WO2023125168A1 - 通信方法和装置 - Google Patents

通信方法和装置 Download PDF

Info

Publication number
WO2023125168A1
WO2023125168A1 PCT/CN2022/140458 CN2022140458W WO2023125168A1 WO 2023125168 A1 WO2023125168 A1 WO 2023125168A1 CN 2022140458 W CN2022140458 W CN 2022140458W WO 2023125168 A1 WO2023125168 A1 WO 2023125168A1
Authority
WO
WIPO (PCT)
Prior art keywords
network element
terminal device
user plane
session management
management function
Prior art date
Application number
PCT/CN2022/140458
Other languages
English (en)
French (fr)
Inventor
李永翠
倪慧
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023125168A1 publication Critical patent/WO2023125168A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/12Setup of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/26Network addressing or numbering for mobility support

Definitions

  • the present application relates to the communication field, and in particular to a communication method and device.
  • the non-data center business of terminal equipment usually uses the local area network (5G local area network, 5G LAN) of the 5G network, and the 5G LAN can provide local area network or virtual private network (virtual private network, VPN) network services for enterprises.
  • the non-data center service usually refers to the situation that the terminal equipment communicates through the tunnel between the user plane function (user plane function, UPF) network elements.
  • 5G LAN can support unicast, multicast and broadcast. Interaction between network elements of user plane function (UPF) can be realized by dynamically creating N19 interfaces across UPF network elements. The N19 interface is controlled by the SMF network element and can be created or deleted as required.
  • UPF user plane function
  • 5G LAN supports the division of different virtual network (VN) groups, subdivides enterprise subnets, and assigns group identifiers to terminal devices in subnets. The terminal device can implement interactive communication within the group according to the group identifier.
  • VN virtual network
  • the current 5G LAN communication method also has some shortcomings.
  • terminal devices must be assigned groups and group identifiers in advance to achieve communication.
  • the communication objects and communication methods are relatively fixed, and flexible and dynamic deployment cannot be realized. Terminals that do not belong to the same group Devices cannot communicate with each other. Therefore, the industry urgently needs a more flexible communication method applied to non-data center service communication of terminal equipment.
  • the present application provides a communication method and device, which can improve the flexibility and efficiency of non-data center business communication.
  • a communication method including: a first SMF network element acquires an Internet Protocol IP address of a second terminal device, and the second terminal device is a peer device to be communicated with by the first terminal device; An SMF network element determines the second user plane function UPF network element corresponding to the IP address of the second terminal device; the first SMF network element establishes a tunnel between the first UPF network element and the second UPF network element, wherein , the first UPF network element is a UPF network element corresponding to the first terminal device.
  • the first SMF network element can establish a tunnel between the first UPF network element and the second UPF network element under the condition of obtaining the IP address of the second terminal device, so as to realize For non-data center business communication between the first terminal device and the second terminal device, the terminal devices do not need to communicate through group identification, which can realize flexible and dynamic communication, thereby improving the flexibility and efficiency of non-data center business communication .
  • the acquiring the IP address of the second terminal device by the first SMF network element includes: receiving, by the first SMF network element, session modification request information sent by the first terminal device,
  • the session modification request information includes the IP address of the second terminal device.
  • the first terminal device can carry the IP address of the second terminal device in the session modification request information, so as to facilitate the first SMF network element to establish a tunnel between UPF network elements, so as to realize non-contact communication between the first terminal device and the peer device.
  • terminal devices do not need to communicate through group identification, thereby improving the flexibility and efficiency of non-data center business communication.
  • the method before the first SMF network element receives the session modification request information sent by the first terminal device, the method further includes: sending the first SMF network element to the The first terminal device sends first indication information, where the first indication information is used to instruct the first terminal device to initiate a session modification procedure and carry a destination address before communicating with the peer device.
  • the first SMF network element may send the first indication information to the first terminal device to instruct the first terminal device to send the IP address of the peer device to the first SMF network element before communicating with the peer device, so that the first SMF network To establish a tunnel between UPF network elements to realize non-data center business communication between the first terminal device and the peer device, the terminal devices do not need to communicate through group identification, thereby improving the flexibility of non-data center business communication sex and efficiency.
  • the first SMF network element sending the first indication information to the first terminal device includes: the first SMF network element determines that the first terminal device In the case of accessing the network through a satellite device, sending the first indication information to the first terminal device.
  • the acquiring the IP address of the second terminal device by the first SMF network element includes: receiving, by the first SMF network element, the data notification sent by the first UPF network element information, the data notification information is used to indicate that the destination address of the uplink packet of the first terminal device is the IP address of the second terminal device.
  • the method before the first SMF network element receives the data notification information sent by the first UPF network element, the method further includes: sending the first SMF network element to The first UPF network element sends second indication information, and the second indication information is used to instruct the first UPF network element to send the first UPF network element to the first UPF network element after receiving the uplink message sent by the first terminal device The SMF network element reports the destination address of the uplink message.
  • the first UPF can send the second indication information to the first SMF network element through the data notification information, to indicate the destination address of the first UPF to send the uplink message to the first SMF network element when receiving the uplink message, so as to facilitate the SMF network
  • the terminal devices do not need to communicate through group identifiers, which can realize flexible and dynamic communication, thereby improving It improves the flexibility and efficiency of non-data center business communication.
  • the first SMF network element sends the second indication information to the first UPF network element, including: the first SMF network element determines that the first terminal When the device accesses the network through a satellite device, send the second indication information to the first UPF network element.
  • the first SMF network element can send the second indication information to the first UPF to instruct the first UPF to send the destination address of the uplink message to the first SMF network element when receiving the uplink message, so as to facilitate the establishment of the UPF network by the SMF network element.
  • the tunnel between elements can realize the non-data center business communication between the first terminal device and the peer device, and the terminal devices do not need to communicate through the group identification, which can realize flexible and dynamic communication, thus improving the non-data center Flexibility and efficiency in business communications.
  • the first SMF network element establishing a tunnel between the first UPF network element and the second UPF network element includes: sending the first SMF network element to the second UPF network element Two UPF network elements send the first tunnel establishment request information, the first tunnel establishment request information includes the tunnel information of the first UPF network element; the first SMF network element sends the first UPF network element to the first UPF network element Two tunnel establishment request information, where the second tunnel establishment request information includes tunnel information of the second UPF network element.
  • the method further includes: the first SMF network element saves the tunnel of the first UPF network element during the session establishment process initiated by the first terminal device Information; the first SMF network element obtains the tunnel information of the second UPF network element through the second SMF network element, and the second SMF network element is used to save during the session establishment process initiated by the second terminal device Tunnel information of the second UPF network element.
  • a communication method including: the first terminal device determines that the first preset condition is met, and the first preset condition includes at least one of the following: the first terminal device receives the first SMF network element The first instruction information sent, the first instruction information is used to instruct the first terminal device to initiate a session modification process before communicating with the peer device and carry the destination address; the first terminal device determines that it is accessing through the satellite device Network: the first terminal device sends session modification request information to the first SMF network element, and the session modification request information includes the IP address of the second terminal device.
  • the first terminal device receives the first indication information to instruct the first terminal device to send the IP address of the peer device to the first SMF network element before communicating with the peer device, so that the first SMF network element can establish a UPF between network elements tunnel to realize non-data center business communication between the first terminal device and the peer device, the terminal devices do not need to communicate through group identifiers, and can realize flexible and dynamic communication, thereby improving the non-data center business communication Flexibility and efficiency.
  • a communication method including: a first UPF network element receives an uplink message sent by a first terminal device; the first UPF network element sends data notification information to a first SMF network element, and the data The notification information is used to indicate that the destination address of the uplink message is the Internet Protocol IP address of the second terminal device.
  • the first UPF receives the second indication information to instruct the first UPF to send the destination address of the uplink message to the first SMF network element when receiving the uplink message, so as to facilitate the first SMF network element to establish a tunnel between UPF network elements , in order to realize the non-data center business communication between the first terminal device and the peer device, the terminal devices do not need to communicate through group identification, and can realize flexible and dynamic communication, thereby improving the flexibility of non-data center business communication and efficiency.
  • the method before the first UPF network element sends data notification information to the first SMF network element, the method further includes: the first UPF network element receives the first SMF network element The second instruction information sent by a SMF network element, the second instruction information is used to instruct the first UPF network element to send the first SMF network element to the first SMF network element after receiving the uplink message sent by the first terminal device The unit reports the destination address of the uplink message.
  • a communication device in a fourth aspect, includes a module for performing the method in the above-mentioned first aspect or any possible implementation manner of the first aspect, or includes a module for performing the above-mentioned third aspect or the third aspect A module of methods in any possible implementation of .
  • a terminal device in a fifth aspect, includes a module for performing the method in the second aspect above.
  • a communication device includes a communication interface and a processor, the processor is used to call a computer program from a memory, and when the computer program is executed, the processor is used to execute the above-mentioned first aspect or the first A method in any possible implementation manner of an aspect, or used for performing the above third aspect or a method in any possible implementation manner of the third aspect.
  • a terminal device in a seventh aspect, includes a communication interface and a processor, the processor is used to call a computer program from a memory, and when the computer program is executed, the processor is used to execute the above-mentioned second aspect method.
  • a computer-readable storage medium for storing a computer program
  • the computer program includes codes for executing the method in the above-mentioned first aspect or any possible implementation manner of the first aspect, or includes using The code for executing the method of the above-mentioned second aspect, or the code for executing the method of the above-mentioned third aspect or any possible implementation manner of the third aspect.
  • a computer program product including a computer program, and the computer program includes a program for executing the above-mentioned first aspect, any possible implementation of the first aspect, the second aspect, the third aspect, or the third aspect The code for the method in any possible implementation.
  • FIG. 1 is a schematic diagram of a 5G communication architecture according to an embodiment of the present application.
  • Fig. 2 is a schematic diagram of a satellite access scenario according to an embodiment of the present application.
  • Fig. 3 is a schematic diagram of an application scenario according to an embodiment of the present application.
  • Fig. 4 is a schematic diagram of a process of establishing a session initiated by a terminal device according to an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of a communication method according to an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of a communication method according to an embodiment of the present application.
  • FIG. 7 is a schematic flowchart of a communication method according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a device 800 according to an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a terminal device 900 according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a device 1000 according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a device 1100 according to an embodiment of the present application.
  • the technical solution of the embodiment of the present application can be applied to various communication systems, such as: Global System of Mobile communication (Global System of Mobile communication, GSM) system, code division multiple access (Code Division Multiple Access, CDMA) system, broadband code division multiple access (Wideband Code Division Multiple Access, WCDMA) system, General Packet Radio Service (GPRS), Long Term Evolution (LTE) system, LTE Frequency Division Duplex (FDD) system, LTE Time Division Duplex (TDD), Universal Mobile Telecommunication System (UMTS), Worldwide Interoperability for Microwave Access (WiMAX) communication system, the future fifth generation (5th Generation, 5G) system or New Radio (New Radio, NR), etc.
  • GSM Global System of Mobile communication
  • CDMA code division multiple access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for
  • the terminal equipment in the embodiment of the present application may refer to user equipment, access terminal, user network element, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device.
  • the terminal device can also be a cellular phone, a cordless phone, a session initiation protocol (Session Initiation Protocol, SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital processing (Personal Digital Assistant, PDA), with wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, terminal devices in the future 5G network or future evolution of the public land mobile network (Public Land Mobile Network, PLMN)
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • FIG. 1 is a schematic diagram of a 5G communication architecture according to an embodiment of the present application.
  • the 5G communication architecture mainly includes the following logical network elements: radio access network (radio access network, RAN), access and mobility management function (access and mobility management function, AMF) network element, session management function (session management function (SMF) network element, user plane function (UPF) network element, policy control function (policy control function, PCF) network element, unified data management (unified data management, UDM) network element, application function ( application function, AF) network element, data network (data network, DN).
  • radio access network radio access network
  • AMF access and mobility management function
  • SMF session management function
  • UPF user plane function
  • policy control function policy control function
  • PCF policy control function
  • UDM unified data management
  • application function application function, AF
  • data network data network
  • the RAN refers to a device that provides wireless access for terminal devices.
  • the RAN typically includes base stations.
  • the embodiment of the present application does not limit the type of the base station.
  • the above-mentioned base station may be an evolved base station (evolutionalNodeB, eNB or eNodeB) in an LTE system, or a wireless controller in a cloud radio access network (cloud radio access network, CRAN) scenario, or a wireless controller in a 5G network base station etc.
  • the RAN can provide satellite access to terminal devices. According to the functions of the satellite, RAN and UPF network elements can be set in the satellite.
  • the UPF network element set in the satellite may also be referred to as the UPF on-satellite.
  • FIG. 2 shows a schematic diagram of a satellite access scenario according to an embodiment of the present application.
  • RAN and UPF network elements can be deployed on satellites, and terminal devices access the network through satellites.
  • AMF network elements, SMF network elements and other network elements are set on the ground.
  • the AMF network element is mainly responsible for the mobility management in the mobile network. For example, user location update, user registration network, user switching, etc.
  • the SMF network element is mainly responsible for session management in the mobile network, for example, session establishment, modification, release, etc.
  • the SMF network element can be used to allocate an Internet protocol (internet protocol, IP) address for the user, or select a UPF network element that provides a message forwarding function, etc.
  • IP Internet protocol
  • PCF network elements are mainly responsible for providing policies to AMF network elements and SMF network elements, such as QoS policies and network slice selection policies.
  • the UDM network element mainly stores user data, such as subscription information, authentication/authorization information, and the like.
  • the AF network element is mainly responsible for providing services to the 3rd Generation Partnership Project (3rd Generation Partnership Project, 3GPP) network, such as service routing, or interacting with the PCF for policy control, etc.
  • 3rd Generation Partnership Project 3rd Generation Partnership Project
  • the UPF network element is mainly responsible for processing user packets, for example, forwarding and charging.
  • the DN is an operator network that provides data transmission services for users.
  • the DN may include Internet Protocol Multi-media Service (IMS), the Internet, and the like.
  • IMS Internet Protocol Multi-media Service
  • the terminal device can access the DN by establishing a session between the terminal device, the UPF network element and the DN.
  • the 5G communication architecture may further include a network repository function (network repository function, NRF) network element for realizing network element discovery.
  • NRF network repository function
  • the 5G communication architecture may also include a network exposure function (network exposure function, NEF) network element, which is used to realize information exposure and information conversion.
  • NEF network exposure function
  • each communication interface As shown in Figure 1, in the 5G communication architecture, there are common definitions for the communication interfaces between different network elements.
  • the definition of each communication interface is as follows:
  • N1 interface the interface between the terminal equipment and the AMF network element.
  • N2 interface the interface between the RAN and the AMF network element.
  • N3 interface the interface between the RAN and the UPF network element.
  • N4 interface the interface between the UPF network element and the SMF network element.
  • N5 interface the interface between the PCF network element and the AF network element.
  • N6 interface the interface between the UPF network element and the DN.
  • N7 interface the interface between the SMF network element and the PCF network element.
  • N8 interface the interface between the AMF network element and the UDM network element.
  • N10 interface the interface between the UDM network element and the SMF network element.
  • N11 interface the interface between the AMF network element and the SMF network element.
  • FIG. 1 is only used as an example to introduce a possible application environment of the solution of the present application.
  • Those skilled in the art can understand that the embodiment of the present application can be applied to FIG. 1 or a communication architecture similar to FIG. 1 .
  • the communication architecture obtained by making appropriate deformations and changes on the basis of the communication architecture in FIG. 1 is still applicable to the solution of the embodiment of the present application.
  • FIG. 3 is a schematic diagram of an application scenario of an embodiment of the present application.
  • Figure 3 shows a communication scenario of non-data center services between terminal devices.
  • the non-data center service refers to the situation in which terminal devices directly communicate with each other through the UPF network elements without accessing the DN.
  • the first terminal device may initiate a session establishment procedure to establish a user plane connection with the first RAN and the first UPF network element.
  • the second terminal device may establish a user plane connection with the second RAN and the second UPF network element.
  • a tunnel connection needs to be established between the first UPF network element and the second UPF network element, so as to realize non-data center service communication between two terminal devices.
  • the communication interface between UPF network elements is called N19 interface. It can be understood that the communication interface between UPF network elements may also be called an Nx interface, which is not limited in this application.
  • first UPF network element and the second UPF network element corresponding to different SMF network elements are used as an example for description. It should be understood that, in some examples, the first UPF network element and the second UPF network element may also correspond to the same SMF network element.
  • information exchange can be performed between different SMF network elements.
  • SMF network elements can communicate directly or indirectly.
  • different SMF network elements can also exchange information through UDM.
  • UDM can be understood that different SMF network elements can also exchange information through NEF or NRF, which is not limited in the present invention.
  • sending information between two devices may refer to sending information directly, or may refer to sending information indirectly through an intermediary device.
  • Fig. 4 is a schematic diagram of a process of establishing a session initiated by a terminal device according to an embodiment of the present application.
  • the session establishment process includes the following steps.
  • S401-S404 are used to illustrate that the terminal device initiates a session establishment process.
  • S405-S410 are used to illustrate establishing an uplink path, that is, establishing an uplink tunnel connection between a base station and a UPF network element.
  • S411-S412 are used to illustrate establishing a downlink path, that is, establishing a downlink tunnel connection between a base station and a UPF network element.
  • the terminal device sends an access network (access network, AN) message to the RAN.
  • access network access network, AN
  • the AN message is used to transmit air interface parameters and a non-access stratum (non-access stratum, NAS) message.
  • NAS non-access stratum
  • the RAN selects an AMF network element, and sends an N2 message to the AMF network element.
  • the N2 message is used to transfer N2 interface parameters and NAS information.
  • the AMF network element sends a session management context creation request message to the SMF network element.
  • the SMF network element sends a session management context creation response message to the AMF network element.
  • the SMF network element selects the UPF network element.
  • the selected UPF network element refers to the UPF corresponding to the satellite accessed by the terminal device.
  • the SMF network element sends an N4 session establishment request message to the selected UPF network element.
  • the N4 establishment request message includes the tunnel information of the UPF network element.
  • the UPF network element sends an N4 session establishment response message to the SMF network element.
  • the SMF network element sends a session establishment acceptance message to the AMF network element.
  • the AMF network element sends an N2 session request message to the RAN.
  • the N2 session request message includes the NAS message.
  • the NAS message contains a Session Establishment Accept message.
  • the RAN configures air interfaces between terminal devices.
  • the RAN may forward the session establishment acceptance message to the terminal device.
  • the RAN sends an N2 session response message to the AMF network element.
  • the N2 session response message includes AN tunnel information.
  • the AMF network element sends the AN tunnel information to the SMF network element, and the SMF network element updates the tunnel connection between the protocol data unit session anchor (PDU session anchor, PSA) and the RAN.
  • PDU session anchor PDU session anchor
  • the SMF network element can save the tunnel information of the UPF network element.
  • the current 5G LAN communication method has the problem of relatively fixed communication objects and communication methods, and cannot achieve flexible and dynamic deployment.
  • Terminal devices must be assigned groups and group IDs in advance to achieve communication.
  • the embodiment of the present application proposes a more flexible communication mode, which can realize non-data center service communication between terminal devices without assigning group identifiers to terminal devices.
  • FIG. 5 is a schematic flowchart of a communication method according to an embodiment of the present application. As shown in FIG. 5, the method includes S501-S503.
  • the first SMF network element acquires the IP address of the second terminal device, where the second terminal device is a peer device to be communicated with by the first terminal device.
  • the manner in which the first SMF network element obtains the IP address of the second terminal device may include the following two manners.
  • the first SMF network element receives the session modification request information sent by the first terminal device, and the session modification request information includes the IP address of the second terminal device. That is, before communicating with the second terminal device, the first terminal device may initiate a session modification process, and send the IP address of the second terminal device to the first SMF network element during the session modification process.
  • the first terminal device may send the session modification request information to the first SMF network element when the first preset condition is met.
  • the first preset condition includes at least one of the following: the first terminal device receives first indication information sent by the first SMF network element, and the first indication information is used to indicate that the first terminal device is communicating with the peer device Initiate a session modification process before communication and carry a destination address; the first terminal device determines that it accesses the network through a satellite device.
  • the first SMF network element before the first SMF network element receives the session modification request information sent by the first terminal device, the first SMF network element sends the first indication information to the first terminal device.
  • the first SMF network element may pre-instruct the first terminal device to carry the IP address of the second terminal device in the session modification request information.
  • the first SMF network element may send the first indication information when the current state of the first terminal device meets a preset condition. For example, the first SMF network element sends the first indication information to the first terminal device when it is determined that the first terminal device accesses the network through the satellite device. In other words, the first SMF network element may determine whether the first UPF network element belongs to satellite equipment, and if it belongs to satellite equipment, send the first indication information. If it does not belong to satellite equipment, the first indication information is not sent. As an example, the first SMF network element determines that the first terminal device accesses the network through the satellite device according to the access type sent by the AMF network element. It can also be understood that the communication method in the embodiment of the present application can be implemented for a satellite scenario.
  • the above-mentioned first terminal device accessing the network through a satellite device may refer to a situation where the RAN is set on a satellite, or may also refer to a situation where both the RAN and the UPF network elements are set on a satellite.
  • the first SMF network element may also send the first indication information when it is determined that the first terminal device belongs to the range allowing direct communication through the tunnel between UPF network elements, that is, the terminal device is allowed to access non-data center services. For example, when the first SMF network element determines according to the subscription data that the first terminal device is allowed to access the non-data center service, it sends the first indication information to the first terminal device. For another example, when the first SMF network element determines that the first terminal device accesses non-data center services according to the data network name (data network name, DNN) accessed by the first terminal device, the first SMF network element sends the first SMF network element to the first terminal device. Instructions.
  • the foregoing first indication information may be sent during a session establishment process initiated by the first terminal device.
  • the first indication information may be included in the session establishment acceptance message.
  • the session establishment acceptance message is sent by the first SMF network element to the AMF, then sent by the AMF to the RAN, and then sent by the RAN to the first terminal device.
  • the first indication information may also be sent during the service request process initiated by the first terminal device.
  • the service request process is used to restore the user plane connection between the terminal equipment, RAN, and UPF network elements.
  • the first indication information may be included in the service acceptance message sent by the SMF network element.
  • the first indication information may also be carried in other messages sent by the first SMF network element, which is not limited in this embodiment of the present application.
  • the first SMF network element receives the data notification message sent by the first UPF network element, and the data notification message is used to indicate that the destination address of the uplink message of the first terminal device is the IP address of the second terminal device . That is, after receiving the uplink message of the first terminal device, the first UPF network element may send the destination address of the uplink message, that is, the IP address of the second terminal device, to the first SMF network element.
  • the first SMF network element before the first SMF network element receives the data notification message sent by the first UPF network element, the first SMF network element sends second indication information to the first UPF network element, and the second indication information is used to indicate that the first UPF network element After receiving the uplink message sent by the first terminal device, the element reports the destination address of the uplink message to the first SMF network element.
  • the first SMF network element may send the second indication information when the current state of the first terminal device meets a preset condition. For example, the first SMF network element sends the second indication information to the first terminal device when it is determined that the first terminal device accesses the network through the satellite device. In other words, the first SMF network element may determine whether the first UPF network element belongs to satellite equipment, and if it belongs to satellite equipment, send the second indication information. If it does not belong to satellite equipment, the second indication information is not sent. As an example, the first SMF network element determines that the first terminal device accesses the network through the satellite device according to the access type sent by the AMF network element. It can also be understood that the communication method in the embodiment of the present application can be implemented for a satellite scenario.
  • the first SMF network element may also send the second indication information when it is determined that the first terminal device belongs to the range allowing direct communication through the tunnel between UPF network elements, that is, the terminal device is allowed to access non-data center services.
  • the first SMF network element determines to allow the first terminal device to access the non-data center service according to the subscription data, it sends the second indication information to the first UPF network element.
  • the first SMF network element determines that the first terminal device accesses non-data center services according to the data network name (data network name, DNN) accessed by the first terminal device, it sends the second indication information to the first UPF network element.
  • the above second indication information may be carried in the N4 modification request message sent by the first SMF network element to the UPF network element.
  • the N2 session management message sent by the first SMF network element to the RAN may also carry the N4 message, and the N4 message carries the first 2. Instructions.
  • the second indication information may also be carried in other messages sent by the first SMF network element to the first UPF network element, which is not limited in this embodiment of the present application.
  • the first terminal device has obtained the IP address of the second terminal device in advance, and no limitation is imposed on the manner in which the first terminal device obtains the IP address of the second terminal device.
  • the first SMF network element determines a second UPF network element corresponding to the IP address of the second terminal device.
  • the SMF network element may save the correspondence between the UPF network element and the IP address of the terminal device. Therefore, the SMF network element can determine its corresponding second UPF network element according to the IP address of the second terminal device.
  • the first SMF network element can be determined by searching its own data (that is, the correspondence between the IP of the terminal device and the UPF network element) The second UPF network element. If the first UPF network element and the second UPF network element correspond to different SMF network elements, the first SMF network element may determine the second UPF network element by interacting with other SMF network elements. Specifically, the first SMF network element first determines the second SMF network element corresponding to the second terminal device, and then the first SMF interacts with the second SMF. Specifically, the UDM, NRF, or NEF stores the correspondence between the IP of the terminal device and the SMF network element, and the first SMF network element can determine the SMF corresponding to the second terminal device by querying the UDM, NRF, or NEF.
  • the first SMF network element establishes a tunnel between the first UPF network element and the second UPF network element, where the first UPF network element is a UPF network element corresponding to the first terminal device.
  • the above process of establishing a tunnel may include: the first SMF network element sends the first tunnel establishment request information to the second UPF network element, and the first tunnel establishment request information includes the tunnel information of the first UPF network element; the first The SMF network element sends second tunnel establishment request information to the first UPF network element, and the second tunnel establishment request information includes tunnel information of the second UPF network element.
  • different names may be used for the above tunnel establishment request information, for example, N4 session modification request, N4 session establishment request, and the like.
  • the first SMF network element may send the first Tunnel establishment request information.
  • the above process of establishing a tunnel may include: the first SMF sends the tunnel information of the first UPF network element to the second UPF through the second SMF A network element: the second SMF network element sends the tunnel information of the second UPF network element to the first UPF network element through the first SMF network element.
  • the SMF network element can obtain the tunnel information of the UPF network element during the session establishment process initiated by the terminal device, so as to use the tunnel information of the UPF network element to establish a tunnel between the UPF network elements in the subsequent process, that is, the N19 interface corresponds to user plane connections.
  • the SMF network element can also obtain the tunnel information of the UPF network element during the session modification process.
  • the SMF network element may obtain the tunnel information of the UPF network element in other processes.
  • the first SMF network element stores the tunnel information of the first UPF network element during the session establishment process initiated by the first terminal device; the second SMF network element The network element saves the tunnel information of the second UPF network element during the session establishment process initiated by the second terminal device.
  • the first SMF network element obtains the tunnel information of the second UPF network element through the second SMF network element; the second SMF network element obtains the tunnel information of the first UPF network element through the first SMF network element.
  • the first SMF network element and the second SMF network element may be the same SMF network element.
  • a non-data center service communication method between terminal devices is provided.
  • the SMF obtains the IP address of the second terminal device, and triggers the establishment of a communication between the first UPF network element and the second UPF network element. Tunnel to realize non-data center business communication between the first terminal device and the second terminal device. Terminal devices do not need to communicate through group identifiers, which can realize flexible and dynamic communication, thereby improving the efficiency of non-data center business communication. Flexibility and efficiency.
  • FIG. 6 is a schematic flowchart of a communication method according to an embodiment of the present application. As shown in FIG. 6, the method includes S601-S606.
  • the first terminal device and the second terminal device respectively initiate a session establishment process, wherein the first SMF network element sends the first indication information to the first terminal device, and the second SMF network element sends the first indication information to the second terminal device .
  • the first terminal device establishes a user plane connection between the first terminal device, the first RAN, and the first UPF network element.
  • the second terminal device establishes a user plane connection among the second terminal device, the second RAN, and the second UPF network element.
  • RAN and UPF network elements can be deployed on satellites.
  • the first SMF network element may save the N19 tunnel information of the first UPF network element.
  • the second SMF network element may save the N19 tunnel information of the second UPF network element.
  • the first SMF network element may send the first indication information to the first terminal device to instruct the first terminal device to initiate a session modification process before communicating with the peer device, and to The IP address is sent to the first SMF network element, so as to trigger the first SMF network element to establish an N19 tunnel connection between UPF network elements.
  • the second SMF network element may send the first indication information to the second terminal device to instruct the second terminal device to initiate a session modification process before communicating with the peer device, and send The IP address of the opposite end is sent to the second SMF network element.
  • the first SMF network element sends the first indication information when the current state of the first terminal device meets a preset condition. For example, in the case that the first UPF network element accessed by the first terminal device belongs to the satellite device. In other words, the first SMF network element sends the first indication information to the first terminal device when the first terminal device accesses the network through the satellite.
  • the first SMF network element may also send the first indication information to the first terminal device when it is determined according to the subscription data that the first terminal device is allowed to access the non-data center service. For another example, when the first SMF network element determines that the first terminal device accesses non-data center services according to the DNN accessed by the first terminal device, it sends the first indication information to the first terminal device.
  • the first terminal device Before communicating with the second terminal device, the first terminal device sends session modification request information to the first SMF network element, and the session modification request information includes the IP address of the second terminal device.
  • the first SMF network element determines the second UPF network element according to the IP address of the second terminal device.
  • the first SMF network element sends an N4 session modification request message to the first UPF network element, and the N4 session modification request message includes N19 tunnel information of the second UPF network element.
  • the first SMF network element may acquire the N19 tunnel information of the second UPF network element from the second SMF network element in a direct or indirect manner.
  • the first SMF network element sends a session modification response message to the first terminal device.
  • the first SMF network element sends an N4 session modification request message to the second UPF network element through the second SMF network element, and the N4 session modification request message includes N19 tunnel information of the first UPF network element.
  • a non-data center service communication method between terminal devices is provided, and the first SMF network element may send first indication information to the first terminal device to indicate that the first terminal device is communicating with the corresponding
  • the end device sends the IP address of the peer device to the first SMF network element before communicating, so that the first SMF network element can establish a tunnel between UPF network elements to realize the non-data center between the first terminal device and the peer device
  • terminal devices do not need to communicate through group identification, and can realize flexible and dynamic communication, thereby improving the flexibility and efficiency of non-data center business communication.
  • FIG. 7 is a schematic flowchart of a communication method according to an embodiment of the present application. As shown in FIG. 7, the method includes S701-S706.
  • the first terminal device and the second terminal device respectively initiate a session establishment process, wherein the first SMF network element sends the second indication information to the first UPF network element, and the second SMF network element sends the second instruction information to the second UPF network element. Instructions.
  • the first terminal device establishes a user plane connection between the first terminal device, the first RAN, and the first UPF network element.
  • the second terminal device establishes a user plane connection among the second terminal device, the second RAN, and the second UPF network element.
  • the RAN and UPF network elements are deployed on satellites.
  • the first SMF network element saves the N19 tunnel information of the first UPF network element.
  • the second SMF network element may save the N19 tunnel information of the second UPF network element.
  • the first SMF network element may send the second indication information to the first UPF network element to instruct the first UPF network element to send the first SMF network element
  • the network element sends a data notification message to trigger the first SMF network element to establish the N19 tunnel connection between the UPF network elements.
  • the second indication information may be used to instruct the first UPF network element to send a data notification message to the first SMF network element when it determines that there is no N19 tunnel corresponding to the uplink message after receiving the uplink message. Or, after the first UPF network element determines that the N19 tunnel has been established between itself and the second UPF network element, after receiving the subsequent uplink message, it may not need to continue sending the data notification message to the first SMF network element.
  • the first SMF network element when the first SMF network element determines that the N19 tunnel between the first UPF network element and the second UPF network element has been established, it may send third indication information to the first UPF network element, and the third The instruction information is used to instruct the first UPF network element to send the uplink message between the first terminal device and the second terminal device through the established N19 tunnel.
  • the first SMF network element sends the second indication information when the current state of the first terminal device meets a preset condition. For example, in the case that the first UPF network element accessed by the first terminal device belongs to the satellite device. In other words, the first SMF network element sends the second indication information to the first UPF network element when the first terminal device accesses the network through the satellite. In some examples, when the first SMF network element determines that the first terminal device is allowed to access the non-data center service according to the subscription data, it sends the second indication information to the first UPF network element. In some examples, the first SMF network element sends the second indication information to the first UPF network element when determining that the first terminal accesses non-data center services according to the name of the data network accessed by the first terminal device.
  • the first terminal device sends an uplink message to the first UPF network element through the RAN, and the destination address of the uplink message is the IP address of the second terminal device.
  • the first UPF network element After receiving the uplink message, the first UPF network element sends a data notification message to the first SMF network element according to the second indication information, so as to indicate the IP address of the second terminal device.
  • the first UPF network element determines that there is no N19 tunnel corresponding to the uplink message, and then sends a data notification message to the first SMF network element, and carries the IP address of the second terminal device.
  • the first SMF network element determines the second UPF network element according to the IP address of the second terminal device.
  • the first SMF network element sends an N4 session modification request message to the first UPF network element, and the N4 session modification request message includes N19 tunnel information of the second UPF network element.
  • the first terminal device and the second terminal device correspond to different SMF network elements
  • the first terminal device corresponds to the first SMF network element
  • the second terminal device corresponds to the second SMF network element
  • the first SMF The network element may obtain the N19 tunnel information of the second UPF network element from the second SMF network element directly or indirectly.
  • the first SMF network element may determine the second SMF network element corresponding to the second terminal device by querying the UDM, NRF or NEF, and then the first SMF network element interacts with the second SMF network element.
  • the first SMF network element sends an N4 session modification request message to the second UPF network element through the second SMF network element, and the N4 session modification request message includes N19 tunnel information of the first UPF network element.
  • a non-data center service communication method between terminal devices is provided.
  • the first SMF network element can send the second indication information to the first UPF to indicate that the first UPF receives the uplink report. Send the destination address of the uplink message to the first SMF network element at the time of writing, so that the SMF network element can establish a tunnel between the UPF network elements to realize the non-data center service communication between the first terminal device and the peer device, and the terminal Devices do not need to communicate through group identifiers, and can implement flexible and dynamic communication, thereby improving the flexibility and efficiency of non-data center business communication.
  • FIG. 8 is a schematic structural diagram of a device 800 according to an embodiment of the present application.
  • the apparatus 800 includes an acquisition module 810 , a determination module 820 and an establishment module 830 .
  • the apparatus 800 may be the first SMF network element in the foregoing embodiments, or may be a component (such as a chip) of the first SMF network element.
  • the apparatus 800 may implement the steps or processes corresponding to the execution of the first SMF network element in the above method embodiments. For the sake of brevity, details are not repeated here.
  • FIG. 9 is a schematic structural diagram of a terminal device 900 according to an embodiment of the present application.
  • the apparatus 900 includes a determining module 910 and a sending module 920 .
  • the terminal device 900 may be the first terminal device in the foregoing embodiments, or may be a component (such as a chip) of the first terminal device.
  • the terminal device 900 may implement the steps or procedures corresponding to the execution of the first terminal device in the above method embodiments. For the sake of brevity, details are not repeated here.
  • FIG. 10 is a schematic structural diagram of a device 1000 according to an embodiment of the present application.
  • the device 1000 includes a receiving module 1010 and a sending module 1020 .
  • the apparatus 1000 may be the first SMF network element in the foregoing embodiments, or may be a component (such as a chip) of the first SMF network element.
  • the apparatus 1000 may implement the steps or processes corresponding to the execution of the first SMF network element in the above method embodiments. For the sake of brevity, details are not repeated here.
  • Fig. 11 is a schematic block diagram of an apparatus 1100 provided in yet another embodiment of the present application.
  • the apparatus 1100 includes a processor 1110, and the processor 1110 is configured to execute computer programs or instructions stored in the memory 1120, or read data stored in the memory 1120, so as to execute the methods in the above method embodiments.
  • processors 1110 there are one or more processors 1110 .
  • the apparatus 1100 further includes a memory 1120 for storing computer programs or instructions and/or data.
  • the memory 1120 can be integrated with the processor 1110, or can also be set separately.
  • the apparatus 1100 further includes a communication interface 1130, and the communication interface 1130 is used for receiving and/or sending signals.
  • the processor 1110 is configured to control the communication interface 1130 to receive and/or send signals.
  • the apparatus 1100 is used to implement the operations performed by the first SMF network element in the foregoing method embodiments.
  • the processor 1110 is configured to execute the computer programs or instructions stored in the memory 1120, so as to implement related operations of the first SMF network element in each method embodiment above. For example, the method performed by the first SMF network element in the embodiments shown in FIGS. 5-7 .
  • the apparatus 1100 is used to implement the operations performed by the terminal device in each method embodiment above.
  • the processor 1110 is configured to execute computer programs or instructions stored in the memory 1120, so as to implement related operations of the terminal device in each of the above method embodiments. For example, the method executed by the terminal device in the embodiments shown in FIGS. 5-7 .
  • the apparatus 1100 is used to implement the operations performed by the first UPF network element in the above method embodiments.
  • the processor 1110 is configured to execute computer programs or instructions stored in the memory 1120, so as to implement related operations of the terminal device in each of the above method embodiments. For example, the method performed by the first UPF network element in the embodiments shown in FIGS. 5-7 .
  • the apparatus 1100 in FIG. 11 may be the vehicle-mounted device or terminal device in the foregoing embodiments, or may be a chip or a chip system, for example, a system on chip (system on chip, SoC). It is not limited here.
  • SoC system on chip
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the network elements is only a logical function division. In actual implementation, there may be other division methods.
  • multiple network elements or components can be Incorporation may either be integrated into another system, or some features may be omitted, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or network elements may be in electrical, mechanical or other forms.
  • the network element described as a separate component may or may not be physically separated, and the component displayed as a network element may or may not be a physical network element, that is, it may be located in one place, or may be distributed to multiple networks on the network element. Part or all of the network elements can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional network element in each embodiment of the present application may be integrated into one processing network element, each network element may exist separately physically, or two or more network elements may be integrated into one network element.
  • the functions are realized in the form of software function network elements and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disc and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种通信方法和装置,能够提高非数据中心业务通信的灵活性和效率。该方法包括:第一SMF网元获取第二终端设备的IP地址,第二终端设备为第一终端设备待通信的对端设备;第一SMF网元确定第二终端设备的IP地址对应的第二UPF网元;第一SMF网元建立第一UPF网元和第二UPF网元之间的隧道,其中,第一UPF网元为第一终端设备对应的UPF网元。

Description

通信方法和装置
本申请要求于2021年12月30日提交中国专利局、申请号为202111666076.4、申请名称为“通信方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及一种通信方法和装置。
背景技术
随着第五代移动通信技术(5th generation mobile communication technology,5G)网络的不断成熟,其越来越多地深入到垂直行业。终端设备的非数据中心业务通常使用5G网络的本地局域网(5G local area network,5G LAN),5G LAN可以为企业提供本地局域网或者虚拟专用网络(virtual private network,VPN)网络服务。其中,非数据中心业务通常指终端设备通过用户面功能(user plane function,UPF)网元之间的隧道进行通信的情况。
5G LAN可以支持单播、组播和广播等形式。对于跨用户面功能(user plane function,UPF)网元的交互,可以通过跨UPF网元动态创建N19接口来实现。N19接口由SMF网元控制,可以根据需要创建或者删除。在策略管理方面,5G LAN支持划分不同的虚拟网络(virtual network,VN)组,细分企业子网,并为子网内的终端设备分配组标识。终端设备可以根据组标识实现组内的交互通信。
但是目前的5G LAN通信方式也存在一些缺点,例如,终端设备必须提前分配组以及组标识才能实现通信,通信对象和通信方式比较固定,并不能实现灵活、动态的调配,不属于同一组的终端设备之间无法通信。因此,业界亟需一种应用于终端设备的非数据中心业务通信的更灵活的通信方式。
发明内容
本申请提供一种通信方法和装置,能够提高非数据中心业务通信的灵活性和效率。
第一方面,提供了一种通信方法,包括:第一SMF网元获取第二终端设备的互联网协议IP地址,所述第二终端设备为第一终端设备待通信的对端设备;所述第一SMF网元确定所述第二终端设备的IP地址对应的第二用户面功能UPF网元;所述第一SMF网元建立第一UPF网元和第二UPF网元之间的隧道,其中,所述第一UPF网元为所述第一终端设备对应的UPF网元。
提供了一种终端设备之间的通信方式,第一SMF网元可以在获取第二终端设备的IP地址的情况下,建立第一UPF网元和第二UPF网元之间的隧道,以实现第一终端设备和第二终端设备之间的非数据中心业务通信,终端设备之间无需通过组标识进行通信,可以实现灵活、动态的通信,从而提高了非数据中心业务通信的灵活性和效率。
结合第一方面,在一些可能的实现方式中,所述第一SMF网元获取第二终端设备的IP地址,包括:所述第一SMF网元接收第一终端设备发送的会话修改请求信息,所述会话修改请求信息中包括所述第二终端设备的IP地址。
第一终端设备可以通过会话修改请求信息中携带第二终端设备的IP地址,从而便于第一SMF网元建立UPF网元之间的隧道,以实现第一终端设备和对端设备之间的非数据中心业务通信,终端设备之间无需通过组标识进行通信,从而提高了非数据中心业务通信的灵活性和效率。
结合第一方面,在一些可能的实现方式中,在所述第一SMF网元接收第一终端设备发送的会话修改请求信息之前,所述方法还包括:所述第一SMF网元向所述第一终端设备发送第一指示信息,所述第一指示信息用于指示所述第一终端设备在与对端设备通信之前发起会话修改流程并携带目的地址。
第一SMF网元可以向第一终端设备发送第一指示信息,以指示第一终端设备在与对端设备通信之前向第一SMF网元发送对端设备的IP地址,从而便于第一SMF网元建立UPF网元之间的隧道,以实现第一终端设备和对端设备之间的非数据中心业务通信,终端设备之间无需通过组标识进行通信,从而提高了非数据中心业务通信的灵活性和效率。
结合第一方面,在一些可能的实现方式中,所述第一SMF网元向所述第一终端设备发送第一指示信息,包括:所述第一SMF网元在确定所述第一终端设备通过卫星设备访问网络的情况下,向所述第一终端设备发送所述第一指示信息。
结合第一方面,在一些可能的实现方式中,所述第一SMF网元获取第二终端设备的IP地址,包括:所述第一SMF网元接收所述第一UPF网元发送的数据通知信息,所述数据通知信息中用于指示所述第一终端设备的上行报文的目的地址为所述第二终端设备的IP地址。
结合第一方面,在一些可能的实现方式中,在所述第一SMF网元接收所述第一UPF网元发送的数据通知信息之前,所述方法还包括:所述第一SMF网元向所述第一UPF网元发送第二指示信息,所述第二指示信息用于指示所述第一UPF网元在接收到所述第一终端设备发送的上行报文之后,向所述第一SMF网元上报所述上行报文的目的地址。
第一UPF可以通过数据通知信息向第一SMF网元发送第二指示信息,以指示第一UPF在收到上行报文时向第一SMF网元发送上行报文的目的地址,从而便于SMF网元建立UPF网元之间的隧道,以实现第一终端设备和对端设备之间的非数据中心业务通信,终端设备之间无需通过组标识进行通信,可以实现灵活、动态的通信,从而提高了非数据中心业务通信的灵活性和效率。
结合第一方面,在一些可能的实现方式中,所述第一SMF网元向所述第一UPF网元发送第二指示信息,包括:所述第一SMF网元在确定所述第一终端设备通过卫星设备访问网络的情况下,向所述第一UPF网元发送所述第二指示信息。
第一SMF网元可以向第一UPF发送第二指示信息,以指示第一UPF在收到上行报文时向第一SMF网元发送上行报文的目的地址,从而便于SMF网元建立UPF网元之间的隧道,以实现第一终端设备和对端设备之间的非数据中心业务通信,终端设备之间无需通过组标识进行通信,可以实现灵活、动态的通信,从而提高了非数据中心业务通信的灵活性和效率。
结合第一方面,在一些可能的实现方式中,所述第一SMF网元建立第一UPF网元和第二UPF网元之间的隧道,包括:所述第一SMF网元向所述第二UPF网元发送第一隧道建立请求信息,所述第一隧道建立请求信息中包括所述第一UPF网元的隧道信息;所述第一SMF网元向所述第一UPF网元发送第二隧道建立请求信息,所述第二隧道建立请求信息中包括所述第二UPF网元的隧道信息。
结合第一方面,在一些可能的实现方式中,所述方法还包括:所述第一SMF网元在所述第一终端设备发起的会话建立过程中,保存所述第一UPF网元的隧道信息;所述第一SMF网元通过第二SMF网元获取所述第二UPF网元的隧道信息,所述第二SMF网元用于在所述第二终端设备发起的会话建立过程中保存所述第二UPF网元的隧道信息。
第二方面,提供了一种通信方法,包括:第一终端设备确定符合第一预设条件,所述第一预设条件包括以下至少一项:所述第一终端设备接收第一SMF网元发送的第一指示信息,所述第一指示信息用于指示所述第一终端设备在与对端设备通信之前发起会话修改流程并携带目的地址;所述第一终端设备确定其通过卫星设备访问网络;所述第一终端设备向所述第一SMF网元发送会话修改请求信息,所述会话修改请求信息中包括第二终端设备的IP地址。
第一终端设备接收第一指示信息,以指示第一终端设备在与对端设备通信之前向第一SMF网元发送对端设备的IP地址,从而便于第一SMF网元建立UPF网元之间的隧道,以实现第一终端设备和对端设备之间的非数据中心业务通信,终端设备之间无需通过组标识进行通信,可以实现灵活、动态的通信,从而提高了非数据中心业务通信的灵活性和效率。
第三方面,提供了一种通信方法,包括:第一UPF网元接收第一终端设备发送的上行报文;所述第一UPF网元向第一SMF网元发送数据通知信息,所述数据通知信息中用于指示所述上行报文的目的地址为第二终端设备的互联网协议IP地址。
第一UPF接收第二指示信息,以指示第一UPF在收到上行报文时向第一SMF网元发送上行报文的目的地址,从而便于第一SMF网元建立UPF网元之间的隧道,以实现第一终端设备和对端设备之间的非数据中心业务通信,终端设备之间无需通过组标识进行通信,可以实现灵活、动态的通信,从而提高了非数据中心业务通信的灵活性和效率。
结合第三方面,在一些可能的实现方式中,在所述第一UPF网元向第一SMF网元发送数据通知信息之前,所述方法还包括:所述第一UPF网元接收所述第一SMF网元发送的第二指示信息,所述第二指示信息用于指示所述第一UPF网元在接收到所述第一终端设备发送的上行报文之后,向所述第一SMF网元上报所述上行报文的目的地址。
第四方面,提供了一种通信装置该通信设备包括用于执行上述第一方面或第一方面的任意可能的实现方式中的方法的模块,或者包括用于执行上述第三方面或第三方面的任意可能的实现方式中的方法的模块。
第五方面,提供了一种终端设备,该终端设备包括用于执行上述第二方面的方法的模块。
第六方面,提供了一种通信装置,该设备包括通信接口和处理器,该处理器用于从存储器调用计算机程序,当所述计算机程序被执行时,该处理器用于执行上述第一方面或第一方面的任意可能的实现方式中的方法,或者用于执行上述第三方面或第三方面的任意可 能的实现方式中的方法。
第七方面,提供了一种终端设备,该终端设备包括通信接口和处理器,该处理器用于从存储器调用计算机程序,当所述计算机程序被执行时,该处理器用于执行上述第二方面的方法。
第八方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序包括用于执行上述第一方面或第一方面的任意可能的实现方式中的方法的代码,或者包括用于执行上述第二方面的方法的代码,或者包括用于执行上述第三方面或第三方面的任意可能的实现方式中的方法的代码。
第九方面,提供了一种计算机程序产品,包括计算机程序,该计算机程序包括用于执行上述第一方面、第一方面的任意可能的实现方式、第二方面、第三方面或第三方面的任意可能的实现方式中的方法的代码。
附图说明
图1是本申请一实施例的5G通信架构的示意图。
图2是本申请一实施例的卫星接入的场景示意图。
图3是本申请一实施例的应用场景的示意图。
图4是本申请一实施例的终端设备的发起会话建立流程的示意图。
图5是本申请一实施例的通信方法的流程示意图。
图6是本申请一实施例的通信方法的具体流程示意图。
图7是本申请一实施例的通信方法的具体流程示意图。
图8是本申请一实施例的装置800的结构示意图。
图9是本申请一实施例的终端设备900的结构示意图。
图10是本申请一实施例的装置1000的结构示意图。
图11是本申请一实施例的装置1100的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统、未来的第五代(5th Generation,5G)系统或新无线(New Radio,NR)等。
本申请实施例中的终端设备可以指用户设备、接入终端、用户网元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital  Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的公用陆地移动通信网络(Public Land Mobile Network,PLMN)中的终端设备等,本申请实施例对此并不限定。
图1是本申请一实施例的5G通信架构的示意图。如图1所示,5G通信架构主要包括以下逻辑网元:无线接入网络(radio access network,RAN)、接入和移动管理(access and mobility management function,AMF)网元、会话管理功能(session management function,SMF)网元、用户面功能(user plane function,UPF)网元、策略控制功能(policy control function,PCF)网元、统一数据管理(unified data management,UDM)网元、应用功能(application function,AF)网元、数据网络(data network,DN)。
RAN是指为终端设备提供无线接入的设备。RAN通常包括基站。本申请实施例对基站的类型不做限制。例如,上述基站可以是是LTE系统中的演进型基站(evolutionalNodeB,eNB或eNodeB),还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器,或者为5G网络中的基站等。
在一些示例中,RAN可以为终端设备提供卫星接入。根据卫星的功能进行划分,卫星中可以设置RAN和UPF网元。设置在卫星中的UPF网元也可以称为UPF上星。
例如,图2示出了本申请一实施例的卫星接入的场景示意图。如图2所示,可以在卫星上部署RAN和UPF网元,终端设备通过卫星接入网络。AMF网元、SMF网元等网元则设置于地面。
AMF网元主要负责移动网络中的移动性管理。例如,用户位置更新、用户注册网络以及用户切换等。
SMF网元主要负责移动网络中的会话管理,例如,会话建立、修改、释放等。作为具体示例,SMF网元可用于为用户分配互联网协议(internet protocol,IP)地址,或者选择提供报文转发功能的UPF网元等。
PCF网元主要负责向AMF网元、SMF网元提供策略,例如QoS策略、网络切片选择策略等。
UDM网元主要用户存储用户数据、例如,签约信息、鉴权/授权信息等。
AF网元主要负责向第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)网络提供业务,例如业务路由,或者与PCF之间进行交互以进行策略控制等。
UPF网元主要负责对用户报文进行处理,例如,转发、计费等。
DN是为用户提供数据传输服务的运营商网络。作为示例,DN可以包括互联网协议多媒体业务(internet protocol multi-media service,IMS)、互联网等。终端设备可通过建立终端设备到UPF网元到DN之间的会话,来访问DN。
在一些示例中,5G通信架构中还可以包括网络存储功能(network repository function,NRF)网元,用于实现网元发现。
在一些示例中,5G通信架构中还可以包括网络能力开放功能(network exposure function,NEF)网元,用于实现信息开放、信息转换。
如图1所示,5G通信架构中对不同网元之间的通信接口均有通用的定义。各通信接口的定义如下所示:
N1接口:终端设备与AMF网元之间的接口。
N2接口:RAN与AMF网元之间的接口。
N3接口:RAN与UPF网元之间的接口。
N4接口:UPF网元与SMF网元之间的接口。
N5接口:PCF网元与AF网元之间的接口。
N6接口:UPF网元与DN之间的接口。
N7接口:SMF网元与PCF网元之间的接口。
N8接口:AMF网元与UDM网元之间的接口。
N10接口:UDM网元与SMF网元之间的接口。
N11接口:AMF网元与SMF网元之间的接口。
应理解,图1中的通信架构仅仅作为例示介绍本申请方案的可能的应用环境。本领域技术人员能够理解,本申请实施例可应用于图1或与图1相似的通信架构中。在图1的通信架构的基础上所作的适当变形和改变所得到的通信架构,依然适用于本申请实施例的方案。
图3是本申请实施例的应用场景的示意图。图3显示了终端设备之间非数据中心业务的通信场景。其中,非数据中心业务是指终端设备之间通过UPF网元之间直接通信,而无需访问DN的情况。
如图3所示,在非数据中心业务通信场景下,为了实现第一终端设备和第二终端设备之间的通信。第一终端设备可以发起会话建立流程,以建立其与第一RAN、第一UPF网元之间的用户面连接。第二终端设备可以建立其与第二RAN以及第二UPF网元之间的用户面连接。第一UPF网元和第二UPF网元之间则需要建立隧道连接,从而实现两个终端设备之间的非数据中心业务通信。其中,UPF网元之间的通信接口称为N19接口。可以理解的是,UPF网元之间的通信接口也可以称为Nx接口,本申请不做限定。
另外需要说明的是,图3中以第一UPF网元和第二UPF网元对应于不同的SMF网元为例进行描述。应理解,在一些示例中,第一UPF网元和第二UPF网元也可以对应于同一SMF网元。
可选地,不同的SMF网元之间可以进行信息交互。例如,SMF网元之间可以直接通信或者间接通信。例如,不同的SMF网元之间也可以通过UDM交互信息。可以理解的是,不同的SMF网元之间也可以通过NEF或NRF交互信息,本发明对此不做限定。
还需说明的是,在本申请实施例中,两个设备之间发送信息,可以指直接发送信息,也可以指通过中介设备间接发送信息。
图4是本申请实施例的终端设备的发起会话建立流程的示意图。如图4所示,会话建立流程包括以下步骤。其中,S401~S404用于说明终端设备发起会话建立过程。S405~S410用于说明建立上行路径,即建立基站、UPF网元之间的上行隧道连接。S411~S412用于说明建立下行路径,即建立基站、UPF网元之间的下行隧道连接。
S401.终端设备向RAN发送接入网络(access network,AN)消息。
其中,AN消息用于传递空口参数以及非接入层(non-access stratum,NAS)消息。
S402.RAN选择AMF网元,并向AMF网元发送N2消息。
其中,N2消息用于传递N2接口参数以及NAS信息。
S403.AMF网元向SMF网元发送创建会话管理上下文请求消息。
S404.SMF网元向AMF网元发送创建会话管理上下文响应消息。
S405.SMF网元选择UPF网元。
在一些示例中,在卫星接入场景下,选择的UPF网元指的是终端设备接入的卫星对应的UPF。
S406.SMF网元向选择的UPF网元发送N4会话建立请求消息。
其中,N4建立请求消息中包括UPF网元的隧道信息。
S407.UPF网元向SMF网元发送N4会话建立响应消息。
S408.SMF网元向AMF网元发送会话建立接受消息。
S409.AMF网元向RAN发送N2会话请求消息。
其中,N2会话请求消息中包括NAS消息。NAS消息包含会话建立接受消息。
S410.RAN对终端设备之间进行空口配置。
在空口配置的过程中,RAN可以将会话建立接受消息转发给终端设备。
S411.RAN向AMF网元发送N2会话响应消息。
其中,N2会话响应消息中包括AN隧道信息。
S412.AMF网元将AN隧道信息发送至SMF网元,SMF网元更新协议数据单元会话锚点(protocol data unit session anchor,PDU session anchor,PSA)与RAN之间的隧道连接。
其中,SMF网元可以保存UPF网元的隧道信息。
如前文所述,目前的5G LAN通信方式存在通信对象和通信方式比较固定,并不能实现灵活、动态的调配的问题。终端设备必须提前分配组以及组标识才能实现通信。为了解决上述问题,本申请实施例提出了一种更灵活的通信方式,无需为终端设备分配组标识,也可以实现终端设备之间的非数据中心业务通信。
图5是本申请一实施例的通信方法的流程示意图。如图5所示,该方法包括S501~S503。
S501.第一SMF网元获取第二终端设备的IP地址,第二终端设备为第一终端设备待通信的对端设备。
可选地,第一SMF网元获取第二终端设备的IP地址的方式可以包括以下两种方式。
在第一种方式中,第一SMF网元接收第一终端设备发送的会话修改请求信息,会话修改请求信息中包括第二终端设备的IP地址。即第一终端设备在与第二终端设备通信之前,可以发起会话修改流程,并在会话修改流程中向第一SMF网元发送第二终端设备的IP地址。
可选地,对于第一终端设备来说,其可以在符合第一预设条件的情况下,向第一SMF网元发送会话修改请求信息。第一预设条件包括以下至少一项:所述第一终端设备接收第一SMF网元发送的第一指示信息,所述第一指示信息用于指示所述第一终端设备在与对端设备通信之前发起会话修改流程并携带目的地址;所述第一终端设备确定其通过卫星设备访问网络。
例如,在第一SMF网元接收第一终端设备发送的会话修改请求信息之前,第一SMF网元向第一终端设备发送第一指示信息。换句话说,第一SMF网元可以预先指示第一终端设备在会话修改请求信息中携带第二终端设备的IP地址。
可选地,第一SMF网元可以在第一终端设备的当前状态符合预设条件的情况下发送 第一指示信息。例如,第一SMF网元在确定第一终端设备通过卫星设备接入网络的情况下,向第一终端设备发送第一指示信息。或者说,第一SMF网元可以判断第一UPF网元是否属于卫星设备,若属于卫星设备,则发送第一指示信息。若不属于卫星设备,则不发送第一指示信息。作为示例,第一SMF网元根据AMF网元发送的接入类型确定第一终端设备通过卫星设备访问网络。也可以理解为,本申请实施例的通信方法可以针对卫星场景实施。
可选地,上述第一终端设备通过卫星设备接入网络,可以指RAN设置在卫星上,或者也可以指RAN和UPF网元均设置在卫星的情况。
可选地,第一SMF网元也可以在确定第一终端设备属于允许通过UPF网元之间的隧道直接通信的范围的情况下发送第一指示信息,即允许终端设备访问非数据中心业务。例如,第一SMF网元在根据签约数据确定允许第一终端设备访问非数据中心业务时,向第一终端设备发送第一指示信息。又例如,第一SMF网元根据第一终端设备访问的数据网络名称(data network name,DNN)确定第一终端设备访问非数据中心业务时,第一SMF网元向第一终端设备发送第一指示信息。
在一些示例中,上述第一指示信息可以在第一终端设备发起的会话建立流程中发送。例如,第一指示信息可以包含于会话建立接受消息。会话建立接受消息由第一SMF网元发送至AMF,再由AMF发送至RAN,再由RAN发送至第一终端设备。
在又一些示例中,上述第一指示信息也可以在第一终端设备发起的服务请求流程中发送。其中,服务请求流程用于恢复终端设备、RAN、UPF网元之间的用户面连接。第一指示信息可以包含于SMF网元发送的服务接受消息中。
可选地,第一指示信息也可以承载于第一SMF网元发送的其它消息中,本申请实施例不做限定。
在第二种方式中,第一SMF网元接收第一UPF网元发送的数据通知消息,数据通知消息中用于指示第一终端设备的上行报文的目的地址为第二终端设备的IP地址。即第一UPF网元在接收到第一终端设备的上行报文之后,可以将该上行报文的目的地址,也就是第二终端设备的IP地址,发送给第一SMF网元。
进一步地,在第一SMF网元接收第一UPF网元发送的数据通知消息之前,第一SMF网元向第一UPF网元发送第二指示信息,第二指示信息用于指示第一UPF网元在接收到第一终端设备发送的上行报文之后,向第一SMF网元上报上行报文的目的地址。
可选地,第一SMF网元可以在第一终端设备的当前状态符合预设条件的情况下发送第二指示信息。例如,第一SMF网元在确定第一终端设备通过卫星设备接入网络的情况下,向第一终端设备发送第二指示信息。或者说,第一SMF网元可以判断第一UPF网元是否属于卫星设备,若属于卫星设备,则发送第二指示信息。若不属于卫星设备,则不发送第二指示信息。作为示例,第一SMF网元根据AMF网元发送的接入类型确定第一终端设备通过卫星设备访问网络。也可以理解为,本申请实施例的通信方法可以针对卫星场景实施。
可选地,第一SMF网元也可以在确定第一终端设备属于允许通过UPF网元之间的隧道直接通信的范围的情况下发送第二指示信息,即允许终端设备访问非数据中心业务。例 如,第一SMF网元在根据签约数据确定允许第一终端设备访问非数据中心业务时,向第一UPF网元发送第二指示信息。又例如,第一SMF网元根据第一终端设备访问的数据网络名称(data network name,DNN)确定第一终端设备访问非数据中心业务时,向第一UPF网元发送第二指示信息。
在一些示例中,上述第二指示信息可以承载于第一SMF网元向UPF网元发送的N4修改请求消息中。在一些情况下,若RAN和UPF网元部署在同一处,例如都部署于卫星上,则也可以在第一SMF网元向RAN发送的N2会话管理消息中携带N4消息,N4消息中携带第二指示信息。
可选地,第二指示信息也可以承载于第一SMF网元向第一UPF网元发送的其它消息中,本申请实施例不做限定。
应理解,在本申请实施例中,假设第一终端设备已经预先获取第二终端设备的IP地址,并且对第一终端设备获取第二终端设备的IP地址的方式不作任何限定。
S502.第一SMF网元确定第二终端设备的IP地址对应的第二UPF网元。
可选地,在终端设备发起会话建立流程的过程中,SMF网元可以保存UPF网元和终端设备的IP地址之间的对应关系。因此,SMF网元可以根据第二终端设备的IP地址确定其对应的第二UPF网元。
例如,若第一UPF网元和第二UPF网元均对应于第一SMF网元,则第一SMF网元可以通过查找自身的数据(即终端设备的IP与UPF网元的对应关系)确定第二UPF网元。若第一UPF网元和第二UPF网元对应于不同的SMF网元,则第一SMF网元可以通过与其他SMF网元交互来确定第二UPF网元。具体地,第一SMF网元先确定第二终端设备对应的第二SMF网元,然后第一SMF与第二SMF交互。具体地,UDM或NRF或NEF保存终端设备IP和SMF网元的对应关系,第一SMF网元可以通过查询UDM或NRF或NEF确定第二终端设备对应的SMF。
S503.第一SMF网元建立第一UPF网元和第二UPF网元之间的隧道,其中,第一UPF网元为第一终端设备对应的UPF网元。
可选地,上述建立隧道的过程可包括:第一SMF网元向第二UPF网元发送第一隧道建立请求信息,第一隧道建立请求信息中包括第一UPF网元的隧道信息;第一SMF网元向第一UPF网元发送第二隧道建立请求信息,第二隧道建立请求信息中包括第二UPF网元的隧道信息。
在一些示例中,上述隧道建立请求信息也可以使用不同的名称,例如,N4会话修改请求、N4会话建立请求等。
作为示例,若第一UPF网元和第二UPF网元对应于不同的SMF网元,则第一SMF网元可以通过其它设备,例如第二SMF网元,向第二UPF网元发送第一隧道建立请求信息。
在一些示例中,当第一终端设备和第二终端设备对应不同的SMF时,上述建立隧道的过程可以包括:第一SMF通过第二SMF将第一UPF网元的隧道信息发送至第二UPF网元;第二SMF网元通过第一SMF网元将第二UPF网元的隧道信息发送至第一UPF网元。
可选地,SMF网元在终端设备发起会话建立过程中可以获取UPF网元的隧道信息, 以便于利用UPF网元的隧道信息在后续过程中建立UPF网元之间的隧道,即N19接口对应的用户面连接。或者,SMF网元也可以在会话修改过程中获取UPF网元的隧道信息。或者SMF网元也可以在其它过程获取UPF网元的隧道信息。
若第一UPF网元和第二UPF网元对应于不同的SMF网元,第一SMF网元在第一终端设备发起的会话建立过程中,保存第一UPF网元的隧道信息;第二SMF网元在第二终端设备发起的会话建立过程中,保存第二UPF网元的隧道信息。第一SMF网元通过第二SMF网元获取第二UPF网元的隧道信息;第二SMF网元通过第一SMF网元获取第一UPF网元的隧道信息。
可选地,上述第一SMF网元和第二SMF网元可以是同一SMF网元。
在本申请实施例中,提供了一种终端设备之间的非数据中心业务的通信方式,SMF获取第二终端设备的IP地址,触发建立第一UPF网元和第二UPF网元之间的隧道,以实现第一终端设备和第二终端设备之间的非数据中心业务通信,终端设备之间无需通过组标识进行通信,可以实现灵活、动态的通信,从而提高了非数据中心业务通信的灵活性和效率。
图6是本申请一实施例的通信方法的具体流程示意图。如图6所示,该方法包括S601~S606。
S601.第一终端设备和第二终端设备分别发起会话建立流程,其中,第一SMF网元向第一终端设备发送第一指示信息,第二SMF网元向第二终端设备发送第一指示信息。
或者说,第一终端设备建立第一终端设备、第一RAN以及第一UPF网元之间的用户面连接。第二终端设备建立第二终端设备、第二RAN以及第二UPF网元之间的用户面连接。
可选地,RAN和UPF网元可部署于卫星上。
可选地,在会话建立流程中,第一SMF网元可以保存第一UPF网元的N19隧道信息。第二SMF网元可以保存第二UPF网元的N19隧道信息。
在第一终端设备的会话建立流程中,第一SMF网元可以向第一终端设备发送第一指示信息,以指示第一终端设备在与对端设备通信之前发起会话修改流程,并将对端的IP地址发送给第一SMF网元,以触发第一SMF网元建立UPF网元之间的N19隧道连接。同理,在第二终端设备的会话建立流程中,第二SMF网元可以向第二终端设备发送第一指示信息,以指示第二终端设备在于对端设备通信之前发起会话修改流程,并将对端的IP地址发送给第二SMF网元。
以第一终端设备为例,可选地,第一SMF网元在第一终端设备的当前状态符合预设条件的情况下发送第一指示信息。例如,在第一终端设备接入的第一UPF网元属于卫星设备的情况下。或者说,第一SMF网元在第一终端设备通过卫星接入网络的情况下,向第一终端设备发送第一指示信息。
在一些示例中,第一SMF网元也可以在根据签约数据确定允许第一终端设备访问非数据中心业务的情况下,向第一终端设备发送第一指示信息。又例如,第一SMF网元根据第一终端设备访问的DNN确定第一终端设备访问非数据中心业务的情况下,向第一终端设备发送第一指示信息。
S602.第一终端设备在与第二终端设备通信之前,向第一SMF网元发送会话修改请 求信息,会话修改请求信息中包括第二终端设备的IP地址。
S603.第一SMF网元根据第二终端设备的IP地址,确定第二UPF网元。
S604.第一SMF网元向第一UPF网元发送N4会话修改请求消息,该N4会话修改请求消息中包括第二UPF网元的N19隧道信息。
可选地,第一SMF网元可以通过直接或间接的方式从第二SMF网元获取第二UPF网元的N19隧道信息。
S605.第一SMF网元向第一终端设备发送会话修改响应消息。
S606.第一SMF网元通过第二SMF网元向第二UPF网元发送N4会话修改请求消息,该N4会话修改请求消息中包括第一UPF网元的N19隧道信息。
需要说明的是,本申请对S605和S606之间的执行顺序不做限定。
在本申请实施例中,提供了一种终端设备之间的非数据中心业务的通信方式,第一SMF网元可以向第一终端设备发送第一指示信息,以指示第一终端设备在与对端设备通信之前向第一SMF网元发送对端设备的IP地址,从而便于第一SMF网元建立UPF网元之间的隧道,以实现第一终端设备和对端设备之间的非数据中心业务通信,终端设备之间无需通过组标识进行通信,可以实现灵活、动态的通信,从而提高了非数据中心业务通信的灵活性和效率。
图7是本申请一实施例的通信方法的具体流程示意图。如图7所示,该方法包括S701~S706。
S701.第一终端设备和第二终端设备分别发起会话建立流程,其中,第一SMF网元向第一UPF网元发送第二指示信息,第二SMF网元向第二UPF网元发送第二指示信息。
或者说,第一终端设备建立第一终端设备、第一RAN以及第一UPF网元之间的用户面连接。第二终端设备建立第二终端设备、第二RAN以及第二UPF网元之间的用户面连接。
可选地,若RAN和UPF网元部署于卫星上。
可选地,在会话建立流程中,第一SMF网元保存第一UPF网元的N19隧道信息。第二SMF网元可以保存第二UPF网元的N19隧道信息。
以第一终端设备为例,在会话建立流程中,第一SMF网元可以向第一UPF网元发送第二指示信息,以指示第一UPF网元收到上行报文之后,向第一SMF网元发送数据通知消息,以触发第一SMF网元建立UPF网元之间的N19隧道连接。
在一些示例中,第二指示信息可以用于指示第一UPF网元收到上行报文之后,确定不存在上行报文对应的N19隧道时,向第一SMF网元发送数据通知消息。或者,第一UPF网元在确定其与第二UPF网元之间已建立N19隧道之后,在接收到后续的上行报文之后,可以无需继续向第一SMF网元发送数据通知消息。
在一些示例中,第一SMF网元在确定第一UPF网元和第二UPF网元之间的N19隧道已经建立的情况下,可以向第一UPF网元发送第三指示信息,该第三指示信息用于指示第一UPF网元通过已建立的N19隧道发送第一终端设备和第二终端设备之间的上行报文。
可选地,第一SMF网元在第一终端设备的当前状态符合预设条件的情况下发送第二指示信息。例如,在第一终端设备接入的第一UPF网元属于卫星设备的情况下。或者说, 第一SMF网元在第一终端设备通过卫星接入网络的情况下,向第一UPF网元发送第二指示信息。在一些示例中,第一SMF网元根据签约数据确定允许第一终端设备访问非数据中心业务的情况下,向第一UPF网元发送第二指示信息。在一些示例中,第一SMF网元根据第一终端设备访问的数据网络名称确定第一终端访问非数据中心业务的情况下,向第一UPF网元发送第二指示信息。
S702.第一终端设备通过RAN向第一UPF网元发送上行报文,该上行报文的目的地址为第二终端设备的IP地址。
S703.第一UPF网元在接收到上行报文之后,根据第二指示信息,向第一SMF网元发送数据通知消息,以指示第二终端设备的IP地址。
可选地,第一UPF网元接收到上行报文之后,确定没有该上行报文对应的N19隧道,则向第一SMF网元发送数据通知消息,并携带第二终端设备的IP地址。
S704.第一SMF网元根据第二终端设备的IP地址,确定第二UPF网元。
S705.第一SMF网元向第一UPF网元发送N4会话修改请求消息,该N4会话修改请求消息中包括第二UPF网元的N19隧道信息。
可选地,当第一终端设备与第二终端设备对应不同的SMF网元时,例如,第一终端设备对应第一SMF网元,第二终端设备对应第二SMF网元,则第一SMF网元可以通过直接或间接的方式从第二SMF网元获取第二UPF网元的N19隧道信息。具体地,第一SMF网元可以通过查询UDM、NRF或NEF确定第二终端设备对应的第二SMF网元,然后第一SMF网元与第二SMF网元进行交互。
S706.第一SMF网元通过第二SMF网元向第二UPF网元发送N4会话修改请求消息,该N4会话修改请求消息中包括第一UPF网元的N19隧道信息。
在本申请实施例中,提供了一种终端设备之间的非数据中心业务的通信方式,第一SMF网元可以向第一UPF发送第二指示信息,以指示第一UPF在收到上行报文时向第一SMF网元发送上行报文的目的地址,从而便于SMF网元建立UPF网元之间的隧道,以实现第一终端设备和对端设备之间的非数据中心业务通信,终端设备之间无需通过组标识进行通信,可以实现灵活、动态的通信,从而提高了非数据中心业务通信的灵活性和效率。
图8是本申请一实施例的装置800的结构示意图。该装置800包括获取模块810、确定模块820和建立模块830。该装置800可以是前述实施例中的第一SMF网元,也可以是第一SMF网元的组成部件(如芯片)。该装置800可实现对应于上文方法实施例中的第一SMF网元执行的步骤或者流程。为了简洁,此处不再赘述。
图9是本申请一实施例的终端设备900的结构示意图。该装置900包括确定模块910和发送模块920。该终端设备900可以是前述实施例中的第一终端设备,也可以是第一终端设备的组成部件(如芯片)。该终端设备900可实现对应于上文方法实施例中的第一终端设备执行的步骤或者流程。为了简洁,此处不再赘述。
图10是本申请一实施例的装置1000的结构示意图。该装置1000包括接收模块1010和发送模块1020。该装置1000可以是前述实施例中的第一SMF网元,也可以是第一SMF网元的组成部件(如芯片)。该装置1000可实现对应于上文方法实施例中的第一SMF网元执行的步骤或者流程。为了简洁,此处不再赘述。
图11是本申请又一实施例提供的装置1100的示意性框图。该装置1100包括处理器 1110,处理器1110用于执行存储器1120存储的计算机程序或指令,或读取存储器1120存储的数据,以执行上文各方法实施例中的方法。可选地,处理器1110为一个或多个。
可选地,如图11所示,该装置1100还包括存储器1120,存储器1120用于存储计算机程序或指令和/或数据。该存储器1120可以与处理器1110集成在一起,或者也可以分离设置。可选地,存储器1120为一个或多个。
可选地,如图11所示,该装置1100还包括通信接口1130,通信接口1130用于信号的接收和/或发送。例如,处理器1110用于控制通信接口1130进行信号的接收和/或发送。
作为第一种方案,该装置1100用于实现上文各个方法实施例中由第一SMF网元执行的操作。
例如,处理器1110用于执行存储器1120存储的计算机程序或指令,以实现上文各个方法实施例的第一SMF网元的相关操作。例如,图5-图7所示实施例中的第一SMF网元执行的方法。
作为第二种方案,该装置1100用于实现上文各个方法实施例中由终端设备执行的操作。
例如,处理器1110用于执行存储器1120存储的计算机程序或指令,以实现上文各个方法实施例的终端设备的相关操作。例如,图5-图7所示实施例中的终端设备执行的方法。
作为第三种方案,该装置1100用于实现上文各个方法实施例中由第一UPF网元执行的操作。
例如,处理器1110用于执行存储器1120存储的计算机程序或指令,以实现上文各个方法实施例的终端设备的相关操作。例如,图5-图7所示实施例中的第一UPF网元执行的方法。
需要指出的是,图11中的装置1100可以是前述实施例中的车载设备或终端设备,也可以是芯片或者芯片系统,例如:片上系统(system on chip,SoC)。在此不做限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的网元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和网元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述网元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个网元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或网元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的网元可以是或者也可以不是物理上分开的,作为网元显示的部件可以是或者也可以不是物理网元,即可以位于一个地方,或者也可以分布到多个网络网元上。可以根据实际的需要选择其中的部分或者全部网元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能网元可以集成在一个处理网元中,也可以是各个网元单独物理存在,也可以两个或两个以上网元集成在一个网元中。
所述功能如果以软件功能网元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (32)

  1. 一种通信方法,其特征在于,包括:
    第一会话管理功能网元获取第二终端设备的互联网协议IP地址,所述第二终端设备为第一终端设备待通信的对端设备;
    所述第一会话管理功能网元确定所述第二终端设备的IP地址对应的第二用户面功能网元;
    所述第一会话管理功能网元建立第一用户面功能网元和第二用户面功能网元之间的隧道,其中,所述第一用户面功能网元为所述第一终端设备对应的用户面功能网元。
  2. 如权利要求1所述的方法,其特征在于,所述第一会话管理功能网元获取第二终端设备的IP地址,包括:
    所述第一会话管理功能网元接收第一终端设备发送的会话修改请求信息,所述会话修改请求信息中包括所述第二终端设备的IP地址。
  3. 如权利要求2所述的方法,其特征在于,在所述第一会话管理功能网元接收第一终端设备发送的会话修改请求信息之前,所述方法还包括:
    所述第一会话管理功能网元向所述第一终端设备发送第一指示信息,所述第一指示信息用于指示所述第一终端设备在与对端设备通信之前发起会话修改流程并携带目的地址。
  4. 如权利要求3所述的方法,其特征在于,所述第一会话管理功能网元向所述第一终端设备发送第一指示信息,包括:
    所述第一会话管理功能网元在确定所述第一终端设备通过卫星设备访问网络的情况下,向所述第一终端设备发送所述第一指示信息。
  5. 如权利要求1所述的方法,其特征在于,所述第一会话管理功能网元获取第二终端设备的IP地址,包括:
    所述第一会话管理功能网元接收所述第一用户面功能网元发送的数据通知消息,所述数据通知消息中用于指示所述第一终端设备的上行报文的目的地址为所述第二终端设备的IP地址。
  6. 如权利要求5所述的方法,其特征在于,在所述第一会话管理功能网元接收所述第一用户面功能网元发送的数据通知信息之前,所述方法还包括:
    所述第一会话管理功能网元向所述第一用户面功能网元发送第二指示信息,所述第二指示信息用于指示所述第一用户面功能网元在接收到所述第一终端设备发送的上行报文之后,向所述第一会话管理功能网元上报所述上行报文的目的地址。
  7. 如权利要求6所述的方法,其特征在于,所述第一会话管理功能网元向所述第一用户面功能网元发送第二指示信息,包括:
    所述第一会话管理功能网元在确定所述第一终端设备通过卫星设备访问网络的情况下,向所述第一用户面功能网元发送所述第二指示信息。
  8. 如权利要求1至7中任一项所述的方法,其特征在于,所述第一会话管理功能网元建立第一用户面功能网元和第二用户面功能网元之间的隧道,包括:
    所述第一会话管理功能网元向所述第二用户面功能网元发送第一隧道建立请求信息, 所述第一隧道建立请求信息中包括所述第一用户面功能网元的隧道信息;
    所述第一会话管理功能网元向所述第一用户面功能网元发送第二隧道建立请求信息,所述第二隧道建立请求信息中包括所述第二用户面功能网元的隧道信息。
  9. 如权利要求8所述的方法,其特征在于,所述方法还包括:
    所述第一会话管理功能网元在所述第一终端设备发起的会话建立过程中,保存所述第一用户面功能网元的隧道信息;
    所述第一会话管理功能网元通过第二会话管理功能网元获取所述第二用户面功能网元的隧道信息,所述第二会话管理功能网元用于在所述第二终端设备发起的会话建立过程中保存所述第二用户面功能网元的隧道信息。
  10. 一种通信方法,其特征在于,包括:
    第一终端设备确定符合第一预设条件,所述第一预设条件包括以下至少一项:所述第一终端设备接收第一会话管理功能会话管理功能网元发送的第一指示信息,所述第一指示信息用于指示所述第一终端设备在与对端设备通信之前发起会话修改流程并携带目的地址;所述第一终端设备确定其通过卫星设备访问网络;
    所述第一终端设备向所述第一会话管理功能网元发送会话修改请求信息,所述会话修改请求信息中包括第二终端设备的互联网协议IP地址。
  11. 一种通信方法,其特征在于,包括:
    第一用户面网元接收第一终端设备发送的上行报文;
    所述第一用户面功能网元向第一会话管理功能网元发送数据通知信息,所述数据通知信息中用于指示所述上行报文的目的地址为第二终端设备的互联网协议IP地址。
  12. 如权利要求11所述的方法,其特征在于,在所述第一用户面功能网元向第一会话管理功能网元发送数据通知信息之前,所述方法还包括:
    所述第一用户面功能网元接收所述第一会话管理功能网元发送的第二指示信息,所述第二指示信息用于指示所述第一用户面功能网元在接收到所述第一终端设备发送的上行报文之后,向所述第一会话管理功能网元上报所述上行报文的目的地址。
  13. 一种通信装置,其特征在于,所述装置为第一会话管理功能网元,包括:
    获取模块,用于获取第二终端设备的互联网协议IP地址,所述第二终端设备为第一终端设备待通信的对端设备;
    确定模块,用于确定所述第二终端设备的IP地址对应的第二用户面功能网元;
    建立模块,用于建立第一用户面功能网元和第二用户面功能网元之间的隧道,其中,所述第一用户面功能网元为所述第一终端设备对应的用户面功能网元。
  14. 如权利要求13所述的装置,其特征在于,所述获取模块具体用于接收第一终端设备发送的会话修改请求信息,所述会话修改请求信息中包括所述第二终端设备的IP地址。
  15. 如权利要求14所述的装置,其特征在于,所述获取模块还用于:在所述第一会话管理功能网元接收第一终端设备发送的会话修改请求信息之前,向所述第一终端设备发送第一指示信息,所述第一指示信息用于指示所述第一终端设备在与对端设备通信之前发起会话修改流程并携带目的地址。
  16. 如权利要求15所述的装置,其特征在于,所述获取模块具体用于在确定所述第 一终端设备通过卫星设备访问网络的情况下,向所述第一终端设备发送所述第一指示信息。
  17. 如权利要求13所述的装置,其特征在于,所述获取模块具体用于接收所述第一用户面功能网元发送的数据通知信息,所述数据通知信息中用于指示所述第一终端设备的上行报文的目的地址为所述第二终端设备的IP地址。
  18. 如权利要求17所述的装置,其特征在于,所述获取模块还用于:在所述第一会话管理功能网元接收所述第一用户面功能网元发送的数据通知信息之前,向所述第一用户面功能网元发送第二指示信息,所述第二指示信息用于指示所述第一用户面功能网元在接收到所述第一终端设备发送的上行报文之后,向所述第一会话管理功能网元上报所述上行报文的目的地址。
  19. 如权利要求18所述的装置,其特征在于,所述获取模块具体用于:在确定所述第一终端设备通过卫星设备访问网络的情况下,向所述第一用户面功能网元发送所述第二指示信息。
  20. 如权利要求13至19中任一项所述的装置,其特征在于,所述建立模块具体用于:向所述第二用户面功能网元发送第一隧道建立请求信息,所述第一隧道建立请求信息中包括所述第一用户面功能网元的隧道信息;向所述第一用户面功能网元发送第二隧道建立请求信息,所述第二隧道建立请求信息中包括所述第二用户面功能网元的隧道信息。
  21. 如权利要求20所述的装置,其特征在于,所述建立模块还用于:在所述第一终端设备发起的会话建立过程中,保存所述第一用户面功能网元的隧道信息;通过第二会话管理功能网元获取所述第二用户面功能网元的隧道信息,所述第二会话管理功能网元用于在所述第二终端设备发起的会话建立过程中保存所述第二用户面功能网元的隧道信息。
  22. 一种终端设备,其特征在于,包括:
    确定模块,用于确定所述终端设备符合第一预设条件,所述第一预设条件包括以下至少一项:所述终端设备接收第一会话管理功能网元发送的第一指示信息,所述第一指示信息用于指示所述终端设备在与对端设备通信之前发起会话修改流程并携带目的地址;所述终端设备确定其通过卫星设备访问网络;
    发送模块,用于向所述第一会话管理功能网元发送会话修改请求信息,所述会话修改请求信息中包括第二终端设备的互联网协议IP地址。
  23. 一种通信装置,其特征在于,所述装置为第一用户面网元,包括:
    接收模块,用于接收第一终端设备发送的上行报文;
    发送模块,用于向第一会话管理功能网元发送数据通知信息,所述数据通知信息中用于指示所述上行报文的目的地址为第二终端设备的互联网协议IP地址。
  24. 如权利要求23所述的装置,其特征在于,所述发送模块还用于:在所述第一用户面功能网元向第一会话管理功能网元发送数据通知信息之前,接收所述第一会话管理功能网元发送的第二指示信息,所述第二指示信息用于指示所述第一用户面功能网元在接收到所述第一终端设备发送的上行报文之后,向所述第一会话管理功能网元上报所述上行报文的目的地址。
  25. 一种通信装置,其特征在于,包括:处理器,用于从存储器中调用计算机程序,当所述计算机程序被执行时,使得所述处理器执行如权利要求1至9中任一项所述的方法,或者执行11或12所述的方法。
  26. 一种终端设备,其特征在于,包括:处理器,用于从存储器中调用计算机程序,当所述计算机程序被执行时,使得所述处理器执行如权利要求10所述的方法。
  27. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序包括用于执行权利要求1至9中任一项所述的方法的代码,或者包括用于执行如权利要求10所述的方法的代码,或者包括用于执行如权利要求11或12所述的方法的代码。
  28. 一种计算机程序产品,其特征在于,所述计算机程序包括用于执行权利要求1至9中任一项所述的方法的代码,或者包括用于执行如权利要求10所述的方法的代码,或者包括用于执行如权利要求11或12所述的方法的代码。
  29. 一种通信系统,其特征在于,包括:
    第一用户面网元,用于向第一会话管理功能网元发送第二终端设备的互联网协议IP地址,所述第二终端设备为第一终端设备待通信的对端设备;
    所述第一会话管理功能网元,用于接收所述第二终端设备的IP地址,确定所述第二终端设备的IP地址对应的第二用户面功能网元;
    所述第一会话管理功能网元,还用于建立所述第一用户面功能网元和所述第二用户面功能网元之间的隧道,其中,所述第一用户面功能网元为所述第一终端设备对应的用户面功能网元。
  30. 如权利要求29所述的通信系统,其特征在于,
    所述第一用户面网元,还用于接收第一终端设备发送的上行报文;
    所述第一用户面网元,用于向第一会话管理功能网元发送第二终端设备的互联网协议IP地址,包括:用于向所述第一会话管理功能网元发送数据通知信息,所述数据通知信息中用于指示所述上行报文的目的地址为第二终端设备的互联网协议IP地址。
  31. 如权利要求30所述的通信系统,其特征在于,
    所述第一用户面功能网元,还用于接收所述第一会话管理功能网元发送的第二指示信息,所述第二指示信息用于指示所述第一用户面功能网元在接收到所述第一终端设备发送的上行报文之后,向所述第一会话管理功能网元上报所述上行报文的目的地址。
  32. 一种通信方法,其特征在于,包括:
    第一用户面网元向第一会话管理功能网元发送第二终端设备的互联网协议IP地址,所述第二终端设备为第一终端设备待通信的对端设备;
    所述第一会话管理功能网元接收所述第二终端设备的IP地址,确定所述第二终端设备的IP地址对应的第二用户面功能网元;
    所述第一会话管理功能网元建立第一用户面功能网元和第二用户面功能网元之间的隧道,其中,所述第一用户面功能网元为所述第一终端设备对应的用户面功能网元。
PCT/CN2022/140458 2021-12-30 2022-12-20 通信方法和装置 WO2023125168A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111666076.4A CN116419429A (zh) 2021-12-30 2021-12-30 通信方法和装置
CN202111666076.4 2021-12-30

Publications (1)

Publication Number Publication Date
WO2023125168A1 true WO2023125168A1 (zh) 2023-07-06

Family

ID=86997768

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/140458 WO2023125168A1 (zh) 2021-12-30 2022-12-20 通信方法和装置

Country Status (2)

Country Link
CN (1) CN116419429A (zh)
WO (1) WO2023125168A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116760455A (zh) * 2023-08-10 2023-09-15 中国电信股份有限公司 空天地算力融合网络下的用户面路由选择方法及相关设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110365727A (zh) * 2018-04-09 2019-10-22 华为技术有限公司 通信方法和相关装置
CN111031080A (zh) * 2018-10-09 2020-04-17 华为技术有限公司 报文传输方法及装置
CN112166580A (zh) * 2018-05-21 2021-01-01 华为技术有限公司 通信的方法和设备
CN112369072A (zh) * 2018-06-30 2021-02-12 华为技术有限公司 一种通信方法及装置
CN113596744A (zh) * 2017-09-30 2021-11-02 华为技术有限公司 一种通信方法、装置及系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113596744A (zh) * 2017-09-30 2021-11-02 华为技术有限公司 一种通信方法、装置及系统
CN110365727A (zh) * 2018-04-09 2019-10-22 华为技术有限公司 通信方法和相关装置
CN112166580A (zh) * 2018-05-21 2021-01-01 华为技术有限公司 通信的方法和设备
CN112369072A (zh) * 2018-06-30 2021-02-12 华为技术有限公司 一种通信方法及装置
CN111031080A (zh) * 2018-10-09 2020-04-17 华为技术有限公司 报文传输方法及装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116760455A (zh) * 2023-08-10 2023-09-15 中国电信股份有限公司 空天地算力融合网络下的用户面路由选择方法及相关设备
CN116760455B (zh) * 2023-08-10 2023-11-10 中国电信股份有限公司 空天地算力融合网络下的用户面路由选择方法及相关设备

Also Published As

Publication number Publication date
CN116419429A (zh) 2023-07-11

Similar Documents

Publication Publication Date Title
US11528770B2 (en) Session management method, apparatus, and system
WO2018059494A1 (zh) 一种网络切片选择方法、终端设备及网络设备
US11864103B2 (en) Network slicing method and device, and storage medium
EP3737126B1 (en) Communication method and communication apparatus
WO2020168840A1 (zh) 网络节点选择方法及装置
WO2018232570A1 (zh) 一种注册及会话建立的方法、终端和amf实体
KR20210127827A (ko) 데이터 전송 방법, 장치, 및 시스템
US20220408162A1 (en) Multicast service transmission method and apparatus
WO2019185062A1 (zh) 一种通信方法及装置
US20230029714A1 (en) Authorization method, policy control function device, and access and mobility management function device
US20230224770A1 (en) Communication method and apparatus
CN113038590B (zh) 时间同步方法、电子设备及存储介质
CN112752297B (zh) 一种通信方法及设备
US20200037205A1 (en) Communication Method and Communications Apparatus
US11838891B2 (en) Paging of idle state wireless communication devices
WO2023125168A1 (zh) 通信方法和装置
WO2021022460A1 (zh) 一种会话验证方法、电子设备及存储介质
CN113595911B (zh) 数据转发方法、装置、电子设备及存储介质
WO2020024865A1 (zh) 一种会话对应关系的管理方法和终端设备
US11246064B2 (en) PDN connection supports interworking to 5GS
WO2021088007A1 (zh) 无线通信的方法、终端设备和网络设备
TW202329753A (zh) 用於無線通訊的方法及使用者設備
CN116390276A (zh) 用于无线通信的方法及用户设备
US20220353941A1 (en) Ma pdu reactivation requested handling
TWI757714B (zh) 協作後之特性支援增強技術

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22914422

Country of ref document: EP

Kind code of ref document: A1