WO2023124297A1 - 空气质量监测设备 - Google Patents

空气质量监测设备 Download PDF

Info

Publication number
WO2023124297A1
WO2023124297A1 PCT/CN2022/120711 CN2022120711W WO2023124297A1 WO 2023124297 A1 WO2023124297 A1 WO 2023124297A1 CN 2022120711 W CN2022120711 W CN 2022120711W WO 2023124297 A1 WO2023124297 A1 WO 2023124297A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
monitoring device
sensor
monitoring
heating
Prior art date
Application number
PCT/CN2022/120711
Other languages
English (en)
French (fr)
Inventor
肖永乐
李启勇
张劲松
康涛
张玲
陈晨
张文
Original Assignee
河北先河环保科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 河北先河环保科技股份有限公司 filed Critical 河北先河环保科技股份有限公司
Publication of WO2023124297A1 publication Critical patent/WO2023124297A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D11/00Component parts of measuring arrangements not specially adapted for a specific variable
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D11/00Component parts of measuring arrangements not specially adapted for a specific variable
    • G01D11/30Supports specially adapted for an instrument; Supports specially adapted for a set of instruments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/24Suction devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/34Purifying; Cleaning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/44Sample treatment involving radiation, e.g. heat
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions

Definitions

  • the application belongs to the technical field of air quality monitoring, and more specifically relates to an air quality monitoring device.
  • Air quality monitoring refers to the monitoring of air quality.
  • the quality of air quality reflects the concentration of pollutants in the air.
  • Air pollution is a complex phenomenon. The concentration of air pollutants at a specific time and place is affected by many factors. Influence. Man-made pollutant emissions from stationary and mobile pollution sources are one of the most important factors affecting air quality, including vehicle exhaust, industrial enterprise production emissions, and garbage incineration.
  • Air quality monitoring equipment also known as air station
  • the function of air station is to conduct fixed-point, continuous or regular sampling, detection and analysis of pollutants in the air, including indoor monitoring and outdoor monitoring.
  • the existing air quality monitoring equipment uses a small amount of sampling and discontinuous sampling, resulting in low air quality monitoring efficiency and inaccurate monitoring results.
  • the purpose of the present application is to provide an air quality monitoring device, aiming to solve the technical problems of discontinuous sampling amount and low monitoring efficiency when the air quality monitoring device in the prior art monitors air quality.
  • the technical solution adopted by the present application is to provide an air quality monitoring device, including an air intake device, an air monitoring device, an air pump and a control device, the air intake device has a cavity suitable for air entry, A heating assembly for heating air is arranged in the cavity; the air inlet of the air monitoring device communicates with the air outlet of the cavity, and the air monitoring device is used to monitor the air quality after heating; the air pump The air inlet of the air inlet communicates with the air outlet of the air monitoring device, the air pump is suitable for sucking air and the sucked air enters the air monitoring device through the air inlet device; the control device is suitable for controlling the The heating component and the air pump operate, and receive air quality information monitored by the air monitoring device.
  • the air quality monitoring device further includes a first mounting bracket and a second mounting bracket, and the core unit formed by the air intake device and the air monitoring device is connected to the first mounting bracket above; the control device is connected to the second mounting bracket, the first mounting bracket is rotationally fitted with the second mounting bracket, and the second mounting bracket is rotated in a direction away from the first mounting bracket The air monitoring device may be gradually exposed.
  • the air intake device includes a heating box, the cavity is arranged in the heating box, and the heating box is provided with an air inlet and an air outlet communicating with the outside of the heating box , the air outlet of the heating box communicates with the air inlet of the air monitoring device, the heating assembly is arranged in the cavity, and the air flows into the air monitoring device after being heated in the cavity.
  • the heating assembly includes a heating rod and a temperature sensor, the heating start and stop of the heating rod is controlled by the control device, and the temperature sensor is electrically connected to the control device.
  • the air monitoring device includes a first particle sensor, a filter, and an air chamber assembly connected in sequence, and the air inlet of the first particle sensor is connected to the air outlet of the air intake device, so The air outlet of the air chamber assembly is connected to the air inlet of the air pump, and the air sucked by the air pump passes through the air intake device, the first particle sensor, the filter and the air chamber assembly in sequence The air pump discharges.
  • the air chamber assembly includes a base body, a plurality of semi-closed air chambers formed on the base body, and an air flow channel provided in the base body and connecting the plurality of air chambers in series
  • Each of the air chambers is sealed with a sensor module, the sensor module forms a closed chamber with the air chamber, and the sensor module is suitable for monitoring the quality of the air circulating in the airflow channel in the closed chamber.
  • the bottom of one or more of the air chambers has an opening, and the opening communicates with the outside of the base body, and a first temperature and humidity chamber sealingly connected with the base body is provided in the opening.
  • a sensor, the first temperature and humidity sensor is suitable for monitoring the temperature and humidity of the air in the closed chamber.
  • the air quality monitoring device further includes a bottom plate, the air intake device and the air monitoring device are both arranged on the bottom plate, and the air monitoring device is also connected to the first A mounting bracket, the position of the second mounting bracket after being rotated relative to the first mounting bracket can be locked, and the air pump is arranged on the bottom plate.
  • a casing is connected to the bottom plate, and the air monitoring device, the control device, the first mounting bracket and the second mounting bracket are all arranged inside the casing , the air intake device and the air pump are both arranged outside the housing.
  • multiple sets of second particle sensors and multiple sets of third particle sensors are connected to the base plate outside the housing, and the second particle sensors and the third particle sensors are respectively suitable for Monitoring information of particles of different sizes in the air, the second particle sensor and the third particle sensor are provided with fans, and the fan is suitable for viewing from the inside of the second particle sensor and the inside of the third particle sensor Exhaust air outwards to form a negative pressure inside the second particle sensor and the third particle sensor, and both the second particle sensor and the third particle sensor are electrically connected to the control device.
  • the air quality monitoring equipment of the present application includes an air intake device, an air monitoring device, an air pump and a control device.
  • the air pump sucks air, and the air passes through the air intake device and the air monitoring device in sequence.
  • the air is heated to facilitate the monitoring of air quality by the air monitoring device, and the control device controls the operation of the heating component and the air pump and receives the air quality information monitored by the air monitoring device.
  • the air quality monitoring equipment provided by this application controls the operation through the control device, and the air pump sucks air. It has the advantages of convenient air quality monitoring operation, controllable air sampling volume, continuous sampling and continuous monitoring, easy collection of monitoring information and improved air quality monitoring efficiency. technical effect.
  • Fig. 1 is a three-dimensional structural schematic diagram 1 of an air quality monitoring device provided by an embodiment of the present application;
  • Fig. 2 is a three-dimensional structural schematic diagram II of the air quality monitoring equipment provided by the embodiment of the present application;
  • Figure 3 is a schematic diagram of the internal structure of the air quality monitoring device provided in the embodiment of the present application without the housing;
  • Fig. 4 is a second schematic diagram of the internal structure of the air quality monitoring device provided by the embodiment of the present application without the housing;
  • FIG. 5 is a schematic structural diagram of an air chamber assembly of an air quality monitoring device provided in an embodiment of the present application.
  • FIG. 6 is a schematic structural view of the air chamber assembly in FIG. 5 without the third part of the sensor module;
  • Fig. 7 is a schematic structural view of the gas chamber assembly in Fig. 5 without the sensor module;
  • Fig. 8 is a schematic bottom view of the air chamber assembly in Fig. 5;
  • Fig. 9 is a schematic structural diagram of removing the first temperature and humidity sensor in the air chamber assembly in Fig. 8;
  • Fig. 10 is a schematic structural diagram of the air quality monitoring device provided by the embodiment of the present application without the shell and the hollow shell;
  • Fig. 11 is a top view of the air quality monitoring equipment provided by the embodiment of the present application.
  • Fig. 12 is a schematic structural diagram of the first mounting bracket and the second mounting bracket of the air quality monitoring equipment provided by the embodiment of the present application;
  • Fig. 13 is a structural schematic diagram of another viewing angle of Fig. 12;
  • FIG. 14 is a schematic structural diagram of an air intake device of an air quality monitoring device provided in an embodiment of the present application.
  • Fig. 15 is a schematic diagram of the overall appearance of the air quality monitoring device provided by the embodiment of the present application.
  • Air intake device 11. Heating component; 111. Heating rod; 112. Temperature sensor; 12. Heating box; 13. Pipeline; 14. Elbow; 2.
  • Air monitoring device 21.
  • the first particle sensor; 22 filter; 23, air chamber assembly; 231, base body; 232, air chamber; 233, air flow channel; 234, sensor module; 235, sealing gasket; 236, PID sensor; 237, PID pressure ring; 238, opening; 239 , the first temperature and humidity sensor; 3, the air pump; 4, the control device; 5, the first installation bracket; 6, the second installation bracket; 61, the circuit board bracket; Rotating shaft; 65, limit piece; 66, isolation column; 7, bottom plate; 8, shell; 81, inner shell; 82, outer shell; 83, upper cover; 9, metal mesh; 10, hollow shell; 110, second Particle sensor; 120, the third particle sensor; 130, hollow shell; 140, CMOS sensor; 150, indicator board; 160, temperature and humidity protection shell.
  • the air quality monitoring equipment includes an air intake device 1, an air monitoring device 2, an air pump 3 and a control device 4.
  • the inside of the air intake device 1 has a cavity suitable for air to enter, and a heating device for heating the air is provided in the cavity.
  • the air inlet of the air monitoring device 2 is connected to the air outlet of the cavity, and the air monitoring device 2 is used to monitor the air quality after heating;
  • the air inlet of the air pump 3 is connected to the air outlet of the air monitoring device 2, which is suitable for suction Air and the sucked air enters the air monitoring device 2 through the air intake device 1;
  • the control device 4 is suitable for controlling the operation of the heating component 11 and the air pump 3, and receiving the air quality information monitored by the air monitoring device 2.
  • the air quality monitoring equipment provided by the application compared with the prior art, the air quality monitoring equipment of the application includes an air intake device 1, an air monitoring device 2, an air pump 3 and a control device 4, the air pump 3 sucks air, and the air passes through the air inlet in turn
  • the air device 1 and the air monitoring device 2 the heating component 11 in the air intake device 1 heats the air, which is convenient for the air monitoring device 2 to monitor the air quality
  • the control device 4 controls the operation of the heating component 11 and the air pump 3 and receives the monitoring results of the air monitoring device 2 air quality information.
  • the air quality monitoring equipment provided by this application is controlled by the control device 4, and the air pump 3 sucks the air. It has the advantages of convenient air quality monitoring operation, controllable air sampling volume, continuous sampling and continuous monitoring, easy collection of monitoring information and improvement of air quality. Monitor the technical effects of efficiency.
  • the air quality monitoring equipment used in the prior art is generally not provided with the air intake device 1 and the heating assembly 11, and the air pump 3 is rarely provided, and only the air monitoring device 2 is provided to monitor the air quality.
  • Such a monitoring method has low monitoring efficiency , the amount of air entering the air monitoring device 2 is small, and the air intake is discontinuous, resulting in inaccurate and fuzzy air monitoring results, which will affect the evaluation results of air quality.
  • an air intake device 1 , a heating assembly 11 and an air pump 3 are provided, and the operation is controlled by a control device 4 and air quality monitoring results are collected.
  • the air is sucked by the air pump 3, and the air enters the air intake device 1 and the air monitoring device 2 in turn, and the air entering the air monitoring device 2 is hot air, which makes it easy to monitor the air quality and improve the monitoring accuracy.
  • the air intake volume of 3 can be adjusted.
  • the air intake volume inside the air monitoring device 2 is increased, so that the air can continuously enter, thereby improving the accuracy of air quality monitoring and facilitating the analysis of air quality monitoring results in the later stage and judgment.
  • the air quality monitoring equipment also includes a first Mounting bracket 5 and the second mounting bracket 6, the core unit formed by air intake device 1 and air monitoring device 2 is connected on the first mounting bracket 5; the control device 4 is connected on the second mounting bracket 6, and the first mounting bracket 5 and The second mounting bracket 6 is rotatably connected, and the air monitoring device 2 can be gradually exposed by rotating the second mounting bracket 6 in a direction away from the first mounting bracket 5 . By rotating the second mounting bracket 6, the air monitoring device 2 is gradually exposed. After being completely exposed, the air monitoring device 2 can be overhauled or maintained at this time.
  • the second mounting bracket 6 can be rotated in the opposite direction to reset it. , you can continue to use the device, by setting the first mounting bracket 5 and the second mounting bracket 6 that rotate with each other, it solves the problem that it is difficult to overhaul, maintain, or dismantle the air monitoring device 2 when the air monitoring device 2 is damaged or malfunctions. Install difficult technical issues.
  • the core units of the present application are the air intake device 1 and the air monitoring device 2, which are arranged on the first mounting bracket 5, and are relatively fixed between the air intake device 1 and the air monitoring device 2, so that both will not be affected. use.
  • the core unit is electrically connected to the control device 4 , and the core unit communicates with the air pump 3 through a pipeline 13 (air path or air pipe).
  • the first mounting bracket 5 is arranged in the vertical direction
  • the second mounting bracket 6 is arranged in the horizontal direction.
  • the included angle between 5 and the second mounting bracket 6 is about 90°
  • the first mounting bracket 5 or the second mounting bracket 6 is provided with a limiting member 65 for limiting the rotation angle of the second mounting bracket 6, that is, the first The state or angle after the rotation of the second mounting bracket 6 can be locked by the limiter 65, so that when the air monitoring device 2 is maintained in the later stage, the second mounting bracket 6 does not rotate and does not affect the maintenance operation.
  • the limiting member 65 may be a bolt or a screw.
  • the second mounting bracket 6 is a frame structure stacked up and down
  • the control device 4 is an electric control board, which is fixedly connected to the second mounting bracket 6 through connectors such as screws, preferably fixedly connected to the second mounting bracket 6 upper end.
  • the frame structure includes a circuit board support 61 hinged with the first mounting bracket 5, an adapter plate 62 arranged above the circuit board support 61, and a main control board 63 arranged above the adapter plate 62, and the control device 4 is arranged on the main control panel.
  • the upper end of the board 63, the main control board 63 and the adapter plate 62 are separated by a plurality of isolation columns 66, and the adapter plate 62 and the circuit board support 61 are also passed through a plurality of isolation columns 66 or other forms of pillars, etc.
  • Vertical arrangement which is equivalent to a kind of pillar
  • the isolation column 66 is a double-headed PC board isolation column.
  • the air intake device 1 includes a heating box 12, the cavity of the air intake device 1 is located inside the heating box 12, and the heating box 12 is provided with an air inlet and an air outlet that communicate with the outside of the heating box 12, and the heating box
  • the air outlet of 12 communicates with the air inlet of the air monitoring device 2, and the heating element 11 is arranged in the cavity, and the air flows into the air monitoring device 2 through the air outlet of the heating box 12 after being heated in the cavity.
  • the air in the inner cavity of the heating box 12 is heated by the heating assembly 11, it flows into the inside of the air monitoring device 2 from the air inlet of the air monitoring device 2, so that the air monitoring device 2 can monitor the quality of the hot air.
  • the heating box 12 is a box or box in the shape of a cuboid, which is hollow inside and has an air inlet and an air outlet.
  • the air inlet of the heating box 12 is used to allow external air to enter the Inside the heating box 12
  • the air inlet of the heating box 12 is provided with a filter screen or an insect-proof net, and the air outlet of the heating box 12 communicates with the air inlet of the air monitoring device 2 .
  • the outer wall of the heating box 12 is wrapped with a heat insulating layer, which can prevent the heating box 12 from being overheated and having a thermal impact on its external components.
  • the temperature sensor 112 is electrically connected to the control device 4 .
  • the temperature of the air inside the heating box 12 can be controlled, and the temperature of the heated air can be monitored in real time by the temperature sensor 112, so that the degree of heating can be grasped in real time, so that the air monitoring device 2 can be operated at a reasonable temperature.
  • the air quality can be monitored within a certain air temperature range, and more accurate monitoring results can be obtained.
  • the upper end of the heating box 12 is provided with a mounting hole, and the lower end is provided with an air inlet (that is, the air inlet for the above-mentioned filter screen or insect-proof net), and the heating rod 111 and the temperature sensor 112 pass through the mounting hole and are placed in the heating box. 12, the air pressure inside the heating box 12 will not be very large after heating, and may be slightly larger than the outside air pressure, but the heating box 12 will not explode.
  • the heating rod 111 is rod-shaped and plugged into the heating box 12.
  • the upper end of the heating rod 111 is fixedly connected to the upper end of the heating box 12. sexual connection.
  • the temperature sensor 112 is also plugged inside the heating box 12 to facilitate real-time monitoring of temperature data and transmit the temperature data to the control device 4 in real time.
  • the control device 4 in this embodiment is also electrically connected to a display (not shown in the figure), and the current air temperature data can be observed on the display, which is convenient for rationally controlling the heating degree of the heating rod 111 .
  • the display is also electrically connected to an alarm. If the temperature of the heated air is not within the preset temperature range, the control device 4 will send an instruction to the alarm, and the alarm will send an alarm signal.
  • FIGS. Assembly 23 the air inlet of the first particle sensor 21 is connected to the air outlet of the air intake device 1, the air outlet of the air chamber assembly 23 is connected to the air inlet of the air pump 3, and the air sucked by the air pump 3 passes through the air inlet device 1, the first A particle sensor 21 , a filter 22 and an air chamber assembly 23 are discharged from the air pump 3 .
  • the first particle sensor 21 is used to monitor the particles in the air, and the filter 22 can filter the particles such as impurities and dust in the air, so that the air entering the air chamber assembly 23 does not contain particles, so as to prevent the particles from being adsorbed in the air chamber assembly 23 and affecting Monitoring of other gases.
  • the above-mentioned first particle sensor 21 and filter 22 can all be products of the prior art, and communicate with each other through the pipeline 13 , and the specific operation principle thereof will not be repeated here.
  • each air chamber 232 is sealed with a sensor module 234, the sensor module 234 and the air chamber 232 form a closed chamber (that is, the top of the air chamber 232 is closed),
  • the sensor module 234 is adapted to monitor the quality of the air circulating in the airflow channel 233 in the closed chamber.
  • the base body 231 is in the shape of a cuboid, and a plurality of air chambers 232 (six in this embodiment) are uniformly distributed on the base body 231 .
  • the semi-closed air chamber 232 means that the top of the air chamber 232 is open.
  • the six air chambers 232 are sequentially connected in series, and the air chambers 232 located at both ends of the head and tail are respectively connected to the filter 22 and the air pump 3, so there are seven airflow channels 233, and the sensor module 234 is an air quality sensor for monitoring air quality. It includes three parts, and the three parts are set up and down in the air chamber 232 sequentially, and are connected with the base body 231 in a sealed manner.
  • the inside of the air chamber 232 is a stepped structure from top to bottom.
  • a gasket 235 is arranged inside the air chamber 232 and at the upper end of the stepped structure.
  • the air chamber 232 is hermetically connected.
  • the above-mentioned three parts include the first part which is located inside the air chamber 232 and is used in conjunction with the internal structure of the air chamber 232, the second part which is arranged on the upper part of the first part and which is in the shape of a ring, and the second part which is arranged inside the second part. And a third part used to cover the first part, the first part is a sensor for monitoring air quality.
  • PID sensor 236 in the last air chamber 232 where the air enters, and no other types of sensor modules 234 are installed in this air chamber 232.
  • the PID sensor 236 can monitor the volatile organic compounds (VOC) in the air more sensitively, PID
  • VOC volatile organic compounds
  • the sensor 236 is electrically connected to the control device 4, and the monitoring results of volatile organic compounds in the air can be received in real time on the control device 4.
  • the upper end of PID sensor 236 is provided with PID pressure ring 237, and PID pressure ring 237 is detachably connected with substrate 231 by screw, and its purpose is to compress PID sensor 236 inside air chamber 232, plays the effect of fixing PID sensor 236.
  • a first temperature and humidity sensor 239 sealingly connected with the base body 231 is arranged in the opening 238, and the first temperature and humidity sensor 239 is suitable for monitoring the temperature and humidity of the air in the closed chamber.
  • the first temperature and humidity sensor 239 is electrically connected to the control device 4, and can send air temperature and humidity data information to the control device 4 in real time, and the control device 4 can receive the air temperature and humidity data information immediately.
  • the first temperature and humidity sensor 239 can be disassembled from the opening 238.
  • the installation and disassembly operations are relatively easy, and finally the opening 238 can be sealed with a sealing member such as a sealing plate.
  • the first temperature and humidity sensor 239 has a convex plate-like structure, and is fixed in the groove at the bottom of the air chamber 232 (the groove is set at the bottom of the opening 238 ) by a plurality of screws and other fasteners.
  • the air quality monitoring device also includes a bottom plate 7, the intake The device 1 and the air monitoring device 2 are both arranged on the bottom plate 7, the air monitoring device 2 is also connected to the first mounting bracket 5, the position of the second mounting bracket 6 relative to the first mounting bracket 5 can be locked after rotation, and the air pump 3 is arranged on the bottom plate 7 on.
  • the bottom plate 7 is arranged horizontally, and the area of the bottom plate 7 is larger than the area of the first mounting bracket 5.
  • the bottom plate 7 can be regarded as a plate-like structure parallel to the second mounting bracket 6.
  • the bottom plate 7 is in air quality.
  • the base plate 7 is connected with a housing 8, the air monitoring device 2, the control device 4, the first mounting bracket 5 and Both the second mounting brackets 6 are arranged inside the casing 8 , and the air intake device 1 and the air pump 3 are both arranged outside the casing 8 .
  • the housing 8 mainly plays a protective role.
  • the housing 8 is located at the upper end of the base plate 7.
  • An arc-shaped metal mesh 9 is arranged at the lower end of the base plate 7.
  • a hollow shell 10 with a hollow structure is arranged on the outer layer of the metal net 9.
  • the hollow shell 10 It is also an arc structure, which matches the arc shape of the metal mesh 9, and the air outside the hollow shell 10 enters the air intake device 1 through the metal mesh 9, so as to facilitate various monitoring in the later stage.
  • the base plate 7 is located outside the housing 8 and is connected with multiple sets of second particulate matter sensors 110 and multiple sets of third particulate matter sensors 110.
  • the particle sensor 120, the second particle sensor 110 and the third particle sensor 120 are respectively suitable for monitoring the information of particles of different sizes in the air.
  • Fans are arranged on the second particle sensor 110 and the third particle sensor 120, and the fans are respectively used to The inside of the second particle sensor 110 and the inside of the third particle sensor 120 are exhausted to the outside, and both the second particle sensor 110 and the third particle sensor 120 are electrically connected to the control device 4 .
  • the particle sensor for monitoring large particles is a PM10 particle sensor
  • the particle sensor for monitoring small particles is a PM2.5 particle sensor.
  • a fan is provided inside the second particle sensor 110 and the third particle sensor 120, and the fan is exhausted from the inside of the second particle sensor 110 and the third particle sensor 120, so that the second particle sensor 110 and the third particle sensor Negative pressure is formed inside the three particulate matter sensors 120 , and outside air enters the interior of the second particulate matter sensor 110 and the third particulate matter sensor 120 through the air inlets of the second particulate matter sensor 110 and the third particulate matter sensor 120 under negative pressure for testing.
  • the fan in this embodiment can form an integrated component with the second particle sensor 110 or the third particle sensor 120 .
  • a hollow casing 130 is provided at the bottom of the base plate 7 , and the second particle sensor 110 and the third particle sensor 120 are both disposed inside the hollow casing 130 .
  • a CMOS (Complementary Metal-Oxide-Semiconductor, Complementary Metal-Oxide-Semiconductor) sensor 140 is also provided on the base plate 7 , and the CMOS sensor 140 is electrically connected to the control device 4 .
  • the base plate 7 is provided with an indicator light board 150, and an indicator light and a switch are welded on the indicator light plate 150.
  • the indicator light is used to indicate the working state of the monitoring equipment, and the switch is used to open and close the backup battery inside the monitoring equipment (the backup battery is Refers to the lithium battery installed inside the monitoring equipment, which is used to maintain the monitoring equipment when the power is cut off or insufficient).
  • the indicator light and the switch are electrically connected with the control device 4 respectively.
  • a second temperature and humidity sensor is also provided on the base plate 7, the second temperature and humidity sensor is electrically connected to the control device 4 and can send air temperature and humidity information to the control device 4, and the main function of the second temperature and humidity sensor is to monitor the air monitoring device 2. External air quality.
  • a temperature and humidity protection shell 160 is provided on the bottom plate 7, and the second temperature and humidity sensor is arranged inside the temperature and humidity protection shell 160. The temperature and humidity protection shell 160 plays a role in controlling the second temperature and humidity sensor. to the protective effect.
  • sealing connection and sealing gasket 235 can adopt sealing elements in the prior art, such as fluorine rubber gasket, sealing gasket, silica gel gasket, O-ring, etc., and can be selectively used at reasonable positions.
  • the gas paths or pipelines are connected to each other.
  • An elbow 14 is provided at the position where the pipeline 13 needs to pass through the bottom plate 7.
  • An elbow 14 is also provided at the end of the pipeline 13.
  • the elbow 14 realizes the air intake device 1, air
  • the connection between the monitoring device 2 and the air pump 3, that is, the elbow 14 is located in the middle or end of the pipeline 13, and is integrated with the pipeline 13, and the inside can be ventilated.
  • the elbow 14 and the bottom plate 7 are connected to each other, so that the pipe The channels 13 are in direct contact with the base plate 7 .
  • the air pumps 3 are arranged at the bottom of the base plate 7, and the air pumps 3 are arranged in two groups in parallel, respectively communicating with the gas outlets of the air chamber assembly 23, and one of the air pumps 3 is for standby. When one air pump 3 fails to operate or breaks down, another air pump 3 is started, and the other air pump 3 can suck air after operation, thereby realizing continuous monitoring of air quality.
  • the housing 8 is located at the upper end of the bottom plate 7, and includes an inner shell 81 connected to the bottom plate 7, an outer shell 82 connected to the bottom plate 7, and an upper cover connected to the upper end of the outer shell 82 by a plurality of screws and other connectors.
  • the inner shell 81 is located inside the outer shell 82, the inner shell 81 and the outer shell 82 are arranged at intervals, the inner shell 81 and the upper cover 83 are arranged at intervals, and are formed between the inner shell 81 and the outer shell 82, and between the inner shell 81 and the upper cover 83
  • the heat insulation cavity further plays a role of heat insulation for the air monitoring device 2, preventing the ambient temperature outside the housing 8 from affecting the air quality monitoring of the air monitoring device 2, and improving the accuracy of air monitoring.
  • the present application also includes a photovoltaic power supply assembly (not shown in the figure), the photovoltaic power supply assembly includes a solar panel, a controller and a storage battery that are electrically connected in sequence, and the solar panel is arranged at the bottom of the bottom plate 7 or the outer surface of the housing 8 Above, the controller and the storage battery are arranged inside the casing 8, the controller is used to convert solar energy into electrical energy, and the storage battery is used to store electrical energy and provide power for the loads mentioned above (eg, the heating component 11, the air pump 3, etc.).
  • a control device 4 is connected between the storage battery and the load, and through the control of the control device 4, automatic power supply to the load can be realized.
  • the control device 4 is provided with a power supply switch (not shown in the figure) for controlling whether to supply power to the load, and whether to perform power supply can be controlled by manually or automatically operating the power supply switch.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Dispersion Chemistry (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

一种空气质量监测设备,属于空气质量监测技术领域,包括进气装置(1)、空气监测装置(2)、气泵(3)和控制装置(4),气泵(3)抽吸空气,空气依次通过进气装置(1)和空气监测装置(2),进气装置(1)内的加热组件(11)对空气加热后便于空气监测装置(2)监测空气质量,控制装置(4)控制加热组件(11)和气泵(3)运行并接收空气监测装置(2)监测到的空气质量信息。该设备通过控制装置(4)控制运行,气泵(3)抽吸空气,具有空气质量监测操作方便,空气采样量可控,可连续采样和连续监测,监测信息易收集和提高监测效率的技术效果。

Description

空气质量监测设备
本专利申请要求于2021年12月27日提交的中国专利申请No.CN202111613818.7的优先权。在先申请的公开内容通过整体引用并入本申请。
技术领域
本申请属于空气质量监测技术领域,更具体地说,涉及一种空气质量监测设备。
背景技术
空气质量监测,是指对空气质量的好坏进行监测,空气质量的好坏反映了空气中污染物浓度的高低,空气污染是一个复杂的现象,在特定时间和地点空气污染物浓度受到许多因素影响。来自固定和流动污染源的人为污染物排放大小是影响空气质量的最主要因素之一,其中包括车辆等尾气、工业企业生产排放、垃圾焚烧等。
空气质量监测设备,又称空气站,空气站的功能是对存在于空气中的污染物质进行定点、连续或者定时的采样、检测和分析,包括室内监测和室外监测。但是现有的空气质量监测设备在使用采样量少,采样不连续,导致空气质量监测效率低,监测结果存在不精确的现象。
技术问题
本申请的目的在于提供一种空气质量监测设备,旨在解决现有技术的空气质量监测设备对空气质量监测时采样量不连续,监测效率低的技术问题。
技术解决方案
为实现上述目的,本申请采用的技术方案是:提供一种空气质量监测设备,包括进气装置、空气监测装置、气泵和控制装置,所述进气装置内部具有适于空气进入的空腔,在所述空腔内设有用于加热空气的加热组件;所述空气监测装置的进气口连通所述空腔的出气口,所述空气监测装置用于监测加热后的空气质量;所述气泵的进气口连通所述空气监测装置的出气口,所述气泵适于抽吸空气且抽吸的空气通过所述进气装置进入所述空气监测装置内;所述控制装置适于控制所述加热组件和所述气泵运行,并接收所述空气监测装置监测的空气质量信息。
在一种可能的实现方式中,所述空气质量监测设备还包括第一安装支架和第二安装支架,所述进气装置和所述空气监测装置形成的核心单元连接于所述第一安装支架上;所述控制装置连接于所述第二安装支架上,所述第一安装支架与所述第二安装支架转动配合连接,向远离所述第一安装支架的方向转动所述第二安装支架可逐渐露出所述空气监测装置。
在一种可能的实现方式中,所述进气装置包括加热盒,所述空腔设于所述加热盒内,所述加热盒上设有连通所述加热盒外部的进气口和出气口,所述加热盒的出气口连通所述空气监测装置的进气口,所述加热组件设于所述空腔内,空气在所述空腔内被加热后流入所述空气监测装置。
在一种可能的实现方式中,所述加热组件包括加热棒和温度传感器,所述加热棒的加热启停受控于所述控制装置,所述温度传感器与所述控制装置电连接。
在一种可能的实现方式中,所述空气监测装置包括依次连通的第一颗粒物传感器、过滤器和气室组件,所述第一颗粒物传感器的进气口连通所述进气装置的出气口,所述气室组件的出气口连通所述气泵的进气口,所述气泵抽吸的空气依次通过所述进气装置、所述第一颗粒物传感器、所述过滤器和所述气室组件并从所述气泵排出。
在一种可能的实现方式中,所述气室组件包括基体、多个形成于所述基体上的半封闭的气室以及设于所述基体内且串联连通多个所述气室的气流通道,每个所述气室内均密封设有传感器模块,所述传感器模块与所述气室形成封闭腔室,所述传感器模块适于监测封闭腔室内流通在所述气流通道内的空气的质量。
在一种可能的实现方式中,其中一个或多个所述气室的底部具有开口,所述开口连通所述基体的外部,所述开口内设有与所述基体密封连接的第一温湿度传感器,所述第一温湿度传感器适于监测封闭腔室内空气的温度和湿度。
在一种可能的实现方式中,所述空气质量监测设备还包括底板,所述进气装置和所述空气监测装置均设于所述底板上,所述空气监测装置还连接于所述第一安装支架,所述第二安装支架相对所述第一安装支架转动后的位置可锁定,所述气泵设于所述底板上。
在一种可能的实现方式中,所述底板上连接有壳体,所述空气监测装置、所述控制装置、所述第一安装支架和所述第二安装支架均设于所述壳体内部,所述进气装置和所述气泵均设于所述壳体外。
在一种可能的实现方式中,所述底板上位于所述壳体外连接有多组第二颗粒物传感器和多组第三颗粒物传感器,所述第二颗粒物传感器和所述第三颗粒物传感器分别适于监测空气中不同大小颗粒物的信息,所述第二颗粒物传感器和所述第三颗粒物传感器上设有风扇,所述风扇适于从所述第二颗粒物传感器的内部和所述第三颗粒物传感器的内部向外排气,使所述第二颗粒物传感器和所述第三颗粒物传感器的内部形成负压,所述第二颗粒物传感器和所述第三颗粒物传感器均与所述控制装置电连接。
有益效果
与现有技术相比,本申请空气质量监测设备包括进气装置、空气监测装置、气泵和控制装置,气泵抽吸空气,空气依次通过进气装置和空气监测装置,进气装置内的加热组件对空气加热,便于空气监测装置监测空气质量,控制装置控制加热组件和气泵运行并接收空气监测装置监测到的空气质量信息。本申请提供的空气质量监测设备,通过控制装置控制运行,气泵抽吸空气,具有空气质量监测操作方便,空气采样量可控,可连续采样和连续监测,监测信息易收集和提高空气质量监测效率的技术效果。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的空气质量监测设备的立体结构示意图一;
图2为本申请实施例提供的空气质量监测设备的立体结构示意图二;
图3为本申请实施例提供的空气质量监测设备去掉壳体的内部结构示意图一;
图4为本申请实施例提供的空气质量监测设备去掉壳体的内部结构示意图二;
图5为本申请实施例提供的空气质量监测设备的气室组件的结构示意图;
图6为图5中的气室组件去掉传感器模块的第三零件的结构示意图;
图7为图5中的气室组件去掉传感器模块的结构示意图;
图8为图5中的气室组件的仰视结构示意图;
图9为图8中的气室组件中去掉第一温湿度传感器的结构示意图;
图10为本申请实施例提供的空气质量监测设备去掉外壳和镂空壳的结构示意图;
图11为本申请实施例提供的空气质量监测设备的俯视图;
图12为本申请实施例提供的空气质量监测设备的第一安装支架和第二安装支架结构示意图;
图13为图12的另一视角结构示意图;
图14为本申请实施例提供的空气质量监测设备的进气装置的结构示意图;
图15为本申请实施例提供的空气质量监测设备的整体外观示意图。
附图标记说明:
1、进气装置;11、加热组件;111、加热棒;112、温度传感器;12、加热盒;13、管路;14、弯头;2、空气监测装置;21、第一颗粒物传感器;22、过滤器;23、气室组件;231、基体;232、气室;233、气流通道;234、传感器模块;235、密封垫;236、PID传感器;237、PID压环;238、开口;239、第一温湿度传感器;3、气泵;4、控制装置;5、第一安装支架;6、第二安装支架;61、电路板支架;62、转接板;63、主控板;64、转轴;65、限位件;66、隔离柱;7、底板;8、壳体;81、内壳;82、外壳;83、上盖;9、金属网;10、镂空壳;110、第二颗粒物传感器;120、第三颗粒物传感器;130、镂空外壳;140、CMOS传感器;150、指示灯板;160、温湿度保护壳。
本申请的实施方式
为了使本申请所要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
请一并参阅图1至图15,现对本申请提供的空气质量监测设备进行说明。所述空气质量监测设备,包括进气装置1、空气监测装置2、气泵3和控制装置4,进气装置1内部具有适于空气进入的空腔,在空腔内设有用于加热空气的加热组件11;空气监测装置2的进气口连通空腔的出气口,空气监测装置2用于监测加热后的空气质量;气泵3的进气口连通空气监测装置2的出气口,适于抽吸空气且抽吸的空气通过进气装置1进入空气监测装置2内;控制装置4适于控制加热组件11和气泵3运行,并接收空气监测装置2监测的空气质量信息。
本申请提供的空气质量监测设备,与现有技术相比,本申请空气质量监测设备包括进气装置1、空气监测装置2、气泵3和控制装置4,气泵3抽吸空气,空气依次通过进气装置1和空气监测装置2,进气装置1内的加热组件11对空气加热,便于空气监测装置2监测空气质量,控制装置4控制加热组件11和气泵3运行并接收空气监测装置2监测到的空气质量信息。本申请提供的空气质量监测设备,通过控制装置4控制运行,气泵3抽吸空气,具有空气质量监测操作方便,空气采样量可控,可连续采样和连续监测,监测信息易收集和提高空气质量监测效率的技术效果。
现有技术中使用的空气质量监测设备,一般不设置进气装置1和加热组件11,而且也很少设置气泵3,只设置空气监测装置2对空气质量进行监测,这样的监测方式监测效率低,空气监测装置2内部的空气进入量较少,且进气不连续,导致对空气的监测结果不精准、模糊的现象,这样会影响对空气质量的评判结果。本申请设置进气装置1、加热组件11和气泵3,通过控制装置4控制运行和收集空气质量监测结果。具体地,通过气泵3抽吸空气,空气依次进入到进气装置1和空气监测装置2内,进入空气监测装置2的空气为热空气,这样容易对空气质量进行监测,提高监测精准度,气泵3的进气量可调节,通过使用气泵3,增大空气监测装置2内部的空气进入量,使得空气可以持续进入,从而提高了空气质量监测的精准度,便于后期对空气质量监测结果的分析和判断。
当空气监测装置2发生损坏或故障时,为了容易检修或观察空气监测装置2,则在一些实施例中,请参阅图3、图4、图12和图13,空气质量监测设备还包括第一安装支架5和第二安装支架6,进气装置1和空气监测装置2形成的核心单元连接于第一安装支架5上;控制装置4连接于第二安装支架6上,第一安装支架5与第二安装支架6转动配合连接,向远离第一安装支架5的方向转动第二安装支架6可逐渐露出空气监测装置2。通过转动第二安装支架6,空气监测装置2逐渐露出,待完全露出后,此时可对空气监测装置2进行检修或维护,当检修完毕后,可反向转动第二安装支架6使其复位,则可继续使用本设备,通过设置相互转动的第一安装支架5和第二安装支架6,解决了当空气监测装置2发生损坏或故障时,难以对空气监测装置2进行检修或维护、拆装困难的技术问题。
具体的,本申请的核心单元就是进气装置1和空气监测装置2,将其设置在第一安装支架5上,进气装置1和空气监测装置2之间相对固定,则不会影响两者使用。核心单元与控制装置4为电性连接,核心单元与气泵3之间通过管路13(气路或气管)连通。
通常情况下,第一安装支架5沿竖直方向设置,第二安装支架6沿水平方向设置,第一安装支架5的上端通过转轴64与第二安装支架6的一端转动连接,第一安装支架5与第二安装支架6之间的夹角约为90°,在第一安装支架5或第二安装支架6上设有用于限制第二安装支架6的转动角度的限位件65,即第二安装支架6转动后的状态或角度可通过该限位件65锁定,这样在后期对空气监测装置2维修时,第二安装支架6不发生转动,不影响检修操作。在本实施例中限位件65可选为螺栓或螺丝。
具体的,第二安装支架6为上下层叠的框架结构,控制装置4为一种电控板,通过如螺丝等连接件固定连接在第二安装支架6上,优选为固定连接在第二安装支架6的上端。
该框架结构包括与第一安装支架5铰接的电路板支架61、设置在电路板支架61上方的转接板62以及设置在转接板62上方的主控板63,控制装置4设置在主控板63的上端,主控板63与转接板62之间通过多个隔离柱66相隔设置,转接板62与电路板支架61之间也通过多个隔离柱66或其他形式的支柱等(竖向设置,相当于一种支柱)相隔设置,因此电路板支架61、转接板62和主控板63共同形成了该框架结构。隔离柱66为双头PC板隔离柱。
为了使进气装置1可以对空气加热,而且最大限度保证加热后的空气温度在预设范围内(可在控制装置4上预设温度范围),则在一些实施例中,请参阅图3、图4和图14,进气装置1包括加热盒12,进气装置1的空腔设于加热盒12内部,加热盒12上设有连通加热盒12外部的进气口和出气口,加热盒12的出气口连通空气监测装置2的进气口,加热组件11设于空腔内,空气在空腔内被加热后通过加热盒12的出气口流入空气监测装置2。加热盒12内部空腔的空气被加热组件11加热后,从空气监测装置2的进气口流入到空气监测装置2内部,便于空气监测装置2对热空气的质量进行监测。
在本实施例中,加热盒12为一种呈长方体形状的盒体或箱体,其内部为中空,具有进气口和出气口,加热盒12的进气口用来使外部的空气进入到加热盒12内部,加热盒12的进气口处设有过滤网或防虫网,加热盒12的出气口与空气监测装置2的进气口连通。优选的,在加热盒12的外壁上包裹有隔热层,这样可以防止加热盒12温度过高,对其外部的部件产生热影响。
为了使加热组件11在加热盒12内部容易加热空气和方便控制加热温度,则在一些实施例中,请参阅图14,加热组件11包括加热棒111和温度传感器112,加热棒111的加热启停受控于控制装置4,温度传感器112与控制装置4电连接。通过控制装置4控制加热棒111的加热启停,则能控制加热盒12内部空气温度,通过温度传感器112实时的监测加热后的空气温度,可以实时掌握加热程度,便于空气监测装置2能够在合理的空气温度范围内对空气质量进行监测,以及能够获取更加精准的监测结果。加热盒12的上端设有安装孔,下端设有进气口(即为上述设置过滤网或防虫网的进气口),加热棒111和温度传感器112均穿过该安装孔并置于加热盒12内部,对加热盒12内部空气加热后空气压力不会很大,可能会比外界空气压力略大,但是不会使加热盒12发生爆炸等。
具体的,加热棒111呈棒状,插接在加热盒12内部,加热棒111上端与加热盒12的上端固定连接,加热棒111上的线束从加热盒12的上端引出、并与控制装置4电性连接。而温度传感器112也是插接在加热盒12内部,便于实时监测温度数据,并可将温度数据实时传递给控制装置4。
本实施例中的控制装置4还电性连接有显示器(在图中未示出),在显示器上可以观察到当前的空气温度数据,便于合理控制加热棒111的加热程度。该显示器还电性连接有报警器,若加热后的空气温度不在预设温度范围内,则控制装置4会向报警器发出指示,则报警器发出报警信号。
为了实现空气监测装置2实时监测空气质量,提高监测精准度,则在一些实施例中,请参阅图3至图4,空气监测装置2包括依次连通的第一颗粒物传感器21、过滤器22和气室组件23,第一颗粒物传感器21的进气口连通进气装置1的出气口,气室组件23的出气口连通气泵3的进气口,气泵3抽吸的空气依次通过进气装置1、第一颗粒物传感器21、过滤器22和气室组件23并从气泵3排出。第一颗粒物传感器21用于监测空气中的颗粒物,过滤器22能够过滤空气中的杂质、粉尘等颗粒物,使进入气室组件23的空气中不含颗粒物,以免颗粒物吸附在气室组件23内影响其他气体的监测。
具体的,上述的第一颗粒物传感器21、过滤器22均可采用现有技术产品,相互之间通过管路13连通,其具体操作原理在此不再赘述。
为了使空气质量监测结果更加精准,则在一些实施例中,请参阅图5至图9,气室组件23包括基体231、多个形成于基体231上的半封闭的气室232以及设于基体231内且串联连通多个气室232的气流通道233,每个气室232内均密封设有传感器模块234,传感器模块234与气室232形成封闭腔室(即气室232的顶部封闭),传感器模块234适于监测封闭腔室内流通在气流通道233的空气的质量。
具体的,基体231呈长方体形状,在基体231上均布有多个气室232(在本实施例中为六个),半封闭的气室232是指气室232的顶部是敞开式的。六个气室232依次串联连通,位于首尾两端的气室232分别连通过滤器22和气泵3,则气流通道233为七个,传感器模块234为一种用于监测空气质量的空气质量传感器,其包括三个零件,三个零件上下依次设置在气室232内,并与基体231实现密封连接。气室232内部从上向下呈台阶型结构,在气室232内部且位于该台阶型结构上端设有密封垫235,该密封垫235与传感器模块234的底端密封接触,实现传感器模块234与气室232密封连接。上述三个零件包括位于气室232内部的与气室232内部结构配套使用的第一零件、设置在第一零件上部的呈圆环形的第二零件以及设置在第二零件内部且用于封盖第一零件的第三零件,第一零件为一种传感器,用来监测空气质量。
空气进入的最后一个气室232内设有PID传感器236,此气室232内不再设置其他种类的传感器模块234,通过PID传感器236可以更加灵敏的监测空气中挥发性有机化合物(VOC),PID传感器236与控制装置4电性连接,在控制装置4上可实时接收到空气中挥发性有机化合物的监测结果。在PID传感器236的上端设有PID压环237,PID压环237通过螺丝与基体231可拆卸连接,其目的是将PID传感器236压紧在气室232内部,起到固定PID传感器236的作用。
为了实现在气室组件23上进一步监测空气中的温度和湿度,则在一些实施例中,请参阅图8至图9,其中一个或多个气室232的底部具有开口238,开口238连通基体231的外部,开口238内设有与基体231密封连接的第一温湿度传感器239,第一温湿度传感器239适于监测封闭腔室内空气的温度和湿度。一般情况下,在一个气室232内部设置一个第一温湿度传感器239即可,这样可以判断流通在气室232内的空气的温度和湿度。
具体的,第一温湿度传感器239与控制装置4电性连接,并可实时向控制装置4发送空气温湿度数据信息,控制装置4可第一时间收到空气温湿度数据信息。当不需要使用第一温湿度传感器239时,可将其从开口238处拆卸下来,安装和拆卸操作比较容易,最后用密封板等密封件将该开口238密封即可。第一温湿度传感器239呈凸字型的平板状结构,通过多个螺丝等紧固件固定在气室232底部的凹槽内(凹槽开设在开口238的底部)。
为了实现第二安装支架6相对于第一安装支架5更好的转动,在一些实施例中,请参阅图3、图4、图12和图13,空气质量监测设备还包括底板7,进气装置1和空气监测装置2均设于底板7上,空气监测装置2还连接于第一安装支架5,第二安装支架6相对第一安装支架5转动后的位置可锁定,气泵3设于底板7上。通常情况下,底板7呈水平状设置,底板7的面积要大于第一安装支架5的面积,底板7可看成是与第二安装支架6相互平行的板状结构,底板7是在空气质量监测设备内起到主要支撑作用的核心部件。
为了保护空气监测装置2等,则在一些实施例中,请参阅图1、图2和图10,底板7上连接有壳体8,空气监测装置2、控制装置4、第一安装支架5和第二安装支架6均设于壳体8内部,进气装置1和气泵3均设于壳体8外。壳体8主要起保护作用,壳体8位于底板7的上端,在底板7的下端设有弧形的金属网9,在金属网9的外层设有镂空结构的镂空壳10,镂空壳10也为弧形结构,与金属网9的弧形相适配,位于镂空壳10外部的空气通过金属网9进入到进气装置1内,以便后期各种监测等。
为了方便对外界环境空气中颗粒物监测,则在一些实施例中,请参阅图3、图4和图10,底板7上位于壳体8外连接有多组第二颗粒物传感器110和多组第三颗粒物传感器120,第二颗粒物传感器110和第三颗粒物传感器120分别适于监测空气中不同大小颗粒物的信息,在第二颗粒物传感器110和第三颗粒物传感器120上均设有风扇,风扇分别用于从第二颗粒物传感器110的内部和第三颗粒物传感器120的内部向外排气,第二颗粒物传感器110和第三颗粒物传感器120均与控制装置4电连接。监测大颗粒的颗粒物传感器为PM10颗粒物传感器,监测小颗粒的颗粒物传感器为PM2.5颗粒物传感器。优选的,在第二颗粒物传感器110和第三颗粒物传感器120内部都设有风扇,通过风扇从第二颗粒物传感器110和第三颗粒物传感器120的内部向外排气,使第二颗粒物传感器110和第三颗粒物传感器120的内部形成负压,外界气体在负压下通过第二颗粒物传感器110和第三颗粒物传感器120的进气口进入其内部进行测试。从而颗粒物传感器可以快速、精准的监测空气质量。本实施例中的风扇可与第二颗粒物传感器110或第三颗粒物传感器120组成一体式组件。
在底板7底端设有镂空外壳130,第二颗粒物传感器110和第三颗粒物传感器120均设于该镂空外壳130内部。
在底板7上还设有CMOS(Complementary Metal-Oxide-Semiconductor,互补金属氧化物半导体)传感器140,CMOS传感器140与控制装置4电性连接。在底板7上设有指示灯板150,指示灯板150上焊接有指示灯和开关,指示灯用于指示监测设备的工作状态,开关用于开启和关闭监测设备内部的备用电池(备用电池是指监测设备内部安装的锂电池,用于在断电或供电不足时维持监测设备工作)。指示灯和开关分别与控制装置4电性连接。在底板7上还设有第二温湿度传感器,第二温湿度传感器与控制装置4电性连接并可向控制装置4发送空气温湿度信息,该第二温湿度传感器主要作用是监测空气监测装置2外部的空气质量,在具体使用中,在底板7上设有温湿度保护壳160,第二温湿度传感器设置在该温湿度保护壳160内部,温湿度保护壳160对第二温湿度传感器起到保护的作用。
上述的密封连接处和密封垫235均可采用现有技术中的密封件,如氟胶垫,密封垫圈、硅胶垫、O型圈等样式,在合理的位置选择性使用即可。
进气装置1与第一颗粒物传感器21之间、第一颗粒物传感器21与过滤器22之间、过滤器22与气室232之间、气室232与气泵3之间都是通过管路13或气路或管道等相互连通,在管路13需要穿过底板7的位置设有弯头14,在管路13的端部也设有弯头14,弯头14实现了进气装置1、空气监测装置2和气泵3的连接,即弯头14位于管路13的中部位置或端部,与管路13为一体式结构,内部可以通气,弯头14与底板7相互连接,这样能够避免管路13与底板7直接接触。
气泵3设置在底板7底部,气泵3并联设置为两组,分别与气室组件23的气体出口连通,其中一个气泵3为备用。当一个气泵3无法运行或出现故障时,则启动另一个气泵3,另一个气泵3运行后可抽吸空气,实现了空气质量的不间断监测。
如图1和图15所示,壳体8位于底板7上端,包括连接于底板7的内壳81、连接于底板7的外壳82以及通过多个螺丝等连接件连接在外壳82上端的上盖83,内壳81位于外壳82内部,内壳81与外壳82间隔设置、内壳81与上盖83间隔设置,且在内壳81与外壳82之间、内壳81与上盖83之间形成隔热空腔,进而起到对空气监测装置2隔热的作用,防止壳体8外部的环境温度对空气监测装置2的空气质量监测产生影响,提高了空气监测的精准度。
本申请还包括光伏供电组件(在图中未示出),光伏供电组件包括依次电性连接的太阳能电池板、控制器和蓄电池,太阳能电池板设置在底板7的底端或壳体8外表面上,控制器和蓄电池设置在壳体8内部,控制器用于将太阳能转化为电能,蓄电池用于储存电能,并为上述负载(例如,加热组件11、气泵3等)供电。蓄电池与负载之间连接有控制装置4,通过控制装置4的控制,可实现对负载的自动供电。控制装置4上设有用于控制是否向负载供电的供电开关(在图中未示出),通过人工或自动操作该供电开关,就可以控制是否执行供电。
以上所述仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 空气质量监测设备,其特征在于,包括:
    进气装置,内部具有适于空气进入的空腔,在所述空腔内设有用于加热空气的加热组件;
    空气监测装置,进气口连通所述空腔的出气口,用于监测加热后的空气质量;
    气泵,进气口连通所述空气监测装置的出气口,适于抽吸空气且抽吸的空气通过所述进气装置进入所述空气监测装置内;以及
    控制装置,适于控制所述加热组件和所述气泵运行,并接收所述空气监测装置监测的空气质量信息。
  2. 如权利要求1所述的空气质量监测设备,其特征在于,还包括:
    第一安装支架,所述进气装置和所述空气监测装置形成的核心单元连接于所述第一安装支架上;以及
    第二安装支架,所述控制装置连接于所述第二安装支架,所述第一安装支架与所述第二安装支架转动配合连接,向远离所述第一安装支架的方向转动所述第二安装支架可逐渐露出所述空气监测装置。
  3. 如权利要求1所述的空气质量监测设备,其特征在于,所述进气装置包括加热盒,所述空腔设于所述加热盒内,所述加热盒上设有连通所述加热盒外部的进气口和出气口,所述加热盒的出气口连通所述空气监测装置的进气口,所述加热组件设于所述空腔内,空气在所述空腔内被加热后流入所述空气监测装置。
  4. 如权利要求1所述的空气质量监测设备,其特征在于,所述加热组件包括加热棒和温度传感器,所述加热棒的加热启停受控于所述控制装置,所述温度传感器与所述控制装置电连接。
  5. 如权利要求1所述的空气质量监测设备,其特征在于,所述空气监测装置包括依次连通的第一颗粒物传感器、过滤器和气室组件,所述第一颗粒物传感器的进气口连通所述进气装置的出气口,所述气室组件的出气口连通所述气泵的进气口,所述气泵抽吸的空气依次通过所述进气装置、所述第一颗粒物传感器、所述过滤器和所述气室组件并从所述气泵排出。
  6. 如权利要求5所述的空气质量监测设备,其特征在于,所述气室组件包括基体、多个形成于所述基体上的半封闭的气室以及设于所述基体内且串联连通多个所述气室的气流通道,每个所述气室内均密封设有传感器模块,所述传感器模块与所述气室形成封闭腔室,所述传感器模块适于监测封闭腔室内流通在所述气流通道内的空气的质量。
  7. 如权利要求6所述的空气质量监测设备,其特征在于,一个或多个所述气室的底部具有开口,所述开口连通所述基体的外部,所述开口内设有与所述基体密封连接的第一温湿度传感器,所述第一温湿度传感器适于监测封闭腔室内空气的温度和湿度。
  8. 如权利要求2所述的空气质量监测设备,其特征在于,所述空气质量监测设备还包括底板,所述进气装置和所述空气监测装置均设于所述底板上,所述空气监测装置还连接于所述第一安装支架,所述第二安装支架相对所述第一安装支架转动后的位置可锁定,所述气泵设于所述底板上。
  9. 如权利要求8所述的空气质量监测设备,其特征在于,所述底板上连接有壳体,所述空气监测装置、所述控制装置、所述第一安装支架和所述第二安装支架均设于所述壳体内部,所述进气装置和所述气泵均设于所述壳体外。
  10. 如权利要求9所述的空气质量监测设备,其特征在于,所述底板上位于所述壳体外连接有多组第二颗粒物传感器和多组第三颗粒物传感器,所述第二颗粒物传感器和所述第三颗粒物传感器分别适于监测空气中不同大小颗粒物的信息,所述第二颗粒物传感器和所述第三颗粒物传感器上均设有风扇,所述风扇分别用于从所述第二颗粒物传感器的内部和所述第三颗粒物传感器的内部向外排气,所述第二颗粒物传感器和所述第三颗粒物传感器均与所述控制装置电连接。
PCT/CN2022/120711 2021-12-27 2022-09-23 空气质量监测设备 WO2023124297A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111613818.7 2021-12-27
CN202111613818.7A CN114279917A (zh) 2021-12-27 2021-12-27 空气质量监测设备

Publications (1)

Publication Number Publication Date
WO2023124297A1 true WO2023124297A1 (zh) 2023-07-06

Family

ID=80876052

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/120711 WO2023124297A1 (zh) 2021-12-27 2022-09-23 空气质量监测设备

Country Status (2)

Country Link
CN (1) CN114279917A (zh)
WO (1) WO2023124297A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118050219A (zh) * 2024-04-16 2024-05-17 陕西省环境调查评估中心 一种空气监测报警装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114279917A (zh) * 2021-12-27 2022-04-05 河北先河环保科技股份有限公司 空气质量监测设备
CN114280243A (zh) * 2021-12-27 2022-04-05 河北先河环保科技股份有限公司 控制单元及空气质量监测设备
CN115656420B (zh) * 2022-08-15 2024-04-16 北京华创维想科技开发有限责任公司 一种空气质量监测仪器

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104360419A (zh) * 2014-11-20 2015-02-18 北京中立格林控制技术有限公司 多参数传感模块
CN205353055U (zh) * 2016-01-25 2016-06-29 恒天益科技(深圳)有限公司 一种环境空气质量监测仪
CN208013174U (zh) * 2018-02-10 2018-10-26 泛测(北京)环境科技有限公司 一种空气监测仪
CN208313935U (zh) * 2018-05-28 2019-01-01 河北先河环保科技股份有限公司 移动空气质量传感网络监测仪
CN212180683U (zh) * 2020-04-14 2020-12-18 怡升科技(大连)有限公司 一种用于厂界有毒有害气体在线监测仪器
CN112147280A (zh) * 2020-09-04 2020-12-29 北京英视睿达科技有限公司 环境空气监测的传感器远程校准方法及环境空气质量监测装置
CN113567620A (zh) * 2021-07-13 2021-10-29 重庆亿森动力环境科技有限公司 一种室外微型空气监测装置
CN113588358A (zh) * 2021-08-31 2021-11-02 重庆亿森动力环境科技有限公司 一种空气监测进排气装置和进排气方法
US20210364485A1 (en) * 2020-05-22 2021-11-25 Ademco Inc. Air quality monitor
CN114279917A (zh) * 2021-12-27 2022-04-05 河北先河环保科技股份有限公司 空气质量监测设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110567528A (zh) * 2019-09-27 2019-12-13 软通动力信息技术有限公司 空气质量监测系统和平台
CN212228873U (zh) * 2020-03-31 2020-12-25 苏州名门世家建筑装饰设计工程有限公司 一种室内装修用甲醛检测装置
CN213580569U (zh) * 2020-09-18 2021-06-29 淮南润成科技股份有限公司 设置有恒温加热装置的微型空气质量检测装置
CN214584723U (zh) * 2021-01-26 2021-11-02 深圳市子元工业技术有限公司 一种抽取式粉尘粒子检测分析仪
CN215173822U (zh) * 2021-07-14 2021-12-14 陕西盛中建环境科技有限公司 一种用于工地的大气检测装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104360419A (zh) * 2014-11-20 2015-02-18 北京中立格林控制技术有限公司 多参数传感模块
CN205353055U (zh) * 2016-01-25 2016-06-29 恒天益科技(深圳)有限公司 一种环境空气质量监测仪
CN208013174U (zh) * 2018-02-10 2018-10-26 泛测(北京)环境科技有限公司 一种空气监测仪
CN208313935U (zh) * 2018-05-28 2019-01-01 河北先河环保科技股份有限公司 移动空气质量传感网络监测仪
CN212180683U (zh) * 2020-04-14 2020-12-18 怡升科技(大连)有限公司 一种用于厂界有毒有害气体在线监测仪器
US20210364485A1 (en) * 2020-05-22 2021-11-25 Ademco Inc. Air quality monitor
CN112147280A (zh) * 2020-09-04 2020-12-29 北京英视睿达科技有限公司 环境空气监测的传感器远程校准方法及环境空气质量监测装置
CN113567620A (zh) * 2021-07-13 2021-10-29 重庆亿森动力环境科技有限公司 一种室外微型空气监测装置
CN113588358A (zh) * 2021-08-31 2021-11-02 重庆亿森动力环境科技有限公司 一种空气监测进排气装置和进排气方法
CN114279917A (zh) * 2021-12-27 2022-04-05 河北先河环保科技股份有限公司 空气质量监测设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118050219A (zh) * 2024-04-16 2024-05-17 陕西省环境调查评估中心 一种空气监测报警装置

Also Published As

Publication number Publication date
CN114279917A (zh) 2022-04-05

Similar Documents

Publication Publication Date Title
WO2023124297A1 (zh) 空气质量监测设备
CN1719360A (zh) 风冷式基站节电系统及节电控制方法
CN205027088U (zh) 一种批量土壤干燥设备
CN105772309A (zh) 一种喷涂室环保运行监控系统及其监控方法
CN103994986A (zh) 一种便携式感烟火灾探测器响应阈值检测装置
CN112730745A (zh) 一种温室气体排放监测设备
CN110139536B (zh) 一种数字化实验数据处理分析系统
CN209373770U (zh) 一种天然气泄漏检测装置
CN208847254U (zh) 一种大气环境监测系统
CN218676199U (zh) 一种档案库房专用警报器
CN108954646A (zh) 一种智能排风风机
CN112864929B (zh) 一种正压型防爆配电柜及其使用方法
CN210568940U (zh) 一种用于通风行业空气净化的电离风空气净化装置
CN217825725U (zh) 一种用于远程控制工业设备的装置
CN203163162U (zh) 太阳能室内空气速洁系统
CN112309072A (zh) 一种自清洁的空气采样报警装置及其工作方法
CN110925997A (zh) 一种基于半导体空调的空气质量在线监测微型站
CN112033876A (zh) 一种一般通风用空气过滤器测试系统
CN110553320A (zh) 一种用于通风行业空气净化的电离风空气净化装置
CN206207596U (zh) 一种具有wifi智能安防监控空气净化系统
CN110967456A (zh) 一种节能型环境监测装置
CN219936994U (zh) 一种电池片醋酸衰减测试模拟装置
CN213956612U (zh) 一种高压中置柜的温度检测装置
CN109669011A (zh) 一种基于云端的vocs在线监测终端及其使用方法
CN213518568U (zh) 一种自清洁的空气采样报警装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22913562

Country of ref document: EP

Kind code of ref document: A1