WO2023123583A1 - 适用于地质数据和地理信息数据的融合方法、装置及系统 - Google Patents

适用于地质数据和地理信息数据的融合方法、装置及系统 Download PDF

Info

Publication number
WO2023123583A1
WO2023123583A1 PCT/CN2022/073091 CN2022073091W WO2023123583A1 WO 2023123583 A1 WO2023123583 A1 WO 2023123583A1 CN 2022073091 W CN2022073091 W CN 2022073091W WO 2023123583 A1 WO2023123583 A1 WO 2023123583A1
Authority
WO
WIPO (PCT)
Prior art keywords
slice
information
geological
dem
calibration
Prior art date
Application number
PCT/CN2022/073091
Other languages
English (en)
French (fr)
Inventor
于广婷
刘同文
曹发伟
张建芳
宋冠涵
薛立明
许传新
徐进达
何祖臣
刘嘉
张志进
李涛
段越洋
Original Assignee
山东省地质测绘院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东省地质测绘院 filed Critical 山东省地质测绘院
Publication of WO2023123583A1 publication Critical patent/WO2023123583A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • G06T17/05Geographic models
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T1/00General purpose image data processing
    • G06T1/20Processor architectures; Processor configuration, e.g. pipelining
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T15/003D [Three Dimensional] image rendering
    • G06T15/005General purpose rendering architectures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T19/00Manipulating 3D models or images for computer graphics
    • G06T19/20Editing of 3D images, e.g. changing shapes or colours, aligning objects or positioning parts
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2200/00Indexing scheme for image data processing or generation, in general
    • G06T2200/04Indexing scheme for image data processing or generation, in general involving 3D image data

Definitions

  • the invention relates to the technical field of data processing, in particular to a fusion method, device and system suitable for geological data and geographic information data.
  • Geological data has the characteristics of multi-source (element), heterogeneity, time-space, correlation, randomness, nonlinearity, etc.
  • energy and mineral development and utilization ecological environment protection, geological disaster prevention and geological science research.
  • geological data has the characteristics of big data and the attributes of wide application in society, and has become an important part of national big data.
  • geological work has formed massive multi-source heterogeneous data. How to conveniently and effectively integrate geological big data and carry out multi-thematic applications has always been the focus and hot issue of research in the industry.
  • geological achievement data are mostly displayed and applied in geological maps of different scales and themes, and most of the geological attribute elements displayed on the geological maps are displayed in two-dimensional forms, which is not convenient for non-professionals to use.
  • Embodiments of the present invention provide a fusion method, device, and system suitable for geological data and geographic information data, which can dynamically and instantly generate three-dimensional fusion slices according to the user's selection and selection, and provide user information based on the three-dimensional fusion slices.
  • the display is performed so that the geological map is displayed in a three-dimensional form.
  • An embodiment of the present invention provides a fusion method suitable for geological data and geographic information data, including:
  • the geological slice is rendered based on the geographic information in the simulated information slice to obtain the first fusion slice after adding the geographic information;
  • a fusion method, device and system suitable for geological data and geographic information data provided by the present invention can dynamically and instantly generate a three-dimensional fusion slice according to the selection and selection of the user, and display it to the user according to the three-dimensional fusion slice , so that the geological map is displayed in a three-dimensional form, and the user can view the geological elements, geographic information, etc. of a certain location at the same time.
  • the technical solution provided by the present invention calibrates geological slices, DEM slices, and analog information slices before generating the first fusion slice and the second fusion slice, so that geological slices, DEM slices, and analog information slices will not appear during the fusion process Fusion error case.
  • the present invention sets a reference slice before generating geological slices, DEM slices, and simulated information slices, so that the generated geological slices, DEM slices, and simulated information slices are Generated according to the standards of reference slices, at this time, geological slices, DEM slices, and analog information slices have uniform pixels and geographic locations, and can be fully fused when multiple slices are fused, ensuring the accuracy of the 3D image.
  • the technical solution provided by the present invention only randomly selects the first number of geological calibration points during calibration, and does not need to select all geological calibration points.
  • the server needs to process more tasks when performing image processing, so the present invention performs calibration.
  • the first number of geological calibration points will be dynamically adjusted, and the first number of geological calibration points will be dynamically determined in combination with the total number of geological calibration points, the current GPU occupancy rate of the server, and the remaining cache. Reduce the first number, thereby reducing the workload of the server, so as to ensure the stable operation of the server and improve the robustness of the server.
  • Fig. 1 is the flow chart of the first embodiment of the fusion method applicable to geological data and geographic information data;
  • Fig. 2 is the flow chart of the second embodiment of the fusion method applicable to geological data and geographic information data
  • Figure 3A is a schematic diagram of a geological slice
  • Figure 3B is a schematic diagram of a DEM slice
  • FIG. 3C is a schematic diagram of an analog information slice with geographic information
  • FIG. 3D is a schematic diagram of a first fusion slice
  • Figure 3E is a schematic diagram of the second fusion slice
  • Fig. 4 is a structural diagram of a first embodiment of a fusion device suitable for geological data and geographic information data
  • Fig. 5 is a structural diagram of a first embodiment of a fusion system suitable for geological data and geographic information data.
  • the present invention provides a fusion method suitable for geological data and geographic information data, as shown in Figure 1, its flow chart, including:
  • Step S110 determining geological slices, DEM slices and simulation information slices based on user selected information. The determination of the slice is performed through step S110.
  • Step S120 acquiring preset calibration points in the geological slice, DEM slice, and simulation information slice to obtain a set of geological calibration points, a set of DEM calibration points, and a set of information calibration points.
  • step S120 calibration point sets of slices of different dimensions can be obtained, so that the technical solution provided by the present invention can correct geological slices, DEM slices, and simulation information slices based on the calibration point sets.
  • Step S130 if all calibration points in the geological calibration point set, DEM calibration point set, and information calibration point set correspond to each other, render the geological slice based on the geographic information in the simulated information slice to obtain the first fusion after adding geographic information slice. After the geological calibration point set, the DEM calibration point set and the information calibration point set have been verified, step S130 is to render the slice to obtain the first fused slice.
  • Step S140 Render the first fused slice based on the DEM information in the DEM slice to obtain a second fused slice with DEM information added, and generate a 3D image corresponding to the selected information according to the second fused slice.
  • Step S130 is to render the first fused slice to obtain a second fused slice, and generate a 3D image according to the second fused slice.
  • step S110 specifically includes:
  • At least one reference slice is selected according to the selected information of the user, and geological slices, DEM slices and simulation information slices generated based on the reference slices are obtained.
  • the selected information can be text, or a reference slice selected by the user through the cursor.
  • the reference slice of the Mount Tai area at this time, the text corresponding to the reference slice of the Mount Tai area is Mount Tai, and the reference slice of the Mount Tai area can be obtained by inputting Mount Tai.
  • the present invention can also highlight the reference slice according to the user's selection, and after the user selects a reference slice through the cursor, the selected reference slice is enlarged.
  • the present invention will obtain geological slices, DEM slices and simulation information slices corresponding to the reference slice.
  • different scenes and working conditions will set different slice areas, and different slice areas will have different shapes.
  • the number of preset calibration points in each slice area in the present invention can also be different.
  • Geological slices, DEM slices, and simulated information slices in the same slice area are all obtained from a reference slice, so the calibration points of geological slices, DEM slices, and simulated information slices in the same slice area are all the same.
  • the present invention first counts the preset calibration points in the geological slices, DEM slices, and simulated information slices, and obtains a set of geological calibration points, a set of DEM calibration points, and information calibration points gather.
  • step S120 specifically includes:
  • a n is the nth geological calibration point in the geological calibration point set A
  • b n is the nth DEM calibration point in the DEM calibration point set B
  • the DEM longitude coordinate of the nth DEM calibration point is the DEM latitude coordinate of the nth DEM calibration point.
  • c n is the nth information calibration point in the information calibration point set C
  • the present invention sorts all the information calibration points according to the longitude values of all information calibration points in the information calibration point set C, and arranges the small longitude values at the front of the information calibration point set B, if If the longitude values of the two information calibration points are the same, then compare the latitudes of the two information calibration points, and arrange the information calibration points with smaller latitude information at the front of the information calibration point set C. Based on the above sorting method, you can All information calibration points are sorted to obtain a set C of information calibration points.
  • the geological slices, DEM slices, and simulation information slices at this time are based on the same
  • the reference slice can be obtained by rendering the geological slice according to the geographic information in the simulated information slice to obtain the first fusion slice after adding geographic information.
  • the first fusion slice is a two-dimensional slice with geographic information.
  • geological slices are used as a base, and geographic information is added to the geological slices to obtain a first fusion slice.
  • the first fusion slice is obtained by fusing geological slices and analog information slices.
  • step S130 specifically includes:
  • the number of calibration points in the geological calibration point set, the DEM calibration point set, and the information calibration point set is obtained respectively to obtain the number of geological calibration points, the number of DEM calibration points, and the number of information calibration points.
  • the present invention firstly determines the number of geological calibration points, the number of DEM calibration points and the number of information calibration points.
  • the present invention will randomly select the first number of geological calibration points, the first number can be 3, 5, etc., the number of geological calibration points is the same as the first number, can be etc.
  • the geological slices, DEM slices and simulation information slices may not come from the same reference slice. At this time, the geological slices, DEM slices and The calibration result of the simulation information slice is wrong, and the geological slice, DEM slice and simulation information slice need to be reselected.
  • the geological calibration point set, DEM calibration point set and information calibration point set are determined All calibration points in the point set correspond respectively.
  • the present invention compares the longitude and latitude of the randomly obtained geological calibration points with the DEM calibration points and information calibration points in the DEM calibration point set B and the information calibration point set C, for example, the first number is 2, and there are 2 at this time geological calibration point, geological calibration point
  • the corresponding coordinates are 100 degrees east longitude and 100 degrees north latitude
  • the geological calibration point The corresponding coordinates are 110 degrees east longitude and 110 degrees north latitude
  • the longitude and latitude of the calibration points correspond to the DEM calibration points and the information calibration points in the DEM calibration point set B and the information calibration point set C respectively.
  • the geological slices, DEM slices, and simulation information slices have been calibrated, and subsequent fusion steps can be performed.
  • a character image included in the geographic information in the analog information slice is obtained, and the character image is added to the geological slice to obtain a first fusion slice.
  • the text image included in the geographic information in the analog information slice is acquired, and the text image is added to the geological slice to obtain the first fused slice including:
  • the first fused slice is obtained.
  • the text image is, for example, an image of the text "highway", an image of "Taishan Hotel” and the like.
  • the simulated pixel coordinates are the positions of the pixels in the simulated information slice, which can be one or more. For example, there are five rows and five columns of pixels, and the pixels are (1,1), (1,2)...(5,5).
  • the simulated pixel coordinates at this time include pixel (2,3), pixel (2,4), pixel (3 ,3) and pixel (3,4).
  • the present invention will determine the first pixel point coordinates corresponding to the simulated pixel point coordinates in the geological slice, that is, the first pixel point coordinates respectively include pixel point (2,3), pixel point (2,4), pixel point Point (3,3) and pixel point (3,4), at this time, fix the text image to the coordinate of the first pixel point of the geological slice to obtain the first fusion slice, that is, fix "Taishan Hotel" to the pixel point of the geological slice (2,3), pixel (2,4), pixel (3,3) and pixel (3,4).
  • step S140 specifically includes:
  • the elevation information of each DEM pixel point in the DEM slice is acquired, and the coordinates of the first pixel point corresponding to the DEM slice in the first fusion slice are determined.
  • the DEM slice will have the elevation information of each element. For example, if the DEM slice includes a building, it will have the elevation information of the building. The building may occupy 4 pixels in the DEM slice, and the elevation information of the 4 pixels will be the same.
  • the present invention will first determine the corresponding relationship between the coordinates of the first pixel point of the first fusion slice and the DEM slice, for example, the first pixel point includes (1,3), and the elevation information corresponding to the pixel point (1,3) in the DEM slice is 10m , then the first pixel includes (1,3) corresponding to the elevation information 10m.
  • Rendering is performed on the first pixel according to the elevation information of the DEM pixel corresponding to the coordinates of the first pixel to obtain a second pixel, the second pixel is an elevation point, and the second fused slice is a three-dimensional slice.
  • the present invention renders the first pixel point according to the elevation information, so that it changes from a two-dimensional coordinate point to a three-dimensional coordinate point.
  • the first pixel point includes (1,3) corresponding to the elevation information 10m
  • the first pixel point (1,3) in the two-dimensional space is converted into the second pixel point (1,3,10) in the three-dimensional space
  • the present invention can automatically adjust the ratio of the elevation information to the ordinate of the three-dimensional space, for example, the ratio of the ordinate is the elevation information/10, when the elevation information is 10m, the second pixel at this time is (1,3,1) .
  • the present invention can add corresponding geographical information and elevation information to geological slices according to coordinates in geological slices, DEM slices, and simulation information slices.
  • the elevation information may be considered as altitude.
  • the present invention can respectively obtain geological information, DEM information and geographical information of the region through geological slices, DEM slices and simulation information slices. Then the distribution fusion of geological information, DEM information and geographic information is carried out.
  • randomly obtaining the first number of geological calibration points in the geological calibration point set A includes:
  • the present invention will first determine the total amount of calibration points in the geological calibration point set A.
  • T 1 is the current first quantity
  • Y is the total amount of calibration points in the geological calibration point set A
  • L is the average cache remaining amount
  • u i is the cache remaining amount at the i-th moment
  • L always is the server’s
  • the total amount of rated cache I is the number of all moments
  • Eping is the average GPU occupancy rate
  • r p is the GPU occupancy rate at the pth moment
  • k 1 is the cache weight value
  • k 2 is the GPU weight value.
  • the total amount of rated cache can be obtained according to the actual configuration of the graphics card.
  • the present invention can select a larger number of calibration points, and if the processing and operating status of the server is poor, the present invention can select a smaller number of calibration points.
  • the larger the number of calibration points the more accurate the calibration of geological slices, DEM slices and analog information slices in the present invention is, and the more accurate the second fusion slices and three-dimensional images are.
  • the present invention will set different cache weight values and GPU weight values according to the actual scene, through It is possible to distinguish the different impacts of cache and GPU on server processing power.
  • the first number in the present invention is determined according to the total amount of calibration points and the working state of the server within a preset time period, so that the currently determined value of the first number is more suitable for the current working state of the server.
  • the first quantity T 1 is not an integer
  • the first number T1 may be 3.4
  • the nearest integer is 4 at this time, that is, the second quantity T 2 is 4.
  • the present invention compares the second quantity T2 with the total quantity Y, and if the second quantity T2 is less than the total quantity Y of the calibration point, then 4 is used as the first quantity Y at this time. For the numerical value of a quantity T 1 , the original 3.4 is deleted, and the numerical value 4 corresponding to the second quantity T 2 is used as the revised numerical value of the second quantity T 2 .
  • the method of the present invention specifically further includes:
  • Step S210 dividing the preset target area into multiple slice areas, each slice area corresponds to a reference slice, and at least one calibration point is set for each reference slice.
  • the target area is China
  • the multiple slice areas include Beijing, Taishan, Tianjin, Hebei, Henan, and so on.
  • the slice area corresponding to Mount Tai corresponds to multiple calibration points, and one of the calibration points in the slice area corresponding to Mount Tai is the location of the Shandong Provincial Government.
  • the calibration point includes the longitude and latitude of the location of the Shandong Provincial Government.
  • another calibration point of the slice area corresponding to Mount Tai is the point where the Jinan Municipal Government is located, and this calibration point includes the longitude and latitude of the location of the Jinan Municipal Government.
  • the calibration point can also be the edge point of the slice area, that is, the edge point of the reference slice, or the center point of the slice area, that is, the center point of the reference slice, and the coordinates of the calibration point are preferably The actual latitude and longitude coordinates of the area.
  • Step S220 collecting the geological information corresponding to the reference slice to generate a geological slice, converting the calibration points of the reference slice into preset calibration points of the geological information, and storing the geological slice and the preset calibration points of the geological slice.
  • Determine the geological slice corresponding to the geographic location of the reference slice through surveying and remote sensing technology.
  • the coordinate sets of edge points in the reference slice are ( ⁇ 1 , ⁇ 2 ,..., ⁇ ⁇ ), and ⁇ ⁇ is the first ⁇ edge points.
  • the coordinate set is obtained by surveying and remote sensing technology to generate geological slices for the geological information of all regions in ( ⁇ 1 , ⁇ 2 , ..., ⁇ ⁇ ).
  • the geographic location corresponding to the coordinate set ( ⁇ 1 , ⁇ 2 , . . . , ⁇ ⁇ ) is Mount Tai
  • the geological slice generated based on remote sensing technology is the geological slice of Mount Tai.
  • the above technical solution can set a slice boundary according to the reference slice, that is, when collecting the geological slice, it can be collected according to the corresponding slice boundary, so that the geological slice is generated according to the reference slice.
  • Geological information can be obtained through surveying and mapping and remote sensing technology, and the present invention will add corresponding geological information to corresponding pixel positions in the reference slice to generate geological slices.
  • the reference slice calibration point in the reference slice is converted into a preset calibration point corresponding to the geological slice, and the longitude and latitude of the reference slice calibration point and the preset calibration point corresponding to the geological slice are the same.
  • Step S230 collecting the DEM information corresponding to the reference slice to generate a DEM slice, converting the calibration points of the reference slice into preset calibration points of the DEM information, and storing the DEM slice and the preset calibration points of the DEM slice.
  • the coordinate sets of edge points in the reference slice are ( ⁇ 1 , ⁇ 2 ,..., ⁇ ⁇ ), and ⁇ ⁇ is the first ⁇ edge points.
  • the coordinate set is obtained by surveying and remote sensing technology to generate DEM slices for the DEM information of all regions in ( ⁇ 1 , ⁇ 2 , ..., ⁇ ⁇ ).
  • the geographic location corresponding to the coordinate set ( ⁇ 1 , ⁇ 2 , ..., ⁇ ⁇ ) is Mount Tai
  • the DEM information slice generated based on surveying and mapping and remote sensing technology is the geological slice of Mount Tai.
  • the above technical solution can set a slice boundary according to the reference slice, that is, when collecting the DEM slice, it can be collected according to the corresponding slice boundary, so that the DEM slice is generated according to the reference slice.
  • the DEM slice contains the elevation information of each element in the geological slice, that is, the DEM slice includes the height of each element in the geological slice, and the elements can be buildings, natural materials, etc. corresponding to each pixel.
  • the DEM information can be obtained through surveying and mapping and remote sensing technology, and the present invention will add the corresponding DEM information to the corresponding pixel position in the reference slice to generate the DEM slice.
  • the reference slice calibration point in the reference slice is converted into a preset calibration point corresponding to the DEM slice, and the reference slice calibration point is located at the same longitude and latitude as the preset calibration point corresponding to the DEM slice.
  • a schematic diagram of the DEM slice is shown in Figure 3B.
  • Step S240 add user-input geographic information to the reference slice to generate a simulation information slice, convert the reference slice calibration point into a preset calibration point of geographic information, store the simulation information slice and the preset calibration point of the simulation information slice .
  • the present invention obtains the reference slice, it will determine the geographical information of each position according to the longitude and latitude of each position in the reference slice. For example, the point corresponding to a certain longitude and latitude is Taishan Hotel. Geographical information, the location of Taishan Hotel in the simulation information slice at this time has the word "Taishan Hotel", for example, a point with a certain longitude and latitude corresponds to a road, then the location of the road in the simulation information slice has "Roadway "The words.
  • the simulation information slice contains geographic information of each element in the geological slice, and the geographic information includes name information, such as "Mount Tai Hotel", "Road” and so on. Geographical information and name information can be actively input by the user, and the present invention will arrange the corresponding geographic information to the corresponding position in the reference slice to generate the simulated information slice.
  • the reference slice calibration point in the reference slice is converted into a preset calibration point corresponding to the analog information slice, and the reference slice calibration point is located at the same longitude and latitude as the preset calibration point of the geographic information.
  • FIG. 3C A schematic diagram of simulated information slices with geographic information as shown in FIG. 3C .
  • the acquisition of geological information in geological slices and DEM information in DEM slices can be obtained through existing surveying and mapping and remote sensing technologies, or can be directly imported from other existing databases, which will not be described in detail in the present invention.
  • the geological slices, DEM slices and simulated information slices stored in the database of the present invention are all corresponding on the actual spatial coordinates, that is, the longitude and latitude have objective consistency, which ensures the accuracy of the three-dimensional geological map .
  • the present invention blurs the text in the first fusion slice.
  • FIG. 3E is only a representation of an angle of the second fused slice, which mainly highlights the difference in elevation between elements and pixels in the 3D image, that is, the second fused slice is 3D.
  • the technical solution provided by the present invention also provides a fusion device suitable for geological data and geographic information data, as shown in Figure 4, including:
  • a determining module configured to determine geological slices, DEM slices, and simulation information slices based on user-selected information
  • An acquisition module configured to acquire preset calibration points in the geological slice, DEM slice, and simulated information slice to obtain a set of geological calibration points, a set of DEM calibration points, and a set of information calibration points;
  • the first rendering module is used to render the geological slice based on the geographic information in the simulated information slice if the geological calibration point set, the DEM calibration point set, and all the calibration points in the information calibration point set correspond to each other to obtain the geographic information added.
  • the second rendering module is configured to render the first fused slice based on the DEM information in the DEM slice to obtain a second fused slice after adding the DEM information, and generate a three-dimensional image corresponding to the selected information according to the second fused slice .
  • the technical solution provided by the present invention also provides a fusion system suitable for geological data and geographic information data, as shown in Figure 5, including:
  • the server is configured to receive the selected information, execute the above-mentioned fusion method applicable to geological data and geographic information data to generate a second fusion slice, and send the second fusion slice to the intelligent requesting device.
  • the smart requesting device After receiving the second fusion slice, the smart requesting device generates and displays a three-dimensional image corresponding to the second fusion slice.
  • the corresponding APP can be installed on the smart request device, and the three-dimensional image can be displayed through the APP.
  • the readable storage medium may be a computer storage medium, or a communication medium.
  • Communication media includes any medium that facilitates transfer of a computer program from one place to another.
  • Computer storage media can be any available media that can be accessed by a general purpose or special purpose computer.
  • a readable storage medium is coupled to the processor such that the processor can read information from, and write information to, the readable storage medium.
  • the readable storage medium can also be a component of the processor.
  • the processor and the readable storage medium may be located in Application Specific Integrated Circuits (ASIC for short). Additionally, the ASIC may be located in the user equipment.
  • ASIC Application Specific Integrated Circuits
  • the processor and the readable storage medium can also exist in the communication device as discrete components.
  • the readable storage medium may be read only memory (ROM), random access memory (RAM), CD-ROM, magnetic tape, floppy disk, and optical data storage devices, among others.
  • the present invention also provides a program product, which includes execution instructions, and the execution instructions are stored in a readable storage medium.
  • At least one processor of the device may read the execution instruction from the readable storage medium, and the at least one processor executes the execution instruction so that the device implements the methods provided in the foregoing various implementation manners.
  • the processor can be a central processing unit (English: Central Processing Unit, referred to as: CPU), and can also be other general-purpose processors, digital signal processors (English: Digital Signal Processor , referred to as: DSP), application specific integrated circuit (English: Application Specific Integrated Circuit, referred to as: ASIC) and so on.
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like. The steps of the method disclosed in conjunction with the present invention can be directly implemented by a hardware processor, or implemented by a combination of hardware and software modules in the processor.

Abstract

一种适用于地质数据和地理信息数据的融合方法、装置及系统,其中,方法包括:基于用户的选定信息确定地质切片、DEM切片以及模拟信息切片;获取地质切片、DEM切片以及模拟信息切片中的预设校准点,得到地质校准点集合、DEM校准点集合以及信息校准点集合;基于模拟信息切片中的地理信息对地质切片进行渲染得到添加地理信息后的第一融合切片;基于DEM切片中的DEM信息对第一融合切片进行渲染得到添加DEM信息后的第二融合切片,根据第二融合切片生成与选定信息对应的三维图像。该方法根据用户的选定,动态、即时的生成三维的融合切片,根据三维的融合切片对用户进行显示,使用户以三维形式查看相应的地质要素、地理信息。

Description

适用于地质数据和地理信息数据的融合方法、装置及系统 技术领域
本发明涉及数据处理技术领域,尤其涉及一种适用于地质数据和地理信息数据的融合方法、装置及系统。
背景技术
地质数据具有多源(元)、异构、时空性、相关性、随机性、非线性等特征,是一种时空大数据,主要产生于基础地质、矿产地质、水文地质、环境地质、工程地质的调查,能源、矿产的开发利用,生态环境保护、地质灾害防治和地质科学研究过程中。随着信息技术的急速发展和大数据时代的来临,地质数据具备了大数据的本身特点和社会广泛应用的属性,已成为国家大数据的重要组成部分。
长期以来地质工作形成了海量多源异构数据,如何便捷、有效地将地质大数据进行整合、集成并得以开展多专题应用一直是业界研究的重点和热点问题。目前,地质成果数据多以不同比例尺、不同专题的地质图来展现和应用,地质图上展示的多为地质属性要素,都是以二维的表达形式来展现,不便于非专业人员的使用。
发明内容
本发明实施例提供一种适用于地质数据和地理信息数据的融合方法、装置及系统,能够根据用户的选定、选择,动态的、即时的生成三维的融合切片,根据三维的融合切片对用户进行显示,使得地质图是按照三维的形式显示的。
本发明实施例,提供一种适用于地质数据和地理信息数据的融合方法,包括:
基于用户的选定信息确定地质切片、DEM切片以及模拟信息切片;
获取所述地质切片、DEM切片以及模拟信息切片的中的预设校准点得到地质校准点集合、DEM校准点集合以及信息校准点集合;
若所述地质校准点集合、DEM校准点集合以及信息校准点集合中的所有校准点分别对应,基于模拟信息切片中的地理信息对地质切片进行渲染得到添加地理信息后的第一融合切片;
基于DEM切片中的DEM信息对第一融合切片进行渲染得到添加DEM信息后的第二融合切片,根据所述第二融合切片生成与所述选定信息对应的三维图像。
本发明提供的一种适用于地质数据和地理信息数据的融合方法、装置及系统,根据 用户的选定、选择,动态的、即时的生成三维的融合切片,根据三维的融合切片对用户进行显示,使地质图是按照三维的形式显示的,用户能够同时查看某一个位置的地质要素、地理信息等等。
本发明提供的技术方案,在生成第一融合切片及第二融合切片前会对地质切片、DEM切片以及模拟信息切片进行校准,使地质切片、DEM切片以及模拟信息切片在融合过程中不会出现融合错误的情况。为了提高地质切片、DEM切片以及模拟信息切片融合的准确性,本发明会在生成地质切片、DEM切片以及模拟信息切片之前设置一个基准切片,使所生成的地质切片、DEM切片以及模拟信息切片是按照基准切片的标准生成的,此时地质切片、DEM切片以及模拟信息切片的像素、地理位置等都具有统一的标准,在多个切片融合时能够完全融合,保障了三维图像的准确性。
本发明提供的技术方案,在校准时只随机选取第一数量的地质校准点,不需要选取所有地质校准点,服务器在进行图像处理时需要处理的任务量较多,所以本发明在进行校准时会对地质校准点的第一数量进行动态调整,结合地质校准点的总数量、服务器当前的GPU占用率、缓存剩余量等维度动态确定地质校准点的第一数量,当服务器任务量较多时即减少第一数量,进而降低服务器的任务量,以保证服务器能够稳定运行,提高服务器的鲁棒性。
附图说明
图1为适用于地质数据和地理信息数据的融合方法的第一种实施方式的流程图;
图2为适用于地质数据和地理信息数据的融合方法的第二种实施方式的流程图;
图3A为地质切片的示意图;
图3B为DEM切片的示意图;
图3C为具有地理信息的模拟信息切片的示意图;
图3D为第一融合切片的示意图;
图3E为第二融合切片的示意图;
图4为适用于地质数据和地理信息数据的融合装置的第一种实施方式的结构图;
图5为适用于地质数据和地理信息数据的融合系统的第一种实施方式的结构图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
下面以具体地实施例对本发明的技术方案进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例不再赘述。
本发明提供一种适用于地质数据和地理信息数据的融合方法,如图1所示其流程图,包括:
步骤S110、基于用户的选定信息确定地质切片、DEM切片以及模拟信息切片。通过步骤S110进行切片的确定。
步骤S120、获取所述地质切片、DEM切片以及模拟信息切片的中的预设校准点得到地质校准点集合、DEM校准点集合以及信息校准点集合。通过步骤S120可以得到不同维度的切片的校准点集合,使本发明提供的技术方案可以基于校准点集合对地质切片、DEM切片以及模拟信息切片校对。
步骤S130、若所述地质校准点集合、DEM校准点集合以及信息校准点集合中的所有校准点分别对应,基于模拟信息切片中的地理信息对地质切片进行渲染得到添加地理信息后的第一融合切片。当地质校准点集合、DEM校准点集合以及信息校准点集合校对通过后,步骤S130为对切片进行渲染得到第一融合切片。
步骤S140、基于DEM切片中的DEM信息对第一融合切片进行渲染得到添加DEM信息后的第二融合切片,根据所述第二融合切片生成与所述选定信息对应的三维图像。步骤S130为对第一融合切片进行渲染得到第二融合切片,根据第二融合切片生成三维图像。
本发明提供的技术方案,步骤S110具体包括:
根据用户的选定信息选定至少一个基准切片,获取基于所述基准切片所生成的地质切片、DEM切片以及模拟信息切片。选定信息可以是文字、也可以是用户通过光标选定的基准切片。例如泰山地区的基准切片,此时泰山地区的基准切片对应的文字是泰山,输入泰山即可得到泰山地区的基准切片。本发明还可以根据用户的选定对基准切片进行突出显示,用户通过光标选定一个基准切片后,对所选定的基准切片进行放大。
在用户选定基准切片后,本发明会得到与该基准切片相对应的地质切片、DEM切片以及模拟信息切片。
在一个可能的实施方式中,不同的场景、工况会设置不同的切片区域,不同的切片 区域会具有不同的形状,本发明中每个切片区域内的预设校准点的数量也可以都是不同的。同一个切片区域内的地质切片、DEM切片以及模拟信息切片都是由一个基准切片得到的,所以同一个切片区域内的地质切片、DEM切片以及模拟信息切片的校准点都是相同的。本发明在对地质切片、DEM切片以及模拟信息切片进行融合前,首先统计地质切片、DEM切片以及模拟信息切片的中的预设校准点,得到地质校准点集合、DEM校准点集合以及信息校准点集合。
本发明提供的技术方案,步骤S120具体包括:
获取所述地质切片的预设校准点得到地质校准点集合A,地质校准点集合A为
Figure PCTCN2022073091-appb-000001
其中,a n为地质校准点集合A中的第n个地质校准点,
Figure PCTCN2022073091-appb-000002
为第n个地质校准点的地质经度坐标,
Figure PCTCN2022073091-appb-000003
为第n个地质校准点的地质纬度坐标。本发明在得到地质校准点集合A后,根据地质校准点集合A中所有地质校准点的经度数值对所有地质校准点进行排序,将经度数值小的排在地质校准点集合A的前部,若两个地质校准点的经度数值相同,则再对两个地质校准点的纬度进行比对,将纬度信息小的地质校准点排在地质校准点集合A的前部,基于以上的排序方式,可以对所有地质校准点进行排序得到地质校准点集合A。
获取所述DEM切片的预设校准点得到DEM校准点集合B,DEM校准点集合B为
Figure PCTCN2022073091-appb-000004
其中,b n为DEM校准点集合B中的第n个DEM校准点,
Figure PCTCN2022073091-appb-000005
为第n个DEM校准点的DEM经度坐标,
Figure PCTCN2022073091-appb-000006
为第n个DEM校准点的DEM纬度坐标。本发明在得到DEM校准点集合B后,根据DEM校准点集合B中所有DEM校准点的经度数值对所有DEM校准点进行排序,将经度数值小的排在DEM校准点集合A的前部,若两个DEM校准点的经度数值相同,则再对两个DEM校准点的纬度进行比对,将纬度信息小的DEM校准点排在DEM校准点集合B的前部,基于以上的排序方式,可以对所有DEM校准点进行排序得到DEM校准点集合B。
获取所述模拟信息切片的预设校准点得到信息校准点集合C,信息校准点集合C为
Figure PCTCN2022073091-appb-000007
其中,c n为信息校准点集合C中的第n个信息校准点,
Figure PCTCN2022073091-appb-000008
为第n个信息校准点的信息经度坐标,
Figure PCTCN2022073091-appb-000009
为第n个信息校准点的信息纬度坐标。本发明在得到信息校准点集合C后,根据信息校准点集合C中所有信息校准点的经度数值对所有信息校准点进行排序,将经度数值小的排在信息校准点集合B的前部,若两个信息校准点的经度数值相同,则再对两个信息校准点的纬度进行比对,将纬度信息小的信息校准点排在信息校准点 集合C的前部,基于以上的排序方式,可以对所有信息校准点进行排序得到信息校准点集合C。
在一种可能的实施方式中,当地质校准点集合、DEM校准点集合以及信息校准点集合中的所有校准点分别对应时,则此时的地质切片、DEM切片以及模拟信息切片是根据同一个基准切片得到的,可以根据模拟信息切片中的地理信息对地质切片进行渲染得到添加地理信息后的第一融合切片,此时第一融合切片是二维的、具有地理信息的切片。本发明会以地质切片为基底,向所述地质切片中分别添加地理信息得到第一融合切片,此时第一融合切片是由地质切片和模拟信息切片融合得到的。
本发明提供的技术方案,步骤S130具体包括:
分别获取地质校准点集合、DEM校准点集合以及信息校准点集合中的校准点数量得到地质校准点数量、DEM校准点数量以及信息校准点数量。本发明在对地质切片、DEM切片以及模拟信息切片进行校准时,首先会确定地质校准点数量、DEM校准点数量以及信息校准点数量。
若地质校准点数量、DEM校准点数量以及信息校准点数量相同,则随机获取地质校准点集合A中第一数量的地质校准点。当地质校准点数量、DEM校准点数量以及信息校准点数量相同,则地质切片、DEM切片以及模拟信息切片可能来自于同一个基准切片。此时本发明会随机选取第一数量的地质校准点,第一数量可以是3、5等等,地质校准点的数量与第一数量是相同的,可以是
Figure PCTCN2022073091-appb-000010
等等。
如果地质校准点数量、DEM校准点数量以及信息校准点数量存在不同的情况,则此时地质切片、DEM切片以及模拟信息切片可能不来自于同一个基准切片,此时对地质切片、DEM切片以及模拟信息切片的校准结果为错误,需要重新选取地质切片、DEM切片以及模拟信息切片。
若随机获取的地质校准点的经度和纬度分别与DEM校准点集合B、信息校准点集合C内的DEM校准点、信息校准点相对应,则确定地质校准点集合、DEM校准点集合以及信息校准点集合中的所有校准点分别对应。本发明会将随机得到的地质校准点的经度和纬度与DEM校准点集合B、信息校准点集合C内的DEM校准点、信息校准点比对,例如第一数量为2,此时存在2个地质校准点,地质校准点
Figure PCTCN2022073091-appb-000011
对应的坐标为东经100度、北纬100度,地质校准点
Figure PCTCN2022073091-appb-000012
对应的坐标为东经110度、北纬110度,在DEM校准点集合B、信息校准点集合C内分别具有与东经100度、北纬100度,东经110度、北纬110度对应的校准点时,地质校准点的经度和纬度分别与DEM校准点集合B、信息校准点集合C内的DEM校准点、信息校准点相对应。此时地质切片、 DEM切片以及模拟信息切片校准通过,可以进行后续的融合步骤。
获取模拟信息切片中的地理信息所包括的文字图像,将所述文字图像添加至地质切片中,得到第一融合切片。
在一个可能的实施方式中,获取模拟信息切片中的地理信息所包括的文字图像,将所述文字图像添加至地质切片中,得到第一融合切片包括:
获取所述文字图像在所述模拟信息切片的模拟像素点坐标,确定地质切片中与所述模拟像素点坐标对应的第一像素点坐标,将所述文字图像固定至所述地质切片的第一像素点坐标处,得到第一融合切片。文字图像例如是文字“公路”的图像,“泰山旅馆”的图像等等。模拟像素点坐标是在模拟信息切片中像素点的位置,可以是一个或多个。例如像素点一共存在五行五列,则像素点为(1,1)、(1,2)……(5,5),例如“泰山旅馆”在像素点(2,3)、像素点(2,4)、像素点(3,3)以及像素点(3,4)处,则此时的模拟像素点坐标包括像素点(2,3)、像素点(2,4)、像素点(3,3)以及像素点(3,4)。本发明会确定地质切片中与所述模拟像素点坐标对应的第一像素点坐标,即第一像素点坐标在地质切片分别包括像素点(2,3)、像素点(2,4)、像素点(3,3)以及像素点(3,4),此时将文字图像固定至地质切片的第一像素点坐标处,得到第一融合切片,即将“泰山旅馆”固定至地质切片的像素点(2,3)、像素点(2,4)、像素点(3,3)以及像素点(3,4)处。
本发明提供的技术方案,步骤S140具体包括:
获取DEM切片中每个DEM像素点的高程信息,确定第一融合切片中与所述DEM切片相对应的第一像素点坐标。DEM切片会具有各个元素的高程信息,例如DEM切片包括一个建筑物,会具有该建筑物的高程信息,该建筑物可能在DEM切片占有4个像素点,则4个像素点的高程信息相同。本发明会首先确定第一融合切片的第一像素点坐标与DEM切片的对应关系,例如第一像素点包括(1,3),DEM切片中像素点(1,3)对应的高程信息为10m,则第一像素点包括(1,3)与高程信息10m相对应。
根据与第一像素点坐标对应的DEM像素点的高程信息对第一像素点进行渲染处理得到第二像素点,所述第二像素点为高程点,所述第二融合切片为三维切片。本发明在得到与第一像素点相对应的高程信息后,会根据高程信息对第一像素点进行渲染,使得其由二维的坐标点变为三维的坐标点。例如第一像素点包括(1,3)与高程信息10m相对应,则此时二维空间的第一像素点(1,3)转换为三维空间的第二像素点(1,3,10),本发明可以自动调整高程信息与三维空间纵坐标的比值,例如纵坐标的比值为高程信息/10,当高程信息为10m时,则此时的第二像素点为(1,3,1)。通过以上的方式,本发 明可以根据地质切片、DEM切片以及模拟信息切片中的坐标对地质切片添加相应的地理信息、高程信息。高程信息可以认为是海拔高度。
由于确定地质切片、DEM切片以及模拟信息切片都是根据基准切片得到的,所以同一个基准切片所确定的地质切片、DEM切片以及模拟信息切片的像素点数量、像素点分布都是相对应的。所以本发明可以通过地质切片、DEM切片以及模拟信息切片分别获得该区域的地质信息、DEM信息以及地理信息。然后对地质信息、DEM信息以及地理信息进行分布的融合。
本发明提供的技术方案,若地质校准点数量、DEM校准点数量以及信息校准点数量相同,则随机获取地质校准点集合A中第一数量的地质校准点包括:
获取所述地质校准点集合A中校准点的总量。本发明在确定第一数量的具体值之前,会首先确定地质校准点集合A中校准点的总量。
获取预设时间段内服务器在每个时刻的缓存剩余量以及GPU占用率,通过以下公式确定当前的第一数量,
Figure PCTCN2022073091-appb-000013
其中,T 1为当前的第一数量,Y为地质校准点集合A中校准点的总量,L 为平均缓存剩余量,u i为第i个时刻的缓存剩余量,L 为服务器的额定缓存总量,I为所有时刻的数量,E 为平均GPU占用率,r p为第p个时刻的GPU占用率,k 1为缓存权重值,k 2为GPU权重值。额定缓存总量可以根据显卡的实际配置得到。
通过
Figure PCTCN2022073091-appb-000014
可以得到预设时间段内服务器的平均缓存剩余量,通过
Figure PCTCN2022073091-appb-000015
可以得到预设时间段内服务器的平均GPU占用率。通过平均缓存剩余量和平均GPU占用率可以反映出服务器当前的工作情况,服务器的平均缓存剩余量越高,则证明其还可以缓存更多的数据,此时在缓存维度上服务器具有较高的处理效率,服务器的平均GPU占用 率越高,则服务器的GPU在当前时刻处于计算量较多的情况,在GPU维度上服务器的处理效率较低,所以本发明会综合考虑缓存剩余量和GPU占用率来确定当前服务器的处理状态。如果服务器的处理、运行状态良好,本发明可以选取更多数量的校准点,如果服务器的处理、运行状态较差,本发明可以选取较少数量的校准点。校准点数量越多,能够保障本发明对地质切片、DEM切片以及模拟信息切片的校准越准确,第二融合切片、三维图像越准确。
本发明会根据实际场景设置不同的缓存权重值和GPU权重值,通过
Figure PCTCN2022073091-appb-000016
可以区分缓存和GPU对服务器处理功能的不同影响。校准点的总量越多,本发明所确定的第一数量越多。本发明中的第一数量是根据校准点的总量、预设时间段内服务器的工作状态进行确定的,使得当前所确定的第一数量的数值更适宜服务器当前的工作状态。
若判断所述第一数量T 1为非整数,则确定大于所述第一数量T 1且离所述第一数量T 1最近的整数,得到第二数量T 2。在第一数量的实际计算过程中,可能会出现非整数的情况,例如第一数量T 1可能是3.4,则此时确定大于所述第一数量T 1且离所述第一数量T 1最近的整数,此时最近的整数为4,即第二数量T 2为4。
若所述第二数量T 2小于校准点的总量Y,则将第二数量T 2对应的数值作为修正后的第一数量T 1的数值。为了防止第二数量T 2大于总量Y,本发明会将第二数量T 2与总量Y进行比对,如果第二数量T 2小于校准点的总量Y,则此时将4作为第一数量T 1的数值,将原本的3.4删除,第二数量T 2对应的数值4作为修正后的第二数量T 2的数值。
在一个可能的实施方式中,如图2所示,本发明的方法具体还包括:
步骤S210、将预先设置的目标区域分割为多个切片区域,每个切片区域对应一个基准切片,为每个基准切片设置至少一个校准点。例如目标区域为中国,此时多个切片区域分别包括了北京、泰山、天津、河北、河南等等。例如泰山对应的切片区域对应多个校准点,泰山对应的切片区域的其中一个校准点为山东省政府所在位置的点,该校准点包括了山东省政府所在位置的经度、纬度。例如泰山对应的切片区域的另一个校准点为 济南市政府所在位置的点,该校准点包括了济南市政府所在位置的经度、纬度。对于校准点的确定本发明不做限定,校准点也可以是切片区域的边缘点,即基准切片边缘点,也可以是切片区域的中心点,即基准切片的中心点,校准点的坐标优选为该地区的实际经度、纬度坐标。
步骤S220、采集基准切片所对应的地质信息生成地质切片,所述基准切片校准点转换为地质信息的预设校准点,对所述地质切片、以及地质切片的预设校准点存储。通过测绘、遥感技术确定基准切片所对应的地理位置的地质切片,例如基准切片中边缘点的坐标集合分别为(α 1,α 2,...,α β),α β为基准切片中第β个边缘点。通过测绘、遥感技术获取坐标集合为(α 1,α 2,...,α β)内的所有区域的地质信息生成地质切片。例如坐标集合(α 1,α 2,...,α β)对应的地理位置是泰山,则基于遥感技术所生成的地质切片即为泰山的地质切片。上述的技术方案,能够根据基准切片设置一个切片边界,即在对地质切片进行采集时,能够按照相应的切片边界进行采集,使得地质切片是根据基准切片生成的。地质信息可以是通过测绘、遥感技术得到的,本发明会将相应的地质信息添加至基准切片中相应的像素点位置处生成地质切片。此时基准切片中的基准切片校准点转换为与地质切片对应的预设校准点,基准切片校准点与地质切片对应的预设校准点所处的经度、纬度相同。如图3A所示地质切片的示意图。
步骤S230、采集基准切片所对应的DEM信息生成DEM切片,所述基准切片校准点转换为DEM信息的预设校准点,对所述DEM切片、以及DEM切片的预设校准点存储。通过测绘、遥感技术确定基准切片所对应的地理位置的DEM切片,例如基准切片中边缘点的坐标集合分别为(α 1,α 2,...,α β),α β为基准切片中第β个边缘点。通过测绘、遥感技术获取坐标集合为(α 1,α 2,...,α β)内的所有区域的DEM信息生成DEM切片。例如坐标集合(α 1,α 2,...,α β)对应的地理位置是泰山,则基于测绘、遥感技术所生成的DEM信息切片即为泰山的地质切片。上述的技术方案,能够根据基准切片设置一个切片边界,即在对DEM切片进行采集时,能够按照相应的切片边界进行采集,使得DEM切片是根据基准切片生成的。可以这样理解,DEM切片中具有地质切片中每个元素的高程信息,即DEM切片中包括了地质切片中每个元素的高度,元素可以是每个像素点对应的建筑物、自然物质等等。DEM信息可以是通过测绘、遥感技术得到的,本发明会将相应的DEM信息添加至基准切片中相应的像素点位置处进而生成DEM切片。此时基准切片中的基准切片校准点转换为与DEM切片对应的预设校准点,基准切片校准点与DEM切片对应的预设校准点所处的经度、纬度相同。如图3B所示DEM切片的示意图。
步骤S240、对基准切片添加用户输入的地理信息生成模拟信息切片,所述基准切片 校准点转换为地理信息的预设校准点,对所述模拟信息切片、以及模拟信息切片的预设校准点存储。本发明在得到基准切片后,会根据基准切片中各个位置的经度、纬度确定每个位置的地理信息,例如某个经度、纬度对应的点为泰山旅馆,则此时泰山旅馆可以认为是其中一个地理信息,则此时模拟信息切片中泰山旅馆所处的位置具有“泰山旅馆”字样,例如某个经度、纬度的点对应是公路,则此时模拟信息切片中公路所处的位置具有“公路”字样。可以这样理解,模拟信息切片中具有地质切片中每个元素的地理信息,该地理信息包括了名称信息,例如“泰山旅馆”、“公路”等等。地理信息、名称信息可以是用户主动输入的,本发明会将相应的地理信息排列至基准切片中相应的位置进而生成模拟信息切片。此时基准切片中的基准切片校准点转换为与模拟信息切片对应的预设校准点,基准切片校准点与地理信息的预设校准点所处的经度、纬度相同。如图3C所示具有地理信息的模拟信息切片的示意图。
对于地质切片中地质信息的获得、DEM切片中DEM信息的获得可以通过现有的测绘、遥感技术取得,也可以直接由其他现有的数据库导入,本发明不再进行赘述。
通过以上的方式,使得本发明数据库中存储的地质切片、DEM切片以及模拟信息切片在实际的空间坐标上都是对应的,即经度、纬度具有客观的一致性,保障了三维地质图的准确性。
如图3D所示第一融合切片的示意图,为了不泄露第一融合切片中某个地区的地理信息,本发明对第一融合切片中的文字进行了模糊处理。
如图3E所示第二融合切片的示意图。图3E只是第二融合切片的一个角度的表现方式,主要是突出三维图像中的元素、像素点存在高程上的差别,即第二融合切片是三维的。
本发明提供的技术方案,还提供一种适用于地质数据和地理信息数据的融合装置,如图4所示,包括:
确定模块,用于基于用户的选定信息确定地质切片、DEM切片以及模拟信息切片;
获取模块,用于获取所述地质切片、DEM切片以及模拟信息切片的中的预设校准点得到地质校准点集合、DEM校准点集合以及信息校准点集合;
第一渲染模块,用于若所述地质校准点集合、DEM校准点集合以及信息校准点集合中的所有校准点分别对应,基于模拟信息切片中的地理信息对地质切片进行渲染得到添加地理信息后的第一融合切片;
第二渲染模块,用于基于DEM切片中的DEM信息对第一融合切片进行渲染得到添加DEM信息后的第二融合切片,根据所述第二融合切片生成与所述选定信息对应的三维图 像。
本发明提供的技术方案,还提供一种适用于地质数据和地理信息数据的融合系统,如图5所示,包括:
智能请求设备,用于发送选定信息和接收第二融合切片;
服务器,用于接收选定信息,执行上述的适用于地质数据和地理信息数据的融合方法生成第二融合切片,将第二融合切片发送至智能请求设备。
智能请求设备在接收到第二融合切片生成与第二融合切片对应的三维图像进行显示。智能请求设备处可以安装相应的APP,通过APP对三维图像进行显示。
其中,可读存储介质可以是计算机存储介质,也可以是通信介质。通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。计算机存储介质可以是通用或专用计算机能够存取的任何可用介质。例如,可读存储介质耦合至处理器,从而使处理器能够从该可读存储介质读取信息,且可向该可读存储介质写入信息。当然,可读存储介质也可以是处理器的组成部分。处理器和可读存储介质可以位于专用集成电路(Application Specific Integrated Circuits,简称:ASIC)中。另外,该ASIC可以位于用户设备中。当然,处理器和可读存储介质也可以作为分立组件存在于通信设备中。可读存储介质可以是只读存储器(ROM)、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
本发明还提供一种程序产品,该程序产品包括执行指令,该执行指令存储在可读存储介质中。设备的至少一个处理器可以从可读存储介质读取该执行指令,至少一个处理器执行该执行指令使得设备实施上述的各种实施方式提供的方法。
在上述终端或者服务器的实施例中,应理解,处理器可以是中央处理单元(英文:Central Processing Unit,简称:CPU),还可以是其他通用处理器、数字信号处理器(英文:Digital Signal Processor,简称:DSP)、专用集成电路(英文:Application Specific Integrated Circuit,简称:ASIC)等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本发明所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (10)

  1. 一种适用于地质数据和地理信息数据的融合方法,其特征在于,包括:
    基于用户的选定信息确定地质切片、DEM切片以及模拟信息切片;
    获取所述地质切片、DEM切片以及模拟信息切片的中的预设校准点得到地质校准点集合、DEM校准点集合以及信息校准点集合;
    若所述地质校准点集合、DEM校准点集合以及信息校准点集合中的所有校准点分别对应,基于模拟信息切片中的地理信息对地质切片进行渲染得到添加地理信息后的第一融合切片;
    基于DEM切片中的DEM信息对第一融合切片进行渲染得到添加DEM信息后的第二融合切片,根据所述第二融合切片生成与所述选定信息对应的三维图像。
  2. 根据权利要求1所述的适用于地质数据和地理信息数据的融合方法,其特征在于,还包括:
    将预先设置的目标区域分割为多个切片区域,每个切片区域对应一个基准切片,为每个基准切片设置至少一个校准点;
    采集基准切片所对应的地质信息生成地质切片,所述基准切片校准点转换为地质信息的预设校准点,对所述地质切片、以及地质切片的预设校准点存储;
    采集基准切片所对应的DEM信息生成DEM切片,所述基准切片校准点转换为DEM信息的预设校准点,对所述DEM切片、以及DEM切片的预设校准点存储;
    对基准切片添加用户输入的地理信息生成模拟信息切片,所述基准切片校准点转换为地理信息的预设校准点,对所述模拟信息切片、以及模拟信息切片的预设校准点存储。
  3. 根据权利要求2所述的适用于地质数据和地理信息数据的融合方法,其特征在于,
    基于用户的选定信息确定地质切片、DEM切片以及模拟信息切片包括:
    根据用户的选定信息选定至少一个基准切片,获取基于所述基准切片所生成的地质切片、DEM切片以及模拟信息切片。
  4. 根据权利要求2所述的适用于地质数据和地理信息数据的融合方法,其特征在于,
    获取所述地质切片、DEM切片以及模拟信息切片的中的预设校准点得到地质校准点集合、DEM校准点集合以及信息校准点集合包括:
    获取所述地质切片的预设校准点得到地质校准点集合A,地质校准点集合A为
    Figure PCTCN2022073091-appb-100001
    其中,a n为地质校准点集合A中的第n个地质校准点,
    Figure PCTCN2022073091-appb-100002
    为第n个地质校准点的地质经度坐标,
    Figure PCTCN2022073091-appb-100003
    为第n个地质校准点的地质纬度坐标;
    获取所述DEM切片的预设校准点得到DEM校准点集合B,DEM校准点集合B为
    Figure PCTCN2022073091-appb-100004
    其中,b n为DEM校准点集合B中的第n个DEM校准点,
    Figure PCTCN2022073091-appb-100005
    为第n个DEM校准点的DEM经度坐标,
    Figure PCTCN2022073091-appb-100006
    为第n个DEM校准点的DEM纬度坐标;
    获取所述模拟信息切片的预设校准点得到信息校准点集合C,信息校准点集合C为
    Figure PCTCN2022073091-appb-100007
    其中,c n为信息校准点集合C中的第n个信息校准点,
    Figure PCTCN2022073091-appb-100008
    为第n个信息校准点的信息经度坐标,
    Figure PCTCN2022073091-appb-100009
    为第n个信息校准点的信息纬度坐标。
  5. 根据权利要求4所述的适用于地质数据和地理信息数据的融合方法,其特征在于,
    若所述地质校准点集合、DEM校准点集合以及信息校准点集合中的所有校准点分别对应,基于模拟信息切片中的地理信息对地质切片进行渲染得到添加地理信息后的第一融合切片包括:
    分别获取地质校准点集合、DEM校准点集合以及信息校准点集合中的校准点数量得到地质校准点数量、DEM校准点数量以及信息校准点数量;
    若地质校准点数量、DEM校准点数量以及信息校准点数量相同,则随机获取地质校准点集合A中第一数量的地质校准点;
    若随机获取的地质校准点的经度和纬度分别与DEM校准点集合B、信息校准点集合C内的DEM校准点、信息校准点相对应,则确定地质校准点集合、DEM校准点集合以及信息校准点集合中的所有校准点分别对应;
    获取模拟信息切片中的地理信息所包括的文字图像,将所述文字图像添加至地质切片中,得到第一融合切片。
  6. 根据权利要求5所述的适用于地质数据和地理信息数据的融合方法,其特征在于,
    获取模拟信息切片中的地理信息所包括的文字图像,将所述文字图像添加至地质切片中,得到第一融合切片包括:
    获取所述文字图像在所述模拟信息切片的模拟像素点坐标,确定地质切片中与所述模拟像素点坐标对应的第一像素点坐标,将所述文字图像固定至所述地质切片的第一像素点坐标处,得到第一融合切片。
  7. 根据权利要求5所述的适用于地质数据和地理信息数据的融合方法,其特征在于,
    基于DEM切片中的DEM信息对第一融合切片进行渲染得到添加DEM信息后的第二融合切片包括:
    获取DEM切片中每个DEM像素点的高程信息,确定第一融合切片中与所述DEM切片相对应的第一像素点坐标;
    根据与第一像素点坐标对应的DEM像素点的高程信息对第一像素点进行渲染处理得到第二像素点,所述第二像素点为高程点,所述第二融合切片为三维切片。
  8. 根据权利要求5所述的适用于地质数据和地理信息数据的融合方法,其特征在于,
    若地质校准点数量、DEM校准点数量以及信息校准点数量相同,则随机获取地质校准点集合A中第一数量的地质校准点包括:
    获取所述地质校准点集合A中校准点的总量;
    获取预设时间段内服务器在每个时刻的缓存剩余量以及GPU占用率,通过以下公式确定当前的第一数量,
    Figure PCTCN2022073091-appb-100010
    其中,T 1为当前的第一数量,Y为地质校准点集合A中校准点的总量,L 为平均缓存剩余量,L 为服务器的额定缓存总量,u i为第i个时刻的缓存剩余量,I为所有时刻的数量,E 为平均GPU占用率,r p为第p个时刻的GPU占用率,k 1为缓存权重值,k 2为GPU权重值;
    若判断所述第一数量T 1为非整数,则确定大于所述第一数量T 1且离所述第一数量T 1 最近的整数,得到第二数量T 2
    若所述第二数量T 2小于校准点的总量Y,则将第二数量T 2对应的数值作为修正后的第一数量T 1的数值。
  9. 一种适用于地质数据和地理信息数据的融合装置,其特征在于,包括:
    确定模块,用于基于用户的选定信息确定地质切片、DEM切片以及模拟信息切片;
    获取模块,用于获取所述地质切片、DEM切片以及模拟信息切片的中的预设校准点得到地质校准点集合、DEM校准点集合以及信息校准点集合;
    第一渲染模块,用于若所述地质校准点集合、DEM校准点集合以及信息校准点集合中的所有校准点分别对应,基于模拟信息切片中的地理信息对地质切片进行渲染得到添加地理信息后的第一融合切片;
    第二渲染模块,用于基于DEM切片中的DEM信息对第一融合切片进行渲染得到添加DEM信息后的第二融合切片,根据所述第二融合切片生成与所述选定信息对应的三维图像。
  10. 一种适用于地质数据和地理信息数据的融合系统,其特征在于,包括:
    智能请求设备,用于发送选定信息和接收第二融合切片至智能请求设备;
    服务器,用于接收选定信息,执行权利要求1至8中任意一项所述的适用于地质数据和地理信息数据的融合方法生成第二融合切片,将第二融合切片发送。
PCT/CN2022/073091 2021-12-30 2022-01-21 适用于地质数据和地理信息数据的融合方法、装置及系统 WO2023123583A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111637335.0A CN113989454B (zh) 2021-12-30 2021-12-30 适用于地质数据和地理信息数据的融合方法、装置及系统
CN202111637335.0 2021-12-30

Publications (1)

Publication Number Publication Date
WO2023123583A1 true WO2023123583A1 (zh) 2023-07-06

Family

ID=79734916

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/073091 WO2023123583A1 (zh) 2021-12-30 2022-01-21 适用于地质数据和地理信息数据的融合方法、装置及系统

Country Status (2)

Country Link
CN (1) CN113989454B (zh)
WO (1) WO2023123583A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116958717B (zh) * 2023-09-20 2023-12-12 山东省地质测绘院 基于机器学习的地质大数据智能清洗方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103164695A (zh) * 2013-02-26 2013-06-19 中国农业大学 一种基于多源图像信息融合的果实识别方法
US20140328530A1 (en) * 2013-05-03 2014-11-06 Samsung Life Public Welfare Foundation Medical imaging apparatus and method of controlling the same
CN110136219A (zh) * 2019-04-17 2019-08-16 太原理工大学 一种基于多源数据融合的二三维地图展示方法
CN112559667A (zh) * 2021-02-23 2021-03-26 北京简巨科技有限公司 地图编辑器、地图引擎、地图编辑系统、方法及存储介质

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101777189B (zh) * 2009-12-30 2012-07-04 武汉大学 LiDAR三维立体环境下测图和质量检查方法
CN102121996B (zh) * 2010-12-14 2013-05-01 中国石油天然气股份有限公司 地震资料采集质量显示方法和装置
US20140200863A1 (en) * 2013-01-11 2014-07-17 The Regents Of The University Of Michigan Monitoring proximity of objects at construction jobsites via three-dimensional virtuality in real-time
CN106846471A (zh) * 2015-12-04 2017-06-13 中国石油化工股份有限公司 一种油气模拟属性的镂空可视化显示方法
CN106054248B (zh) * 2016-07-15 2017-07-18 河海大学 一种基于大面积致密储层地震岩石物理反演方法
CN106780416B (zh) * 2016-11-10 2020-04-07 国家电网公司 一种矢量地形图用于路径规划的方法及装置
CN109615696B (zh) * 2018-11-28 2022-12-02 苏州微维大数据有限公司 一种工程地质信息三维可视化处理方法
CN110058684B (zh) * 2019-03-21 2022-07-01 海南诺亦腾海洋科技研究院有限公司 一种基于vr技术的地理信息交互方法、系统及存储介质
CN111243091B (zh) * 2020-04-09 2020-07-24 速度时空信息科技股份有限公司 基于分布式系统的海量dem金字塔切片并行构建方法
CN112906202B (zh) * 2021-01-27 2024-01-12 西安合智宇信息科技有限公司 基于地理信息的开采方法和装置、存储介质及电子装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103164695A (zh) * 2013-02-26 2013-06-19 中国农业大学 一种基于多源图像信息融合的果实识别方法
US20140328530A1 (en) * 2013-05-03 2014-11-06 Samsung Life Public Welfare Foundation Medical imaging apparatus and method of controlling the same
CN110136219A (zh) * 2019-04-17 2019-08-16 太原理工大学 一种基于多源数据融合的二三维地图展示方法
CN112559667A (zh) * 2021-02-23 2021-03-26 北京简巨科技有限公司 地图编辑器、地图引擎、地图编辑系统、方法及存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DING WEI-CUI, LI TING-DONG, FAN BEN-XIAN, GENG SHU-FANG, DING XIAO-ZHONG, CUI YAN-JUN, YANG QIANG, WANG ZHEN-YANG, JU YUAN-JING: "Three-dimensional realization of geological structure map based on DEM data: a case study of Hunan Province", GEOLOGICAL BULLETIN OF CHINA, vol. 31, no. 7, 1 July 2012 (2012-07-01), pages 1078 - 1085, XP093076182 *

Also Published As

Publication number Publication date
CN113989454B (zh) 2022-03-18
CN113989454A (zh) 2022-01-28

Similar Documents

Publication Publication Date Title
US8352480B2 (en) Methods, apparatuses and computer program products for converting a geographical database into a map tile database
CN112966134B (zh) 一种遥感影像数据处理方法、系统和存储介质
CN108267154B (zh) 一种地图显示方法及装置
CN109086286B (zh) 一种彩色地形图生产与发布方法
JP2004334888A (ja) 位置と精度の符号化のためにグリッドインデックスを使用するシステム及び方法
CN109002452B (zh) 地图瓦片更新方法、装置及计算机可读存储介质
US20130321411A1 (en) Map tile selection in 3d
CN111090716B (zh) 矢量瓦片数据处理方法、装置、设备和存储介质
US20130127852A1 (en) Methods for providing 3d building information
CN112233240A (zh) 三维矢量地图的三维矢量数据切片方法、装置及电子设备
Zhou et al. A web-based geographical information system for crime mapping and decision support
KR100375553B1 (ko) 인터넷 망을 이용한 지리정보 서비스 방법
CN110990612A (zh) 一种矢量大数据快速显示的方法及终端
WO2023123583A1 (zh) 适用于地质数据和地理信息数据的融合方法、装置及系统
US9811539B2 (en) Hierarchical spatial clustering of photographs
US20150339848A1 (en) Method and apparatus for generating a composite indexable linear data structure to permit selection of map elements based on linear elements
CN116109765A (zh) 标注对象的三维渲染方法、装置、计算机设备、存储介质
KR101487454B1 (ko) Lod 영상 병렬처리방법
EP3488355A1 (en) Point of interest selection based on a user request
US10460427B2 (en) Converting imagery and charts to polar projection
CN115482152A (zh) 栅格地图导入设计软件方法、装置及计算机设备
CN114064829A (zh) 对定位点进行聚合展示的方法、装置及电子设备
CN110119458B (zh) 一种网格检索方法及装置
CN112214562A (zh) 数据处理方法、装置、电子设备及机器可读存储介质
Brown et al. GRASS as an integrated GIS and visualization system for spatio-temporal modeling

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22912891

Country of ref document: EP

Kind code of ref document: A1