WO2023124777A1 - 投影校准方法、装置、电子设备及存储介质 - Google Patents

投影校准方法、装置、电子设备及存储介质 Download PDF

Info

Publication number
WO2023124777A1
WO2023124777A1 PCT/CN2022/136228 CN2022136228W WO2023124777A1 WO 2023124777 A1 WO2023124777 A1 WO 2023124777A1 CN 2022136228 W CN2022136228 W CN 2022136228W WO 2023124777 A1 WO2023124777 A1 WO 2023124777A1
Authority
WO
WIPO (PCT)
Prior art keywords
screen
coordinate system
angle
projection
projection device
Prior art date
Application number
PCT/CN2022/136228
Other languages
English (en)
French (fr)
Inventor
弓殷强
胡飞
赵鹏
余新
李屹
Original Assignee
深圳光峰科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光峰科技股份有限公司 filed Critical 深圳光峰科技股份有限公司
Publication of WO2023124777A1 publication Critical patent/WO2023124777A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3179Video signal processing therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3191Testing thereof

Definitions

  • the present application relates to the field of projection technology, and more specifically, to a projection calibration method, device, electronic equipment, and storage medium.
  • a projector is a device that can project images or videos onto a screen for display. It can be connected to a computer, smartphone, tablet, game console, etc. through different interfaces to obtain images or videos to be projected.
  • the present application proposes a projection calibration method, device, electronic equipment and storage medium.
  • the embodiment of the present application provides a projection calibration method, the method includes: establishing a first screen coordinate system and a second screen coordinate system, the first screen coordinate system takes the horizontal direction of the screen as the horizontal axis The direction is established, and the second screen coordinate system is determined based on the positioning image projected on the screen by the projection device; the horizontal axis of the first screen coordinate system and the horizontal axis of the second screen coordinate system are acquired The included angle is used as the included angle of the horizontal axis; based on the included angle of the horizontal axis, the actual position information of the projection device in the first screen coordinate system is obtained, and the actual position information includes actual coordinate information and/or actual angle information; acquire standard position information of the projection device in the first screen coordinate system, where the standard position information includes standard coordinate information and/or standard angle information; according to the actual position information and the standard position information, Determine projection adjustment parameters; adjust at least one of the projection position and projection direction of the projection device according to the projection adjustment parameters, so that the picture projected by the projection device is displayed on the above
  • the embodiment of the present application provides a projection calibration device, which includes: a coordinate system establishment module, an included angle acquisition module, an actual position acquisition module, a standard position acquisition module, an adjustment parameter determination module, and an adjustment module.
  • a coordinate system establishing module configured to establish a first screen coordinate system and a second screen coordinate system, the first screen coordinate system is established by taking the horizontal direction of the screen as the horizontal axis direction, and the second screen coordinate system is based on projection The positioning image projected by the device on the screen is determined;
  • the angle acquisition module is configured to acquire the angle between the horizontal axis of the first screen coordinate system and the horizontal axis of the second screen coordinate system as the angle between the horizontal axis angle;
  • an actual position acquisition module configured to acquire the actual position information of the projection device in the first screen coordinate system based on the included angle of the horizontal axis, the actual position information including actual coordinate information and/or actual angle information;
  • a standard position acquisition module configured to acquire standard position information of the projection device in the first screen coordinate system, the standard position information including
  • the embodiment of the present application provides an electronic device, including: one or more processors; memory; one or more programs, wherein the one or more programs are stored in the memory and configured To be executed by the one or more processors, the one or more programs are configured to execute the projection calibration method provided in the first aspect.
  • an embodiment of the present application provides a computer-readable storage medium, where a program code is stored in the computer-readable storage medium, and the program code can be invoked by a processor to execute the projection calibration method provided in the first aspect.
  • the first screen coordinate system and the second screen coordinate system are established; the angle between the horizontal axis of the first screen coordinate system and the horizontal axis of the second screen coordinate system is obtained as the horizontal axis angle; based on the Axis angle, obtain the actual position information of the projection device in the first screen coordinate system, the actual position information includes actual coordinate information and/or actual angle information; obtain the standard position information of the projection device in the first screen coordinate system, the standard position
  • the information includes standard coordinate information and/or standard angle information; according to the actual position information and the standard position information, the projection adjustment parameters are determined; according to the projection adjustment parameters, at least one of the projection position and the projection direction of the projection device is adjusted.
  • the projection device can be adjusted to the standard position more accurately, so that the picture projected by the projection device can be more complete and without distortion. It is displayed on the screen, and the projection device is gradually adjusted without the user observing the alignment between the projected picture and the screen, which reduces the time-consuming adjustment for the user and improves the user experience.
  • FIG. 1 is a schematic structural diagram of a projection calibration system provided by an embodiment of the present application.
  • Fig. 2 shows a schematic diagram of an image captured by a camera provided by an embodiment of the present application and projected on a screen by a projector.
  • Fig. 3 shows a schematic flowchart of a projection calibration method provided by an embodiment of the present application.
  • FIG. 4 shows a schematic diagram of the horizontal axis of the screen coordinate system provided by the embodiment of the present application.
  • Fig. 5 shows a schematic diagram of angle parameterization of a projection device provided by an embodiment of the present application.
  • Fig. 6 shows a schematic flowchart of a projection calibration method provided by another embodiment of the present application.
  • FIG. 7 shows a schematic flowchart of sub-steps of step S303 shown in FIG. 6 in an implementation manner.
  • FIG. 8 shows a schematic flowchart of sub-steps of step S3031 shown in FIG. 7 in an implementation manner.
  • FIG. 9 shows a schematic diagram of the positions of a projection device and a screen provided by an embodiment of the present application.
  • Fig. 10 shows a schematic diagram of the positions of the DMD screen and the infinity plane provided by an embodiment of the present application.
  • FIG. 11 shows a schematic diagram of a display image coordinate system provided by an embodiment of the present application.
  • FIG. 12 shows a schematic flowchart of the sub-steps of step S3033 shown in FIG. 7 in an implementation manner.
  • Fig. 13 shows a schematic diagram of a standard position of a projection device provided by an embodiment of the present application.
  • FIG. 14 shows a schematic flowchart of the sub-steps of step S304 shown in FIG. 6 in an implementation manner.
  • FIG. 15 shows a schematic flowchart of the sub-steps of step S3044 shown in FIG. 14 in an implementation manner.
  • FIG. 16 shows a schematic flowchart of the sub-steps of step S3044-1 shown in FIG. 15 in an implementation manner.
  • FIG. 17 shows a schematic cross-sectional view of the angle between the infinity plane and the screen provided by an embodiment of the present application.
  • Fig. 18 shows a schematic diagram of a 0-degree intersection point and a 45-degree intersection point provided by an embodiment of the present application.
  • Fig. 19 shows a schematic diagram of vertical mapping points on a screen of a projection device provided by an embodiment of the present application.
  • FIG. 20 shows a schematic flowchart of the sub-steps of step S305 shown in FIG. 6 in an implementation manner.
  • FIG. 21 shows a schematic diagram of a position of a projection device in a first screen coordinate system provided by an embodiment of the present application.
  • Fig. 22 is a block diagram of a projection calibration device provided according to an embodiment of the present application.
  • Fig. 23 is a block diagram of an electronic device for executing the projection calibration method according to the embodiment of the present application according to the embodiment of the present application.
  • Fig. 24 is a storage unit for storing or carrying program codes for realizing the projection calibration method according to the embodiment of the present application according to the embodiment of the present application.
  • the inventor proposes a projection calibration method, device, electronic equipment and storage medium, which can obtain the adjustment parameters for the projection equipment based on the actual position information and standard position information of the projection equipment, and adjust the projection according to the adjustment parameters. At least one of the projection position and the projection direction of the device is adjusted so that the picture projected by the projection device is displayed on the screen completely and without distortion.
  • the content is described in detail below.
  • FIG. 1 is a schematic structural diagram of a projection calibration system 10 provided in an embodiment of the present application.
  • the projection calibration system 10 includes a screen 110, a projector 120, a camera 130 and a main control module 140, wherein the screen 110 can be a TV screen or a curtain; the main control module 140 can be deployed on the projector 120 It can also be deployed in other electronic devices (such as smart phones or special projection calibrator and other devices); the camera 130 can be deployed inside the projector 120, or it can be an external device that can establish a communication connection with the electronic device where the main control module is located.
  • Dedicated image acquisition equipment which is not limited in this embodiment.
  • the projector 120 and the camera 130 can be under the same local area network, and the main control module 140 can obtain the image captured by the camera 130 and projected on the screen by the projector 120, as shown in FIG. 2 , if the image includes two-dimensional code information , the main control module 140 can perform image recognition on the two-dimensional code image in FIG. 2 to read the IP address information contained in the two-dimensional code, and establish a communication connection with the projector 120 based on the IP address information. , the main control module 140 can perform data transmission (such as video source transmission) with the projector 120; the main control module 140 can also determine the actual position of the projector 120 relative to the screen 110 based on the display position of the projected image on the screen 110 in FIG. Location.
  • data transmission such as video source transmission
  • the main control module 140 can transmit the video source to the projector 120, the projector 120 receives the video source and projects the video source onto the screen 110 for display, and then the camera 130 can monitor the projected video displayed on the screen 110
  • the image is taken, and the captured image including the screen 110 is used as a shooting picture, and the shooting picture is transmitted to the main control module 140, and the main control module 140 receives the shooting picture, and calculates the current position of the projector 120 relative to the screen 110 based on the shooting picture.
  • the actual position and the standard position and then determine the adjustment parameters and adjustment suggestions for the projector 120 according to the actual position and the standard position, and finally, display the adjustment parameters and adjustment suggestions on the screen 110 .
  • FIG. 3 is a schematic flowchart of a projection calibration method provided by an embodiment of the present application.
  • the projection calibration method provided by the embodiment of the present application will be described in detail below with reference to FIG. 3 .
  • the projection calibration method may include the following steps:
  • Step S201 Establish a first screen coordinate system and a second screen coordinate system, the first screen coordinate system is established with the horizontal direction of the screen as the horizontal axis direction, and the second screen coordinate system is based on the projection of the projection device to the The positioning image on the above screen is determined.
  • the projection device is the projector 120 in the above system.
  • the coordinate information in the established coordinate system can be used to represent the location of the projection device by establishing a coordinate system. location information.
  • the coordinate system may include a camera coordinate system, a display image coordinate system, and a screen coordinate system.
  • the x and y directions of the camera coordinate system correspond to the abscissa and ordinate of the captured image respectively, and the unit is a pixel;
  • the display image coordinate system also known as the digital micromirror device (DMD) coordinate system, refers to the projection screen It can be considered as the coordinate system on the spatial light modulator, and the unit is pixel;
  • the screen coordinate system refers to the coordinate system fixed on the screen, that is, the three-dimensional coordinate system established based on the plane where the screen is located, and the unit can be centimeters or millimeters, etc.
  • the length unit is not limited in this embodiment.
  • the projection device calculates the The actual position and the standard position in the screen coordinate system, and then manually or automatically adjust the projection device to the standard position.
  • the first screen coordinate system can be established based on the horizontal direction of the screen.
  • the horizontal direction of the screen is obtained as the x-axis direction of the first screen coordinate system, and the plane where the screen is located is perpendicular to the horizontal direction.
  • the direction is taken as the y-axis direction of the first screen coordinate system, and the direction perpendicular to the plane where the screen is located is taken as the z-axis direction of the first screen coordinate system.
  • the origin of the first screen coordinate system can be the lower left corner of the screen, or Other points on the screen are not limited in this embodiment.
  • the second screen coordinate system is determined based on the positioning image projected on the screen by the projection device, specifically, acquiring the positioning image on the screen, and the positioning image is a square on the display plane
  • the image is projected onto the trapezoidal image on the screen; the straight line where the line of the two intersections of two groups of opposite side extension lines of the trapezoidal image is obtained is used as an infinite line; parallel to the infinite
  • the direction of the far line is the X-axis, and the direction perpendicular to the X-axis on the plane where the screen is located is the Y-axis, and the direction perpendicular to the plane where the screen is located is the Z-axis direction to establish the second screen coordinate system.
  • Step S202 Obtain an angle between the horizontal axis of the first screen coordinate system and the horizontal axis of the second screen coordinate system as the horizontal axis angle.
  • the included angle between the x-axis of the first screen coordinate system and the x-axis of the second screen coordinate system is obtained as the above-mentioned horizontal-axis included angle.
  • Step S203 Acquire actual position information of the projection device in the first screen coordinate system based on the included angle of the horizontal axis, where the actual position information includes actual coordinate information and/or actual angle information.
  • Step S204 Obtain standard position information of the projection device in the first screen coordinate system, where the standard position information includes standard coordinate information and/or standard angle information.
  • Step S205 Determine projection adjustment parameters according to the actual location information and the standard location information.
  • the projection adjustment parameters of the projection device can be determined according to the actual position information and the standard position information, so that the projection device can be adjusted according to the projection adjustment parameters, so that the picture projected by the projection device is located at the center of the screen. Center, to ensure the projection effect.
  • the projection adjustment parameters may include coordinate adjustment parameters and angle adjustment parameters
  • the actual position information may include actual coordinate information and actual angle information
  • the standard coordinate information may include standard coordinate information and standard angle information. Determine coordinate adjustment parameters of the projection device based on the actual coordinate information and standard coordinate information; determine angle adjustment parameters of the projection device based on the actual angle information and the standard angle information; obtain the coordinate adjustment parameters And the angle adjustment parameter is used as the projection adjustment parameter.
  • the coordinate adjustment parameters may include adjustment parameters in three moving directions (eg, x-axis direction, y-axis direction, and z-axis direction on the first screen coordinate system).
  • the coordinates can be determined according to the coordinate values in the x-axis direction, y-axis direction, and z-axis direction in the standard coordinate information and the actual coordinate information Adjustment parameters.
  • the standard coordinate information is (10, 15, 20)
  • the actual coordinate information is (5, 10, 22)
  • the adjustment parameter in the x-axis direction can be obtained as +5, which means moving 5 in the positive direction of the x-axis unit length (such as centimeters, millimeters, etc.)
  • the adjustment parameter in the y-axis direction is +5, which means moving 5 unit lengths in the positive direction of the y-axis
  • the adjustment parameter in the z-axis direction is -2, which means moving to the positive direction of the y-axis.
  • the angle adjustment parameters may include heading angle ⁇ (the angle of rotation around the z-axis), roll angle ⁇ 1 (the angle of rotation around the y-axis) and pitch angle ⁇ (the angle of rotation around the x-axis) .
  • Determine the angle adjustment parameters of the projection device based on the actual angle information and the standard angle information, and use the angle information of the x-axis, y-axis, and z-axis in the first screen coordinate system as the standard angle information, Based on this, the obtained actual angle information can be used as an angle adjustment parameter of the projection device.
  • the pitch angle ⁇ in the acquired actual angle information of the projection device rotates 10 degrees clockwise around the x-axis
  • the heading angle ⁇ rotates 20 degrees clockwise around the z-axis
  • the roll angle ⁇ 1 rotates clockwise around the y-axis 15 degrees.
  • the projection direction of the projection device can be automatically adjusted according to the three degrees of freedom in the above-mentioned actual angle information, and the adjustable device can be controlled to rotate 10 degrees clockwise around the x-axis, 20 degrees clockwise around the z-axis, and 20 degrees around the z-axis.
  • Rotating the y-axis 15 degrees clockwise can adjust the projection direction of the projection device to the standard projection direction, so that the picture projected by the projection device can be displayed in the center of the screen without distortion.
  • the projection adjustment parameters may only include coordinate adjustment parameters, and correspondingly, the actual position information may only include actual coordinate information, and the standard coordinate information may only include standard coordinate information.
  • the projection adjustment parameters may only include angle adjustment parameters, and correspondingly, the actual position information may only include actual angle information, and the standard coordinate information may only include standard angle information. Determine an angle adjustment parameter of the projection device based on the actual angle information and the standard angle information; acquire the angle adjustment parameter as the projection adjustment parameter.
  • Step S206 Adjust at least one of the projection position and projection direction of the projection device according to the projection adjustment parameters, so that the picture projected by the projection device is displayed on the screen without distortion superior.
  • the projection position of the projection device can be adjusted according to the coordinate adjustment parameter, and/or the projection direction of the projection device can be adjusted according to the angle adjustment parameter
  • the six degrees of freedom (three position degrees of freedom and three angle degrees of freedom) of the projection device are adjusted so that the projection device meets the preset projection requirements in both position and projection direction, wherein the preset Projection requirements can be understood as making the picture projected by the projection device displayed on the screen completely and without distortion.
  • the projection device can be fixed on the adjustable device, and the position and direction of the adjustable device can be adjusted to realize the adjustment of at least one of the projection position and the projection direction of the projection device, that is, only the projection
  • the projection position of the device may be moved and adjusted, or only the projection direction of the projection device may be adjusted by rotation, or both the projection position and the projection direction of the projection device may be adjusted at the same time, which is not limited in this embodiment.
  • the adjustable device when the adjustable device is an automatic adjustable device such as an automatic six-axis adjustment frame or an automatic mechanical arm, automatic adjustment of the projection position and projection direction of the projection device can be realized. Specifically, after the coordinate adjustment parameter and the angle adjustment parameter are determined, the coordinate adjustment parameter and the angle adjustment parameter can be sent to the automatic adjustable device, and the automatic adjustable device can project the projection device according to the coordinate adjustment parameter and the angle adjustment parameter. At least one of the position and the projection direction is adjusted so that the picture projected by the projection device is completely displayed in the center of the screen without distortion.
  • the adjustable device when the adjustable device is a manual adjustment device (such as a manual adjustment frame or a manual adjustment foot), manual adjustment of the projection position and projection direction of the projection device can be achieved.
  • you can generate prompt information according to the coordinate adjustment parameters and angle adjustment parameters such as adjusting and moving the projection device 5 cm to the positive direction of the x-axis, rotating 10 degrees counterclockwise around the x-axis, and setting the adjustment parameters and Prompt information is projected on the screen to prompt the user to adjust at least one of the projection position and projection direction of the projection device according to the prompt information, so that the picture projected by the projection device is displayed in the center of the screen without distortion .
  • the adjustable device may include an automatic adjustable device and a manual adjustable device, and at this time, semi-automatic selection of the projection position and projection direction of the projection device may be realized.
  • the automatic adjustable device can be automatically adjusted according to the coordinate adjustment parameters and the angle adjustment parameters, so that the projection direction of the projection device can be automatically adjusted, and at the same time, the prompt information generated according to the coordinate adjustment parameters and the angle adjustment parameters can prompt the user Manually adjust the manual adjustment device to realize manual adjustment of the projection position of the projection device; it is also possible to automatically adjust the projection position of the projection device, and at the same time, the user manually adjusts the projection direction of the projection device. No limit.
  • the projection device can be adjusted to the standard position more accurately, and then The picture projected by the projection device can be displayed on the screen more completely and without distortion, and the user does not need to observe the alignment between the projected picture and the screen to gradually adjust the projection device, reducing the need for users to manually adjust the projection device It is time-consuming and improves the user experience; moreover, the projection equipment can also be fixed on the adjustable device, and according to the different adjustment devices, automatic, manual and semi-automatic adjustment methods for the projection equipment are provided to better meet the needs of different users. Adjustment requirements for projection equipment in application scenarios.
  • FIG. 6 is a schematic flowchart of a projection calibration method provided by an embodiment of the present application.
  • the projection calibration method provided by the embodiment of the present application will be described in detail below with reference to FIG. 6 .
  • the projection calibration method may include the following steps:
  • Step S301 Establish a first screen coordinate system and a second screen coordinate system, the first screen coordinate system is established with the horizontal direction of the screen as the horizontal axis direction, and the second screen coordinate system is based on the projection of the projection device to the The positioning image on the above screen is determined.
  • Step S302 Obtain an angle between the horizontal axis of the first screen coordinate system and the horizontal axis of the second screen coordinate system as the horizontal axis angle.
  • Step S303 Obtain the standard coordinate information of the projection device in the first screen coordinate system.
  • step S303 may include the following steps:
  • Step S3031 Obtain the horizontal offset ratio and vertical offset ratio of the projection device.
  • step S3031 may include the following steps:
  • Step S3031-1 Obtain the pixel coordinates of the center point of the display plane in the display image coordinate system as the pixel coordinates of the center point, the display plane is an imaginary plane parallel to the infinity plane, and the infinity plane is the projection equipment and a plane perpendicular to the main optical axis of the projection equipment, and the display image coordinate system is the coordinate system on the spatial light modulator.
  • Step S3031-2 Obtain the pixel coordinates of the offset origin in the display image coordinate system as the offset origin pixel coordinates, the offset origin being the intersection of the main optical axis of the projection device and the display plane;
  • the pixel coordinates of the intersection of the main optical axis of the projection device and the display plane (that is, the DMD plane) in the display image coordinate system that is, the pixel coordinates of the offset origin, such as (3000, 500), and Obtain the pixel coordinates of the center point of the display plane in the display image coordinate system as the pixel coordinates of the center point, please refer to FIG. 9 , point B1 is the above-mentioned offset origin.
  • the infinity plane is a plane that passes through the projection device and is perpendicular to the main optical axis of the projection device
  • the DMD plane is an imaginary plane parallel to the infinity plane.
  • the positional relationship between the infinity plane and the DMD plane can be referred to as shown in Figure 10, showing
  • the image coordinate system is the coordinate system on the spatial light modulator.
  • the x-axis and y-axis of the display image coordinate system are on the same plane as the DMD plane.
  • the display image coordinate system can be based on the point at the lower left corner of the DMD plane. Of course, it can also The other point in the DMD plane is used as the origin, which is not limited in this embodiment.
  • Step S3031-3 According to the abscissa of the pixel coordinates of the offset origin and the abscissa of the pixel coordinates of the center point, obtain the offset origin relative to the center in the direction of the abscissa axis of the display image coordinate system The offset ratio of points, as the horizontal offset ratio.
  • the difference between the abscissa of the pixel coordinates of the center point and the abscissa of the offset origin pixel coordinates is obtained, and the ratio of the difference to the abscissa of the pixel coordinates of the center point is obtained as the above-mentioned lateral deviation ratio.
  • the point B1 is the offset origin on the DMD plane
  • the pixel coordinates of the offset origin B1 are (3000,500)
  • the point P1 is the center point on the DMD plane
  • Step S3031-4 According to the ordinate of the pixel coordinates of the offset origin and the ordinate of the pixel coordinates of the center point, obtain the offset origin relative to the center in the direction of the vertical axis of the display image coordinate system The offset ratio of the point, as the vertical offset ratio.
  • the difference between the ordinate of the pixel coordinates of the center point and the ordinate of the pixel coordinates offset from the origin is obtained, and the ratio of the difference to the ordinate of the pixel coordinates of the center point is obtained as the second deviation ratio.
  • the ordinate of the offset origin pixel coordinate is 500
  • the abscissa of the second pixel coordinate is 1080
  • Step S3032 Obtain coordinate information of the center point of the screen in the first screen coordinate system as center coordinate information.
  • the first screen coordinate system is established with the lower left corner of the screen as the origin, and the coordinate information of the center point of the screen in the first screen coordinate system can be obtained according to the size of the screen as the center coordinate information. Specifically, half of the horizontal size of the screen is acquired as the abscissa of the center coordinate information; half of the vertical size of the screen is acquired as the ordinate of the center coordinate information.
  • Step S3033 Acquire the standard coordinate information of the projection device in the first screen coordinates based on the horizontal offset ratio, the vertical offset ratio, and the center coordinate information.
  • the standard coordinate information includes an abscissa value, a ordinate value, and a vertical coordinate value
  • step S3033 may include the following steps:
  • Step S3033-1 Obtain the abscissa value of the standard coordinate information according to the lateral offset ratio and the abscissa of the central coordinate information.
  • the intersection point of the main optical axis of the projection device and the DMD plane that is, the offset degree of the offset origin B1 on the DMD plane relative to the center point of the DMD plane
  • the intersection point with the main optical axis of the projection device and the screen that is, the principal ray intersection point B2 on the screen
  • the offset degree obtained on the DMD plane and the coordinate information of the center point of the screen can be combined to calculate the on-screen The standard coordinate information of the offset origin in the first screen coordinate system.
  • the product of the lateral offset ratio and the abscissa of the central coordinate information is obtained as the lateral offset distance
  • the difference between the abscissa of the central coordinate information and the lateral offset distance is obtained as the abscissa value of the standard coordinate information.
  • Step S3033-2 Acquire the ordinate value of the standard coordinate information according to the longitudinal offset ratio and the ordinate of the center coordinate information.
  • the product of the vertical offset ratio and the ordinate of the center coordinate information is obtained as the longitudinal offset distance
  • the difference between the ordinate of the center coordinate information and the longitudinal offset distance is obtained as the ordinate value of the standard coordinate information.
  • Step S3033-3 Obtain the product of the width of the screen and the projection ratio of the projection device as the vertical coordinate value of the standard coordinate information.
  • the width of the screen is the horizontal size of the aforementioned screen.
  • the horizontal size of the screen is L
  • the vertical size is H
  • the projection ratio is T
  • point P is the center point of the screen
  • point N is the standard position of the projection device
  • the coordinate information of point N is The standard coordinate information (X0, Y0, Z0)
  • X0, Y0, Z0 can be calculated by the following formula:
  • Step S304 Acquire the actual coordinate information of the projection device in the first screen coordinate system based on the included angle of the horizontal axis.
  • step S304 may include the following steps:
  • Step S3041 Obtain the pixel coordinates of the offset origin in the display image coordinate system as the pixel coordinates of the offset origin;
  • step S3041 for the specific implementation manner of step S3041, reference may be made to the content in the foregoing embodiments, and details are not repeated here.
  • Step S3042 Obtain the intersection of the principal optical axis of the projection device and the screen as the intersection of principal rays;
  • Step S3043 According to the preset conversion relationship between the display image coordinate system and the first screen coordinate system and the offset origin pixel coordinates, determine the coordinates of the chief ray intersection point in the first screen coordinate system System, as the target coordinate information;
  • the intersection point B2 of the principal optical axis of the projection device and the screen is obtained as the intersection point of the above-mentioned chief ray
  • the offset of the origin B1 can be offset according to the preset conversion relationship between the display image coordinate system and the first screen coordinate system.
  • the pixel coordinates of shifting the origin are converted into the coordinate information of the principal ray intersection point B2 on the first screen coordinate system as the target coordinate information.
  • Step S3044 Acquire actual coordinate information of the projection device in the first screen coordinate system based on the included angle of the horizontal axis and the target coordinate information.
  • step S3044 may include the following steps:
  • Step S3044-1 Obtain the angle between the infinity plane and the plane where the screen is located as the plane angle.
  • step S3044-1 may include the following steps:
  • Step S3044-1-1 Obtain the product of the projection ratio of the projection device and the lateral resolution as a second vertical distance, and the second vertical distance represents the vertical distance from the projection device to the display plane.
  • the vertical distance from the projection device to the DMD plane is the line segment OB1
  • the second vertical distance is the length of the line segment OB1
  • Step S3044-1-2 Obtain the distance from the target point to the auxiliary line on the display plane as the second target distance, the distance from the target point to the infinity line is equal to the distance from the projection device to the infinity line .
  • point D is the above-mentioned target point
  • point G is the cross-sectional point of the above-mentioned infinite line
  • point E is the cross-sectional point of the auxiliary line of the above-mentioned display plane
  • the distance between the target point D and the auxiliary line on the display plane is The distance is the length of the line segment DE, and the electronic device can automatically obtain the length of the second target distance DE.
  • Step S3044-1-3 Determine the plane angle based on the second vertical distance and the second target distance.
  • the angle size of ⁇ 2 can be calculated, that is, the angle size of the plane angle ⁇ 2 can be determined.
  • Step S3044-2 Obtain the vertical distance from the projection device to the screen as the first vertical distance.
  • point A is the vertical mapping point of the projection device O on the screen
  • the length of the line segment OG can be obtained by obtaining the intersection point of the diagonal line of the virtual positioning image and the infinity line as a 45-degree intersection point
  • the virtual positioning image is a virtual square image mapped to the screen on the display plane
  • the virtual trapezoidal image on the above obtain the vertical mapping point of the projection device on the infinite line as the 0-degree intersection point; obtain the distance between the 45-degree intersection point and the 0-degree intersection point as the length of the line segment OG .
  • the two diagonal lines of the virtual positioning image are compared with the infinity line respectively at point I and point K.
  • Point I and point K are the two above-mentioned 45-degree intersection points
  • point G is the above-mentioned 0-degree intersection point.
  • Step S3044-3 According to the first vertical distance and the plane angle, obtain the distance between the intersection point of the chief ray and the vertical mapping point of the projection device on the screen as the first target distance.
  • Step S3044-4 Acquire the actual coordinates of the projection device in the first screen coordinate system based on the target coordinate information, the first target distance, the included angle of the horizontal axis, and the first vertical distance information.
  • the coordinate value of point A in the x-axis direction and the point A can be determined according to the trigonometric function relationship in the figure.
  • the coordinate value of A in the y-axis direction Obtain the coordinate value of point A in the x-axis direction as the abscissa value in the actual coordinate information, obtain the coordinate value of point A in the y-axis direction as the ordinate value in the actual coordinate information, and obtain the vertical distance from the projection device to the screen As the vertical coordinate value in the actual coordinate information.
  • the actual coordinate information is expressed as (X1, Y1, Z1)
  • the coordinate information of point B2 is expressed as (X3, Y3, Z3)
  • the abscissa value X1 the ordinate value Y1 and the ordinate value Z1 can be passed as follows Simultaneously compute:
  • Step S305 Acquire the actual angle information of the projection device in the first screen coordinate system based on the included angle of the horizontal axis.
  • step S305 may include the following steps:
  • Step S3051 Obtain the roll angle of the projection device.
  • the parametric definition of the roll angle can be understood as displaying an arrow directly above at a point where the ratio of the lateral offset and the vertical offset of the DMD plane are both 0, and displaying the arrow on the screen
  • the angle between the direction and the y-axis of the first screen coordinate system is used as the roll angle.
  • the electronic device can obtain the arrow displayed at the point where the horizontal offset ratio and the vertical offset ratio of the projection device on the DMD plane are both 0, and according to the preset conversion relationship between the DMD coordinate system and the screen coordinate system, obtain The displayed arrow is transformed into the arrow display direction of the arrow on the screen, and the included angle between the arrow display direction and the y-axis of the first screen coordinate system is obtained as the roll angle.
  • Step S3052 Determine the heading angle and pitch angle of the projection device based on the horizontal axis angle and the plane angle.
  • step S3052 may include the following:
  • the mapping point, as the vertical axis mapping point R, is based on the projection device O, the vertical mapping point A of the projection device on the screen, the chief ray intersection B2, the horizontal axis mapping point S and the vertical axis Mapping the point R to determine a plurality of geometric areas; based on the included angle of the horizontal axis, the included angle of the plane, and the plurality of geometric areas, determining a heading angle and a pitch angle of the projection device.
  • the angle between the line segment OR and the line segment OA is the pitch angle ⁇
  • the angle between the line segment OA and the line segment OS is the heading angle ⁇ .
  • the degrees of the pitch angle ⁇ and the heading angle ⁇ can be obtained based on the trigonometric function relationship in Figure 21. For the convenience of calculation, it can be assumed that the length of the line segment OA is 1.
  • ⁇ OAR is a right angle
  • the length of the line segment AR is The product of the length of the line segment OA and the tangent of the pitch angle ⁇
  • ⁇ OAS is a right angle
  • the length of the line segment AS is the product of the length of the line segment OA and the tangent of the heading angle ⁇ .
  • Step S3053 Obtain the roll angle, the heading angle, and the pitch angle as the actual angle information of the projection device.
  • Step S306 Determine projection adjustment parameters according to actual coordinate information, standard coordinate information, actual angle information, and standard angle information.
  • Step S307 Adjust at least one of the projection position and projection direction of the projection device according to the projection adjustment parameters, so that the picture projected by the projection device is displayed on the screen without distortion superior.
  • step S306 to step S307 for the specific implementation manners of step S306 to step S307, reference may be made to the content in the foregoing embodiments, and details are not repeated here.
  • the projection device can be adjusted to the standard position more accurately, and then The picture projected by the projection device can be displayed on the screen more completely and without distortion, and the user does not need to observe the alignment between the projected picture and the screen to gradually adjust the projection device, reducing the need for users to manually adjust the projection device It is time-consuming and improves the user experience; moreover, the projection equipment can also be fixed on the adjustable device, and according to the different adjustment devices, automatic, manual and semi-automatic adjustment methods for the projection equipment are provided to better meet the needs of different users. Adjustment requirements for projection equipment in application scenarios.
  • FIG. 22 shows a structural block diagram of a projection calibration apparatus 400 provided by an embodiment of the present application.
  • the device 400 may include: a coordinate system establishment module 410, an included angle acquisition module 420, an actual position acquisition module 430, a standard position acquisition module 440, an adjustment parameter determination module 450 and an adjustment module 460.
  • the coordinate system establishment module 410 is used to establish a first screen coordinate system and a second screen coordinate system.
  • the first screen coordinate system is established by taking the lateral direction of the screen as the horizontal axis direction, and the second screen coordinate system is based on the projection
  • the positioning image projected by the device on the screen is determined and obtained.
  • the included angle obtaining module 420 is configured to obtain an included angle between the horizontal axis of the first screen coordinate system and the horizontal axis of the second screen coordinate system as the horizontal axis included angle.
  • the actual position acquiring module 430 is configured to acquire actual position information of the projection device in the first screen coordinate system based on the included angle of the horizontal axis, where the actual position information includes actual coordinate information and/or actual angle information.
  • the standard position acquiring module 440 is configured to acquire standard position information of the projection device in the first screen coordinate system, where the standard position information includes standard coordinate information and/or standard angle information.
  • the adjustment parameter determination module 450 is configured to determine projection adjustment parameters according to the actual position information and the standard position information.
  • the adjustment module 460 is configured to adjust at least one of the projection position and the projection direction of the projection device according to the projection adjustment parameters, so that the picture projected by the projection device is displayed on the above screen.
  • the coordinate system establishment module 410 may be specifically configured to: acquire a positioning image on the screen, where the positioning image is a trapezoidal image projected onto the screen from a square image on a display plane; acquire the The straight line where the two intersection points of the two groups of opposite side extension lines of the trapezoidal image is located is taken as an infinite line; the direction parallel to the infinite line is the X-axis, and the plane where the screen is located The direction perpendicular to the X axis is the Y axis, and the second screen coordinate system is established.
  • the standard position obtaining module 440 may include: an offset ratio obtaining unit, a center coordinate obtaining unit, and a standard coordinate obtaining unit.
  • the offset ratio acquiring unit may be used to acquire the horizontal offset ratio and the vertical offset ratio of the projection device.
  • the center coordinate acquiring unit may be configured to acquire coordinate information of a center point of the screen in the first screen coordinate system as center coordinate information.
  • the standard coordinate obtaining unit may be configured to obtain the standard coordinate information of the projection device in the first screen coordinates based on the horizontal offset ratio, the vertical offset ratio, and the center coordinate information.
  • the offset ratio acquisition unit can be specifically used to: acquire the pixel coordinates of the center point of the display plane in the display image coordinate system as the pixel coordinates of the center point, the display plane is an imaginary plane parallel to the infinity plane, The infinity plane is a plane that passes through the projection device and is perpendicular to the main optical axis of the projection device, and the display image coordinate system is a coordinate system on the spatial light modulator;
  • the pixel coordinates of the coordinate system, as the offset origin pixel coordinates, the offset origin is the intersection point of the main optical axis of the projection device and the display plane; according to the abscissa of the offset origin pixel coordinates and the center
  • the abscissa of the point pixel coordinates is used to obtain the offset ratio of the offset origin relative to the center point in the direction of the abscissa axis of the display image coordinate system as the horizontal offset ratio; according to the offset origin pixel coordinates and the ordinate of the pixel coordinates of the center point, and obtain
  • the standard coordinate information includes an abscissa value, a ordinate value, and a vertical coordinate value
  • the standard coordinate acquisition unit may be specifically configured to: acquire The abscissa value of the standard coordinate information; according to the longitudinal offset ratio and the ordinate of the center coordinate information, obtain the ordinate value of the standard coordinate information; obtain the width of the screen and the projection device The product of the projection ratio is used as the vertical coordinate value of the standard coordinate information.
  • the actual position acquisition module 430 may include: an offset origin coordinate acquisition unit, a chief ray intersection acquisition unit, a target coordinate acquisition unit, and an actual coordinate acquisition unit.
  • the offset origin coordinate acquisition unit may be used to acquire the pixel coordinates of the offset origin in the display image coordinate system as the offset origin pixel coordinates.
  • the principal ray intersection obtaining unit may be configured to obtain the intersection of the principal optical axis of the projection device and the screen as the principal ray intersection.
  • the target coordinate acquisition unit may be used to determine the intersection point of the chief ray on the first screen according to the preset conversion relationship between the display image coordinate system and the first screen coordinate system and the offset origin pixel coordinates The coordinate system of the coordinate system, as the target coordinate information.
  • the actual coordinate acquiring unit may be configured to acquire actual coordinate information of the projection device in the first screen coordinate system based on the included angle of the horizontal axis and the target coordinate information.
  • the actual coordinate acquiring unit may be specifically configured to: acquire the angle between the infinity plane and the plane where the screen is located, as the plane angle; acquire the vertical distance from the projection device to the screen, as The first vertical distance; according to the first vertical distance and the plane angle, the distance between the intersection point of the chief ray and the vertical mapping point of the projection device on the screen is obtained as the first target distance; based on The target coordinate information, the first target distance, the horizontal axis angle, and the first vertical distance obtain actual coordinate information of the projection device in the first screen coordinate system.
  • the actual coordinate acquisition unit can also be used to: acquire the product of the projection ratio of the projection device and the lateral resolution as the second vertical distance, and the second vertical distance represents the distance between the projection device and the display plane. Vertical distance; obtain the distance from the target point to the auxiliary line on the display plane as the second target distance, the distance from the target point to the infinity line is equal to the distance from the projection device to the infinity line; based on the The second vertical distance and the second target distance determine the plane angle.
  • the actual position acquisition module 430 may include: an actual angle acquisition unit.
  • the actual angle acquisition unit can be specifically used to: acquire the roll angle of the projection device; determine the heading angle and the pitch angle of the projection device based on the horizontal axis angle and the plane angle; obtain the roll angle Angle, the heading angle and the pitch angle are used as the actual angle information of the projection device.
  • the actual angle acquisition unit can also be specifically configured to: acquire the arrow on the display plane of the projection device mapped to the screen on the screen according to the preset conversion relationship between the display image coordinate system and the first screen coordinate system.
  • the direction of the arrow is used as the arrow display direction; the angle between the arrow display direction and the Y-axis of the first screen coordinate system is obtained as the roll angle of the projection device.
  • the actual angle acquisition unit can also be specifically configured to: acquire the vertical mapping point of the intersection point of the chief ray on the horizontal axis on the first screen coordinate system as the mapping point on the horizontal axis; acquire the intersection point of the chief ray on the horizontal axis
  • the vertical mapping point of the vertical axis on the first screen coordinate system is used as the vertical axis mapping point; based on the projection device, the vertical mapping point of the projection device on the screen, the chief ray intersection point, and the horizontal axis
  • the mapping point and the vertical axis mapping point determine a plurality of geometric areas; based on the horizontal axis angle, the plane angle and the plurality of geometric areas, determine the heading angle and pitch angle of the projection device.
  • the adjustment parameter determination module 450 may be specifically configured to: determine the coordinate adjustment parameters of the projection device based on the actual coordinate information and the standard coordinate information; based on the actual angle information and the standard angle information, Determining an angle adjustment parameter of the projection device; obtaining the coordinate adjustment parameter and the angle adjustment parameter as the projection adjustment parameter.
  • the coupling between the modules may be electrical, mechanical or other forms of coupling.
  • each functional module in each embodiment of the present application may be integrated into one processing module, each module may exist separately physically, or two or more modules may be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or in the form of software function modules.
  • the The projection equipment is adjusted to the standard position, so that the picture projected by the projection equipment can be displayed on the screen more completely and without distortion, and it is not necessary for the user to gradually adjust the projection equipment by observing the alignment between the projected picture and the screen , reducing the time-consuming manual adjustment of the projection equipment by the user, and improving the user experience; moreover, the projection equipment can also be fixed on the adjustable device, and various adjustments to the projection equipment, such as automatic, manual and semi-automatic, can be provided according to the different adjustment devices way, to better meet the adjustment requirements for projection equipment in different application scenarios.
  • FIG. 23 shows a structural block diagram of an electronic device 500 provided in an embodiment of the present application, and the projection calibration method provided in the embodiment of the present application may be executed by the electronic device 500 .
  • the electronic device 500 may be a device capable of running application programs, such as a projector, a smart phone, or a dedicated projection calibrator.
  • the electronic device 500 in the embodiment of the present application may include one or more of the following components: a processor 501, a memory 502, and one or more application programs, wherein one or more application programs may be stored in the memory 502 and configured To be executed by one or more processors 501, one or more programs are configured to execute the methods described in the foregoing method embodiments.
  • Processor 501 may include one or more processing cores.
  • the processor 501 uses various interfaces and lines to connect various parts of the entire electronic device 500, and executes by running or executing instructions, programs, code sets or instruction sets stored in the memory 502, and calling data stored in the memory 502.
  • Various functions of the electronic device 500 and processing data may adopt at least one of Digital Signal Processing (Digital Signal Processing, DSP), Field-Programmable Gate Array (Field-Programmable Gate Array, FPGA), and Programmable Logic Array (Programmable Logic Array, PLA).
  • DSP Digital Signal Processing
  • FPGA Field-Programmable Gate Array
  • PLA Programmable Logic Array
  • the processor 501 may integrate one or a combination of a central processing unit (Central Processing Unit, CPU), an image processor (Graphics Processing Unit, GPU) and a modem.
  • CPU Central Processing Unit
  • GPU Graphics Processing Unit
  • the CPU mainly handles the operating system, user interface and application programs, etc.; the GPU is used to render and draw the displayed content; the modem is used to handle wireless communication. It can be understood that the above-mentioned modem may also be integrated into the processor 501, and be realized by a communication chip alone.
  • the memory 502 may include random access memory (Random Access Memory, RAM), and may also include read-only memory (Read-Only Memory). Memory 502 may be used to store instructions, programs, codes, sets of codes, or sets of instructions.
  • the memory 502 may include a program storage area and a data storage area, wherein the program storage area may store instructions for implementing an operating system and instructions for implementing at least one function (such as a touch function, a sound playback function, an image playback function, etc.) , instructions for implementing the following method embodiments, and the like.
  • the data storage area may also store data created by the electronic device 500 during use (such as the above-mentioned various correspondences) and the like.
  • the coupling or direct coupling or communication connection between the modules shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or modules may be electrical, mechanical or otherwise.
  • each functional module in each embodiment of the present application may be integrated into one processing module, each module may exist separately physically, or two or more modules may be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or in the form of software function modules.
  • FIG. 24 shows a structural block diagram of a computer-readable storage medium provided by an embodiment of the present application.
  • Program codes are stored in the computer-readable medium 600, and the program codes can be invoked by a processor to execute the methods described in the foregoing method embodiments.
  • the computer readable storage medium 600 may be an electronic memory such as flash memory, EEPROM (Electrically Erasable Programmable Read Only Memory), EPROM, hard disk, or ROM.
  • the computer-readable storage medium 600 includes a non-transitory computer-readable storage medium (non-transitory computer-readable storage medium).
  • the computer-readable storage medium 600 has a storage space for program code 610 for executing any method steps in the above methods. These program codes can be read from or written into one or more computer program products. Program code 610 may, for example, be compressed in a suitable form.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Transforming Electric Information Into Light Information (AREA)
  • Projection Apparatus (AREA)

Abstract

本申请公开了一种投影校准方法、装置、电子设备及存储介质,涉及投影技术领域。该方法包括:建立第一屏幕坐标系以及第二屏幕坐标系;获取第一屏幕坐标系的横轴与第二屏幕坐标系的横轴的夹角,作为横轴夹角;基于横轴夹角,获取投影设备在第一屏幕坐标系中的实际坐标信息和/或实际角度信息;获取投影设备在第一屏幕坐标系中标准坐标信息和/或标准角度信息;根据实际位置信息以及标准位置信息,确定投影调节参数;根据投影调节参数,对投影设备的投影位置及投影方向中的至少一种进行调节。如此,可以使投影设备所投射的画面完整且不发生畸变地显示在屏幕上,减少了用户调整的耗时,提高了用户体验。

Description

投影校准方法、装置、电子设备及存储介质 技术领域
本申请涉及投影技术领域,更具体地,涉及一种投影校准方法、装置、电子设备及存储介质。
背景技术
投影仪,是一种可以将图像或视频投射到屏幕上进行显示的设备,可以通过不同的接口同计算机、智能手机、平板电脑、游戏机等相连接,获取待投射的图像或者视频。
在实际应用中,投影仪的投射区域与屏幕一般会存在偏差,进而导致投影仪投射出的画面无法完整显示于屏幕上,传统的方法是用户通过手动对投影仪的位置进行调整,以使投射区域与屏幕对准。但是,由用户通过观察每次调整投影仪的位置后的投射画面与屏幕的位置,再逐步对投影仪的位置进行调整会耗费用户较多的时间和精力,降低了用户体验。
发明内容
有鉴于此,本申请提出了一种投影校准方法、装置、电子设备及存储介质。
第一方面,本申请实施例提供了一种投影校准方法,所述方法包括:建立第一屏幕坐标系以及第二屏幕坐标系,所述第一屏幕坐标系是以屏幕的横向方向为横轴方向建立得到,所述第二屏幕坐标系是基于投影设备投射至所述屏幕上的定位图像确定得到;获取所述第一屏幕坐标系的横轴与所述第二屏幕坐标系的横轴的夹角,作为横轴夹角;基于所述横轴夹角,获取所述投影设备在所述第一屏幕坐标系中的实际位置信息,所述实际位置信息包括实际坐标信息和/或实际角度信息;获取所述投影设备在所述第一屏幕坐标系中的标准位置信息,所述标准位置信息包括标准坐标信息和/或标准角度信息;根据所述实际位置信息以及所述标准位置信息,确定投影调节参数;根据所述投影调节参数,对所述投影设备的投影位置及投影方向中的至少一种进行调节,以使所述投影设备所投射的画面完整且不发生畸变地显示在所述屏幕上。
第二方面,本申请实施例提供了一种投影校准装置,所述装置包括:坐标系建立模块、夹角获取模块、实际位置获取模块、标准位置获取模块、调节参数确定模块以及调节模块。坐标系建立模块,用于建立第一屏幕坐标系以及第二屏幕坐标系,所述第一屏幕坐标系是以屏幕的横向方向为横轴方向建立得到,所述第二屏幕坐标系是基于投影设备投射至所述屏幕上的定位图像确定得到;夹角获取模块,用于获取所述第一屏幕坐标系的横轴与所述第二屏幕坐标系的横轴的夹角,作为横轴夹角;实际位置获取模块,用于基于所述横轴夹角,获取所述投影设备在所述第一屏幕坐标系中的实际位置信息,所述实际位置信息包括实际坐标信息和/或实际角度信息;标准位置获取模块,用于获取所述投影设备在所述第一屏幕坐标系中的标准位置信息,所述标准位置信息包括标准坐标信息和/或标准角度信息;调节参数确定模块,用于根据所述实际 位置信息以及所述标准位置信息,确定投影调节参数;调节模块,用于根据所述投影调节参数,对所述投影设备的投影位置及投影方向中的至少一种进行调节,以使所述投影设备所投射的画面完整且不发生畸变地显示在所述屏幕上。
第三方面,本申请实施例提供了一种电子设备,包括:一个或多个处理器;存储器;一个或多个程序,其中所述一个或多个程序被存储在所述存储器中并被配置为由所述一个或多个处理器执行,所述一个或多个程序配置用于执行第一方面提供的投影校准方法。
第四方面,本申请实施例提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有程序代码,所述程序代码可被处理器调用执行第一方面提供的投影校准方法。
本申请提供的方案中,建立第一屏幕坐标系以及第二屏幕坐标系;获取第一屏幕坐标系的横轴与第二屏幕坐标系的横轴的夹角,作为横轴夹角;基于横轴夹角,获取投影设备在第一屏幕坐标系中的实际位置信息,实际位置信息包括实际坐标信息和/或实际角度信息;获取投影设备在第一屏幕坐标系中的标准位置信息,标准位置信息包括标准坐标信息和/或标准角度信息;根据实际位置信息以及标准位置信息,确定投影调节参数;根据投影调节参数,对投影设备的投影位置及投影方向中的至少一种进行调节。如此,通过计算调节参数并根据调节参数对投影设备的投影位置和投影方向进行调整,可以更加准确地将投影设备调整至标准位置,进而使投影设备所投射的画面可以更完整且不发生畸变地显示在屏幕上,以及不用用户通过观察投射的画面与屏幕的对准程度,逐步对投影设备进行调节,减少了用户调整的耗时,提高了用户体验。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的一种投影校准系统的架构示意图。
图2示出了本申请一实施例提供的照相机拍摄的由投影机投射于屏幕上的图像的示意图。
图3示出了本申请一实施例提供的投影校准方法的流程示意图。
图4示出了本申请实施例提供的屏幕坐标系的横轴的示意图。
图5示出了本申请一实施例提供的投影设备的角度参数化的示意图。
图6示出了本申请另一实施例提供的投影校准方法的流程示意图。
图7示出了图6所示步骤S303在一种实施方式中的子步骤流程示意图。
图8示出了图7所示步骤S3031在一种实施方式中的子步骤流程示意图。
图9示出了本申请一实施例提供的投影设备与屏幕的位置示意图。
图10示出了本申请一实施例提供的DMD屏幕与无穷远面的位置示意图。
图11示出了本申请实施例提供的显示图像坐标系的示意图。
图12示出了图7所示步骤S3033在一种实施方式中的子步骤流程示意图。
图13示出了本申请一实施例提供的投影设备的标准位置的示意图。
图14示出了图6所示步骤S304在一种实施方式中的子步骤流程示意图。
图15示出了图14所示步骤S3044在一种实施方式中的子步骤流程示意图。
图16示出了图15所示步骤S3044-1在一种实施方式中的子步骤流程示意图。
图17示出了本申请一实施例提供的无穷远面与屏幕的夹角的截面示意图。
图18示出了本申请一实施例提供的0度交点和45度交点的示意图。
图19示出了本申请一实施例提供的投影设备的在屏幕上的垂直映射点的示意图。
图20示出了图6所示步骤S305在一种实施方式中的子步骤流程示意图。
图21示出了本申请一实施例提供的投影设备在第一屏幕坐标系中的位置示意图。
图22是根据本申请一实施例提供的一种投影校准装置的框图。
图23是本申请实施例的用于执行根据本申请实施例的投影校准方法的电子设备的框图。
图24是本申请实施例的用于保存或者携带实现根据本申请实施例的投影校准方法的程序代码的存储单元。
具体实施方式
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
在实际应用中,投影仪的投射区域与屏幕一般会存在偏差,进而导致投影仪投射出的画面无法完整显示于屏幕上,传统的方法是用户通过手动对投影仪的位置进行调整,以使投射区域与屏幕对准。但是,由用户通过观察每次调整投影仪的位置后的投射画面与屏幕的位置,再逐步对投影仪的位置进行调整会耗费用户较多的时间和精力,降低了用户体验。
针对上述问题,发明人提出一种投影校准方法、装置、电子设备及存储介质,可以对基于投影设备的实际位置信息和标准位置信息,获取针对该投影设备的调节参数,在根据调节参数对投影设备的投影位置及投影方向中的至少一种进行调节,以使投影设备所投射的画面完整且不发生畸变地显示在屏幕上。下面对该内容进行详细描述。
请参照图1,图1为本申请实施例提供的一种投影校准系统10的架构示意图。在本实施例中,投影校准系统10包括屏幕110、投影机120、照相机130以及主控模块140,其中,屏幕110可以为电视屏幕,也可以为幕布;主控模块140可以部署于投影机120内,也可以部署于其他电子设备(如智能手机或专用投影校准仪等设备)内;照相机130可以部署于投影机120内部,也可以是可以与主控模块所在的电子设备建立通信连接的外界专用的图像采集装备,本实施例对此不作限制。其中,投影机120和照相机130可以处于同一局域网下,主控模块140可以获取照相机130拍摄到的由投影机120投射于屏幕上的图像,如图2所示,若图像中包括二维码信息,主控模块140可以对图2中的二维码图像进行图像识别,以读取二维码中包含的IP地址信息,并基于该IP地址信息与投影机120建立通信连接,基于该通信连接,主控模块140可以与投影机120进行数据传输(如视频源的传输);主控模块140还可以基于图2中投射图像于屏幕110上的显示位置,确定投影机120相对屏幕110的实际位置。
在一些实施方式中,主控模块140可以将视频源传输至投影机120,投影机120接收视频源并将该视频源投射至屏幕110上进行显示,进而照相机130可以对屏幕110上显示的投射图像进行拍摄,将拍摄到的包含屏幕110的图像作为拍摄画面,并将拍摄画面传输至主控模块140,主控模块140接收拍摄画面,并基于该拍摄画面计算投影 机120当前相对于屏幕110的实际位置以及标准位置,再根据实际位置和标准位置确定针对投影机120调节参数以及调整建议,最后,将调节参数以及调整建议显示于屏幕110上。
请参照图3,图3为本申请一实施例提供的一种投影校准方法的流程示意图。下面将结合图3对本申请实施例提供的投影校准方法进行详细阐述。该投影校准方法可以包括以下步骤:
步骤S201:建立第一屏幕坐标系以及第二屏幕坐标系,所述第一屏幕坐标系是以屏幕的横向方向为横轴方向建立得到,所述第二屏幕坐标系是基于投影设备投射至所述屏幕上的定位图像确定得到。
在本实施例中,投影设备即为上述系统中的投影机120,为便于后续计算投影设备的位置信息,可以通过建立坐标系的方式,用建立好的坐标系中的坐标信息表示投影设备的位置信息。
其中,坐标系可以包括相机坐标系、显示图像坐标系以及屏幕坐标系。相机坐标系x和y方向分别对应拍摄到的图像的横坐标和纵坐标,单位是像素;显示图像坐标系,也称为数字微镜(Digital Micromirror Device,DMD)坐标系,指的是投影画面本身,可以认为是空间光调制器上的坐标系,单位是像素;屏幕坐标系是指固定在屏幕上的坐标系,即基于屏幕所在平面所建立的三维坐标系,单位可以是厘米或毫米等长度单位,本实施例对此不作限制。基于此,通过图像识别的方式,获取由投影设备投射至屏幕上的投射图像,并基于相机坐标系、显示图像坐标系以及屏幕坐标系三者之间已知的预设转换关系,计算投影设备于屏幕坐标系中的实际位置以及标准位置,再通过手动或自动的方式将投影设备调至标准位置。
具体地,请参阅图4,可以基于屏幕的横向方向建立第一屏幕坐标系,具体地,获取屏幕的横向方向作为第一屏幕坐标系的x轴方向,获取屏幕所在平面垂直于上述横向方向的方向作为第一屏幕坐标系的y轴方向,以及获取垂直于屏幕所在平面的方向作为第一屏幕坐标系的z轴方向,第一屏幕坐标系的原点可以是屏幕的左下角点,也可以是屏幕上的其他点,本实施例对此不作限制。
可选地,仍参阅图4,第二屏幕坐标系是基于投影设备投射至屏幕上的定位图像确定得到,具体地,获取所述屏幕上的定位图像,所述定位图像为显示平面上的正方形图像投影至所述屏幕上的不规则四边形图像;获取所述不规则四边形图像的的两组对边延长线的两个交点的连线所在的直线,作为无穷远线;以平行于所述无穷远线的方向为X轴,以及以所述屏幕所在平面上垂直于所述X轴的方向为Y轴,以垂直于屏幕所在平面的方向为Z轴方向,建立所述第二屏幕坐标系。
步骤S202:获取所述第一屏幕坐标系的横轴与所述第二屏幕坐标系的横轴的夹角,作为横轴夹角。
请参阅图4,获取第一屏幕坐标系的x轴与第二屏幕坐标系的x轴的夹角,作为上述横轴夹角。
步骤S203:基于所述横轴夹角,获取所述投影设备在所述第一屏幕坐标系中的实际位置信息,所述实际位置信息包括实际坐标信息和/或实际角度信息。
步骤S204:获取所述投影设备在所述第一屏幕坐标系中的标准位置信息,所述标准位置信息包括标准坐标信息和/或标准角度信息。
步骤S205:根据所述实际位置信息以及所述标准位置信息,确定投影调节参数。
可以理解地,在实际投影应用中,由于投影设备的位置、角度不准确或者投影设 备自身存在投射偏移等问题,均可能会导致投影设备所投射的画面存在偏移,例如投射的画面并未完全显示于屏幕上,或者投射的画面并未显示于屏幕的中心,进而导致投影效果差。因此,可以通过建立第一屏幕坐标系和第二屏幕坐标系的方式,并根据横轴夹角γ3,获取投影设备在第一屏幕坐标系中的实际位置信息,同时,获取投影设备在第一屏幕坐标系中的标准位置信息,如此,则可以根据实际位置信息以及标准位置信息确定投影设备的投影调节参数,以便根据投影调节参数对投影设备进行调整,实现投影设备所投射的画面位于屏幕的中心,保证投影效果。
在一些实施方式中,投影调节参数可以包括坐标调节参数以及角度调节参数,实际位置信息可以包括实际坐标信息和实际角度信息,标准坐标信息可以包括标准坐标信息和标准角度信息。基于所述实际坐标信息以及标准坐标信息,确定所述投影设备的坐标调节参数;基于所述实际角度信息以及所述标准角度信息,确定所述投影设备的角度调节参数;获取所述坐标调节参数以及所述角度调节参数,作为所述投影调节参数。
可选地,坐标调节参数可以包括三个移动方向(如第一屏幕坐标系上的x轴方向、y轴方向以及z轴方向)上的调节参数。在获取到投影设备在第一屏幕坐标系中的标准坐标信息和实际坐标信息后,即可根据标准坐标信息和实际坐标信息中x轴方向、y轴方向以及z轴方向的坐标值,确定坐标调节参数。示例性地,标准坐标信息为(10,15,20),实际坐标信息(5,10,22),可以获取到在x轴方向的调节参数为+5,表征向x轴的正方向上移动5个单位长度(如厘米、毫米等),在y轴方向上的调节参数为+5,表征向y轴的正方向上移动5个单位长度,在z轴方向上的调节参数为-2,表征向z轴的负方向上移动5个单位长度。
可选地,请参阅图5,角度调节参数可以包括航向角β(绕z轴旋转的角度)、横滚角γ1(绕y轴旋转的角度)以及俯仰角α(绕x轴旋转的角度)。基于所述实际角度信息以及所述标准角度信息,确定所述投影设备的角度调节参数,可以将第一屏幕坐标系中的x轴、y轴以及z轴所在的角度信息,作为标准角度信息,基于此,则可以将获取到的实际角度信息作为投影设备的角度调节参数。示例性地,若获取到的投影设备的实际角度信息中的俯仰角α绕x轴顺时针旋转10度,航向角β绕z轴顺时针旋转20度,横滚角γ1绕y轴顺时针旋转15度。此时,则可以自动根据上述实际角度信息中的三个角度自由度对投影设备的投影方向进行调整,控制可调节装置绕x轴顺时针旋转10度、绕z轴顺时针旋转20度以及绕y轴顺时针旋转15度,即可将投影设备的投影方向调整至标准投影方向,使投影设备所投射的画面完整且不发生畸变地显示在屏幕的中央。
在另一些实施方式中,投影调节参数可以仅包括坐标调节参数,对应地,实际位置信息可以仅包括实际坐标信息,标准坐标信息可以仅包括标准坐标信息。基于所述实际坐标信息以及标准坐标信息,确定所述投影设备的坐标调节参数;获取所述坐标调节参数,作为所述投影调节参数。
在又一些实施方式中,投影调节参数可以仅包括角度调节参数,对应地,实际位置信息可以仅包括实际角度信息,标准坐标信息可以仅包括标准角度信息。基于所述实际角度信息以及所述标准角度信息,确定所述投影设备的角度调节参数;获取所述角度调节参数,作为所述投影调节参数。
步骤S206:根据所述投影调节参数,对所述投影设备的投影位置及投影方向中的至少一种进行调节,以使所述投影设备所投射的画面完整且不发生畸变地显示在所述 屏幕上。
在本实施例中,在获取到坐标调节参数以及角度调节参数后,即可根据坐标调节参数对投影设备的投影位置进行调整,和/或,根据角度调节参数对投影设备的投影方向进行调整,可以理解地,对投影设备的六个自由度(三个位置自由度以及三个角度自由度)进行调节,以使投影设备在位置及投射方向上都满足预设投射要求,其中,满足预设投射要求可以理解为,使投影设备所投射的画面完整且不发生畸变地显示在屏幕上。
可选地,可以将投影设备固定于可调节装置上,对可调节装置进行位置及方向的调整,以实现对投影设备的投影位置以及投影方向中的至少一种进行调节,即可以仅对投影设备的投影位置进行移动调整,也可以仅对投影设备的投影方向进行转动调整,还可以同时对投影设备的投影位置以及投影方向进行调整,本实施例对此不作限制。
在一些实施方式中,当可调节装置为自动的六轴调节架或者自动机械臂等自动可调节装置时,可以实现对投影设备的投影位置以及投影方向的自动调整。具体地,在确定坐标调节参数以及角度调节参数后,可以将坐标调节参数以及角度调节参数发送至自动可调节装置处,自动可调节装置则可以根据坐标调节参数以及角度调节参数对投影设备的投影位置及投影方向中的至少一种进行调节,以使投影设备所投射的画面完整且不发生畸变地显示在屏幕的中央。
在另一些实施方式中,当可调节装置为手动调节装置(如人工调节架或手动调节脚)时,可以实现对投影设备的投影位置以及投影方向的手动调整,在获取到针对投影设备的坐标调节参数以及角度调节参数后,可以根据坐标调节参数以及角度调节参数生成提示信息,如将投影设备向x轴正方向上调整移动5厘米,绕x轴逆时针方向旋转10度,并将调节参数以及提示信息投射至屏幕上显示,以提示用户根据提示信息对投影设备的投影位置及投影方向中的至少一种进行调节,以使投影设备所投射的画面完整且不发生畸变地显示在屏幕的中央。
在又一些实施方式中,可调节装置可以同时包含自动的可调节装置以及手动调节装置,此时,则可以实现对投影设备的投影位置以及投影方向的半自动挑中。具体地,可以根据坐标调节参数以及角度调节参数自动调整自动的可调节装置,以使实现自动对投影设备的投影方向进行调整,同时由根据坐标调节参数以及角度调节参数生成的提示信息,提示用户手动对手动调节装置进行调整,以实现手动对投影设备的投影位置进行调整;也可以对投影设备的投影位置进行自动调整,同时由用户手动对投影设备的投影方向进行调整,本实施例对此不作限制。
在本实施例中,通过计算坐标调节参数以及角度调节参数,并根据坐标调节参数以及角度调节参数对投影设备的投影位置和投影方向进行调整,可以更加准确地将投影设备调整至标准位置,进而使投影设备所投射的画面可以更完整且不发生畸变地显示在屏幕上,以及不需用户通过观察投射的画面与屏幕的对准程度,逐步对投影设备进行调节,减少了用户手动调整投影设备的耗时,提高了用户体验;并且,还可以将投影设备固定于可调节装置上,根据调节装置的不同,提供自动、手动及半自动多种对投影设备的调节方式,更好地满足了不同应用场景下对投影设备的调整需求。
请参照图6,图6为本申请一实施例提供的一种投影校准方法的流程示意图。下面将结合图6对本申请实施例提供的投影校准方法进行详细阐述。该投影校准方法可以包括以下步骤:
步骤S301:建立第一屏幕坐标系以及第二屏幕坐标系,所述第一屏幕坐标系是以 屏幕的横向方向为横轴方向建立得到,所述第二屏幕坐标系是基于投影设备投射至所述屏幕上的定位图像确定得到。
步骤S302:获取所述第一屏幕坐标系的横轴与所述第二屏幕坐标系的横轴的夹角,作为横轴夹角。
在本实施例中,步骤S301至步骤S302的具体实施方式可以参阅前述实施例中的内容,在此不再赘述。
步骤S303:获取所述投影设备在所述第一屏幕坐标系中的所述标准坐标信息。
请参阅图7,在一些实施方式中,步骤S303可以包括以下步骤:
步骤S3031:获取所述投影设备的横向偏移比例和纵向偏移比例。
请参阅图8,在一些实施方式中,步骤S3031可以包括以下步骤:
步骤S3031-1:获取显示平面的中心点于显示图像坐标系的像素坐标,作为中心点像素坐标,所述显示平面为与无穷远面平行的假想平面,所述无穷远面为过所述投影设备且与所述投影设备的主光轴垂直的平面,所述显示图像坐标系为空间光调制器上的坐标系。
步骤S3031-2:获取偏移原点在所述显示图像坐标系的像素坐标,作为偏移原点像素坐标,所述偏移原点为所述投影设备的主光轴与所述显示平面的交点;
在本实施例中,可以先获取投影设备的主光轴于显示平面(即DMD平面)的交点在显示图像坐标系中的像素坐标,即偏移原点像素坐标,如(3000,500),以及获取显示平面的中心点于显示图像坐标系的像素坐标,作为中心点像素坐标,请参阅图9,点B1即为上述偏移原点。其中,无穷远面为过投影设备且与投影设备的主光轴垂直的平面,DMD平面为与无穷远面平行的假想平面,无穷远面与DMD平面的位置关系可参阅图10所示,显示图像坐标系为空间光调制器上的坐标系,显示图像坐标系的x轴和y轴与DMD平面处于同一平面,显示图像坐标系可以以DMD平面的左下角的点为原点,当然,也可以以DMD平面中的其他点为原点,本实施例对此不作限制。
步骤S3031-3:根据所述偏移原点像素坐标的横坐标以及所述中心点像素坐标的横坐标,获取所述偏移原点在所述显示图像坐标系的横轴所在方向上相对所述中心点的偏移比例,作为横向偏移比例。
具体地,获取中心点像素坐标的横坐标与偏移原点像素坐标的横坐标的差值,获取差值与中心点像素坐标的横坐标的比值,作为上述横向偏离比例。
示例性地,请参阅图11,点B1为在DMD平面上的偏移原点,偏移原点B1的像素坐标为(3000,500),点P1为DMD平面上的中心点,中心点P1的像素坐标为(1920,1080);因此,可以获取到偏移原点像素坐标的横坐标为3000,中心点像素坐标的横坐标为1920,横向偏离比例=(1920-3000)÷1920=56.25%。
步骤S3031-4:根据所述偏移原点像素坐标的纵坐标以及所述中心点像素坐标的纵坐标,获取所述偏移原点在所述显示图像坐标系的纵轴所在方向上相对所述中心点的偏移比例,作为纵向偏移比例。
具体地,获取中心点像素坐标的纵坐标与偏移原点像素坐标的纵坐标的差值,获取差值与中心点像素坐标的纵坐标的比值,作为上述第二偏离比例。示例性地,仍参阅图11,可以获取到偏移原点像素坐标的纵坐标为500,第二像素坐标的横坐标为1080,offset-y=(1080-500)÷1080=53.7%。
步骤S3032:获取所述屏幕的中心点于所述第一屏幕坐标系中的坐标信息,作为中心坐标信息。
在本实施例中,以屏幕的左下角为原点建立第一屏幕坐标系为例,可以根据屏幕的尺寸,获取屏幕的中心点于第一屏幕坐标系中的坐标信息,作为中心坐标信息。具体地,获取屏幕的横向尺寸的一半,作为中心坐标信息的横坐标;获取屏幕的纵向尺寸的一半,作为中心坐标信息的纵坐标。
步骤S3033:基于所述横向偏移比例、所述纵向偏移比例以及所述中心坐标信息,获取所述投影设备在所述第一屏幕坐标中的所述标准坐标信息。
请参阅图12,在一些实施方式中,所述标准坐标信息包括横坐标值、纵坐标值以及竖坐标值,步骤S3033可以包括以下步骤:
步骤S3033-1:根据所述横向偏移比例以及所述中心坐标信息的横坐标,获取所述标准坐标信息的横坐标值。
在本实施例中,由于投影设备的主光轴与DMD平面的交点(即DMD平面上的偏移原点B1相对DMD平面的中心点的偏移程度,与投影设备的主光轴与屏幕的交点(即屏幕上的主光线交点B2)相对屏幕的中心点的偏移程度是相同的,因此,可以结合在DMD平面获取到的偏移程度以及屏幕的中心点的坐标信息,来计算屏幕上的offset原点在第一屏幕坐标系的标准坐标信息。
具体地,获取横向偏移比例与中心坐标信息的横坐标的乘积,作为横向偏移距离,获取中心坐标信息的横坐标与横向偏移距离的差值,作为标准坐标信息的横坐标值。
步骤S3033-2:根据所述纵向偏移比例以及所述中心坐标信息的纵坐标,获取所述标准坐标信息的纵坐标值。
具体地,获取纵向偏移比例与中心坐标信息的纵坐标的乘积,作为纵向偏移距离,获取中心坐标信息的纵坐标与纵向偏移距离的差值,作为标准坐标信息的纵坐标值。
步骤S3033-3:获取所述屏幕的宽度与所述投影设备的投射比的乘积,作为所述标准坐标信息的竖坐标值。
在本实施例中,屏幕的宽度即为前述屏幕的横向尺寸。
可选地,请参阅图13,屏幕的横向尺寸为L,纵向尺寸为H,投射比为T,点P为屏幕的中心点,点N为投影设备的标准位置,点N的坐标信息即为标准坐标信息为(X0,Y0,Z0),X0、Y0、Z0可以通过以下公式计算:
X0=0.5L-0.5L×横向偏移比例
Y0=0.5H-0.5H×纵向偏移比例
Z0=L×T
步骤S304:基于所述横轴夹角,获取所述投影设备在所述第一屏幕坐标系中的所述实际坐标信息。
请参阅图14,在一些实施方式中,步骤S304可以包括以下步骤:
步骤S3041:获取偏移原点在显示图像坐标系的像素坐标,作为偏移原点像素坐标;
在本实施例中,步骤S3041的具体实施方式可以参阅前述实施例中的内容,在此不再赘述。
步骤S3042:获取所述投影设备的主光轴与所述屏幕的交点,作为主光线交点;
步骤S3043:根据所述显示图像坐标系与所述第一屏幕坐标系之间的预设转换关系以及所述偏移原点像素坐标,确定所述主光线交点于所述第一屏幕坐标系的坐标系,作为目标坐标信息;
仍参阅图9,获取投影设备的主光轴与屏幕的交点B2,作为上述主光线交点,可 以根据显示图像坐标系与第一屏幕坐标系见的预设转换关系,将偏移原点B1的偏移原点像素坐标转换为主光线交点B2于第一屏幕坐标系上的坐标信息,作为目标坐标信息。
步骤S3044:基于所述横轴夹角以及所述目标坐标信息,获取所述投影设备在所述第一屏幕坐标系中的实际坐标信息。
请参阅图15,在一些实施方式中,步骤S3044可以包括以下步骤:
步骤S3044-1:获取无穷远面与所述屏幕所在平面之间的夹角,作为平面夹角。
仍参阅图9,由三角函数关系可知,DE=OB1·tan∠1+OB1·tan∠2,
Figure PCTCN2022136228-appb-000001
可以得到
Figure PCTCN2022136228-appb-000002
由于线段OE与屏幕平行,因此可以确定∠3与γ2为相等的同位角,
Figure PCTCN2022136228-appb-000003
基于此,线段DE的长度公式可以进一步表示为,
Figure PCTCN2022136228-appb-000004
Figure PCTCN2022136228-appb-000005
由此可见,若获取到线段DE的长度,以及线段OB1的长度,即可计算出平面夹角γ2的角度大小。
请参阅图16,在一些实施方式中,步骤S3044-1可以包括以下步骤:
步骤S3044-1-1:获取所述投影设备的投射比与横向分辨率的乘积,作为第二垂直距离,所述第二垂直距离表征所述投影设备到显示平面的垂直距离。
仍参阅图9,投影设备到DMD平面的垂直距离为线段OB1,因此,第二垂直距离即为线段OB1的长度,并且,投影设备的投射比T和横向分辨率R都是已知数值,因此,第二垂直距离OB1=R×T。
步骤S3044-1-2:获取目标点至显示平面上的辅助线的距离,作为第二目标距离,所述目标点至无穷远线的距离与所述投影设备至所述无穷远线的距离相等。
仍参阅图9,点D即为上述目标点,点G为上述无穷远线的横截面点,点E为上述显示平面的辅助线的横截面点,目标点D至显示平面上的辅助线的距离为线段DE的长度,电子设备可以自动获取到第二目标距离DE的长度。
步骤S3044-1-3:基于所述第二垂直距离以及所述第二目标距离,确定所述平面夹角。
基于此,在获取到第二垂直距离OB1和第二目标距离DE后,根据前述已获取到的公式
Figure PCTCN2022136228-appb-000006
即可计算出γ2的角度大小,即确定平面夹角γ2的角度大小。
步骤S3044-2:获取所述投影设备至所述屏幕的垂直距离,作为第一垂直距离。
请参阅图17,点A即为投影设备O于屏幕上的垂直映射点,投影设备至屏幕的第一垂直距离即为线段OA的长度。由三角函数关系可知,第一垂直距离OA=OG·sinγ2,其中,γ2为前述已获取到的平面夹角,线段OG即为投影设备到无穷远面上的无穷远线的垂直距离。
其中,获取线段OG的长度,可以通过获取虚拟定位图像的对角线与所述无穷远线的交点,作为45度交点,所述虚拟定位图像为所述显示平面上的虚拟正方形图像映射至屏幕上的虚拟梯形图像;获取所述投影设备于所述无穷远线上的垂直映射点,作为0度交点;获取所述45度交点与所述0度交点之间的距离,作为线段OG的长度。 请参阅图18,虚拟定位图像的两条对角线分别与无穷远线相较于点I和点K,点I和点K即为两个上述45度交点,点G即为上述0度交点,0度交点即为虚拟定位图像中所有竖边延长线的交点。由于虚拟定位图像是由虚拟正方形图像映射得到,正方形的对角线互相垂直,因此,虚拟定位图像的两条对角线也互相垂直且相等,进而可以确定线段OI和线段OK也垂直且相等,进而可以判定三角形OIK为等腰直角三角形,OG为等腰直角三角形的中垂线,因此,OG=IG=GK。因此,可以通过两点间的距离公式,获取45度交点(点I或点K)与0度交点(点G)之间的距离(IG或GK),即获取到了线段OG的长度。
步骤S3044-3:根据所述第一垂直距离以及所述平面夹角,获取所述主光线交点与所述投影设备于所述屏幕的垂直映射点之间的距离,作为第一目标距离。
进一步地,仍参阅图17,在获取到第一垂直距离OA和平面夹角γ2后,可以根据三角函数关系获取到垂直映射点A与主光线交点B2之间的距离,AB2=OA·tanγ2,即获取到第一目标距离AB2。
步骤S3044-4:基于所述目标坐标信息、所述第一目标距离、所述横轴夹角以及所述第一垂直距离,获取所述投影设备于所述第一屏幕坐标系中的实际坐标信息。
请参阅图19,在获取到点B2目标坐标信息、第一目标距离AB2以及横轴夹角γ3后,则可以根据图中的三角函数关系,确定点A在x轴方向上的坐标值以及点A在y轴方向上的坐标值。获取点A在x轴方向上的坐标值作为实际坐标信息中的横坐标值,获取点A在y轴方向上的坐标值作为实际坐标信息中的纵坐标值,获取投影设备至屏幕的垂直距离作为实际坐标信息中的竖坐标值。
具体地,实际坐标信息表示为(X1,Y1,Z1),点B2的坐标信息表示为(X3,Y3,Z3),其中,横坐标值X1、纵坐标值Y1以及竖坐标值Z1可以通过以下同时计算:
X1=X3+AB2·sinγ3
Y1=Y3-AB2·sinγ3
Z1=OG·sinγ2
步骤S305:基于所述横轴夹角,获取所述投影设备在所述第一屏幕坐标系中的所述实际角度信息。
请参阅图20,在一些实施方式中,步骤S305可以包括以下步骤:
步骤S3051:获取所述投影设备的横滚角。
在本实施例中,横滚角的参数化定义可以理解为,在DMD平面的横向偏移比例以及纵向偏移比例均为0的点显示一个正上方的箭头,将这个箭头在屏幕上的显示方向与第一屏幕坐标系的y轴之间的夹角作为横滚角。基于此,电子设备可以获取到投影设备在DMD平面的横向偏移比例以及纵向偏移比例均为0的点显示的箭头,并根据DMD坐标系与屏幕坐标系之间的预设转换关系,获取该显示的箭头转化至屏幕上的箭头的箭头显示方向,并获取该箭头显示方向与第一屏幕坐标系的y轴之间的夹角作为横滚角。
步骤S3052:基于所述横轴夹角以及平面夹角,确定所述投影设备的航向角和俯仰角。
请参阅图21,在一些实施方式中,步骤S3052可以包括以下内容:
获取主光线交点B2于所述第一屏幕坐标系上的横轴的垂直映射点,作为横轴映射点S,获取所述主光线交点B2于所述第一屏幕坐标系上的纵轴的垂直映射点,作为纵轴映射点R,基于所述投影设备O、所述投影设备于所述屏幕的垂直映射点A、所述 主光线交点B2、所述横轴映射点S以及所述纵轴映射点R,确定多个几何区域;基于所述横轴夹角、所述平面夹角以及所述多个几何区域,确定所述投影设备的航向角和俯仰角。
具体地,线段OR与线段OA的夹角为俯仰角α,线段OA与线段OS的夹角为航向角β。可以基于图21中的三角函数关系获取俯仰角α以及航向角β的度数,为便于计算,可以假设线段OA的长度为1,在直角三角形RAO中,∠OAR为直角,线段AR的长度即为线段OA的长度与俯仰角α的正切值的乘积,求AR长度的公式可以表示为,AR=OA·tanα=tanα,由于线段B2S的长度与线段AR的长度相等,因此,可以获取到线段B2S的长度为tanα;在直角三角形OAS中,∠OAS为直角,线段AS的长度即为线段OA的长度与航向角β的正切值的乘积,求AS的长度的公式可以表示为AS=OA·tanβ=tanβ;在直角三角形OAB2中,∠OAB2为直角,线段AB2的长度即为线段OA与夹角∠4的正切值的乘积,求线段AB2的长度的公式可以表示为,AB2=OA·tan∠4=tan∠4,在前述实施例中已获取到线段OA与线段OB2之间的夹角为平面夹角γ2,因此AB2=tanγ2。
进一步的,在直角三角形ASB2中,获取线段AB2的长度与夹角∠5的正弦值的乘积,作为线段B2S的长度,即tanα=tanγ2·sin∠5,由于夹角
Figure PCTCN2022136228-appb-000007
因此,
Figure PCTCN2022136228-appb-000008
Figure PCTCN2022136228-appb-000009
获取线段AB2的长度与夹角∠5的余弦值的乘积,作为线段AS的长度,即
Figure PCTCN2022136228-appb-000010
如此,在前述已获取到第一夹角γ3和第二夹角γ2的情况下,可以获取到俯仰角α以及航向角β的角度。
步骤S3053:获取所述横滚角、所述航向角以及所述俯仰角,作为所述投影设备的所述实际角度信息。
步骤S306:根据实际坐标信息、标准坐标信息、实际角度信息以及标准角度信息,确定投影调节参数。
步骤S307:根据所述投影调节参数,对所述投影设备的投影位置及投影方向中的至少一种进行调节,以使所述投影设备所投射的画面完整且不发生畸变地显示在所述屏幕上。
在本实施例中,步骤S306至步骤S307的具体实施方式可以参阅前述实施例中的内容,在此不再赘述。
在本实施例中,通过计算坐标调节参数以及角度调节参数,并根据坐标调节参数以及角度调节参数对投影设备的投影位置和投影方向进行调整,可以更加准确地将投影设备调整至标准位置,进而使投影设备所投射的画面可以更完整且不发生畸变地显示在屏幕上,以及不需用户通过观察投射的画面与屏幕的对准程度,逐步对投影设备进行调节,减少了用户手动调整投影设备的耗时,提高了用户体验;并且,还可以将投影设备固定于可调节装置上,根据调节装置的不同,提供自动、手动及半自动多种对投影设备的调节方式,更好地满足了不同应用场景下对投影设备的调整需求。
请参照图22,其中示出了本申请一实施例提供的一种投影校准装置400的结构框图。该装置400可以包括:坐标系建立模块410、夹角获取模块420、实际位置获取模 块430、标准位置获取模块440、调节参数确定模块450和调节模块460。
坐标系建立模块410用于建立第一屏幕坐标系以及第二屏幕坐标系,所述第一屏幕坐标系是以屏幕的横向方向为横轴方向建立得到,所述第二屏幕坐标系是基于投影设备投射至所述屏幕上的定位图像确定得到。
夹角获取模块420用于获取所述第一屏幕坐标系的横轴与所述第二屏幕坐标系的横轴的夹角,作为横轴夹角。
实际位置获取模块430用于基于所述横轴夹角,获取所述投影设备在所述第一屏幕坐标系中的实际位置信息,所述实际位置信息包括实际坐标信息和/或实际角度信息。
标准位置获取模块440用于获取所述投影设备在所述第一屏幕坐标系中的标准位置信息,所述标准位置信息包括标准坐标信息和/或标准角度信息。
调节参数确定模块450用于根据所述实际位置信息以及所述标准位置信息,确定投影调节参数。
调节模块460用于根据所述投影调节参数,对所述投影设备的投影位置及投影方向中的至少一种进行调节,以使所述投影设备所投射的画面完整且不发生畸变地显示在所述屏幕上。
在一些实施方式中,坐标系建立模块410可以具体用于:获取所述屏幕上的定位图像,所述定位图像为显示平面上的正方形图像投影至所述屏幕上的不规则四边形图像;获取所述不规则四边形图像的两组对边延长线的两个交点的连线所在的直线,作为无穷远线;以平行于所述无穷远线的方向为X轴,以及以所述屏幕所在平面上垂直于所述X轴的方向为Y轴,建立所述第二屏幕坐标系。
在一些实施方式中,标准位置获取模块440可以包括:偏移比例获取单元、中心坐标获取单元以及标准坐标获取单元。其中,偏移比例获取单元可以用于获取所述投影设备的横向偏移比例和纵向偏移比例。中心坐标获取单元可以用于获取所述屏幕的中心点于所述第一屏幕坐标系中的坐标信息,作为中心坐标信息。标准坐标获取单元可以用于基于所述横向偏移比例、所述纵向偏移比例以及所述中心坐标信息,获取所述投影设备在所述第一屏幕坐标中的所述标准坐标信息。
在该方式下,偏移比例获取单元可以具体用于:获取显示平面的中心点于显示图像坐标系的像素坐标,作为中心点像素坐标,所述显示平面为与无穷远面平行的假想平面,所述无穷远面为过所述投影设备且与所述投影设备的主光轴垂直的平面,所述显示图像坐标系为空间光调制器上的坐标系;获取偏移原点在所述显示图像坐标系的像素坐标,作为偏移原点像素坐标,所述偏移原点为所述投影设备的主光轴与所述显示平面的交点;根据所述偏移原点像素坐标的横坐标以及所述中心点像素坐标的横坐标,获取所述偏移原点在所述显示图像坐标系的横轴所在方向上相对所述中心点的偏移比例,作为横向偏移比例;根据所述偏移原点像素坐标的纵坐标以及所述中心点像素坐标的纵坐标,获取所述偏移原点在所述显示图像坐标系的纵轴所在方向上相对所述中心点的偏移比例,作为纵向偏移比例。
在该方式下,所述标准坐标信息包括横坐标值、纵坐标值以及竖坐标值,标准坐标获取单元可以具体用于:根据所述横向偏移比例以及所述中心坐标信息的横坐标,获取所述标准坐标信息的横坐标值;根据所述纵向偏移比例以及所述中心坐标信息的纵坐标,获取所述标准坐标信息的纵坐标值;获取所述屏幕的宽度与所述投影设备的投射比的乘积,作为所述标准坐标信息的竖坐标值。
在一些实施方式中,实际位置获取模块430可以包括:偏移原点坐标获取单元、 主光线交点获取单元、目标坐标获取单元以及实际坐标获取单元。其中,偏移原点坐标获取单元可以用于获取偏移原点在显示图像坐标系的像素坐标,作为偏移原点像素坐标。主光线交点获取单元可以用于获取所述投影设备的主光轴与所述屏幕的交点,作为主光线交点。目标坐标获取单元可以用于根据所述显示图像坐标系与所述第一屏幕坐标系之间的预设转换关系以及所述偏移原点像素坐标,确定所述主光线交点于所述第一屏幕坐标系的坐标系,作为目标坐标信息。实际坐标获取单元可以用于基于所述横轴夹角以及所述目标坐标信息,获取所述投影设备在所述第一屏幕坐标系中的实际坐标信息。
在一些实施方式中,实际坐标获取单元可以具体用于:获取无穷远面与所述屏幕所在平面之间的夹角,作为平面夹角;获取所述投影设备至所述屏幕的垂直距离,作为第一垂直距离;根据所述第一垂直距离以及所述平面夹角,获取所述主光线交点与所述投影设备于所述屏幕的垂直映射点之间的距离,作为第一目标距离;基于所述目标坐标信息、所述第一目标距离、所述横轴夹角以及所述第一垂直距离,获取所述投影设备于所述第一屏幕坐标系中的实际坐标信息。
在该方式下,实际坐标获取单元还可以用于:获取所述投影设备的投射比与横向分辨率的乘积,作为第二垂直距离,所述第二垂直距离表征所述投影设备到显示平面的垂直距离;获取目标点至显示平面上的辅助线的距离,作为第二目标距离,所述目标点至无穷远线的距离与所述投影设备至所述无穷远线的距离相等;基于所述第二垂直距离以及所述第二目标距离,确定所述平面夹角。
在一些实施方式中,实际位置获取模块430可以包括:实际角度获取单元。其中,实际角度获取单元可以具体用于:获取所述投影设备的横滚角;基于所述横轴夹角以及平面夹角,确定所述投影设备的航向角和俯仰角;获取所述横滚角、所述航向角以及所述俯仰角,作为所述投影设备的所述实际角度信息。
在该方式下,实际角度获取单元还可以具体用于:根据显示图像坐标系与第一屏幕坐标系之间的预设转换关系,获取所述投影设备在显示平面上的箭头映射至屏幕上的箭头的方向,作为箭头显示方向;获取所述箭头显示方向与所述第一屏幕坐标系的Y轴之间的夹角,作为所述投影设备的横滚角。
在该方式下,实际角度获取单元还可以具体用于:获取主光线交点于所述第一屏幕坐标系上的横轴的垂直映射点,作为横轴映射点;获取所述主光线交点于所述第一屏幕坐标系上的纵轴的垂直映射点,作为纵轴映射点;基于所述投影设备、所述投影设备于所述屏幕的垂直映射点、所述主光线交点、所述横轴映射点以及所述纵轴映射点,确定多个几何区域;基于所述横轴夹角、所述平面夹角以及所述多个几何区域,确定所述投影设备的航向角和俯仰角。
在一些实施方式中,调节参数确定模块450可以具体用于:基于所述实际坐标信息以及标准坐标信息,确定所述投影设备的坐标调节参数;基于所述实际角度信息以及所述标准角度信息,确定所述投影设备的角度调节参数;获取所述坐标调节参数以及所述角度调节参数,作为所述投影调节参数。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述装置和模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,模块相互之间的耦合可以是电性,机械或其它形式的耦合。
另外,在本申请各个实施例中的各功能模块可以集成在一个处理模块中,也可以 是各个模块单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
综上所述,本申请实施例提供的方案中,通过计算坐标调节参数以及角度调节参数,并根据坐标调节参数以及角度调节参数对投影设备的投影位置和投影方向进行调整,可以更加准确地将投影设备调整至标准位置,进而使投影设备所投射的画面可以更完整且不发生畸变地显示在屏幕上,以及不需用户通过观察投射的画面与屏幕的对准程度,逐步对投影设备进行调节,减少了用户手动调整投影设备的耗时,提高了用户体验;并且,还可以将投影设备固定于可调节装置上,根据调节装置的不同,提供自动、手动及半自动多种对投影设备的调节方式,更好地满足了不同应用场景下对投影设备的调整需求。
下面将结合图对本申请提供的一种电子设备进行说明。
参照图23,图23示出了本申请实施例提供的一种电子设备500的结构框图,本申请实施例提供的投影校准方法可以由该电子设备500执行。其中,电子设备500可以是投影机、智能手机或专用投影校准仪等能够运行应用程序的设备。
本申请实施例中的电子设备500可以包括一个或多个如下部件:处理器501、存储器502、以及一个或多个应用程序,其中一个或多个应用程序可以被存储在存储器502中并被配置为由一个或多个处理器501执行,一个或多个程序配置用于执行如前述方法实施例所描述的方法。
处理器501可以包括一个或者多个处理核。处理器501利用各种接口和线路连接整个电子设备500内的各个部分,通过运行或执行存储在存储器502内的指令、程序、代码集或指令集,以及调用存储在存储器502内的数据,执行电子设备500的各种功能和处理数据。可选地,处理器501可以采用数字信号处理(Digital Signal Processing,DSP)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、可编程逻辑阵列(Programmable Logic Array,PLA)中的至少一种硬件形式来实现。处理器501可集成中央处理器(Central Processing Unit,CPU)、图像处理器(Graphics Processing Unit,GPU)和调制解调器等中的一种或几种的组合。其中,CPU主要处理操作系统、用户界面和应用程序等;GPU用于负责显示内容的渲染和绘制;调制解调器用于处理无线通信。可以理解的是,上述调制解调器也可以集成到处理器501中,单独通过一块通信芯片进行实现。
存储器502可以包括随机存储器(Random Access Memory,RAM),也可以包括只读存储器(Read-Only Memory)。存储器502可用于存储指令、程序、代码、代码集或指令集。存储器502可包括存储程序区和存储数据区,其中,存储程序区可存储用于实现操作系统的指令、用于实现至少一个功能的指令(比如触控功能、声音播放功能、图像播放功能等)、用于实现下述各个方法实施例的指令等。存储数据区还可以存储电子设备500在使用中所创建的数据(比如上述的各种对应关系)等。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述装置和模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,所显示或讨论的模块相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或模块的间接耦合或通信连接,可以是电性,机械或其它的形式。
另外,在本申请各个实施例中的各功能模块可以集成在一个处理模块中,也可以是各个模块单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成 的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
请参考图24,其示出了本申请实施例提供的一种计算机可读存储介质的结构框图。该计算机可读介质600中存储有程序代码,所述程序代码可被处理器调用执行上述方法实施例中所描述的方法。
计算机可读存储介质600可以是诸如闪存、EEPROM(电可擦除可编程只读存储器)、EPROM、硬盘或者ROM之类的电子存储器。可选地,计算机可读存储介质600包括非瞬时性计算机可读介质(non-transitory computer-readable storage medium)。计算机可读存储介质600具有执行上述方法中的任何方法步骤的程序代码610的存储空间。这些程序代码可以从一个或者多个计算机程序产品中读出或者写入到这一个或者多个计算机程序产品中。程序代码610可以例如以适当形式进行压缩。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不驱使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (15)

  1. 一种投影校准方法,其特征在于,包括:
    建立第一屏幕坐标系以及第二屏幕坐标系,所述第一屏幕坐标系是以屏幕的横向方向为横轴方向建立得到,所述第二屏幕坐标系是基于投影设备投射至所述屏幕上的定位图像确定得到;
    获取所述第一屏幕坐标系的横轴与所述第二屏幕坐标系的横轴的夹角,作为横轴夹角;
    基于所述横轴夹角,获取所述投影设备在所述第一屏幕坐标系中的实际位置信息,所述实际位置信息包括实际坐标信息和/或实际角度信息;
    获取所述投影设备在所述第一屏幕坐标系中的标准位置信息,所述标准位置信息包括标准坐标信息和/或标准角度信息;
    根据所述实际位置信息以及所述标准位置信息,确定投影调节参数;
    根据所述投影调节参数,对所述投影设备的投影位置及投影方向中的至少一种进行调节,以使所述投影设备所投射的画面完整且不发生畸变地显示在所述屏幕上。
  2. 根据权利要求1所述的方法,其特征在于,基于所述投影设备投射至所述屏幕上的定位图像建立所述第二屏幕坐标系,包括:
    获取所述屏幕上的定位图像,所述定位图像为显示平面上的正方形图像投影至所述屏幕上的不规则四边形图像;
    获取所述不规则四边形图像的两组对边延长线的两个交点的连线所在的直线,作为无穷远线;
    以平行于所述无穷远线的方向为X轴,以及以所述屏幕所在平面上垂直于所述X轴的方向为Y轴,建立所述第二屏幕坐标系。
  3. 根据权利要求1所述的方法,其特征在于,获取所述投影设备在所述第一屏幕坐标系中的所述标准坐标信息,包括:
    获取所述投影设备的横向偏移比例和纵向偏移比例;
    获取所述屏幕的中心点于所述第一屏幕坐标系中的坐标信息,作为中心坐标信息;
    基于所述横向偏移比例、所述纵向偏移比例以及所述中心坐标信息,获取所述投影设备在所述第一屏幕坐标中的所述标准坐标信息。
  4. 根据权利要求3所述的方法,所述获取所述投影设备的横向偏移比例和纵向偏移比例,包括:
    获取显示平面的中心点于显示图像坐标系的像素坐标,作为中心点像素坐标,所述显示平面为与无穷远面平行的假想平面,所述无穷远面为过所述投影设备且与所述投影设备的主光轴垂直的平面,所述显示图像坐标系为空间光调制器上的坐标系;
    获取偏移原点在所述显示图像坐标系的像素坐标,作为偏移原点像素坐标,所述偏移原点为所述投影设备的主光轴与所述显示平面的交点;
    根据所述偏移原点像素坐标的横坐标以及所述中心点像素坐标的横坐标,获取所述偏移原点在所述显示图像坐标系的横轴所在方向上相对所述中心点的偏移比例,作为横向偏移比例;
    根据所述偏移原点像素坐标的纵坐标以及所述中心点像素坐标的纵坐标,获取所述偏移原点在所述显示图像坐标系的纵轴所在方向上相对所述中心点的偏移比例,作 为纵向偏移比例。
  5. 根据权利要求3所述的方法,其特征在于,所述标准坐标信息包括横坐标值、纵坐标值以及竖坐标值,所述基于所述横向偏移比例、所述纵向偏移比例以及所述中心坐标信息,获取所述投影设备在所述第一屏幕坐标中的所述标准坐标信息,包括:
    根据所述横向偏移比例以及所述中心坐标信息的横坐标,获取所述标准坐标信息的横坐标值;
    根据所述纵向偏移比例以及所述中心坐标信息的纵坐标,获取所述标准坐标信息的纵坐标值;
    获取所述屏幕的宽度与所述投影设备的投射比的乘积,作为所述标准坐标信息的竖坐标值。
  6. 根据权利要求1所述的方法,其特征在于,基于所述横轴夹角,获取所述投影设备在所述第一屏幕坐标系中的所述实际坐标信息,包括:
    获取偏移原点在显示图像坐标系的像素坐标,作为偏移原点像素坐标;
    获取所述投影设备的主光轴与所述屏幕的交点,作为主光线交点;
    根据所述显示图像坐标系与所述第一屏幕坐标系之间的预设转换关系以及所述偏移原点像素坐标,确定所述主光线交点于所述第一屏幕坐标系的坐标系,作为目标坐标信息;
    基于所述横轴夹角以及所述目标坐标信息,获取所述投影设备在所述第一屏幕坐标系中的实际坐标信息。
  7. 根据权利要求6所述的方法,其特征在于,所述基于所述横轴夹角以及所述目标坐标信息,获取所述投影设备在所述第一屏幕坐标系中的实际坐标信息,包括:
    获取无穷远面与所述屏幕所在平面之间的夹角,作为平面夹角;
    获取所述投影设备至所述屏幕的垂直距离,作为第一垂直距离;
    根据所述第一垂直距离以及所述平面夹角,获取所述主光线交点与所述投影设备于所述屏幕的垂直映射点之间的距离,作为第一目标距离;
    基于所述目标坐标信息、所述第一目标距离、所述横轴夹角以及所述第一垂直距离,获取所述投影设备于所述第一屏幕坐标系中的实际坐标信息。
  8. 根据权利要求7所述的方法,其特征在于,所述获取无穷远面与所述屏幕所在平面之间的夹角,作为平面夹角,包括:
    获取所述投影设备的投射比与横向分辨率的乘积,作为第二垂直距离,所述第二垂直距离表征所述投影设备到显示平面的垂直距离;
    获取目标点至显示平面上的辅助线的距离,作为第二目标距离,所述目标点至无穷远线的距离与所述投影设备至所述无穷远线的距离相等;
    基于所述第二垂直距离以及所述第二目标距离,确定所述平面夹角。
  9. 根据权利要求1所述的方法,其特征在于,基于所述横轴夹角,获取所述投影设备在所述第一屏幕坐标系中的所述实际角度信息,包括:
    获取所述投影设备的横滚角;
    基于所述横轴夹角以及平面夹角,确定所述投影设备的航向角和俯仰角;
    获取所述横滚角、所述航向角以及所述俯仰角,作为所述投影设备的所述实际角度信息。
  10. 根据权利要求9所述的方法,其特征在于,所述获取所述投影设备的横滚角,包括:
    根据显示图像坐标系与第一屏幕坐标系之间的预设转换关系,获取所述投影设备在显示平面上的箭头映射至屏幕上的箭头的方向,作为箭头显示方向;
    获取所述箭头显示方向与所述第一屏幕坐标系的Y轴之间的夹角,作为所述投影设备的横滚角。
  11. 根据权利要求9所述的方法,其特征在于,所述基于所述横轴夹角以及平面夹角,确定所述投影设备的航向角和俯仰角,包括:
    获取主光线交点于所述第一屏幕坐标系上的横轴的垂直映射点,作为横轴映射点;
    获取所述主光线交点于所述第一屏幕坐标系上的纵轴的垂直映射点,作为纵轴映射点;
    基于所述投影设备、所述投影设备于所述屏幕的垂直映射点、所述主光线交点、所述横轴映射点以及所述纵轴映射点,确定多个几何区域;
    基于所述横轴夹角、所述平面夹角以及所述多个几何区域,确定所述投影设备的航向角和俯仰角。
  12. 根据权利要求1-11任一项所述的方法,其特征在于,所述根据所述实际位置信息以及所述标准位置信息,确定投影调节参数,包括:
    基于所述实际坐标信息以及标准坐标信息,确定所述投影设备的坐标调节参数;
    基于所述实际角度信息以及所述标准角度信息,确定所述投影设备的角度调节参数;
    获取所述坐标调节参数以及所述角度调节参数,作为所述投影调节参数。
  13. 一种投影设备的校准装置,其特征在于,包括:
    坐标系建立模块,用于建立第一屏幕坐标系以及第二屏幕坐标系,所述第一屏幕坐标系是以屏幕的横向方向为横轴方向建立得到,所述第二屏幕坐标系是基于投影设备投射至所述屏幕上的定位图像确定得到;
    夹角获取模块,用于获取所述第一屏幕坐标系的横轴与所述第二屏幕坐标系的横轴的夹角,作为横轴夹角;
    实际位置获取模块,用于基于所述横轴夹角,获取所述投影设备在所述第一屏幕坐标系中的实际位置信息,所述实际位置信息包括实际坐标信息和/或实际角度信息;
    标准位置获取模块,用于获取所述投影设备在所述第一屏幕坐标系中的标准位置信息,所述标准位置信息包括标准坐标信息和/或标准角度信息;
    调节参数确定模块,用于根据所述实际位置信息以及所述标准位置信息,确定投影调节参数;
    调节模块,用于根据所述投影调节参数,对所述投影设备的投影位置及投影方向中的至少一种进行调节,以使所述投影设备所投射的画面完整且不发生畸变地显示在所述屏幕上。
  14. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1至12中任一项所述的方法。
  15. 一种电子设备,其特征在于,包括:
    一个或多个处理器;
    存储装置,用于存储一个或多个程序,当所述一个或多个程序被所述一个或多个处理器执行时,使得所述一个或多个处理器实现如权利要求1至12中任一项所述的方法。
PCT/CN2022/136228 2021-12-31 2022-12-02 投影校准方法、装置、电子设备及存储介质 WO2023124777A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111672861.0A CN116418958A (zh) 2021-12-31 2021-12-31 投影校准方法、装置、电子设备及存储介质
CN202111672861.0 2021-12-31

Publications (1)

Publication Number Publication Date
WO2023124777A1 true WO2023124777A1 (zh) 2023-07-06

Family

ID=86997607

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/136228 WO2023124777A1 (zh) 2021-12-31 2022-12-02 投影校准方法、装置、电子设备及存储介质

Country Status (2)

Country Link
CN (1) CN116418958A (zh)
WO (1) WO2023124777A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116993991A (zh) * 2023-09-25 2023-11-03 深圳市精益模具有限公司 一种投影画面清晰度的智能化综合检测方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106937101A (zh) * 2017-03-22 2017-07-07 成都市极米科技有限公司 投影区域校正方法及系统
CN107396075A (zh) * 2017-08-08 2017-11-24 海信集团有限公司 一种投影图像校正信息的生成方法及生成装置
CN108227348A (zh) * 2018-01-24 2018-06-29 长春华懋科技有限公司 基于高精度视觉云台的几何畸变自动校正方法
CN108628487A (zh) * 2017-03-24 2018-10-09 西安中兴通讯终端科技有限公司 一种位置信息确定方法、投影设备和计算机存储介质
US20200366877A1 (en) * 2019-05-13 2020-11-19 Coretronic Corporation Projection system, projection apparatus and calibrating method for displayed image thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106937101A (zh) * 2017-03-22 2017-07-07 成都市极米科技有限公司 投影区域校正方法及系统
CN108628487A (zh) * 2017-03-24 2018-10-09 西安中兴通讯终端科技有限公司 一种位置信息确定方法、投影设备和计算机存储介质
CN107396075A (zh) * 2017-08-08 2017-11-24 海信集团有限公司 一种投影图像校正信息的生成方法及生成装置
CN108227348A (zh) * 2018-01-24 2018-06-29 长春华懋科技有限公司 基于高精度视觉云台的几何畸变自动校正方法
US20200366877A1 (en) * 2019-05-13 2020-11-19 Coretronic Corporation Projection system, projection apparatus and calibrating method for displayed image thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116993991A (zh) * 2023-09-25 2023-11-03 深圳市精益模具有限公司 一种投影画面清晰度的智能化综合检测方法及系统
CN116993991B (zh) * 2023-09-25 2023-12-01 深圳市精益模具有限公司 一种投影画面清晰度的智能化综合检测方法及系统

Also Published As

Publication number Publication date
CN116418958A (zh) 2023-07-11

Similar Documents

Publication Publication Date Title
WO2021031781A1 (zh) 投影图像校准方法、装置及投影设备
WO2018077071A1 (zh) 一种全景图像的生成方法及装置
US10855916B2 (en) Image processing apparatus, image capturing system, image processing method, and recording medium
JP2019532531A (ja) パノラマ画像圧縮方法および装置
WO2023124777A1 (zh) 投影校准方法、装置、电子设备及存储介质
WO2021208486A1 (zh) 一种相机坐标变换方法、终端以及存储介质
WO2017113533A1 (zh) 一种全景拍摄处理方法及装置
US20190289206A1 (en) Image processing apparatus, image capturing system, image processing method, and recording medium
JP2019164782A (ja) 画像処理装置、撮影システム、画像処理方法、及びプログラム
CN111833243B (zh) 一种数据展示方法、移动终端和存储介质
JP2019075766A (ja) 画像処理装置、撮影システム、画像処理方法、及びプログラム
WO2023246863A1 (zh) 3d图像的生成方法、装置及计算机设备
TWI615808B (zh) 全景即時影像處理方法
US11985294B2 (en) Information processing apparatus, information processing method, and program
WO2022141781A1 (zh) 一种播放全景视频的方法、系统、存储介质及播放设备
JP6719596B2 (ja) 画像生成装置、及び画像表示制御装置
JP2018206205A (ja) 魚眼画像補正方法、魚眼画像補正プログラム及び魚眼画像補正装置。
JP2010272078A (ja) 電子情報ボードシステム、電子情報ボード制御装置およびカーソル制御方法
JP2019164783A (ja) 画像処理装置、撮影システム、画像処理方法、及びプログラム
CN112770095B (zh) 全景投影方法、装置及电子设备
WO2018201663A1 (zh) 一种立体图形显示的方法、装置及设备
CN112308767B (zh) 一种数据展示方法、装置、存储介质以及电子设备
JP6472864B1 (ja) 画像配信システム、及び配信画像生成方法
CN112181230A (zh) 一种数据展示方法、装置以及电子设备
TWI811162B (zh) 影像資料轉換裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22914032

Country of ref document: EP

Kind code of ref document: A1