WO2023123689A1 - 一种风力发电机组的控制方法、装置、设备及介质 - Google Patents

一种风力发电机组的控制方法、装置、设备及介质 Download PDF

Info

Publication number
WO2023123689A1
WO2023123689A1 PCT/CN2022/081099 CN2022081099W WO2023123689A1 WO 2023123689 A1 WO2023123689 A1 WO 2023123689A1 CN 2022081099 W CN2022081099 W CN 2022081099W WO 2023123689 A1 WO2023123689 A1 WO 2023123689A1
Authority
WO
WIPO (PCT)
Prior art keywords
main shaft
generating set
shaft bearing
control
wind power
Prior art date
Application number
PCT/CN2022/081099
Other languages
English (en)
French (fr)
Inventor
周桂林
苏慧丽
张鹏飞
李慧
Original Assignee
新疆金风科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新疆金风科技股份有限公司 filed Critical 新疆金风科技股份有限公司
Publication of WO2023123689A1 publication Critical patent/WO2023123689A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D17/00Monitoring or testing of wind motors, e.g. diagnostics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/70Bearing or lubricating arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present application relates to the field of control technology, and in particular to a control method, device, equipment and medium for a wind power generating set.
  • the main shaft bearing of the wind turbine is the main part of the wind turbine.
  • the main shaft bears a very large load, and the shaft is very long and easy to deform.
  • the main drive system where it is located is an important safety system of the wind turbine. If the main shaft fails, it will give Wind farms cause huge economic losses. Therefore, during the operation of the wind turbine, it is particularly important to evaluate the life of the main shaft bearing.
  • Embodiments of the present application provide a control method, device, equipment and medium for a wind power generating set, so as to improve the accuracy of controlling the wind generating set.
  • an embodiment of the present application provides a method for controlling a wind power generating set, the method comprising:
  • a control method for the wind power generating set is determined.
  • an embodiment of the present application provides a control device for a wind power generating set, the device comprising: a first processing module, a second processing module, a third processing module, and a control module;
  • the first processing module is configured to determine the consumed life of the main shaft bearing based on the wind parameter data of the wind power generating set, the operating data of the unit, and the key load component of the main shaft bearing;
  • the second processing module is configured to determine the remaining life of the main shaft bearing based on the design life of the main shaft bearing and the consumed life;
  • the third processing module is used to determine the control parameters of the wind power generating set based on the design life of the main shaft bearing, the remaining life and the actual consumption time;
  • the control module is configured to determine a control method for the wind power generating set based on the control parameters and preset parameters.
  • the embodiment of the present application provides a control device for a wind power generating set, and the device includes: a memory and a processor;
  • the memory is used to store related program codes
  • the processor is configured to call the program code to execute the control method for the wind power generating set described in any one implementation manner of the first aspect above.
  • the embodiment of the present application also provides a computer-readable storage medium, the computer-readable storage medium is used to store a computer program, and the computer program is used to execute any one of the implementation manners of the above-mentioned first aspect. control method for wind turbines.
  • the embodiment of the present application provides a wind farm control system, the system comprising:
  • the main shaft bearing load sensor is arranged on the main shaft bearing of the wind power generating set, and is used to collect the load value data of each key load component of the main shaft bearing;
  • the above-mentioned control device of the wind power generating set is used for executing the above-mentioned control method of the wind power generating set.
  • the consumed life of the main shaft bearing is determined; then, according to the design life of the main shaft bearing and the Consumption life, determine the remaining life of the main shaft bearing; determine the control parameters of the wind turbine based on the design life of the main shaft bearing, remaining life and the actual consumption time of the main shaft bearing; determine the wind power based on the control parameters and preset parameters of the wind turbine Control methods for generator sets.
  • the control method of the wind power generation set provided by the embodiment of the present application fully considers the influence of the life of the main shaft bearing on the performance of the wind power generation set, determines different control methods for the wind power generation set based on the life of the main shaft bearing, and improves the control efficiency of the wind power generation set accuracy.
  • FIG. 1 is a flow chart of a control method for a wind power generating set in an embodiment of the present application
  • Fig. 2a is a schematic diagram of a control system of a wind power generating set in an embodiment of the present application
  • Fig. 2b is a schematic diagram of a control device in an embodiment of the present application.
  • Fig. 2c is a schematic diagram of another control system of a wind power generating set in the embodiment of the present application.
  • FIG. 3 is a schematic diagram of a control device for a wind power generating set in an embodiment of the present application
  • Fig. 4 is a schematic diagram of a control device of a wind power generating set in an embodiment of the present application.
  • the main shaft bearing is the main part of the wind turbine.
  • the main shaft bears a very heavy load.
  • the main drive system where it is located is an important safety system of the wind turbine. If the main shaft fails, it will bring huge economic losses to the wind farm.
  • the influence of the performance of the main shaft bearing on the whole generating set is not fully considered, resulting in low control accuracy of the wind farm for the wind generating set.
  • an embodiment of the present application provides a method for controlling a wind power generating set, so as to improve the control accuracy of the wind generating set.
  • the consumed life of the main shaft bearing is determined; then, according to the design life and the consumed life of the main shaft bearing, the Remaining life: Determine the control parameters of the wind turbine based on the design life, remaining life, and actual consumption time of the spindle bearing; determine the control method of the wind turbine based on the control parameters and preset parameters of the wind turbine.
  • the control method of the wind power generating set provided in the embodiment of the present application fully considers the influence of the life of the main shaft bearing on the performance of the wind power generating set, determines different control methods for the wind generating set based on the life evaluation of the main shaft bearing, and improves the control of the wind generating set. accuracy.
  • FIG. 1 this figure is a flow chart of a control method for a wind power generating set provided in an embodiment of the present application.
  • the method specifically includes the following steps:
  • one possible implementation is to first determine the transfer function of the main shaft bearing based on the wind parameter data of the wind turbine, the operating data of the unit and the key load components of the main shaft bearing; then use the transfer function , to calculate the consumed life of the main shaft bearing in each cycle; the consumed life of the main shaft bearing can be determined by accumulating the consumed life of the main shaft bearing in all cycles experienced.
  • the wind parameter data includes: air density, wind speed, inflow angle, wind shear, turbulence intensity and time, etc.
  • the unit operation data includes: speed, generator torque, and power generation, etc.
  • the load is also called load, which refers to the structure or External forces and other factors that produce internal forces and deformations of components, or customarily refer to various direct actions exerted on engineering structures to make engineering structures or components produce effects.
  • the minimum value of the preset speed set R may be 0.7 times the rated speed r of the wind turbine, and the maximum value of the preset speed set R may be 1.3 times the rated speed r, That is, the value range of the preset rotational speed set R can be expressed as [0.7r, 1.3r], and the preset rotational speed set R does not include the resonance rotational speed of the wind power generating set.
  • the data of the wind power generating set can be collected in minutes or seconds, which does not affect the realization of the technical solutions of the embodiments of the present application.
  • the data collection unit collects the second-level real-time operation data of the wind power generating set according to the time period T as an example for illustration.
  • the speed of the wind turbine is gradually increased to the rated speed, that is, it runs at the rated speed. If there is a speed r m in the speed set R that is greater than the rated speed r of the wind turbine, the operating data of the wind turbine when it exceeds the rated speed needs It is obtained by adjusting the operating speed of the wind turbine, that is, when the operating speed of the wind turbine reaches the rated speed r, continue to increase the operating speed to r m to obtain the operating data when the speed is greater than the rated speed. After the wind turbine has been running at the speed r m for 30 minutes, adjust it back to the original rated speed r, and the unit operation data when it is greater than the rated speed r can be obtained.
  • the main shaft bearing load sensor can be used to collect load data to obtain the key load component of the main shaft bearing, that is, the load component that mainly affects the life of the main shaft bearing.
  • My, Mz, Fx, Fy and Fz represent the key load components of the main shaft bearing.
  • the load value data of the key load components collected by the load sensor for the load value data of any key load component, take the key load component My as an example, use the data analysis unit to analyze the data, and determine which probabilities the load value data conforms to Distribution, such as normal distribution, so as to obtain the load distribution function corresponding to the key load component My, and calculate the load value range of the key load component My through the load distribution function, that is, the maximum value Max and the minimum value Min, the key load value
  • the load value range of My can be expressed as My[Min, Max].
  • the load values are selected according to a fixed step size, and multiple load intervals are divided. According to the load distribution function and the load value, the probability corresponding to the load value can be determined, and the key load component My in each interval can be obtained. probability distribution on .
  • each key load component My, Mz, Fx, Fy and Fz can be obtained, as shown in Table 1, where ss (step size) represents the fixed step size, and f represents the probability.
  • the wind speed data of the wind power generating set obeys the Weibull distribution, for example, the probability distribution density function of the Weibull distribution is: Among them, x represents the wind speed, ⁇ represents the scale parameter, and k represents the shape parameter.
  • the time distribution of each key load component in each interval under different wind speeds can be obtained. Specifically, for any value of wind speed, first determine the probability of the wind turbine at the wind speed, and then count all the values of any key load component at the wind speed, and determine the critical load component in the wind speed and the corresponding load interval The following probability is to obtain the probability distribution of key load components in different intervals of different wind speeds, and then multiply the interval probability by 8760 to obtain the time distribution of key load components in different intervals, where 8760 is calculated by 365 days in a year, The number of hours in a year.
  • Table 2 provides an example of the time distribution of each key load component in different intervals under different wind speeds, and t represents time.
  • the wind parameter data of the wind turbine and the preset speed set R are used as input data, and the time distribution of each key load component is used as output data to train the main shaft bearing
  • the transfer function obtained through training is optimized, and the goodness of fit of the transfer function is used as an optimization criterion.
  • the goodness of fit is greater than a preset value, the transfer function does not need to be optimized.
  • the preset value can be specifically determined according to the actual application, and is not limited in the embodiment of the present application.
  • the preset value can be set to 98%, that is, when the goodness of fit is greater than 98%, the transfer function meets the requirements .
  • the time distribution of each key load component of the main shaft bearing in the period T' is determined, and the calculation method Refer to the calculation method in the period T above, which will not be repeated here.
  • the calculation formula of the equivalent load L T-eq is: Wherein, i represents the number of load intervals, L i is the load interval, n i is the rotational speed, and t i is the time corresponding to each load interval.
  • the consumed life L T' of the main shaft bearing in the period T' is calculated.
  • the wind parameter data and the preset speed set of the wind turbine in the period T' are used as input data to obtain the predicted time distribution of each key load component in different intervals, According to the predicted equivalent load L T- eq ' and the design parameter information of the main shaft bearing, the predicted consumed life preL T' of the main shaft bearing in the period T' is calculated.
  • the wind parameter data in the cycle T and the cycle T' and the preset rotational speed set are used as the training data in a new cycle to calculate The consumed life of the new cycle, retrain the transfer function Fd according to the above steps, use the new transfer function Fd to calculate the new predicted consumed life, and recalculate the goodness of fit R T' according to the consumed life of the new cycle and the predicted consumed life , if the goodness of fit does not meet the requirements, add the wind parameter data in one cycle as a sample, that is, combine the wind parameter data in the first three cycles to continue to re-optimize the goodness of fit R T' , if the goodness of fit is not If the requirements are met, continue to add a period of wind parameter data as a sample, and so on, until the goodness-of-fit R T' meets the requirements.
  • S102 Determine the remaining life of the main shaft bearing according to the design life and the consumed life of the main shaft bearing.
  • the design life of the main shaft bearing is generally 20 years.
  • S103 Determine the control parameters of the wind power generating set based on the design life, remaining life and actual consumption time of the main shaft bearing.
  • the actual consumption time is how long has actually passed, which can be represented by Life real .
  • the control parameter of the wind turbine is represented by ⁇ l, and the calculation formula of the control parameter ⁇ l is:
  • S104 Based on the control parameter and the preset parameter, determine a control method for the wind power generating set.
  • the preset parameter may be 0.
  • control parameter of the wind turbine when the control parameter of the wind turbine is less than the preset parameter, that is, the consumed life of the main shaft bearing is greater than the actual consumption time, it means that the loss of the main shaft bearing during the operation of the wind turbine exceeds the expectation, so in the subsequent period of operation It is necessary to protect the main shaft bearing and prolong the life of the main shaft bearing.
  • a possible implementation method is to determine the first target speed in the preset speed set of the wind power generating set, control the wind power generating set to run at the first target speed within a preset period, and ensure that when the wind power generating set When the target speed is running, the control parameters of the wind power generating set are greater than the preset parameters, wherein the first target speed is lower than the current running speed of the wind power generating set, and the preset cycle is the next cycle of the current running cycle of the wind power generating set.
  • the wind power generating set operates at the first target speed in the preset period
  • the average value of the wind parameter data of all previous cycles is used as the wind parameter data of the preset period
  • the consumed life of the main shaft bearing is predicted according to the transfer function, so as to obtain the control parameter of the preset period, and finally determine the first target speed at which the control parameter is greater than the preset parameter.
  • a dichotomy method can be used to search, that is, to continuously divide the set of preset rotational speeds into two, so as to determine the first target rotational speed that meets the conditions.
  • the torque corresponding to the current rotational speed can be determined by looking up the table, and the wind turbine can be controlled to This speed and torque run, so that the wind turbine has a high energy production.
  • the torque and power generation corresponding to the first target rotational speed of the wind power generating set will be reduced, so as to ensure that the wind power generating set is in a power-limited operating state. Therefore, when the wind power generating set runs at the first target speed within the preset period, the loss of the main shaft bearing can be reduced, and the control accuracy of the wind power generating set can be improved.
  • control parameter of the wind turbine is greater than the preset parameter, that is, the consumed life of the main shaft bearing is less than the actual consumption time, it means that the loss of the main shaft bearing caused by the wind turbine during operation is small, so in the subsequent period of operation, it can be When it is ensured that the loss of the main shaft bearing does not exceed the range, the operating speed of the wind turbine is appropriately increased, thereby improving the power generation performance of the wind turbine.
  • a possible implementation method is to determine the second target speed in the preset speed set of the wind power generating set, and control the wind power generating set to run at the second target speed within a preset period, wherein the second target speed is greater than the wind power generation The current rotating speed of the wind generating set, and ensure that when the wind generating set is running at the second target rotating speed, the control parameter of the wind generating set is greater than the preset parameter.
  • the dichotomy method can also be used to search, continuously divide the set of preset speeds into two, and determine the second target speed that meets the conditions.
  • the principle of determining the second target rotational speed at which the control parameter within the preset period is greater than the preset parameter is the same as that of the above-mentioned embodiment, and will not be repeated here.
  • control parameters of the wind turbine are equal to the preset parameters, it is enough to keep the life of the main shaft bearing stable within the preset period, without changing the speed of the wind turbine, that is, to control the wind turbine to run at the current speed within the preset period , to ensure its normal power generation.
  • the control method of the wind power generation set determines different control methods for the wind power generation set based on the life evaluation of the main shaft bearing, thereby improving the accuracy of the control of the wind power generation set.
  • the wind farm control system will be introduced below in combination with specific application scenarios.
  • FIG. 2a this figure is a schematic diagram of a wind farm control system provided by an embodiment of the present application.
  • control system includes: a main shaft bearing load sensor 201 , the above-mentioned control device 202 of the wind generating sets, and a wind farm group controller 203 .
  • the main shaft bearing load sensor 201 is arranged on the main shaft bearing of the wind power generating set, and is used for collecting load value data of each key load component of the main shaft bearing.
  • the control device 202 of the wind power generating set is configured to execute the above-mentioned control method of the wind generating set.
  • the wind farm group controller 203 is configured to acquire the control parameters of the wind power generators calculated by the control device 202, and control the wind power generators according to the control parameters.
  • control device 202 may include: a data acquisition unit 204, a data analysis unit 205, a transfer function calculation unit 206, and a control unit 207.
  • a data acquisition unit 204 may acquire data from the control device 202 and a data analysis unit 205.
  • a transfer function calculation unit 206 may be used to calculate a control unit 207.
  • the data collection unit 204 is used to collect the wind parameter data and unit operation data of the wind power generating set, wherein the wind parameter data includes: air density, wind speed, inflow angle, wind shear, turbulence intensity and time, etc., and the unit operation data Including: wind speed, rotational speed, generator torque and power generation, etc.
  • Both the spindle bearing load sensor 201 and the data acquisition unit 204 send the collected data to the data analysis unit 205, and the data analysis unit 205 determines the load distribution function corresponding to each key load component according to the load value data of each key load component.
  • the maximum and minimum load values of the key load component are calculated through the load distribution function, and the load value is calculated according to a fixed step size, so as to obtain the probability distribution of the key load component in different load intervals.
  • the time distribution of each key load component of the main shaft bearing in each load interval under different wind speeds is obtained.
  • the transfer function calculation unit 206 calculates the transfer function of the main shaft bearing according to the probability distribution and time distribution of each key load component of the main shaft bearing.
  • the control unit 207 calculates the consumed life of the main shaft bearing according to the transfer function, and calculates the control parameters of the wind power generating set according to parameters such as the design life of the main shaft bearing. According to the control parameters, different control methods for the wind generating set are determined, and the operation of the wind generating set is controlled, thereby improving the control accuracy of the wind generating set.
  • control device 202 is a control device independent of the wind power generating set, and executes the above-mentioned control method of the wind power generating set through signal interaction with the wind power generating set.
  • control device 202 can also be the main control device in the wind power generating set, that is, the data acquisition unit 204, the data analysis unit 205, the transfer function calculation unit can be realized 206.
  • the function of the control unit 207 so as to realize the control of the wind power generating set.
  • the embodiment of the present application does not limit the specific form of the control device.
  • the embodiment of the present application also provides a control device for a wind power generating set, see FIG. 3 , which is a schematic diagram of a control device for a wind generating set provided in an embodiment of the present application.
  • the device 300 includes: a first processing module 301, a second processing module 302, a third processing module 303 and a control module 304;
  • the first processing module 301 is used to determine the consumed life of the main shaft bearing based on the wind parameter data of the wind power generating set, the operating data of the unit and the key load component of the main shaft bearing;
  • the second processing module 302 is configured to determine the remaining life of the main shaft bearing based on the design life and the consumed life of the main shaft bearing;
  • the third processing module 303 is used to determine the control parameters of the wind power generating set based on the design life, remaining life and actual consumption time of the main shaft bearing;
  • the control module 304 is configured to determine a control method of the wind power generating set based on the control parameters and preset parameters.
  • the first processing module 301 is specifically used to determine the transfer function corresponding to the key load component of the main shaft bearing based on the wind parameter data of the wind power generating set, the operating data of the unit, and the key load component of the main shaft bearing; based on each transfer function, determine the main shaft bearing of spent life.
  • the first processing module 301 is also used to determine the goodness of fit of the transfer function based on the transfer function; judge whether the goodness of fit is greater than a preset value; data, unit operating data and the key load component of the main shaft bearing, and re-determine the transfer function corresponding to the key load component of the main shaft bearing until the goodness of fit corresponding to the transfer function is greater than the preset value.
  • the control module 304 is specifically used to determine the first target speed in the set of preset speeds when the control parameter is smaller than the preset parameter, and control the wind turbine to run at the first target speed within a preset period, wherein the first target speed is less than the current speed of the wind power generating set, and the control parameter of the wind power generating set is greater than the preset parameter at the first target speed.
  • the first target rotational speed can be determined in the preset rotational speed set by using a dichotomy method.
  • the control module 304 is specifically used to determine the second target speed in the preset speed set when the control parameter is greater than the preset parameter, and control the wind turbine to run at the second target speed within a preset period, wherein the second target speed is greater than the current speed of the wind power generating set, and the control parameter of the wind power generating set is greater than the preset parameter at the second target speed.
  • the second target speed can be determined from the set of preset speeds by using a dichotomy method.
  • the control module 304 is specifically configured to control the wind power generating set to run at the current rotational speed within a preset period when the control parameter is equal to the preset parameter.
  • the embodiment of the present application also provides a control device for a wind power generating set, see FIG. 4 , which is a schematic diagram of a control device for a wind generating set provided in the embodiment of the present application.
  • the device 400 includes: a memory 401 and a processor 402;
  • the memory 401 is used to store related program codes
  • the processor 402 is configured to call the program code to execute the method for controlling the wind power generating set described in the method embodiment above.
  • an embodiment of the present application further provides a computer-readable storage medium, the computer-readable storage medium is used to store a computer program, and the computer program is used to execute the method for controlling a wind power generating set described in the method embodiment above.
  • FPGAs Field Programmable Gate Arrays
  • ASICs Application Specific Integrated Circuits
  • ASSPs Application Specific Standard Products
  • SOCs System on Chips
  • CPLD Complex Programmable Logical device
  • Computer program code for carrying out the operations of this application may be written in one or more programming languages, or combinations thereof, including but not limited to object-oriented programming languages—such as Java, Smalltalk, C++, and Includes conventional procedural programming languages - such as the "C" language or similar programming languages.
  • the program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server.
  • the remote computer can be connected to the user computer through any kind of network, including a local area network (LAN) or a wide area network (WAN), or it can be connected to an external computer (such as through an Internet service provider). Internet connection).
  • LAN local area network
  • WAN wide area network
  • Internet service provider such as AT&T, MCI, Sprint, EarthLink, MSN, GTE, etc.
  • each embodiment in this specification is described in a progressive manner, and the similar parts of each embodiment can be referred to each other, and each embodiment focuses on the differences from other embodiments.
  • the description is relatively simple, and the relevant parts may refer to the part description of the method embodiment.
  • the device embodiments described above are only illustrative, and the units or modules described as separate components may or may not be physically separated, and the components shown as units or modules may or may not be physical modules, that is It may be located in one place, or may be distributed to multiple network units, and some or all of the units or modules may be selected according to actual needs to achieve the purpose of the solution of this embodiment. It can be understood and implemented by those skilled in the art without creative effort.

Abstract

一种风力发电机组的控制方法以及执行该方法的控制装置、控制设备、控制系统和计算机可读储存介质,该方法包括:首先基于风力发电机组的风参数据、机组运行数据以及主轴轴承的关键载荷分量,确定主轴轴承的已消耗寿命;然后根据主轴轴承的设计寿命年限以及已消耗寿命,确定主轴轴承的剩余寿命;基于主轴轴承的设计寿命年限、剩余寿命以及主轴轴承实际消耗的时间,确定风力发电机组的控制参数;基于风力发电机组的控制参数以及预设参数,控制风力发电机组的转速。该方法考虑了主轴轴承的寿命对风力发电机组性能的影响,提高了对风力发电机组控制的准确性。

Description

一种风力发电机组的控制方法、装置、设备及介质
本申请要求于2021年12月29日提交的申请号为202111639989.7、申请名称为“一种风力发电机组的控制方法、装置、设备及介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及控制技术领域,尤其涉及一种风力发电机组的控制方法、装置、设备及介质。
背景技术
风力发电机组主轴轴承是风力发电机组的主要部件,主轴承受的载荷非常大,而且轴很长,容易变形,其所在的主传动系统是风力发电机组重要的安全系统,如果主轴发生故障,会给风电场带来巨大的经济损失。因此在风力发电机组的运行过程中,对主轴轴承的寿命评估尤为重要。
目前在风力发电机组的控制方法中,没有充分考虑主轴轴承的性能对整个机组的影响,导致风电场对风力发电机组的控制准确性较低。
发明内容
本申请实施例提供了一种风力发电机组的控制方法、装置、设备及介质,以便提高对风力发电机组控制的准确性。
第一方面,本申请实施例提供了一种风力发电机组的控制方法,所述方法包括:
基于风力发电机组的风参数据、机组运行数据以及主轴轴承的关键载荷分量,确定所述主轴轴承的已消耗寿命;
基于所述主轴轴承的设计寿命年限以及所述已消耗寿命,确定所述主轴轴承的剩余寿命;
基于所述主轴轴承的设计寿命年限、所述剩余寿命以及实际消耗时间,确定风力发电机组的控制参数;
基于所述控制参数以及预设参数,确定所述风力发电机组的控制方法。
第二方面,本申请实施例提供了一种风力发电机组的控制装置,所述装置包括:第一处理模块、第二处理模块、第三处理模块以及控制模块;
所述第一处理模块,用于基于风力发电机组的风参数据、机组运行数据以及主轴轴承的关键载荷分量,确定所述主轴轴承的已消耗寿命;
所述第二处理模块,用于基于所述主轴轴承的设计寿命年限以及所述已消耗寿命,确定所述主轴轴承的剩余寿命;
所述第三处理模块,用于基于所述主轴轴承的设计寿命年限、所述剩余寿命以及实际消耗时间,确定风力发电机组的控制参数;
所述控制模块,用于基于所述控制参数以及预设参数,确定所述风力发电机组的控制方法。
第三方面,本申请实施例提供了一种风力发电机组的控制设备,所述设备包括:存储器以及处理器;
所述存储器用于存储相关的程序代码;
所述处理器用于调用所述程序代码,执行上述第一方面任意一种实施方式所述的风力发电机组的控制方法。
第四方面,本申请实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机程序,所述计算机程序用于执行上述第一方面任意一种实施方式所述的风力发电机组的控制方法。
第五方面,本申请实施例提供了一种风电场控制系统,所述系统包括:
主轴轴承载荷传感器,设置于所述风力发电机组的主轴轴承上,用于采集所述主轴轴承的各关键载荷分量的载荷取值数据;
如上述的风力发电机组的控制设备,用于执行上述风力发电机组的控制方法。
由此可见,本申请实施例具有如下有益效果:
在本申请实施例的上述实现方式中,首先基于风力发电机组的风参数据、机组运行数据以及主轴轴承的关键载荷分量,确定主轴轴承的已消耗寿命;然后根据主轴轴承的设计寿命年限以及已消耗寿命,确定主轴轴承的剩余寿命;基于主轴轴承的设计寿命年限、剩余寿命以及主轴轴承实际消耗的时间,确定风力发电机组的控制参数;基于风力发电机组的控制参数以及预设参数,确定风力发电机组的控制方法。本申请实施例所提供的风力发电机组的控制方法,充分考虑主轴轴承的寿命对风力发电机组性能的影响,基于主轴轴承的寿命确 定对风力发电机组不同的控制方法,提高对风力发电机组控制的准确性。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见,下面描述中的附图仅仅是本申请中提供的一些实施例,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。
图1为本申请实施例中一种风力发电机组的控制方法的流程图;
图2a为本申请实施例中一种风力发电机组的控制系统的示意图;
图2b为本申请实施例中一种控制设备的示意图;
图2c为本申请实施例中另一种风力发电机组的控制系统的示意图;
图3为本申请实施例中一种风力发电机组的控制装置的示意图;
图4为本申请实施例中一种风力发电机组的控制设备的示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整的描述,所描述的实施例仅为本申请示例性的实施方式,并非全部实现方式。本领域技术人员可以结合本申请的实施例,在不进行创造性劳动的情况下,获得其他的实施例,而这些实施例也在本申请的保护范围之内。
主轴轴承是风力发电机组的主要部件,主轴承受的载荷非常大,其所在的主传动系统是风力发电机组重要的安全系统,如果主轴发生故障,会给风电场带来巨大的经济损失。目前在风力发电机组的控制方法中,没有充分考虑主轴轴承的性能对整个机组的影响,导致风电场对风力发电机组的控制准确性较低。
基于此,本申请实施例提供了一种风力发电机组的控制方法,以便提高对风力发电机组控制的准确性。具体实现时,首先基于风力发电机组的风参数据、机组运行数据以及主轴轴承的关键载荷分量,确定主轴轴承的已消耗寿命;然后根据主轴轴承的设计寿命年限以及已消耗寿命,确定主轴轴承的剩余寿命;基于主轴轴承的设计寿命年限、剩余寿命以及主轴轴承实际消耗的时间,确定风力发电机组的控制参数;基于风力发电机组的控制参数以及预设参数,确定风力发电机组的控制方法。本申请实施例所提供的风力发电机组的控制方法, 充分考虑主轴轴承的寿命对风力发电机组性能的影响,基于主轴轴承的寿命评估确定对风力发电机组不同的控制方法,提高对风力发电机组控制的准确性。
下面将结合附图对本申请实施例所提供的风力发电机组的控制方法进行说明。
参见图1,该图为本申请实施例提供的一种风力发电机组的控制方法的流程图。
该方法具体包括以下步骤:
S101:基于风力发电机组的风参数据、机组运行数据以及主轴轴承的关键载荷分量,确定主轴轴承的已消耗寿命。
确定主轴轴承的已消耗寿命时,一种可能的实现方式为,首先基于风力发电机组的风参数据、机组运行数据以及主轴轴承的关键载荷分量,确定主轴轴承的传递函数;然后利用该传递函数,计算主轴轴承在每个周期内的已消耗寿命;累计主轴轴承在经历过的所有周期内的已消耗寿命,即可确定主轴轴承的已消耗寿命。
其中,风参数据包括:空气密度、风速、入流角、风切变、湍流强度以及时间等,机组运行数据包括:转速、发电机扭矩以及发电量等,载荷也称为荷载,是指使结构或构件产生内力和变形的外力及其它因素,或习惯上指施加在工程结构上使工程结构或构件产生效应的各种直接作用。
风力发电机组的数据采集单元按照时间周期T,采集风力发电机组的风参数据以及机组运行数据等,其中,在周期T内,风力发电机组运行的转速按照预设转速集合R={r 1,r 2,...,r n}运行。在一种可能的实现方式中,预设转速集合R的最小值可以取值为风力发电机组额定转速r的0.7倍,预设转速集合R的最大值可以取值为额定转速r的1.3倍,即预设转速集合R的取值范围可以表示为[0.7r,1.3r],并且预设转速集合R中不包括风力发电机组的共振转速。
需要说明的是,风力发电机组的数据可以以分钟或者秒为单位进行采集,均不影响本申请实施例技术方案的实现。在本实施例中,以数据采集单元按照时间周期T采集风力发电机组的实时运行秒级数据为例进行说明。
通常情况下,风力发电机组的转速逐渐提升至额定转速时,即以额定转速运行,如果转速集合R中存在大于风力发电机组额定转速r的转速r m,那么超 过额定转速时的机组运行数据需要通过调整风力发电机组的运行转速获得,即当风力发电机组的运行转速达到额定转速r后,继续将运行转速提升至r m,才可以得到转速大于额定转速时的运行数据。当风力发电机组以转速r m运行三十分钟后,调整回原额定转速r,即可获得大于额定转速r时的机组运行数据。
在风力发电机组运行过程中,可以利用主轴轴承载荷传感器采集载荷数据,获得主轴轴承的关键载荷分量,即主要影响主轴轴承寿命的载荷分量。在本实施例中,以My、Mz、Fx、Fy和Fz表示主轴轴承的关键载荷分量。
根据载荷传感器所采集的关键载荷分量的载荷取值数据,针对任一关键载荷分量的载荷取值数据,以关键载荷分量My为例,利用数据分析单元分析数据,判断载荷取值数据符合哪些概率分布,如正态分布,从而得到关键载荷分量My所对应的载荷分布函数,并通过载荷分布函数计算出关键载荷分量My的载荷取值范围,即最大值Max和最小值Min,关键载荷取值My的载荷取值范围可以表示为My[Min,Max]。在载荷取值范围内,按照固定步长进行载荷取值,划分多个载荷区间,根据载荷分布函数以及载荷取值,即可确定该载荷取值对应的概率,得到关键载荷分量My在各个区间上的概率分布。
以此类推,可以得到各个关键载荷分量My、Mz、Fx、Fy和Fz的概率分布,如表1所示,以ss(step size)表示固定步长,f表示概率。
表1 主轴轴承周期T内各关键载荷分量的概率分布
My f Mz f Fx f Fy f Fz f
Min f_my_1 Min f_mz_1 Min f_fx_1 Min f_fy_1 Min f_fz_1
Min+ss f_my_2 Min+ss f_mz_2 Min+ss f_fx_2 Min+ss f_fy_2 Min+ss f_fz_2
Min+ss*2 f_my_3 Min+ss*2 f_mz_3 Min+ss*2 f_fx_3 Min+ss*2 f_fy_3 Min+ss*2 f_fz_3
... ... ... ... ... ... ... ... ... ...
Max f_my_max Max f_mz_max Max f_fx_max Max f_fy_max Max f_fz_max
f 1 f 1 f 1 f 1 f 1
在一种可能的实现方式中,风力发电机组的风速数据服从韦布尔分布,例 如,韦布尔分布的概率分密度函数为:
Figure PCTCN2022081099-appb-000001
其中,x表示风速,λ表示比例参数,k表示形状参数。
根据表1中各关键载荷分量的概率分布,可以得到在不同风速下,各关键载荷分量在各个区间的时间分布。具体地,针对任一风速取值,首先确定风力发电机组在该风速下的概率,然后统计在该风速下任一关键载荷分量的所有取值,确定该关键载荷分量在该风速以及对应载荷区间下的概率,即得到关键载荷分量在不同风速不同区间的概率分布,然后利用区间概率乘以8760即可得到关键载荷分量在不同区间的时间分布,其中,8760为按一年由365天计算,一年所包含的小时数。
如表2所示,表2提供了一种在不同风速下,各关键载荷分量在不同区间的时间分布示例,t表示时间。
表2 主轴轴承周期T内各关键载荷分量的时间分布
Figure PCTCN2022081099-appb-000002
基于表2得到的各关键载荷分量在各个区间的时间分布,以风力发电机组的风参数据和预设转速集合R作为输入数据,以各关键载荷分量的时间分布作为输出数据,训练得到主轴轴承各个关键载荷分量所对应的传递函数Fd,其中,d∈[My,Mz,Fx,Fy,Fz],即任意一个关键载荷分量对应一个传递函数。
在一种优选的实现方式中,对训练得到的传递函数进行优化,以传递函数的拟合优度作为优化标准,当拟合优度大于预设值时,传递函数即不再需要优 化。需要说明的是,预设值可以根据实际应用具体确定,本申请实施例不做限定,例如,预设值可以设定为98%,即当拟合优度大于98%时,传递函数满足要求。
具体实现时,根据风力发电机组在下一周期T’内的风参数据、机组运行数据以及主轴轴承的关键载荷分量等,确定主轴轴承的各关键载荷分量在周期T’内的时间分布,计算方法参见上述周期T内的计算方法,在此不再赘述。
根据周期T’内的时间分布,计算等效载荷L T-eq,等效载荷L T-eq的计算公式为:
Figure PCTCN2022081099-appb-000003
其中,i表示载荷的区间个数,L i为载荷区间,n i为转速,t i为各载荷区间对应的时间。
根据等效载荷L T-eq以及主轴轴承的设计参数信息,计算得到主轴轴承在周期T’内的已消耗寿命L T’
基于周期T内主轴轴承各关键载荷分量的传递函数Fd,以风力发电机组在周期T’内的风参数据和预设转速集合作为输入数据,得到各关键载荷分量在不同区间的预测时间分布,从而得到预测等效载荷L T-eq’,根据预测等效载荷L T-eq’以及主轴轴承的设计参数信息,计算得到主轴轴承在周期T’内的预测已消耗寿命preL T’
拟合优度R T’的计算公式为:R T’=preL T’/L T’,当拟合优度R T’大于预设值98%时,则传递函数Fd满足要求,在后续周期内可以直接利用传递函数预测主轴轴承的已消耗寿命。如果拟合优度R T’不满足要求,小于或等于预设值98%,则结合周期T和周期T’内的风参数据以及预设转速集合作为一个新周期内的训练数据,计算得到新周期的已消耗寿命,根据上述步骤重新训练传递函数Fd,利用新传递函数Fd计算新的预测已消耗寿命,根据新周期的已消耗寿命和预测已消耗寿命重新计算拟合优度R T’,如果拟合优度不满足要求,则增加一个周期内的风参数据作为样本,即结合前三个周期内的风参数据继续重新优化拟合优度R T’,如果拟合优度不满足要求,则继续增加一个周期的风参数据作为样本,以此类推,直至拟合优度R T’满足要求。
当拟合优度满足要求时,表明传递函数对已消耗寿命的预测准确性较高,所以在后续周期可以直接利用传递函数预测主轴轴承的已消耗寿命。
利用传递函数计算主轴轴承在各个周期内的已消耗寿命,从而得到主轴轴承在经历过的所有周期内的已消耗寿命。
S102:根据主轴轴承的设计寿命年限以及已消耗寿命,确定主轴轴承的剩余寿命。
根据主轴轴承的设计寿命年限Life以及已消耗寿命Life consume,计算主轴轴承的剩余寿命Life remain,即Life remain=Life-Life consume。在实际应用中,主轴轴承的设计寿命年限一般为20年。
S103:基于主轴轴承的设计寿命年限、剩余寿命以及实际消耗时间,确定风力发电机组的控制参数。
实际消耗时间即为实际过去了多长时间,可以用Life real表示,风力发电机组的控制参数用Δl表示,则控制参数Δl的计算公式为:
Δl=Life remain-(Life-Life real)。
以主轴轴承的设计寿命年限为20年为例,假设计算确定主轴轴承的已消耗寿命为2年,即Life consume为2年,而实际过去的时间为3年,即Life real为3年,那么可以确定主轴轴承的剩余寿命为18年,即Life remain为18年,由此确定风力发电机组的控制参数Δl=18-(20-3)=1。
S104:基于控制参数以及预设参数,确定风力发电机组的控制方法。
根据控制参数和预设参数的大小,可以确定风力发电机组不同的控制方法。一种可能的实现方式,预设参数可以为0。
具体实现时,当风力发电机组的控制参数小于预设参数时,即主轴轴承的已消耗寿命大于实际消耗时间,说明风力发电机组在运行过程中造成主轴轴承的损耗超过预期,所以在后续周期运行中需要保护主轴轴承,延长主轴轴承的寿命。
一种可能的实现方式为,在风力发电机组的预设转速集合中,确定第一目标转速,控制风力发电机组在预设周期内以第一目标转速运行,并且保证当风力发电机组以第一目标转速运行时,风力发电机组的控制参数大于预设参数,其中,第一目标转速小于风力发电机组当前运行的转速,预设周期即为风力发 电机组当前运行周期的下一周期。
假设风力发电机组在预设周期以第一目标转速运行,计算预设周期内风力发电机组的控制参数时,利用之前经历所有周期的风参数据的平均值作为预设周期的风参数据,然后根据传递函数预测主轴轴承的已消耗寿命,从而得到预设周期的控制参数,最终确定使控制参数大于预设参数的第一目标转速。
本申请实施例中确定第一目标转速时,可以利用二分法进行查找,即不断地将预设转速集合一分为二,从而确定符合条件的第一目标转速。
一种可能的实现方式为,设置预设转速集合R={r 1,r 2,r 3...,r 7},利用二分法进行查找时,首先找到集合R中的中间值作为第一目标转速,即r 4为第一目标转速,是否满足控制参数大于预设参数,如果不满足,此时将集合R中剩余的值平均分为两个集合R1={r 1,r 2,r 3}以及R2={r 5,r 6,r 7}可以先将集合R1中的中间值r 2作为第一目标转速进行判断,也可以先将集合R2中的中间值r 6作为第一目标转速进行判断。
由于第一目标转速小于风力发电机组的当前转速,当第一目标转速小于额定转速时,根据转速与扭矩预先确定的对应关系,通过查表可以确定当前转速所对应的扭矩,控制风力发电机组以该转速和扭矩运行,从而使风力发电机组具有较高的发电量。风力发电机组在第一目标转速所对应的扭矩、发电量均会减小,保证风力发电机组处于限功率运行状态。所以当风力发电机组在预设周期内以第一目标转速运行时,可以减少主轴轴承的损耗,提高对风力发电机组控制的准确性。
当风力发电机组的控制参数大于预设参数时,即主轴轴承的已消耗寿命小于实际消耗时间,说明风力发电机组在运行过程中造成主轴轴承的损耗较小,因此在后续周期运行时,可以在保证主轴轴承的损耗不超过范围时,适当提升风力发电机组的运行转速,从而提高风力发电机组的发电性能。
一种可能的实现方式为,在风力发电机组的预设转速集合中,确定第二目标转速,控制风力发电机组在预设周期内以第二目标转速运行,其中,第二目标转速大于风力发电机组的当前转速,并且保证当风力发电机组以第二目标转速运行时,风力发电机组的控制参数大于预设参数。
确定第二目标转速时,同样可以利用二分法进行查找,不断地将预设转速 集合一分为二,确定符合条件的第二目标转速。确定使预设周期内的控制参数大于预设参数的第二目标转速的原理同上述实施例,在此不再赘述。
当风力发电机组在预设周期内以第二目标转速运行时,如果第二目标转速大于额定转速,由于第二目标转速大于风力发电机组的当前转速,在扭矩不变的情况下风力发电机组的发电量也会提升,提高了对风力发电机组的控制性能。
当风力发电机组的控制参数等于预设参数时,在预设周期内使主轴轴承的寿命保持稳定即可,无需改变风力发电机组的转速,即控制风力发电机组在预设周期内以当前转速运行,保证其正常发电。
需要说明的是,上述实施例中确定目标转速的方式仅为示例性的说明,并非对本申请做任何形式上的限定,其他可能的方式也在本申请的保护范围内。
本申请实施例所提供的风力发电机组的控制方法,基于对主轴轴承的寿命评估确定对风力发电机组不同的控制方法,从而提高对风力发电机组控制的准确性。
基于上述方法实施例,下面将结合具体应用场景,介绍风电场控制系统。
参见图2a,该图为本申请实施例提供的一种风电场控制系统的示意图。
在该应用场景中包括多个风力发电机组200,该控制系统包括:主轴轴承载荷传感器201、上述的风力发电机组的控制设备202、风电场场群控制器203。
主轴轴承载荷传感器201设置于风力发电机组的主轴轴承上,用于采集主轴轴承各关键载荷分量的载荷取值数据。
风力发电机组的控制设备202,用于执行上述的风力发电机组的控制方法。
风电场场群控制器203,用于获取控制设备202计算的风力发电机组的控制参数,并根据该控制参数控制风力发电机组。
在该应用场景中,控制设备202可以包括:数据采集单元204、数据分析单元205、传递函数计算单元206以及控制单元207,控制设备202的结构示意图参见图2b。
具体地,数据采集单元204用于采集风力发电机组的风参数据以及机组运行数据,其中,风参数据包括:空气密度、风速、入流角、风切变、湍流强度 以及时间等,机组运行数据包括:风速、转速、发电机扭矩以及发电量等。
主轴轴承载荷传感器201和数据采集单元204均将所采集的数据发送给数据分析单元205,数据分析单元205根据各关键载荷分量的载荷取值数据,确定各关键载荷分量所对应的载荷分布函数。针对任一关键载荷分量,通过载荷分布函数计算该关键载荷分量的载荷最大值和最小值,并按照固定步长进行载荷取值,从而得到该关键载荷分量在不同载荷区间的概率分布。结合风参数据以及转速数据,得到主轴轴承各关键载荷分量在不同风速下各载荷区间的时间分布。
传递函数计算单元206根据主轴轴承各关键载荷分量的概率分布和时间分布,计算得到主轴轴承的传递函数。
控制单元207根据传递函数计算得到主轴轴承的已消耗寿命,根据主轴轴承的设计寿命年限等参数,计算得到风力发电机组的控制参数。根据控制参数确定对风力发电机组不同的控制方法,控制风力发电机组运行,从而提高对风力发电机组控制的准确性。
由图2a可知,在该应用场景中,控制设备202是独立于风力发电机组的控制设备,通过与风力发电机组的信号交互,执行上述风力发电机组的控制方法。
在另一种可能的应用场景中,如图2c所示,该控制设备202也可以是风风力发电机组中的主控设备,即可以实现数据采集单元204、数据分析单元205、传递函数计算单元206、控制单元207的功能,从而实现对风力发电机组的控制。本申请实施例对控制设备的具体形式并不做限制。
需要说明的是,本申请虽然采用特定次序描绘了各操作,但是这不应当理解为要求这些操作以所示出的特定次序或以顺序次序执行来执行。在一定环境下,多任务和并行处理可能是有利的。应当理解,本申请的方法实施方式中记载的各个步骤可以按照不同的顺序执行,和/或并行执行。此外,方法实施方式可以包括附加的步骤和/或省略执行示出的步骤。本申请的范围在此方面不受限制。
基于上述方法实施例,本申请实施例还提供一种风力发电机组的控制装置,参见图3,该图为本申请实施例提供的一种风力发电机组的控制装置的示 意图。
该装置300包括:第一处理模块301、第二处理模块302、第三处理模块303以及控制模块304;
第一处理模块301,用于基于风力发电机组的风参数据、机组运行数据以及主轴轴承的关键载荷分量,确定主轴轴承的已消耗寿命;
第二处理模块302,用于基于主轴轴承的设计寿命年限以及已消耗寿命,确定主轴轴承的剩余寿命;
第三处理模块303,用于基于主轴轴承的设计寿命年限、剩余寿命以及实际消耗时间,确定风力发电机组的控制参数;
控制模块304,用于基于控制参数以及预设参数,确定风力发电机组的控制方法。
第一处理模块301,具体用于基于风力发电机组的风参数据、机组运行数据以及主轴轴承的关键载荷分量,确定主轴轴承的关键载荷分量所对应的传递函数;基于各个传递函数,确定主轴轴承的已消耗寿命。
第一处理模块301,还用于基于传递函数确定该传递函数的拟合优度;判断该拟合优度是否大于预设值;如果否,则基于风力发电机组在预设周期内的风参数据、机组运行数据以及主轴轴承的关键载荷分量,重新确定主轴轴承的关键载荷分量所对应的传递函数,直至传递函数所对应的拟合优度大于预设值。
控制模块304,具体用于当控制参数小于预设参数时,在预设转速集合中确定第一目标转速,控制风力发电机组在预设周期内以第一目标转速运行,其中,第一目标转速小于风力发电机组的当前转速,在第一目标转速下风力发电机组的控制参数大于预设参数。
当控制模块304确定第一目标转速时,可以利用二分法在预设转速集合中确定第一目标转速。
控制模块304,具体用于当控制参数大于预设参数时,在预设转速集合中确定第二目标转速,控制风力发电机组在预设周期内以第二目标转速运行,其中,第二目标转速大于风力发电机组的当前转速,在第二目标转速下风力发电机组的控制参数大于预设参数。
同样地,当控制模块304确定第二目标转速时,可以利用二分法在预设转速集合中确定第二目标转速。
控制模块304,具体用于当控制参数等于预设参数时,控制风力发电机组在预设周期内以当前转速运行。
本申请实施例所提供的装置实施例具有的有益效果参见上述方法实施例,在此不再赘述。
基于上述方法实施例和装置实施例,本申请实施例还提供一种风力发电机组的控制设备,参见图4,该图为本申请实施例提供的一种风力发电机组的控制设备的示意图。
该设备400包括:存储器401以及处理器402;
存储器401用于存储相关的程序代码;
处理器402用于调用所述程序代码,执行上述方法实施例所述的风力发电机组的控制方法。
此外,本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机程序,所述计算机程序用于执行上述方法实施例所述的风力发电机组的控制方法。
本文中以上描述的功能可以至少部分地由一个或多个硬件逻辑部件来执行。例如,非限制性地,可以使用的示范类型的硬件逻辑部件包括:现场可编程门阵列(FPGA)、专用集成电路(ASIC)、专用标准产品(ASSP)、片上系统(SOC)、复杂可编程逻辑设备(CPLD)等等。
可以以一种或多种程序设计语言或其组合来编写用于执行本申请的操作的计算机程序代码,上述程序设计语言包括但不限于面向对象的程序设计语言—诸如Java、Smalltalk、C++,还包括常规的过程式程序设计语言—诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络——包括局域网(LAN)或广域网(WAN)—连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。
需要说明的是,本申请中使用的术语“第一”和“第二”是用于区别类似的对象,而不用于描述特定顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,这仅仅是描述本申请的实施例中对相同属性的对象在描述时所采用的区分方式。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于装置实施例而言,由于其基本类似于方法实施例,所以描述得比较简单,相关部分参见方法实施例的部分说明即可。以上所描述的装置实施例仅仅是示意性的,其中作为分离部件说明的单元或模块可以是或者也可以不是物理上分开的,作为单元或模块显示的部件可以是或者也可以不是物理模块,即可以位于一个地方,或者也可以分布到多个网络单元上,可以根据实际需要选择其中的部分或者全部单元或模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
以上所述仅是本申请示例性的实施方式,并非对本申请做任何形式上的限制。对以上实施例所做的等同变化或修改,均属于本申请的保护范围。

Claims (12)

  1. 一种风力发电机组的控制方法,所述方法包括:
    基于风力发电机组的风参数据、机组运行数据以及主轴轴承的关键载荷分量,确定所述主轴轴承的已消耗寿命;
    基于所述主轴轴承的设计寿命年限以及所述已消耗寿命,确定所述主轴轴承的剩余寿命;
    基于所述主轴轴承的设计寿命年限、所述剩余寿命以及实际消耗时间,确定风力发电机组的控制参数;
    基于所述控制参数以及预设参数,确定所述风力发电机组的控制方法。
  2. 根据权利要求1所述的方法,其中,所述基于所述控制参数以及预设参数,确定所述风力发电机组的控制方法,包括:
    当所述控制参数小于所述预设参数时,在预设转速集合中确定第一目标转速,控制所述风力发电机组在预设周期内以所述第一目标转速运行,其中,所述第一目标转速小于所述风力发电机组的当前转速,在所述第一目标转速下所述风力发电机组的控制参数大于所述预设参数。
  3. 根据权利要求1所述的方法,其中,所述基于所述控制参数以及预设参数,确定所述风力发电机组的控制方法,包括:
    当所述控制参数大于所述预设参数时,在所述预设转速集合中确定第二目标转速,控制所述风力发电机组在所述预设周期内以所述第二目标转速运行,其中,所述第二目标转速大于所述风力发电机组的当前转速,在所述第二目标转速下所述风力发电机组的控制参数大于所述预设参数。
  4. 根据权利要求1所述的方法,其中,所述基于所述控制参数以及预设参数,确定所述风力发电机组的控制方法,包括:
    当所述控制参数等于所述预设参数时,控制所述风力发电机组在所述预设周期内以所述当前转速运行。
  5. 根据权利要求2所述的方法,其中,所述在所述预设转速集合中确定第一目标转速,包括:
    在所述预设转速集合中,利用二分法确定所述第一目标转速。
  6. 根据权利要求1所述的方法,其特征在于,所述基于风力发电机组的 风参数据、机组运行数据以及主轴轴承的关键载荷分量,确定所述主轴轴承的已消耗寿命包括:
    基于所述风力发电机组的风参数据、机组运行数据以及所述主轴轴承的关键载荷分量,确定所述主轴轴承的关键载荷分量所对应的传递函数;
    基于所述传递函数,确定所述主轴轴承的已消耗寿命。
  7. 根据权利要求6所述的方法,其中,所述基于所述风力发电机组的风参数据、机组运行数据以及所述主轴轴承的关键载荷分量,确定所述主轴轴承的关键载荷分量所对应的传递函数,还包括:
    基于所述传递函数确定所述传递函数的拟合优度;
    判断所述拟合优度是否大于预设值;如果否,则基于所述风力发电机组在所述预设周期内的风参数据、机组运行数据以及所述主轴轴承的关键载荷分量,确定所述主轴轴承的关键载荷分量所对应的传递函数。
  8. 一种风力发电机组的控制装置,所述装置包括:第一处理模块、第二处理模块、第三处理模块以及控制模块;
    所述第一处理模块,用于基于风力发电机组的风参数据、机组运行数据以及主轴轴承的关键载荷分量,确定所述主轴轴承的已消耗寿命;
    所述第二处理模块,用于基于所述主轴轴承的设计寿命年限以及所述已消耗寿命,确定所述主轴轴承的剩余寿命;
    所述第三处理模块,用于基于所述主轴轴承的设计寿命年限、所述剩余寿命以及实际消耗时间,确定风力发电机组的控制参数;
    所述控制模块,用于基于所述控制参数以及预设参数,确定所述风力发电机组的控制方法。
  9. 一种风力发电机组的控制设备,所述设备包括:存储器以及处理器;
    所述存储器用于存储相关的程序代码;
    所述处理器用于调用所述程序代码,执行权利要求1至7任一项所述的风力发电机组的控制方法。
  10. 一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机程序,所述计算机程序用于执行权利要求1至7任一项所述风力发电机组的控制方法。
  11. 一种风电场控制系统,所述系统包括:
    主轴轴承载荷传感器,设置于所述风力发电机组的主轴轴承上,用于采集所述主轴轴承的各关键载荷分量的载荷取值数据;
    如权利要求9所述的风力发电机组的控制设备,用于执行权利要求1至7任一项所述的风力发电机组的控制方法。
  12. 根据权利要求11所述的风电场控制系统,其中,所述风电场控制系统还包括风电场场群控制器,用于获取所述控制设备计算的风力发电机组的控制参数,并根据所述控制参数控制所述风力发电机组;
    其中,所述控制设备包括:
    数据采集单元,用于采集风力发电机组的风参数据以及机组运行数据;
    数据分析单元,所述数据分析单元接收所述主轴轴承载荷传感器和所述数据采集单元采集的数据,并根据各所述关键载荷分量的载荷取值数据,确定各所述关键载荷分量所对应的载荷分布函数;
    传递函数计算单元,根据所述主轴轴承的各关键载荷分量的概率分布和时间分布,计算得到所述主轴轴承的传递函数;
    控制单元,根据所述传递函数计算得到所述主轴轴承的已消耗寿命,根据所述主轴轴承的设计寿命年限等参数,计算得到风力发电机组的控制参数。
PCT/CN2022/081099 2021-12-29 2022-03-16 一种风力发电机组的控制方法、装置、设备及介质 WO2023123689A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111639989.7 2021-12-29
CN202111639989.7A CN116412083A (zh) 2021-12-29 2021-12-29 一种风力发电机组的控制方法、装置、设备及介质

Publications (1)

Publication Number Publication Date
WO2023123689A1 true WO2023123689A1 (zh) 2023-07-06

Family

ID=86997315

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/081099 WO2023123689A1 (zh) 2021-12-29 2022-03-16 一种风力发电机组的控制方法、装置、设备及介质

Country Status (2)

Country Link
CN (1) CN116412083A (zh)
WO (1) WO2023123689A1 (zh)

Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101981308A (zh) * 2008-08-25 2011-02-23 三菱重工业株式会社 风车的运转限制调整装置及方法以及程序
WO2011035977A1 (en) * 2009-09-23 2011-03-31 Siemens Aktiengesellschaft Power generating machine load control based on consumed fatigue life time and real-time of operation of a structural component
WO2011035975A1 (en) * 2009-09-23 2011-03-31 Siemens Aktiengesellschaft Dynamic adaptation of a set point for a fatigue life of a structural component of a power generating machine
CN103946540A (zh) * 2011-09-30 2014-07-23 维斯塔斯风力系统集团公司 风力涡轮机的控制
US20150167637A1 (en) * 2013-12-12 2015-06-18 General Electric Company System and method for operating a wind turbine
US20160010628A1 (en) * 2014-07-10 2016-01-14 General Electric Company System and method for determining life of a wind turbine
US20160252075A1 (en) * 2013-10-07 2016-09-01 Vestas Wind Systems A/S Methods and apparatus for controlling wind turbines
CN106164478A (zh) * 2014-03-13 2016-11-23 维斯塔斯风力系统集团公司 一组风力涡轮机的控制
CN107110121A (zh) * 2014-11-24 2017-08-29 维斯塔斯风力系统集团公司 对风力涡轮机构造的确定
CN107709760A (zh) * 2015-06-30 2018-02-16 维斯塔斯风力系统集团公司 风力涡轮机控制超驰
CN107709762A (zh) * 2015-06-30 2018-02-16 维斯塔斯风力系统集团公司 风力涡轮机的控制方法以及系统
CN107735567A (zh) * 2015-06-30 2018-02-23 维斯塔斯风力系统集团公司 风力涡轮机控制函数的初始化
CN107810324A (zh) * 2015-06-30 2018-03-16 维斯塔斯风力系统集团公司 用于生成风力涡轮机控制时间表的方法和系统
CN107850044A (zh) * 2015-06-30 2018-03-27 维斯塔斯风力系统集团公司 用于风力涡轮机的保护的控制方法和系统
CN108150360A (zh) * 2016-12-05 2018-06-12 北京金风科创风电设备有限公司 检测风电机组的等效载荷的方法和设备
CN108603491A (zh) * 2016-02-12 2018-09-28 维斯塔斯风力系统集团公司 涉及控制轴承磨损的改进
CN108869173A (zh) * 2018-01-31 2018-11-23 北京金风科创风电设备有限公司 风电机组的功率控制方法和设备
CN111120219A (zh) * 2018-10-31 2020-05-08 北京金风科创风电设备有限公司 确定风力发电机组的疲劳载荷的方法及设备
CN111441917A (zh) * 2019-01-16 2020-07-24 北京金风科创风电设备有限公司 基于扇区的风电机组的预定部件的载荷预估方法和装置
WO2020200421A1 (en) * 2019-04-01 2020-10-08 Acciona Energia S.A. A method for estimating remaining useful life of components of an operational wind turbine
CN111886412A (zh) * 2018-03-29 2020-11-03 菱重维斯塔斯海上风力有限公司 风力涡轮发电机和控制风力涡轮发电机的方法
CN113374652A (zh) * 2021-06-10 2021-09-10 中国三峡建工(集团)有限公司 一种风力发电机组寿命评估方法

Patent Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101981308A (zh) * 2008-08-25 2011-02-23 三菱重工业株式会社 风车的运转限制调整装置及方法以及程序
WO2011035977A1 (en) * 2009-09-23 2011-03-31 Siemens Aktiengesellschaft Power generating machine load control based on consumed fatigue life time and real-time of operation of a structural component
WO2011035975A1 (en) * 2009-09-23 2011-03-31 Siemens Aktiengesellschaft Dynamic adaptation of a set point for a fatigue life of a structural component of a power generating machine
CN103946540A (zh) * 2011-09-30 2014-07-23 维斯塔斯风力系统集团公司 风力涡轮机的控制
US20160252075A1 (en) * 2013-10-07 2016-09-01 Vestas Wind Systems A/S Methods and apparatus for controlling wind turbines
US20150167637A1 (en) * 2013-12-12 2015-06-18 General Electric Company System and method for operating a wind turbine
CN106164478A (zh) * 2014-03-13 2016-11-23 维斯塔斯风力系统集团公司 一组风力涡轮机的控制
US20160010628A1 (en) * 2014-07-10 2016-01-14 General Electric Company System and method for determining life of a wind turbine
CN107110121A (zh) * 2014-11-24 2017-08-29 维斯塔斯风力系统集团公司 对风力涡轮机构造的确定
CN107709762A (zh) * 2015-06-30 2018-02-16 维斯塔斯风力系统集团公司 风力涡轮机的控制方法以及系统
CN107709760A (zh) * 2015-06-30 2018-02-16 维斯塔斯风力系统集团公司 风力涡轮机控制超驰
CN107735567A (zh) * 2015-06-30 2018-02-23 维斯塔斯风力系统集团公司 风力涡轮机控制函数的初始化
CN107810324A (zh) * 2015-06-30 2018-03-16 维斯塔斯风力系统集团公司 用于生成风力涡轮机控制时间表的方法和系统
CN107850044A (zh) * 2015-06-30 2018-03-27 维斯塔斯风力系统集团公司 用于风力涡轮机的保护的控制方法和系统
CN108603491A (zh) * 2016-02-12 2018-09-28 维斯塔斯风力系统集团公司 涉及控制轴承磨损的改进
CN108150360A (zh) * 2016-12-05 2018-06-12 北京金风科创风电设备有限公司 检测风电机组的等效载荷的方法和设备
CN108869173A (zh) * 2018-01-31 2018-11-23 北京金风科创风电设备有限公司 风电机组的功率控制方法和设备
CN111886412A (zh) * 2018-03-29 2020-11-03 菱重维斯塔斯海上风力有限公司 风力涡轮发电机和控制风力涡轮发电机的方法
CN111120219A (zh) * 2018-10-31 2020-05-08 北京金风科创风电设备有限公司 确定风力发电机组的疲劳载荷的方法及设备
CN111441917A (zh) * 2019-01-16 2020-07-24 北京金风科创风电设备有限公司 基于扇区的风电机组的预定部件的载荷预估方法和装置
WO2020200421A1 (en) * 2019-04-01 2020-10-08 Acciona Energia S.A. A method for estimating remaining useful life of components of an operational wind turbine
CN113374652A (zh) * 2021-06-10 2021-09-10 中国三峡建工(集团)有限公司 一种风力发电机组寿命评估方法

Also Published As

Publication number Publication date
CN116412083A (zh) 2023-07-11

Similar Documents

Publication Publication Date Title
Saranyasoontorn et al. Design loads for wind turbines using the environmental contour method
CN105512766A (zh) 一种风电场功率预测方法
CN107045574A (zh) 基于svr的风力发电机组低风速段有效风速估计方法
AU2018334593A1 (en) Method and system for controlling wind turbine based on sectors
CN105186502A (zh) 基于安全域的含双馈风机电力系统暂态稳定性分析方法
CN115660232A (zh) 风电功率的超短期预测方法、装置及系统
WO2023123689A1 (zh) 一种风力发电机组的控制方法、装置、设备及介质
Jiading et al. TS_XGB: Ultra-short-term wind power forecasting method based on fusion of time-spatial data and XGBoost algorithm
Yao et al. Power curve modeling for wind turbine using hybrid-driven outlier detection method
WO2024007567A1 (zh) 基于fmeca的海上浮式风机可靠性分析方法及装置
Zhang et al. Joint forecasting of regional wind and solar power based on attention neural network
Huang et al. Parallel preconditioned WENO scheme for three-dimensional flow simulation of NREL Phase VI Rotor
Chen et al. A Compressor Off-Line Washing Schedule Optimization Method With a LSTM Deep Learning Model Predicting the Fouling Trend
Luo Application of reinforcement learning algorithm model in gas path fault intelligent diagnosis of gas turbine
Astolfi et al. Data-driven methods for the analysis of wind turbine yaw control optimization
CN116054240A (zh) 一种基于功率预测的风电并网运行控制优化方法及系统
Shi et al. Mathematical modeling and optimization of gas foil bearings-rotor system in hydrogen fuel cell vehicles
Wang et al. Turbulence intensity identification and load reduction of wind turbine under extreme turbulence
Xu et al. NWP feature selection and GCN-based ultra-short-term wind farm cluster power forecasting method
Cui et al. State change trend prediction of aircraft pump source system based on GRU network
CN106022543A (zh) 一种风功率及电量诊断系统
He et al. Condition Evaluation Method of Wind Turbine Based on Real-time Reliability
Bouzem et al. Probabilistic and Reliability Analysis of an Intelligent Power Control for a Doubly Fed Induction Generator-Based Wind Turbine System
Sun et al. The cloud computing load forecasting algorithm based on Kalman filter and ANFIS
董兴辉 et al. Research on unified assessment model of wind turbine efficiency and performance

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22912995

Country of ref document: EP

Kind code of ref document: A1