WO2023124430A1 - 屏幕发声的控制方法、电子设备、计算机可读存储介质 - Google Patents

屏幕发声的控制方法、电子设备、计算机可读存储介质 Download PDF

Info

Publication number
WO2023124430A1
WO2023124430A1 PCT/CN2022/126093 CN2022126093W WO2023124430A1 WO 2023124430 A1 WO2023124430 A1 WO 2023124430A1 CN 2022126093 W CN2022126093 W CN 2022126093W WO 2023124430 A1 WO2023124430 A1 WO 2023124430A1
Authority
WO
WIPO (PCT)
Prior art keywords
screen
sound
user
relative orientation
controlling
Prior art date
Application number
PCT/CN2022/126093
Other languages
English (en)
French (fr)
Inventor
张婧靥
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2023124430A1 publication Critical patent/WO2023124430A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/16Sound input; Sound output
    • G06F3/165Management of the audio stream, e.g. setting of volume, audio stream path
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/16Sound input; Sound output
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/16Sound input; Sound output
    • G06F3/162Interface to dedicated audio devices, e.g. audio drivers, interface to CODECs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • Embodiments of the present disclosure relate to the technical field of sound generation on a terminal screen, and in particular, to a method for controlling sound generation on a screen, an electronic device, and a computer-readable storage medium.
  • Embodiments of the present disclosure provide a screen sound control method, an electronic device, and a computer-readable storage medium.
  • an embodiment of the present disclosure provides a method for controlling sound from a screen, including: determining the relative orientation between the user and the screen when the screen needs to emit sound; In the case of directly in front, determine the vertical distance between the user's ear and the screen; and in the relative orientation, the user is not located directly in front of the screen, or the vertical distance is greater than the first In the case of a preset threshold, control the first part of the screen to perform directional sounding according to the relative orientation.
  • an embodiment of the present disclosure provides an electronic device, including: at least one processor; a memory, at least one program is stored in the memory, and when the at least one program is executed by the at least one processor, any of the above-mentioned A method for controlling sound from a screen.
  • an embodiment of the present disclosure provides a computer-readable storage medium, on which a computer program is stored, and when the computer program is executed by a processor, any one of the above methods for controlling sound on the screen is implemented.
  • FIG. 1 is a flowchart of a method for controlling sound on the screen provided by an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of beamforming performed by a base station in an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of detecting the vertical distance between the ear and the screen in an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of a state in which the ear is suspended above the screen in an embodiment of the present disclosure
  • FIG. 5 is a schematic diagram of distribution of 12 exciters in a terminal in an embodiment of the present disclosure
  • FIG. 6 is a schematic diagram of the relative orientation between the user and the screen in the embodiment of the present disclosure, where the user is biased toward the top of the screen;
  • FIG. 7 is a schematic diagram of the transmission direction of the acoustic wave signal in an embodiment of the present disclosure.
  • FIG. 8 is a flow chart of a method for controlling sound on the screen provided by an example of an embodiment of the present disclosure.
  • FIG. 9 is a block diagram of a device for controlling sound on screen according to another embodiment of the present disclosure.
  • the screen sound technology is to vibrate the screen of the mobile phone through an exciter, and use the vibration of the mobile phone screen to produce sound, which can avoid the "notch" opening required for the earpiece speaker, but because the vibration of the screen produces sound for the vibration of the entire screen, the sound transmission range It is relatively wide, and the sound leakage is serious; and if the volume of the sound on the screen is lowered, it may lead to poor sound transmission and inability to hear the content of the call.
  • FIG. 1 is a flow chart of a method for controlling sound on a screen provided by an embodiment of the present disclosure.
  • an embodiment of the present disclosure provides a method for controlling sound from a screen.
  • the method can be applied to any terminal capable of making sound through the screen.
  • the method includes steps 100 to 102 .
  • Step 100 Determine the relative orientation between the user and the screen when sound needs to be emitted through the screen.
  • the embodiment of the present disclosure does not limit the situation where sound needs to be made through the screen. For example, needing to make a sound through the screen means that you are currently in a call state, and no earphone connection is detected, and the voice playback function is not turned on.
  • determining the relative orientation between the user and the screen includes: respectively receiving the first millimeter-wave signals sent by the base station in different directions; and determining the relative orientation according to the received first millimeter-wave signals in different directions. position.
  • At least one base station uses an antenna array formed by at least one millimeter-wave antenna to perform hybrid beamforming, and the base station performs hybrid beamforming through a baseband precoding module.
  • the first millimeter-wave signal is received, the first millimeter-wave signal is subjected to inverse processing of analog domain beamforming through the second radio frequency link module, and the inverse processing of digital domain beamforming is performed through baseband combination.
  • the first millimeter-wave signal has high directivity, and the signal strength of the first millimeter-wave signal in the direction of the main lobe is much greater than the signal strength in the direction of the side lobe, that is, the first millimeter-wave signal points to the direction of the main lobe, That is, the direction with the greatest signal strength.
  • the terminal can receive the first millimeter wave signal in the direction of the main lobe to determine whether there is an obstruction in the direction of the main lobe.
  • the relative orientation between the user and the screen is the direction of the main lobe; when it is determined that there is no obstruction in the direction of the main lobe, it is determined that the relative orientation between the user and the screen is not the direction of the main lobe.
  • the base station will continuously send the first millimeter wave signal in different directions, and the terminal does not need to continuously receive the first millimeter wave signal in different directions, but needs to determine the user In the case of a relative orientation to the screen, first millimeter wave signals in different directions are received.
  • the relative orientation between the user and the screen may be determined according to the signal reception strength of the first millimeter wave signal in different directions, that is, the relative orientation between the user and the screen is determined according to the first millimeter wave signal with the smallest signal reception strength.
  • the main lobe direction of the millimeter-wave signal is calculated, where the main lobe direction refers to the direction with the highest signal strength when the base station performs beamforming.
  • Step 101 when the relative orientation is that the user is located directly in front of the screen, determine the vertical distance between the user's ear and the screen.
  • the user being located directly in front of the screen means that the user's head is located directly in front of the screen.
  • determining the vertical distance between the user's ear and the screen includes: sending a second millimeter wave signal; receiving an echo signal corresponding to the second millimeter wave signal; determining the distance between the user's ear and the screen according to the echo signal the vertical distance between them.
  • the echo signal corresponding to the second millimeter wave signal refers to a signal reflected back when the second millimeter wave signal encounters an obstacle.
  • the second millimeter wave signal when transmitting the second millimeter wave signal, it may be transmitted through at least one antenna, and each antenna may transmit one second millimeter wave signal, or may transmit two or more second millimeter wave signals.
  • the second millimeter wave signal when sending the second millimeter wave signal, may be sent along a direction perpendicular to the screen, or may be sent along a direction forming an angle with the screen.
  • d1 is the vertical distance between the reflection point and the screen
  • f is the frequency of the intermediate frequency signal
  • c is the speed of sound
  • T c is the period of the second millimeter wave signal
  • B is the bandwidth of the second millimeter wave signal.
  • is the angle between the sending direction of the second millimeter wave signal and the screen
  • d 1 is the vertical distance between the reflection point and the screen
  • f is the frequency of the intermediate frequency signal
  • c is the speed of sound
  • Tc is the second millimeter
  • B is the bandwidth of the second millimeter wave signal.
  • the vertical distance between a reflection point and the screen can be calculated based on the second millimeter wave signal and the corresponding echo signal, regardless of the sending direction of the second millimeter wave signal Both can calculate the vertical distance between the reflection point and the screen.
  • the vertical distance between the reflection point with the smallest distance and the screen can be used as the vertical distance between the ear and the screen by detecting the vertical distance between multiple reflection points and the screen.
  • the vertical distance between the screens as shown in Figure 3, during a short-distance call, the user's side face is close to the screen, and the ear is the closest to the screen. Therefore, the position closest to the screen is the position of the ear, as shown in the figure The d3 in 3 is the vertical distance between the ear and the screen.
  • a manner of detecting the vertical distance between the same reflection point and the screen multiple times and then taking an average value may be used.
  • Step 102 When the relative orientation is that the user is not directly in front of the screen, or the vertical distance is greater than a first preset threshold, control the first part of the screen to make directional sound according to the relative orientation.
  • controlling the first part of the screen to perform directional sounding according to the relative orientation includes: controlling the exciter corresponding to the first part of the screen to work according to the relative orientation, so that the exciter corresponding to the first part of the screen drives the first part of the screen to Make a sound in the direction of the relative bearing.
  • the actuator corresponding to the first part of the screen can be selected according to actual needs, for example, the one whose projection position on the plane where the screen is located is the closest to the projection position of the user on the screen where the screen is located can be selected.
  • An exciter, or at least one exciter capable of directional sounding in the relative azimuth direction where the user is located can also be selected.
  • at least two actuators located on the same straight line can be selected, and in some cases, the vertical distance between the user and the straight line where the at least two actuators are located can also be minimized.
  • the first part of the control screen when controlling the first part of the screen to make directional sound according to the relative azimuth, the first part of the control screen is directional to make sound in the direction of the phase and azimuth, so that the sound will not spread to other directions, avoiding sound leakage Case.
  • the difference frequency signal and the sum frequency signal of the two sound waves will be generated due to the nonlinear effect in the medium, such as the frequencies of the two sound waves are f1 and f2 respectively.
  • the frequencies of the two sound waves are f1 and f2 respectively.
  • the attenuation speed is faster, but its directivity is better, and the signal with low frequency attenuates slowly in the air, so what the end user hears is the sound wave signal with this low frequency, that is, the sound wave signal with frequency f1-f2 .
  • the frequency of the sum-frequency signal generated by only two sound sources may be low, and multiple sum-frequency can be obtained through multiple sound sources to obtain high-frequency sound waves with high directivity.
  • by controlling three or three The above exciters work at the same time, so that three or more exciters drive the corresponding parts to sound at the same time. Since the sound is sounded at the same time, and the sound wave signal of the same frequency is emitted, the resulting sum frequency is n ⁇ f1, which can have Higher directivity, n is the number of working exciters, and f1 is the frequency of the acoustic signal.
  • the sound wave signals of the same frequency simultaneously emitted can only be directional in a certain direction, it is necessary to control the direction of the sound wave signal according to the relative position between the user and the screen.
  • the azimuth deflection control of the acoustic radiation can be realized by phase shifting. Different delay times are introduced through digital signal processing (DSP, Digital Signal Processing) at the sounding position, and the directional acoustic signal generated will have a certain deflection.
  • DSP Digital Signal Processing
  • the exciters are distributed in multiple directions, and the transmission direction of the sound wave signal can be deflected by controlling the work of the exciters. For example, it is detected that the user is deflecting to the upper direction of the screen, as shown in Figure 6. According to the distribution of exciters in Figure 5, it is assumed that exciter 1, exciter 3 and exciter 5 are used to vibrate and sound.
  • the simple model is shown in Figure 7, and the three exciters are three sound sources S in the figure. .
  • the wave surface needs to be deflected upwards.
  • the delay time of exciter 1 to 2t the delay time of exciter 3 to t, and the delay of exciter 5.
  • the deflection angle can be expressed as Among them, ⁇ 0 is the angle to be deflected, z is the propagation height difference between two adjacent exciters, and D is the distance between two adjacent exciters.
  • the need to deflect to other directions is the same. By controlling the exciters at different positions, the sound can be transmitted in all directions.
  • the method when the vertical distance is less than or equal to the first preset threshold, the method further includes: controlling the second part of the screen to emit non-directional sound according to the projected position of the user's ear on the screen.
  • the first preset threshold may be set according to actual conditions.
  • the first preset threshold can be set to 0.5 centimeters (cm), that is, the distance between the ear and the screen.
  • the first preset threshold can be set to 10 cm, that is, the user does not want the screen to be close to the ear so that the ear The distance above the screen is suspended, as shown in Figure 4.
  • FIG. 5 shows the schematic diagram of the distribution of exciters by taking 12 exciters as an example. As shown in Figure 5, each exciter can drive a part of the screen to vibrate and sound, and the parts driven by different exciters should be as similar as possible, or the difference should be large Small, to ensure precise control of the vibration and sound of the screen.
  • the projected position of the user's ear on the screen is The projected position on the screen of the antenna transmitting the second mmWave signal.
  • the projection position of the user's ear on the screen is determined according to the second millimeter-wave signal sent
  • the projection position of the antenna on the screen is determined. For example, the distance between the projection position of the ear on the screen and the projection position of the antenna transmitting the second millimeter wave signal on the screen is d 1 cot ⁇ .
  • controlling the second part of the screen to produce non-directional sound according to the projection position of the user's ear on the screen includes: controlling the corresponding actuator of the second part of the screen to work according to the projection position, so that the second part of the screen The part corresponding to the exciter drives the second part of the screen to produce non-directional sound.
  • the distance between the projected position of the actuator on the screen corresponding to the second part of the screen and the projected position of the user's ear on the screen is less than or equal to a second preset threshold.
  • the exciters satisfying this condition are exciter 1 and exciter 3.
  • non-directional sounding means that when the actuators corresponding to the second part of the screen drive the screen to vibrate and sound, the different actuators are independent of each other and have no relationship with each other. Sound waves do not have nonlinear effects.
  • the method further includes: controlling the volume according to the vertical distance between the user's ear and the screen.
  • the greater the distance between the user's ear and the screen, the greater the volume can be controlled.
  • the relative orientation between the user and the screen is such that the user is not directly in front of the screen, or the vertical distance between the ear and the screen is greater than the first preset threshold
  • the first part of the screen is controlled relative to the orientation to make directional sound instead of controlling the whole screen to make sound, so that the sound transmission range generated by screen vibration is relatively narrow and the degree of sound leakage is reduced; moreover, it is not achieved by reducing the volume of sound from the screen, thus The sound transmission effect is guaranteed, and problems such as inability to hear the content of the call are avoided.
  • the method includes steps 800 to 806 .
  • Step 800 Detect whether it is currently in a call state, whether there is an earphone plugged in, and whether the voice playback function is turned on. If it is currently in a call state, and the headset is not detected, and the voice playback function is not turned on, continue to step 801 ; In the case that it is not currently in a call, or it is detected that the earphone is plugged in, or the voice playback function is turned on, end this process.
  • Step 801 respectively receive the first millimeter wave signals sent by the base station in different directions; determine the relative orientation between the user and the screen according to the received first millimeter wave signals in different directions.
  • Step 802 if the relative orientation is that the user is directly in front of the screen, proceed to step 803 ; if the relative orientation is that the user is not directly in front of the screen, proceed to step 806 .
  • Step 803 sending the second millimeter wave signal; receiving an echo signal corresponding to the second millimeter wave signal; determining the vertical distance between the user's ear and the screen according to the echo signal.
  • Step 805 Control the exciter corresponding to the second part of the screen to work according to the projection position of the user's ear on the screen, so that the exciter corresponding to the second part of the screen drives the second part of the screen to make non-directional sound;
  • the distance between the projection position of the actuator corresponding to the second part on the screen and the projection position of the user's ear on the screen is less than or equal to a second preset threshold.
  • Step 806 Control the exciter corresponding to the first part of the screen to work according to the relative orientation, so that the exciter corresponding to the first part of the screen drives the first part of the screen to emit sound in the direction of the relative orientation.
  • another embodiment of the present disclosure provides an electronic device, including: at least one processor; a memory, at least one program is stored in the memory, and when at least one program is executed by at least one processor, any of the above-mentioned The control method of screen sound.
  • the processor is a device with data processing capability, which includes but not limited to central processing unit (CPU), etc.
  • the memory is a device with data storage capability, which includes but not limited to random access memory (RAM, such as SDRAM, DDR etc.), read-only memory (ROM), electrically erasable programmable read-only memory (EEPROM), flash memory (FLASH).
  • RAM random access memory
  • ROM read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • FLASH flash memory
  • the processor and the memory are connected to each other through a bus, and further connected to other components of the computing device.
  • another embodiment of the present disclosure provides a computer-readable storage medium, on which a computer program is stored, and when the computer program is executed by a processor, any one of the above methods for controlling sound on the screen is implemented.
  • FIG. 9 is a block diagram of a device for controlling sound on screen according to another embodiment of the present disclosure.
  • another embodiment of the present disclosure provides a screen sound control device, including: a user position detection module 901 and a sound control module 902 .
  • the user position detection module 901 is used to determine the relative orientation between the user and the screen when it is necessary to make a sound through the screen; if the relative orientation is that the user is located directly in front of the screen, determine the The vertical distance between the ear and the screen.
  • the utterance control module 902 is configured to control the first part of the screen to perform directional utterance according to the relative orientation when the relative orientation is that the user is not directly in front of the screen, or the vertical distance is greater than the first preset threshold.
  • the implementation process of the above-mentioned screen sound control device is the same as the implementation process of the screen sound control method in the foregoing embodiment, and will not be repeated here.
  • the relative orientation between the user and the screen is such that the user is not directly in front of the screen, or the vertical distance between the ear and the screen is greater than the first preset threshold
  • the first part of the screen is controlled relative to the orientation to make directional sound instead of controlling the whole screen to make sound, so that the sound transmission range generated by screen vibration is relatively narrow and the degree of sound leakage is reduced; moreover, it is not achieved by reducing the volume of sound from the screen, thus The sound transmission effect is guaranteed, and problems such as inability to hear the content of the call are avoided.
  • the functional modules/units in the system, and the device can be implemented as software, firmware, hardware, and an appropriate combination thereof.
  • the division between functional modules/units mentioned in the above description does not necessarily correspond to the division of physical components; for example, one physical component may have multiple functions, or one function or step may be composed of several physical components. Components cooperate to execute.
  • Some or all of the physical components may be implemented as software executed by a processor, such as a central processing unit, digital signal processor, or microprocessor, or as hardware, or as an integrated circuit, such as an application-specific integrated circuit .
  • Such software may be distributed on computer readable media, which may include computer storage media (or non-transitory media) and communication media (or transitory media).
  • computer storage media includes both volatile and nonvolatile media implemented in any method or technology for storage of information, such as computer readable instructions, data structures, program modules, or other data. permanent, removable and non-removable media.
  • Computer storage media include, but are not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disk (DVD) or other optical disk storage, magnetic cartridges, tape, magnetic disk storage or other magnetic storage, or may be used Any other medium that stores desired information and can be accessed by a computer.
  • communication media typically embodies computer readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave or other transport mechanism, and may include any information delivery media .

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Telephone Function (AREA)
  • Stereophonic System (AREA)
  • Circuit For Audible Band Transducer (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

一种屏幕发声的控制方法、电子设备、计算机可读存储介质。屏幕发声的控制方法包括:在需要通过屏幕发声的情况下,确定用户与屏幕之间的相对方位(100);在所述相对方位为所述用户位于屏幕的正前方的情况下,确定所述用户的耳朵与所述屏幕之间的垂直距离(101);在所述相对方位为所述用户不是位于所述屏幕的正前方,或所述垂直距离大于第一预设阈值的情况下,根据所述相对方位控制所述屏幕的第一部分进行定向发声(102);在所述垂直距离小于或等于第一预设阈值的情况下,根据所述用户的耳朵在所述屏幕上的投影位置控制所述屏幕的第二部分进行非定向发声。

Description

屏幕发声的控制方法、电子设备、计算机可读存储介质
相关申请的交叉引用
本公开要求享有2021年12月30日提交的名称为“屏幕发声的控制方法、电子设备、计算机可读存储介质”的中国专利申请CN202111682609.8的优先权,其全部内容通过引用并入本公开中。
技术领域
本公开实施例涉及终端屏幕发声技术领域,特别涉及屏幕发声的控制方法、电子设备以及计算机可读存储介质。
背景技术
随着手机在人们日常生活中占据着越来越重要的位置,手机的轻薄化、全面屏成为了需求的重点。为了实现真正的全面屏,免去摄像头和听筒等在屏幕上所需的开孔,在摄像头方面通过屏下摄像实现了无开孔,而在听筒方面,通过屏幕发声技术实现了无开孔。
发明内容
本公开实施例提供一种屏幕发声的控制方法、电子设备、计算机可读存储介质。
第一方面,本公开实施例提供一种屏幕发声的控制方法,包括:在需要通过屏幕发声的情况下,确定用户与屏幕之间的相对方位;在所述相对方位为所述用户位于屏幕的正前方的情况下,确定所述用户的耳朵与所述屏幕之间的垂直距离;以及在所述相对方位为所述用户不是位于所述屏幕的正前方,或所述垂直距离大于所述第一预设阈值的情况下,根据所述相对方位控制所述屏幕的第一部分进行定向发声。
第二方面,本公开实施例提供一种电子设备,包括:至少一个处理器;存储器,存储器上存储有至少一个程序,当所述至少一个程序被所述至少一个处理器执行时,实现上述任意一种屏幕发声的控制方法。
第三方面,本公开实施例提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现上述任意一种屏幕发声的控制方法。
附图说明
图1为本公开一个实施例提供的屏幕发声的控制方法的流程图;
图2为本公开实施例中基站进行波束赋形的示意图;
图3为本公开实施例中检测耳朵与屏幕之间的垂直距离的示意图;
图4为本公开实施例中耳朵在屏幕上方悬空的状态示意图;
图5为本公开实施例中12个激励器在终端中的分布示意图;
图6为本公开实施例中用户与屏幕之间的相对方位为用户偏向屏幕上方的示意图;
图7为本公开实施例中声波信号的传输方向示意图;
图8为本公开实施例的示例提供的屏幕发声的控制方法的流程图;以及
图9为本公开另一个实施例提供的屏幕发声的控制装置的组成框图。
具体实施方式
为使本领域的技术人员更好地理解本公开的技术方案,下面结合附图对本公开提供的屏幕发声的控制方法、电子设备、计算机可读存储介质进行详细描述。
在下文中将参考附图更充分地描述示例实施例,但是所述示例实施例可以以不同形式来体现且不应当被解释为限于本文阐述的实施例。反之,提供这些实施例的目的在于使本公开透彻和完整,并将使本领域技术人员充分理解本公开的范围。
在不冲突的情况下,本公开各实施例及实施例中的各特征可相互组合。
如本文所使用的,术语“和/或”包括至少一个相关列举条目的任何和所有组合。
本文所使用的术语仅用于描述特定实施例,且不意欲限制本公开。如本文所使用的,单数形式“一个”和“该”也意欲包括复数形式,除非上下文另外清楚指出。还将理解的是,当本说明书中使用术语“包括”和/或“由……制成”时,指定存在所述特征、整体、步骤、操作、元件和/或组件,但不排除存在或添加至少一个其它特征、整体、步骤、操作、元件、组件和/或其群组。
除非另外限定,否则本文所用的所有术语(包括技术和科学术语)的含义与本领域普通技术人员通常理解的含义相同。还将理解,诸如那些在常用字典中限定的那些术语应当被解释为具有与其在相关技术以及本公开的背景下的含义一致的含义,且将不解释为具有理想化或过度形式上的含义,除非本文明确如此限定。
屏幕发声技术是通过激励器使手机屏幕震动,利用手机屏幕的震动来发出声音,可以避免听筒扬声器所需的“刘海”开孔,但是由于屏幕震动为整个屏幕的震动发声,产生的声音传播范围比较广,漏音比较严重;而若降低屏幕发声的音量又可能会导致传声效果不好,无法听清通话内容等问题。
图1为本公开一个实施例提供的屏幕发声的控制方法的流程图。
第一方面,参照图1,本公开一个实施例提供一种屏幕发声的控制方法,该方法可以应用于任何可以通过屏幕发声的终端,该方法包括步骤100至步骤102。
步骤100、在需要通过屏幕发声的情况下,确定用户与屏幕之间的相对方位。
本公开实施例对需要通过屏幕发声的情况不作限定。例如,需要通过屏幕发声是指当前处于通话状态,且没有检测到耳机连接,且未打开语音外放功能。
在一些示例性实施例中,确定用户与屏幕之间的相对方位包括:分别接收基站在不同的方向上发送的第一毫米波信号;以及根据接收的不同方向上的第一毫米波信号确定相对方位。
在本公开实施例中,为了检测用户与屏幕之间的相对方位,如图2所示,至少一个基站利用至少一个毫米波天线形成的天线阵列进行混合波束赋形,基站通过基带预编码模块进行数字域波束赋形,通过第一射频链路模块进行模拟域波束赋形,最后通过第一天线阵列发送波束赋形后的毫米波信号,即上述第一毫米波信号;终端通过第二天线阵列接收第一毫米波信号,通过第二射频链路模块对第一毫米波信号进行模拟域波束赋形的逆处理,通过基带组合拳进行数字域波束赋形的逆处理。
第一毫米波信号具有较高的方向性,第一毫米波信号在主瓣方向上的信号强度远远大于旁瓣方向上的信号强度,也就是说,第一毫米波信号指向主瓣方向,即信号强度最大的方向。对于终端而言,终端可以在主瓣方向上接收第一毫米波信号,以确定该主瓣方向上是否有遮挡物,在确定出该主瓣方向上有遮挡物的情况下,确定用户与屏幕之间的相对方位为该主瓣方向;在确定出该主瓣方向上没有遮挡物的情况下,确定用户与屏幕之间的相对方位不是该主瓣方向。
在一些示例性实施例中,基站会持续不断的在不同的方向上发送第一毫米波信号,而终端则不需要持续不断的接收不同方向上的第一毫米波信号,而是在需要确定用户与屏幕之间的相对方位的情况下,接收不同方向上的第一毫米波信号。
在一些示例性实施例中,可以根据不同方向上的第一毫米波信号的信号接收强度确定用户与屏幕之间的相对方位,即用户与屏幕之间的相对方位根据信号接收强度最小的第一毫米波信号的主瓣方向计算得到,这里主瓣方向指的是基站进行波束赋形时,信号强度最大的方向。
步骤101、在相对方位为用户位于屏幕的正前方的情况下,确定用户的耳朵与屏幕之间的垂直距离。
在一些示例性实施例中,用户位于屏幕的正前方是指用户的头部位于屏幕的正前方。
在一些示例性实施例中,确定用户的耳朵与屏幕之间的垂直距离包括:发送第二毫米波信号;接收第二毫米波信号对应的回波信号;根据回波信号确定用户的耳朵与屏幕之间的垂直距离。
在一些示例性实施例中,第二毫米波信号对应的回波信号是指第二毫米波信号遇到障 碍物反射回来的信号。
在一些示例性实施例中,发送第二毫米波信号时,可以通过至少一个天线发送,每一个天线可以发送一个第二毫米波信号,也可以发送两个或两个以上第二毫米波信号。
在一些示例性实施例中,发送第二毫米波信号时,可以沿着与屏幕垂直的方向发送第二毫米波信号,也可以沿着与屏幕成一夹角的方向发送第二毫米波信号。
在沿着与屏幕垂直的方向发送第二毫米波信号的情况下,接收到第二毫米波信号对应的回波信号后,将第二毫米波信号与回波信号通过混频器进行混频,得到中频信号,对中频信号进行傅里叶变换得到中频信号的频率f,根据中频信号的频率f计算反射点与屏幕之间的垂直距离d 1,即d 1=f×c×T c/(2B)。
其中,d 1为反射点与屏幕之间的垂直距离,f为中频信号的频率,c为声速,T c为第二毫米波信号的周期,B为第二毫米波信号的带宽。
在沿着与屏幕成一夹角的方向发送第二毫米波信号的情况下,接收到第二毫米波信号对应的回波信号后,将第二毫米波信号与回波信号通过混频器进行混频,得到中频信号,对中频信号进行傅里叶变换得到中频信号的频率f,根据中频信号的频率f计算反射点与屏幕之间的垂直距离d 1,即d 1=sinα×f×c×T c/(2B)。
其中,α为第二毫米波信号的发送方向与屏幕之间的夹角,d 1为反射点与屏幕之间的垂直距离,f为中频信号的频率,c为声速,T c为第二毫米波信号的周期,B为第二毫米波信号的带宽。
也就是说,每发送一个第二毫米波信号,就可以基于第二毫米波信号和对应的回波信号计算得到一个反射点与屏幕之间的垂直距离,不管第二毫米波信号的发送方向如何均可以计算得到反射点与屏幕之间的垂直距离。
在一些示例性实施例中,为了检测耳朵与屏幕之间的垂直距离,可以通过检测多个反射点与屏幕之间的垂直距离,将距离最小的反射点与屏幕之间的垂直距离作为耳朵与屏幕之间的垂直距离,如图3所示,在进行近距离通话时,用户的侧脸靠近屏幕,耳朵是最为贴近屏幕的位置,因此,距离屏幕最近的位置即为耳朵的位置,如图3中的d3即为耳朵与屏幕的垂直距离。
在一些示例性实施例中,为了提高准确度,可以采用多次检测同一个反射点与屏幕之间的垂直距离,然后取平均值的方式。
步骤102、在相对方位为用户不是位于屏幕的正前方,或垂直距离大于第一预设阈值的情况下,根据相对方位控制屏幕的第一部分进行定向发声。
在一些示例性实施例中,根据相对方位控制屏幕的第一部分进行定向发声包括:根据相对方位控制屏幕的第一部分对应的激励器工作,使得屏幕的第一部分对应的激励器驱动 屏幕的第一部分向相对方位所在的方向发声。
在本公开实施例中,屏幕的第一部分对应的激励器可以根据实际需要来进行选择,例如,可以选择在屏幕所在的平面上的投影位置与用户在屏幕所在的屏幕上的投影位置最近的至少一个激励器,也可以选择能够在用户所在的相对方位方向上进行定向发声的至少一个激励器。又如,可以选择位于同一直线上的至少两个激励器,在某些情况下,也可以使用户到至少两个激励器所在的直线的垂直距离最小。
在本公开实施例中,根据相对方位控制屏幕的第一部分进行定向发声时,控制屏幕的第一部分朝着相位方位的方向进行定向发声,这样,声音不会传播到其他方向上,避免了漏音的情况。
下面介绍一下采用位于同一直线上的至少两个激励器进行定向发声的原理。
由于频率稳定的两个声波在同时发出并传播的过程中,在介质中会由于非线性效应,产生两个声波的差频信号以及和频信号,如两个声波信号频率分别为f1和f2,则在传播过程中会有原本发出的频率为f1,f2的两个信号,以及产生的频率为f1-f2和f1+f2的两个新的频率的信号,由于频率高的信号在空气中的衰减速度更快,但是其指向性更好,而频率低的信号在空气中衰减的比较慢,因此,最终用户听到的是这个频率较低的声波信号,即频率为f1-f2的声波信号。
只有两个声源产生的和频信号频率可能较低,可以通过多个声源进行多重的和频得到指向性程度较高的高频声波,在本公开实施例中通过控制三个或三个以上激励器同时工作,以使得三个或三个以上激励器驱动对应的部分同时发声来实现,由于同时发声,并且发射的为相同频率的声波信号,产生的和频为n×f1,能够具有较高的指向性,n为工作的激励器数量,f1为声波信号的频率。
由于同时发出的相同频率的声波信号只能向某一个方向定向发声,因此,需要根据用户与屏幕之间的相对位置对声波信号的定向方位进行控制。
对于声波辐射的方位偏转控制可以通过相移来实现,在发声位置通过数字信号处理(DSP,Digital Signal Processing)引入不同的延迟时间,则产生的具有指向性的声波信号会产生一定的偏转。在终端中,激励器的分布有多个方向,能够通过对激励器工作的控制进行声波信号的传输方向的偏转,以检测到用户偏向屏幕方向的上方为例,如图6所示。根据图5中的激励器的分布情况,假设通过激励器1,激励器3和激励器5进行震动发声,简易的模型如图7所示,三个激励器在图中为三个声源S。由于需要声音偏向上方传播,波面需向上偏转,设置激励器1延迟时间2t,激励器3延迟时间t,激励器5不需要延迟,得到的声音传输则会发声向上的偏转,偏转的角度为
Figure PCTCN2022126093-appb-000001
其中,x=ct,c为声速, d 2为相邻两个激励器之间的距离。更为通用化的情况下,偏转的角度可以表示为
Figure PCTCN2022126093-appb-000002
其中,θ 0为需要偏转的角度,z为相邻两个激励器的传播高度差,D为相邻两个激励器之间的距离。
需要偏转向其他的方向同理,通过控制不同位置的激励器,能够实现声音向各个方向的传输。
在一些示例性实施例中,在垂直距离小于或等于第一预设阈值的情况下,该方法还包括:根据用户的耳朵在屏幕上的投影位置控制屏幕的第二部分进行非定向发声。
在本公开实施例中,第一预设阈值可以根据实际情况进行设定。例如可以设置第一预设阈值为0.5厘米(cm),即耳朵基本与屏幕贴紧的距离;又如,可以设置第一预设阈值为10cm,即用户不想屏幕紧贴在耳朵上而使耳朵悬空在屏幕上方的距离,如图4所示。
在本公开实施例中,终端中设置有至少两个激励器,终端中设置的激励器数量越多,控制精确度越高。图5中以12个激励器为例给出了激励器的分布示意图,如图5所示,每一个激励器可以驱动屏幕的一部分震动发声,不同激励器驱动的部分应该尽量相同,或差异较小,保证对屏幕的震动发声进行精准控制。
在一些示例性实施例中,在采用沿着与屏幕垂直的方向发送的第二毫米波信号确定用户的耳朵与屏幕之间的垂直距离的情况下,用户的耳朵在屏幕上的投影位置即为发送第二毫米波信号的天线在屏幕上的投影位置。
在采用沿着与屏幕成一夹角的方向发送的第二毫米波信号确定用户的耳朵与屏幕之间的垂直距离的情况下,用户的耳朵在屏幕上的投影位置根据发送第二毫米波信号的天线在屏幕上的投影位置确定。例如,耳朵在屏幕上的投影位置和发送第二毫米波信号的天线在屏幕上的投影位置之前的距离为d 1cotα。
在一些示例性实施例中,根据用户的耳朵在屏幕上的投影位置控制屏幕的第二部分进行非定向发声包括:根据投影位置控制屏幕的第二部分对应的激励器工作,使得屏幕的第二部分对应的激励器驱动屏幕的第二部分进行非定向发声。
在一些示例性实施例中,屏幕的第二部分对应的激励器在屏幕上的投影位置与用户的耳朵在屏幕上的投影位置之间的距离小于或等于第二预设阈值。如图5所示,满足这一条件的激励器为激励器1和激励器3。
在一些示例性实施例中,非定向发声是指屏幕的第二部分对应的激励器在驱动屏幕进行震动发声时,不同激励器之间是相互独立的,没有任何关系,各自驱动的屏幕发出的声波不会产生非线性效应。
在一些示例性实施例中,该方法还包括:根据用户的耳朵与屏幕之间的垂直距离控制 音量。
在一些示例性实施例中,用户的耳朵与屏幕之间的距离越大,可以控制音量越大。
本公开实施例提供的屏幕发声的控制方法,在用户与屏幕之间的相对方位为用户不是位于屏幕的正前方,或耳朵与屏幕之间的垂直距离大于第一预设阈值的情况下,根据相对方位控制屏幕的第一部分进行定向发声,而不是控制整个屏幕进行发声,使得屏幕震动产生的声音传播范围比较窄,减少了漏音程度;并且,不是通过降低屏幕发声的音量来实现的,从而保证了传声效果,避免了无法听清通话内容等问题。
为了更直观呈现整个控制流程,下面通过一个示例来进行说明,所列举的示例不用于限定本公开实施例的保护范围。
示例
如图8所示,该方法包括步骤800至步骤806。
步骤800、检测当前是否处于通话状态,是否有耳机插入,语音外放功能是否打开,在当前处于通话状态,且没有检测到耳机插入,且未打开语音外放功能的情况下,继续执行步骤801;在当前不是处于通话状态,或检测到耳机插入,或语音外放功能已打开的情况下,结束本流程。
步骤801、分别接收基站在不同的方向上发送的第一毫米波信号;根据接收的不同方向上的第一毫米波信号确定用户与屏幕之间的相对方位。
步骤802、在相对方位为用户位于屏幕的正前方的情况下,继续执行步骤803;在相对方位为用户不是位于屏幕的正前方的情况下,继续执行步骤806。
步骤803、发送第二毫米波信号;接收第二毫米波信号对应的回波信号;根据回波信号确定用户的耳朵与屏幕之间的垂直距离。
步骤804、在垂直距离小于或等于第一预设阈值的情况下,继续执行步骤805;在垂直距离大于第一预设阈值的情况下,继续执行步骤806。
步骤805、根据用户的耳朵在屏幕上的投影位置控制屏幕的第二部分对应的激励器工作,使得屏幕的第二部分对应的激励器驱动屏幕的第二部分进行非定向发声;其中,屏幕的第二部分对应的激励器在屏幕上的投影位置与用户的耳朵在屏幕上的投影位置之间的距离小于或等于第二预设阈值。
步骤806、根据相对方位控制屏幕的第一部分对应的激励器工作,使得屏幕的第一部分对应的激励器驱动屏幕的第一部分向相对方位所在的方向发声。
第二方面,本公开另一个实施例提供一种电子设备,包括:至少一个处理器;存储器,存储器上存储有至少一个程序,当至少一个程序被至少一个处理器执行时,实现上述任意一种屏幕发声的控制方法。
其中,处理器为具有数据处理能力的器件,其包括但不限于中央处理器(CPU)等;存储器为具有数据存储能力的器件,其包括但不限于随机存取存储器(RAM,如SDRAM、DDR等)、只读存储器(ROM)、带电可擦可编程只读存储器(EEPROM)、闪存(FLASH)。
在一些实施例中,处理器、存储器通过总线相互连接,进而与计算设备的其它组件连接。
第三方面,本公开另一个实施例提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,计算机程序被处理器执行时实现上述任意一种屏幕发声的控制方法。
图9为本公开另一个实施例提供的屏幕发声的控制装置的组成框图。
第四方面,本公开另一个实施例提供一种屏幕发声的控制装置,包括:用户位置检测模块901和发声控制模块902。
其中,用户位置检测模块901用于在需要通过屏幕发声的情况下,确定用户与屏幕之间的相对方位;在所述相对方位为所述用户位于屏幕的正前方的情况下,确定所述用户的耳朵与所述屏幕之间的垂直距离。
发声控制模块902用于在相对方位为用户不是位于屏幕的正前方,或垂直距离大于第一预设阈值的情况下,根据相对方位控制屏幕的第一部分进行定向发声。
上述屏幕发声的控制装置的实现过程与前述实施例屏幕发声的控制方法的实现过程相同,这里不再赘述。
本公开实施例提供的屏幕发声的控制方法,在用户与屏幕之间的相对方位为用户不是位于屏幕的正前方,或耳朵与屏幕之间的垂直距离大于第一预设阈值的情况下,根据相对方位控制屏幕的第一部分进行定向发声,而不是控制整个屏幕进行发声,使得屏幕震动产生的声音传播范围比较窄,减少了漏音程度;并且,不是通过降低屏幕发声的音量来实现的,从而保证了传声效果,避免了无法听清通话内容等问题。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统、装置中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其它数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不 限于RAM、ROM、EEPROM、闪存或其它存储器技术、CD-ROM、数字多功能盘(DVD)或其它光盘存储、磁盒、磁带、磁盘存储或其它磁存储器、或者可以用于存储期望的信息并且可以被计算机访问的任何其它的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其它传输机制之类的调制数据信号中的其它数据,并且可包括任何信息递送介质。
本文已经公开了示例实施例,并且虽然采用了具体术语,但它们仅用于并仅应当被解释为一般说明性含义,并且不用于限制的目的。在一些实例中,对本领域技术人员显而易见的是,除非另外明确指出,否则可单独使用与特定实施例相结合描述的特征、特性和/或元素,或可与其它实施例相结合描述的特征、特性和/或元件组合使用。因此,本领域技术人员将理解,在不脱离由所附的权利要求阐明的本公开的范围的情况下,可进行各种形式和细节上的改变。

Claims (10)

  1. 一种屏幕发声的控制方法,包括:
    在需要通过屏幕发声的情况下,确定用户与屏幕之间的相对方位;
    在所述相对方位为所述用户位于屏幕的正前方的情况下,确定所述用户的耳朵与所述屏幕之间的垂直距离;以及
    在所述相对方位为所述用户不是位于所述屏幕的正前方,或所述垂直距离大于第一预设阈值的情况下,根据所述相对方位控制所述屏幕的第一部分进行定向发声。
  2. 根据权利要求1所述的屏幕发声的控制方法,还包括:
    在所述垂直距离小于或等于第一预设阈值的情况下,根据所述用户的耳朵在所述屏幕上的投影位置控制所述屏幕的第二部分进行非定向发声。
  3. 根据权利要求2所述的屏幕发声的控制方法,其中,所述根据所述用户的耳朵在所述屏幕上的投影位置控制所述屏幕的第二部分进行非定向发声包括:
    根据所述投影位置控制所述屏幕的第二部分对应的激励器工作,使得所述屏幕的第二部分对应的激励器驱动所述屏幕的第二部分进行非定向发声。
  4. 根据权利要求3所述的屏幕发声的控制方法,其中,所述屏幕的第二部分对应的激励器在所述屏幕上的投影位置与所述用户的耳朵在所述屏幕上的投影位置之间的距离小于或等于第二预设阈值。
  5. 根据权利要求1-4任意一项所述的屏幕发声的控制方法,其中,所述需要通过屏幕发声包括:
    当前处于通话状态,且没有检测到耳机连接,且未打开语音外放功能。
  6. 根据权利要求1-4任意一项所述的屏幕发声的控制方法,其中,所述确定用户与屏幕之间的相对方位包括:
    分别接收基站在不同的方向上发送的第一毫米波信号;以及
    根据接收的不同方向上的第一毫米波信号确定所述相对方位。
  7. 根据权利要求1-4任意一项所述的屏幕发声的控制方法,其中,所述确定所述用户的耳朵与所述屏幕之间的垂直距离包括:
    发送第二毫米波信号;
    接收所述第二毫米波信号对应的回波信号;以及
    根据所述回波信号确定所述用户的耳朵与所述屏幕之间的垂直距离。
  8. 根据权利要求1-4任意一项所述的屏幕发声的控制方法,其中,所述根据所述相对方位控制所述屏幕的第一部分进行定向发声包括:
    根据所述相对方位控制所述屏幕的第一部分对应的激励器工作,使得所述屏幕的 第一部分对应的激励器驱动所述屏幕的第一部分向所述相对方位所在的方向发声。
  9. 一种电子设备,包括:
    至少一个处理器;
    存储器,所述存储器上存储有至少一个程序,当所述至少一个程序被所述至少一个处理器执行时,实现权利要求1-8任意一项所述的屏幕发声的控制方法。
  10. 一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现权利要求1-8任意一项所述的屏幕发声的控制方法。
PCT/CN2022/126093 2021-12-30 2022-10-19 屏幕发声的控制方法、电子设备、计算机可读存储介质 WO2023124430A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111682609.8 2021-12-30
CN202111682609.8A CN116414340A (zh) 2021-12-30 2021-12-30 屏幕发声的控制方法、电子设备、计算机可读存储介质

Publications (1)

Publication Number Publication Date
WO2023124430A1 true WO2023124430A1 (zh) 2023-07-06

Family

ID=86997472

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/126093 WO2023124430A1 (zh) 2021-12-30 2022-10-19 屏幕发声的控制方法、电子设备、计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN116414340A (zh)
WO (1) WO2023124430A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108712571A (zh) * 2018-05-17 2018-10-26 Oppo广东移动通信有限公司 显示屏发声的方法、装置、电子装置及存储介质
CN108958697A (zh) * 2018-07-09 2018-12-07 Oppo广东移动通信有限公司 屏幕发声控制方法、装置以及电子装置
CN109361797A (zh) * 2018-10-30 2019-02-19 维沃移动通信有限公司 一种发声方法及移动终端
CN111918168A (zh) * 2020-06-28 2020-11-10 合肥维信诺科技有限公司 一种发声屏幕及显示装置
US20210089270A1 (en) * 2018-06-06 2021-03-25 Vivo Mobile Communication Co., Ltd. Prompting method and mobile terminal

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108712571A (zh) * 2018-05-17 2018-10-26 Oppo广东移动通信有限公司 显示屏发声的方法、装置、电子装置及存储介质
US20210089270A1 (en) * 2018-06-06 2021-03-25 Vivo Mobile Communication Co., Ltd. Prompting method and mobile terminal
CN108958697A (zh) * 2018-07-09 2018-12-07 Oppo广东移动通信有限公司 屏幕发声控制方法、装置以及电子装置
CN109361797A (zh) * 2018-10-30 2019-02-19 维沃移动通信有限公司 一种发声方法及移动终端
CN111918168A (zh) * 2020-06-28 2020-11-10 合肥维信诺科技有限公司 一种发声屏幕及显示装置

Also Published As

Publication number Publication date
CN116414340A (zh) 2023-07-11

Similar Documents

Publication Publication Date Title
KR102224872B1 (ko) 오디오 소스들의 무선 조정
US8908880B2 (en) Electronic apparatus having microphones with controllable front-side gain and rear-side gain
US10595108B2 (en) Speaker apparatus and electronic apparatus including same
US20110135125A1 (en) Method, communication device and communication system for controlling sound focusing
EP3163903B1 (en) Accoustic processor for a mobile device
US10708691B2 (en) Dynamic equalization in a directional speaker array
US20190391783A1 (en) Sound Adaptation Based on Content and Context
US20190394602A1 (en) Active Room Shaping and Noise Control
JP2011010224A (ja) 超指向性スピーカ
CN113453141B (zh) 房间内的音频系统的信号处理方法和音频系统
US10511906B1 (en) Dynamically adapting sound based on environmental characterization
US10531221B1 (en) Automatic room filling
CN112672251A (zh) 一种扬声器的控制方法和系统、存储介质及扬声器
US10924846B2 (en) System and method for generating a self-steering beamformer
CN108141664B (zh) 用于波束形成阵列中的驱动器单元的波束形成声音的方法和声音装置
JP2006229738A (ja) 無線接続制御装置
WO2023124430A1 (zh) 屏幕发声的控制方法、电子设备、计算机可读存储介质
JP2006109340A (ja) 音響システム
CN103024629A (zh) 处理信号
US10484809B1 (en) Closed-loop adaptation of 3D sound
US20190394570A1 (en) Volume Normalization
US11151972B2 (en) Acoustic component, acoustic apparatus and acoustic system
CN116782096A (zh) 外放设备声音设置确定的方法、装置及存储介质
US11740858B2 (en) Ultrasound-based audio playback method and ultrasound-based electronic device
KR102144810B1 (ko) 구형 또는 잘려진 구형의 점음원 어레이를 이용한 음향 방사 및 양방향 교신 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22913693

Country of ref document: EP

Kind code of ref document: A1