WO2023125098A1 - 光通信设备和光通信系统 - Google Patents

光通信设备和光通信系统 Download PDF

Info

Publication number
WO2023125098A1
WO2023125098A1 PCT/CN2022/139944 CN2022139944W WO2023125098A1 WO 2023125098 A1 WO2023125098 A1 WO 2023125098A1 CN 2022139944 W CN2022139944 W CN 2022139944W WO 2023125098 A1 WO2023125098 A1 WO 2023125098A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
board
cross
boards
communication device
Prior art date
Application number
PCT/CN2022/139944
Other languages
English (en)
French (fr)
Inventor
昌诗范
李江
高洪君
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023125098A1 publication Critical patent/WO2023125098A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2575Radio-over-fibre, e.g. radio frequency signal modulated onto an optical carrier
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2575Radio-over-fibre, e.g. radio frequency signal modulated onto an optical carrier
    • H04B10/25752Optical arrangements for wireless networks

Definitions

  • the present application relates to the technical field of optical transmission, and in particular to an optical communication device and an optical communication system.
  • An optical communication device usually includes multiple boards. Each board is integrated with a line interface for connecting to another optical communication device, and a branch interface for connecting to customer equipment.
  • the board includes a line-side optical module serving as a line interface for connecting to another optical communication device, and also includes a client-side optical module serving as a branch interface for connecting to a client device.
  • service signals can be transmitted between the line interface and the tributary interface of the board.
  • service signals can be transmitted between the line interface and branch interface of the same board, they cannot be transmitted between the line interface and branch interface of different boards.
  • the transmission between the tributary interfaces of the card results in poor flexibility of use of the optical communication device.
  • the present application provides an optical communication device and an optical communication system, which can solve the problem of poor use flexibility of the optical communication device in the related art.
  • the embodiment of the present application provides an optical communication device.
  • the optical communication device includes multiple circuit boards, multiple optical tributary boards and multiple optical cross-connect boards.
  • Each of the multiple circuit boards is connected to each of the multiple optical branch boards through the multiple optical cross-connection boards. Any two circuit boards are connected through the plurality of optical cross-connection boards.
  • the line board is used to connect with another optical communication device, and the optical tributary board is used to connect with customer equipment.
  • any circuit board is connected to any optical tributary board, so that the service flow can be transmitted between any circuit board and any optical tributary board, thereby enhancing the performance of the optical communication device Use flexibility.
  • the process of scheduling service signals through the optical cross-connect board is simpler than that through the electrical cross-connect board, the delay of the optical communication equipment performing service signals through the optical cross-connect board is low.
  • each of the multiple line boards is connected to each of the multiple optical cross-connect boards.
  • Each of the multiple optical cross-connect boards is connected to each of the multiple optical branch boards. Furthermore, the connection between any circuit board and any optical branch board, the connection between any two circuit boards, and the connection between any two optical branch boards can be realized.
  • the circuit board includes a first optical module, a line-side processing unit, a second optical module, and a line-side optical switch connected in sequence.
  • the optical branch board includes an optical branch side optical switch.
  • the optical cross board includes an optical cross-side optical switch.
  • the first optical module is used to connect with another optical communication device.
  • the line-side optical switch is connected to the optical cross-side optical switch.
  • the optical cross-side optical switch is connected to the optical branch-side optical switch.
  • the line-side processing unit is a functional unit of the first processing module of the circuit board, and the first processing module may be, for example, a chip of the circuit board.
  • the optical switch on the line side is connected to the optical switch on the optical cross-connect side, and then the connection between the circuit board and the optical cross-connect board is realized.
  • the optical switch on the optical cross-connect side is connected to the optical switch on the optical branch side, and then the connection between the optical cross-connect board and the optical branch board is realized.
  • the multiple optical branch boards include a first optical branch board and a second optical branch board.
  • the second optical branch board further includes a third optical module, a conversion unit, and a fourth optical module.
  • the optical branch side optical switch, the third optical module, the conversion unit and the fourth optical module of the second optical branch board are connected in sequence.
  • the protocol of the second optical module is the same as that of the third optical module
  • the protocol of the fourth optical module is the same as that of the optical module connected to the client device.
  • the conversion unit is a functional unit of the second processing module of the optical tributary board, and the second processing module may be, for example, a chip.
  • the conversion unit is used to convert between the protocol of the third optical module and the protocol of the fourth optical module.
  • the protocol of the third optical module is converted into the protocol of the fourth optical module, so as to successfully connect with the client equipment.
  • any two optical tributary boards are connected through the plurality of optical cross-connect boards.
  • each of the multiple optical branch boards is connected to each of the multiple optical cross boards, so that any two optical branch boards can be connected to the same optical cross board
  • the connection makes the two optical tributary boards connected. In this way, service flows can be transmitted between any two optical tributary boards.
  • the optical communication device further includes multiple electrical branch boards and multiple electrical cross boards.
  • Each of the plurality of circuit boards is connected to each of the plurality of electrical branch boards through the plurality of electrical cross-connection boards.
  • the electrical branch board is used to connect with the client equipment.
  • the optical communication equipment not only includes the optical cross-connect board, but also includes the electrical cross-connect board, so that the optical communication equipment has both the optical cross-connect function and the electrical cross-connect function, thus becoming an optical communication device with optical-electrical hybrid scheduling.
  • each of the plurality of circuit boards communicates with each of the plurality of electrical branch boards through the plurality of electrical cross-connection boards and the plurality of optical cross-connection boards. connect.
  • each of the multiple circuit boards is connected to each of the multiple optical cross-connect boards.
  • Each of the plurality of optical cross-connect boards is connected to each of the plurality of electrical cross-connect boards.
  • Each of the plurality of electrical cross boards is connected to each of the plurality of electrical branch boards. Therefore, any circuit board is connected to any electrical branch board, and any two electrical branch boards also have a connection relationship.
  • the circuit board includes a first optical module, a line-side processing unit, a first connection unit, a fifth optical module, and a line-side optical switch connected in sequence.
  • the optical cross board includes an optical cross-side optical switch.
  • the electrical cross board includes an electrical cross-side optical switch, a sixth optical module, and an electrical cross-side processing unit connected in sequence.
  • the electrical branch board includes a connected second connection unit and a seventh optical module.
  • the first optical module is used to connect to the other optical communication device, and the line-side optical switch is connected to the optical cross-side optical switch.
  • the optical cross-side optical switch is connected to the electrical cross-side optical switch.
  • the electrical cross-side processing unit is connected to the second connection unit.
  • the seventh optical module is used to connect with the client equipment.
  • the first connection unit is a functional unit of the first processing module of the circuit board, and is used to connect with the processing unit of the electrical cross-connect side of the electrical cross-connect board.
  • the optical switch on the line side is connected to the optical switch on the optical cross-connect side, and then the circuit board is connected to the optical cross-connect board.
  • the optical switch on the optical cross-connect side is connected to the optical switch on the electrical cross-connect side, and then the optical cross-connect board is connected to the electrical cross-connect board.
  • the second connection unit is a functional unit of the third processing module of the electrical branch board, and is used for connecting with the processing unit of the electrical cross-side of the electrical cross-connection board, and further, the electrical cross-connection board is connected with the electrical branch board.
  • the circuit board further includes a selection switch unit.
  • the selection switch unit is respectively connected to the line-side processing unit and the first connection unit, and is also connected to the optical module connected to the line-side optical switch.
  • the selection switch unit is used to select a path connection with the line-side processing unit, and/or, select a path connection with the first connection unit.
  • the number of optical modules connected to the line-side optical switch may be one or more. These multiple optical modules are used for photoelectric conversion, for example, for converting the electrical signal received from the selection switch unit into an optical signal, and then transmitting it to the line-side optical switch. For another example, these optical modules are used to convert the optical signal received from the line-side optical switch into an electrical signal, and then transmit it to the selection switch unit.
  • the selection switch unit when the service flows through the optical cross-connect board but not through the electrical cross-connect board, the selection switch unit can choose to connect to the path of the line-side processing unit and disconnect from the path of the first connection unit.
  • the selection switch unit may select a path connected to the first connection unit and disconnected from a path of the line-side processing unit.
  • the selection switch unit can select the path connected to the line-side processing unit and also select the path connected to the first connection unit. In this way, the flexibility of service circulation can be improved, and the use flexibility of optical communication equipment can be further enhanced.
  • each of the multiple circuit boards is directly electrically connected to each of the multiple electrical cross-connect boards.
  • Each of the plurality of electrical cross boards is directly connected to each of the plurality of electrical branch boards.
  • connection between the circuit board and the electrical branch board can be realized only by means of the electrical cross board.
  • the circuit board is electrically connected to all the electrical cross-connection boards, and the electrical cross-connection board is connected to all the electrical branch circuit boards, so that the circuit board is connected to all the electrical branch circuit boards.
  • the circuit board is connected to the electrical cross-connect board, for example, the first connection unit of the circuit board may be electrically connected to the electrical cross-side processing unit of the electrical cross-connect board.
  • the connection between the electric cross board and the electric branch board may be, for example, the electrical connection between the processing unit on the electric cross side of the electric cross board and the second connection unit of the electric branch board.
  • the multiple electrical cross-connection boards include at least one standby electrical cross-connection board, and the standby electrical cross-connection board is configured to start working when the active electrical cross-connection board fails.
  • the electrical cross board performs 1+1, 1:n, or m:n redundancy protection.
  • 1+1 means that one electrical cross-connect board is the main electrical cross-connect board, which is responsible for normal work, and the other electrical cross-connect board is used as a backup electrical cross-connect board.
  • n means that n electrical cross-connect boards are the main electrical cross-connect boards, which are responsible for normal work, and one electrical cross-connect board is used as a backup electrical cross-connect board.
  • n means that n electrical cross-connect boards are the main electrical cross-connect boards, responsible for normal work, and m electrical cross-connect boards are used as backup electrical cross-connect boards.
  • the multiple optical cross-connect boards include at least one standby optical cross-connect board, and the standby optical cross-connect board is configured to start working when the active optical cross-connect board fails.
  • the optical cross board performs 1+1, 1:n, or m:n redundancy protection.
  • 1+1 means that one optical cross-connect board is the main optical cross-connect board and is responsible for normal work, and the other optical cross-connect board is used as a backup optical cross-connect board.
  • 1: n means that n optical cross-connect boards are the main optical cross-connect boards, which are responsible for normal work, and one optical cross-connect board is used as a backup optical cross-connect board.
  • m n means that n optical cross-connect boards are the main optical cross-connect boards, responsible for normal work, and m optical cross-connect boards are used as backup optical cross-connect boards.
  • an embodiment of the present application further provides an optical communication system, where the optical communication system includes a first client device, a second client device, and at least one optical communication device as described above.
  • the first client device is connected to a tributary board of one of the at least one optical communication device
  • the second client device is connected to a tributary board of one of the at least one optical communication device
  • the branch circuit The boards at least include an optical tributary board.
  • one of the first client device and the second client device is a sending end, and the other is a receiving end, and the two establish a communication connection through at least one optical communication device to realize interaction.
  • the optical communication devices connected to the first client device and the second client device may be the same optical communication device or different optical communication devices.
  • the first client device and the second client device are respectively connected to different tributary boards of the same optical communication device.
  • the distance between the first client device and the second client device is relatively close, such as in the same building or the same community.
  • the first client device and the second client device implement interaction through an optical communication device.
  • the first client device is connected to a tributary board of the optical communication device
  • the second client device is connected to another tributary board of the optical communication device.
  • the first client device and the second client device are respectively connected to tributary boards of different optical communication devices.
  • the first client device is connected to a tributary board of the first optical communication device in the at least one optical communication device
  • the second client device is connected to a second optical communication device in the at least one optical communication device.
  • the first optical communication device and the second optical communication device are different optical communication devices, and a circuit board of the first optical communication device is connected to a circuit board of the second optical communication device.
  • the connection between the circuit board of the first optical communication device and the circuit board of the second optical communication device may be a direct connection or an indirect connection.
  • a circuit board of the first optical communication device is directly connected to a circuit board of the second optical communication device.
  • the first client device and the second client device establish a communication connection through more than two optical communication devices, then, between a circuit board of the first optical communication device and a circuit board of the second optical communication device, at least One optical communication device is connected, and between the first optical communication device, the second optical communication device and at least one passing optical communication device, two connected optical communication devices are connected through a circuit board.
  • a circuit board of the first optical communication device is connected to a circuit board of the third optical communication device in at least one optical communication device, and another circuit board of the third optical communication device is connected to a circuit board of the second optical communication device connect.
  • FIG. 1 is a schematic diagram of the framework of an optical communication device provided by the present application.
  • FIG. 2 is a schematic diagram of an optical communication device including an optical cross board provided in an embodiment of the present application
  • Fig. 3 is a schematic diagram of an optical communication device in which a part of a circuit board and a part of an optical cross-connect board are connected according to an embodiment of the present application;
  • FIG. 4 is a schematic diagram of an optical communication device including at least one set of boards provided by an embodiment of the present application
  • Fig. 5 is a schematic diagram of an optical communication device including a first optical branch board and a second optical branch board according to an embodiment of the present application;
  • FIG. 6 is a schematic diagram of an optical communication device including an optical cross-connect board and an electrical cross-connect board provided in an embodiment of the present application, and the optical cross-connect board and the electrical cross-connect board have a connection relationship;
  • FIG. 7 is a schematic diagram of an optical communication device with a circuit board having a selection switch unit provided in an embodiment of the present application;
  • FIG. 8 is a schematic diagram of an optical communication device in which the number of optical modules connected to a line-side optical switch in a circuit board is one according to an embodiment of the present application;
  • Fig. 9 is a schematic diagram of an optical communication device including an optical cross-connect board and an electrical cross-connect board provided by an embodiment of the present application, and the optical cross-connect board and the electrical cross-connect board have no connection relationship;
  • FIG. 10 is a schematic diagram of an optical communication device including an optical amplifier provided in an embodiment of the present application.
  • Fig. 11 is a schematic diagram of transmission of a service flow in an optical communication device including an optical cross board provided by an embodiment of the present application;
  • Fig. 12 is a schematic diagram of a service flow provided by an embodiment of the present application being transmitted in an optical communication device including an optical cross-connect board and an electrical cross-connect board, and the optical cross-connect board and the electrical cross-connect board have a connection relationship;
  • Fig. 13 is a schematic diagram of a service flow provided by an embodiment of the present application being transmitted in an optical communication device that includes an optical cross-connect board and an electrical cross-connect board, and the optical cross-connect board and the electrical cross-connect board do not have a connection relationship;
  • FIG. 14 is a schematic diagram of an optical communication system in which a first client device and a second client device are connected through an optical communication device according to an embodiment of the present application;
  • FIG. 15 is a schematic diagram of an optical communication system in which a first client device and a second client device are connected through two optical communication devices according to an embodiment of the present application;
  • FIG. 16 is a schematic diagram of an optical communication system in which a first client device and a second client device are connected through three optical communication devices according to an embodiment of the present application.
  • first”, “second”, “third”, and “fourth” are used for descriptive purposes only, and should not be understood as indicating or implying relative importance or implicitly indicating the indicated The number of technical characteristics. Thus, a feature defined as “first”, “second”, “third” and “fourth” may expressly or implicitly include one or more of these features.
  • connection should be understood in a broad sense.
  • connection may be a detachable connection or a non-detachable connection; it may be a direct connection or an indirect connection through an intermediary.
  • connection may be a detachable connection or a non-detachable connection; it may be a direct connection or an indirect connection through an intermediary.
  • connection may be a detachable connection or a non-detachable connection; it may be a direct connection or an indirect connection through an intermediary.
  • the terms “including”, “comprising”, “having” and variations thereof mean “including but not limited to”, unless specifically stated otherwise.
  • Optical communication equipment may also be referred to as optical transmission equipment.
  • it may be a wavelength division device or an optical transport network (optical transport network, OTN) device.
  • OTN optical transport network
  • the main task of the optical communication equipment is to receive the service flow generated by a client device, and transmit the service flow to another client device through the optical communication device and the propagation medium (such as optical fiber, cable and electromagnetic wave, etc.) connected to the optical communication device. .
  • the optical communication device will include two interfaces, namely user-network interface (user-network interface, UNI) and network-network interface (network to network interface, NNI), the user-network interface is used to connect with client equipment, and the network-network interface is used to connect with another optical communication device.
  • user-network interface user-network interface
  • network-network interface network to network interface, NNI
  • the user-network interface is used to connect with client equipment
  • the network-network interface is used to connect with another optical communication device.
  • one client device is connected to the user-network interface of one optical communication device
  • another client device is connected to the user-network interface of another optical communication device
  • the two optical communication devices are connected through the network-network interface.
  • the client device is the device served by the optical communication device, such as a router or a switch.
  • the user-network interface is usually called a tributary interface
  • the network-network interface is called a line interface.
  • FIG. 1 is a schematic structural diagram of an optical communication device.
  • the optical communication equipment can be a plug-in card type equipment.
  • the optical communication equipment includes a cabinet 01 and multiple boards 02.
  • the boards 02 can also be called line cards or service boards.
  • the cabinet 01 includes multiple slots, and the boards 02 are inserted into the slots. slot, and board 02 can also be pulled out from the slot.
  • the optical communication equipment can be divided into integrated optical communication equipment and separate optical communication equipment.
  • An integrated optical communication device is an optical communication device in which a line interface and a branch interface are integrated on the same board
  • a separate optical communication device is an optical communication device in which a line interface and a branch interface are integrated on different boards.
  • a board of the optical communication device includes both a line interface and a branch interface.
  • This optical communication device has simple structure, low cost and low power consumption.
  • this optical communication device does not have a cross-board scheduling function, and the flexibility of use is poor.
  • the service flow is input from the tributary interface of a board, and can only be output from the line interface of this board, but cannot be output from the line interface of another board, resulting in poor flexibility of use of optical communication equipment.
  • this optical communication device if a board card fails, or the optical fiber connected to the board card fails, the communication of the communication link where the board card is located will be interrupted.
  • the line interface is integrated on one board, and the tributary interface is integrated on another board.
  • the board integrated with the line interface may be called a line-side service board (abbreviated as a circuit board), and the board integrated with the tributary interface may be called a tributary-side service board (abbreviated as a tributary board).
  • the optical communication device further includes an electrical cross-connect board, where the electrical cross-connect board may also be called an electrical switch board, and is mainly responsible for forwarding signals between boards.
  • the electrical cross-connect board implements electrical cross-connect scheduling
  • the circuit board and the electrical cross-connect board are electrically connected, and the circuit board needs to have an electrical connection function unit for connecting to the An electrical connection functional unit for connecting with an electrical cross board.
  • the tributary board here can be recorded as an electrical tributary board, and this name is also used to distinguish it from the optical tributary board below.
  • each circuit board can be electrically connected to all electric cross boards, and each electric cross board can be electrically connected to all branch circuit boards, so that each circuit board can be electrically connected to all electric branch boards Electrically connected, each electrical branch board is electrically connected to all circuit boards, any two circuit boards are also electrically connected, and any two electrical branch boards are also electrically connected.
  • the service flow can be input from the branch interface of one board and output from the line interface of another board, which can realize cross-board business scheduling and improve the flexibility of use.
  • the scheduling between circuit boards, and the scheduling between circuit boards and electrical branch boards all need to go through the electrical cross-connect board, resulting in a large processing pressure on the electrical cross-connect board, so the chip capacity and cost of the electrical cross-connect board and power consumption increase accordingly.
  • the separated optical communication equipment has increased time delay due to the addition of electrical cross boards and electrical connection functional units.
  • optical communication device provided by the present application can realize cross-board scheduling, relieve the processing pressure of the electrical cross-connect board, reduce delay, and increase transmission rate.
  • the optical communication device shown in this application will be described in detail below.
  • the optical communication device includes multiple circuit boards 1 , multiple optical tributary boards 2 and multiple optical cross-connect boards 3 .
  • the numbers of the three are not necessarily equal, but may also be equal, and this embodiment does not limit the number of the three.
  • the circuit board 1 is as described above, that is, a board card including a line interface, which is used to connect with another optical communication device, and the role played by the first optical module 11 in the circuit board 1 in FIG. 2 is line interface.
  • the optical tributary board 2 is as described above, that is, a board card including a tributary interface, which is used to connect with the client equipment. As shown in FIG.
  • optical branch side optical switch 21 in the optical tributary board 2 acts as The role of the tributary interface.
  • the optical cross-connect board 3 which may also be called an optical switch board, is used to implement cross-connect scheduling of optical links, where the cross-connect scheduling of optical links may be wavelength scheduling and/or port scheduling.
  • each of the multiple circuit boards 1 is connected to each of the multiple optical cross boards 3, and each of the multiple optical cross boards 3 is connected to each of the multiple optical branch boards 2.
  • One connection can further realize the connection between any circuit board 1 and any optical branch circuit board 2 , and can also realize the connection between any two circuit boards 1 , and also realize the connection between any two optical branch circuit boards 2 .
  • a part of the circuit boards 1 is connected to each of the multiple optical branch boards 2 through a part of the optical cross board 3, and another part of the circuit boards 1 is connected to a plurality of optical branch boards through another part of the optical cross board 3. Every connection in board 2.
  • each of a part of circuit boards 1 passes through the first optical cross board 3A is connected to each of the multiple optical cross boards 2
  • each of the other part of the circuit boards 1 is connected to each of the multiple optical cross boards 2 through the second optical cross board 3B.
  • this embodiment does not specifically limit how each circuit board 1 is connected to each of the plurality of optical branch boards 2 through a plurality of optical cross-connect boards 3. It only needs to have a connection relationship between each of them and all the optical tributary boards 2 .
  • connection between the circuit board 1 and the optical tributary board 2 can be realized through multiple optical cross boards 3 .
  • the connection between the circuit boards 1 and the circuit boards 1 may be realized through a plurality of optical cross-connection boards 3 .
  • the connection between the optical branch boards 2 and the optical branch boards 2 may also be realized through multiple optical cross-connect boards 3 .
  • the service flow can be transmitted between the circuit board 1 and the optical tributary board 2, or can be transmitted between different circuit boards 1, and can also be transmitted between different optical tributary boards 2. It can be seen that the service transmission path, Compared with the integrated optical communication equipment, the number is obviously increased, thereby improving the use flexibility of the optical communication equipment.
  • connection between the circuit board 1 and the optical cross-connect board 3 and the connection between the optical cross-connect board 3 and the optical branch board 2 are all butt joints for realizing optical signal communication.
  • the optical communication equipment includes at least one group of boards, and each of the above-mentioned multiple circuit boards 1 is connected to each of the multiple optical branch boards 2 through multiple optical cross-connect boards 3 , refers to the connection relationship between the circuit board 1, the optical tributary board 2 and the optical cross-connect board 3 in a certain group (which may be recorded as a target group) in at least one group of boards of the optical communication device.
  • the target group includes multiple circuit boards 1, multiple optical branch boards 2 and multiple optical cross-connect boards 3, in the target group, each of the multiple circuit boards 1 and multiple optical Each of the cross boards 3 is connected, and each of the multiple optical cross boards 3 is connected to each of the multiple optical branch boards 2, thereby realizing each of the multiple circuit boards 1 and multiple optical branches
  • Each of the boards 2 is connected through a plurality of optical cross boards 3 .
  • the connection relationship of circuit boards 1 , optical cross-connection boards 3 and optical tributary boards 2 in groups other than the target group they may be the same as or different from the target group, which is not limited in this embodiment.
  • connection relationship between the circuit board 1 and the optical cross-connect board 3 and between the optical cross-connect board 3 and the optical branch board 2 that do not belong to the same group there may or may not be a connection relationship, which is not limited in this embodiment , can be flexibly set according to the situation.
  • the boards in the target group in the optical communication equipment may be used as the introduction.
  • each of the plurality of circuit boards 1 to be introduced later is connected with each of the plurality of electrical branch boards 4 through a plurality of electrical cross boards 5, and each of the plurality of circuit boards 1 is connected with each of the plurality of electrical branch boards 4.
  • Each of the multiple electrical branch boards 4 is connected through multiple optical cross-connect boards 3 and multiple electrical cross-connect boards 5, which also refers to the circuit board 1, the electrical cross-connect board 5, and the electrical branch board 4 in the target group.
  • the connection relationship as for the connection relationship between boards in different groups, and the connection relationship between boards in other groups except the target group, is not specifically limited in this embodiment.
  • each line board 1 there is a connection relationship between each line board 1 and each optical branch board 2, so that the service flow can be transmitted between any line board 1 and any optical branch board 2, thereby enhancing the Flexibility in use of optical communication equipment.
  • the optical communication device since the process of scheduling service signals through the optical cross-connect board is simpler than that through the electrical cross-connect board, the optical communication device reduces the delay of service signal processing.
  • the circuit board 1 includes first optical modules 11 connected in sequence , a line-side processing unit 12 , a second optical module 13 and a line-side optical switch 14 .
  • the optical branch board 2 includes an optical branch-side optical switch 21
  • the optical cross-connect board 3 includes an optical cross-side optical switch 31 .
  • the first optical module 11 is used to connect with another optical communication device, the line-side optical switch 14 is connected to the optical cross-side optical switch 31 , and the optical cross-side optical switch 31 is connected to the optical branch-side optical switch 21 .
  • the first optical module 11 is a transceiver optical module, configured to be connected to another optical communication device, so as to send a service signal to another optical communication device, or to receive a service signal sent by another optical communication device.
  • the first optical module 11 may convert an optical signal received from another optical communication device into an electrical signal, and transmit the signal to the line-side processing unit 12 .
  • the first optical module 11 may convert the electrical signal received from the line-side processing unit 12 into an optical signal, and transmit it to another optical communication device.
  • FIG. 2 is a schematic logic diagram of an optical communication device.
  • the line-side processing unit 12 is a functional unit of the first processing module of the circuit board 1 , and the first processing module may be, for example, a chip of the circuit board 1 .
  • the functions of the line side processing unit 12 can at least include OTN/synchronous digital hierarchy (synchronous digital hierarchy, SDH) multiplexing/demultiplexing, mapping/demapping, and packet message processing (such as message analysis, query table forwarding and traffic management, etc.).
  • this embodiment does not limit the specific functions of the line-side processing unit 12, and its functions may be set according to actual conditions.
  • the circuit board 1 since the signal output from the circuit board 1 to the optical cross-connect board 3 is an optical signal, then, as shown in FIG. 2 , the circuit board 1 further includes a second optical module 13, which is also a transceiver Module for converting optical and electrical signals.
  • the second optical module 13 can convert the electrical signal output by the line-side processing unit 12 into an optical signal, and transmit it to the optical cross-side optical switch 31 of the optical cross-connect board 3 through the line-side optical switch 14 .
  • the second optical module 13 can also convert the optical signal received from the line-side optical switch 14 into an electrical signal, and send it to the line-side processing unit 12 . As shown in FIG.
  • the optical cross-side optical switch 31 of the optical cross-connect board 3 is connected to the optical branch-side optical switch 21 of the optical branch board 2 .
  • service signals can be transmitted by means of the optical cross-connect board 3, such as the line board 1 transmitting service signals to the optical branch board 2, or the optical branch board 2 transmits service signals to line board 1.
  • service signals may also be transmitted by means of the optical cross-connect board 3 .
  • Different optical tributary boards 2 may also use the optical cross-connect board 3 to transmit service signals.
  • the plurality of optical branch boards 2 may include a first optical branch board 2A and a second optical branch board 2B.
  • the first optical branch board 2A includes the aforementioned optical branch side optical switch 21 .
  • the second optical branch board 2B not only includes the above-mentioned optical branch side optical switch 21, but also includes a third optical module 22, a conversion unit 23, and a fourth optical module 24.
  • the optical branch of the second optical branch board 2B The branch-side optical switch 21 , the third optical module 22 , the conversion unit 23 and the fourth optical module 24 are connected in sequence.
  • the protocols of the second optical module 13 and the third optical module 22 are the same, and the protocols of the fourth optical module 24 and the optical module connected to the client equipment are the same.
  • the protocol of the optical module, and the protocol of the optical module mentioned in this solution may be a standard protocol to which the type of the optical interface of the optical module belongs.
  • the protocols are the same, for example, the transmission rate, the number of fiber channels, the optical power, and the supported spectrum may be the same respectively.
  • the specific protocol of the optical module can refer to standard protocols corresponding to various services, for example, the Ethernet service can refer to the IEEE802.3 standard protocol, and the OTN service can refer to the G.709 standard protocol.
  • the fourth optical module 24 may be a pluggable optical module, so as to adapt to optical modules connected to various types of client devices.
  • the conversion unit 23 is a functional unit of the second processing module of the optical tributary board 2, and the second processing module may be a chip, for example.
  • the conversion unit 23 is connected between the third optical module 22 and the fourth optical module 24, and is used to realize the protocol mutual conversion between the third optical module 22 and the fourth optical module 24, for example, the third optical module
  • the protocol of the module 22 is converted to the protocol of the fourth optical module 24, and the protocol of the fourth optical module 24 may also be converted to the protocol of the third optical module 22.
  • the conversion unit 23 can convert one 100G Channel, converted into four 25G channels, and output to the fourth optical module 24, the transmission rate of the fourth optical module 24 is the same as the transmission rate of the optical module connected to the client device, and then it can be connected with the client device to complete the transmission of optical signals transmission.
  • the service signal can be transmitted in the first optical tributary board 2A .
  • the protocol of the second optical module 13 is different from that of the optical module connected to the client equipment, then service signals can be transmitted in the second optical tributary board 2B, thereby improving the flexibility of use of the optical communication equipment.
  • the optical communication device that performs service scheduling through the optical cross-connect board 3 can refer to FIG. 2 for the process of service scheduling.
  • the process can be as follows. Another optical communication device transmits optical signals to the first optical module 1 of the circuit board 1 . After receiving the optical signal, the first optical module 1 of the circuit board 1 can convert the optical signal into an electrical signal and transmit it to the first processing module of the circuit board 1 .
  • the line-side processing unit 12 of the first processing module processes the received electrical signal and sends it to the second optical module 13 of the circuit board 1 .
  • the second optical module 13 converts the electrical signal into an optical signal, and sends it to the optical branch board 2 through the line-side optical switch 14 .
  • the optical cross-connection board 3 transmits the optical signal to the first optical branch board 2A, and through the first optical branch board 2A
  • the optical branch side optical switch 21 transmits to the client equipment.
  • the optical cross-connection board 3 transmits the optical signal to the second optical branch board 2B, through which the second optical branch board 2B
  • the fourth optical module 24 is transmitted to the client equipment.
  • the process of the service flow transmitted from the client equipment to another optical communication equipment it is the inverse process of the above process, which can be referred to above, and will not be repeated here.
  • the first optical communication device transmits the optical signal to the first optical module 1 of the circuit board 1 connected to the first optical communication device.
  • the first optical module 1 of the circuit board 1 can convert the optical signal into an electrical signal and transmit it to the first processing module of the circuit board 1 .
  • the line-side processing unit 12 of the first processing module processes the received electrical signal and sends it to the second optical module 13 of the circuit board 1 .
  • the second optical module 13 converts the electrical signal into an optical signal, and sends it to the circuit board 1 connected to the second optical communication device via the line-side optical switch 14 .
  • the second optical module 12 of the circuit board 1 After receiving the optical signal, the second optical module 12 of the circuit board 1 converts it into an electrical signal and sends it to the line-side processing unit 12 . Then, after the processing is completed by the line-side processing unit 12 , it is sent to the first optical module 11 , and then sent to the second optical communication device through the first optical module 11 .
  • the above is a solution for the optical communication equipment to perform service scheduling via the optical cross-connect board 3 , and the optical communication equipment may also perform service scheduling via the electrical cross-connect board.
  • the optical communication device not only includes multiple circuit boards 1 , multiple optical tributary boards 2 and multiple optical cross-connect boards 3 , but also includes multiple electrical tributary boards 4 and multiple electrical cross-connect boards 5 .
  • both the optical tributary board 2 and the electrical tributary board 4 are used to connect with client equipment.
  • Each circuit board 1 is connected to each of the plurality of electrical branch boards 4 through a plurality of electrical cross boards 5 .
  • connection between the circuit board 1 and the electrical branch board 4 may be realized by means of the electrical cross board 5 and the optical branch board 3 .
  • each circuit board 1 is connected to each of a plurality of optical cross boards 3
  • each optical cross board 3 is connected to each of a plurality of electrical cross boards 5
  • each electrical cross board 5 is connected to Each of a plurality of electrical branch boards 4 is connected.
  • each circuit board 1 is connected to all the electrical branch boards 2
  • each electrical branch board 2 is connected to all the circuit boards 1 .
  • the first connection unit 15 is a functional unit of the first processing module of the circuit board 1
  • the first processing module can be a chip of the circuit board 1, for example, and the first connection unit 15 is used for the electric cross side of the electric cross board 5
  • the processing unit 53 is connected, and the specific functions of the first connection unit 15 depend on the functions of the line side processing unit 12 and the electrical crossover processing unit 53 , which will be introduced after the electrical crossover processing unit 53 is introduced below.
  • the line-side processing unit 12 the first connecting unit 15 , the fifth optical module 16 and the line-side optical switch 14 are also connected in sequence.
  • the circuit board 1 includes two branches, one branch is the path where the line side processing unit 12 and the second optical module 13 are located, which can be recorded as the first path, marked with 1 in Figure 6, and the other branch is the line side processing
  • the path where the unit 12 and the first connecting unit 15 are located can be recorded as the second path, and the mark 2 is used in FIG. 6 .
  • the first path 1 is used to connect to the optical branch board 2 through the optical cross board 3
  • the second path 2 is used to connect to the electrical branch board 4 through the optical cross board 3 and the electrical cross board 5 .
  • the optical cross-connect board 3 As shown in FIG. 6 , it still includes an optical switch 31 on the optical cross-connect side.
  • the optical branch board 2 may include the first optical branch board 2A and the second optical branch board 2B, and the modules included in the first optical branch board 2A and the second optical branch board 2B It is also the same as above, and will not be repeated here.
  • the electrical cross-connect board 5 needs to include an optical switch, denoted as the electrical cross-connect side optical switch 51, Since it is necessary to perform electrical cross-connect scheduling, an electrical cross-side processing unit 53 needs to be included.
  • the electrical cross-side processing unit 53 is a functional unit of the fourth processing module of the electrical cross-connect board 5 , and the fourth processing module may be, for example, a chip of the electrical cross-connect board 5 .
  • the electrical cross-connect board 5 further includes a sixth optical module 52 . It can be seen that the electrical cross-connect board 5 includes the electrical cross-side optical switch 51, the sixth optical module 52, and the electrical cross-side processing unit 53 connected in sequence. The side light switch 31 is docked.
  • the electrical cross-side optical switch 51 , the sixth optical module 52 and the electrical cross-side processing unit 53 are integrated on one board, which is the electrical cross-connect board 5 .
  • the electrical cross-side optical switch 51, the sixth optical module 52, and the electrical cross-side processing unit 53 may also be integrated on different boards, for example, the three are respectively on one board, and the electrical cross-side optical switch 51 alone occupies a board, the sixth optical module 52 independently occupies a board, and the electrical cross-side processing unit 53 also independently occupies a board.
  • two of them are integrated on one board, and the other occupies a single board, and it doesn't matter which two are integrated on one board.
  • the electrical branch board 4 also includes a seventh optical module 42 .
  • the electrical branch board 4 includes the connected second connection unit 41 and the seventh optical module 42, wherein the second connection unit 41 is responsible for electrical connection with the electrical cross-side processing unit 53 of the electrical cross board 5, and the seventh optical module Module 42 is responsible for docking with client equipment.
  • the line-side processing unit 12 it first needs to have a framing function, so as to facilitate data transmission with the optical branch board 2 .
  • the line-side processing unit 12 may have a mapping function. Wherein, the mapping function can also be integrated on the electrical branch board 4 .
  • the line side processing unit 12 can also have business processing functions, such as OTN/SDH multiplexing/demultiplexing, mapping/demapping, and packet message processing (such as message analysis, lookup table forwarding, and traffic management, etc.) ).
  • the service processing function of the line-side processing unit 12 may be integrated in the electrical cross-side processing unit 53 of the electrical cross-connect board 5 .
  • the processing unit 53 on the electrical cross-connect side it is first necessary to have an electrical cross-connect scheduling function, so as to perform electrical cross-connect scheduling. Secondly, it can have the above-mentioned business processing function.
  • the electrical tributary board 4 may have a mapping function. If the electrical tributary board 4 has a mapping function, then the third processing module of the electrical tributary board 4 further includes an electrical tributary side processing unit to perform the mapping function. However, if the mapping function of the electrical branch board 4 is integrated on the line side processing unit 12, then the third processing module may not include the electrical branch side processing unit.
  • the above service processing function can be integrated on the line-side processing unit 12 of the circuit board 1 , or can be integrated on the electric cross-side processing unit 53 of the electric cross-connect board 5 .
  • the above-mentioned mapping function may be integrated in the line-side processing unit 12 , or may be integrated in the electrical branch-side processing unit of the electrical branch board 4 .
  • the first connection unit 15 For the first connection unit 15, if the line-side processing unit 12 only has the framing function, or has the framing and mapping functions, then the first connection unit 15 plays the role of adaptive connection with the electrical cross-side processing unit 53 . And if the line side processing unit 12 has the framing function and the above-mentioned service processing function, or has the framing and mapping function, and the above-mentioned service processing function, then the first connection unit 15 is used for Data format conversion is performed between the line-side processing unit 12 of 1 and the electric cross-side processing unit 53 of the electric cross-connection board 5, so that the data processed by the line-side processing unit 12 can be identified by the electric cross-side processing unit 53, and the electric cross- The data processed by the cross-side processing unit 53 can be recognized by the line-side processing unit 12 .
  • the function of the second connection unit 41 is similar to that of the first connection unit 15 .
  • the mapping function of the electrical tributary board 4 is integrated in the line-side processing unit 12 of the circuit board 1, or integrated in the electrical cross-side processing unit 53 of the electrical cross-connect board 5, then the second connection unit 41 functions as the The electrical cross-side processing unit 53 adapts the connection.
  • the third processing module includes an electrical branch side processing unit for performing the mapping function
  • the second connection unit 41 is used for processing on the electrical branch side of the circuit board 1
  • data format conversion is performed, so that the data processed by the electric branch side processing unit can be identified by the electric cross-side processing unit 53, and the electric cross-side processing unit 53
  • the processed data can be identified by the processing unit on the side of the electrical branch.
  • the specific functions of the line-side processing unit 12, the specific functions of the first connection unit 15, the specific functions of the electrical cross-side processing unit 53, the specific functions of the electrical branch board 4, and the specific functions of the second connection unit 41 are discussed in this embodiment.
  • the specific functions are not specifically limited and can be flexibly configured.
  • the circuit board 1 includes two branches, as shown in FIG. 6 , which are respectively the first path 1 and the second path 2.
  • the processing unit 12 is connected to the first connection unit 15, and is also connected to the optical module connected to the line-side optical switch 14, as shown in FIG. 7 .
  • the service flow can be transmitted between the line board 1 and the optical tributary board 2, but the service transmission cannot be performed between the line board 1 and the electrical tributary board 4.
  • the service flow entering from the line board 1 only flows to the optical tributary board 2, but not to the electrical tributary board 4.
  • the optical tributary board 2 can flow into the service flow, but the electrical tributary board 4 cannot flow into the service flow. .
  • Service flow transmission can be performed between the circuit board 1 and the electrical tributary board 4 , but service transmission cannot be performed between the circuit board 1 and the optical tributary board 2 .
  • the service flow entering from line board 1 can only flow to electrical tributary board 4, but not to optical tributary board 2; business flow.
  • the selector switch unit 17 can also choose to connect to the line side processing unit 12 and connect to the first connecting unit 15, that is, to select both the first path 1 and the second path 2 to be connected, so that the line Service flow transmission can be performed between the board 1 and the optical tributary board 2 , and between the circuit board 1 and the electrical tributary board 4 .
  • the service flow flowing in from the circuit board 1 can flow out from the optical branch board 2 or the electric branch board 4, or both the optical branch board 2 and the electric branch board 4 can flow in the service flow.
  • the number of optical modules connected to the line-side optical switch 14 is one or more.
  • the number of optical modules connected to the line-side optical switch 14 is one.
  • the number of optical modules connected to the line-side optical switch 14 may be multiple, and the multiple optical modules may be shared.
  • the optical modules connected to the line-side optical switch 14 include a second optical module 13 and a fifth optical module 16 , and the second optical module 13 and the fifth optical module 16 can be shared.
  • the service flow transmitted on the first path 1 can go through the second optical module 13 or the fifth optical module 16
  • the service flow transmitted on the second path 2 can go through the second optical module 13 or the fifth optical module 16.
  • the bandwidth of the optical module can be relatively small, and the sum of the bandwidths of the multiple optical modules is still relatively large, so that a large-bandwidth service flow can still be transmitted.
  • the processing of the optical module with smaller bandwidth is simple and the cost is low, which can save the cost.
  • the service flow between the selection switch unit 17 and the line-side optical switch 14 can all go through one of the optical modules, so the optical modules connected to the line-side optical switch 14 A module can be one.
  • one of the second optical module 13 and the fifth optical module 16 can be reserved, that is, only one optical module is connected between the selection switch unit 17 and the line-side optical switch 14, as shown in FIG. Two optical modules 13 .
  • the bandwidth of the second optical module 13 needs to be relatively large so as to transmit a large-bandwidth service flow. This scheme can reduce the number of optical modules, thereby saving costs.
  • optical modules connected to the selection switch unit 17 can be not only one or two, but also a greater number of optical modules, and these optical modules connected to the selection switch unit 17 can be shared to jointly undertake the transmission of service flows.
  • connection between the circuit board 1 and the electrical branch board 4 is through the optical cross board 3 and the electrical cross board 5 .
  • the connection between the circuit board 1 and the electrical branch board 4 can also be realized only by means of the electrical cross board 5 , as described below for details.
  • each circuit board 1 is directly connected to each of multiple electrical cross boards 5
  • each electrical cross board 5 is directly connected to each of multiple electrical branch boards 4 .
  • the circuit board 1 and the electrical branch board 4 are connected to the same electrical cross board 5 , so that the circuit board 1 and the electrical branch board 4 can be connected.
  • each circuit board 1 is connected to each of a plurality of electric cross boards 5, and each electric cross board 5 is connected to each of a plurality of electric branch boards 4, so that each Each circuit board 1 is connected to all electric branch boards 4, each electric branch board 4 is connected to all circuit boards 1, and any two electric branch boards 4 are connected.
  • the specific modules included in the circuit board 1 , the optical branch board 2 , the optical cross-connect board 3 , the electrical branch board 4 and the electrical cross-connect board 5 may be as follows.
  • the first connection unit 15 of the circuit board 1 is directly connected to the electrical cross-side processing unit 53 of the electric cross-connect board 5, and the line-side processing unit 12 sends and receives electrical signals, so there is no need for photoelectric conversion, Therefore, there is no need to include the fifth optical module 16, then the first path 1 of the circuit board 1 remains unchanged, and the second path 2 of the circuit board 1 becomes the first optical module 11, the line-side processing unit 12 and the second path connected in sequence.
  • a connecting unit 15 , the first connecting unit 15 is responsible for direct electrical connection with the processing unit 53 on the electrical cross-connect side of the electrical cross-connect board 5 .
  • the first connecting unit 15 is directly connected to the electrical cross-connect board 5 in the form of an electrical signal, that is, the first connecting unit 5 is connected to the electrical cross-connect board 5 without an optical signal, then the optical channel and the electrical channel are connected to each other. independent, and thus there is no need to use the selection switch unit 17 to select the path.
  • optical cross-connect board 3 For the optical cross-connect board 3 , the optical branch board 2 and the electrical branch board 4 , the modules included therein are all unchanged.
  • the electrical cross board 5 since it is no longer docked with the optical cross board 3, then the electrical cross board 5 does not need to include optical switches and optical modules, then, as shown in Figure 9, the electrical cross board 5 only needs to include the electrical cross side processing unit 53 is enough.
  • the above respectively introduces that in the scheme in which the optical branch board 3 and the electrical branch board 5 communicate with each other, and in the scheme in which the optical branch board 3 and the electrical Each module included in the cross board 3 , the electrical branch board 4 and the electrical cross board 5 .
  • the scheme that the optical tributary board 3 and the electrical tributary board 5 communicate that is, the connection between the circuit board 1 and the electrical tributary board 4 is realized by means of the optical tributary board 3 and the electrical tributary board 5 .
  • the solution that the optical branch board 3 and the electrical branch board 5 do not communicate with each other, that is, the connection between the circuit board 1 and the electrical branch board 4 is realized only through the electrical branch board 5 instead of the optical branch board 3 plan.
  • the seventh optical module 42 can be a pluggable optical module, which can be inserted into the board where it is located, can also be pulled out from the board where it is located, or can be fixed on the board where it is located, and cannot be pulled out from the board where it is located. It can also be a functional unit integrated on the corresponding board, for example, it can be integrated on the chip of the corresponding board. This embodiment does not limit the specific form of each optical module, which can be flexibly selected according to actual conditions.
  • the circuit board 1 may include a line-side amplifier 18, wherein the line-side amplifier 18 is an optical amplifier, which may be connected between the second optical module 13 and the line-side optical switch. 14, wherein the number of line-side amplifiers 18 is the same as the number of optical modules connected to the selection switch unit 17, for example, the selection switch unit 17 connects the two optical modules of the second optical module 13 and the fifth optical module 16, then , the number of line-side amplifiers 18 is two, and the second optical module 13 and the fifth optical module 16 have the same protocol, such as the same transmission rate.
  • the optical branch board 2 may also include an optical amplifier, denoted as an optical branch side amplifier 25 , and the optical branch side amplifier 25 is connected to the optical branch side optical switch 21 .
  • the electrical cross board 5 may also include an optical amplifier, denoted as an electrical cross-side amplifier 54 , which is connected between the electrical cross-side optical switch 51 and the sixth optical module 52 .
  • the optical communication equipment not only includes the above-mentioned various modules, but also includes components such as power supply, control, clock and fan that promote the normal operation of the optical communication equipment. Since these components have nothing to do with the invention of this application, this application does not describe.
  • the plurality of optical cross-connect boards 3 may include at least one spare optical cross-connect board 3 .
  • 1+1 means that one optical cross board 3 is the main optical cross board, which is responsible for normal operation, and the other optical cross board 3 is the backup optical cross board, which is responsible for when the main optical cross board fails, Start working.
  • n means n optical cross-connect boards 3 are active optical cross-connect boards and are responsible for normal work, and one optical cross-connect board 3 is a backup optical cross-connect board.
  • n means that n optical cross-connect boards 3 are active optical cross-connect boards and are responsible for normal work, and m optical cross-connect boards 3 are standby optical cross-connect boards.
  • redundancy protection can be implemented for the electrical cross-connect board 5 .
  • the plurality of electrical cross-connect boards 5 may include at least one standby electrical cross-connect board 5 , and the standby electrical cross-connect board 5 starts to work when the active electrical cross-connect board 5 fails. For example, 1+1, 1:n, or m:n redundancy protection.
  • the redundant protection of the optical cross-connect board 3 and the electrical cross-connect board 5 is applicable to the solution in which the optical cross-connect board 3 and the electrical cross-connect board 5 communicate with each other, and is also applicable to the solution in which the optical cross-connect board 3 and the electrical cross-connect board 5 do not communicate with each other. .
  • the optical communication equipment may include the scheme that does not include the electric branch board 4 and the electric cross board 5, and also includes the scheme that the optical cross board 3 and the electric cross board 5 communicate with each other, and also includes the optical cross board 3 and the electric cross board 5 non-interoperable programs.
  • the following will introduce the application scenarios of these three solutions.
  • each transmission path is a bidirectional arrow because the transmission direction of the service flow can be from another optical communication device to the client device, or from the client device to another optical communication device, or That is, FIG. 11 to FIG. 13 are applicable to uplink transmission and downlink transmission of service flows, so the transmission paths use bidirectional arrows.
  • the scenario may be as follows.
  • the transmission of a service flow between another optical communication device and a client device may include two transmission paths, which are transmission path a and transmission path b.
  • the transmission path a is the circuit board 1 - the optical cross-connect board 3 - the first optical branch board 2A.
  • the transmission path b is the line board 1 - the optical cross board 3 - the second optical branch board 2B.
  • the service flow is transmitted according to the transmission path a, otherwise, it is transmitted according to the transmission path b.
  • Service flows are transmitted between different line boards 1 according to the transmission path c, and the transmission path c is line board 1-optical cross-connect board 3-line board 1.
  • the service flow since the service flow, no matter it is a large-grained service or a small-granularized service, adopts optical cross-connect scheduling, and the optical transmission rate is high, so the delay is low.
  • small-grained services may be, for example, service flows with a small amount of data.
  • the transmission of a service flow between another optical communication device and a client device may include three transmission paths, which are transmission path a, transmission path b, and transmission path d.
  • the transmission path a is the circuit board 1 - the optical cross-connect board 3 - the first optical branch board 2A.
  • the transmission path b is the line board 1 - the optical cross board 3 - the second optical branch board 2B.
  • the transmission path d is circuit board 1 - optical cross board 3 - electrical cross board 5 - electrical branch board 4 .
  • Transmission path a and transmission path b can be applied to large-grained services, or, for services requiring low delay, transmission path a and transmission path b are adopted, with fast rate and low delay.
  • the transmission path d can be used to transmit small-grain services, or, for services with low delay requirements, the small-grain services are aggregated by the electrical cross-connect board 5 and transmitted to the line board 1 together, which can save transmission energy.
  • the transmission of service flows between different line boards 1 may follow the transmission path c and the transmission path e.
  • the transmission path c is circuit board 1-optical cross-connect board 3-circuit board 1, which can be applied to the pass-through scenario of large-grained services, or requires data with low delay.
  • the transmission path e is circuit board 1-optical cross-connect board 3-electrical cross-connect board 5-optical cross-connect board 3-circuit board 1, which can be applied to the pass-through scenario of small granular services.
  • the transmission of a service flow between another optical communication device and a client device may include three transmission paths, which are transmission paths a, b, and f respectively.
  • the transmission path a is the circuit board 1 - the optical cross-connect board 3 - the first optical branch board 2A.
  • the transmission path b is the line board 1 - the optical cross board 3 - the second optical branch board 2B.
  • the transmission path f is the circuit board 1 - the electrical cross board 5 - the electrical branch board 4 .
  • Transmission path a and transmission path b can be applied to large-grained services, or, for services requiring low delay, transmission path a and transmission path b are adopted, with fast rate and low delay.
  • the transmission path f can be used to transmit small-grain services, or, for services with low delay requirements, the small-grain services are aggregated by the electrical cross-connect board 5 and transmitted to the line board 1 together, which can save transmission energy.
  • the transmission of service flows between different line boards 1 may follow the transmission path c and the transmission path g.
  • the transmission path c is circuit board 1-optical cross-connect board 3-circuit board 1, which can be applied to the pass-through scenario of large-grained services, or requires data with low delay.
  • the transmission path g is circuit board 1-electrical cross-connect board 5-circuit board 1, which can be applied to the pass-through scenario of small-grained services.
  • each of the above-mentioned transmission paths can transmit both large-grain services and small-grain services.
  • it can be flexibly selected according to actual needs. For example, large-grain services or services requiring low delay can be transmitted.
  • optical communication equipment including the optical cross board 3 and the electrical cross board 5 has at least the following beneficial effects:
  • the optical cross-connect board has nothing to do with the link rate, so compared with the electrical connection, it is easier to increase the link transmission rate, so that the optical communication equipment has good scalability.
  • the electrical cross-connect board 5 can become a resource that can be shared and shared by all circuit boards 1 and all optical cross-connect boards 3 .
  • the optical cross-connect board 3 can share the cross-connect dispatching service of the electrical cross-connect board 5 and reduce processing for the electrical cross-connect board 5 , so that the chip capacity and power consumption of the electrical cross-connect board 5 can also be reduced accordingly.
  • the optical communication equipment including the selection switch unit 17 can flexibly allocate whether the service flows to the optical tributary board 2 or the electrical tributary board 4, and the ratio of the optical tributary board 2 to the electrical tributary board 4, which can reduce the second The number of optical modules 13 and the number of line-side amplifiers 18 are reduced, thereby saving costs.
  • each of the multiple line boards is connected to all the optical branch boards, so that the service flow can be transmitted between any line board and any optical branch board, thereby enhancing the optical branch board. Flexibility in the use of communication equipment. Moreover, since the rate of service signal scheduling through the optical cross-connect board is higher than the rate of service signal scheduling through the electrical cross-connect board, the optical communication device has a low delay in performing service signals through the optical cross-connect board.
  • the optical communication device includes a first client device 100, a second client device 200, and at least one optical communication device 300 of the foregoing embodiments.
  • one of the first client device 100 and the second client device 200 serves as a sending client device, and the other serves as a receiving client device, and the two establish a communication connection through at least one optical communication device 300 .
  • the first client device 100 is connected to a tributary board of at least one optical communication device
  • the second client device 200 is connected to a tributary board of at least one optical communication device.
  • the branch board includes at least the above-mentioned optical branch board 2, for example, if the optical communication device 300 is an optical communication device including the optical branch board 2 but not the electrical branch board 4 as shown in FIG. , then, the above branch board may be the optical branch board 2 . And if the optical communication device 300 is shown in FIG. 6, the optical communication device including the optical branch board 2 and the electrical branch board 4, then the above-mentioned branch board can be the optical branch board 2 or the electrical branch board plate 4.
  • the branch board is used as an example for the optical branch board 2 , the branch board is not limited to the optical branch board 2 , and may also be the electrical branch board 4 .
  • the first client device 100 and the second client device 100 may establish a communication connection through the same optical communication device 300 .
  • the first client device 100 and the second client device 200 are respectively connected to different tributary boards of the same optical communication device 300 .
  • This solution may be applicable to a scenario where two client devices are relatively close to each other, for example, the first client device 100 and the second client device 200 are located in a building or in the same cell.
  • the first client device 100 and the second client device 100 may also establish a communication connection through multiple optical communication devices 300 .
  • the first client device 100 is connected to the tributary board of the first optical communication device 301 in the at least one optical communication device 300
  • the second client device 200 is connected to the second The tributary board of the optical communication device 302 is connected.
  • the first optical communication device 301 and the second optical communication device 302 are different optical communication devices
  • the circuit board 1 of the first optical communication device 301 is connected to the circuit board 1 of the second optical communication device 302 .
  • This solution may be applicable to a scenario where the distance between the first client device 100 and the second client device 200 is relatively long, for example, the first client device 100 and the second client device 200 are located in different cities.
  • connection between the circuit board 1 of the first optical communication device 301 and the circuit board 1 of the second optical communication device 302 includes direct connection and indirect connection, which can be referred to as follows.
  • the first client device 100 and the second client device 200 can establish a communication connection through two or more optical communication devices 300 .
  • one circuit board 1 of the first optical communication device 301 and one circuit board 1 of the second optical communication device 302 are directly connected.
  • at least one optical communication device 300 is connected between a circuit board 1 of the first optical communication device 301 and a circuit board 1 of the second optical communication device 302, and the first optical communication device 301, Between the second optical communication device 302 and at least one passing optical communication device 300 , two connected optical communication devices 300 are connected through the circuit board 1 .
  • a circuit board 1 of the first optical communication device 301 is connected to a circuit board 1 of the third optical communication device 303 in at least one optical communication device, and another circuit board 1 of the third optical communication device 303 It is connected to a circuit board 1 of the second optical communication device 302 .
  • FIG. 16 is only an example, that is, the connection is made through one optical communication device 300 (that is, the third optical communication device 303). In practical applications, a greater number of optical communication devices 300 may also be used to connect the first optical communication device 301 and the second optical communication device 302 .
  • the optical communication equipment of the optical communication system connects each of the multiple line boards to each of the multiple optical tributary boards, so that service flows can be
  • the transmission between tributary boards enhances the flexibility of use of the optical communication device.
  • the optical communication device since the rate of service signal scheduling through the optical cross-connect board is higher than the rate of service signal scheduling through the electrical cross-connect board, the optical communication device has a low delay in performing service signals through the optical cross-connect board.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)
  • Time-Division Multiplex Systems (AREA)

Abstract

本申请公开了一种光通信设备和光通信系统,属于光传输技术领域。所述光通信设备包括多个线路板、多个光支路板和多个光交叉板;所述多个线路板中的每一个通过所述多个光交叉板,与所述多个光支路板中的每一个连接,且任意两个线路板通过所述多个光交叉板连接;所述线路板用于和另一个光通信设备连接,所述光支路板用于和客户设备连接。采用本申请的技术方案,可以增强该光通信设备的使用灵活性,降低业务传输延时。

Description

光通信设备和光通信系统
本申请要求于2021年12月27日提交中国国家知识产权局、申请号202111617789.1、申请名称为“光通信设备和光通信系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光传输技术领域,特别涉及一种光通信设备和光通信系统。
背景技术
光通信设备通常包括多个板卡。每个板卡集成有用于连接另一光通信设备的线路接口,以及用于连接客户设备的支路接口。例如,板卡包括充当线路接口的线路侧光模块,用于连接另一光通信设备,还包括充当支路接口的客户侧光模块,用于连接客户设备。这样,业务信号可以在板卡的线路接口和支路接口之间传输。业务信号虽然能够在同一板卡的线路接口和支路接口之间传输,却无法在不同板卡的线路接口和支路接口之间传输,例如,无法在一个板卡的线路接口和另一个板卡的支路接口之间传输,导致该光通信设备的使用灵活性较差。
发明内容
本申请提供了一种光通信设备和光通信系统,能够解决相关技术中光通信设备的使用灵活性较差的问题。
一方面,本申请实施例提供了一种光通信设备。所述光通信设备包括多个线路板、多个光支路板和多个光交叉板。所述多个线路板中的每一个通过所述多个光交叉板,与所述多个光支路板中的每一个连接。任意两个线路板通过所述多个光交叉板连接。所述线路板用于和另一个光通信设备连接,所述光支路板用于和客户设备连接。
本申请所示的光通信设备中,任意的线路板和任意的光支路板连接,使得业务流,能够在任意线路板和任意光支路板之间传输,从而,增强该光通信设备的使用灵活性。而且,由于通过光交叉板进行业务信号调度的处理过程,要比通过电交叉板进行业务信号调度的处理过程简单,所以,该光通信设备通过光交叉板进行业务信号的延时低。
在一种可能的实施方式中,所述多个线路板中的每一个与所述多个光交叉板中的每一个连接。所述多个光交叉板中的每一个与所述多个光支路板中的每一个连接。进而,可以实现任意线路板和任意光支路板的连接、任意两个线路板之间的连接,以及任意两个光支路板之间的连接。
在一种可能的实施方式中,所述线路板包括依次连接的第一光模块、线路侧处理单元、第二光模块和线路侧光开关。所述光支路板包括光支路侧光开关。所述光交叉板包括光交叉侧光开关。所述第一光模块用于和另一个光通信设备连接。所述线路侧光开关和所述光交叉 侧光开关连接。所述光交叉侧光开关和所述光支路侧光开关连接。
本申请所示的方案,线路侧处理单元为线路板的第一处理模块的一个功能单元,第一处理模块例如可以是线路板的芯片。线路侧光开关和光交叉侧光开关对接,进而,实现线路板和光交叉板的对接。光交叉侧光开关和光支路侧光开关对接,进而,实现光交叉板和光支路板的对接。
在一种可能的实施方式中,所述多个光支路板中包括第一光支路板和第二光支路板。所述第二光支路板还包括第三光模块、转换单元和第四光模块。所述第二光支路板的光支路侧光开关、第三光模块、转换单元和第四光模块依次连接。其中,所述第二光模块和所述第三光模块的协议相同,所述第四光模块和所述客户设备所连的光模块的协议相同。
本申请所示的方案,转换单元为光支路板的第二处理模块的一个功能单元,第二处理模块例如可以是芯片。转换单元用来互转第三光模块的协议和第四光模块的协议。例如,将第三光模块的协议,转换成第四光模块的协议,以便于和客户设备连对接成功。
在一种可能的实施方式中,任意两个光支路板之间通过所述多个光交叉板连接。
本申请所示的方案,所述多个光支路板中的每一个和多个光交叉板中的每一个连接,从而,使得任意两个光支路板,都能与同一个光交叉板连接,进而,使这两个光支路板连接。这样,业务流能够在任意两个光支路板之间传输。
在一种可能的实施方式中,所述光通信设备还包括多个电支路板和多个电交叉板。所述多个线路板中的每一个通过所述多个电交叉板,与所述多个电支路板中的每一个连接。所述电支路板用于和所述客户设备连接。
本申请所示的方案,光通信设备不仅包括光交叉板,还包括电交叉板,使得光通信设备既具备光交叉功能,又具备电交叉功能,从而成为具备光电混合调度的光通信设备。
在一种可能的实施方式中,所述多个线路板中的每一个,通过所述多个电交叉板和所述多个光交叉板,与所述多个电支路板中的每一个连接。
本申请所示的方案,所述多个线路板中的每一个与所述多个光交叉板中的每一个连接。所述多个光交叉板中的每一个与所述多个电交叉板中的每一个连接。所述多个电交叉板中的每一个与所述多个电支路板中的每一个连接。从而,任意线路板与任意电支路板连接,任意两个电支路板之间,也具有连接关系。
在一种可能的实施方式中,所述线路板包括依次连接的第一光模块、线路侧处理单元、第一连接单元、第五光模块和线路侧光开关。所述光交叉板包括光交叉侧光开关。所述电交叉板包括依次连接的电交叉侧光开关、第六光模块和电交叉侧处理单元。所述电支路板包括连接的第二连接单元和第七光模块。所述第一光模块用于和所述另一光通信设备连接,所述线路侧光开关和所述光交叉侧光开关连接。所述光交叉侧光开关和所述电交叉侧光开关连接。所述电交叉侧处理单元和所述第二连接单元连接。所述第七光模块用于和所述客户设备连接。
本申请所示的方案,第一连接单元是线路板的第一处理模块的一个功能单元,用来和电交叉板的电交叉侧处理单元连接。线路侧光开关和光交叉侧光开关对接,进而,线路板和光交叉板连接。光交叉侧光开关和电交叉侧光开关对接,进而,光交叉板和电交叉板连接。第二连接单元是电支路板的第三处理模块的一个功能单元,用来和电交叉板的电交叉侧处理单元连接,进而,电交叉板和电支路板连接。
在一种可能的实施方式中,所述线路板还包括选择开关单元。所述选择开关单元分别与 所述线路侧处理单元和所述第一连接单元连接,且还与所述线路侧光开关所连的光模块连接。所述选择开关单元用于,选择和所述线路侧处理单元之间的路径接通,和/或,选择和所述第一连接单元之间的路径接通。
其中,线路侧光开关所连的光模块的数量可以是一个或多个。这多个光模块用于进行光电转换,例如,用于将从选择开关单元接收到的电信号,转换为光信号,然后传输至线路侧光开关。又例如,这些光模块用于将从线路侧光开关接收到的光信号,转换为电信号,然后传输至选择开关单元。
本申请所示的方案,当业务流走光交叉板,而不走电交叉板时,选择开关单元可以选择和线路侧处理单元的路径接通,而与第一连接单元的路径断开。当业务流走电交叉板,而不走光交叉板时,选择开关单元可以选择和第一连接单元的路径接通,而与线路侧处理单元的路径断开。当一部分业务流走光交叉板,而另一部分业务流走电交叉板时,选择开关单元可以选择和线路侧处理单元的路径接通,也选择和第一连接单元的路径接通。这样,可以提高业务流通的灵活性,也进一步增强光通信设备的使用灵活性。
在一种可能的实施方式中,所述多个线路板中的每一个与所述多个电交叉板中的每一个直接电连接。所述多个电交叉板中的每一个与所述多个电支路板中的每一个直接连接。
本申请所示的方案,线路板和电支路板之间,可以只借助电交叉板,实现连接。例如,线路板和所有的电交叉板电连接,电交叉板又和所有的电支路板连接,进而,使得线路板和所有的电支路板连接。其中,线路板和电交叉板连接,例如可以是线路板的第一连接单元和电交叉板的电交叉侧处理单元电连接。电交叉板和电支路板连接,例如可以是电交叉板的电交叉侧处理单元和电支路板的第二连接单元电连接。
在一种可能的实施方式中,所述多个电交叉板中包括至少一个备用的电交叉板,所述备用的电交叉板用于当主用的电交叉板故障时,启动工作。
本申请所示的方案,例如,电交叉板进行1+1、1:n,或,m:n等冗余保护。其中,1+1也即是一个电交叉板为主用的电交叉板,负责正常工作,另一个电交叉板作为备用的电交叉板,当主用的电交叉板故障时,备用的电交叉板启动工作。1:n也即是n个电交叉板为主用的电交叉板,负责正常工作,一个电交叉板作为备用的电交叉板。m:n也即是n个电交叉板为主用的电交叉板,负责正常工作,m个电交叉板作为备用的电交叉板。
在一种可能的实施方式中,所述多个光交叉板中包括至少一个备用的光交叉板,所述备用的光交叉板用于当主用的光交叉板故障时,启动工作。
本申请所示的方案,例如,光交叉板进行1+1、1:n,或,m:n等冗余保护。其中,1+1也即是一个光交叉板为主用的光交叉板,负责正常工作,另一个光交叉板作为备用的光交叉板。1:n也即是n个光交叉板为主用的光交叉板,负责正常工作,一个光交叉板作为备用的光交叉板。m:n也即是n个光交叉板为主用的光交叉板,负责正常工作,m个光交叉板作为备用的光交叉板。
另一方面,本申请实施例还提供了一种光通信系统,所述光通信系统包括第一客户设备、第二客户设备和至少一个上述所述的光通信设备。所述第一客户设备和所述至少一个光通信设备中的一个的支路板连接,所述第二客户设备和所述至少一个光通信设备中的一个的支路板连接,所述支路板至少包括光支路板。
本申请所示的方案,第一客户设备和第二客户设备中一个为发送端,另一个为接收端, 两者通过至少一个光通信设备,建立通信连接,以实现交互。第一客户设备和第二客户设备所连的光通信设备,可以是同一个光通信设备,也可以是不同的光通信设备。
在一种可能的实施方式中,所述第一客户设备和所述第二客户设备,分别与同一个光通信设备的不同的支路板连接。
本申请所示的方案,第一客户设备和第二客户设备的距离比较近,如在同一栋楼或同一个小区。第一客户设备和第二客户设备通过一个光通信设备,实现交互。例如,第一客户设备和光通信设备的一个支路板连接,第二客户设备和该光通信设备的另一个支路板连接。
在一种可能的实施方式中,所述第一客户设备和所述第二客户设备,分别与不同的光通信设备的支路板连接。例如,所述第一客户设备和所述至少一个光通信设备中的第一光通信设备的一个支路板连接,所述第二客户设备和所述至少一个光通信设备中的第二光通信设备的一个支路板连接。其中,所述第一光通信设备和所述第二光通信设备为不同的光通信设备,且所述第一光通信设备的线路板和所述第二光通信设备的线路板连接。
本申请所示的方案,所述第一光通信设备的线路板和所述第二光通信设备的线路板连接,可以是直接连接,也可以是间接连接。例如,如果第一客户设备和第二客户设备,通过两个光通信设备,建立通信连接,那么,第一光通信设备的一个线路板和第二光通信设备的一个线路板直接连接。而如果第一客户设备和第二客户设备,通过两个以上光通信设备,建立通信连接,那么,第一光通信设备的一个线路板和第二光通信设备的一个线路板之间,通过至少一个光通信设备连接,且第一光通信设备、第二光通信设备和所通过的至少一个光通信设备之间,相连的两个光通信设备之间是通过线路板连接。例如,第一光通信设备的一个线路板和至少一个光通信设备中的第三光通信设备的一个线路板连接,第三光通信设备的另一个线路板和第二光通信设备的一个线路板连接。
附图说明
图1是本申请提供的一种光通信设备的框架示意图;
图2是本申请实施例提供的一种包括光交叉板的光通信设备的示意图;
图3是本申请实施例提供的一种部分线路板和部分光交叉板连接的光通信设备的示意图;
图4是本申请实施例提供的一种包括至少一组板卡的光通信设备的示意图;
图5是本申请实施例提供的一种包括第一光支路板和第二光支路板的光通信设备的示意图;
图6是本申请实施例提供的一种包括光交叉板和电交叉板,且光交叉板和电交叉板具有连接关系的光通信设备的示意图;
图7是本申请实施例提供的一种线路板具有选择开关单元的光通信设备的示意图;
图8是本申请实施例提供的一种线路板中线路侧光开关所连的光模块的数量为一个的光通信设备的示意图;
图9是本申请实施例提供的一种包括光交叉板和电交叉板,且光交叉板和电交叉板不具有连接关系的光通信设备的示意图;
图10是本申请实施例提供的一种包括光放大器的光通信设备的示意图;
图11是本申请实施例提供的一种业务流在包括光交叉板的光通信设备中进行传输的示意图;
图12是本申请实施例提供的一种业务流在包括光交叉板和电交叉板,且光交叉板和电交叉板具备连接关系的光通信设备中进行传输的示意图;
图13是本申请实施例提供的一种业务流在包括光交叉板和电交叉板,且光交叉板和电交叉板不具备连接关系的光通信设备中进行传输的示意图;
图14是本申请实施例提供的一种第一客户设备和第二客户设备,通过一个光通信设备,实现连接的光通信系统的示意图;
图15是本申请实施例提供的一种第一客户设备和第二客户设备,通过两个光通信设备,实现连接的光通信系统的示意图;
图16是本申请实施例提供的一种第一客户设备和第二客户设备,通过三个光通信设备,实现连接的光通信系统的示意图。
图例说明:
01、机柜;02、板卡;1、线路板;11、第一光模块;12、线路侧处理单元;13、第二光模块;14、线路侧光开关;15、第一连接单元;16、第五光模块;17、选择开关单元;18、线路侧放大器;2、光支路板;2A、第一光支路板;2B、第二光支路板;21、光支路侧光开关;22、第三光模块;23、转换单元;24、第四光模块;25、光支路侧放大器;3、光交叉板;3A、第一光交叉板;3B、第二光交叉板;31、光交叉侧光开关;4、电支路板;41、第二连接单元;42、第七光模块;5、电交叉板;51、电交叉侧光开关;52、第六光模块;53、电交叉侧处理单元;54、电交叉侧放大器;100、第一客户设备;200、第二客户设备;300、光通信设备;301、第一光通信设备;302、第二光通信设备;303、第三光通信设备。
具体实施方式
虽然本申请的描述将结合一些实施例一起介绍,但这并不代表此申请的特征仅限于该实施方式。恰恰相反,结合实施方式作申请介绍的目的是为了覆盖基于本申请的权利要求而有可能延伸出的其它选择或改造。为了提供对本申请的深度了解,以下描述中将包含许多具体的细节。本申请也可以不使用这些细节实施。此外,为了避免混乱或模糊本申请的重点,有些具体细节将在描述中被省略。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
在本申请实施例中,术语“第一”、“第二”、“第三”、“第四”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”、“第三”、“第四”的特征可以明示或者隐含地包括一个或者多个该特征。
在本申请实施例中,“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
需要说明的是,在本申请实施例的描述中,除非另有明确的规定和限定,术语“连接”应做广义理解。例如,“连接”可以是可拆卸地连接,也可以是不可拆卸地连接;可以是直接连接,也可以通过中间媒介间接连接。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
在本说明书中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处 出现的语句“在一种示例中”、“在另一种示例中”、“在一种实施例中”、“在另一种实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。
本申请实施例提供了一种光通信设备。光通信设备也可以称为光传输设备。例如,可以是波分设备或光传送网(optical transport network,OTN)设备等。其中,光通信设备的主要任务是,接收一个客户设备产生的业务流,经过光通信设备以及连接光通信设备的传播介质(如光纤、电缆和电磁波等),把业务流传输给另一个客户设备。由于这两个客户设备之间是通过至少一个光通信设备连接,那么,光通信设备会包括两种接口,分别是用户-网络接口(user-network interface,UNI)和网络-网络接口(network to network interface,NNI),用户-网络接口用于与客户设备连接,网络-网络接口用来与另一个光通信设备连接。例如,一个客户设备与一个光通信设备的用户-网络接口连接,另一个客户设备与另一个光通信设备的用户-网络接口连接,这两个光通信设备之间通过网络-网络接口连接。至于两个客户设备和至少一个光通信设备之间的具体连接关系,可以参考下文对光通信系统的介绍。其中,客户设备也即是光通信设备所服务的设备,如可以是路由器或交换机等设备。在光传输领域中,通常会将用户-网络接口称为支路接口,将网络-网络接口称为线路接口。
如图1所示为光通信设备的结构示意图。光通信设备可以是插卡式设备,光通信设备包括机柜01和多个板卡02,板卡02也可以称为线卡或业务板,机柜01包括多个槽位,板卡02插入在槽位中,且板卡02也能从槽位中拔出。
根据光通信设备的线路接口和支路接口是否集成在同一板卡上,光通信设备可以分为一体式的光通信设备和分离式的光通信设备。一体式的光通信设备是线路接口和支路接口集成在同一板卡上的光通信设备,分离式的光通信设备是线路接口和支路接口集成在不同的板卡上的光通信设备。
对于一体式的光通信设备,例如,光通信设备的板卡既包括线路接口又包括支路接口。这种光通信设备结构简单,成本低,功耗也低。但是这种光通信设备不具备跨板调度功能,使用灵活性较差。例如,业务流从一个板卡的支路接口输入,只能从本板卡的线路接口输出,无法从另一板卡的线路接口输出,导致光通信设备的使用灵活性较差。另外,这种光通信设备,如果某一个板卡出现故障,或者,该板卡所连的光纤出现故障,将会导致该板卡所在的通信链路的通信中断。
对于分离式的光通信设备,例如,线路接口集成在一个板卡上,支路接口集成在另一个板卡上。其中,集成线路接口的板卡可以称为线路侧业务板(简称线路板),集成支路接口的板卡可以称为支路侧业务板(简称支路板)。为了使线路板和支路板连接,相应的,光通信设备还包括电交叉板,其中,电交叉板也可以称为电交换板,主要负责板卡之间的信号的转发。由于电交叉板执行的是电交叉调度,那么,线路板和电交叉板之间为电连接,线路板上需要具备用于与电交叉板连接的电连接功能单元,支路板上也需要具备用于与电交叉板连接的电连接功能单元。该处的支路板可以记为电支路板,这么称呼也是为了和下文的光支路板区分。
上述分离式的光通信设备,每个线路板能够和所有的电交叉板电连接,每个电交叉板能够和所有的支路板电连接,进而使得每个线路板与所有的电支路板电连接,每个电支路板与所有的线路板电连接,任意两个线路板之间也电连接,以及任意两个电支路板之间也电连接。
可见,上述分离式的光通信设备,业务流能从一个板卡的支路接口输入,而从另一个板 卡的线路接口输出,能够实现跨板业务调度,提高了使用灵活性。但是线路板和线路板之间的调度,以及线路板和电支路板之间的调度,均需要通过电交叉板,导致电交叉板的处理压力较大,那么电交叉板的芯片容量、成本和功耗都相应增大。而且,该分离式的光通信设备,与一体式的光通信设备相比,由于多了电交叉板和电连接功能单元等,而出现延时增大的情况。另外,由于电连接通常是通过光通信设备的背板上的走线实现,或者通过连接器实现,无论哪一种方式实现,在提升传输速率上难度都较大,例如,在升级光通信设备的传输速率时,需要更换背板。
而本申请提供的光通信设备,能够实现跨板调度、能够缓解电交叉板的处理压力,以及还能够降低延时,提升传输速率。下面将详细介绍本申请所示的光通信设备。
如图2所示,该光通信设备包括多个线路板1、多个光支路板2和多个光交叉板3。其中,三者的数量不一定相等,但也可以相等,本实施例对三者的数量不做限定。其中,线路板1如上述所述,也即是包括线路接口的板卡,用来与另一光通信设备连接,其中图2中第一光模块11在线路板1中所充当的角色便是线路接口。光支路板2如上述所述,也即是包括支路接口的板卡,用来与客户设备连接,如图2所示,光支路侧光开关21在光支路板2中所充当的角色便是支路接口。光交叉板3,也可以称为光交换板,用来实现光链路的交叉调度,其中,光链路的交叉调度可以是波长调度,和/或,端口调度。
关于线路板1、光支路板2和光交叉板3之间的连接方式。如图2所示,多个线路板1中的每一个与多个光交叉板3中的每一个连接,而多个光交叉板3中的每一个与多个光支路板2中的每一个连接,进而可以实现任意线路板1和任意光支路板2的连接,也能实现任意两个线路板1的连接,还能实现任意两个光支路板2连接。
当然,也可以是,一部分线路板1通过一部分光交叉板3,与多个光支路板2中的每一个连接,而另一部分线路板1通过另一部分光交叉板3,与多个光支路板2中的每一个连接。例如,以两个光交叉板3进行示例,分别记为第一光交叉板3A和第二光交叉板3B,如图3所示,一部分线路板1中的每一个均通过第一光交叉板3A,与多个光交叉板2中的每一个连接,另一部分线路板1中的每一个均通过第二光交叉板3B,与多个光交叉板2中的每一个连接。其中,本实施例对每个线路板1如何通过多个光交叉板3,与多个光支路板2中的每一个实现连接的,不做具体限定,能实现多个线路板1中的每一个与所有的光支路板2都具有连接关系即可。
可见,线路板1和光支路板2之间的连接,可以通过多个光交叉板3实现。线路板1和线路板1之间的连接,可以通过多个光交叉板3实现。光支路板2和光支路板2之间的连接,也可以通过多个光交叉板3实现。进而,业务流能够在线路板1和光支路板2之间传输,也可以在不同线路板1之间传输,还可以在不同的光支路板2之间传输,可见,业务传输的路径,与一体式的光通信设备相比,明显增多了,进而提高了光通信设备的使用灵活性。
需要指出的是,线路板1和光交叉板3之间的连接,以及光交叉板3和光支路板2之间的连接,均为用于实现光信号连通的对接。
需要指出的是,光通信设备包括至少一组板卡,上述所述的多个线路板1中的每一个,与多个光支路板2中的每一个,通过多个光交叉板3连接,指的是光通信设备的至少一组板卡中的某一组(可以记为目标组)内的线路板1、光支路板2和光交叉板3的连接关系。例如,如图4所示,目标组包括多个线路板1、多个光支路板2和多个光交叉板3,在目标组中, 多个线路板1中的每一个和多个光交叉板3中的每一个连接,多个光交叉板3中的每一个和多个光支路板2中的每一个连接,进而实现多个线路板1中的每一个和多个光支路板2中的每一个,通过多个光交叉板3连接。而至于除目标组外的其他组内的线路板1、光交叉板3和光支路板2的连接关系,可以和目标组相同,也可以不同,本实施例对此不做限定。而至于不属于同一组的线路板1和光交叉板3之间,以及光交叉板3和光支路板2之间,可以具备连接关系,也可以不具备连接关系,本实施例对此不做限定,可以根据情况灵活设定。下面为便于介绍,可以以光通信设备中的目标组中的板卡进行介绍。
其中,后续要介绍的多个线路板1中的每一个,与多个电支路板4中的每一个,通过多个电交叉板5连接,以及多个线路板1中的每一个,与多个电支路板4中的每一个,通过多个光交叉板3和多个电交叉板5连接,也是指的目标组内的线路板1、电交叉板5和电支路板4的连接关系,至于不同组内的板卡之间的连接关系,以及除目标组外的其他组内的板卡之间的连接关系,本实施例均不做具体限定。
由上述可见,光通信设备中,每个线路板1和各个光支路板2之间具有连接关系,使得业务流能够在任意线路板1和任意光支路板2之间传输,从而增强该光通信设备的使用灵活性。而且,由于通过光交叉板进行业务信号调度的处理过程,要比通过电交叉板进行业务信号调度的处理过程简单,所以,该光通信设备降低了业务信号处理的延时。
为了实现线路板1和光交叉板3之间的连接,以及光交叉板3和光支路板2之间的连接,相应的,如图2所示,线路板1包括依次连接的第一光模块11、线路侧处理单元12、第二光模块13和线路侧光开关14。光支路板2包括光支路侧光开关21,光交叉板3包括光交叉侧光开关31。第一光模块11用于和另一光通信设备连接,线路侧光开关14和光交叉侧光开关31连接,光交叉侧光开关31和光支路侧光开关21。
在一种示例中,第一光模块11为收发光模块,用于和另一光通信设备连接,以向另一光通信设备发送业务信号,或者,接收另一光通信设备发送的业务信号。例如,第一光模块11可以将从另一光通信设备接收到的光信号转换为电信号,并传输至线路侧处理单元12。又例如,第一光模块11可以将从线路侧处理单元12处接收到的电信号,转换为光信号,并传输至另一光通信设备。
在一种示例中,图2是光通信设备的一种逻辑示意图。线路侧处理单元12是线路板1的第一处理模块的一个功能单元,第一处理模块例如可以是线路板1的芯片。其中,线路侧处理单元12的功能至少可以包括OTN/同步数字体系(synchronous digital hierarchy,SDH)的复解/解复解、映射/解映射,和分组报文的处理(如报文解析、查表转发和流量管理等)。其中,本实施例对线路侧处理单元12的具体功能不做限定,可以根据实际情况来设置其功能。
在一种示例中,由于线路板1向光交叉板3输出的信号为光信号,那么,如图2所示,线路板1还包括第二光模块13,第二光模块13也为收发光模块,用于进行光信号和电信号的转换。例如,第二光模块13可以将线路侧处理单元12输出的电信号转换为光信号,并通过线路侧光开关14,传输至光交叉板3的光交叉侧光开关31。又例如,第二光模块13也能将从线路侧光开关14接收到的光信号,转换为电信号,并发送至线路侧处理单元12。如图2所示,光交叉板3的光交叉侧光开关31和光支路板2的光支路侧光开关21连接。这样,如图2所示,线路板1和光支路板2之间,可以借助光交叉板3,传输业务信号,如线路板1向光支路板2传输业务信号,或者,光支路板2向线路板1传输业务信号。不同的线路板1 之间,也可以借助光交叉板3,传输业务信号。不同的光支路板2之间,也可以借助光交叉板3,传输业务信号。
在一种示例中,为了适配客户设备所连的光模块,相应的,如图5所示,多个光支路板2中可以包括第一光支路板2A和第二光支路板2B。其中,第一光支路板2A中包括上述所述的光支路侧光开关21。而第二光支路板2B中不仅包括上述所述的光支路侧光开关21,还包括第三光模块22、转换单元23和第四光模块24,第二光支路板2B的光支路侧光开关21、第三光模块22、转换单元23和第四光模块24依次连接。
其中,第二光模块13和第三光模块22的协议相同,第四光模块24和客户设备所连的光模块的协议相同。
在一种示例中,光模块的协议,以及本方案中提及的光模块的协议,例如,可以是光模块的光接口的类型所属的标准协议。协议相同,例如,可以是传输速率、光纤通道数、光功率和所支持的光谱等分别相同。其中,光模块的具体协议可以参考各种业务所对应的标准协议,例如,以太网业务可以参考IEEE802.3标准协议,OTN业务可以参考G.709标准协议。
在一种示例中,第四光模块24可以是插拔式光模块,以便于适配各种类型的客户设备所连的光模块。转换单元23是光支路板2的第二处理模块的一个功能单元,第二处理模块例如可以是芯片。转换单元23连接在第三光模块22和第四光模块24这两个光模块之间,用于实现第三光模块22和第四光模块24的协议互转,例如,可以将第三光模块22的协议,转换为第四光模块24的协议,也可以将第四光模块24的协议转换为第三光模块22的协议。例如,如果客户设备所连光模块的传输速率为4个25G通道,而第二光模块13和第三光模块22的传输速率均为1个100G通道,那么,转换单元23可以将1个100G通道,转换成4个25G通道,而输出至第四光模块24,第四光模块24的传输速率和客户设备所连的光模块的传输速率相同,进而能够与客户设备对接,完成光信号的传输。
这样,在应用中,如果第二光模块13的协议和客户设备所连的光模块的协议相同,例如,两者的传输速率相同,那么,业务信号可以在第一光支路板2A中传输。而如果第二光模块13的协议和客户设备所连的光模块的协议不同,那么,业务信号可以在第二光支路板2B中传输,进而提高该光通信设备的使用灵活性。
基于上述所述,通过光交叉板3进行业务调度的光通信设备,进行业务调度的过程可以参见图2所示,对于由另一光通信设备向客户设备传输的业务流,其过程可以如下。另一光通信设备将光信号传输至线路板1的第一光模块1。线路板1的第一光模块1接收到光信号后,可以将光信号转换为电信号,并传输至线路板1的第一处理模块。第一处理模块的线路侧处理单元12,对接收到的电信号完成处理后,发送至线路板1的第二光模块13。第二光模块13将电信号转换为光信号,并经由线路侧光开关14发送至光支路板2。其中,如果客户设备所连的光模块的协议,与第二光模块13的协议相同,那么,光交叉板3将光信号传输至第一光支路板2A,经由第一光支路板2A的光支路侧光开关21传输至客户设备。而如果客户设备所连的光模块的协议,与第二光模块13的协议不相同,那么,光交叉板3将光信号传输至第二光支路板2B,经由第二光支路板2B的第四光模块24传输至客户设备。而对于由客户设备向另一光通信设备传输的业务流的过程,为上述过程的逆过程,可以参见上述所述,此处不再赘述。
对于由一个光通信设备(如第一光通信设备)传输至另一个光通信设备(如第二光通信 设备)的业务流的调度过程。第一光通信设备将光信号传输至与第一光通信设备连接的线路板1的第一光模块1。线路板1的第一光模块1接收到光信号后,可以将光信号转换为电信号,并传输至线路板1的第一处理模块。第一处理模块的线路侧处理单元12,对接收到的电信号完成处理后,发送至线路板1的第二光模块13。第二光模块13将电信号转换为光信号,并经由线路侧光开关14,发送至与第二光通信设备连接的线路板1。该线路板1的第二光模块12接收到光信号后,转换为电信号,并发送至线路侧处理单元12。然后经由线路侧处理单元12完成处理后,发送至第一光模块11,并经由第一光模块11发送至第二光通信设备。
上述是光通信设备经由光交叉板3进行业务调度的方案,光通信设备还可以经由电交叉板混合进行业务调度。
如图6所示,光通信设备不仅包括多个线路板1、多个光支路板2和多个光交叉板3,还包括多个电支路板4和多个电交叉板5。其中,光支路板2和电支路板4均用于和客户设备连接。每个线路板1通过多个电交叉板5,与多个电支路板4中的每一个连接。
在一种示例中,线路板1和电支路板4的连接可以借助电交叉板5和光支路板3实现。如图6所示,每个线路板1与多个光交叉板3中的每一个连接,每个光交叉板3与多个电交叉板5中的每一个连接,每个电交叉板5与多个电支路板4中的每一个连接。这样实现了每个线路板1与所有的电支路板2连接,也能实现每个电支路板2与所有的线路板1连接。
为了实现上述连接,相应的,如图6所示,线路板1不仅包括第一光模块11、线路侧处理单元12和线路侧光开关14,还包括第一连接单元15和第五光模块16。其中,第一连接单元15是线路板1的第一处理模块的一个功能单元,第一处理模块例如可以为线路板1的芯片,第一连接单元15用于和电交叉板5的电交叉侧处理单元53连接,第一连接单元15的具体功能,视线路侧处理单元12和电交叉侧处理单元53的功能而定,下面引出电交叉侧处理单元53后再介绍。
线路板1的各个模块在连接关系上,如图6所示,第一光模块11、线路侧处理单元12、第二光模块13和线路侧光开关14依次连接,而且,第一光模块11、线路侧处理单元12、第一连接单元15、第五光模块16和线路侧光开关14也依次连接。那么,线路板1中包括两条支路,一条分支为线路侧处理单元12和第二光模块13所在路径,可以记为第一路径,图6中使用①标记,另一条分支为线路侧处理单元12和第一连接单元15所在路径,可以记为第二路径,图6中使用②标记。其中,第一路径①用于通过光交叉板3,与光支路板2连接,第二路径②用于通过光交叉板3和电交叉板5,与电支路板4连接。
对于光交叉板3,如图6所示,依然是包括光交叉侧光开关31。对于光支路板2,依然如上述所述,可以包括第一光支路板2A和第二光支路板2B,第一光支路板2A和第二光支路板2B所包括的模块也同上述相同,便不再赘述。
对于新增的电交叉板5,如图6所示,由于需要和光交叉板3的光交叉侧光开关31对接,那么,电交叉板5需要包括光开关,记为电交叉侧光开关51,由于需要执行电交叉调度,那么需要包括电交叉侧处理单元53。其中,电交叉侧处理单元53是电交叉板5的第四处理模块的一个功能单元,第四处理模块例如可以是电交叉板5的芯片。由于电交叉侧处理单元53处理的是电信号,而电交叉侧光开关51负责收发的是光信号,所以,电交叉板5还包括第六光模块52。由此可见,对于电交叉板5,包括依次连接的电交叉侧光开关51、第六光模块52和电交叉侧处理单元53,电交叉侧光开关51负责和光支路板3的光支路侧光开关31对接。
需要指出的是,如图6所示,电交叉侧光开关51、第六光模块52和电交叉侧处理单元53集成在一个板卡上,该板卡为电交叉板5。在另一示例中,电交叉侧光开关51、第六光模块52和电交叉侧处理单元53也可以集成在不同板卡上,例如,三者分别在一个板卡上,电交叉侧光开关51单独占据一个板卡,第六光模块52单独占据一个板卡,电交叉侧处理单元53也单独占据一个板卡。又例如,其中的两个集成在一个板卡上,另一个单独占据一个板卡上,至于哪两个集成在一个板卡上均可。本申请实施例对电交叉侧光开关51、第六光模块52和电交叉侧处理单元53,是集成在一个板卡上,还是集成在不同的板卡上,不做限定,可以根据实际情况,灵活选择,本申请示例的附图可以以三者集成在一个板卡上进行示例。
对于新增的电支路板4,如图6所示,为了和电交叉板5的电交叉侧处理单元53连接,那么,需要包括第二连接单元41,第二连接单元41为电支路板4的第三处理模块的一个功能单元,第三处理模块例如可以是电支路板4的芯片。而第二连接单元41负责收发的是电信号,电支路板4和客户设备传输的是光信号,所以,电支路板4还包括第七光模块42。由此可见,电支路板4包括连接的第二连接单元41和第七光模块42,其中,第二连接单元41负责和电交叉板5的电交叉侧处理单元53电连接,第七光模块42负责和客户设备对接。
上述是线路板1、光支路板2、光交叉板3、电支路板4和电交叉板5所包括的各个模块,以及连接关系介绍,下面将介绍线路侧处理单元12、第一连接单元15、电交叉侧处理单元53和电支路板4的功能。
对于线路侧处理单元12,首先需要具备成帧功能,以便于和光支路板2之间进行数据传输。其次,线路侧处理单元12可以具备映射功能。其中,映射功能也可以集成在电支路板4上。最后,线路侧处理单元12还可以具备业务处理功能,如OTN/SDH的复解/解复解、映射/解映射,以及分组报文的处理(如报文解析、查表转发和流量管理等)。其中,线路侧处理单元12的业务处理功能,可以集成在电交叉板5的电交叉侧处理单元53。
对于电交叉侧处理单元53,首先需要具备电交叉调度功能,以便于进行电交叉调度。其次,可以具备上述所述的业务处理功能。
对于电支路板4,可以具备映射功能,如果电支路板4具备映射功能,那么,电支路板4的第三处理模块还包括电支路侧处理单元,以执行映射功能。而如果电支路板4的映射功能,集成在线路侧处理单元12上,那么,第三处理模块可以不包括电支路侧处理单元。
可见,上述的业务处理功能,可以集成在线路板1的线路侧处理单元12上,也可以集成在电交叉板5的电交叉侧处理单元53上。上述的映射功能,可以集成在线路侧处理单元12上,也可以集成在电支路板4的电支路侧处理单元。
对于第一连接单元15,如果线路侧处理单元12只具备成帧功能,或者,具备成帧和映射功能,那么,第一连接单元15起到和电交叉侧处理单元53适配连接的作用。而如果线路侧处理单元12具备成帧功能和上述所述的业务处理功能,或者,具备成帧和映射功能,以及上述所述的业务处理功能,那么,第一连接单元15用于在线路板1的线路侧处理单元12和电交叉板5的电交叉侧处理单元53之间,进行数据格式转换,以便于线路侧处理单元12处理后的数据,能够被电交叉侧处理单元53识别,电交叉侧处理单元53处理后的数据,能够被线路侧处理单元12识别。
第二连接单元41的功能和第一连接单元15的功能类似。例如,如果电支路板4的映射功能,集成在线路板1的线路侧处理单元12,或者,集成在电交叉板5的电交叉侧处理单元 53,那么,第二连接单元41起到和电交叉侧处理单元53适配连接的作用。而如果电支路板4具备映射功能,例如,第三处理模块包括电支路侧处理单元,用于执行映射功能,那么,第二连接单元41用于在线路板1的电支路侧处理单元和电交叉板5的电交叉侧处理单元53之间,进行数据格式转换,以便于电支路侧处理单元处理后的数据,能够被电交叉侧处理单元53识别,电交叉侧处理单元53处理后的数据,能够被电支路侧处理单元识别。
其中,本实施例对线路侧处理单元12的具体功能、第一连接单元15的具体功能、电交叉侧处理单元53的具体功能、电支路板4的具体功能,以及第二连接单元41的具体功能不做具体限定,可以灵活配置。
如上述所述,线路板1中包括两条支路,如图6所示,分别是第一路径①和第二路径②。为了选择业务流是在第一路径①中传输,还是在第二路径②中传输,相应的,如图7所示,线路板1还可以包括选择开关单元17,选择开关单元17分别与线路侧处理单元12和第一连接单元15连接,且还与线路侧光开关14所连的光模块连接,可以参见图7所示。这样,当选择开关单元17选择和线路侧处理单元12之间接通,而选择和第一连接单元15之间断开时,也即是,选择第一路径①接通,而第二路径②断开时,线路板1和光支路板2之间能进行业务流传输,而线路板1和电支路板4之间不能进行业务传输。例如,从线路板1进入的业务流只流向光支路板2,而不流向电支路板4,又例如,光支路板2能流入业务流,而电支路板4不能流入业务流。当选择开关单元17选择和线路侧处理单元12之间断开,而选择和第一连接单元15之间接通时,也即是,选择第一路径①断开,而第二路径②接通时,线路板1和电支路板4之间能进行业务流传输,而线路板1和光支路板2之间不能进行业务传输。例如,从线路板1进入的业务流,只能流向电支路板4,而不能流向光支路板2,又例如,电支路板4能流入业务流,而光支路板2不能流入业务流。当然,选择开关单元17还可以选择既和线路侧处理单元12接通,又和第一连接单元15接通,也即是,选择第一路径①和第二路径②都接通,这样,线路板1和光支路板2之间,以及线路板1和电支路板4之间均可以进行业务流传输。例如,从线路板1流入的业务流,既可以从光支路板2流出,也可以从电支路板4流出,或者,光支路板2和电支路板4都可以流入业务流。
其中,线路侧光开关14所连的光模块的数量为一个或多个。例如,如图7所示,线路侧光开关14所连的光模块的数量为多个。又例如,如图8所示,线路侧光开关14所连的光模块的数量为一个。
在一种示例中,在线路板1包括选择开关单元17的方案中,线路侧光开关14所连的光模块的数量可以为多个,这多个光模块可以共享。例如,参见图7所示,线路侧光开关14所连的光模块包括第二光模块13和第五光模块16,第二光模块13和第五光模块16可以共享。例如,第一路径①上传输的业务流,可以走第二光模块13,也可以走第五光模块16,第二路径②上传输的业务流,可以走第二光模块13,也可以走第五光模块16。线路侧光开关14所连的光模块为多个的方案中,光模块的带宽可以比较小,多个光模块的带宽总和依然比较大,这样依然可以传输大带宽的业务流,该方案中,带宽较小的光模块的加工简单,成本低,可以节约成本。
既然线路侧光开关14所连的光模块可以共享,那么,选择开关单元17和线路侧光开关14之间的业务流可以全部走其中一个光模块,那么,线路侧光开关14所连的光模块可以是一个。例如,第二光模块13和第五光模块16可以保留其中一个,也即是,选择开关单元17 和线路侧光开关14之间只连接一个光模块,可以参见图8所示,只连接第二光模块13。线路侧光开关14所连的光模块为一个的方案中,第二光模块13的带宽需要比较大,这样才可以传输大带宽的业务流,该方案可以减少光模块的数量,进而节约成本。
当然,选择开关单元17所连的光模块,不仅可以一个或两个,还可以是更多数量个光模块,选择开关单元17所连的这些光模块可以共享,一起承担业务流的传输。
上述所介绍的是,线路板1和电支路板4之间的连接,是借助光交叉板3和电交叉板5。当然,线路板1和电支路板4的连接,也可以只借助电交叉板5来实现,具体见下述所述。
对于线路板1只通过电交叉板5,来实现与电支路板4连接的方案。如图9所示,每个线路板1与多个电交叉板5中的每一个直接连接,每个电交叉板5与多个电支路板4中的每一个直接连接。例如,线路板1和电支路板4,连接同一个电交叉板5,可以实现线路板1和电支路板4的连接。具体的可以是,每个线路板1和多个电交叉板5中的每一个连接,而每个电交叉板5和多个电支路板4中的每一个连接,这样,便可以实现每个线路板1和所有的电支路板4连接,每个电支路板4和所有的线路板1连接,以及任意两个电支路板4连接。
在如图9所示的方案中,线路板1、光支路板2、光交叉板3、电支路板4和电交叉板5的具体所包括的模块可以如下。
对于线路板1,由于线路板1的第一连接单元15和电交叉板5的电交叉侧处理单元53直接连接电连接,而线路侧处理单元12收发的是电信号,那么便无需光电转换,所以,无需包括第五光模块16,那么,线路板1的第一路径①不变,而线路板1的第二路径②变为依次连接的第一光模块11、线路侧处理单元12和第一连接单元15,第一连接单元15负责和电交叉板5的电交叉侧处理单元53直接电连接。
由于第一连接单元15直接以电信号的方式,和电交叉板5连接,也即是,第一连接单元5未经过光信号,和电交叉板5对接,那么,光通道和电通道是相互独立的,进而便无需使用选择开关单元17来选择路径。
对于光交叉板3、光支路板2和电支路板4,其所包括的模块均不变。
对于电交叉板5,由于不再与光交叉板3对接,那么,电交叉板5便无需包括光开关和光模块,那么,如图9所示,电交叉板5只需包括电交叉侧处理单元53即可。
上述分别介绍了,光支路板3和电支路板5互通的方案中,以及光支路板3和电支路板5不互通的方案中,线路板1、光支路板2、光交叉板3、电支路板4和电交叉板5所包括的各个模块。光支路板3和电支路板5互通的方案,也即是,线路板1和电支路板4的连接,借助光支路板3和电支路板5实现的方案。光支路板3和电支路板5不互通的方案,也即是,线路板1和电支路板4的连接,只借助电支路板5,而不借助光支路板3实现的方案。
需要指出的是,上述所介绍的各个光模块,如第一光模块11、第二光模块13、第三光模块22、第四光模块24、第五光模块16、第六光模块52和第七光模块42,可以是插拔式光模块,能够插在所在板卡上,也能从所在板卡上拔出,也可以固定在所在板卡上,不能从所在板卡上拔出,还可以是集成在所在板卡上的功能单元,如可以集成在所在板卡的芯片上。本实施例对各个光模块的具体形式不做限定,可以根据实际情况灵活选择。
在应用中,为了增强业务信号的强度,如图10所示,线路板1可以包括线路侧放大器18,其中,线路侧放大器18为光放大器,可以连接在第二光模块13和线路侧光开关14之间,其中线路侧放大器18的数量和选择开关单元17所连的光模块的数量相同,例如,选择开关 单元17连接第二光模块13和第五光模块16这两个光模块,那么,线路侧放大器18的数量为两个,第二光模块13和第五光模块16的协议相同,如传输速率相同。
同样,如图10所示,光支路板2也可以包括光放大器,记为光支路侧放大器25,光支路侧放大器25和光支路侧光开关21连接。如图10所示,电交叉板5也可以包括光放大器,记为电交叉侧放大器54,连接在电交叉侧光开关51和第六光模块52之间。
需要指出的是,上述各种光放大器适用于光支路板3和电支路板5互通的方案,也适用于光支路板3和电支路板5不互通的方案,而图10是前一种情况的图例。
需要指出的是,光通信设备不仅包括上述各种模块,还包括电源、控制、时钟和风扇等促使光通信设备正常运行的部件,因这些部件与本申请的发明点无关,所以本申请未做描述。
在光通信设备的应用中,为了避免由于某个光交叉板3出现故障,而致使通信中断的情况,可以对光交叉板3进行冗余保护。例如,多个光交叉板3中可以包括至少一个备用的光交叉板3。例如,进行1+1、1:n,或,m:n等冗余保护。其中,1+1也即是一个光交叉板3为主用的光交叉板,负责正常工作,另一个光交叉板3为备用的光交叉板,负责在主用的光交叉板出现故障时,启动工作。1:n也即是n个光交叉板3为主用的光交叉板,负责正常工作,一个光交叉板3为备用的光交叉板。m:n也即是n个光交叉板3为主用的光交叉板,负责正常工作,m个光交叉板3为备用的光交叉板。
同样,为了避免由于某个电交叉板5出现故障,而致使通信中断的情况,可以对电交叉板5进行冗余保护。例如,多个电交叉板5中可以包括至少一个备用的电交叉板5,备用的电交叉板5是在主用的电交叉板出现故障时,启动工作。例如,进行1+1、1:n,或,m:n等冗余保护。
需要指出的是,光交叉板3和电交叉板5的冗余保护,适用于光交叉板3和电交叉板5互通的方案,也适用于光交叉板3和电交叉板5不互通的方案。
如上述所述,光通信设备可以包括不含有电支路板4和电交叉板5的方案,也包括光交叉板3和电交叉板5互通的方案,还包括光交叉板3和电交叉板5不互通的方案。下面将介绍这三种方案的应用场景。
其中,图11至图13中,为了便于绘制传输路径,光交叉板3、电交叉板5、第一光支路板2A、第二光支路板2B和电支路板4的数量均是示意一个。图11至图13中,每个传输路径,之所以是双向箭头,是因为业务流的传输方向可以是由另一光通信设备至客户设备,也可以由客户设备至另一光通信设备,也即是,图11至图13适用于业务流进行上行传输和下行传输,所以传输路径使用双向箭头。
(一)对于不包含电支路板4和电交叉板5的方案,其场景可以如下。参见图11所示,业务流在另一光通信设备和客户设备之间的传输,可以包括两种传输路径,分别是传输路径a和传输路径b。其中,传输路径a为线路板1-光交叉板3-第一光支路板2A。传输路径b为线路板1-光交叉板3-第二光支路板2B。如果线路板1的第二光模块13的封装协议和客户设备所连光模块的封装协议相同,则业务流按照传输路径a传输,反之,则按传输路径b传输。业务流在不同线路板1之间的传输按照传输路径c,传输路径c为线路板1-光交叉板3-线路板1。该方案中,由于业务流,无论是大颗粒业务,还是小颗粒业务,均是采取光交叉调度,而光传输的速率较高,所以,延时低,其中,大颗粒业务例如是数据量较大的业务流,小颗粒业务例如可以是数据量较小的业务流。
(二)对于光交叉板3和电交叉板5互通的方案,其应用场景可以如下。参见图12所示,业务流在另一光通信设备和客户设备之间的传输,可以包括三种传输路径,分别是传输路径a、传输路径b和传输路径d。其中,传输路径a为线路板1-光交叉板3-第一光支路板2A。传输路径b为线路板1-光交叉板3-第二光支路板2B。传输路径d为线路板1-光交叉板3-电交叉板5-电支路板4。传输路径a和传输路径b可以适用于大颗粒业务,或者,要求延时低的业务,采用传输路径a和传输路径b,速率快,延时低。传输路径d可以用来传输小颗粒业务,或者,对延时要求不高的业务,小颗粒业务由电交叉板5汇聚后,一起传输至线路板1,能够节约传输能量。
继续参考图12所示,业务流在不同线路板1之间的传输,可以按照传输路径c和传输路径e。其中,传输路径c为线路板1-光交叉板3-线路板1,可以适用于大颗粒业务的穿通场景,或者,要求延时较低的数据。传输路径e为线路板1-光交叉板3-电交叉板5-光交叉板3-线路板1,可以适用于小颗粒业务的穿通场景。
(三)对于光交叉板3和电交叉板5不互通的方案,其应用场景可以如下。如图13所示,业务流在另一光通信设备和客户设备之间的传输,可以包括三种传输路径,分别是传输路径a、b和f。其中,传输路径a为线路板1-光交叉板3-第一光支路板2A。传输路径b为线路板1-光交叉板3-第二光支路板2B。传输路径f为线路板1-电交叉板5-电支路板4。传输路径a和传输路径b可以适用于大颗粒业务,或者,要求延时低的业务,采用传输路径a和传输路径b,速率快,延时低。传输路径f可以用来传输小颗粒业务,或者,对延时要求不高的业务,小颗粒业务由电交叉板5汇聚后,一起传输至线路板1,能够节约传输能量。
继续参考图13所示,业务流在不同线路板1之间的传输,可以按照传输路径c和传输路径g。其中,传输路径c为线路板1-光交叉板3-线路板1,可以适用于大颗粒业务的穿通场景,或者,要求延时较低的数据。传输路径g为线路板1-电交叉板5-线路板1,可以适用于小颗粒业务的穿通场景。
需要指出的是,上述各个传输路径,既能够传输大颗粒业务,又能传输小颗粒业务,在应用中,可以根据实际需求灵活选择,例如,可以让大颗粒业务,或者要求延时低的业务,走光交叉调度,而不走电交叉调度,可以让小颗粒业务,或者对延时要求不高的业务,走电交叉调度,而不走光交叉调度,使得业务均衡通过光通信设备,提高光通信设备的利用率。
上述包括光交叉板3和电交叉板5的光通信设备,至少具备以下有益效果:
第一,从任意一个线路板1和任意一个光支路板2之间,以及任意一个线路板1和任意一个电支路板4之间,均可以进行业务流传输,提高了业务调度的灵活性。第二,光交叉板与链路速率无关,那么,与电连接相比,更容易将链路传输速率提高,使光通信设备具有良好的扩展性。第三,光交叉板3和电交叉板5互连的方案中,由于所有的线路板1和电交叉板5之间,能进行业务传输,所有的光交叉板3和电交叉板5之间,也能进行业务传输,那么,电交叉板5便可以成为,能够被所有线路板1和所有光交叉板3共享和共用的资源。这样,光交叉板3能够分担电交叉板5的交叉调度业务,为电交叉板5减轻处理,那么电交叉板5的芯片容量和功耗也可以随之降低。第四,包括选择开关单元17的光通信设备,能够灵活分配业务流走光支路板2还是电支路板4,以及走光支路板2和电支路板4的配比,能够减少第二光模块13的数量和线路侧放大器18的数量,从而节约成本。
在本申请实施例,该光通信设备中,多个线路板中每一个和所有的光支路板连接,使得 业务流能够在任意线路板和任意光支路板之间传输,从而增强该光通信设备的使用灵活性。而且,由于通过光交叉板进行业务信号调度的速率,要高于通过电交叉板进行业务信号调度的速率,所以,该光通信设备通过光交叉板进行业务信号的延时低。
本申请实施例还提供了一种光通信系统,如图14所示,光通信设备包括第一客户设备100、第二客户设备200和至少一个前述实施例的光通信设备300。其中,第一客户设备100和第二客户设备200,一个作为发送端客户设备,另一个作为接收端客户设备,两者通过至少一个光通信设备300,建立通信连接。例如,第一客户设备100和至少一个光通信设备中的一个的支路板连接,第二客户设备200和至少一个光通信设备中的一个支路板连接。
其中,支路板至少包括上述所述的光支路板2,例如,如果光通信设备300为如图2所示,包括光支路板2,而不包括电支路板4的光通信设备,那么,上述的支路板可以是光支路板2。而如果光通信设备300为图6所示,包括光支路板2和电支路板4的光通信设备,那么,上述的支路板可以是光支路板2,也可以是电支路板4。图14至图16中,虽然以支路板为光支路板2进行示例,但支路板并不只限定为光支路板2,也可以是电支路板4。
在一种示例中,第一客户设备100和第二客户设备100可以通过同一个光通信设备300来建立通信连接。如图14所示,第一客户设备100和第二客户设备200分别与同一个光通信设备300的不同支路板连接。该方案可以适用于两个客户设备的距离比较近的场景,如第一客户设备100和第二客户设备200位于一栋楼中,或者位于同一小区。
在另一种示例中,第一客户设备100和第二客户设备100也可以通过多个光通信设备300,建立通信连接。例如,如图15所示,第一客户设备100和至少一个光通信设备300中的第一光通信设备301的支路板连接,第二客户设备200和至少一个光通信设备300中的第二光通信设备302的支路板连接。其中,第一光通信设备301和第二光通信设备302为不同的光通信设备,且第一光通信设备301的线路板1和第二光通信设备302的线路板1连接。该方案可以适用于第一客户设备100和第二客户设备200距离较远的场景,如第一客户设备100和第二客户设备200位于不同的城市。
其中,第一光通信设备301的线路板1和第二光通信设备302的线路板1连接,又包括直接连接和间接连接,可以参见如下所述。
第一客户设备100和第二客户设备200可以通过两个或两个以上的光通信设备300来建立通信连接。如图15所示,第一光通信设备301的一个线路板1和第二光通信设备302的一个线路板1直接连接。又如图16所示,第一光通信设备301的一个线路板1和第二光通信设备302的一个线路板1之间,通过至少一个光通信设备300连接,且第一光通信设备301、第二光通信设备302和所通过的至少一个光通信设备300之间,相连的两个光通信设备300之间是通过线路板1连接。如图16所示,第一光通信设备301的一个线路板1和至少一个光通信设备中的第三光通信设备303的一个线路板1连接,第三光通信设备303的另一个线路板1和第二光通信设备302的一个线路板1连接。其中,图16中只是示例,即通过一个光通信设备300(即第三光通信设备303)连接。在实际应用中,第一光通信设备301和第二光通信设备302之间,还可以通过更多数量的光通信设备300连接。
在本申请实施例,光通信系统的光通信设备,如上述所述,多个线路板中每一个和多个光支路板中的每一个连接,使得业务流能够在任意线路板和任意光支路板之间传输,从而增强该光通信设备的使用灵活性。而且,由于通过光交叉板进行业务信号调度的速率,要高于 通过电交叉板进行业务信号调度的速率,所以,该光通信设备通过光交叉板进行业务信号的延时低。
以上所述仅为本申请一个实施例,并不用以限制本申请,凡在本申请原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (16)

  1. 一种光通信设备,其特征在于,所述光通信设备包括多个线路板(1)、多个光支路板(2)和多个光交叉板(3);
    所述多个线路板(1)的每一个通过所述多个光交叉板(3),与所述多个光支路板(2)中的每一个连接,且任意两个线路板(1)通过所述多个光交叉板(3)连接;
    所述线路板(1)用于和另一光通信设备连接,所述光支路板(2)用于和客户设备连接。
  2. 根据权利要求1所述的光通信设备,其特征在于,所述线路板(1)包括依次连接的第一光模块(11)、线路侧处理单元(12)、第二光模块(13)和线路侧光开关(14);
    所述光支路板(2)包括光支路侧光开关(21),所述光交叉板(3)包括光交叉侧光开关(31);
    所述第一光模块(11)用于和所述另一光通信设备连接,所述线路侧光开关(14)和所述光交叉侧光开关(31)连接,所述光交叉侧光开关(31)和所述光支路侧光开关(21)连接。
  3. 根据权利要求2所述的光通信设备,其特征在于,所述多个光支路板(2)中包括第一光支路板(2A)和第二光支路板(2B);
    所述第二光支路板(2B)还包括第三光模块(22)、转换单元(23)和第四光模块(24),所述第二光支路板(2B)的光支路侧光开关(21)、第三光模块(22)、转换单元(23)和第四光模块(24)依次连接,其中,所述第二光模块(13)和所述第三光模块(22)的协议相同,所述第四光模块(24)和所述客户设备所连的光模块的协议相同。
  4. 根据权利要求1至3任一所述的光通信设备,其特征在于,所述多个线路板(1)中的每一个与所述多个光交叉板(3)中的每一个连接,所述多个光交叉板(3)中的每一个与所述多个光支路板(2)中的每一个连接。
  5. 根据权利要求1至4任一所述的光通信设备,其特征在于,任意两个光支路板(2)之间通过所述多个光交叉板(3)连接。
  6. 根据权利要求1至5任一所述的光通信设备,其特征在于,所述光通信设备还包括多个电支路板(4)和多个电交叉板(5);
    所述多个线路板(1)中的每一个通过所述多个电交叉板(5),与所述多个电支路板(4)中的每一个连接,所述电支路板(4)用于和所述客户设备连接。
  7. 根据权利要求6所述的光通信设备,其特征在于,所述多个线路板(1)中的每一个通过所述多个电交叉板(5)和所述多个光交叉板(3),与所述多个电支路板(4)中的每一个连接。
  8. 根据权利要求7所述的光通信设备,其特征在于,所述多个线路板(1)中的每一个与所述多个光交叉板(3)中的每一个连接,所述多个光交叉板(3)中的每一个与所述多个电交叉板(5)中的每一个连接,所述多个电交叉板(5)中的每一个与所述多个电支路板(4)中的每一个连接。
  9. 根据权利要求8所述的光通信设备,其特征在于,所述线路板(1)包括依次连接的第一光模块(11)、线路侧处理单元(12)、第一连接单元(15)、第五光模块(16)和线路 侧光开关(14);
    所述光交叉板(3)包括光交叉侧光开关(31),所述电交叉板(5)包括依次连接的电交叉侧光开关(51)、第六光模块(52)和电交叉侧处理单元(53),所述电支路板(4)包括连接的第二连接单元(41)和第七光模块(42);
    所述第一光模块(11)用于和所述另一光通信设备连接,所述线路侧光开关(14)和所述光交叉侧光开关(31)连接,所述光交叉侧光开关(31)和所述电交叉侧光开关(51)连接,所述电交叉侧处理单元(53)和所述第二连接单元(41)连接,所述第七光模块(42)用于和所述客户设备连接。
  10. 根据权利要求9所述的光通信设备,其特征在于,所述线路板(1)还包括选择开关单元(17),所述选择开关单元(17)分别与所述线路侧处理单元(12)和所述第一连接单元(15)连接,且还与所述线路侧光开关(14)所连的光模块连接;
    所述选择开关单元(17)用于选择与所述线路侧处理单元(12)之间的路径接通,和/或,与所述第一连接单元(15)之间的路径接通。
  11. 根据权利要求6所述的光通信设备,其特征在于,所述多个线路板(1)中的每一个与所述多个电交叉板(5)中的每一个直接连接,所述多个电交叉板(5)中的每一个与所述多个电支路板(4)中的每一个直接连接。
  12. 根据权利要求6至11任一所述的光通信设备,其特征在于,所述多个电交叉板(5)中包括至少一个备用的电交叉板,所述备用的电交叉板用于当主用的电交叉板故障时,启动工作。
  13. 根据权利要求1至12任一所述的光通信设备,其特征在于,所述多个光交叉板(3)中包括至少一个备用的光交叉板,所述备用的光交叉板用于当主用的光交叉板故障时,启动工作。
  14. 一种光通信系统,其特征在于,所述光通信系统包括第一客户设备(100)、第二客户设备(200)和至少一个权利要求1至13任一所述的光通信设备(300);
    所述第一客户设备(100)和所述至少一个光通信设备(300)中的一个的支路板连接,所述第二客户设备(200)和所述至少一个光通信设备(300)中的一个的支路板连接,所述支路板至少包括光支路板(2)。
  15. 根据权利要求14所述的光通信系统,其特征在于,所述第一客户设备(100)和所述第二客户设备(200),分别与同一个光通信设备(300)的不同的支路板连接。
  16. 根据权利要求14所述的光通信系统,其特征在于,所述第一客户设备(100)和所述至少一个光通信设备(300)中的第一光通信设备(301)的支路板连接,所述第二客户设备(200)和所述至少一个光通信设备(300)中的第二光通信设备(302)的支路板连接,所述第一光通信设备(301)和所述第二光通信设备(302)为不同的光通信设备,且所述第一光通信设备(301)的线路板(1)和所述第二光通信设备(302)的线路板(1)连接。
PCT/CN2022/139944 2021-12-27 2022-12-19 光通信设备和光通信系统 WO2023125098A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111617789.1A CN116366157A (zh) 2021-12-27 2021-12-27 光通信设备和光通信系统
CN202111617789.1 2021-12-27

Publications (1)

Publication Number Publication Date
WO2023125098A1 true WO2023125098A1 (zh) 2023-07-06

Family

ID=86914647

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/139944 WO2023125098A1 (zh) 2021-12-27 2022-12-19 光通信设备和光通信系统

Country Status (2)

Country Link
CN (1) CN116366157A (zh)
WO (1) WO2023125098A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118233793A (zh) * 2024-03-05 2024-06-21 上海欣诺通信技术股份有限公司 一种基于电交叉的光传输设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180123718A1 (en) * 2015-06-29 2018-05-03 Huawei Technologies Co., Ltd. Method for mapping packet service onto optical transport network, and otn device
CN108092734A (zh) * 2017-11-13 2018-05-29 广州供电局有限公司 电力数据传输设备、系统及检测方法
CN113709601A (zh) * 2020-05-20 2021-11-26 华为技术有限公司 一种光传输设备、系统及光传输方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180123718A1 (en) * 2015-06-29 2018-05-03 Huawei Technologies Co., Ltd. Method for mapping packet service onto optical transport network, and otn device
CN108092734A (zh) * 2017-11-13 2018-05-29 广州供电局有限公司 电力数据传输设备、系统及检测方法
CN113709601A (zh) * 2020-05-20 2021-11-26 华为技术有限公司 一种光传输设备、系统及光传输方法

Also Published As

Publication number Publication date
CN116366157A (zh) 2023-06-30

Similar Documents

Publication Publication Date Title
JP5908163B2 (ja) 光回線終端装置及びその実現方法
US6233074B1 (en) Ring networks utilizing wave division multiplexing
WO2008000193A1 (fr) Système et procédé d'échange permettant d'augmenter la bande passante d'échange
CN103763161A (zh) 一种三网融合接入模块及其控制方法
WO2023125098A1 (zh) 光通信设备和光通信系统
EP3641163A1 (en) Optical module and network device
US20240098391A1 (en) Efficiently interconnecting computing nodes to enable use of high-radix network switches
KR102527242B1 (ko) Ftth 기반 인터넷 서비스를 제공하는 광 접속 장치 및 방법
CN207588877U (zh) 电力数据传输设备
CN102217327B (zh) 一种电路业务与分组业务混传桥接方法、装置与系统
US7639677B2 (en) Optical transponder having switching function
CN107888290B (zh) 一种gpon信号聚合拉远设备及其聚合拉远方法
CN103957477A (zh) 一种面向电网业务的光交换方法及网络
CN111917507A (zh) 集成化波分系统和设备
CN101656743B (zh) Stm-1中63路网桥业务与千兆以太网口间转换设备
CN102546022A (zh) 一种光纤传输子系统的传输方法
US20130089338A1 (en) Communication network
CN211791877U (zh) 一种光纤同轴混合交换机
CN108650100B (zh) 一种srio与网络接口的转换器设计方法
CN104768086A (zh) 光网络单元间相互通信的方法及装置
KR100628330B1 (ko) 스위칭 기능을 가진 광 트랜스폰더
CN221807132U (zh) 一种带2.5g上联口的gpon olt设备及组网系统
CN213990912U (zh) 一种应用于海底观测网的光传输系统
CN220586298U (zh) 业务交互系统
WO2005055510A1 (fr) Unite affluent d'une hierarchie numerique synchrone, et noeud d'appareils correspondant

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22914352

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE