WO2023123864A1 - 基于肌电信号与肌肉血氧饱和度确定肌肉状态的装置 - Google Patents

基于肌电信号与肌肉血氧饱和度确定肌肉状态的装置 Download PDF

Info

Publication number
WO2023123864A1
WO2023123864A1 PCT/CN2022/096641 CN2022096641W WO2023123864A1 WO 2023123864 A1 WO2023123864 A1 WO 2023123864A1 CN 2022096641 W CN2022096641 W CN 2022096641W WO 2023123864 A1 WO2023123864 A1 WO 2023123864A1
Authority
WO
WIPO (PCT)
Prior art keywords
muscle
signal
blood oxygen
light
module
Prior art date
Application number
PCT/CN2022/096641
Other languages
English (en)
French (fr)
Inventor
赵起超
杨苒
李召
Original Assignee
北京津发科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京津发科技股份有限公司 filed Critical 北京津发科技股份有限公司
Priority to EP22822256.8A priority Critical patent/EP4230140A4/en
Priority to US18/086,726 priority patent/US20230210439A1/en
Publication of WO2023123864A1 publication Critical patent/WO2023123864A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/389Electromyography [EMG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14542Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring blood gases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/45For evaluating or diagnosing the musculoskeletal system or teeth
    • A61B5/4519Muscles

Definitions

  • Embodiments of the present disclosure generally relate to the field of data measurement, and more specifically, relate to a device for determining muscle state based on electromyographic signals and muscle oxygen saturation.
  • the current assessment of muscle status is usually based on tasks or complex movements. For example, for athletes, to measure muscle explosive force, they need to be fixed on special equipment to perform specified high-intensity movements. However, special instruments are usually bulky and not easy to carry. And in sports rehabilitation, if the patient is in the recovery period, it is not recommended to do high-intensity exercises in order to prevent sports injuries, so the assessment of muscle status is also greatly limited.
  • a solution for determining a muscle state based on an electromyography signal and muscle oxygen saturation is provided.
  • the present disclosure provides a device for determining muscle state based on electromyographic signals and muscle blood oxygen saturation.
  • the unit includes:
  • the signal acquisition module is used to collect human body electromyographic signal data
  • a light source detection module for emitting light of different wavelengths
  • the photosensitive receiving module is used to receive the reflected light after the light emitted by the light source detection module irradiates the skin;
  • a blood oxygen calculation module configured to calculate muscle blood oxygen saturation based on the light received by the photosensitive receiving module
  • the data statistics module is used to determine the muscle state based on the human body electromyographic signal data and muscle blood oxygen saturation.
  • the device for determining the muscle state based on the myoelectric signal and muscle blood oxygen saturation collects human body electromyographic signal data through the signal acquisition module; the light source detection module emits light of different wavelengths; the photosensitive receiving module receives the light source The light emitted by the detection module irradiates the light reflected by the skin; the blood oxygen calculation module calculates the muscle blood oxygen saturation based on the light received by the photosensitive receiving module; Muscle blood oxygen saturation can determine the muscle state and realize the accurate measurement of muscle state.
  • FIG. 1 shows a block diagram of a device for determining a muscle state based on an electromyographic signal and muscle oxygen saturation according to an embodiment of the present disclosure
  • FIG. 2 shows a structural frame diagram of a signal acquisition module according to an embodiment of the present disclosure
  • Fig. 3 shows a structural frame diagram of a light source detection module according to an embodiment of the present disclosure
  • FIG. 4 shows a block diagram of an exemplary electronic device capable of implementing embodiments of the present disclosure.
  • Fig. 1 shows a block diagram of a device 100 for determining muscle state based on electromyographic signals and muscle oxygen saturation according to an embodiment of the present disclosure.
  • the device 100 includes:
  • a signal acquisition module 110 configured to acquire human body electromyographic signal data
  • a light source detection module 120 configured to emit light of different wavelengths
  • the photosensitive receiving module 130 is used to receive the reflected light after the light emitted by the light source detection module irradiates the skin;
  • the blood oxygen calculation module 140 is used to calculate the muscle blood oxygen saturation based on the light received by the photosensitive receiving module;
  • the data statistics module 150 is configured to determine the muscle state based on the human body electromyographic signal data and muscle oxygen saturation.
  • the signal acquisition module 110 includes an acquisition electrode 111, a reference electrode 112 and a drive electrode 113;
  • the electrical signal of the human muscle is sequentially input to the signal follower, the amplification filter circuit, and the ADC circuit;
  • the output data is collected by the MCU, and then the data is processed to obtain the human body electromyographic signal data;
  • the acquisition rate of the muscle point signal is at least 4096Hz.
  • the light source detection module 120 includes a plurality of infrared emitting units 121 and red emitting units 122 of different wavelengths, for detecting different skin colors (different wavelengths) and different muscle tissues;
  • the wavelength range of the infrared emitting unit 121 and the red emitting unit 122 is between 600nm and 950nm.
  • the photosensitive receiving modules 130 there are one or more photosensitive receiving modules 130. According to the wavelength ranges of the infrared emitting unit 121 and the red light emitting unit 122, the receiving wavelength sensitivity range of each photosensitive receiving module 130 is set. Generally, the photosensitive receiving module 130 corresponds to the light source detection module 120; for example, the blood oxygen measurement uses two light sources between 660-700nm and 900-910nm, and the photosensitive receiver (photosensitive receiving module 130) selects a wavelength of 600-1000nm sensitivity.
  • the distance between the signal acquisition module 110 and the light source detection module 120 determines the detection depth.
  • multiple sets of distance parameters are set to collect blood oxygen or muscle oxygen.
  • the distance between the signal collection module 110 and the light source detection module 120 is between 8 mm and 30 mm.
  • the blood oxygen calculation module 140 converts the light intensity of the light received by the photosensitive receiving module into a current signal; inputs the current signal to a transimpedance amplifier to obtain a voltage signal; based on the voltage signal and the red
  • the ratio of light to infrared light intensity is used to calculate the oxygen content of muscle blood. That is, based on the light received by the photosensitive receiving module, the muscle blood oxygen saturation is calculated by the following formula:
  • the measurement of blood oxygen uses two light sources between 660-700nm and 900-910nm respectively;
  • Baseline measurement determine the distance (wavelength sensitivity) of the photosensitive receiving module 130;
  • the sensor automatically tests and combines each group of light sources and photosensitive receiving modules 130 at different distances, and controls the on and off through the MCU to obtain the optimal ratio of a group of light sources and receivers. That is, the optimal distance of the photosensitive receiving module 130 is determined.
  • Ambient light measurement determine the threshold of ambient light, and take out the ambient component in post-filtering to reduce noise. Turn on the ambient light test, do not turn on the light source at this time, only turn on the photosensitive receiver to detect the environment, get the final mean value of the DC component, and use this mean value as the reference value for filtering out the ambient light.
  • the MCU will turn on the two light sources (infrared and red light) in time-sharing.
  • the turn-on rate can be configured.
  • the blood oxygen value is calculated to obtain blood oxygen data.
  • the steps of calculating the blood oxygen value and calculating the muscle oxygen value are basically the same, the difference is that the light source used for the measurement is different, and the muscle oxygen value can be calculated by referring to the process steps of calculating the blood oxygen value;
  • the light source detection module 120 uses two light sources (near-infrared light sources) between 700-760nm and 800-850nm respectively, and the photosensitive receiving module 130 selects a wavelength sensitivity of 700-1100nm.
  • the data statistics module 150 is used to determine the muscle state based on the human body electromyographic signal data and muscle oxygen saturation;
  • time-domain analysis is performed on the human body electromyographic signal data, muscle oxygen value and blood oxygen value to obtain characteristic parameters of muscle oxygen and determine the standard deviation of muscle oxygen;
  • the state of the muscle (degree of fatigue) is determined.
  • the device for determining the muscle state based on the electromyography signal and muscle blood oxygen saturation of the present disclosure can also be equipped with a skin temperature test module and an acceleration sensor according to different application scenarios, so as to detect the user's muscle state more accurately.
  • the device of the present disclosure collects the myoelectric blood oxygen signal or the skin temperature signal while collecting the muscle oxygen signal, and the sensor collects the same muscle tissue, which integrates blood oxygen collection, muscle oxygen collection, and muscle oxygen collection. Electrical collection (can also be added to the collection of skin temperature).
  • the acquisition of the above modules is not independent.
  • the sensors on the market measure the above indicators are all independent sensors, and at the same time, they do not measure the muscle tissue in the same area.
  • Light sources with different wavelengths are used, and photosensitive receivers with different sensitivities are used to adapt to the collection of most occasions. And light sources of different wavelengths can be switched autonomously or considered to be switched. At the same time, in order to detect a deeper depth under the skin, the distance between the light source detection module 120 and the photosensitive receiving module 130 in the present disclosure is variable (switch between 8mm and 30mm).
  • FIG. 4 shows a schematic block diagram of an electronic device 400 that may be used to implement embodiments of the present disclosure.
  • the device 400 includes a central processing unit (CPU) 401 which can be programmed according to computer program instructions stored in a read only memory (ROM) 402 or loaded from a storage unit 408 into a random access memory (RAM) 403 program instructions to perform various appropriate actions and processes.
  • ROM read only memory
  • RAM random access memory
  • various programs and data necessary for the operation of the device 400 can also be stored.
  • the CPU 401, ROM 402, and RAM 403 are connected to each other through a bus 404.
  • An input/output (I/O) interface 405 is also connected to bus 404 .
  • the I/O interface 405 includes: an input unit 406, such as a keyboard, a mouse, etc.; an output unit 407, such as various types of displays, speakers, etc.; a storage unit 408, such as a magnetic disk, an optical disk, etc. ; and a communication unit 409, such as a network card, a modem, a wireless communication transceiver, and the like.
  • the communication unit 409 allows the device 400 to exchange information/data with other devices over a computer network such as the Internet and/or various telecommunication networks.
  • part or all of the computer program can be loaded and/or installed on the device 400 via the ROM 402 and/or the communication unit 409.
  • a computer program is loaded into RAM 403 and executed by CPU 401.
  • exemplary types of hardware logic components include: Field Programmable Gate Array (FPGA), Application Specific Integrated Circuit (ASIC), Application Specific Standard Product (ASSP), System on a Chip (SOC), load programmable logic device (CPLD), etc.
  • FPGA Field Programmable Gate Array
  • ASIC Application Specific Integrated Circuit
  • ASSP Application Specific Standard Product
  • SOC System on a Chip
  • CPLD load programmable logic device
  • Program codes for implementing the methods of the present disclosure may be written in any combination of one or more programming languages. These program codes may be provided to a processor or controller of a general-purpose computer, a special purpose computer, or other programmable data processing devices, so that the program codes, when executed by the processor or controller, make the functions/functions specified in the flow diagrams and/or block diagrams Action is implemented.
  • the program code may execute entirely on the machine, partly on the machine, as a stand-alone software package partly on the machine and partly on a remote machine or entirely on the remote machine or server.
  • a machine-readable medium may be a tangible medium that may contain or store a program for use by or in conjunction with an instruction execution system, apparatus, or device.
  • a machine-readable medium may be a machine-readable signal medium or a machine-readable storage medium.
  • a machine-readable medium may include, but is not limited to, electronic, magnetic, optical, electromagnetic, infrared, or semiconductor systems, apparatus, or devices, or any suitable combination of the foregoing.
  • machine-readable storage media would include one or more wire-based electrical connections, portable computer discs, hard drives, random access memory (RAM), read only memory (ROM), erasable programmable read only memory (EPROM or flash memory), optical fiber, compact disk read only memory (CD-ROM), optical storage, magnetic storage, or any suitable combination of the foregoing.
  • RAM random access memory
  • ROM read only memory
  • EPROM or flash memory erasable programmable read only memory
  • CD-ROM compact disk read only memory
  • magnetic storage or any suitable combination of the foregoing.

Abstract

基于肌电信号与肌肉血氧饱和度确定肌肉状态的装置,包括信号采集模块(110),用于采集人体肌电信号数据;光源探测模块(120),用于发射不同波长的光源;光敏接收模块(130),用于接收光源探测模块(120)发出的光照射到皮肤后反射的光;血氧计算模块(140),用于基于光敏接收模块(130)接收的光,计算肌肉血氧饱和度;数据统计模块(150),用于汇总人体肌电信号数据和肌肉血氧饱和度,基于汇总数据确定肌肉状态。实现了对肌肉状态的精准探测。

Description

基于肌电信号与肌肉血氧饱和度确定肌肉状态的装置 技术领域
本公开的实施例一般涉及数据测量领域,并且更具体地,涉及基于肌电信号与肌肉血氧饱和度确定肌肉状态的装置。
背景技术
当前对于肌肉状态的评估,通常是基于任务或复杂动作来实现的,比如对于运动员,测量肌肉爆发力,需要其固定在专用仪器做指定高强度动作。然而专用仪器通常体积较大,不便于携带。且在运动康复中,若患者处于恢复期,为了防止运动损伤是不建议做高强度动作,因此对于肌肉状态的评估也受到了较大的限制。
同时,目前的大多技术只是单独的对某一块的肌肉群单独的采集血氧,并没有采集该部位的肌电信号,分析只是靠血氧的含量来进行分析判断肌肉的状态,肌肉的状态其实是有多种维度去测量的,比如电信号,比如含氧量。例如,当肌肉疲劳时,电信号区域处于平坦状态,但血氧含量可能会很高。
发明内容
根据本公开的实施例,提供了一种基于肌电信号与肌肉血氧饱和度确定肌肉状态的方案。
本公开提供了一种基于肌电信号与肌肉血氧饱和度确定肌肉状态的装置。该装置包括:
信号采集模块,用于采集人体肌电信号数据;
光源探测模块,用于发射不同波长的光;
光敏接收模块,用于接收光源探测模块发出的光照射到皮肤后反射的光;
血氧计算模块,用于基于所述光敏接收模块接收的光,计算肌肉血氧饱和度;
数据统计模块,用于基于所述人体肌电信号数据和肌肉血氧饱和度,确定肌肉状态。
本申请实施例提供的基于肌电信号与肌肉血氧饱和度确定肌肉状态的装置,通过信号采集模块,采集人体肌电信号数据;光源探测模块,发射不同波长的光;光敏接收模块,接收光源探测模块发出的光照射到皮肤后反射的光;血氧计算模块,基于所述光敏接收模块接收的光,计算肌肉血氧饱和度;数据统计模块,用于基于所述人体肌电信号数据和肌肉血氧饱和度,确定肌肉状态,实现了对肌肉状态的精准测量。
应当理解,发明内容部分中所描述的内容并非旨在限定本公开的实施例的关键或重要特征,亦非用于限制本公开的范围。本公开的其它特征将通过以下的描述变得容易理解。
附图说明
结合附图并参考以下详细说明,本公开各实施例的上述和其他特征、优点及方面将变得更加明显。在附图中,相同或相似的附图标记表示相同或相似的元素,其中:
图1示出了根据本公开的实施例的基于肌电信号与肌肉血氧饱和度确定肌肉状态的装置的方框图;
图2示出了根据本公开的实施例的信号采集模块的结构框架图;
图3示出了根据本公开的实施例的光源探测模块的结构框架图;
图4示出了能够实施本公开的实施例的示例性电子设备的方框图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的全部其他实施例,都属于本公开保护的范围。
另外,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
图1示出了根据本公开的实施例的基于肌电信号与肌肉血氧饱和度确定肌肉状态的装置100的方框图。如图1所示,装置100包括:
信号采集模块110,用于采集人体肌电信号数据;
光源探测模块120,用于发射不同波长的光;
光敏接收模块130,用于接收光源探测模块发出的光照射到皮肤后反射的光;
血氧计算模块140,用于基于所述光敏接收模块接收的光,计算肌肉血氧饱和度;
数据统计模块150,用于基于所述人体肌电信号数据和肌肉血氧饱和度,确定肌肉状态。
在一些实施例中,信号采集模块110包括采集电极111、参考电极112和驱动电极113;
通过采集电极111、参考电极112和驱动电极113,采集到人体的肌肉点信号后,将该人体肌肉的电信号依次输入至信号跟随器、放大滤波电路、ADC电路;
通过MCU采集输出的数据,然后进行数据处理,得到人体肌电信号数据;
其中,肌点信号的采集速率至少为4096Hz。
在一些实施例中,光源探测模块120包括多个不同波长的红外线发射单元121和红光发射单元122,用于对不同肤色(波长不同)以及不同肌肉组织进行探测;
其中,所述红外线发射单元121和红光发射单元122的波长范围为600nm~950nm之间。
在一些实施例中,光敏接收模块130为一个或多个,根据红外线发射单元121和红光发射单元122的波长范围,设置每个光敏接收模块130的接收波长灵敏范围,通常所述光敏接收模块130与所述光源探测模块120相对应;例如,血氧的测量采用的光源660~700nm和900~910nm之间的两个光源,则光敏接收器(光敏接收模块130)选用600~1000nm的波长灵敏度。
在实际测量中,信号采集模块110与光源探测模块120的距离决定了探测深度。在本公开中,设置多组距离参数进行血氧或肌氧的采集,通常信号采集模块110与光源探测模块120的距离在8mm~30mm之间。
在一些实施例中,血氧计算模块140,将所述光敏接收模块接收的光的光强度转化成电流信号;将所述电流信号输入至跨阻放大器得到电压信号;基于所述电压信号以及红光与红外光强的比值,计算肌肉血氧的含量。即,基于所述光敏接收模块接收的光,通过如下公式计算肌肉血氧饱和度:
血氧的计算公式:血液中被氧结合的氧合血红蛋白(HbO2)的容量占全部可结合的血红蛋白(Hb,hemoglobin)容量的百分比,即HbO2浓度与HbO2+Hb浓度之比;
具体地,血氧的测量分别采用660~700nm和900~910nm之间的两个光源;光敏接收器(光敏接收模块130)选用600~1000nm的波长灵敏度
1.基线测量:确定光敏接收模块130的距离(波长灵敏度);
通过基线测量指令,传感器自行对每组光源和不同距离的光敏接收模块130进行测试组合,通过MCU控制开启与关闭,得出一组光源与接收器的最佳配比。即,确定最优光敏接收模块130的距离。
2.环境光测量,确定环境光的阈值,在后期滤波中取出环境分量以减少噪声。开启环境光测试,此时不开启光源,仅开启检测环境的光敏接收器,得到最终的直流分量的均值,将该均值作为滤除环境光的基准值。
3.正式测量,测量开始后,MCU进行对两个光源(红外、红光)的分时开启,开启速率可进行配置,光敏接收模块130对两个光源的数据进行采集,血氧计算模块140利用血红蛋白在不同氧合状态下对红外与红光具有的不同吸收谱这一特性,算出血氧值,得到血氧的数据。
需要说明的是,计算血氧值与计算肌氧值得步骤大体相同,区别点为测量所采用的光源不同,可参照计算血氧值的流程步骤,计算肌氧值;
其中,计算肌氧值时,光源探测模块120分别采用700~760nm和800~850nm之间的两个光源(近红外的光源),光敏接收模块130选用700~1100nm的波长灵敏度。
在一些实施例中,数据统计模块150,用于基于所述人体肌电信号数据和肌肉血氧饱和度,确定肌肉状态;
具体地,对所述人体肌电信号数据、肌氧值和血氧值进行时域分析,得到肌氧的特征参数,确定肌氧标准差;
基于所述肌氧标准差的波动程度,确定肌肉的状态(疲劳程度)。
需要说明的是,本公开的基于肌电信号与肌肉血氧饱和度确定肌肉状态的装置,根据应用场景的不同还可配置皮温测试模块和加速度传感器,以便更精准的探测用户的肌肉状态。
根据本公开的实施例,实现了以下技术效果:
本公开的装置,在采集肌氧信号的同时也采集了肌电血氧的信号或者还 有皮温的信号,并且传感器采集的是同一块肌肉组织,集成了血氧采集、肌氧采集、肌电采集(还可加上皮温的采集)。上述模块的采集并不是独立的,市面上的传感器测量上述指标都是独立的传感器,同时测量的也并不是同一区域的肌肉组织。
采用了不同波长的光源,并且使用了不同敏感度的光敏接收器以适应大多数场合的采集。并且不同波长的光源可自主切换或认为切换。同时,为了探测皮下更深的深度,本公开中的光源探测模块120与光敏接收模块130的距离是可变的(8~30mm之间进行切换)。
需要说明的是,对于前述的各实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本公开并不受所描述的动作顺序的限制,因为依据本公开,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于可选实施例,所涉及的动作和模块并不一定是本公开所必须的。
图4示出了可以用来实施本公开的实施例的电子设备400的示意性框图。如图所示,设备400包括中央处理单元(CPU)401,其可以根据存储在只读存储器(ROM)402中的计算机程序指令或者从存储单元408加载到随机访问存储器(RAM)403中的计算机程序指令,来执行各种适当的动作和处理。在RAM403中,还可以存储设备400操作所需的各种程序和数据。CPU 401、ROM 402以及RAM 403通过总线404彼此相连。输入/输出(I/O)接口405也连接至总线404。
设备400中的多个部件连接至I/O接口405,包括:输入单元406,例如键盘、鼠标等;输出单元407,例如各种类型的显示器、扬声器等;存储单元408,例如磁盘、光盘等;以及通信单元409,例如网卡、调制解调器、无线通信收发机等。通信单元409允许设备400通过诸如因特网的计算机网络和/或各种电信网络与其他设备交换信息/数据。
在一些实施例中,计算机程序的部分或者全部可以经由ROM 402和/ 或通信单元409而被载入和/或安装到设备400上。当计算机程序加载到RAM 403并由CPU 401执行时。
本文中以上描述的功能可以至少部分地由一个或多个硬件逻辑部件来执行。例如,非限制性地,可以使用的示范类型的硬件逻辑部件包括:现场可编程门阵列(FPGA)、专用集成电路(ASIC)、专用标准产品(ASSP)、芯片上系统的系统(SOC)、负载可编程逻辑设备(CPLD)等等。
用于实施本公开的方法的程序代码可以采用一个或多个编程语言的任何组合来编写。这些程序代码可以提供给通用计算机、专用计算机或其他可编程数据处理装置的处理器或控制器,使得程序代码当由处理器或控制器执行时使流程图和/或框图中所规定的功能/操作被实施。程序代码可以完全在机器上执行、部分地在机器上执行,作为独立软件包部分地在机器上执行且部分地在远程机器上执行或完全在远程机器或服务器上执行。
在本公开的上下文中,机器可读介质可以是有形的介质,其可以包含或存储以供指令执行系统、装置或设备使用或与指令执行系统、装置或设备结合地使用的程序。机器可读介质可以是机器可读信号介质或机器可读储存介质。机器可读介质可以包括但不限于电子的、磁性的、光学的、电磁的、红外的、或半导体系统、装置或设备,或者上述内容的任何合适组合。机器可读存储介质的更具体示例会包括基于一个或多个线的电气连接、便携式计算机盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦除可编程只读存储器(EPROM或快闪存储器)、光纤、便捷式紧凑盘只读存储器(CD-ROM)、光学储存设备、磁储存设备、或上述内容的任何合适组合。
此外,虽然采用特定次序描绘了各操作,但是这应当理解为要求这样操作以所示出的特定次序或以顺序次序执行,或者要求所有图示的操作应被执行以取得期望的结果。在一定环境下,多任务和并行处理可能是有利的。同样地,虽然在上面论述中包含了若干具体实现细节,但是这些不应当被解释为对本公开的范围的限制。在单独的实施例的上下文中描述的某些特征还可 以组合地实现在单个实现中。相反地,在单个实现的上下文中描述的各种特征也可以单独地或以任何合适的子组合的方式实现在多个实现中。
尽管已经采用特定于结构特征和/或方法逻辑动作的语言描述了本主题,但是应当理解所附权利要求书中所限定的主题未必局限于上面描述的特定特征或动作。相反,上面所描述的特定特征和动作仅仅是实现权利要求书的示例形式。

Claims (8)

  1. 一种基于肌电信号与肌肉血氧饱和度确定肌肉状态的装置,其特征在于,包括:
    信号采集模块,用于采集人体肌电信号数据;
    光源探测模块,用于发射不同波长的光;
    光敏接收模块,用于接收光源探测模块发出的光照射到皮肤后反射的光;
    血氧计算模块,用于基于所述光敏接收模块接收的光,计算肌肉血氧饱和度;
    数据统计模块,用于基于所述人体肌电信号数据和肌肉血氧饱和度,确定肌肉状态。
  2. 根据权利要求1所述的装置,其特征在于,所述信号采集模块包括采集电极、参考电极和驱动电极。
  3. 根据权利要求2所述的装置,其特征在于,所述信号采集模块进一步用于:
    通过采集电极、参考电极和驱动电极,获取人体肌肉的电信号;
    将人体肌肉的电信号依次输入至信号跟随器、放大滤波电路、ADC电路;
    通过MCU采集输出的数据,得到人体肌电信号数据。
  4. 根据权利要求3所述的装置,其特征在于,
    肌电信号的采集速率不低于4096Hz。
  5. 根据权利要求4所述的装置,其特征在于,所述光源探测模块包括多个红外线发射单元和红光发射单元。
  6. 根据权利要求5所述的装置,其特征在于,所述红外线发射单元和红光发射单元的波长范围为600nm~950nm。
  7. 根据权利要求6所述的装置,其特征在于,所述光敏接收模块为一个或多个。
  8. 根据权利要求7所述的装置,其特征在于,所述血氧计算模块进一步用于:
    将所述光敏接收模块接收的光的光强度转化成电流信号;
    将所述电流信号输入至跨阻放大器得到电压信号;
    基于所述电压信号以及红光与红外光强的比值,计算肌肉血氧的含量。
PCT/CN2022/096641 2021-12-31 2022-06-01 基于肌电信号与肌肉血氧饱和度确定肌肉状态的装置 WO2023123864A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22822256.8A EP4230140A4 (en) 2021-12-31 2022-06-01 DEVICE FOR DETERMINING MUSCLE CONDITION BASED ON ELECTROMYOGRAPHIC SIGNAL AND OXYGEN SATURATION OF MUSCLE BLOOD
US18/086,726 US20230210439A1 (en) 2021-12-31 2022-12-22 Device for determining muscle state based on electromyography signal and muscle oxygen saturation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111667416.5 2021-12-31
CN202111667416.5A CN114403904B (zh) 2021-12-31 2021-12-31 基于肌电信号与肌肉血氧饱和度确定肌肉状态的装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/086,726 Continuation US20230210439A1 (en) 2021-12-31 2022-12-22 Device for determining muscle state based on electromyography signal and muscle oxygen saturation

Publications (1)

Publication Number Publication Date
WO2023123864A1 true WO2023123864A1 (zh) 2023-07-06

Family

ID=81270949

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/096641 WO2023123864A1 (zh) 2021-12-31 2022-06-01 基于肌电信号与肌肉血氧饱和度确定肌肉状态的装置

Country Status (2)

Country Link
CN (1) CN114403904B (zh)
WO (1) WO2023123864A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114403904B (zh) * 2021-12-31 2023-01-13 北京津发科技股份有限公司 基于肌电信号与肌肉血氧饱和度确定肌肉状态的装置
CN115177215A (zh) * 2022-08-10 2022-10-14 中国科学院深圳先进技术研究院 用于外周神经的神经血管耦合分析方法、装置及电子设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013119001A (ja) * 2011-12-08 2013-06-17 Asahi Sun Clean Co Ltd 筋疲労評価装置、システム、方法、及びプログラム
CN109077725A (zh) * 2018-08-09 2018-12-25 江汉大学 一种肌肉疲劳度检测装置
CN109222969A (zh) * 2018-10-31 2019-01-18 郑州大学 一种基于多传感器数据融合的可穿戴式人体上肢肌肉运动疲劳检测及训练系统
CN109259762A (zh) * 2018-11-02 2019-01-25 郑州大学 一种基于多变量数据融合的肌肉疲劳综合测评装置
CN110870769A (zh) * 2018-09-03 2020-03-10 香港理工大学深圳研究院 一种肌肉疲劳等级的检测方法及设备
CN213406028U (zh) * 2020-08-10 2021-06-11 中国人民解放军总医院 一种可穿戴式无线连续反射式血氧饱和度监测装置
CN113576476A (zh) * 2021-08-02 2021-11-02 汪勇波 基于监测肌肉氧饱和度和肌电信号的康复训练系统及方法
CN114403904A (zh) * 2021-12-31 2022-04-29 北京津发科技股份有限公司 基于肌电信号与肌肉血氧饱和度确定肌肉状态的装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005055815A2 (en) * 2003-12-09 2005-06-23 San Diego State University Foundation Systems and methods for dynamic analysis of muscle function and metabolism
CN103169478A (zh) * 2011-12-26 2013-06-26 深圳迈瑞生物医疗电子股份有限公司 一种血氧测量装置
US9588582B2 (en) * 2013-09-17 2017-03-07 Medibotics Llc Motion recognition clothing (TM) with two different sets of tubes spanning a body joint
US20170071521A1 (en) * 2015-09-14 2017-03-16 Xerox Corporation Representing a subject's state of mind using a psychophysiological model
US10537270B2 (en) * 2016-07-25 2020-01-21 Biobeat Technologies Ltd Method and device for optical measurement of biological properties
CN109846492B (zh) * 2017-11-30 2021-02-19 深圳先进技术研究院 采集电路、血氧饱和度采集芯片及装置
CN109846481B (zh) * 2018-12-25 2021-08-24 北京津发科技股份有限公司 表面肌电信号处理方法和装置、数据处理设备和存储介质
CN109864740B (zh) * 2018-12-25 2022-02-01 北京津发科技股份有限公司 一种运动状态的表面肌电信号采集传感器和设备
CN111731312A (zh) * 2020-06-15 2020-10-02 苏州绿科智能机器人研究院有限公司 提取驾驶风格特征参数的实验系统及驾驶风格识别方法
CN113143297B (zh) * 2021-03-15 2022-12-23 中国科学院深圳先进技术研究院 一种病灶检测系统和方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013119001A (ja) * 2011-12-08 2013-06-17 Asahi Sun Clean Co Ltd 筋疲労評価装置、システム、方法、及びプログラム
CN109077725A (zh) * 2018-08-09 2018-12-25 江汉大学 一种肌肉疲劳度检测装置
CN110870769A (zh) * 2018-09-03 2020-03-10 香港理工大学深圳研究院 一种肌肉疲劳等级的检测方法及设备
CN109222969A (zh) * 2018-10-31 2019-01-18 郑州大学 一种基于多传感器数据融合的可穿戴式人体上肢肌肉运动疲劳检测及训练系统
CN109259762A (zh) * 2018-11-02 2019-01-25 郑州大学 一种基于多变量数据融合的肌肉疲劳综合测评装置
CN213406028U (zh) * 2020-08-10 2021-06-11 中国人民解放军总医院 一种可穿戴式无线连续反射式血氧饱和度监测装置
CN113576476A (zh) * 2021-08-02 2021-11-02 汪勇波 基于监测肌肉氧饱和度和肌电信号的康复训练系统及方法
CN114403904A (zh) * 2021-12-31 2022-04-29 北京津发科技股份有限公司 基于肌电信号与肌肉血氧饱和度确定肌肉状态的装置

Also Published As

Publication number Publication date
CN114403904B (zh) 2023-01-13
CN114403904A (zh) 2022-04-29

Similar Documents

Publication Publication Date Title
US20220142587A1 (en) Systems and methods for detecting photoplethysmographic device usage
US20220273183A1 (en) Processing of electrophysiological signals
WO2023123864A1 (zh) 基于肌电信号与肌肉血氧饱和度确定肌肉状态的装置
CN203861234U (zh) 近红外双波长无创血糖测量仪
US10405785B2 (en) Determination of a concentration of an analyte in a subject
US10750982B2 (en) Oxygen saturation measuring apparatus and oxygen saturation measuring method thereof
RU2016107770A (ru) Система и способ выделения физиологической информации из дистанционно обнаруженного электромагнитного излучения
CN102579053A (zh) 一种基于扩散理论的反射式脉搏血氧检测方法
US20200359941A1 (en) Systems, devices, and methods for performing trans-abdominal fetal oximetry and/or trans-abdominal fetal pulse oximetry using independent component analysis
US20230172565A1 (en) Systems, devices, and methods for developing a model for use when performing oximetry and/or pulse oximetry and systems, devices, and methods for using a fetal oximetry model to determine a fetal oximetry value
TW202128078A (zh) 用於動物醫學檢查之方法及檢查裝置
Pinge et al. A comparative study between ECG-based and PPG-based heart rate monitors for stress detection
CN103622704B (zh) 一种宽动态范围的脉搏血氧测量系统
CN201840477U (zh) 一种便携式运动生理参数监护仪
US20140187884A1 (en) Systems and methods for ensemble averaging in pulse oximetry
EP4230140A1 (en) Muscle state determining apparatus based on electromyographic signal and muscle blood oxygen saturation
CN205658894U (zh) 一种基于单片机的红外脉搏计
CN103948392A (zh) 血氧仪及其血氧采集监控系统
Fachrurazi et al. Design of Wearable Pulse Oximeter Based on Android with Bluetooth Low Energy Communication Using Artificial Neural Network
CN109758124B (zh) 一种手功能康复的客观评价方法及装置和系统
Shah et al. Power Spectrum Density based analysis of Photolythsmographic signal for different physiological conditions
Jagelka et al. Implementation of pulse oximetry measurement to wireless biosignals probe
CN116211298A (zh) 一种集成血液氧含量与电信号采集的系统、方法及传感器
Sujatha et al. Online Detection of Malnutrition Induced Anemia Color using Machine Learning from Nail Algorithms
Daddikar et al. Sensing as a Service Model for Pulse Oximeter Supported by Internet of Things.

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022822256

Country of ref document: EP

Effective date: 20221221