时间为8:15,通过第一网元为基站二和第二基站指定的第一卫星信号得到的卫星时间为7:45,则基站二通过计算基站的本地时间与卫星时间之间的时间差值得到的第一差值为30分钟,基站二接收来自第二基站的第二差值为5分钟,此时基站二通过计算第一差值和第二差值的差值,得到基站二的本地时间与第二基站的标准时间之间的时间差值,也就是第三差值为25分钟;基站二通过对基 站二的本地时间与第三差值之间作差得到的时间即为基站二的标准时间,即基站二的标准时间为7:50。
方式2,第一基站将第一基站的本地时间、第一差值、第二差值发送至某一设备(或者网元),由该设备确定第一基站的标准时间,并将该标准时间发送至第一基站。
例如,该设备根据第一差值与第二差值,确定第三差值,其中,该第三差值为第一基站的本地时间与第二基站的标准时间之间的时间差值;该设备根据第一基站的本地时间与该第三差值,确定第一基站的标准时间,其中,第一基站的标准时间为第一基站的本地时间与该第三差值之间作差得到的时间。
关于该设备确定第一基站的标准时间的具体方式,可以参考方式1中第一基站确定第一基站的标准时间的方式,此处不再赘述。
应理解,上述方式为示例性说明,本申请实施例不限于此。例如,第一基站将第一基站的本地时间、第一差值、第二差值发送至某一设备后,该设备可以确定第三差值,并将该第三差值发送至第一基站;第一基站根据第一基站的本地时间与该第三差值,确定第一基站的标准时间。
可选地,方法400还包括:第一基站根据第一基站的本地时间与卫星时间,确定第一差值之前,该第一基站向第一网元发送第一请求信息。
其中,该第一请求信息包括第一基站能够接收到的至少一个卫星信号,该至少一个卫星信号包括第一卫星信号。例如,第一基站能够接收到的卫星信号为GNSS1、GNSS2、GNSS3,那么第一卫星信号可能是GNSS1,也可能是GNSS2,也可能是GNSS3。
可选地,该第一请求信息还包括以下任意一项或多项:RAN1的标识、授时范围、广播频度、加密信息。
其中,授时范围包括第一基站从能够接收到的卫星信号中获得的卫星时间范围;
广播频度用于指示第一基站向设备或网元(如AMF)发送第一请求信息时使用的特定频率;
加密信息用于对该第一请求信息进行加密,保证第一请求信息的安全性。
在本申请实施例中,第一基站可以向第一网元发送第一请求信息,第一网元收到来自第一基站的第一请求信息后,为该第一基站指定第一卫星信号,进而该第一基站通过第一网元指定的卫星信号确定卫星时间。关于第一网元为该第一基站指定第一卫星信号的流程,后面结合图5详细说明。
可选地,第一基站可以根据第一基站的多个本地时间与第二基站的多个标准时间拟合得到的第四差值,对第一基站的本地时间进行校准。关于第一基站根据拟合得到的第四差值校准第一基站的本地时间的流程,后面结合图6详细说明。
可选地,第一基站的时钟可以进行故障检测,以便该第一基站的时钟能够提供正常的授时服务。关于第一基站的时钟进行故障检测的流程,后面结合图7和图8详细说明。
为便于理解,下面结合图5至图8介绍适用于本申请实施例的可能的流程。图5和图6主要介绍第一基站根据第二基站的标准时间对第一基站的本地时间进行校准的可能的流程;图7和图8主要介绍对第一基站的时钟进行故障检测的可能的流程。其中,图5所示的方法500可以用于第一基站接收来自第二基站的第二差值,根据第一网元为第一基站指定的第一卫星信号得到卫星时间,并通过计算第一基站的本地时间与卫星时间之间的时间差值得到的第一差值,进而根据该第一差值和第二差值对第一基站的本地时间进行校准。 图6所示的方法600可以用于第一基站可以根据第一基站的多个本地时间与第二基站的多个标准时间拟合得到的第四差值,对第一基站的本地时间进行校准。图7所示的方法700可以用于第一网元对第一基站的时钟进行故障检测,并将故障检测的结果发送至第一基站,以便第一基站确定第一基站的时钟是否能够提供正常的授时服务。图8所示的方法800可以用于第一基站对第一基站的时钟进行故障检测,以便第一基站确定第一基站的时钟是否能够提供正常的授时服务。
在以下示例中,假设第一基站为RAN1,第二基站为RAN2,其中,第一基站的数量可以有一个,也可以有多个,以下示例对此不作限定。
图5示出了本申请实施例提供的一种时间校准的方法500的示意性流程图。该方法500可以包括如下步骤。
501,RAN1向AMF发送第一请求信息。
其中,该第一请求信息包括RAN1能够接收到的至少一个卫星信号,该至少一个卫星信号包括第一卫星信号。
可选地,该第一请求信息还包括以下任意一项或多项:RAN1的标识、授时范围、广播频度、加密信息。关于上述各个信息可以参考方法400中的描述,在此不再赘述。
502,AMF向NRF发送第一请求信息。
503,NRF向T-NF发送第一请求信息。
可选地,T-NF也可以向NRF发送订阅请求信息,该订阅请求信息用于指示NRF向T-NF发送该第一请求信息;NRF接收到该订阅请求信息后,向T-NF发送该第一请求信息。
504,T-NF向RAN2发送第一消息。
其中,该第一消息用于指示RAN2向T-NF发送RAN2能够接收到的至少一个卫星信号,该至少一个卫星信号包括第一卫星信号。
505,RAN2向T-NF发送第一消息的响应消息。
其中,该第一消息的响应消息包括RAN2能够接收到的至少一个卫星信号,该至少一个卫星信号包括第一卫星信号。
可选地,该第一消息的响应消息还包括以下任意一项或多项:RAN2的标识、授时范围、广播频度、加密信息。关于上述各个信息可以参考方法400中的描述,在此不再赘述。
506,T-NF确定第一卫星信号。
可选地,当第一基站为一个基站时,该第一卫星信号有一个,该第一卫星信号为该第一基站和RAN2都能够接收到的同一卫星信号;当第一基站为多个基站时,该第一卫星信号有多个,该多个第一卫星信号分别与T-NF为多个基站指定的第一卫星信号相对应。关于T-NF确定第一卫星信号的示例性说明可以参考步骤420的描述,此处不再赘述。
应理解,RAN2能够接收到的卫星信号包括RAN1能够接收到的一个或者多个卫星信号,例如,当有三个第一基站时,分别记为基站一、基站二、基站三,基站一能够接收到的卫星信号为GNSS1、GNSS2,基站二能够接收到的卫星信号为GNSS3、GNSS4,基站三能够接收到的卫星信号为GNSS5、GNSS6、GNSS7,则此时RAN2能够接收到的卫星信号包括GNSS1和GNSS2中的任意一个或多个、GNSS3和GNSS4中的任意一个或多个、GNSS5、GNSS6和GNSS7中的任意一个或多个。
507,T-NF向RAN1发送第一卫星信号。
可选地,当第一基站为一个基站时,T-NF向该第一基站发送T-NF为该第一基站和第二基站指定的第一卫星信号。例如,T-NF为该第一基站和RAN2指定的第一卫星信号为GNSS1,则T-NF向该第一基站发送GNSS1。
可选地,当第一基站为多个基站时,T-NF向该多个基站分别发送T-NF为该多个基站和第二基站指定的第一卫星信号。例如,有三个第一基站,分别记为基站一、基站二、基站三,T-NF为基站一和RAN2指定的第一卫星信号为GNSS1,T-NF为基站二和RAN2指定的第一卫星信号为GNSS2,T-NF为基站三和RAN2指定的第一卫星信号也为GNSS2,则T-NF向基站一发送GNSS1,T-NF向基站二发送GNSS2,T-NF向基站三发送GNSS2。
508,T-NF向RAN2发送第一卫星信号。
可选地,当第一基站为一个基站时,该第一卫星信号有一个,T-NF向RAN2发送T-NF为该第一基站和RAN2指定的第一卫星信号。例如,T-NF为该第一基站和RAN2指定的第一卫星信号为GNSS1,则T-NF向该RAN2发送GNSS1。
可选地,当第一基站为多个基站时,该第一卫星信号有多个,T-NF向RAN2发送T-NF分别为该多个基站和RAN2指定的第一卫星信号。例如,有三个第一基站,T-NF为基站一和RAN2指定的第一卫星信号为GNSS1,T-NF为基站二和RAN2指定的第一卫星信号为GNSS2,T-NF为基站三和RAN2指定的第一卫星信号也为GNSS2,则T-NF向RAN2发送GNSS1,GNSS2,GNSS2,这三个卫星信号分别与T-NF为基站一、基站二、基站三指定的第一卫星信号相对应。
应理解,步骤507与步骤508可以是同时发生的,也可以是不同时的,本申请实施例对此不作限定。例如,T-NF向RAN1发送第一卫星信号与T-NF向RAN2发送第一卫星信号是同时的;再例如,T-NF先向RAN1发送第一卫星信号,再向RAN2发送第一卫星信号;再例如,T-NF先向RAN2发送第一卫星信号,再向RAN1发送第一卫星信号。
509,RAN1确定第一差值。
可选地,RAN1根据RAN1的本地时间与卫星时间,确定第一差值。
其中,第一差值为RAN1的本地时间与卫星时间之间的时间差值,该卫星时间与T-NF指定的第一卫星信号相对应。关于RAN1确定第一差值的示例性说明可以参考步骤410的描述,此处不再赘述。
510,RAN2确定第二差值。
可选地,当第一基站为一个基站时,此时T-NF为RAN2指定的第一卫星信号有一个,RAN2通过该第一卫星信号得到的卫星时间只有一个,RAN2通过计算RAN2的标准时间与卫星时间之间的时间差值得到的第二差值只有一个。关于RAN2确定第二差值的示例性说明可以参考步骤420的描述,此处不再赘述。
可选地,当第一基站为多个基站时,此时T-NF为RAN2指定的第一卫星信号有多个,RAN2通过该多个第一卫星信号得到的卫星时间可能是相同的,也可能是不同的;RAN2通过计算RAN2的标准时间与卫星时间之间的时间差值得到的第二差值可能有一个,也可能有多个。关于RAN2确定第二差值的示例性说明可以参考步骤420的描述,此处不再赘述。
511,RAN2向RAN1发送第二差值。
可选地,当第一基站为一个基站时,RAN2通过计算RAN2的标准时间与卫星时间之间的时间差值得到的第二差值只有一个,RAN2向该第一基站发送该第二差值。关于RAN2 向该第一基站发送第二差值的示例性说明可以参考步骤420的描述,此处不再赘述。
可选地,当第一基站为多个基站时,RAN2通过计算RAN2的标准时间与卫星时间之间的时间差值得到的第二差值可能有一个,也可能有多个,此时RAN2分别向该多个基站发送与该多个基站对应的第二差值。关于RAN2向该多个基站发送第二差值的示例性说明可以参考步骤420的描述,此处不再赘述。
应理解,步骤509与步骤511可以是同时发生的,也可以是不同时的,本申请实施例对此不作限定。例如,RAN1确定第一差值与RAN1接收来自RAN2的第二差值是同时的;再例如,RAN1先确定第一差值,再接收来自RAN2的第二差值;再例如,RAN1先接收来自RAN2的第二差值,再确定第一差值。
512,RAN1校准本地时间。
可选地,RAN1根据第一差值和第二差值,校准RAN1的本地时间。
其中,第一差值为RAN1的本地时间与卫星时间之间的时间差值,第二差值为RAN2的标准时间与卫星时间之间的时间差值。
可选地,RAN1根据RAN1的本地时间、第一差值、第二差值,确定RAN1的标准时间。
基于上述技术方案,RAN1可以根据RAN1的本地时间、第一差值、第二差值,确定RAN1的标准时间,从而可以通过简单的计算实现多个基站间的时间同步。
可选地,RAN1将RAN1的本地时间、第一差值、第二差值发送至某一网元或设备,由该网元或设备确定RAN1的标准时间,并将该标准时间发送RAN1,RAN1基于该标准时间对RAN1的本地时间进行校准,从而确定RAN1的标准时间。
可选地,RAN1根据第一差值与第二差值,确定第三差值,其中,该第三差值为RAN1的本地时间与RAN2的标准时间之间的时间差值;RAN1根据RAN1的本地时间与该第三差值,确定RAN1的标准时间,其中,RAN1的标准时间为RAN1的本地时间与该第三差值之间作差得到的时间。关于RAN1校准本地时间的示例性说明可以参考步骤430的描述,此处不再赘述。
基于上述技术方案,第一基站可以根据第一差值与第二差值,确定第三差值,再根据第一基站的本地时间与第三差值,确定第一基站的标准时间,从而可以通过简单的计算实现多个基站间的时间同步。
通过图5所示的方法,第一基站计算第一基站的本地时间与卫星时间之间的时间差值,得到第一差值,并接收来自第二基站的第二差值。第一基站根据该第一差值和该第二差值,对第一基站的本地时间进行校准,从而实现多个基站间的时间同步,不仅可以保证基站间时间同步的实时性,也可以提高基站间时间同步的精度。
图6示出了本申请实施例提供的又一种时间校准的方法600的示意性流程图。该方法600可以包括如下步骤。
601,RAN1向AMF发送第二请求信息。
可选地,每间隔预设时长,RAN1向AMF发送第二请求信息,其中,该第二请求信息包括RAN1的本地时间和RAN1的标识。
应理解,该预设时长可以是人为设定的,也可以是协议预定义的,本申请实施例对此不作限定。
602,AMF向T-NF发送第二请求信息。
603,T-NF向RAN2发送第二消息。
其中,该第二消息用于指示RAN2每间隔预设时长,向T-NF发送RAN2的标准时间和RAN2的标识。
604,RAN2向T-NF发送第二消息的响应消息。
可选地,每间隔预设时长,RAN2向T-NF发送第二消息的响应消息,其中,该第二消息的响应消息包括RAN2的标准时间和RAN2的标识,该预设时长与步骤601中的预设时长是同一预设时长。
605,T-NF确定第四差值。
可选地,每间隔预设时长,T-NF分别接收来自RAN1的本地时间和RAN2的标准时间,并将RAN1的K个本地时间和RAN2的K个标准时间进行拟合,从而确定第四差值,K为大于1的整数,且K个本地时间与K个标准时间一一对应。例如,间隔4个预设时长后,T-NF接收到的来自RAN1的本地时间分别为8:00,8:06,8:12,8:18,T-NF接收到的来自RAN2的标准时间分别为8:00,8:05,8:10,8:15,此时4个RAN1的本地时间与4个RAN2的标准时间是一一对应的,并且可以看出RAN1的本地时间与RAN2的标准时间不一定是相同的。
可选地,T-NF分别计算接收到的RAN1的K个本地时间和RAN2的K个标准时间之间的时间差值,得到K个时间差值,再通过最优化算法对这K个时间差值进行拟合,可以得到最优拟合值,也就是第四差值。其中,该最优化算法可以是梯度下降法,也可以牛顿法和拟牛顿法,也可以是共轭梯度法,也可以其它能够对K个时间差值进行拟合的算法,本申请实施例对此不作限定。
基于上述技术方案,通过设置预设时长,T-NF可以对拟合使用的算法以及第四差值进行更新处理,从而可以进一步提高基站间时间同步的精度。
可选地,当第一基站为一个基站时,T-NF将该第一基站的K个本地时间和RAN2的K个标准时间进行拟合得到的第四差值只有一个;当第一基站为多个基站时,T-NF分别将该多个基站的K个本地时间和RAN2的K个标准时间进行拟合得到的第四差值有多个。
606,T-NF向RAN1发送第四差值。
可选地,第一基站为一个基站时,T-NF将该第一基站的K个本地时间和RAN2的K个标准时间进行拟合得到的第四差值只有一个,T-NF向该第一基站发送该第四差值;当第一基站为多个基站时,T-NF分别将该多个基站的K个本地时间和RAN2的K个标准时间进行拟合得到的第四差值有多个,T-NF分别向该多个基站发送第四差值。
607,RAN1校准本地时间。
可选地,RAN1根据第四差值,校准RAN1的本地时间。
基于上述技术方案,RAN1根据该第四差值对RAN1的本地时间进行校准,能够实现多个基站间的时间同步,不仅可以保证基站间时间同步的实时性,也可以提高基站间时间同步的精度。
可选地,RAN1根据RAN1的本地时间与第四差值,确定RAN1的标准时间,其中,RAN1的标准时间为RAN1的本地时间与第四差值之间作差得到的时间。例如,RAN1的本地时间为8:00,RAN1接收到的来自T-NF的第四差值为10分钟,则此时RAN1的标准时间为7:50。
基于上述技术方案,RAN1根据RAN1的本地时间与第四差值,确定RAN1的标准时 间,进而通过简单的计算实现多个基站间的时间同步。
可选地,RAN1可以将RAN1的本地时间与第四差值发送至某一网元或设备,由该网元或设备确定RAN1的标准时间,并将该标准时间发送至RAN1,RAN1根据接收到的该标准时间,对RAN1的本地时间进行校准,进而得到RAN1的标准时间。
通过图6所示的方法,第一网元将第一基站的K个本地时间和第二基站的K个标准时间进行拟合,得到第四差值,并将该第四差值发送至第一基站,第一基站通过接收来自第一网元的第四差值对第一基站的本地时间进行校准,能够实现多个基站间的时间同步,不仅可以保证基站间时间同步的实时性,也可以提高基站间时间同步的精度。此外,通过设置预设时长,第一网元可以对将K个时间差值进行拟合的算法以及第四差值进行更新处理,从而可以进一步提高基站间时间同步的精度。
图7示出了本申请实施例提供的一种故障检测的方法700的示意性流程图。该方法700可以包括如下步骤。
701,RAN1向AMF发送第一故障检测信息。
其中,该第一故障检测信息包括RAN1的本地时间和RAN1的标识。
可选地,该第一故障检测信息还包括预设阈值。
702,AMF向T-NF发送第一故障检测信息。
703,T-NF向RAN2发送第三消息。
其中,该第三消息用于指示RAN2向T-NF发送RAN2的标准时间。
704,RAN2向T-NF发送第三消息的响应消息。
其中,该第三消息的响应消息包括RAN2的标准时间。
705,T-NF确定RAN1的时钟是否故障。
可选地,当RAN1的本地时间与RAN2的标准时间之间的时间差值小于预设阈值时,T-NF确定RAN1的时钟无故障;当RAN1的本地时间与RAN2的标准时间之间的时间差值大于或者等于预设阈值时,T-NF确定RAN1的时钟发生故障。
其中,该预设阈值可以是协议预定义的,也可以包含在RAN1发送的第一故障检测信息中,本申请实施例对此不作限定。
706,T-NF向RAN1发送第一指示信息。
相应地,RAN1可以根据该第一指示信息获知RAN1的时钟是否故障。
基于上述技术方案,第一网元可以对第一基站的本地时间与第二基站的标准时间之间的时间差值与预设阈值进行比较,从而可以确定第一基站的时钟是否故障。第一基站根据接收到的来自第一网元的第一指示信息,可以确定第一基站的时钟是否能够提供正常的授时服务。
图8示出了本申请实施例提供的又一种故障检测的方法800的示意性流程图。该方法800可以包括如下步骤。
801,RAN1向AMF发送第二故障检测信息。
其中,该第二故障检测信息包括RAN1的标识。
802,AMF向T-NF发送第二故障检测信息。
803,T-NF向RAN2发送第四消息。
其中,该第四消息用于指示RAN2向RAN1发送RAN2的标准时间。
804,RAN2向RAN1发送RAN2的标准时间。
805,RAN1确定RAN1的时钟是否故障。
可选地,RAN1根据RAN1的本地时间与RAN2的标准时间,确定RAN1的时钟是否故障。
可选地,当RAN1的本地时间与RAN2的标准时间之间的时间差值小于预设阈值时,RAN1确定RAN1的时钟无故障;当RAN1的本地时间与RAN2的标准时间之间的时间差值大于或者等于预设阈值时,RAN1确定RAN1的时钟发生故障。
其中,该预设阈值可以是协议预定义的,也可以RAN1本身确定的,本申请实施例对此不作限定。
基于上述技术方案,第一基站可以对第一基站的本地时间与第二基站的标准时间之间的时间差值与预设阈值进行比较,从而可以确定第一基站的时钟是否故障,进而可以确定第一基站的时钟是否能够提供正常的授时服务。
可以理解,本申请实施例中的图5至图8中的例子仅仅是为了便于本领域技术人员理解本申请实施例,并非要将本申请实施例限于例示的具体场景。本领域技术人员根据图5至图8的例子,显然可以进行各种等价的修改或变化,这样的修改或变化也落入本申请实施例的范围内。例如,图7和图8中的“RAN1的时钟发生故障”均可替换为“RAN1的时钟不能提供正常的授时服务”。
还可以理解,本申请的各实施例中的一些可选的特征,在某些场景下,可以不依赖于其他特征,也可以在某些场景下,与其他特征进行结合,不作限定。
还可以理解,本申请的各实施例中的方案可以进行合理的组合使用,并且实施例中出现的各个术语的解释或说明可以在各个实施例中互相参考或解释,对此不作限定。
还可以理解,在本申请的各实施例中的各种数字序号的大小并不意味着执行顺序的先后,仅为描述方便进行的区分,不应对本申请实施例的实施过程构成任何限定。
还可以理解,在本申请中,“至少一个(项)”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/或B”可以表示:只存在A,只存在B以及同时存在A和B三种情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,“a和b”,“a和c”,“b和c”,或“a和b和c”,其中a,b,c可以是单个,也可以是多个。
还可以理解,在本申请的各实施例中涉及到一些消息名称,如第一请求信息、第一故障检测信息、第一指示信息等等,应理解,其命名不对本申请实施例的保护范围造成限定。
还可以理解,在上述一些实施例中,主要以接入和移动性管理功能为AMF,网络存储功能为NRF、定时需求网元功能T-NF为例进行了示例性说明,本申请不限于此,任何可以实现AMF的网元,或者任何可以实现NRF的网元,或者可以实现T-NF的网元都适用于本申请。
还可以理解,上述各个方法实施例中,由设备或网元(如接入和移动性管理功能,又如网络存储功能)实现的方法和操作,也可以由可由设备或网元的组成部件(例如芯片或者电路)来实现。
相应于上述各方法实施例给出的方法,本申请实施例还提供了相应的装置,所述装置包括用于执行上述各个方法实施例相应的模块。该模块可以是软件,也可以是硬件,或者 是软件和硬件结合。可以理解的是,上述各方法实施例所描述的技术特征同样适用于以下装置实施例。
以上,结合图4至图8详细说明了本申请实施例提供的通信方法。以下,结合图9至图11详细说明本申请实施例提供的通信装置。
图9是本申请实施例提供的一种通信装置的示意性框图。该装置900包括收发单元910,收发单元910可以用于实现相应的通信功能。收发单元910还可以称为通信接口或通信单元。
可选地,该装置900还可以包括处理单元920,处理单元920可以用于实现相应的处理功能,如校准第一基站的本地时间。
可选地,该装置900还包括存储单元,该存储单元可以用于存储指令和/或数据,处理单元920可以读取存储单元中的指令和/或数据,以使得装置实现前述各个方法实施例中的第一基站或第一网元的动作。
该装置900可以用于执行上文各个方法实施例中第一基站或第一网元所执行的动作,这时,该装置900可以为第一基站或者第一基站的组成部件,也可以为第一网元或第一网元的组成部件,收发单元910用于执行上文方法实施例中第一基站或第一网元的收发相关的操作,处理单元920用于执行上文方法实施例中第一基站或第一网元的处理相关的操作。
作为一种设计,该装置900用于执行上文各个方法实施例中第一基站所执行的动作。
一种可能的实现方式,处理单元920,用于根据第一基站的本地时间与卫星时间,确定第一差值,该第一差值为该第一基站的本地时间与该卫星时间之间的时间差值,该卫星时间与第一网元指定的第一卫星信号相对应;收发单元910,用于接收来自第二基站的第二差值,该第二差值为该第二基站的标准时间与该卫星时间之间的时间差值;处理单元920,还用于根据该第一差值和该第二差值,校准该第一基站的本地时间。
可选地,处理单元920,用于根据该第一基站的本地时间、该第一差值、该第二差值,确定该第一基站的标准时间。
可选地,处理单元920,用于根据该第一差值与该第二差值,确定第三差值,该第三差值为该第一基站的本地时间与该第二基站的标准时间之间的时间差值;处理单元920,还用于根据该第一基站的本地时间与该第三差值,确定该第一基站的标准时间,该第一基站的标准时间为该第一基站的本地时间与该第三差值之间作差得到的时间。
可选地,处理单元920,用于根据第一基站的本地时间与卫星时间,确定第一差值之前,该装置还包括:收发单元910,用于向该第一网元发送第一请求信息,该第一请求信息包括该第一基站能够接收到的至少一个卫星信号,该至少一个卫星信号包括该第一卫星信号。
可选地,该第一请求信息还包括以下任意一项或多项:该第一基站的标识、授时范围、广播频度、加密信息。
可选地,该装置还包括:收发单元910,用于向该第一网元发送第一故障检测信息,该第一故障检测信息包括该第一基站的本地时间和该第一基站的标识;收发单元910,还用于接收来自该第一网元的第一指示信息,根据该第一指示信息获知该第一基站的时钟是否故障。
可选地,该装置还包括:收发单元910,用于接收该第二基站的标准时间;处理单元 920,用于根据该第一基站的本地时间与该第二基站的标准时间,确定该第一基站的时钟是否故障。
可选地,当该第一基站的本地时间与该第二基站的标准时间之间的时间差值小于预设阈值时,处理单元920,用于确定该第一基站的时钟无故障;当该第一基站的本地时间与该第二基站的标准时间之间的时间差值大于或者等于该预设阈值时,处理单元920,用于确定该第一基站的时钟发生故障。
另一种可能的实现方式,收发单元910,用于接收来自第一网元的第四差值,该第四差值为该第一网元将第一基站的K个本地时间与第二基站的K个标准时间拟合得到,K为大于1的整数,且该K个本地时间与该K个标准时间一一对应;处理单元920,用于根据该第四差值,校准该第一基站的本地时间。
可选地,处理单元920,用于根据该第一基站的本地时间与该第四差值,确定该第一基站的标准时间,该第一基站的标准时间为该第一基站的本地时间与该第四差值之间作差得到的时间。
可选地,收发单元910,用于收来自第一网元的第四差值之前,该装置还包括:每间隔预设时长,收发单元910,用于向该第一网元发送第二请求信息,该第二请求信息包括该第一基站的本地时间和该第一基站的标识。
可选地,该装置还包括:收发单元910,用于向该第一网元发送第一故障检测信息,该第一故障检测信息包括该第一基站的本地时间和该第一基站的标识;收发单元910,还用于接收来自该第一网元的第一指示信息,根据该第一指示信息获知该第一基站的时钟是否故障。
可选地,该装置还包括:收发单元910,用于接收该第二基站的标准时间;处理单元920,用于根据该第一基站的本地时间与该第二基站的标准时间,确定该第一基站的时钟是否故障。
可选地,当该第一基站的本地时间与该第二基站的标准时间之间的时间差值小于预设阈值时,处理单元920,用于确定该第一基站的时钟无故障;当该第一基站的本地时间与该第二基站的标准时间之间的时间差值大于或者等于该预设阈值时,处理单元920,用于确定该第一基站的时钟发生故障。
另一种可能的方式,收发单元910,用于接收第二基站的标准时间;处理单元920,用于根据第一基站的本地时间与该第二基站的标准时间,确定该第一基站的时钟是否故障。
可选地,当该第一基站的本地时间与该第二基站的标准时间之间的时间差值小于预设阈值时,处理单元920,用于确定该第一基站的时钟无故障;当该第一基站的本地时间与该第二基站的标准时间之间的时间差值大于或者等于预设阈值时,处理单元920,用于确定该第一基站的时钟发生故障。
该装置900可实现对应于根据本申请实施例的方法实施例中的第一基站执行的步骤或者流程,该装置900可以包括用于执行图4至图8中任意一个所示实施例中第一基站执行的方法的单元。
作为另一种设计,该装置900用于执行上文各个方法实施例中第一网元(如T-NF)所执行的动作。
一种可能的实现方式,收发单元910,用于接收来自第一基站的第一故障检测信息, 该第一故障检测信息包括该第一基站的本地时间和该第一基站的标识;收发单元910,还用于接收第二基站的标准时间;处理单元920,用于根据该第一基站的本地时间与该第二基站的标准时间,确定该第一基站的时钟是否故障。
可选地,当该第一基站的本地时间与该第二基站的标准时间之间的时间差值小于预设阈值时,处理单元920,用于确定该第一基站的时钟无故障;当该第一基站的本地时间与该第二基站的标准时间之间的时间差值大于或者等于预设阈值时,处理单元920,用于确定该第一基站的时钟发生故障。
可选地,该装置还包括:收发单元910,用于向该第一基站发送第一指示信息,根据该第一指示信息获知该第一基站的时钟是否故障。
该装置900可实现对应于根据本申请实施例的方法实施例中的第一网元执行的步骤或者流程。该装置900可以包括用于执行图6所示实施例中的T-NF执行的方法的单元。
应理解,各单元执行上述相应步骤的具体过程在上述各方法实施例中已经详细说明,为了简洁,在此不再赘述。
还应理解,这里的装置900以功能单元的形式体现。这里的术语“单元”可以指应用特有集成电路(application specific integrated circuit,ASIC)、电子电路、用于执行一个或多个软件或固件程序的处理器(例如共享处理器、专有处理器或组处理器等)和存储器、合并逻辑电路和/或其它支持所描述的功能的合适组件。在一个可选例子中,本领域技术人员可以理解,装置900可以具体为上述实施例中的第一基站或第一网元(如T-NF),可以用于执行上述各方法实施例中与第一基站或第一网元(如T-NF)对应的各个流程和/或步骤,为避免重复,在此不再赘述。
上述各个方案的装置900具有实现上述方法中第一基站或第一网元(如T-NF)所执行的相应步骤的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块;例如收发单元可以由收发机替代(例如,收发单元中的发送单元可以由发送机替代,收发单元中的接收单元可以由接收机替代),其它单元,如处理单元等可以由处理器替代,分别执行各个方法实施例中的收发操作以及相关的处理操作。
此外,上述收发单元910还可以是收发电路(例如可以包括接收电路和发送电路),处理单元可以是处理电路。
需要指出的是,图9中的装置可以是前述实施例中的网元或设备,也可以是芯片或者芯片系统,例如:片上系统(system on chip,SoC)。其中,收发单元可以是输入输出电路、通信接口;处理单元为该芯片上集成的处理器或者微处理器或者集成电路。在此不做限定。
如图10所示,本申请实施例提供另一种通信装置1000。该装置1000包括处理器1010,处理器1010与存储器1020耦合,存储器1020用于存储计算机程序或指令和/或数据,处理器1010用于执行存储器1020存储的计算机程序或指令,或读取存储器1020存储的数据,以执行上文各方法实施例中的方法。
可选地,处理器1010为一个或多个。
可选地,存储器1020为一个或多个。
可选地,该存储器1020与该处理器1010集成在一起,或者分离设置。
可选地,如图10所示,该装置1000还包括收发器1030,收发器1030用于信号的接 收和/或发送。例如,处理器1010用于控制收发器1030进行信号的接收和/或发送。
作为一种方案,该装置1000用于实现上文各个方法实施例中由第一基站或第一网元(如T-NF)执行的操作。
例如,处理器1010用于执行存储器1020存储的计算机程序或指令,以实现上文各个方法实施例中第一基站的相关操作。例如,图4至图8中任意一个所示实施例中的第一基站执行的方法。
应理解,本申请实施例中提及的处理器可以是中央处理单元(central processing unit,CPU),还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中提及的存储器可以是易失性存储器和/或非易失性存储器。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM)。例如,RAM可以用作外部高速缓存。作为示例而非限定,RAM包括如下多种形式:静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)可以集成在处理器中。
还需要说明的是,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
如图11,本申请实施例提供一种芯片系统1100。该芯片系统1100(或者也可以称为处理系统)包括逻辑电路1110以及输入/输出接口(input/output interface)1120。
其中,逻辑电路1110可以为芯片系统1100中的处理电路。逻辑电路1110可以耦合连接存储单元,调用存储单元中的指令,使得芯片系统1100可以实现本申请各实施例的方法和功能。输入/输出接口1120,可以为芯片系统1100中的输入输出电路,将芯片系统1100处理好的信息输出,或将待处理的数据或信令信息输入芯片系统1100进行处理。
作为一种方案,该芯片系统1100用于实现上文各个方法实施例中由第一基站或第一网元(如T-NF)执行的操作。
例如,逻辑电路1110用于实现上文方法实施例中由第一基站执行的处理相关的操作,如图4至图8中任意一个所示实施例中的第一基站执行的处理相关的操作;输入/输出接口1120用于实现上文方法实施例中由第一基站执行的发送和/或接收相关的操作,如图4至图8中任意一个所示实施例中的第一基站执行的发送和/或接收相关的操作。
本申请实施例还提供一种计算机可读存储介质,其上存储有用于实现上述各方法实施例中由第一基站或第一网元(如T-NF)执行的方法的计算机指令。
例如,该计算机程序被计算机执行时,使得该计算机可以实现上述方法各实施例中由第一基站执行的方法。
本申请实施例还提供一种计算机程序产品,包含指令,该指令被计算机执行时以实现上述各方法实施例中由第一基站或第一网元(如T-NF)执行的方法。
上述提供的任一种装置中相关内容的解释及有益效果均可参考上文提供的对应的方法实施例,此处不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。此外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。例如,所述计算机可以是个人计算机,服务器,或者网络设备等。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD)等。例如,前述的可用介质包括但不限于:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (23)

  1. 一种时间校准的方法,其特征在于,包括:
    第一基站根据所述第一基站的本地时间与卫星时间,确定第一差值,所述第一差值为所述第一基站的本地时间与所述卫星时间之间的时间差值,所述卫星时间与第一网元指定的第一卫星信号相对应;
    所述第一基站接收来自第二基站的第二差值,所述第二差值为所述第二基站的标准时间与所述卫星时间之间的时间差值;
    所述第一基站根据所述第一差值和所述第二差值,校准所述第一基站的本地时间。
  2. 根据权利要求1所述的方法,其特征在于,所述第一基站根据所述第一差值和所述第二差值,校准所述第一基站的本地时间,包括:
    所述第一基站根据所述第一基站的本地时间、所述第一差值、所述第二差值,确定所述第一基站的标准时间。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一基站根据所述第一差值和所述第二差值,校准所述第一基站的本地时间,包括:
    所述第一基站根据所述第一差值与所述第二差值,确定第三差值,所述第三差值为所述第一基站的本地时间与所述第二基站的标准时间之间的时间差值;
    所述第一基站根据所述第一基站的本地时间与所述第三差值,确定所述第一基站的标准时间,所述第一基站的标准时间为所述第一基站的本地时间与所述第三差值之间作差得到的时间。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述第一基站根据所述第一基站的本地时间与卫星时间,确定第一差值之前,所述方法还包括:
    所述第一基站向所述第一网元发送第一请求信息,所述第一请求信息包括所述第一基站能够接收到的至少一个卫星信号,所述至少一个卫星信号包括所述第一卫星信号。
  5. 根据权利要求4所述的方法,其特征在于,所述第一请求信息还包括以下任意一项或多项:
    所述第一基站的标识、授时范围、广播频度、加密信息。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一基站向所述第一网元发送第一故障检测信息,所述第一故障检测信息包括所述第一基站的本地时间和所述第一基站的标识;
    所述第一基站接收来自所述第一网元的第一指示信息,根据所述第一指示信息获知所述第一基站的时钟是否故障。
  7. 根据权利要求1至5中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一基站接收所述第二基站的标准时间;
    所述第一基站根据所述第一基站的本地时间与所述第二基站的标准时间,确定所述第一基站的时钟是否故障。
  8. 根据权利要求7所述的方法,其特征在于,所述第一基站根据所述第一基站的本地时间与所述第二基站的标准时间,确定所述第一基站的时钟是否故障,包括:
    当所述第一基站的本地时间与所述第二基站的标准时间之间的时间差值小于预设阈 值时,所述第一基站确定所述第一基站的时钟无故障;
    当所述第一基站的本地时间与所述第二基站的标准时间之间的时间差值大于或者等于所述预设阈值时,所述第一基站确定所述第一基站的时钟发生故障。
  9. 一种时间校准的方法,其特征在于,包括:
    第一基站接收来自第一网元的第四差值,所述第四差值为所述第一网元将所述第一基站的K个本地时间与第二基站的K个标准时间拟合得到,K为大于1的整数,且所述K个本地时间与所述K个标准时间一一对应;
    所述第一基站根据所述第四差值,校准所述第一基站的本地时间。
  10. 根据权利要求9所述的方法,其特征在于,所述第一基站根据所述第四差值,校准所述第一基站的本地时间,包括:
    所述第一基站根据所述第一基站的本地时间与所述第四差值,确定所述第一基站的标准时间,所述第一基站的标准时间为所述第一基站的本地时间与所述第四差值之间作差得到的时间。
  11. 根据权利要求9或10所述的方法,其特征在于,所述第一基站接收来自第一网元的第四差值之前,所述方法还包括:
    每间隔预设时长,所述第一基站向所述第一网元发送第二请求信息,所述第二请求信息包括所述第一基站的本地时间和所述第一基站的标识。
  12. 根据权利要求9至11中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一基站向所述第一网元发送第一故障检测信息,所述第一故障检测信息包括所述第一基站的本地时间和所述第一基站的标识;
    所述第一基站接收来自所述第一网元的第一指示信息,根据所述第一指示信息获知所述第一基站的时钟是否故障。
  13. 根据权利要求9至11中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一基站接收所述第二基站的标准时间;
    所述第一基站根据所述第一基站的本地时间与所述第二基站的标准时间,确定所述第一基站的时钟是否故障。
  14. 根据权利要求13所述的方法,其特征在于,所述第一基站根据所述第一基站的本地时间与所述第二基站的标准时间,确定所述第一基站的时钟是否故障,包括:
    当所述第一基站的本地时间与所述第二基站的标准时间之间的时间差值小于预设阈值时,所述第一基站确定所述第一基站的时钟无故障;
    当所述第一基站的本地时间与所述第二基站的标准时间之间的时间差值大于或者等于所述预设阈值时,所述第一基站确定所述第一基站的时钟发生故障。
  15. 一种故障检测的方法,其特征在于,包括:
    第一网元接收来自第一基站的第一故障检测信息,所述第一故障检测信息包括所述第一基站的本地时间和所述第一基站的标识;
    所述第一网元接收第二基站的标准时间;
    所述第一网元根据所述第一基站的本地时间与所述第二基站的标准时间,确定所述第一基站的时钟是否故障。
  16. 根据权利要求15所述的方法,其特征在于,所述第一网元根据所述第一基站的本地时间与所述第二基站的标准时间,确定所述第一基站的时钟是否故障,包括:
    当所述第一基站的本地时间与所述第二基站的标准时间之间的时间差值小于预设阈值时,所述第一网元确定所述第一基站的时钟无故障;
    当所述第一基站的本地时间与所述第二基站的标准时间之间的时间差值大于或者等于预设阈值时,所述第一网元确定所述第一基站的时钟发生故障。
  17. 根据权利要求15或16所述的方法,其特征在于,所述方法还包括:
    所述第一网元向所述第一基站发送第一指示信息,根据所述第一指示信息获知所述第一基站的时钟是否故障。
  18. 一种故障检测的方法,其特征在于,包括:
    第一基站接收第二基站的标准时间;
    所述第一基站根据所述第一基站的本地时间与所述第二基站的标准时间,确定所述第一基站的时钟是否故障。
  19. 根据权利要求18所述的方法,其特征在于,所述第一基站根据所述第一基站的本地时间与所述第二基站的标准时间,确定所述第一基站的时钟是否故障,包括:
    当所述第一基站的本地时间与所述第二基站的标准时间之间的时间差值小于预设阈值时,所述第一基站确定所述第一基站的时钟无故障;
    当所述第一基站的本地时间与所述第二基站的标准时间之间的时间差值大于或者等于预设阈值时,所述第一基站确定所述第一基站的时钟发生故障。
  20. 一种通信装置,其特征在于,包括:
    处理器,用于执行存储器中存储的计算机程序,以使得所述装置执行如权利要求1至8中任一项所述的方法,或者,以使得所述装置执行如权利要求9至14中任一项所述的方法,或者,以使得所述装置执行如权利要求15至17中任一项所述的方法,或者,以使得所述装置执行如权利要求18或19所述的方法。
  21. 根据权利要求20所述的装置,其特征在于,所述装置还包括所述存储器。
  22. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1至8中任一项所述的方法,或者,使得所述计算机执行如权利要求9至14中任一项所述的方法,或者,使得所述计算机执行如权利要求15至17中任一项所述的方法,或者,使得所述计算机执行如权利要求18或19所述的方法。
  23. 一种计算机程序产品,其特征在于,所述计算机程序产品包括用于执行如权利要求1至8中任一项所述的方法的指令,或者,所述计算机程序产品包括用于执行如权利要求9至14中任一项所述的方法的指令,或者,所述计算机程序产品包括用于执行如权利要求15至17中任一项所述的方法的指令,或者,所述计算机程序产品包括用于执行如权利要求18或19所述的方法的指令。
PCT/CN2022/141386 2021-12-31 2022-12-23 时间校准的方法和装置 WO2023125279A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111672578.8 2021-12-31
CN202111672578.8A CN116419386A (zh) 2021-12-31 2021-12-31 时间校准的方法和装置

Publications (1)

Publication Number Publication Date
WO2023125279A1 true WO2023125279A1 (zh) 2023-07-06

Family

ID=86997821

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/141386 WO2023125279A1 (zh) 2021-12-31 2022-12-23 时间校准的方法和装置

Country Status (2)

Country Link
CN (1) CN116419386A (zh)
WO (1) WO2023125279A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000357988A (ja) * 1999-06-16 2000-12-26 Nec Corp 基地局間同期方法とその基地局間同期装置
US20020009168A1 (en) * 2000-04-07 2002-01-24 Dick Stephen G. Base station synchronization for wireless communication systems
CN101035327A (zh) * 2007-04-13 2007-09-12 华为技术有限公司 无线通信系统、空中接口同步方法、基站及其控制器
CN101615946A (zh) * 2008-06-26 2009-12-30 展讯通信(上海)有限公司 一种在td-scdma系统中校准gps标准时间的方法与装置
CN101640932A (zh) * 2008-07-31 2010-02-03 联发科技股份有限公司 用于时钟校准的方法及无线电信装置
CN105610534A (zh) * 2015-12-17 2016-05-25 北京无线电计量测试研究所 一种多站时间同步方法和设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000357988A (ja) * 1999-06-16 2000-12-26 Nec Corp 基地局間同期方法とその基地局間同期装置
US20020009168A1 (en) * 2000-04-07 2002-01-24 Dick Stephen G. Base station synchronization for wireless communication systems
CN101035327A (zh) * 2007-04-13 2007-09-12 华为技术有限公司 无线通信系统、空中接口同步方法、基站及其控制器
CN101615946A (zh) * 2008-06-26 2009-12-30 展讯通信(上海)有限公司 一种在td-scdma系统中校准gps标准时间的方法与装置
CN101640932A (zh) * 2008-07-31 2010-02-03 联发科技股份有限公司 用于时钟校准的方法及无线电信装置
CN105610534A (zh) * 2015-12-17 2016-05-25 北京无线电计量测试研究所 一种多站时间同步方法和设备

Also Published As

Publication number Publication date
CN116419386A (zh) 2023-07-11

Similar Documents

Publication Publication Date Title
WO2021190526A1 (zh) 卫星星历更新的方法和通信装置
US20220007274A1 (en) Communication Method And Apparatus
US11510134B2 (en) Method and network device for terminal device positioning with integrated access backhaul
US20220361129A1 (en) Time synchronization method, access network device, communication apparatus, computer storage medium, and communication system
WO2020077577A1 (zh) 数据包传输方法和设备
US20220124500A1 (en) Communication method, terminal device and network device
US20220308153A1 (en) Determining a position of a target ue using assisting ue signaling
US20220394604A1 (en) Method for providing network slice, and communication apparatus
US20220240122A1 (en) Method for qos control and apparatus
US20220225082A1 (en) Communication Method, Communication Apparatus, and Storage Medium
TW202008838A (zh) 一種隨機存取方法、終端設備及存儲媒介
WO2023207719A1 (zh) 时钟同步的方法和装置
WO2023185808A1 (zh) 小区同步方法及装置
WO2021088007A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023125279A1 (zh) 时间校准的方法和装置
US20230031092A1 (en) Data transmission method and communication apparatus
US20220264435A1 (en) Access control method and communications apparatus
TW202008805A (zh) 一種車聯網中的通信方法及終端設備、網路設備
TW202007199A (zh) 一種核心網選擇方法及裝置、終端設備、網路設備
US20220124699A1 (en) Uplink transmission method, electronic device, and storage medium
US20230413257A1 (en) Methods and apparatus for sps downlink transmission
WO2021159983A1 (zh) 通信方法及装置
US20220312355A1 (en) Information transmission method, communication apparatus, and computer-readable storage medium
WO2023184431A1 (zh) 波束失败恢复方法、终端设备和网络设备
WO2022252240A1 (zh) 指示终端设备所在跟踪区的方法和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22914533

Country of ref document: EP

Kind code of ref document: A1