WO2023125254A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2023125254A1
WO2023125254A1 PCT/CN2022/141228 CN2022141228W WO2023125254A1 WO 2023125254 A1 WO2023125254 A1 WO 2023125254A1 CN 2022141228 W CN2022141228 W CN 2022141228W WO 2023125254 A1 WO2023125254 A1 WO 2023125254A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
radio frequency
information
devices
bbu
Prior art date
Application number
PCT/CN2022/141228
Other languages
English (en)
French (fr)
Inventor
瞿维韧
姚建斌
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to KR1020247022491A priority Critical patent/KR20240113959A/ko
Priority to EP22914508.1A priority patent/EP4432722A1/en
Publication of WO2023125254A1 publication Critical patent/WO2023125254A1/zh
Priority to US18/752,831 priority patent/US20240348291A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0404Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas the mobile station comprising multiple antennas, e.g. to provide uplink diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular, to a communication method and device.
  • the base band unit can control the antenna equipment through the radio frequency remote processing unit (RRU), and perform processing on the antenna system such as amplifying the radio frequency signal or adjusting the downtilt angle of the antenna system .
  • RRU radio frequency remote processing unit
  • the present disclosure provides a communication method and device in order to improve the efficiency of link recovery.
  • the present disclosure provides a communication method, which can be applied to radio frequency devices, and the method includes: acquiring first information from a baseband unit BBU, where the first information is used to indicate N1 antenna devices, and the antenna devices It is used to control the antenna; wherein, N1 is a positive integer; maintaining the connection between the radio frequency device and the first antenna device; wherein, the first antenna device is included in the N1 antenna devices.
  • the connection with the first antenna device indicated by the BBU is maintained. Avoiding the process of re-establishing the link can improve the efficiency of link recovery and facilitate the BBU to directly restore the management capability of the first antenna device.
  • second information is sent to the BBU, where the second information indicates N2 antenna devices currently connected to the radio frequency device, where N2 is a positive integer.
  • the BBU can know the antenna device currently connected to the radio frequency device, which is beneficial for the BBU to quickly restore the ability to manage the antenna device.
  • the N1 antenna devices include at least one antenna device among the antenna devices currently connected to the radio frequency device.
  • the method further includes: scanning for a second antenna device according to the first information; wherein, the second antenna device is included in the N1 antenna devices, and the second antenna device is not connected to all The radio frequency device is connected; and the connection between the radio frequency device and the second antenna device is established.
  • the radio frequency device does not need to scan all the N1 antenna devices indicated by the BBU, which can reduce the number of antenna devices scanned by the radio frequency device, and improve the efficiency of link restoration.
  • the N1 antenna devices are included in the N2 antenna devices.
  • the method further includes: acquiring third information from the BBU, where the third information is used to indicate a second antenna device; wherein, the second antenna device is not connected to the radio frequency device; according to the third information , scan the second antenna device; establish a connection between the radio frequency device and the second antenna device.
  • the radio frequency device only scans the second antenna device indicated by the BBU, instead of scanning all the N1 antenna devices indicated by the BBU, which reduces the number of antenna devices scanned by the radio frequency device and improves link recovery efficiency.
  • the method further includes: disconnecting the radio frequency device from a third antenna device, where the third antenna device is included in the antenna device currently connected to the radio frequency device, and the The third antenna device is not included in the N1 antenna devices.
  • the third antenna device is prevented from being unable to respond to scanning of other radio frequency devices that need to be connected to the third antenna device, and normal establishment of other communication links can be ensured.
  • the present disclosure provides a communication method, which can be applied to a BBU, and the method includes: determining N1 antenna devices, and the antenna devices are used to control the antenna; where N1 is a positive integer; sending the first information, The first information is used to indicate N1 antenna devices, and the first information is used to indicate that the radio frequency device maintains a connection with the first antenna device; wherein, the first antenna device is included in the N1 antenna devices .
  • the method further includes: acquiring second information, where the second information indicates N2 antenna devices currently connected to the radio frequency device, where N2 is a positive integer.
  • the N1 antenna devices include at least one antenna device among the antenna devices currently connected to the radio frequency device.
  • the N1 antenna devices include a second antenna device, and the second antenna device is not connected to the radio frequency device; the first information is also used to instruct the radio frequency device to establish an connection between the second antenna device.
  • the N1 antenna devices are included in the N2 antenna devices.
  • the method further includes: sending third information, where the third information is used to indicate the second antenna device; wherein the second antenna device is not connected to the radio frequency device.
  • the method further includes: sending fourth information, where the fourth information is used to instruct the radio frequency device to disconnect from the third antenna device; wherein, the third device is included in the radio frequency An antenna device to which the device is currently connected, and the third device is not included in the N1 antenna devices.
  • the present disclosure provides a communication device.
  • the communication device may be a radio frequency device, or a device in the radio frequency device, or a device that can be matched with the radio frequency device.
  • the communication device may include a one-to-one corresponding module for executing the method/operation/step/action described in the first aspect.
  • the module may be a hardware circuit, or software, or a combination of hardware circuit and software.
  • the communication device may include a processing module and a communication module.
  • a communication module configured to obtain first information from a baseband unit BBU, the first information is used to indicate N1 antenna devices, and the antenna devices are used to control antennas; where N1 is a positive integer; the processing module, It is used to maintain the connection between the radio frequency device and the first antenna device; wherein, the first antenna device is included in the N1 antenna devices.
  • the communication model is further configured to send second information to the BBU, where the second information indicates N2 antenna devices currently connected to the radio frequency device, where N2 is a positive integer.
  • the N1 antenna devices include at least one antenna device among the antenna devices currently connected to the radio frequency device.
  • the processing module is further configured to scan a second antenna device according to the first information; wherein the second antenna device is included in the N1 antenna devices, and the second antenna device Not connected to the radio frequency device; establishing a connection between the radio frequency device and the second antenna device through a communication module.
  • the N1 antenna devices are included in the N2 antenna devices.
  • the communication module is further configured to obtain third information from the BBU, where the third information is used to indicate the second antenna device; wherein the second antenna device is not connected to the radio frequency device; the processing module is also configured to Scanning the second antenna device according to the third information; establishing a connection between the radio frequency device and the second antenna device through a communication module.
  • the processing module is further configured to disconnect the connection between the radio frequency device and a third antenna device, where the third antenna device is included in the antenna device currently connected to the radio frequency device, and the The third antenna device is not included in the N1 antenna devices.
  • the present disclosure provides a communication device.
  • the communication device may be a BBU, or a device in the BBU, or a device that can be matched with the BBU.
  • the communication device may include a one-to-one corresponding module for executing the method/operation/step/action described in the second aspect.
  • the module may be a hardware circuit, or software, or a combination of hardware circuit and software.
  • the communication device may include a processing module and a communication module.
  • a processing module configured to determine N1 antenna devices, and the antenna devices are used to control the antenna; wherein, N1 is a positive integer; a communication module, configured to send first information, and the first information is used to indicate N1 antenna devices, the first information is used to instruct the radio frequency device to maintain a connection with the first antenna device; wherein the first antenna device is included in the N1 antenna devices.
  • the communication module is further configured to obtain second information, where the second information indicates N2 antenna devices currently connected to the radio frequency device, where N2 is a positive integer.
  • the N1 antenna devices include at least one antenna device among the antenna devices currently connected to the radio frequency device.
  • the N1 antenna devices include a second antenna device, and the second antenna device is not connected to the radio frequency device; the first information is also used to instruct the radio frequency device to establish an connection between the second antenna device.
  • the N1 antenna devices are included in the N2 antenna devices.
  • the communication module is further configured to send third information, where the third information is used to indicate the second antenna device; wherein the second antenna device is not connected to the radio frequency device.
  • the communication module is further configured to send fourth information, where the fourth information is used to instruct the radio frequency device to disconnect from the third antenna device; wherein, the third device It is included in the antenna device currently connected to the radio frequency device, and the third device is not included in the N1 antenna devices.
  • the present disclosure provides a communication device, where the communication device includes a processor, configured to implement the method described in the first aspect above.
  • the processor is coupled to the memory, and the memory is used to store instructions and data.
  • the communication device may also include a memory; the communication device may also include a communication interface, which is used for the device to communicate with other devices.
  • the communication interface may be a transceiver, a circuit, A bus, module, pin, or other type of communication interface.
  • the communication device includes:
  • a processor configured to acquire first information from the baseband unit BBU using a communication interface, where the first information is used to indicate N1 antenna devices, and the antenna devices are used to control antennas; where N1 is a positive integer;
  • the processor is further configured to maintain the connection between the radio frequency device and the first antenna device; wherein the first antenna device is included in the N1 antenna devices.
  • the present disclosure provides a communication device, where the communication device includes a processor, configured to implement the method described in the second aspect above.
  • the processor is coupled to the memory, and the memory is used to store instructions and data.
  • the communication device may also include a memory; the communication device may also include a communication interface, which is used for the device to communicate with other devices.
  • the communication interface may be a transceiver, a circuit, A bus, module, pin, or other type of communication interface.
  • the communication device includes:
  • a processor configured to determine N1 antenna devices, where the antenna devices are used to control the antenna; where N1 is a positive integer;
  • the processor is further configured to use the communication interface to send first information, the first information is used to indicate N1 antenna devices, and the first information is used to instruct the radio frequency device to maintain a connection with the first antenna device; Wherein, the first antenna device is included in the N1 antenna devices.
  • the present disclosure provides a communication system, including the communication device described in the third aspect or the fifth aspect; and, the communication device described in the fourth aspect or the sixth aspect.
  • the present disclosure further provides a computer program, which, when running on a computer, causes the computer to execute the method provided in the first aspect or the second aspect.
  • the present disclosure further provides a computer program product, including instructions, which, when run on a computer, cause the computer to execute the method provided in the first aspect or the second aspect.
  • the present disclosure also provides a computer-readable storage medium, where a computer program or instruction is stored in the computer-readable storage medium, and when the computer program or instruction is run on a computer, the computer executes The method provided in the first aspect or the second aspect above.
  • the present disclosure further provides a chip, which is used to read a computer program stored in a memory, and execute the method provided in the first aspect or the second aspect above.
  • the present disclosure further provides a chip system, which includes a processor, configured to support a computer device to implement the method provided in the first aspect or the second aspect above.
  • the chip system further includes a memory, and the memory is used to store necessary programs and data of the computer device.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • Fig. 1 is a structural schematic diagram of a communication system
  • FIG. 2 is a schematic structural diagram of another communication system
  • FIG. 3 is a schematic structural diagram of an electrically adjustable antenna
  • Fig. 4 is a kind of flow process of restoring communication link
  • FIG. 9 and FIG. 10 are schematic structural diagrams of a communication device provided by the present disclosure.
  • the present disclosure refers to at least one of the following, indicating one or more. Multiple means two or more.
  • “And/or” describes the association relationship of associated objects, indicating that there may be three types of relationships, for example, A and/or B may indicate: A exists alone, A and B exist simultaneously, and B exists independently.
  • the character "/” generally indicates that the contextual objects are an "or” relationship.
  • first, second, etc. may be used in the present disclosure to describe various objects, these objects should not be limited by these terms. These terms are only used to distinguish one object from another.
  • the communication system can be a third generation (3th generation, 3G) communication system (such as a universal mobile telecommunications system (universal mobile telecommunications system, UMTS)), a fourth generation (4th generation, 4G) communication system (such as long term evolution (long term evolution, LTE) system), fifth generation (5th generation, 5G) communication system, worldwide interconnection microwave access (worldwide interoperability for microwave access, WiMAX) or wireless A local area network (wireless local area network, WLAN) system, or a fusion system of multiple systems, or a future communication system, such as the sixth generation (6th generation, 6G) communication system, etc.
  • the 5G communication system may also be called a new radio (NR) system.
  • NR new radio
  • a network element in a communication system may send signals to another network element or receive signals from another network element.
  • the signal may include information or data, etc.; a network element may also be called an entity, a network entity, a device, a communication device, a communication module, a node, a communication node, etc.
  • a network element is taken as an example for description.
  • a communication system may include at least one terminal device and at least one access network device.
  • the signal sending network element may be an access network device, and the signal receiving network element may be a terminal device; or, the signal sending network element may be a terminal device, and the signal receiving network element may be an access network device.
  • the multiple terminal devices may also send signals to each other, that is, both the signal sending network element and the signal receiving network element may be terminal devices.
  • the communication system 100 includes an access network device 110 and two terminal devices, that is, a terminal device 120 and a terminal device 130 . At least one of the terminal device 120 and the terminal device 130 may send uplink data to the access network device 110, and the access network device 110 may receive the uplink data. The access network device may send downlink data to at least one of the terminal device 120 and the terminal device 130 .
  • the terminal equipment and access network equipment involved in FIG. 1 will be described in detail below.
  • Terminal equipment is also called terminal, user equipment (UE), mobile station (mobile station, MS), mobile terminal (mobile terminal, MT), etc., and is a device that provides voice and/or data connectivity to users. equipment.
  • the terminal device can communicate with one or more core network devices through the access network device. End devices include handheld devices with wireless connectivity, other processing devices connected to wireless modems, or vehicle-mounted devices.
  • the terminal device may be a portable, pocket, hand-held, computer built-in or vehicle-mounted mobile device.
  • terminal equipment are: personal communication service (PCS) telephones, cordless telephones, session initiation protocol (SIP) telephones, wireless local loop (WLL) stations, personal digital assistants (personal digital assistant, PDA), wireless network camera, mobile phone (mobile phone), tablet computer, notebook computer, palmtop computer, mobile Internet device (mobile internet device, MID), wearable device such as smart watch, virtual reality (virtual reality) , VR) equipment, augmented reality (augmented reality, AR) equipment, wireless terminals in industrial control (industrial control), terminals in car networking systems, wireless terminals in self driving (self driving), smart grid (smart grid) ), wireless terminals in transportation safety, wireless terminals in smart city (smart city) such as smart refueling devices, terminal equipment on high-speed rail, and wireless terminals in smart home (smart home), such as Smart speakers, smart coffee machines, smart printers, etc.
  • PCS personal communication service
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistants
  • wireless network camera mobile phone (
  • the communication device used to realize the function of the terminal device may be a terminal device, or a terminal device with some terminal functions, or a device capable of supporting the terminal device to realize this function, such as a chip system, which may be installed in the end device.
  • a system-on-a-chip may be composed of chips, and may also include chips and other discrete devices.
  • description is made by taking a terminal device or a UE as an example in which the communication device for realizing the function of the terminal device is used for description.
  • the access network device may be a base station (base station, BS), and the access network device may also be called a network device, an access node (access node, AN), or a wireless access node (radio access node, RAN).
  • the access network device can be connected to a core network (such as an LTE core network or a 5G core network, etc.), and the access network device can provide wireless access services for terminal devices.
  • Examples of some access network devices include but are not limited to at least one of the following: access network devices in next-generation node B (generation nodeB, gNB) in 5G, and open radio access network (open radio access network, O-RAN) , evolved node B (evolved node B, eNB), radio network controller (radio network controller, RNC), node B (node B, NB), base station controller (base station controller, BSC), base transceiver station (base transceiver station, BTS), home base station (for example, home evolved nodeB, or home node B, HNB), sending and receiving point (transmitting and receiving point, TRP), transmitting point (transmitting point, TP), and/or mobile switching center, etc. or, the access network device may be a relay station, an access point, a vehicle-mounted device, a wearable device, or an access network device in a future evolved public land mobile network (public land mobile network, PLMN).
  • PLMN public land mobile network
  • the access network device may include a base band unit (base band unit, BBU) and a radio frequency device (or referred to as a radio frequency unit).
  • BBU base band unit
  • radio frequency device or referred to as a radio frequency unit.
  • the BBU When the access network device sends information to the terminal device, the BBU generates a baseband signal representing the information, and sends the baseband signal to the radio frequency device.
  • the radio frequency device performs intermediate radio frequency processing on the baseband signal to obtain a radio frequency signal, and sends the radio frequency signal to the antenna system, and then sends it to the terminal device through the antenna system.
  • the baseband signal refers to the original electrical signal sent by the transmitting end such as the aforementioned access network equipment without modulation (such as spectrum migration and conversion); according to the characteristics of the original electrical signal, the baseband signal can be divided into digital baseband signal and analog baseband Signal.
  • the radio frequency device may be a radio frequency remote processing unit (remote radio unit, RRU), an active antenna processing unit (active antenna unit, AAU), or other units, modules or devices capable of radio frequency processing.
  • An antenna system may include a transmit antenna and a receive antenna.
  • the access network device may include a centralized unit (central unit, CU), a distributed unit (distributed unit, DU) and a radio unit (radio unit, RU).
  • the DU is deployed on the BBU of the access network device and has the function of processing baseband signals;
  • the RU is deployed on the radio frequency device of the access network device and has the radio frequency function.
  • Multiple DUs can be centrally controlled by one CU.
  • the CU can be deployed on the BBU together with the DUs, or the CUs can be designed to be separated from the DUs.
  • the CUs can be deployed in other places outside the BBU.
  • the CU may further include a centralized unit control plane (CU control plane, CU-CP), or a centralized unit user plane (CU user plane, CU-UP).
  • CU control plane CU control plane
  • CU user plane CU-UP
  • any one of the foregoing DU, CU, CU-CP, CU-UP, and RU may be a software module, a hardware structure, or a software module+hardware structure, without limitation.
  • the existence forms of different entities may be different, which is not limited.
  • DU, CU, CU-CP, and CU-UP are software modules
  • RU is a hardware structure.
  • the functions of the BBU in this application may be realized by a general-purpose device, such as a general-purpose computer or server.
  • a general-purpose device such as a general-purpose computer or server.
  • the BBU described in this application can be replaced with other possible devices that can implement the functions of the BBU in this application.
  • the BBU and radio frequency equipment of an access network device can be integrated in one computer room, and the radio frequency equipment is connected to the antenna system through a feeder; or, the BBU and radio frequency equipment can be separated, such as the BBU is installed in the computer room, and the radio frequency equipment and antenna system are arranged in the base station On the tower, the BBU and the radio frequency equipment are connected through an optical cable.
  • the radio frequency device is connected to the antenna system through a jumper, and the access network device in which the BBU is separated from the radio frequency device can also be described as a distributed access network device or a distributed base station.
  • a BBU can support connecting multiple radio frequency devices, and an access network device can include a BBU and one or more radio frequency devices.
  • the radio frequency devices connected to different BBUs may be the same.
  • the BBU and/or radio frequency equipment included in different access network devices may be the same, that is, it can be understood that multiple access network devices may share one BBU, and multiple access network devices may share one or more radio frequency devices.
  • the BBU and the radio frequency device may communicate according to a common public radio interface (common public radio interface, CPRI) protocol or an enhanced CPRI (enhanced CPRI, eCPRI) protocol.
  • CPRI common public radio interface
  • eCPRI enhanced CPRI
  • the communication device used to realize the BBU function may be a BBU, or a device with some functions of the BBU, or a device capable of supporting the BBU to realize the function, such as a chip system, a hardware circuit, a software module, or a hardware A circuit plus software module, the device can be installed in a BBU.
  • description is made by taking the BBU as an example in which the communication device for implementing the BBU function is used.
  • the communication device used to realize the function of the radio frequency device may be a radio frequency device, or a device with some functions of the radio frequency device, or a device capable of supporting the radio frequency device to realize the function, such as a chip system, a hardware circuit, a software Module, or hardware circuit plus software module, this device can be installed in the radio frequency equipment.
  • description is made by taking a radio frequency device as an example in which the communication device for realizing the function of the radio frequency device is used for description.
  • the communication system may also include more terminal devices and more access networks.
  • the device may also include other network elements, for example, may include network management and/or core network devices.
  • the network management can divide the network management work into three categories according to the actual needs of the operator's network operation: operation (Operation), management (Administration), and maintenance (Maintenance).
  • the network management system can also be called an operation administration and maintenance (OAM) network element, or OAM for short.
  • OAM operation administration and maintenance
  • the operation mainly completes the analysis, prediction, planning and configuration of the daily network and business; the maintenance mainly involves the daily operation activities such as the test and fault management of the network and its business, and the network management can detect the network operation status, optimize the network connection and performance , improve network operation stability, and reduce network maintenance costs.
  • the method provided in this disclosure can be used for communication between an access network device and a terminal device, and can also be used for communication between other communication devices, such as the communication between a macro base station and a micro base station in a wireless backhaul link.
  • the present disclosure relates to electric adjustable antenna technology.
  • An antenna device (antenna line device, ALD) is introduced between the radio frequency device and the antenna system.
  • the BBU can send control commands to the antenna device through the radio frequency device, and the antenna device can control the antenna system according to the aforementioned control commands. control.
  • the antenna device may perform at least one of the following operations on the antenna system: amplifying a radio frequency signal, or adjusting a downtilt angle of the antenna system, and the like. Adjusting the downtilt angle of the antenna system can change the coverage of the antenna. The coverage of the antenna is achieved through the vertical main beam, and the adjustment of the downtilt angle can change the coverage of the main beam.
  • the antenna device may include but not limited to one or more of the following: a remote electrical tilting (remote electrical tilting, RET) unit, a tower mounted amplifier (tower mounted amplifier, TMA), or an antenna sensor.
  • RET remote electrical tilting
  • TMA tower mounted amplifier
  • the antenna device can use electronic downtilt to adjust the downtilt angle of the antenna system.
  • Electronic downtilt refers to changing the main beam coverage by changing the tilt angle of the antenna oscillator under the condition of a given antenna physical location.
  • the radio frequency device and the antenna device may communicate according to an antenna interface standards group (antenna interface standards group, AISG) protocol.
  • FIG. 2 illustrates a communication system architecture. Taking the radio frequency device as an RRU as an example, the communication system includes BBU1, BBU2, RRU1, RRU2, and ALD. Both BBU1 and BBU2 support connection to RRU1, and BBU2 also supports connection to RRU2. Both RRU1 and RRU2 support communication with the ALD through the AISG protocol.
  • BBU1 supporting connection with RRU1 it can also be described as BBU1 having the capability of communicating with RRU1, or a communication link can be established between BBU1 and RRU1.
  • the communication link may also be referred to as a link for short.
  • the AISG protocol stack may include a physical layer, a data link layer and an application layer.
  • the RS485 serial port protocol is used in the physical layer
  • the high-level data link control (HDLC) protocol is used in the data link layer.
  • the radio frequency device and the antenna device can be connected to a serial bus to implement communication, and the AISG link established between the radio frequency device and the antenna device can also be described as an HDLC link.
  • the RET unit may include an active part.
  • the active part refers to the part that can carry out software communication.
  • the active part may be called a remote control unit (RCU).
  • the RCU is connected to the antenna system, and the RCU and the antenna system form an electrically adjustable antenna.
  • the electrically adjustable antenna may also include other units or modules, which are not limited.
  • the RCU includes an external RCU and/or a built-in RCU.
  • the built-in RCU is integrated on the antenna system and shares a cover with the antenna system; the external RCU is located outside the mask of the antenna system and is connected to the corresponding ESC interface on the antenna system. .
  • the RCU may include a drive motor, a control circuit and a mechanical transmission mechanism.
  • the control circuit can communicate with the RET unit, input the signal corresponding to the control command of the radio frequency device, and output the signal used to control the drive motor.
  • the drive motor rotates based on the signal output by the control circuit, it can control the mechanical transmission mechanism to change the internal movement of the antenna system. Phase of the phaser.
  • the RET unit can be deployed on the radio frequency device as a RET interface of the radio frequency device.
  • the RCU can be connected to the RET interface of the radio frequency equipment through the AISG control line.
  • FIG. 3 shows a schematic structural diagram of an electrically adjustable antenna.
  • the BBU and the RRU are connected through an optical fiber, the RRU and the antenna system are deployed on the base station tower, and the RRU and the antenna system are connected through a jumper.
  • an antenna hardware interface (antenna hardware interface, ANT) for connecting to the antenna system is deployed on the RRU, and the antenna hardware interface is connected to the antenna system through a jumper.
  • FIG. ANT antenna hardware interface
  • the ANT on the RRU includes a transmit (transport, TX)/receive (receive, RX) port A and an RX port B.
  • the RET interface (or RET unit) is arranged on the RRU, and an external RCU is connected to the antenna system.
  • the RET interface and the RCU are connected through the AISG control line.
  • the communication link between the BBU and the RRU is unstable.
  • the BBU notifies the RRU to disconnect from all antenna devices (or described as BBU notification
  • the RRU clears all antenna devices currently connected to it), and re-scans the antenna devices and establishes a communication link between the RRU and the antenna devices scanned by the RRU.
  • FIG. 4 illustrates a process for restoring a communication link, and the process includes the following steps.
  • the communication link between the BBU and the RRU is restored after being interrupted.
  • the BBU instructs the RRU to disconnect the communication links between the RUU and all currently connected ALDs.
  • FIG. 4 shows in S402 that the BBU notifies the RRU to delete the addresses of all the ALDs currently connected to the RRU, and the RRU deletes the addresses of all the ALDs mentioned above.
  • the address of the ALD can also be described as the communication address of the ALD, which can be allocated by the RRU.
  • the BBU instructs the RRU to broadcast information about resetting the ALD, and the RRU broadcasts information about resetting the ALD.
  • broadcasting the relevant information of resetting the ALD can make the ALD device know that the historically allocated communication address has been cleared. It is convenient for the ALD to respond to the relevant scanning device such as the RRU in S404 when the communication address is not assigned.
  • the BBU sends scan request information to the RRU, where the scan request information is used to instruct the RRU to scan the ALD; the RRU scans the ALD according to the scan request information.
  • the RRU sends the scanned ALD device information to the BBU.
  • the BBU matches the ALD device information obtained by the RRU scan with the ALD device information managed by the BBU, and determines the target ALD that the RRU needs to connect to; wherein, the target ALD is included in the ALD managed by the BBU, and the target ALD is included in the ALD scanned by the RRU ALD.
  • the BBU instructs the RRU to establish a communication link with the target ALD, and the RRU allocates a corresponding address for the target ALD.
  • the ALD in Figure 4 corresponds to the target ALD in this step.
  • the BBU sends a management message to the RRU.
  • the management message is used to instruct the ALD to perform operation and maintenance operations on the antenna system.
  • the operation and maintenance operation may include business operations such as amplifying radio frequency signals or adjusting the downtilt angle of the antenna system, or may include software upgrades , alarm reporting and other operations for maintaining the device; the RRU forwards the management message to the address of the target ALD.
  • the RRU obtains the operation result information corresponding to the operation and maintenance operation from the address of the target ALD, and sends the operation result information to the BBU.
  • the present disclosure provides a communication method, which can improve the efficiency of link recovery.
  • the radio frequency device may be instructed to maintain the connection between the radio frequency device and the antenna device to which the BBU wants to connect among the currently connected antenna devices.
  • the method mainly includes the following steps:
  • the BBU sends first information to a radio frequency device.
  • the first information is used to indicate N1 antenna devices, and the antenna devices are used to control antennas; where N1 is a positive integer.
  • the N1 antenna devices may refer to the antenna devices that the BBU wants the RRU to connect to.
  • the N1 antenna devices are antenna devices managed (or maintained) by the BBU, and the number of all antenna devices managed by the BBU may be N1.
  • the antenna device managed by the BBU may be pre-configured, for example, the operator of the BBU configures the antenna device managed by the BBU for the BBU.
  • identity information of antenna devices managed by the BBU may also be configured on the BBU.
  • the identity information of an antenna device is used to identify the antenna device, and may include, for example, a manufacturer's code of the antenna device and a device serial number of the antenna device.
  • the first information may include identity information of the N1 antenna devices.
  • the BBU may send the first information to the radio frequency device after the communication link between the BBU and the radio frequency device is interrupted and restored.
  • the radio frequency device may be an RRU or an AAU
  • the antenna device may be an ALD.
  • the sending of the first information by the BBU to the radio frequency device may be implemented by referring to any one of the following two manners.
  • the BBU sends a first message to the radio frequency device, the first message includes the identity information of each antenna device in the N1 antenna devices, for example, the first message may include an array, the array contains N1 elements, and each element It is used to represent the identity information of one antenna device among the N1 antenna devices, and the length of the array corresponds to the value of N1.
  • the first message may be implemented by using an interface message of a network configuration protocol (network configuration protocol, NETCONF).
  • the BBU sends N1 second messages to the radio frequency device, each second message includes identity information of one of the N1 antenna devices, and the N1 second messages correspond to the N1 antenna devices one by one.
  • the second message may be implemented by using an interface message of NETCONF.
  • the radio frequency device maintains the connection between the radio frequency device and the first antenna device.
  • the first antenna device is included in the N1 antenna devices, and the first antenna device is included in the antenna device currently connected to the radio frequency device.
  • the number of first antenna devices is one or more.
  • the first information may also be used to instruct the radio frequency device to maintain the connection with the first antenna device.
  • the radio frequency device may determine the first antenna device included in the N1 antenna devices among the antenna devices currently connected to the radio frequency device according to the N1 antenna devices indicated by the first information; connection between. Wherein, the radio frequency device maintains the connection with the first antenna device, which may also be described as: the radio frequency device retains the communication link between the radio frequency device and the first antenna device.
  • the radio frequency device may save the identity information of the currently connected antenna device.
  • the radio frequency device may determine the aforementioned first antenna device by matching the identity information of the currently connected antenna device with the identity information of the N1 antenna devices.
  • the radio frequency device may also store link information corresponding to the currently connected antenna device, and the link information corresponding to the antenna device is used to indicate a communication link between the antenna device and the radio frequency device.
  • the radio frequency device may assign a communication address to an antenna device that has established a communication link with the radio frequency device, and the aforementioned link information may include the communication address of the antenna device.
  • the radio frequency device maintaining the connection between the radio frequency device and the first antenna device may specifically include: the radio frequency device retains the communication address of the first antenna device.
  • the radio frequency device may also scan the second antenna device.
  • the radio frequency device may also scan the second antenna device.
  • the radio frequency device scans the second antenna device according to the first information.
  • the second antenna device is included in the N1 antenna devices, and the second antenna device is not connected to the radio frequency device.
  • the radio frequency device may scan and identify the antenna device corresponding to the identity information as the second antenna device according to the identity information of the second antenna device.
  • the radio frequency device is used as an example of the RRU.
  • the RRU can scan and identify the ALD corresponding to the identity information on the serial bus (such as the RS485 serial bus) according to the identity information of the second antenna device. , that is, determine the second antenna device.
  • the BBU can implicitly instruct the radio frequency device to scan the second antenna device through the first information .
  • the radio frequency device establishes a connection between the radio frequency device and the second antenna device.
  • the radio frequency device may establish a communication link with the second antenna device.
  • the radio frequency device may send the communication address allocated for the second antenna device to the second antenna device. It should be noted that when there are multiple second antenna devices, the radio frequency device can send a unique communication address to each of the multiple second antenna devices, that is, different second The communication addresses of the antenna devices are different.
  • the radio frequency device may exchange information with the first antenna device and/or the second antenna device through a serial port bus.
  • the radio frequency device may forward a management message from the BBU to the first antenna device and/or the second antenna device through the bus, and the management message is used to instruct the corresponding antenna device to perform operation and maintenance of the antenna system.
  • the operation and maintenance operation may include the following At least one item: amplifying radio frequency signals, adjusting the downtilt angle of the antenna system, or other operations, etc.
  • the radio frequency device may disconnect from the third antenna device.
  • S501 and S502 may also be performed.
  • the radio frequency device disconnects the connection between the radio frequency device and the third antenna device.
  • the third antenna device is included in the antenna device currently connected to the radio frequency device, and the third antenna device is not included in the N1 antenna devices.
  • the radio frequency device may delete the communication address of the third antenna device, and broadcast information for instructing to reset the third antenna device. This method can prevent the third antenna device from being unable to respond to the scanning of other radio frequency devices that need to be connected to the third antenna device, and ensure the normal establishment of other communication links.
  • the BBU may implicitly instruct the radio frequency device to disconnect from the third antenna device through the first information. the connection between.
  • the radio frequency device may determine the third antenna device according to the first information.
  • S503-S505 may be executed after S501 and S502 are executed; or S503-S505 may be executed after S501 and S502 are executed.
  • Scheme 1 Several possible implementations of Scheme 1 are introduced below.
  • N1 antenna devices partially overlap with the antenna devices currently connected to the radio frequency device, and N1 refers to the aforementioned partially overlapping antenna devices, then execute S501-S505.
  • N1 is 6, and the radio frequency device is currently connected to 7 antenna devices.
  • the radio frequency device determines that there are N1 antenna devices among the 7 antenna devices currently connected to the radio frequency device, and there are 4 first antenna devices that remain connected; there are 3 third antenna devices that the radio frequency device can disconnect There are 2 second antenna devices that the radio frequency device needs to scan.
  • the present disclosure does not limit the order of executing S503-S505, for example, execute S503-S504 first and then execute S505; or execute S505 first and then execute S503-S504; or execute S503 and S505 simultaneously, and then execute S504.
  • Case 2 If the N1 antenna devices correspond to some of the antenna devices currently connected to the radio frequency device, S501, S502, and S505 are executed without executing S503 and S504. For example, N1 is 4, and the radio frequency device is currently connected to 6 antenna devices.
  • the radio frequency device determines that there are N1 antenna devices among the 6 antenna devices currently connected to the radio frequency device, and there are 4 first antenna devices that remain connected; there are 2 third antenna devices that the radio frequency device can disconnect one; the RF device does not need to scan for the second antenna device.
  • Case 3 If the antenna devices currently connected to the radio frequency device correspond to some of the antenna devices in the N1 antenna devices, S501-S504 are executed instead of S505. For example, N1 is 6, and the radio frequency device is currently connected to 4 antenna devices. According to the first information, the radio frequency device determines that there are N1 antenna devices included in the 4 antenna devices currently connected to the radio frequency device, and there are 4 first antenna devices that remain connected; there are 2 second antenna devices that the radio frequency device needs to scan; The radio frequency equipment does not need to be disconnected from the antenna equipment.
  • the radio frequency device determines that there are N1 antenna devices included in the 3 antenna devices currently connected to the radio frequency device, and there are 3 first antenna devices that remain connected; the radio frequency device does not need to scan the second antenna device; the radio frequency device does not need to be disconnected. Open the connection to the antenna device.
  • the above-mentioned communication method provided by this solution can improve the efficiency of link restoration when the communication link between the BBU and the radio frequency device is unstable by saving the relevant information of the antenna device currently connected to the radio frequency device, that is, to quickly establish or restore the radio frequency
  • the communication link between the device and the antenna device that the BBU wants to connect to so as to quickly restore the BBU's ability to manage the antenna device and ensure the operation of communication services.
  • this method mainly comprises the following steps:
  • the radio frequency device sends second information to the BBU.
  • the second information indicates N2 antenna devices currently connected to the radio frequency device, where N2 is a positive integer.
  • the radio frequency device may save the identity information of the currently connected antenna device.
  • the second information may include identity information of the N2 antenna devices.
  • the identity information of an antenna device is used to identify the antenna device, for example, may include the manufacturer's code of the antenna device and the device serial number of the antenna device.
  • sending the second information from the radio frequency device to the BBU may be implemented by referring to any one of the following two manners.
  • the radio frequency device sends a third message to the BBU, where the third message includes identity information of each antenna device in the N2 antenna devices.
  • the third message may include an array, the array includes N2 elements, each element is used to represent the identity information of one antenna device among the N2 antenna devices, and the length of the array corresponds to the value of N2.
  • the third message may be implemented by using an interface message of NETCONF.
  • the radio frequency device sends N2 fourth messages to the BBU, each second message includes identity information of one of the N2 antenna devices, and the N2 fourth messages correspond to the N2 antenna devices one-to-one.
  • the fourth message may be implemented by using an interface message of NETCONF.
  • the BBU sends first information to the radio frequency device.
  • the first information is used to indicate N1 antenna devices, and the N1 antenna devices are included in the N2 antenna devices.
  • the antenna device is used to control the antenna, and N1 is a positive integer.
  • the N1 antenna devices may refer to the antenna devices that the BBU wants the RRU to keep connected among the N2 antenna devices.
  • the N1 antenna devices may be included in antenna devices managed (or maintained) by the BBU, and the number of antenna devices managed by the BBU may be greater than or equal to N1.
  • the N2 antenna devices include all the antenna devices managed by the BBU
  • the N1 antenna devices refer to all the antenna devices managed by the BBU; or, if the N2 antenna devices include some of the antenna devices managed by the BBU, then the N1 antenna devices Device refers to some antenna devices managed by the BBU.
  • the antenna device managed by the BBU can be understood with reference to the description in S501 , which will not be repeated in this disclosure.
  • identity information of all antenna devices managed by the BBU may also be configured on the BBU.
  • the BBU may determine the aforementioned N1 antenna devices by matching the identity information of the N2 antenna devices with the identity information of all antenna devices managed by the BBU.
  • the first information is further used to instruct the radio frequency device to maintain connections with the N1 antenna devices.
  • the first information may include identity information of the N1 antenna devices.
  • the first information may include indication information for instructing the radio frequency device to maintain all connections with the antenna devices, for example, a set value (1 or 0) to represent. Through such a method, signaling overhead can be saved.
  • the implementation of the first information may be implemented with reference to the description in S501, which will not be repeated in this disclosure.
  • the radio frequency device maintains the connection between the radio frequency device and the first antenna device.
  • the first antenna device is included in the N1 antenna devices, and the number of the first antenna devices is N1.
  • the radio frequency device stores the link information corresponding to the currently connected N2 antenna devices, and the link information corresponding to the antenna devices can be understood by referring to the definition in S502, which will not be repeated in this disclosure.
  • the radio frequency device maintaining the connection between the radio frequency device and the first antenna device may specifically include: the radio frequency device retains the communication address of the first antenna device.
  • the radio frequency device can also scan the second antenna device.
  • the number of the second antenna device may be one or more. There is no limit to this publicly. Exemplarily, after performing S601 to S603, S604 to S606 may also be performed:
  • the BBU sends third information to the radio frequency device.
  • the third information is used to indicate the second antenna device; wherein, the second antenna device is not connected to the radio frequency device.
  • the third information may also be used to instruct the radio frequency device to scan the second antenna device.
  • the sending of the third information by the BBU to the radio frequency device may be implemented by referring to any one of the following two manners.
  • the BBU sends a fifth message to the radio frequency device, where the fifth message includes the identity information of the second antenna device.
  • the fifth message may include a field for indicating the identity information of the second antenna device.
  • the fifth message may include an array, the length of the array corresponds to the number of second antenna devices, and each element in the array is used to represent the identity of a second antenna device Information, different elements represent different identity information.
  • the fifth message may be implemented by using an interface message of the network configuration protocol NETCONF.
  • the BBU when there are multiple second antenna devices, the BBU sends multiple sixth messages to the radio frequency device, and each sixth message includes the identity information of one of the multiple second antenna devices , multiple sixth messages correspond to multiple second antenna devices one-to-one.
  • the sixth message may be implemented by using an interface message of NETCONF.
  • S605. Scan the second antenna device according to the third information.
  • the radio frequency device establishes a connection between the radio frequency device and the second antenna device.
  • the number of the third antenna devices may be one or more, and this disclosure does not discuss this limit.
  • the radio frequency device may disconnect the connection between the radio frequency device and the third antenna device. Exemplarily, after performing S601-S603, S607 may also be performed.
  • the radio frequency device disconnects the connection between the radio frequency device and the third antenna device.
  • the third antenna device is included in the N2 antenna devices currently connected to the radio frequency device, and the third antenna device is not included in the N1 antenna devices.
  • S604-S607 may be executed after S601-S603 is executed; or S604-S607 may be executed after S601-S603 is executed.
  • S604-S606 or S607 may be executed after S601-S603 is executed.
  • N2 antenna devices partially overlap with all the antenna devices managed by the BBU, and N1 refers to the aforementioned partially overlapping antenna devices, then S601-S607 are executed.
  • N1 is 4 and N2 is 6.
  • the radio frequency device determines that among the 6 (N2) antenna devices currently connected, there are 4 (N1) first antenna devices that remain connected; then there are 2 third antenna devices that the radio frequency device can disconnect; There are five antenna devices managed by the BBU, and the third information indicates one second antenna device, and the radio frequency device needs to scan one second antenna device according to the third information.
  • all antenna devices managed by the BBU are composed of N1 antenna devices and second antenna devices, and N2 antenna devices are composed of first antenna devices and third line devices.
  • the present disclosure does not limit the order of executing S604-S607, for example, execute S604-S606 first and then execute S607; or execute S607 first and then execute S604-S606; or execute S604 and S607 simultaneously, and then execute S605-S606.
  • N2 antenna devices correspond to some of the antenna devices managed by the BBU, and the N1 antenna devices are the same as the N2 antenna devices, then S601 to S606 are executed without executing S607.
  • N1 is 4 and N2 is 4.
  • the radio frequency device determines that there are 4 (N1) first antenna devices that remain connected among the currently connected 4 (N2) antenna devices; the radio frequency device does not need to disconnect from the antenna device; the BBU managed There are five antenna devices in total, and the third information indicates one second antenna device, and the radio frequency device needs to scan one second antenna device according to the third information.
  • all antenna devices managed by the BBU are composed of N1 antenna devices and second antenna devices, and the first antenna devices are all antenna devices in the N2 antenna devices.
  • the N2 antenna devices correspond to all antenna devices managed by the BBU, the N1 antenna devices refer to all the antenna devices managed by the BBU, and the N1 antenna devices correspond to some of the N2 antenna devices, then execute S601 ⁇ S603, and S607, without executing S604-S606.
  • N1 is 4 and N2 is 6.
  • the radio frequency device determines that among the 6 (N2) antenna devices currently connected, there are 4 (N1) first antenna devices that remain connected; there are 2 third antenna devices that the radio frequency device can disconnect; the BBU There is no need to instruct the radio frequency device to scan the second antenna device through the third information.
  • the N2 antenna devices are composed of the first antenna device and the third line device.
  • N2 antenna devices are all the antenna devices managed by the BBU, and the N1 antenna devices refer to all the antenna devices managed by the BBU, S601-S603 is executed instead of S604-S607.
  • N1 is 3 and N2 is 3.
  • the radio frequency device determines that there are 3 (N1) first antenna devices that remain connected among the currently connected 3 (N2) antenna devices according to the first information; the BBU does not need to instruct the radio frequency device to scan the second antenna device through the third information, and The radio frequency equipment does not need to be disconnected from the antenna equipment.
  • the N2 antenna devices, the N1 antenna devices and the first antenna device are all the same.
  • the radio frequency device notifies the BBU of the currently connected antenna device, so that the BBU implements corresponding link recovery measures according to the connection between the radio frequency device and the antenna device, such as maintaining connection, disconnecting or establishing One or more of the connections.
  • link recovery efficiency can be improved, so as to quickly restore the BBU's ability to manage the antenna device and ensure the operation of communication services.
  • a communication method is illustrated, and the method mainly includes the following steps.
  • the radio frequency device sends second information to the BBU.
  • the second information indicates N2 antenna devices currently connected to the radio frequency device, where N2 is a positive integer.
  • This step can be implemented by referring to S601, which will not be repeated in this disclosure.
  • the BBU sends first information to the radio frequency device.
  • the first information is used to indicate N1 antenna devices, and the N1 antenna devices refer to some or all of all antenna devices managed by the BBU.
  • this step can be implemented with reference to S501, which will not be repeated in this disclosure.
  • the radio frequency device maintains the connection between the radio frequency device and the first antenna device.
  • this step can be implemented with reference to S502, which will not be repeated in this disclosure.
  • the radio frequency device may also scan the second antenna device.
  • S701-S703, S704-S705 may also be executed:
  • the radio frequency device scans the second antenna device according to the first information.
  • This step can be implemented with reference to S503, which will not be repeated in this disclosure.
  • the radio frequency device establishes a connection between the radio frequency device and the second antenna device.
  • This step can be implemented with reference to S504, which will not be repeated in this disclosure.
  • the radio frequency device may disconnect the third antenna device from the radio frequency device.
  • S701-S703, S706 may also be performed.
  • the radio frequency device disconnects the connection between the radio frequency device and the third antenna device.
  • This step can be implemented with reference to S505, which will not be repeated in this disclosure.
  • S704-S706 may be executed after S701-S703 is executed.
  • S704-S706 may be executed after S701-S703 is executed.
  • the possible implementation of Solution 3 can be understood with reference to the possible implementation of Solution 1, which will not be repeated in this disclosure.
  • the present disclosure does not limit the order of executing S704-S706, for example, execute S704-S705 first and then execute S706; or execute S706 first and then execute S704-S705; or execute S704 and S706 at the same time, Then execute S705.
  • the BBU and the radio frequency device interact with the antenna device managed by the BBU and the antenna device currently connected to the radio frequency device. Both the BBU and the radio frequency device can determine the antenna device with a normal communication link, and can quickly restore the management of the antenna device by the BBU. ability to ensure the operation of communication services.
  • a communication method is illustrated, and the method mainly includes the following steps.
  • the radio frequency device sends second information to the BBU.
  • the second information indicates N2 antenna devices currently connected to the radio frequency device, where N2 is a positive integer.
  • This step can be implemented with reference to S601, which will not be repeated in this disclosure.
  • the BBU sends fourth information to the radio frequency device.
  • the fourth information is used to indicate to disconnect the connection between the radio frequency device and the third antenna device.
  • the third antenna device includes N2 antenna devices currently connected to the radio frequency device, and the third antenna device is not an antenna device managed by the BBU, or it is described as: the third antenna device is not the one that the BBU wants the radio frequency device to connect to antenna equipment. There may be one or more third antenna devices.
  • the fourth information may include identity information of the third antenna device.
  • identity information can be understood with reference to the description in S501, which will not be repeated in this disclosure.
  • the sending of the fourth information by the BBU to the radio frequency device may be implemented by referring to any one of the following two manners.
  • the BBU sends a seventh message to the radio frequency device, where the seventh message includes identity information of the third antenna device.
  • the seventh message may include a field used to indicate the identity information of the third antenna device.
  • the seventh message may include an array, the length of the array corresponds to the number of third antenna devices, and each element in the array is used to represent the identity of a third antenna device Information, different elements represent different identity information.
  • the seventh message may be implemented by using an interface message of the network configuration protocol NETCONF.
  • the BBU when there are multiple third antenna devices, the BBU sends multiple eighth messages to the radio frequency device, and each eighth message includes the identity information of one third antenna device among the multiple third antenna devices , the multiple eighth messages correspond one-to-one to the multiple third antenna devices.
  • the eighth message may be implemented by using an interface message of NETCONF.
  • the radio frequency device disconnects the connection between the radio frequency device and the third antenna device according to the fourth information.
  • the radio frequency device may store the identity information and link information of the currently connected antenna device.
  • the radio frequency device may determine the foregoing third antenna device among the antenna devices currently connected to the radio frequency device according to the identity information of the third antenna device included in the fourth information. Furthermore, the radio frequency device may disconnect the connection between the radio frequency device and the third antenna device by referring to the description in S505.
  • the radio frequency device may determine that the first antenna device is the antenna device that the BBU wants to connect to or that the first antenna device is included in the antenna devices managed by the BBU. Based on this, it can be understood that the fourth information is also used to implicitly indicate to keep the connection between the radio frequency device and the first antenna device. S803 as shown in FIG. 8: the radio frequency device maintains the connection with the first antenna device when disconnecting the connection with the third antenna device according to the fourth information.
  • the BBU can also instruct the radio frequency device to scan the second antenna device, and the number of the second antenna device may be one or more .
  • S801-S803, S804-S806 may also be executed:
  • the BBU sends third information to the radio frequency device.
  • the third information is used to indicate the second antenna device, and the second antenna device is not connected to the radio frequency device.
  • the second antenna device is not connected to the radio frequency device.
  • this step may be implemented with reference to the description in S603, which will not be repeated in this disclosure.
  • the radio frequency device establishes a connection between the radio frequency device and the second antenna device.
  • Case 1 If the N2 antenna devices include all antenna devices managed by the BBU, and the number of devices on the third day among the N2 antenna devices is less than all the antenna devices managed by the BBU, execute S801-S803 and not execute S804-S806. For example, N2 is 6, and all antenna devices managed by the BBU are 4 antenna devices among the N2 antenna devices.
  • the BBU can use the fourth information to instruct the radio frequency device that there are two third antenna devices disconnected; the BBU does not send the third information, and the radio frequency device does not need to scan the second antenna device.
  • N2 antenna devices include some antenna devices managed by the BBU, and the number of the third-day devices among the N2 antenna devices is less than the aforementioned part of the antenna devices managed by the BBU, execute S801-S806.
  • N2 is 6, and there are 6 antenna devices managed by the BBU, and the N2 antenna devices include 4 antenna devices managed by the BBU; there are 2 third antenna devices that the BBU instructs the radio frequency device to disconnect through the fourth information; the BBU The radio frequency device is instructed to scan the two second antenna devices through the third information.
  • the BBU instructs to disconnect some antenna devices connected to the radio frequency device, while maintaining the connection between other antenna devices managed by the BBU.
  • the link recovery efficiency can be improved, so as to quickly restore the BBU's ability to manage the antenna device and ensure the operation of communication services.
  • This solution can be applied to the following scenarios to reduce signaling overhead: Among the antenna devices currently connected to the radio frequency device, the number of antenna devices managed by the BBU exceeds the number of antenna devices not managed by the BBU.
  • the more antenna devices the radio frequency device is currently connected to the more antenna devices the BBU wants to connect among the antenna devices currently connected to the radio frequency device, and the more communication links that can be directly connected , the link recovery speed will not be affected by the increase in the number of antenna devices.
  • the more antenna devices the radio frequency device is currently connected to and/or the more antenna devices the BBU wants to connect to the more Opening the link and rescanning to establish the communication link will be slower.
  • Table 1 below, taking the antenna device currently connected to the radio frequency device as the antenna device that the BBU wants to connect to as an example, and illustrates the comparison between schemes 1 to 4 and the link recovery speed of related technologies.
  • the schemes 1 to 4 provided by the present disclosure can improve the efficiency of link restoration.
  • the BBU and the radio frequency device may include a hardware structure and/or a software module, and realize the above functions in the form of a hardware structure, a software module, or a hardware structure plus a software module. Whether one of the above-mentioned functions is executed in the form of a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraints of the technical solution.
  • the present disclosure provides a communication device 900 , where the communication device 900 includes a processing module 901 and a communication module 902 .
  • the communication device 900 may be a radio frequency device, or it may be a communication device that is applied to a radio frequency device or matched with a radio frequency device, and can implement a communication method performed on the radio frequency device side; or, the communication device 900 may be a BBU, or an application A communication device capable of implementing a communication method performed on the BBU side in or matched with a BBU; or, the communication device 900 may be an antenna device (such as a first antenna device, a second antenna device, or a third antenna device), or It is a communication device that is applied to the antenna device or matched with the antenna device, and can realize the communication method performed by the antenna device side.
  • the communication module may also be referred to as a transceiver module, a transceiver, a transceiver, or a transceiver device and the like.
  • a processing module may also be called a processor, a processing board, a processing unit, or a processing device.
  • the communication module is used to perform the sending and receiving operations on the radio frequency device side, the BBU side, or the antenna device side in the above method.
  • the device used to implement the receiving function in the communication module can be regarded as a receiving unit, and the The device used to realize the sending function is regarded as a sending unit, that is, the communication module includes a receiving unit and a sending unit.
  • the processing module 901 can be used to realize the processing function of the radio frequency equipment described in the embodiment shown in FIG. 5 to FIG.
  • the transceiver function of the radio frequency device can also be understood with reference to the third aspect in the summary of the invention and possible designs in the third aspect.
  • the processing module 901 can be used to realize the processing functions of the BBU described in the embodiments shown in Figures 5 to 8, and the communication module 902 can be used to realize the The transceiver function of the BBU.
  • the communication device can also be understood with reference to the fourth aspect in the summary of the invention and possible designs in the fourth aspect.
  • the processing module 901 can be used to realize the processing function of the related antenna device in the embodiment shown in Fig. 5 to Fig. 8 , and the communication module 902 can be used to realize the related The transceiver function of the antenna device.
  • the aforementioned communication module and/or processing module may be realized by a virtual module, for example, the processing module may be realized by a software function unit or a virtual device, and the communication module may be realized by a software function or a virtual device.
  • the processing module or the communication module may also be implemented by a physical device, for example, if the device is implemented by a chip/chip circuit, the communication module may be an input and output circuit and/or a communication interface, and perform an input operation (corresponding to the aforementioned receiving operation), Output operation (corresponding to the aforementioned sending operation); the processing module is an integrated processor or a microprocessor or an integrated circuit.
  • each functional module in each embodiment of this disclosure can be integrated into a processor , can also be a separate physical existence, or two or more modules can be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or in the form of software function modules.
  • the present disclosure also provides a communication device 1000 .
  • the communication device 1000 may be a chip or a chip system.
  • the system-on-a-chip may be constituted by chips, and may also include chips and other discrete devices.
  • the communication device 1000 may be used to realize the function of any network element in the communication system shown in FIG. 1 or FIG. 2 .
  • the communication device 1000 may include at least one processor 1010, and the processor 1010 is coupled to a memory.
  • the memory may be located within the device, the memory may be integrated with the processor, or the memory may be located outside the device.
  • the communication device 1000 may further include at least one memory 1020 .
  • the memory 1020 stores necessary computer programs, computer programs or instructions and/or data for implementing any of the above embodiments; the processor 1010 may execute the computer programs stored in the memory 1020 to complete the method in any of the above embodiments.
  • the communication apparatus 1000 may further include a communication interface 1030, and the communication apparatus 1000 may perform information exchange with other devices through the communication interface 1030.
  • the communication interface 1030 may be a transceiver, a circuit, a bus, a module, a pin or other types of communication interfaces.
  • the communication interface 1030 in the communication device 1000 can also be an input and output circuit, which can input information (or call it, receive information) and output information (or call it, send information)
  • the processor is an integrated processor or a microprocessor or an integrated circuit or a logic circuit, and the processor can determine output information according to input information.
  • the coupling in the present disclosure is an indirect coupling or communication connection between devices, units or modules, which may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • the processor 1010 may cooperate with the memory 1020 and the communication interface 1030 .
  • the specific connection medium among the processor 1010, the memory 1020, and the communication interface 1030 is not limited in the present disclosure.
  • the bus 1040 may be a peripheral component interconnect standard (peripheral component interconnect, PCI) bus or an extended industry standard architecture (extended industry standard architecture, EISA) bus or the like.
  • PCI peripheral component interconnect
  • EISA extended industry standard architecture
  • the bus can be divided into address bus, data bus, control bus and so on. For ease of representation, only one thick line is used in FIG. 10 , but it does not mean that there is only one bus or one type of bus.
  • a processor may be a general-purpose processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component, and may implement or execute the present invention.
  • a general purpose processor may be a microprocessor or any conventional processor or the like. The steps of the method disclosed in conjunction with the present disclosure may be directly implemented by a hardware processor, or implemented by a combination of hardware and software modules in the processor.
  • the memory may be a non-volatile memory, such as a hard disk (hard disk drive, HDD) or a solid-state drive (solid-state drive, SSD), etc., or a volatile memory (volatile memory), such as random memory Access memory (random-access memory, RAM).
  • a memory is, but is not limited to, any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer.
  • the memory in the present disclosure may also be a circuit or any other device capable of implementing a storage function for storing program instructions and/or data.
  • the communication device 1000 may be applied to a BBU, and the specific communication device 1000 may be a BBU, or may be a device capable of supporting the BBU and realizing the functions of the BBU in any of the above-mentioned embodiments.
  • the memory 1020 stores computer programs (or instructions) and/or data for implementing the functions of the BBU in any of the above embodiments.
  • the processor 1010 may execute the computer program stored in the memory 1020 to complete the method executed by the BBU in any of the foregoing embodiments.
  • the communication interface in the communication apparatus 1000 can be used to interact with the radio frequency device, send information to the radio frequency device or receive information from the radio frequency device.
  • the communication device 1000 can be applied to radio frequency equipment, and the specific communication device 1000 can be a radio frequency device, or can support a radio frequency device, and realize the functions of the radio frequency device in any of the above-mentioned embodiments. installation.
  • the memory 1020 stores computer programs (or instructions) and/or data for realizing the functions of the radio frequency device in any of the foregoing embodiments.
  • the processor 1010 may execute the computer program stored in the memory 1020 to complete the method performed by the radio frequency device in any of the foregoing embodiments.
  • the communication interface in the communication apparatus 1000 can be used to interact with the BBU, send information to the BBU or receive information from the BBU.
  • the communication device 1000 can be applied to an antenna device.
  • the communication device 1000 can be an antenna device, or can support the antenna device, and realize the functions of the antenna device in any of the above-mentioned embodiments. installation.
  • the memory 1020 stores computer programs (or instructions) and/or data for realizing the functions of the antenna device in any of the foregoing embodiments.
  • the processor 1010 may execute the computer program stored in the memory 1020 to complete the method performed by the antenna device in any of the foregoing embodiments.
  • the communication interface in the communication apparatus 1000 can be used to interact with the radio frequency device, send information to the radio frequency device or receive information from the radio frequency device.
  • the communication device 1000 provided in this embodiment can be applied to a BBU to complete the method executed by the above BBU, or applied to a radio frequency device to complete the method executed by the radio frequency device, or applied to an antenna device to complete the method executed by the antenna device. Therefore, the technical effect that it can obtain can refer to the above method examples, and will not be repeated here.
  • the present disclosure provides a communication system, including a BBU and a radio frequency device, wherein the BBU and the radio frequency device can implement the communication methods provided in the embodiments shown in FIGS. 5 to 8 .
  • the communication system may further include an antenna device.
  • the technical solution provided by the present disclosure may be fully or partially realized by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, the processes or functions according to the present disclosure will be generated in whole or in part.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, a radio frequency device, a BBU, an antenna device or other programmable devices.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server or data center Transmission to another website site, computer, server or data center by wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, or a magnetic tape), an optical medium (for example, a digital video disc (digital video disc, DVD)), or a semiconductor medium.
  • the various embodiments can refer to each other, for example, the methods and/or terms between the method embodiments can refer to each other, such as the functions and/or terms between the device embodiments
  • Mutual references can be made, for example, functions and/or terms between the apparatus embodiment and the method embodiment can be referred to each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Transceivers (AREA)

Abstract

本公开提供一种通信方法及装置,能够提升恢复链路的效率。该方法包括:从基带单元BBU获取第一信息,第一信息用于指示N1个天线设备,天线设备用于控制天线;其中,N1为正整数;保持射频设备与第一天线设备之间的连接;其中,第一天线设备包含于N1个天线设备。

Description

一种通信方法及装置
本申请要求于2021年12月30日提交中国专利局、申请号为202111657575.7、申请名称为“一种通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
在通信网络中,基带单元(base band unit,BBU)通过射频远端处理单元(remote radio unit,RRU)可以控制天线设备,对天线系统进行如放大射频信号,或者调节天线系统的下倾角等处理。如何利用BBU实现对RRU的高效控制是一个值得研究的技术问题。
发明内容
本公开提供一种通信方法及装置,以期提升链路恢复的效率。
第一方面,本公开提供一种通信方法,该方法可以应用于射频设备,该方法包括:从基带单元BBU获取第一信息,所述第一信息用于指示N1个天线设备,所述天线设备用于控制天线;其中,N1为正整数;保持射频设备与第一天线设备之间的连接;其中,所述第一天线设备包含于所述N1个天线设备。
在射频设备当前连接的天线设备中,保持与BBU指示的第一天线设备之间的连接。避免重建立链路的流程,能够提升链路恢复的效率,便于BBU直接恢复第一天线设备的管理能力。
在一种可能的设计中,向所述BBU发送第二信息,所述第二信息指示所述射频设备当前连接的N2个天线设备,N2为正整数。通过这样的设计,可以使BBU了解射频设备当前连接的天线设备,有利于BBU快速恢复对于天线设备的管理能力。
在一种可能的设计中,所述N1个天线设备包括所述射频设备当前连接的天线设备中的至少一个天线设备。
在一种可能的设计中,还包括:根据所述第一信息,扫描第二天线设备;其中,所述第二天线设备包含于所述N1个天线设备,所述第二天线设备未与所述射频设备连接;建立所述射频设备与所述第二天线设备之间的连接。通过这样的设计,射频设备无需对BBU指示的N1个天线设备均进行扫描,可以减少射频设备扫描的天线设备,提升链路恢复的效率。
在一种可能的设计中,所述N1个天线设备包含于所述N2个天线设备。所述方法还包括:从所述BBU获取第三信息,所述第三信息用于指示第二天线设备;其中,所述第二天线设备未与所述射频设备连接;根据所述第三信息,扫描所述第二天线设备;建立所述射频设备与所述第二天线设备之间的连接。通过这样的设计,射频设备只对BBU指示的第二天线设备进行扫描,而无需对BBU指示的N1个天线设备均进行扫描,可以减少射频设备扫描的天线设备,提升链路恢复的效率。
在一种可能的设计中,所述方法还包括:断开所述射频设备与第三天线设备之间的连接,所述第三天线设备包含于所述射频设备当前连接的天线设备,且所述第三天线设备不包含于所述N1个天线设备。通过这样的设计,避免第三天线设备无法响应需要连接该第三天线设备的其他射频设备的扫描,可以保证其他通信链路的正常建立。
第二方面,本公开提供一种通信方法,该方法可以应用于BBU,该方法包括:确定N1个天线设备,所述天线设备用于控制天线;其中,N1为正整数;发送第一信息,所述第一信息用于指示N1个天线设备,所述第一信息用于指示射频设备保持与第一天线设备之间的连接;其中,所述第一天线设备包含于所述N1个天线设备。
在一种可能的设计中,还包括:获取第二信息,所述第二信息指示射频设备当前连接的N2个天线设备,N2为正整数。
在一种可能的设计中,所述N1个天线设备包括所述射频设备当前连接的天线设备中的至少一个天线设备。
在一种可能的设计中,所述N1个天线设备包括第二天线设备,且所述第二天线设备未与所述射频设备连接;所述第一信息还用于指示所述射频设备建立与所述第二天线设备之间的连接。
在一种可能的设计中,所述N1个天线设备包含于所述N2个天线设备。所述方法还包括:发送第三信息,所述第三信息用于指示第二天线设备;其中,所述第二天线设备未与所述射频设备连接。
在一种可能的设计中,还包括:发送第四信息,所述第四信息用于指示所述射频设备断开与第三天线设备之间的连接;其中,第三设备包含于所述射频设备当前连接的天线设备,且所述第三设备不包含于所述N1个天线设备。
第三方面,本公开提供一种通信装置,该通信装置可以是射频设备,也可以是射频设备中的装置,或者是能够和射频设备匹配使用的装置。一种设计中,该通信装置可以包括执行第一方面中所描述的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种设计中,该通信装置可以包括处理模块和通信模块。
一种示例:通信模块,用于从基带单元BBU获取第一信息,所述第一信息用于指示N1个天线设备,所述天线设备用于控制天线;其中,N1为正整数;处理模块,用于保持射频设备与第一天线设备之间的连接;其中,所述第一天线设备包含于所述N1个天线设备。
在一种可能的设计中,通信模型,还用于向所述BBU发送第二信息,所述第二信息指示所述射频设备当前连接的N2个天线设备,N2为正整数。
在一种可能的设计中,所述N1个天线设备包括所述射频设备当前连接的天线设备中的至少一个天线设备。
在一种可能的设计中,处理模块,还用于根据所述第一信息,扫描第二天线设备;其中,所述第二天线设备包含于所述N1个天线设备,所述第二天线设备未与所述射频设备连接;通过通信模块建立所述射频设备与所述第二天线设备之间的连接。
在一种可能的设计中,所述N1个天线设备包含于所述N2个天线设备。通信模块,还用于从所述BBU获取第三信息,所述第三信息用于指示第二天线设备;其中,所述第二天线设备未与所述射频设备连接;处理模块,还用于根据所述第三信息,扫描所述第二天线设备;通过通信模块建立所述射频设备与所述第二天线设备之间的连接。
在一种可能的设计中,处理模块,还用于断开所述射频设备与第三天线设备之间的连接,所述第三天线设备包含于所述射频设备当前连接的天线设备,且所述第三天线设备不包含于所述N1个天线设备。
第四方面,本公开提供一种通信装置,该通信装置可以是BBU,也可以是BBU中的装置,或者是能够和BBU匹配使用的装置。一种设计中,该通信装置可以包括执行第二方面中所描述的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种设计中,该通信装置可以包括处理模块和通信模块。
一种示例:处理模块,用于确定N1个天线设备,所述天线设备用于控制天线;其中,N1为正整数;通信模块,用于发送第一信息,所述第一信息用于指示N1个天线设备,所述第一信息用于指示射频设备保持与第一天线设备之间的连接;其中,所述第一天线设备包含于所述N1个天线设备。
在一种可能的设计中,通信模块,还用于获取第二信息,所述第二信息指示射频设备当前连接的N2个天线设备,N2为正整数。
在一种可能的设计中,所述N1个天线设备包括所述射频设备当前连接的天线设备中的至少一个天线设备。
在一种可能的设计中,所述N1个天线设备包括第二天线设备,且所述第二天线设备未与所述射频设备连接;所述第一信息还用于指示所述射频设备建立与所述第二天线设备之间的连接。
在一种可能的设计中,所述N1个天线设备包含于所述N2个天线设备。所述通信模块,还用于发送第三信息,所述第三信息用于指示第二天线设备;其中,所述第二天线设备未与所述射频设备连接。
在一种可能的设计中,所述通信模块,还用于发送第四信息,所述第四信息用于指示所述射频设备断开与第三天线设备之间的连接;其中,第三设备包含于所述射频设备当前连接的天线设备,且所述第三设备不包含于所述N1个天线设备。
第五方面,本公开提供一种通信装置,所述通信装置包括处理器,用于实现上述第一方面所描述的方法。处理器与存储器耦合,存储器用于存储指令和数据,所述处理器执行所述存储器中存储的指令时,可以实现上述第一方面描述的方法。可选的,所述通信装置还可以包括存储器;所述通信装置还可以包括通信接口,所述通信接口用于该装置与其它设备进行通信,示例性的, 通信接口可以是收发器、电路、总线、模块、管脚或其它类型的通信接口。
在一种可能的设备中,该通信装置包括:
存储器,用于存储程序指令;
处理器,用于利用通信接口从基带单元BBU获取第一信息,所述第一信息用于指示N1个天线设备,所述天线设备用于控制天线;其中,N1为正整数;
处理器,还用于保持射频设备与第一天线设备之间的连接;其中,所述第一天线设备包含于所述N1个天线设备。
第六方面,本公开提供一种通信装置,所述通信装置包括处理器,用于实现上述第二方面所描述的方法。处理器与存储器耦合,存储器用于存储指令和数据,所述处理器执行所述存储器中存储的指令时,可以实现上述第二方面描述的方法。可选的,所述通信装置还可以包括存储器;所述通信装置还可以包括通信接口,所述通信接口用于该装置与其它设备进行通信,示例性的,通信接口可以是收发器、电路、总线、模块、管脚或其它类型的通信接口。
在一种可能的设备中,该通信装置包括:
存储器,用于存储程序指令;
处理器,用于确定N1个天线设备,所述天线设备用于控制天线;其中,N1为正整数;
处理器,还用于利用通信接口用于发送第一信息,所述第一信息用于指示N1个天线设备,所述第一信息用于指示射频设备保持与第一天线设备之间的连接;其中,所述第一天线设备包含于所述N1个天线设备。
第七方面,本公开提供了一种通信系统,包括如第三方面或第五方面中所描述的通信装置;以及,如第四方面或第六方面中所描述的通信装置。
第八方面,本公开还提供了一种计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行上述第一方面或第二方面提供的方法。
第九方面,本公开还提供了一种计算机程序产品,包括指令,当所述指令在计算机上运行时,使得计算机执行上述第一方面或第二方面提供的方法。
第十方面,本公开还提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机程序或指令,当所述计算机程序或者指令在计算机上运行时,使得所述计算机执行上述第一方面或第二方面中提供的方法。
第十一方面,本公开还提供了一种芯片,所述芯片用于读取存储器中存储的计算机程序,执行上述第一方面或第二方面中提供的方法。
第十二方面,本公开还提供了一种芯片系统,该芯片系统包括处理器,用于支持计算机装置实现上述第一方面或第二方面中提供的方法。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器用于保存该计算机装置必要的程序和数据。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
附图说明
图1为一种通信系统的结构示意图;
图2为另一种通信系统的结构示意图;
图3为一种电调天线的结构示意图;
图4为一种恢复通信链路的流程;
图5~图8为本公开提供的几种通信方法的流程示意图;
图9和图10为本公开提供的通信装置的结构示意图。
具体实施方式
为了使本公开的目的、技术方案和优点更加清楚,下面将结合附图对本公开作进一步地详细描述。
本公开如下涉及的至少一个,指示一个或多个。多个,是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。另外,应当理解,尽管在本公开中可能采用术语第一、第二等来描述各对象、但这些对象不应限于这些术语。这些术语仅用来将各对象彼此区分开。
本公开如下描述中所提到的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出 的步骤或单元,而是可选地还包括其他没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。需要说明的是,本公开中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本公开中被描述为“示例性的”或者“例如”的任何方法或设计方案不应被解释为比其它方法或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
本公开提供的技术可以应用于各种通信系统,例如,该通信系统可以是第三代(3th generation,3G)通信系统(例如通用移动通信系统(universal mobile telecommunication system,UMTS))、第四代(4th generation,4G)通信系统(例如长期演进(long term evolution,LTE)系统)、第五代(5th generation,5G)通信系统、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)或者无线局域网(wireless local area network,WLAN)系统、或者多种系统的融合系统,或者是未来的通信系统,例如第六代(6th generation,6G)通信系统等。其中,5G通信系统还可以称为新无线(new radio,NR)系统。
通信系统中的一个网元可以向另一个网元发送信号或从另一个网元接收信号。其中信号可以包括信息或者数据等;网元也可以被称为实体、网络实体、设备、通信设备、通信模块、节点、通信节点等等,本公开中以网元为例进行描述。例如,通信系统可以包括至少一个终端设备和至少一个接入网设备。其中,信号的发送网元可以为接入网设备,信号的接收网元可以为终端设备;或者,信号的发送网元可以为终端设备,信号的接收网元可以为接入网设备。此外可以理解的是,若通信系统中包括多个终端设备,多个终端设备之间也可以互发信号,即信号的发送网元和信号的接收网元均可以是终端设备。
参见图1示意一种通信系统100,作为示例,该通信系统100包括接入网设备110以及两个终端设备,即终端设备120和终端设备130。终端设备120和终端设备130中的至少一个可以发送上行数据给接入网设备110,接入网设备110可以接收该上行数据。接入网设备可以向终端设备120和终端设备130中的至少一个发送下行数据。
下面对图1所涉及的终端设备和接入网设备进行详细说明。
(1)终端设备
终端设备又称之为终端、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等,是一种向用户提供语音和/或数据连通性的设备。终端设备可通过接入网设备与一个或多个核心网设备进行通信。终端设备包括具有无线连接功能的手持式设备、连接到无线调制解调器的其他处理设备或车载设备等。终端设备可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置。一些终端设备的举例为:个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、无线网络摄像头、手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备如智能手表、虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、车联网系统中的终端、无人驾驶(self driving)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端如智能加油器,高铁上的终端设备以及智慧家庭(smart home)中的无线终端,如智能音响、智能咖啡机、智能打印机等。
本公开中,用于实现终端设备功能的通信装置可以是终端设备,也可以是具有终端部分功能的终端设备,也可以是能够支持终端设备实现该功能的装置,例如芯片系统,该装置可以被安装在终端设备中。本公开中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。本公开提供的技术方案中,以用于实现终端设备功能的通信装置是终端设备或UE为例进行描述。
(2)接入网设备
接入网设备可以为基站(base station,BS),接入网设备还可以称为网络设备、接入节点(access node,AN)、无线接入节点(radio access node,RAN)。接入网设备可以与核心网(如LTE的核心网或者5G的核心网等)连接,接入网设备可以为终端设备提供无线接入服务。一些接入网设备的举例包括但不限于以下至少一个:5G中的下一代节点B(generation nodeB,gNB)、开放无线接入网(open radio access network,O-RAN)中的接入网设备、演进型节点B(evolved node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved nodeB,或home node B,HNB)、收发点(transmitting and receiving point,TRP)、 发射点(transmitting point,TP)、和/或移动交换中心等;或者,接入网设备可以为中继站、接入点、车载设备、可穿戴设备或者未来演进的公共陆地移动网络(public land mobile network,PLMN)中的接入网设备等。
接入网设备可以包括基带单元(base band unit,BBU)和射频设备(或称射频单元)。接入网设备在向终端设备发送信息时,由BBU生成表征该信息的基带信号,并将基带信号发送至射频设备。射频设备对基带信号进行中射频处理后得到射频信号,并将射频信号发送至天线系统,经由天线系统发送至终端设备。其中,基带信号指的是发送端如前述接入网设备发出的没有经过调制(如频谱迁移和变换)的原始电信号;根据原始电信号的特征,基带信号可以分为数字基带信号和模拟基带信号。射频设备可以为射频远端处理单元(remote radio unit,RRU)、有源天线处理单元(active antenna unit,AAU)或者其他具备射频处理功能的单元、模块或设备等。天线系统可以包括发射天线和接收天线。
以接入网设备为例,接入网设备可以包括集中式单元(central unit,CU)、分布式单元(distributed unit,DU)和无线单元(radio unit,RU)。其中,DU部署在接入网设备的BBU上,具备处理基带信号的功能;RU部署在接入网设备的射频设备上,具备射频功能。多个DU可以由一个CU集中控制,可选的,CU可以与DU一起部署在BBU上,也可以设计CU与DU分离,如CU部署在BBU之外的其他地方。可选的,CU又可以包括集中单元控制面(CU control plane,CU-CP)、或集中单元用户面(CU user plane,CU-UP)。可选的,上述DU、CU、CU-CP、CU-UP和RU中的任一个可以是软件模块、硬件结构、或者软件模块+硬件结构,不予限制。其中,不同实体的存在形式可以是不同的,不予限制。例如DU、CU、CU-CP、CU-UP是软件模块,RU是硬件结构。这些模块及其执行的方法也在本公开的保护范围内。
可选的,可以通过通用设备,例如通用计算机或服务器等实现本申请中BBU的功能。换句话说,本申请中描述的BBU可以被替换为其他可能的设备,该设备可以实现本申请中BBU的功能。
一个接入网设备的BBU和射频设备可以集成在一个机房中,射频设备通过馈线和天线系统相连;或者,BBU和射频设备可以分离,如BBU安装于机房,而射频设备和天线系统布置在基站塔上,BBU和射频设备之间通过光纤(optical cable)连接。射频设备与天线系统之间通过跳线(jumper)连接,BBU和射频设备分离的接入网设备还可以被描述为分布式接入网设备或者分布式基站。一个BBU可以支持连接多个射频设备,一个接入网设备可以包括一个BBU和一个或多个射频设备。不同的BBU连接的射频设备可以是相同的。此外,包括于不同接入网设备的BBU和/或射频设备可以是相同的,即可以理解多个接入网设备可以共用一个BBU,多个接入网设备可以共用一个或多个射频设备。具体地,BBU和射频设备之间可以按照通用公共无线接口(common public radio interface,CPRI)协议或者增强CPRI(enhanced CPRI,eCPRI)协议通信。BBU1和RRU1之间建立的通信链路可以描述为CPRI链路或者eCPRI链路。
本公开中,用于实现BBU功能的通信装置可以是BBU,也可以是具有BBU部分功能的设备,也可以是能够支持BBU实现该功能的装置,例如芯片系统,硬件电路、软件模块、或硬件电路加软件模块,该装置可以被安装在BBU中。本公开的方法中,以用于实现BBU功能的通信装置是BBU为例进行描述。
本公开中,用于实现射频设备功能的通信装置可以是射频设备,也可以是具有射频设备部分功能的设备,也可以是能够支持射频设备实现该功能的装置,例如芯片系统,硬件电路、软件模块、或硬件电路加软件模块,该装置可以被安装在射频设备中。本公开的方法中,以用于实现射频设备功能的通信装置是射频设备为例进行描述。
应理解,图1所示的通信系统中各个设备的数量、类型仅作为示意,本公开并不限于此,实际应用中在通信系统中还可以包括更多的终端设备、更多的接入网设备,还可以包括其它网元,例如可以包括网管和/或核心网设备。其中,网管可以根据运营商网络运营的实际需要,将网络的管理工作划分为3类:操作(Operation)、管理(Administration)、维护(Maintenance)。网管又可以称为操作维护管理(operation administration and maintenance,OAM)网元,简称OAM。操作主要完成日常网络和业务进行的分析、预测、规划和配置工作;维护主要是对网络及其业务的测试和故障管理等进行的日常操作活动,网管可以检测网络运行状态、优化网络连接和性能,提升网络运行稳定性,降低网络维护成本。
本公开提供的方法可以用于接入网设备和终端设备之间的通信,也可以用于其他通信设备之间的通信,例如无线回传链路中宏基站和微基站之间的通信,又如边链路(sidelink,SL)中两个终端设备之间的通信等,不予限制。
本公开涉及电调天线技术,在射频设备和天线系统之间引入天线设备(antenna line device, ALD),BBU可以通过射频设备向天线设备发送控制指令,天线设备可根据前述控制指令对天线系统进行控制。例如,天线设备可以对天线系统进行如下至少一项操作:放大射频信号、或调节天线系统的下倾角等。调节天线系统的下倾角可以改变天线的覆盖范围。天线的覆盖是通过垂直面主波束来实现的,下倾角的调节可以改变主波束的覆盖范围。天线设备可以包括但不限于如下的一种或多种:远端电调倾角(remote electrical tilting,RET)单元、塔顶放大器(tower mounted amplifier,TMA),或天线传感器等。在电调天线技术中,天线设备可以利用电子下倾对天线系统的下倾角进行调节,电子下倾指的是给定天线物理位置的情况下,通过改变天线振子倾斜角度改变主波束覆盖范围。
射频设备与天线设备之间可以按照天线接口标准组织(antenna interface standards group,AISG)协议进行通信。如图2示意一种通信系统架构,以射频设备为RRU为例,该通信系统包括BBU1、BBU2、RRU1、RRU2以及ALD。BBU1和BBU2均支持与RRU1连接,BBU2还支持与RRU2连接。RRU1和RRU2均支持与ALD通过AISG协议通信。其中,以BBU1支持与RRU1连接为例,还可以描述为BBU1具备与RRU1通信的能力,或者BBU1和RRU1之间可以建立通信链路。其中,通信链路也可以简称为链路。以RRU1支持与ALD通过AISG协议通信为例,还可以描述为RRU1和ALD之间可以建立AISG链路。具体地,AISG协议栈可以包括物理层,数据链路层以及应用层。在物理层中采用RS485串口协议,数据链路层采用高级数据链路控制(high-level data link control,HDLC)协议。射频设备与天线设备可以连接在串口总线上实现通信,射频设备与天线设备之间建立的AISG链路还可以描述为HDLC链路。
以天线设备包括RET单元为例,RET单元可以包括有源部分。该有源部分指的是可以进行软件通讯的部分。该有源部分可以称为远程控制单元(remote control unit,RCU)。RCU与天线系统连接,RCU与天线系统组成电调天线。可选的,电调天线还可以包括其他单元或模块,不予限制。可选的,RCU包括外置RCU和/或内置RCU,内置RCU集成在天线系统上,和天线系统共用一个外罩;外置RCU处于天线系统的面罩外部,与天线系统上相应的电调接口连接。
对于电调天线,天线系统内部可以使用可机械调节的移相器。BBU可以向射频设备发送控制指令,射频设备通过RET接口控制RCU改变天线系统内部移相器的相位,从而改变天线阵列中部分或全部振子(或称辐射单元)所获得的功率信号的相位,实现垂直面主波束的下倾。具体地,RCU可以包括驱动马达、控制电路与机械传动机构。其中,控制电路可以与RET单元通信,输入射频设备的控制指令对应的信号,输出用于控制驱动马达的信号,驱动马达基于控制电路输出的信号转动时,可以控制机械传动机构改变天线系统内移相器的相位。
具体地,RET单元可以部署在射频设备上,作为射频设备的RET接口。RCU可以通过AISG控制线连接到射频设备的RET接口。以射频设备为RRU举例,如图3示意一种电调天线结构示意图。BBU与RRU之间通过光纤连接,RRU和天线系统部署在基站塔上,RRU与天线系统之间通过跳线(jumper)连接。具体地,RRU上部署用于连接天线系统的天线硬件接口(antenna hardware interface,ANT),该天线硬件接口与天线系统之间通过跳线连接。作为示例,图3示意出RRU上的ANT包括发送(transport,TX)/接收(receive,RX)端口A,以及RX端口B。RRU上布置RET接口(或称RET单元),天线系统上连接有外置RCU,RET接口与RCU之间通过AISG控制线连接。
可选的,BBU和RRU之间的通信链路存在不稳定的情况,当BBU和RRU之间中断连接并恢复后,BBU通知RRU断开与全部天线设备之间的连接(或者描述为BBU通知RRU清除其当前连接的全部天线设备),并重新扫描天线设备以及建立RRU和RRU扫描到的天线设备之间的通信链路。如图4示意一种恢复通信链路的流程,该流程包括如下步骤。
S401,BBU和RRU之间建立通信链路。
具体地,该步骤中BBU和RRU之间的通信链路,是在中断后恢复建立的。
S402,BBU指示RRU断开该RUU与当前连接的全部ALD之间的通信链路。
例如,图4在S402中示意BBU通知RRU删除该RRU当前连接的全部ALD的地址,RRU删除前述全部ALD的地址。ALD的地址还可以描述为ALD的通讯地址,可以由RRU分配。
S403,BBU指示RRU广播复位ALD的相关信息,RRU广播复位ALD的相关信息。
其中,广播复位ALD的相关信息可以使得ALD设备得知历史分配的通讯地址已清除。便于ALD未被分配通讯地址的情况下,对相关扫描设备如S404中的RRU进行响应。
S404,BBU向RRU发送扫描请求信息,该扫描请求信息用于指示RRU扫描ALD;RRU根据该扫描请求信息扫描ALD。
S405,RRU将扫描得到的ALD的设备信息发送给BBU。
S406,BBU将RRU扫描得到的ALD的设备信息和BBU管理的ALD的设备信息进行匹配,确定RRU需要连接的目标ALD;其中,目标ALD包含于BBU管理的ALD,且目标ALD包含于RRU扫描到的ALD。
S407,BBU指示RRU与目标ALD建立通信链路,RRU为目标ALD分配对应的地址。
作为示例,图4中的ALD对应该步骤中的目标ALD。
S408,BBU向RRU发送管理消息,该管理消息用于指示ALD对天线系统进行运维操作,例如运维操作可以包括放大射频信号或者调节天线系统的下倾角等业务操作,或者可以包括如软件升级、告警上报等用于维护设备的操作;RRU向目标ALD的地址转发该管理消息。
S409,RRU从目标ALD的地址获取运维操作对应的操作结果信息,并将操作结果信息发送给BBU。
在大量天线设备与RRU连接的情况下,断开链路重新扫描再建立链路的方式,效率低下,容易干扰通信业务的运行。
基于此,本公开提供一种通信方法,能够提升恢复链路的效率。在本公开中,BBU和射频设备之间的链路中断后恢复时,可以指示射频设备在当前连接的天线设备中,保持射频设备与BBU希望连接的天线设备之间的连接。
下面结合方案一至方案四对本公开提供的通信方法进行详细说明。在这些方法中,所包括的步骤或操作仅是示例,本公开还可以执行其它操作或者各种操作的变形。此外,各个步骤可以按照本公开呈现的不同的顺序来执行,并且有可能并非要执行全部操作。
方案一
参见图5示意一种通信方法,该方法主要包括如下步骤:
S501,BBU向射频设备发送第一信息。
所述第一信息用于指示N1个天线设备,所述天线设备用于控制天线;其中,N1为正整数。该N1个天线设备可以指的是BBU希望RRU连接的天线设备。例如,该N1个天线设备为该BBU管理(或称维护)的天线设备,BBU管理的全部天线设备的数量可以为N1个。BBU管理的天线设备可以是预先配置的,例如BBU的运营商为BBU配置该BBU管理的天线设备。
可选的,BBU上还可以配置该BBU管理的天线设备的身份信息。一个天线设备的身份信息用于标识该天线设备,例如可以包括天线设备的生产厂家编码和天线设备的设备序列号。可选的,第一信息中可以包括N1个天线设备的身份信息。
可选的,BBU可以在BBU与射频设备之间的通信链路中断并恢复后,向射频设备发送第一信息。其中,射频设备可以为RRU或者AAU,天线设备为ALD。
具体地,BBU向射频设备发送第一信息可以参照如下两种方式中的任意一种实现。
一种方式中:BBU向射频设备发送第一消息,第一消息包括N1个天线设备中每个天线设备的身份信息,例如第一消息可以包括一个数组,该数组包含N1个元素,每个元素用于表示N1个天线设备中一个天线设备的身份信息,数组的长度即对应N1的取值。第一消息可以采用网络配置协议(network configuration protocol,NETCONF)的接口消息实现。
另一种方式中:BBU向射频设备发送N1个第二消息,每个第二消息中包括N1个天线设备中一个天线设备的身份信息,N1个第二消息与N1个天线设备一一对应。第二消息可以采用NETCONF的接口消息实现。
S502,射频设备保持射频设备与第一天线设备之间的连接。
其中,所述第一天线设备包含于所述N1个天线设备,第一天线设备包含于射频设备当前连接的天线设备。可选的,第一天线设备的数量为一个或多个。
可选的,第一信息还可以用于指示射频设备保持与该第一天线设备之间的连接。
具体地,射频设备可以根据第一信息指示的N1个天线设备,在该射频设备当前连接的天线设备中确定包含于该N1个天线设备的第一天线设备;射频设备保持与第一天线设备之间的连接。其中,射频设备保持与第一天线设备之间的连接,还可以描述为:射频设备保留射频设备与第一天线设备之间的通信链路。
可选的,射频设备可以保存当前连接的天线设备的身份信息。对应S501第一信息包括N1个天线设备的身份信息时,射频设备可以根据将当前连接的天线设备的身份信息与N1个天线设备的身份信息进行匹配,从而确定前述第一天线设备。
可选的,射频设备还可保存当前连接的天线设备对应的链路信息,天线设备对应的链路信息用于指示天线设备与射频设备之间的通信链路。例如,射频设备可以为与该射频设备已建立通信链路的天线设备分配通讯地址,前述链路信息可以包括天线设备的通讯地址。射频设备保持射频 设备与第一天线设备之间的连接,具体可以包括:射频设备保留第一天线设备的通讯地址。
可选的,如果BBU管理的天线设备中还包括未与射频设备连接的第二天线设备,射频设备还可以扫描该第二天线设备。该第二天线设备的数量可能是一个或多个,本公开对此不进行限制。示例性的,在执行S501和S502之后,还可以执行S503~S504:
S503,射频设备根据第一信息,扫描第二天线设备。
其中,第二天线设备包含于所述N1个天线设备,所述第二天线设备未与所述射频设备连接。
对应S501第一信息包括N1个天线设备的身份信息时,射频设备可以根据第二天线设备的身份信息,将扫描识别与该身份信息对应的天线设备确定为第二天线设备。示例性的,结合图3示意的电调天线,以射频设备为RRU进行举例,RRU可以根据第二天线设备的身份信息,扫描识别串口总线(如RS485串口总线)上与该身份信息对应的ALD,即确定第二天线设备。
另外可以理解的是,当第一信息指示的N1个天线设备中包括不与射频设备连接的第二天线设备时,BBU通过第一信息可以隐含的指示射频设备对该第二天线设备进行扫描。
S504,射频设备建立所述射频设备与所述第二天线设备之间的连接。
具体地,射频设备可以与第二天线设备建立通信链路。射频设备可以向第二天线设备发送为该第二天线设备分配的通讯地址。需要说明的是,当第二天线设备的数量为多个时,射频设备可以向多个第二天线设备中的各个第二天线设备发送唯一通讯地址,即多个第二天线设备中不同第二天线设备的通讯地址不同。
可选的,射频设备可以通过串口总线与第一天线设备和/或第二天线设备交互信息。例如射频设备可以通过总线向第一天线设备和/或第二天线设备转发来自BBU的管理消息,该管理消息用于指示对应的天线设备对天线系统进行运维操作,该运维操作可以包括以下至少一项:放大射频信号、调节天线系统的下倾角或其他操作等。
可选的,如果射频设备当前连接的天线设备中存在不包含于N1个天线设备的第三天线设备,射频设备可以断开与该第三天线设备之间的连接。第三天线设备的数量可能是一个或多个。示例性的,在执行S501和S502之后,还可以执行S505。
S505,射频设备断开所述射频设备与第三天线设备之间的连接。
其中,所述第三天线设备包含于所述射频设备当前连接的天线设备,且所述第三天线设备不包含于所述N1个天线设备。
具体地,射频设备可以删除该第三天线设备的通讯地址,以及广播用于指示复位该第三天线设备的信息。通过该方法,可以避免该第三天线设备无法响应需要连接该第三天线设备的其他射频设备的扫描,保证其他通信链路的正常建立。
另外可以理解的是,当第一信息指示的N1个天线设备中不包括与射频设备连接的第三天线设备时,BBU通过第一信息可以隐含的指示射频设备断开与该第三天线设备之间的连接。射频设备可以根据第一信息确定第三天线设备。
此外关于S503~S505的执行情况,可以理解的是:可以是在执行S501和S502之后,执行S503~S504或执行S505;或者可以是在执行S501和S502之后,执行S503~S505。下面介绍方案一几种可能的实施情况。
情况一:如果N1个天线设备与射频设备当前连接的天线设备之间部分重合,N1指的是前述部分重合的天线设备,则执行S501~S505。例如,N1为6,射频设备当前连接7个天线设备。射频设备根据第一信息在射频设备当前连接的7个天线设备中,确定包含于N1个天线设备,保持连接的第一天线设备有4个;射频设备可以断开连接的第三天线设备有3个;射频设备需要扫描的第二天线设备有2个。
本公开对执行S503~S505之间的顺序并不进行限制,例如先执行S503~S504后执行S505;或先执行S505后执行S503~S504;或同时执行S503和S505,然后执行S504。情况二:如果N1个天线设备对应射频设备当前连接的部分天线设备,则执行S501、S502以及S505,而无需执行S503和S504。例如,N1为4,射频设备当前连接6个天线设备。射频设备根据第一信息在射频设备当前连接的6个天线设备中,确定包含于N1个天线设备,保持连接的第一天线设备有4个;射频设备可以断开连接的第三天线设备有2个;射频设备无需扫描第二天线设备。
情况三:如果射频设备当前连接的天线设备对应N1个天线设备中的部分天线设备,则执行S501~S504,而无需执行S505。例如,N1为6,射频设备当前连接4个天线设备。射频设备根据第一信息在射频设备当前连接的4个天线设备中,确定包含于N1个天线设备,保持连接的第一天线设备有4个;射频设备需要扫描的第二天线设备有2个;射频设备无需断开与天线设备之间的连接。
情况四:如果N1个天线设备对应射频设备当前连接的全部天线设备,则执行S501和S502,而无需执行S503~S505。例如,N1的取值为3,射频设备当前连接3个天线设备。射频设备根据第一信息在射频设备当前连接的3个天线设备中,确定包含于N1个天线设备,保持连接的第一天线设备有3个;射频设备无需扫描第二天线设备;射频设备无需断开与天线设备之间的连接。
本方案提供的上述通信方法,通过保存射频设备当前连接的天线设备的相关信息,在BBU和射频设备之间通信链路不稳定的情况下,能够提升链路恢复效率,即快速建立或恢复射频设备与BBU希望连接的天线设备之间的通信链路,从而快速恢复BBU对天线设备的管理能力,保证通信业务的运行。
方案二
参见图6示意一种通信方法,该方法主要包括如下步骤:
S601,射频设备向BBU发送第二信息。
其中,所述第二信息指示所述射频设备当前连接的N2个天线设备,N2为正整数。
具体地,射频设备可以保存当前连接的天线设备的身份信息。第二信息可以包括N2个天线设备的身份信息。一个天线设备的身份信息用于标识天线设备,例如可以包括天线设备的生产厂家编码和天线设备的设备序列号。
有关射频设备和天线设备的定义可参照S501中的描述理解,本公开对此不再进行赘述。
具体地,射频设备向BBU发送第二信息可以参照如下两种方式中的任意一种实现。
一种方式中:射频设备向BBU发送第三消息,第三消息包括N2个天线设备中每个天线设备的身份信息。例如第三消息可以包括一个数组,该数组包含N2个元素,每个元素用于表示N2个天线设备中一个天线设备的身份信息,数组的长度即对应N2的取值。第三消息可以采用NETCONF的接口消息实现。
另一种方式中:射频设备向BBU发送N2个第四消息,每个第二消息中包括N2个天线设备中一个天线设备的身份信息,N2个第四消息与N2个天线设备一一对应。第四消息可以采用NETCONF的接口消息实现。
S602,BBU向射频设备发送第一信息。
所述第一信息用于指示N1个天线设备,所述N1个天线设备包含于所述N2个天线设备。其中,所述天线设备用于控制天线,N1为正整数。
具体地,该N1个天线设备可以指的是在N2个天线设备中,BBU希望RRU保持连接的天线设备。例如,该N1个天线设备可以包含于该BBU管理(或称维护)的天线设备,BBU管理的天线设备的数量可以大于或者等于N1。具体地,如果N2个天线设备包括BBU管理的全部天线设备,则N1个天线设备指的该BBU管理的全部天线设备;或者,如果N2个天线设备包括BBU管理的部分天线设备,则N1个天线设备指的该BBU管理的部分天线设备。
关于BBU管理的天线设备可以参照S501中的描述理解,本公开对此不再进行赘述。
可选的,BBU上还可以配置该BBU管理的全部天线设备的身份信息。对应S601第二信息包括N2个天线设备的身份信息时,BBU可以根据将N2个天线设备的身份信息与BBU管理的全部天线设备的身份信息进行匹配,从而确定前述N1个天线设备。
此外可选的,第一信息还用于指示射频设备保持与该N1个天线设备之间的连接。例如,N1个天线设备是N2个天线设备中的部分天线设备时,第一信息中可以包括N1个天线设备的身份信息。或者,N1个天线设备为N2个天线设备中的全部天线设备时,第一信息中可以包括用于指示射频设备保持全部与天线设备之间的连接的指示信息,例如采用设定值(1或0)来表示。通过这样的方法,可以节省信令开销。有关第一信息的实现可参照S501中的描述实施,本公开对此不再进行赘述。
S603,射频设备保持射频设备与第一天线设备之间的连接。
其中,所述第一天线设备包含于所述N1个天线设备,第一天线设备的数量为N1。
具体地,射频设备保存当前连接的N2个天线设备对应的链路信息,有关天线设备对应的链路信息可以参照S502中的定义理解,本公开对此不再进行赘述。射频设备保持射频设备与第一天线设备之间的连接,具体可以包括:射频设备保留第一天线设备的通讯地址。
可选的,如果BBU管理的天线设备中还包括不与射频设备连接的第二天线设备,射频设备还可以扫描该第二天线设备,该第二天线设备的数量可能是一个或多个,本公开对此不进行限制。示例性的,在执行S601至S603之后,还可以执行S604~S606:
S604,BBU向射频设备发送第三信息。
其中,所述第三信息用于指示第二天线设备;其中,所述第二天线设备未与所述射频设备连接。可选的,第三信息还可以用于指示射频设备对该第二天线设备进行扫描。
具体地,BBU向射频设备发送第三信息可以参照如下两种方式中的任意一种实现。
一种方式中:BBU向射频设备发送第五消息,第五消息包括第二天线设备的身份信息。例如,第二天线设备的数量为一个时,第五消息可以包括一个用于指示第二天线设备的身份信息的字段。例如,第二天线设备的数量为多个时,第五消息可以包括一个数组,该数组的长度对应第二天线设备的数量,该数组中的每个元素用于表示一个第二天线设备的身份信息,不同元素表示的身份信息不同。第五消息可以采用网络配置协议NETCONF的接口消息实现。
另一种方式中:第二天线设备的数量为多个时,BBU向射频设备发送多个第六消息,每个第六消息中包括多个第二天线设备中一个第二天线设备的身份信息,多个第六消息与多个第二天线设备一一对应。第六消息可以采用NETCONF的接口消息实现。
S605,根据所述第三信息,扫描所述第二天线设备。
该步骤可以参照S503中的方案实施,本公开对此不再进行赘述。
S606,射频设备建立所述射频设备与所述第二天线设备之间的连接。
该步骤可以参照S504中的方案实施,本公开对此不再进行赘述。
可选的,如果射频设备当前连接的N2个天线设备除包括N1个天线设备之外,还包括第三天线设备,该第三天线设备的数量可能是一个或多个,本公开对此不进行限制。射频设备可以断开射频设备与该第三天线设备之间的连接。示例性的,在执行S601~S603之后,还可以执行S607。
S607,射频设备断开所述射频设备与第三天线设备之间的连接。
其中,所述第三天线设备包含于所述射频设备当前连接的N2个天线设备,且所述第三天线设备不包含于所述N1个天线设备。
该步骤可以参照S505中的方案实施,本公开对此不再进行赘述。
此外关于S604~S607的执行情况,可以理解的是:可以是在执行S601~S603之后,执行S604~S606或执行S607;或者可以是在执行S601~S603之后,执行S604~S607。下面介绍方案二几种可能的实施情况。
情况一:如果N2个天线设备与BBU管理的全部天线设备之间部分重合,N1指的是前述部分重合的天线设备,则执行S601~S607。例如,N1为4,N2为6。射频设备根据第一信息在当前连接的6(N2)个天线设备中,确定保持连接的第一天线设备有4(N1)个;则射频设备可以断开连接的第三天线设备有2个;BBU管理的全部天线设备为5个,则第三信息指示1个第二天线设备,射频设备根据第三信息需要扫描1个第二天线设备。此情况下,BBU管理的全部天线设备由N1个天线设备和第二天线设备组成,N2个天线设备由第一天线设备和第三线设备组成。
本公开对执行S604~S607之间的顺序并不进行限制,例如先执行S604~S606后执行S607;或先执行S607后执行S604~S606;或同时执行S604和S607,然后执行S605~S606。
情况二:如果N2个天线设备对应BBU管理的部分天线设备,N1个天线设备与N2个天线设备相同,则执行S601~S606,而无需执行S607。例如,N1为4,N2为4。射频设备根据第一信息在当前连接的4(N2)个天线设备中,确定保持连接的第一天线设备有4(N1)个;射频设备无需断开与天线设备之间的连接;BBU管理的全部天线设备为5个,则第三信息指示1个第二天线设备,射频设备根据第三信息需要扫描1个第二天线设备。此情况下,BBU管理的全部天线设备由N1个天线设备和第二天线设备组成,第一天线设备为N2个天线设备中的全部天线设备。
情况三:如果N2个天线设备对应BBU管理的全部天线设备,N1个天线设备指的是BBU管理的全部天线设备,且N1个天线设备对应N2个天线设备中的部分天线设备,则执行S601~S603、以及S607,而无需执行S604~S606。例如,N1为4,N2为6。射频设备根据第一信息在当前连接的6(N2)个天线设备中,确定保持连接的第一天线设备有4(N1)个;射频设备可以断开连接的第三天线设备有2个;BBU无需通过第三信息指示射频设备扫描第二天线设备。此情况下,N2个天线设备由第一天线设备和第三线设备组成。
情况四:如果N2个天线设备为BBU管理的全部天线设备,N1个天线设备指的是BBU管理的全部天线设备,则执行S601~S603,而无需执行S604~S607。例如,N1为3,N2为3。射频设备根据第一信息在当前连接的3(N2)个天线设备中,确定保持连接的第一天线设备有3(N1)个;BBU无需通过第三信息指示射频设备扫描第二天线设备,且射频设备无需断开与天线设备之间的连接。此情况下,N2个天线设备、N1个天线设备以及第一天线设备均相同。
本方案提供的上述通信方法,射频设备将当前连接的天线设备通知给BBU,使得BBU根据射频设备和天线设备之间的连接情况实施相应的链路恢复措施,例如保持连接、断开连接或者建 立连接中的一种或多种。在BBU和射频设备之间通信链路不稳定的情况下,能够提升链路恢复效率,从而快速恢复BBU对天线设备的管理能力,保证通信业务的运行。
方案三
参见图7示意一种通信方法,该方法主要包括如下步骤。
S701,射频设备向BBU发送第二信息。
其中,所述第二信息指示所述射频设备当前连接的N2个天线设备,N2为正整数。
该步骤可参见S601实施,本公开对此不再进行赘述。
S702,BBU向射频设备发送第一信息。
所述第一信息用于指示N1个天线设备,该N1个天线设备指的是该BBU管理的所有天线设备中的部分或全部。
具体地,该步骤可参照S501实施,本公开对此不再进行赘述。
S703,射频设备保持射频设备与第一天线设备之间的连接。
具体地,该步骤可参照S502实施,本公开对此不再进行赘述。
可选的,如果BBU管理的天线设备中还包括不与射频设备连接的第二天线设备,射频设备还可以扫描该第二天线设备。示例性的,在执行S701~S703之后,还可以执行S704~S705:
S704,射频设备根据第一信息,扫描第二天线设备。
该步骤可参照S503实施,本公开对此不再进行赘述。
S705,射频设备建立所述射频设备与所述第二天线设备之间的连接。
该步骤可参照S504实施,本公开对此不再进行赘述。
可选的,如果射频设备当前连接的天线设备中存在不包含于N1个天线设备的第三天线设备,射频设备可以射频设备断开与该第三天线设备之间的连接。示例性的,在执行S701~S703之后,还可以执行S706。
S706,射频设备断开所述射频设备与第三天线设备之间的连接。
该步骤可参照S505实施,本公开对此不再进行赘述。
此外关于S704~S706的执行情况,可以理解的是:可以是在执行S701~S703之后,执行S704~S705或执行S706。或者可以是在执行S701~S703之后,执行S704~S706。方案三可能的实施情况可以参照方案一可能的实施情况理解,本公开对此不再进行赘述。在执行S704~S706时,本公开对执行S704~S706之间的顺序并不进行限制,例如先执行S704~S705后执行S706;或先执行S706后执行S704~S705;或同时执行S704和S706,然后执行S705。
本方案中,BBU和射频设备之间交互BBU管理的天线设备以及射频设备当前连接的天线设备,BBU和射频设备均可以确定当前通信链路正常的天线设备,能够快速恢复BBU对天线设备的管理能力,保证通信业务的运行。
方案四
参见图8示意一种通信方法,该方法主要包括如下步骤。
S801,射频设备向BBU发送第二信息。
其中,所述第二信息指示所述射频设备当前连接的N2个天线设备,N2为正整数。
该步骤可参照S601实施,本公开对此不再进行赘述。
S802,BBU向射频设备发送第四信息。
所述第四信息用于指示断开所述射频设备与第三天线设备之间的连接。其中,所述第三天线设备包含于所述射频设备当前连接的N2个天线设备,且所述第三天线设备不是BBU管理的天线设备,或者描述为:第三天线设备不是BBU希望射频设备连接的天线设备。该第三天线设备的数量可能是一个或多个。
具体地,第四信息可以包括第三天线设备的身份信息。身份信息的定义可参照S501中的描述理解,本公开对此不再进行赘述。
具体地,BBU向射频设备发送第四信息可以参照如下两种方式中的任意一种实现。
一种方式中:BBU向射频设备发送第七消息,第七消息包括第三天线设备的身份信息。例如,第三天线设备的数量为一个时,第七消息可以包括一个用于指示第三天线设备的身份信息的字段。例如,第三天线设备的数量为多个时,第七消息可以包括一个数组,该数组的长度对应第三天线设备的数量,该数组中的每个元素用于表示一个第三天线设备的身份信息,不同元素表示的身份信息不同。第七消息可以采用网络配置协议NETCONF的接口消息实现。
另一种方式中:第三天线设备的数量为多个时,BBU向射频设备发送多个第八消息,每个第八消息中包括多个第三天线设备中一个第三天线设备的身份信息,多个第八消息与多个第三天线设备一一对应。第八消息可以采用NETCONF的接口消息实现。
S803,射频设备根据第四信息,断开所述射频设备与第三天线设备之间的连接。
具体地,参照S502中的描述,射频设备可以保存当前连接的天线设备的身份信息和链路信息。射频设备可以根据第四信息包括的第三天线设备的身份信息,在射频设备当前连接的天线设备中确定前述第三天线设备。进而射频设备可以参照S505中的描述,断开所述射频设备与第三天线设备之间的连接。
可选的,如果射频设备当前连接的N2个天线设备除包括第三天线设备之外,还包括其他天线设备,如记作第一天线设备。该第一天线设备可能的数量为一个或多个。则射频设备可以确定该第一天线设备是BBU希望连接的天线设备或者该第一天线设备包含于BBU管理的天线设备。基于此,可以理解第四信息还用于隐含的指示保持射频设备与第一天线设备之前的连接。如图8示意的S803:射频设备根据第四信息,在断开与第三天线设备之间的连接时,保持与第一天线设备之间的连接。
具体地,有关射频设备断开与第三天线设备之间的连接的方案,可参照S505中的描述实施;有关射频设备保持与第一天线设备之间的连接的方案,可参照S502中的描述实施。本公开对此不再进行赘述。
可选的,如果BBU管理的天线设备中还包括不与射频设备连接的第二天线设备,BBU还可以指示射频设备扫描该第二天线设备,该第二天线设备的数量可能是一个或多个。示例性的,在执行S801~S803后,还可以执行S804~S806:
S804,BBU向射频设备发送第三信息。
其中,所述第三信息用于指示第二天线设备,所述第二天线设备未与所述射频设备连接。可选的,该第二天线设备的数量可能是一个或多个。
具体地,该步骤可参照S603中的描述实施,本公开对此不再进行赘述。
S805,根据所述第三信息,扫描所述第二天线设备。
该步骤可以参照S503中的方案实施,本公开对此不再进行赘述。
S806,射频设备建立所述射频设备与所述第二天线设备之间的连接。
该步骤可以参照S504中的方案实施,本公开对此不再进行赘述。
下面介绍方案四几种可能的实施情况。
情况一:如果N2个天线设备包括BBU管理的全部天线设备,N2个天线设备中第三天设备的数量少于BBU管理的全部天线设备,则执行S801~S803,不执行S804~S806。例如,N2为6,BBU管理的全部天线设备为N2个天线设备中的4个天线设备。BBU可以通过第四信息指示射频设备断开的第三天线设备有2个;BBU不发送第三信息,射频设备无需扫描第二天线设备。
情况二:如果N2个天线设备包括BBU管理的部分天线设备,N2个天线设备中第三天设备的数量少于前述BBU管理的部分天线设备,则执行S801~S806。例如,N2为6,BBU管理的全部天线设备为6个,N2个天线设备中包括BBU管理的4个天线设备;BBU通过第四信息指示射频设备断开的第三天线设备有2个;BBU通过第三信息指示射频设备扫描2个第二天线设备。
本方案提供的上述通信方法,BBU指示断开射频设备连接的部分天线设备,而保持其他属于BBU管理的天线设备之间的连接。在BBU和射频设备之间通信链路不稳定的情况下,能够提升链路恢复效率,从而快速恢复BBU对天线设备的管理能力,保证通信业务的运行。本方案可以应用于如下场景,减少信令开销:在射频设备当前连接的天线设备中,属于BBU管理的天线设备的数量超过不属于BBU管理的天线设备的数量。
基于上述方案一~方案四中任意一个方案,射频设备当前连接的天线设备越多,射频设备当前连接的天线设备中属于BBU希望连接的天线设备越多,可以直接保持连接的通信链路越多,链路恢复速度不会受到天线设备数量增多的影响。而采用相关技术,不考虑射频设备当前连接的天线设备与BBU希望连接的天线设备之间是否有重叠,射频设备当前连接的天线设备越多,和/或BBU希望连接的天线设备越多,断开链路再重新扫描建立通信链路的速度就越慢。示例性的,参见下表1,以射频设备当前连接的天线设备为BBU希望连接的天线设备举例,示例出了方案一~方案四与相关技术恢复链路速度的对比。
表1
Figure PCTCN2022141228-appb-000001
由此可见,本公开提供的方案一~方案四,相较于相关技术,能够提升链路恢复的效率。
上述分别从BBU以及射频设备交互的角度对本公开提供的方法进行了介绍。为了实现上述方法中的各功能,BBU、射频设备可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
基于同一构思,参见图9,本公开提供了一种通信装置900,该通信装置900包括处理模块901和通信模块902。该通信装置900可以是射频设备,也可以是应用于射频设备或者和射频设备匹配使用,能够实现射频设备侧执行的通信方法的通信装置;或者,该通信装置900可以是BBU,也可以是应用于BBU或者和BBU匹配使用,能够实现BBU侧执行的通信方法的通信装置;或者,该通信装置900可以是天线设备(例如第一天线设备、第二天线设备或第三天线设备),也可以是应用于天线设备或者和天线设备匹配使用,能够实现天线设备侧执行的通信方法的通信装置。
其中,通信模块也可以称为收发模块、收发器、收发机、或收发装置等。处理模块也可以称为处理器,处理单板,处理单元、或处理装置等。可选的,通信模块用于执行上述方法中射频设备侧、BBU侧或天线设备侧的发送操作和接收操作,可以将通信模块中用于实现接收功能的器件视为接收单元,将通信模块中用于实现发送功能的器件视为发送单元,即通信模块包括接收单元和发送单元。
该通信装置900应用于射频设备时,处理模块901可用于实现图5~图8所示实施例中所述射频设备的处理功能,通信模块902可用于实现图5~图8所述实施例中所述射频设备的收发功能。或者也可以参照发明内容中第三方面以及第三方面中可能的设计理解该通信装置。
该通信装置900应用于BBU时,处理模块901可用于实现图5~图8所示实施例中所述BBU的处理功能,通信模块902可用于实现图5~图8所述实施例中所述BBU的收发功能。或者也可以参照发明内容中第四方面以及第四方面中可能的设计理解该通信装置。
该通信装置900应用于天线设备时,处理模块901可用于实现图5~图8所示实施例中相关天线设备的处理功能,通信模块902可用于实现图5~图8所述实施例中相关天线设备的收发功能。
此外需要说明的是,前述通信模块和/或处理模块可通过虚拟模块实现,例如处理模块可通过软件功能单元或虚拟装置实现,通信模块可以通过软件功能或虚拟装置实现。或者,处理模块或通信模块也可以通过实体装置实现,例如若该装置采用芯片/芯片电路实现,所述通信模块可以是输入输出电路和/或通信接口,执行输入操作(对应前述接收操作)、输出操作(对应前述发送操作);处理模块为集成的处理器或者微处理器或者集成电路。
本公开中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,在本公开各个实施例中的各功能模块可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
基于相同的技术构思,本公开还提供了一种通信装置1000。例如,该通信装置1000可以是芯片或者芯片系统。可选的,在本公开中芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
通信装置1000可用于实现图1或图2所示的通信系统中任一网元的功能。通信装置1000可以包括至少一个处理器1010,该处理器1010与存储器耦合,可选的,存储器可以位于该装置之内,存储器可以和处理器集成在一起,存储器也可以位于该装置之外。例如,通信装置1000还可以包括至少一个存储器1020。存储器1020保存实施上述任一实施例中必要计算机程序、计算机程序或指令和/或数据;处理器1010可能执行存储器1020中存储的计算机程序,完成上述任一实施例中的方法。
通信装置1000中还可以包括通信接口1030,通信装置1000可以通过通信接口1030和其它设备进行信息交互。示例性的,所述通信接口1030可以是收发器、电路、总线、模块、管脚或其它类型的通信接口。当该通信装置1000为芯片类的装置或者电路时,该通信装置1000中的通信接口1030也可以是输入输出电路,可以输入信息(或称,接收信息)和输出信息(或称,发送信息),处理器为集成的处理器或者微处理器或者集成电路或则逻辑电路,处理器可以根据输入信息确定输出信息。
本公开中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器1010可能和存储器1020、通信接口1030协同操作。本公开中不限定上述处理器1010、存储器1020以及通信接口1030之间的具体连接介质。
可选的,参见图10,所述处理器1010、所述存储器1020以及所述通信接口1030之间通过总线1040相互连接。所述总线1040可以是外设部件互连标准(peripheral component interconnect,PCI)总线或扩展工业标准结构(extended industry standard architecture,EISA)总线等。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图10中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在本公开中,处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本公开中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本公开所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
在本公开中,存储器可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本公开中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
在一种可能的实施方式中,该通信装置1000可以应用于BBU,具体通信装置1000可以是BBU,也可以是能够支持BBU,实现上述涉及的任一实施例中BBU的功能的装置。存储器1020保存实现上述任一实施例中的BBU的功能的计算机程序(或指令)和/或数据。处理器1010可执行存储器1020存储的计算机程序,完成上述任一实施例中BBU执行的方法。应用于BBU,该通信装置1000中的通信接口可用于与射频设备进行交互,向射频设备发送信息或者接收来自射频设备的信息。
在另一种可能的实施方式中,该通信装置1000可以应用于射频设备,具体通信装置1000可以是射频设备,也可以是能够支持射频设备,实现上述涉及的任一实施例中射频设备的功能的装置。存储器1020保存实现上述任一实施例中的射频设备的功能的计算机程序(或指令)和/或数据。处理器1010可执行存储器1020存储的计算机程序,完成上述任一实施例中射频设备执行的方法。应用于射频设备,该通信装置1000中的通信接口可用于与BBU进行交互,向BBU发送信息或者接收来自BBU的信息。
在另一种可能的实施方式中,该通信装置1000可以应用于天线设备,具体通信装置1000可以是天线设备,也可以是能够支持天线设备,实现上述涉及的任一实施例中天线设备的功能的装置。存储器1020保存实现上述任一实施例中的天线设备的功能的计算机程序(或指令)和/或数据。处理器1010可执行存储器1020存储的计算机程序,完成上述任一实施例中天线设备执行的方法。应用于天线设备,该通信装置1000中的通信接口可用于与射频设备进行交互,向射频设备发送信息或者接收来自射频设备的信息。
由于本实施例提供的通信装置1000可应用于BBU,完成上述BBU执行的方法,或者应用于射频设备,完成射频设备执行的方法,或者应用于天线设备,完成天线设备执行的方法。因此其所能获得的技术效果可参考上述方法示例,在此不再赘述。
基于以上实施例,本公开提供了一种通信系统,包括BBU和射频设备,其中,所述BBU和射频设备可以实现图5~图8所示的实施例中所提供的通信方法。可选的,该通信系统还可以包括天线设备。
本公开提供的技术方案可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本 公开所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、射频设备、BBU、天线设备或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机可以存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(digital video disc,DVD))、或者半导体介质等。
在本公开中,在无逻辑矛盾的前提下,各实施例之间可以相互引用,例如方法实施例之间的方法和/或术语可以相互引用,例如装置实施例之间的功能和/或术语可以相互引用,例如装置实施例和方法实施例之间的功能和/或术语可以相互引用。
显然,本领域的技术人员可以对本公开进行各种改动和变型而不脱离本公开的范围。这样,倘若本公开的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (21)

  1. 一种通信方法,其特征在于,包括:
    从基带单元BBU获取第一信息,所述第一信息用于指示N1个天线设备,所述天线设备用于控制天线;其中,N1为正整数;
    保持射频设备与第一天线设备之间的连接;其中,所述第一天线设备包含于所述N1个天线设备。
  2. 如权利要求1所述的方法,其特征在于,还包括:
    向所述BBU发送第二信息,所述第二信息指示所述射频设备当前连接的N2个天线设备,N2为正整数。
  3. 如权利要求1或2所述的方法,其特征在于,所述N1个天线设备包括所述射频设备当前连接的天线设备中的至少一个天线设备。
  4. 如权利要求1-3任一项所述的方法,其特征在于,还包括:
    根据所述第一信息,扫描第二天线设备;其中,所述第二天线设备包含于所述N1个天线设备,所述第二天线设备未与所述射频设备连接;
    建立所述射频设备与所述第二天线设备之间的连接。
  5. 如权利要求2所述的方法,其特征在于,所述N1个天线设备包含于所述N2个天线设备。
  6. 如权利要求5所述的方法,其特征在于,还包括:
    从所述BBU获取第三信息,所述第三信息用于指示第二天线设备;其中,所述第二天线设备未与所述射频设备连接;
    根据所述第三信息,扫描所述第二天线设备;
    建立所述射频设备与所述第二天线设备之间的连接。
  7. 如权利要求1-6任一项所述的方法,其特征在于,还包括:
    断开所述射频设备与第三天线设备之间的连接,所述第三天线设备包含于所述射频设备当前连接的天线设备,且所述第三天线设备不包含于所述N1个天线设备。
  8. 一种通信方法,其特征在于,包括:
    确定N1个天线设备,所述天线设备用于控制天线;其中,N1为正整数;
    发送第一信息,所述第一信息用于指示N1个天线设备,所述第一信息用于指示射频设备保持与第一天线设备之间的连接;其中,所述第一天线设备包含于所述N1个天线设备。
  9. 如权利要求8所述的方法,其特征在于,还包括:
    获取第二信息,所述第二信息指示射频设备当前连接的N2个天线设备,N2为正整数。
  10. 如权利要求8或9所述的方法,其特征在于,所述N1个天线设备包括所述射频设备当前连接的天线设备中的至少一个天线设备。
  11. 如权利要求8-10任一项所述的方法,其特征在于,所述N1个天线设备包括第二天线设备,且所述第二天线设备未与所述射频设备连接;所述第一信息还用于指示所述射频设备建立与所述第二天线设备之间的连接。
  12. 如权利要求9所述的方法,其特征在于,所述N1个天线设备包含于所述N2个天线设备。
  13. 如权利要求12所述的方法,其特征在于,还包括:
    发送第三信息,所述第三信息用于指示第二天线设备;其中,所述第二天线设备未与所述射频设备连接。
  14. 如权利要求8-13任一项所述的方法,其特征在于,还包括:
    发送第四信息,所述第四信息用于指示所述射频设备断开与第三天线设备之间的连接;其中,第三设备包含于所述射频设备当前连接的天线设备,且所述第三设备不包含于所述N1个天线设备。
  15. 一种通信装置,其特征在于,用于实现权利要求1-7任一项所述的方法。
  16. 一种通信装置,其特征在于,用于实现权利要求8-14任一项所述的方法。
  17. 一种通信装置,其特征在于,包括:
    处理器,所述处理器和存储器耦合,所述处理器用于执行权利要求1-7任一项所述的方法。
  18. 一种通信装置,其特征在于,包括:
    处理器,所述处理器和存储器耦合,所述处理器用于执行权利要求8-14任一项所述的方法。
  19. 一种通信系统,其特征在于,包括权利要求15或17所述的通信装置,以及权利要求16或18所述的通信装置。
  20. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有指令,当所述 指令在计算机上运行时,使得计算机执行权利要求1-7任一项所述的方法或权利要求8-14任一项所述的方法。
  21. 一种计算机程序产品,其特征在于,包括指令,当所述指令在计算机上运行时,使得计算机执行权利要求1-7任一项所述的方法或权利要求8-14任一项所述的方法。
PCT/CN2022/141228 2021-12-30 2022-12-23 一种通信方法及装置 WO2023125254A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020247022491A KR20240113959A (ko) 2021-12-30 2022-12-23 통신 방법 및 장치
EP22914508.1A EP4432722A1 (en) 2021-12-30 2022-12-23 Communication method and apparatus
US18/752,831 US20240348291A1 (en) 2021-12-30 2024-06-25 Communication method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111657575.7 2021-12-30
CN202111657575.7A CN114499568A (zh) 2021-12-30 2021-12-30 一种通信方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/752,831 Continuation US20240348291A1 (en) 2021-12-30 2024-06-25 Communication method and apparatus

Publications (1)

Publication Number Publication Date
WO2023125254A1 true WO2023125254A1 (zh) 2023-07-06

Family

ID=81497332

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/141228 WO2023125254A1 (zh) 2021-12-30 2022-12-23 一种通信方法及装置

Country Status (5)

Country Link
US (1) US20240348291A1 (zh)
EP (1) EP4432722A1 (zh)
KR (1) KR20240113959A (zh)
CN (1) CN114499568A (zh)
WO (1) WO2023125254A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114499568A (zh) * 2021-12-30 2022-05-13 华为技术有限公司 一种通信方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101035328A (zh) * 2007-04-25 2007-09-12 中兴通讯股份有限公司 一种无线通信系统中电调天线控制的方法及系统
CN104995941A (zh) * 2014-03-10 2015-10-21 华为技术有限公司 多频电调天线管理方法、装置和系统
US20180131440A1 (en) * 2014-05-12 2018-05-10 Commscope Technologies Llc Antenna installation including an antenna line device controllable over a wireless interface
CN110769520A (zh) * 2018-07-25 2020-02-07 上海华为技术有限公司 天线设备与基站的连接方法、天线设备和基站
CN114499568A (zh) * 2021-12-30 2022-05-13 华为技术有限公司 一种通信方法及装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012141631A1 (en) * 2011-04-14 2012-10-18 Telefonaktiebolaget L M Ericsson (Publ) System method and devices related to radio communication equipment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101035328A (zh) * 2007-04-25 2007-09-12 中兴通讯股份有限公司 一种无线通信系统中电调天线控制的方法及系统
CN104995941A (zh) * 2014-03-10 2015-10-21 华为技术有限公司 多频电调天线管理方法、装置和系统
US20180131440A1 (en) * 2014-05-12 2018-05-10 Commscope Technologies Llc Antenna installation including an antenna line device controllable over a wireless interface
CN110769520A (zh) * 2018-07-25 2020-02-07 上海华为技术有限公司 天线设备与基站的连接方法、天线设备和基站
CN114499568A (zh) * 2021-12-30 2022-05-13 华为技术有限公司 一种通信方法及装置

Also Published As

Publication number Publication date
CN114499568A (zh) 2022-05-13
KR20240113959A (ko) 2024-07-23
US20240348291A1 (en) 2024-10-17
EP4432722A1 (en) 2024-09-18

Similar Documents

Publication Publication Date Title
CN110140386B (zh) 处理有限网络切片可用性
US10945194B2 (en) Target cell access method and device
US20180310216A1 (en) Method of Multi-Radio Interworking in Heterogeneous Wireless Communication Networks
EP3550889A1 (en) Method and apparatus for supporting beam in wireless communication system
CN104823511A (zh) 无线通信系统中设备间通信的发起
US20160150502A1 (en) Control of Resources
US20240348291A1 (en) Communication method and apparatus
US10218561B2 (en) Communications system, control apparatus, and network management server
US20220394604A1 (en) Method for providing network slice, and communication apparatus
US20240090082A1 (en) Hybrid Base Station and RRH
EP3905756A1 (en) Network configuration method and communication apparatus
CN114222326A (zh) 终端装置、网络装置、控制方法以及计算机可读存储介质
US20220264435A1 (en) Access control method and communications apparatus
WO2019100325A1 (zh) 一种传输上行信号的方法、基站及系统
CN111757395B (zh) 信息传输方法、通信装置及存储介质
WO2015120605A1 (zh) 一种上行信号控制方法及装置
EP2481232B1 (en) Method and apparatus for planning of cell sizes and frequency use in a wireless communications network
KR20190129870A (ko) 통신 방법, 보조 네트워크 노드와 단말
US20140120922A1 (en) Radio communication system and network
TW202007199A (zh) 一種核心網選擇方法及裝置、終端設備、網路設備
KR102592535B1 (ko) 데이터 전송 방법, 네트워크 장치 및 컴퓨터 판독 가능 저장 매체
CN115250511A (zh) 通信方法及通信装置
KR20220137711A (ko) 시스템간 핸드오버 방법 및 통신 장치
US20230379005A1 (en) Wireless communication method and apparatus
US12082310B1 (en) Smart distributed antenna systems, platforms, and methods

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22914508

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202427044357

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2022914508

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022914508

Country of ref document: EP

Effective date: 20240612

ENP Entry into the national phase

Ref document number: 20247022491

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE