WO2023123382A1 - 基于分子动力学的晶体熔点的计算方法、装置及存储介质 - Google Patents

基于分子动力学的晶体熔点的计算方法、装置及存储介质 Download PDF

Info

Publication number
WO2023123382A1
WO2023123382A1 PCT/CN2021/143745 CN2021143745W WO2023123382A1 WO 2023123382 A1 WO2023123382 A1 WO 2023123382A1 CN 2021143745 W CN2021143745 W CN 2021143745W WO 2023123382 A1 WO2023123382 A1 WO 2023123382A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
melting point
preset
target structure
structure model
Prior art date
Application number
PCT/CN2021/143745
Other languages
English (en)
French (fr)
Inventor
方利文
孙广旭
Original Assignee
深圳晶泰科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳晶泰科技有限公司 filed Critical 深圳晶泰科技有限公司
Priority to PCT/CN2021/143745 priority Critical patent/WO2023123382A1/zh
Publication of WO2023123382A1 publication Critical patent/WO2023123382A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16CCOMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
    • G16C10/00Computational theoretical chemistry, i.e. ICT specially adapted for theoretical aspects of quantum chemistry, molecular mechanics, molecular dynamics or the like
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/14Force analysis or force optimisation, e.g. static or dynamic forces

Definitions

  • the present application belongs to the technical field of computational chemistry, and in particular relates to a calculation method, device and storage medium for crystal melting point based on molecular dynamics.
  • the molecular dynamics heating simulation method is mostly used to determine the melting point of crystalline substances.
  • the molecular dynamics heating simulation method uses the molecular dynamics method to carry out continuous or stepwise heating simulation of the crystal structure, records the potential energy, kinetic energy, density, root mean square displacement and other changes of the crystal system during the simulation process, and locates the changes of these quantities with temperature The temperature corresponding to the jump point determines the value of the melting point.
  • overheating will occur in the molecular dynamics heating simulation, resulting in the calculated melting point results being much higher than the experimental results, that is, the accuracy of the calculation results is low.
  • the present application provides a method, device and storage medium for calculating the melting point of crystals based on molecular dynamics, which can improve the calculation accuracy of the melting point.
  • the first aspect of the present application provides a method for calculating the crystal melting point based on molecular dynamics, including:
  • each of the target structure models contains different volumes of the cavities
  • the melting point value of the target crystal structure is obtained.
  • the method also includes:
  • the use of the periodic structure model to generate a plurality of target structure models containing holes includes:
  • a plurality of target structure models containing cavities are generated.
  • the use of the supercellular periodic structure model generates multiple target structure models containing cavities, including:
  • any two adjacent preset thresholds conform to a preset variation rule.
  • the method also includes:
  • the molecular dynamics heating simulation for each target structure model includes:
  • the method also includes:
  • the structural optimization of each of the target structure models is carried out to obtain the optimized target structure models respectively, including:
  • Each of the target structure models is optimized by using a preset algorithm corresponding to the target force field, so that the energy of the target structure models is minimized, and the optimized target structure models are respectively obtained.
  • the structure information includes at least one of potential energy, density, atomic coordinates and mean square displacement of atomic coordinates of the target structure model.
  • the melting point value of the target crystal structure is obtained according to the change state of the structure information of each of the target structure models within the preset temperature range, including:
  • the melting point value of the target crystal structure is determined according to the melting point value of each target structure model.
  • the sudden change point of the structural information of each of the target structural models within the preset temperature range is determined ,include:
  • the change state of the structure information of each of the target structure models within the preset temperature range it is determined that the change amount of the structure information of each of the target structure models exceeds a preset change amount within the preset temperature range
  • the mutation temperature range
  • the corresponding mutation point is determined.
  • the determining the melting point value of the target crystal structure according to the melting point value of each target structure model includes:
  • the sorting result determine whether there is a preset number or a preset ratio of the melting point values of the target structure model that are continuously arranged to meet the preset condition;
  • the melting point value of the target crystal structure is determined according to the melting point values of the target structure model of the preset number or preset ratio of the continuous arrangement.
  • determining whether there is a preset number or a preset proportion of melting point values of the target structure model that is continuously arranged to meet a preset condition includes:
  • the sorting result determine whether there is a preset number or a preset proportion of the target structure models arranged continuously, and the difference between the melting point values of any two target structure models is less than a first preset value; or,
  • the sorting result it is determined whether the mean square error or the root mean square error between the melting point values of the target structure model of a preset number or a preset proportion arranged in a row is smaller than a second preset value.
  • the determining the melting point value of the target crystal structure according to the melting point value of the target structure model of the preset number or preset ratio of the continuous arrangement includes:
  • the average melting point value is determined as the melting point value of the target crystal structure.
  • the method also includes:
  • the periodic structure model is expanded to generate a larger-sized supercellular periodic structure model.
  • the second aspect of the present application provides a crystal screening method, comprising:
  • Candidate crystal structures are determined from the at least two crystal structures based on the melting point value of each of the crystal structures.
  • the third aspect of the present application provides a calculation device for crystal melting point based on molecular dynamics, including:
  • An acquisition module configured to acquire the target crystal structure
  • a generation module configured to use the periodic structure model to generate a plurality of target structure models containing cavities, wherein each of the target structure models contains different volumes of the cavities;
  • a processing module configured to perform molecular dynamics heating simulation on each of the target structure models, and respectively obtain structural information of each of the target structure models in a preset temperature range;
  • the calculation module is used to obtain the melting point value of the target crystal structure according to the change state of the structure information of each target structure model within the preset temperature range.
  • it also includes: a cell expansion module;
  • the cell expansion module is used to expand the periodic structure model to obtain the supercellular periodic structure model
  • the generation module is used to generate a plurality of target structure models containing cavities by using the supercellular periodic structure model.
  • the generation module utilizes the supercellular periodic structure model to generate multiple target structure models containing holes, including:
  • any two adjacent preset thresholds conform to a preset variation rule.
  • it also includes: an optimization module;
  • the optimization module is used to perform structural optimization on each target structure model to obtain optimized target structure models respectively;
  • the processing module is used to perform molecular dynamics heating simulation on each optimized target structure model.
  • it also includes: a determination module;
  • the determination module is used to determine the target force field according to the periodic structure model
  • the optimization module is configured to optimize the structure of each target structure model by using a preset algorithm corresponding to the target force field, so as to minimize the energy of the target structure model, and obtain optimized target structure models respectively.
  • the structure information includes at least one of potential energy, density, atomic coordinates and mean square displacement of atomic coordinates of the target structure model.
  • the calculation module includes:
  • a first determining unit configured to determine the structural information of each target structure model within the preset temperature range according to the change state of the structure information of each target structure model within the preset temperature range Discontinuity;
  • the second determination unit is configured to determine the melting point value of each target structure model according to the temperature value corresponding to the mutation point of each target structure model;
  • the third determination unit is configured to determine the melting point value of the target crystal structure according to the melting point value of each target structure model.
  • the first determining unit determines that the structural information of each of the target structural models is within the preset temperature range according to the change state of the structural information of each of the target structural models within the preset temperature range. Mutation points within, including:
  • the change state of the structure information of each of the target structure models within the preset temperature range it is determined that the change amount of the structure information of each of the target structure models exceeds a preset change amount within the preset temperature range
  • the mutation temperature range
  • the corresponding mutation point is determined.
  • the third determination unit determines the melting point value of the target crystal structure according to the melting point value of each target structure model, including:
  • the sorting result determine whether there is a preset number or a preset ratio of the melting point values of the target structure model that are continuously arranged to meet the preset condition;
  • the melting point value of the target crystal structure is determined according to the melting point values of the target structure model of the preset number or preset ratio of the continuous arrangement.
  • the third determining unit determines whether there is a preset number or a preset proportion of melting point values of the target structure model that are continuously arranged according to the sorting result, including:
  • the sorting result determine whether there is a preset number or a preset proportion of the target structure models arranged continuously, and the difference between the melting point values of any two target structure models is less than a first preset value; or,
  • the sorting result it is determined whether the mean square error or the root mean square error between the melting point values of the target structure model of a preset number or a preset proportion arranged in a row is smaller than a second preset value.
  • the third determination unit determines the melting point value of the target crystal structure according to the melting point values of the target structure model of the preset number or preset ratio of the continuous arrangement, including:
  • the average melting point value is determined as the melting point value of the target crystal structure.
  • the generating module is further configured to utilize the specified
  • the periodic structure model is used to generate a larger number of target structure models containing cavities; or the periodic structure model is used to generate multiple target structure models with smaller volume differences in cavities; or the periodic structure model is used to generate Generating a target structure model with a smaller volume difference of cavities and a larger number; or expanding the periodic structure model to generate a larger-sized supercellular periodic structure model.
  • the fourth aspect of the present application provides a crystal screening device, comprising:
  • an acquisition module configured to acquire at least two crystal structures
  • a calculation module configured to use the molecular dynamics-based crystal melting point calculation device provided in the third aspect of the present application to calculate the crystal melting point of the at least two crystal structures to obtain the melting point value of each of the crystal structures;
  • the determining module is configured to determine candidate crystal structures from the at least two crystal structures according to the melting point value of each of the crystal structures.
  • the fifth aspect of the present application provides an electronic device, including:
  • the sixth aspect of the present application provides a computer-readable storage medium, on which executable code is stored, and when the executable code is executed by the processor of the electronic device, the processor executes the method provided in the first aspect of the present application.
  • the molecular dynamics-based crystal melting point calculation method or the crystal screening method provided in the second aspect of the present application.
  • Fig. 1 is a schematic flow chart of a method for calculating the crystal melting point based on molecular dynamics provided in an embodiment of the present application;
  • Figure 2 is a schematic diagram of a benzene crystal structure provided in the examples of the present application.
  • Fig. 3 is a structural schematic diagram of target structure models containing different cavity sizes of the benzene crystal structure shown in Fig. 2;
  • Fig. 4 is the change curve graph of the density of the target structure model containing different void sizes shown in Fig. 3 with the simulated temperature;
  • Fig. 5 is the change curve graph of the melting point value of the target structure model containing different void sizes shown in Fig. 3 with the void size;
  • Fig. 6 is a schematic diagram of a cesium metal crystal structure provided by an embodiment of the present application.
  • Fig. 7 is the structural representation of the cesium metal crystal structure shown in Fig. 6 containing the target structure model of different cavity sizes;
  • Fig. 8 is a curve diagram showing the variation of the density of the target structure model containing different void sizes as shown in Fig. 7 with the simulated temperature;
  • Fig. 9 is the change curve graph of the mean square displacement (rmsd) of the target structure model containing different void sizes shown in Fig. 7 with the simulated temperature;
  • Fig. 10 is the variation curve graph of the melting point value of the target structure model containing different void sizes shown in Fig. 7 with the void size;
  • Fig. 11 is a schematic structural diagram of a molecular dynamics-based crystal melting point calculation device provided in an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • first, second, third and so on may be used in this application to describe various information, such information should not be limited to these terms. These terms are only used to distinguish information of the same type from one another.
  • first information may also be called second information, and similarly, second information may also be called first information.
  • second information may also be called first information.
  • a feature defined as “first” and “second” may explicitly or implicitly include one or more of these features.
  • “plurality” means two or more, unless otherwise specifically defined.
  • the embodiment of the present application provides a method for calculating the crystal melting point based on molecular dynamics temperature rise simulation method. As shown in Figure 1, the method may include the following steps:
  • the target crystal structure may be a molecular crystal structure or an atomic crystal structure.
  • the target crystal structure can be obtained through commercial or public structure databases, literature, etc., for example, from the CSD database.
  • the construction of the periodic structure model can be edited and generated using graphical operating software with editing functions (such as Material Studio, Mecury, etc.), or edited and modified in the database or the structure established in the literature.
  • software editing can be used to establish a periodic structure model.
  • the cavities contained in each target structure model have different volumes.
  • a target structure model may contain a continuous cavity, and the position of the cavity in different target structure models may overlap.
  • the position of the cavity in each target structure model may be from a short side of the structure model to its relative The other short side extends in the direction.
  • the shape of the cavity can be cuboid, cube or other regular or irregular shapes. It can be understood that the positions of holes in different target structure models can also be randomly generated, for example, the positions of holes in some target structure models are located at the structure boundary, and the positions of holes in some target structure models are located in the middle of the structure, etc., There is no limit here.
  • volume size of the cavities in different target structure models may increase in a certain regularity, for example, in an arithmetic difference change, a proportional change, and the like.
  • volume size of the cavities in different target structure models may also vary irregularly, such as randomly selecting values within a certain range.
  • the periodic structure model can be first expanded to obtain a supercellular periodic structure model; then, multiple target structure models containing cavities can be generated by using the supercellular periodic structure model.
  • the length of the lattice vector of the supercell structure obtained after cell expansion can be greater than the first threshold
  • the first threshold can be set according to experience, for example, the value of the first threshold can be 18 angstroms, 20 angstroms, 22 angstroms , 25 Angstroms or other values. Expanding the periodic structural model of the unit cell into a supercellular structure can ensure that the subsequent molecular dynamics simulation of the structural model will not be affected by the size of the structural model.
  • the implementation of generating multiple target structure models containing holes may include: respectively deleting atoms or molecules with different preset thresholds in the supercell periodic structure model, generate multiple object structure models containing cavities;
  • some atoms or molecules in the supercell periodic structure model can be deleted to create cavities of different volumes in the structure model, so that multiple target structure models containing cavities of a certain volume can be obtained.
  • a target structure model contains a continuous cavity, and the volumes of the cavities contained in different target structure models are different.
  • the target crystal structure is a molecular crystal structure
  • an integer number of molecules is deleted each time;
  • the target crystal structure is an atomic crystal structure, the number of atoms deleted each time is related to the stoichiometric ratio of the target crystal structure .
  • the target crystal is ferric oxide (Fe 2 O 3 )
  • the first target structure model can be a void structure formed by deleting two Fe atoms and three O atoms. At this time, the total number of deleted atoms is 5 ;
  • the total number of deleted atoms is 10; in the third target structure model, six Fe atoms and The void structure formed by nine O atoms, at this time, the total number of deleted atoms is 15; the fourth target structure model can be the void structure formed by deleting eight Fe atoms and twelve O atoms, at this time, the deleted atoms The total is 20.
  • multiple target structure models containing cavities are sequentially obtained, and the ratio of the number of Fe atoms deleted in each target structure model to the number of O atoms conforms to the stoichiometric ratio of 2:3.
  • the volume of the cavity changes in an equal difference.
  • any two adjacent preset thresholds conform to the preset change rule.
  • the preset change rule may be an arithmetic change rule, a proportional change rule, or the like.
  • the number of generated target structure models containing holes can be greater than the second threshold, and the second threshold can be set according to experience, for example, the second threshold can be 5, 6, 8, 10 or other values.
  • the percentage of the volume of the cavity in each target structure model to the total volume of the target structure model should be less than The third threshold, the third threshold may be 28%, 25%, 22%, 20% or other values.
  • the preset temperature range includes a first preset temperature with a lower limit to a second preset temperature with an upper limit.
  • the first preset temperature may be lower than the possible lowest melting point value of the target crystal structure
  • the second preset temperature may be higher than the possible lowest melting point value of the target crystal structure.
  • the possible lowest melting point value of the target crystal structure can be a preset value, or can be obtained through literature search or past experiments.
  • the structural information of the target structure model may include, but not limited to, the variation of at least one of the target structure model's potential energy, density, atomic coordinates, and mean square displacement (RMSD) of the atomic coordinates within a preset temperature range.
  • RMSD mean square displacement
  • the coordinate changes of atoms within the preset temperature range can be regarded as a trajectory, and the coordinate changes of different atoms can constitute a trajectory file.
  • structure optimization can be performed on each target structure model to obtain optimized target structure models respectively, so that each optimized target structure model The structural model was used for molecular dynamics heating simulations.
  • a preset algorithm may be used to optimize the structure of the target structure model.
  • the structural optimization here may be to minimize the structural energy of the target structural model to obtain a stable structural model.
  • the target force used to describe the interaction between atoms in the structure model can be determined first according to the periodic structure model or the supercellular periodic structure model Field, and then use the preset algorithm corresponding to the target force field to optimize the structure of each target structure model, so as to minimize the energy of the target structure model, and obtain the optimized target structure model respectively.
  • the molecules in the periodic structure model or supercellular periodic structure model can be input into processing software (such as Antechamber, CGenFF, gmxtop, etc.), and the target force field of the structure model can be calculated, or obtained from literature and/or public
  • processing software such as Antechamber, CGenFF, gmxtop, etc.
  • the target force field of the corresponding structural model is obtained from the force field database.
  • the implementation of molecular dynamics temperature rise simulation for each target structure model may include: using the NPT ensemble method to perform initial constant temperature simulation for each target structure model, and the number of simulation steps may be set to a fixed number of steps (such as 1000000 steps), the step size is a certain size (such as 1fs); then use the NPT ensemble method to carry out the molecular dynamics simulation of continuous heating, the simulated heating rate is not higher than the preset rate (such as 100K/1500000 steps), the step size It is a certain size (such as 1fs); simulate the change state of the target structure model's potential energy, density, mean square displacement (RMSD), trajectory files and other result data with temperature.
  • RMSD mean square displacement
  • the simulation pressure can be set to 1 atmosphere
  • the simulation start temperature first preset temperature
  • the possible lowest melting point value such as 50K
  • the ending temperature second preset temperature
  • the sudden change point of the structure information of each target structure model within the preset temperature range can be determined; according to each target structure Determine the melting point value of each target structure model according to the temperature value corresponding to the mutation point of the model; determine the melting point value of the target crystal structure according to the melting point value of each target structure model.
  • the embodiment of determining the abrupt change point of the structure information of each target structure model within the preset temperature range may include: according to The change state of the structural information of each target structure model within the preset temperature range, and determine the sudden temperature range in which the change amount of the structure information of each target structure model exceeds the preset change amount within the preset temperature range; according to each target The mutation temperature range of the structural model is determined to determine the corresponding mutation point.
  • the curve of the structural information of each target structural model changing with temperature can be drawn, and it can be judged whether there is a large change in the structural information in a certain temperature range in the curve, and the data of the structural information in the temperature range increases with temperature. If there is a downward trend, and the change amount between the maximum value and the minimum value of the structural information exceeds the preset change amount, then this temperature range is determined as a sudden change temperature range. Further, the middle temperature of the mutation temperature range can be determined as the mutation point of the target structure model, and the temperature value corresponding to the mutation point can be used as the melting point value of the target structure model. According to the above method, the mutation point and melting point value of each target structure model can be determined.
  • the embodiment of determining the melting point value of the target crystal structure may include: sorting the multiple target structure models according to the volume of the cavity; according to the sorting result, determining whether there is The melting point value of the target structure model of the preset number or preset ratio of continuous arrangement meets the preset condition; if it exists, the melting point of the target crystal structure is determined according to the melting point value of the target structure model of the preset number or preset ratio of continuous arrangement value.
  • the preset number can be 3 or more, and the preset ratio can be 1/2, 3/5, 2/3 or other values.
  • the embodiment of determining whether there is a preset number of continuous arrangements or the melting point value of the target structure model of a preset proportion meets the preset condition may include: according to the sorting result, determining whether there is a preset number of continuous arrangements Or the difference between the melting point values of any two target structure models in the target structure model with a preset ratio is smaller than the first preset value.
  • the difference value may be an absolute difference value or a ratio value or the like.
  • the sorting result it is determined whether the mean square error or the root mean square error between the melting point values of the preset number or preset ratio of the target structure models arranged continuously is smaller than the second preset value.
  • a periodic structure model or a supercellular periodic structure model can be used to generate a larger number of cavities.
  • the embodiment of determining the melting point value of the target crystal structure may include: calculating the preset number or preset ratio of continuous arrangements An average melting point value of the melting point values of the target structure model; determining the average melting point value as the melting point value of the target crystal structure.
  • the melting point value change curve (melting point value-void volume size) of the target structure model with different void volume sizes can be drawn, and it is judged whether there is a relatively flat region in which the melting point value changes with the increase of the void (for example, the average melting point value in this region)
  • the difference between the melting point values of any single target structure model in the region is less than the first preset value, such as 15K, or the difference between the melting point values of any two target structure models in the region is less than 15K, or
  • the mean square error or the root mean square error between the melting point value of a certain target structure model and the melting point value of other target structure models in the region is smaller than a second preset value).
  • the average melting point value in this interval can be calculated, and this average melting point value can be used as the final melting point value of the target crystal structure. If it does not exist, you can return to step S120 to establish a supercellular periodic structure model with a larger size, or a target structure model with a larger number of cavities with a smaller difference in cavity volume, and continue to step S130 and step S140 to carry out molecular analysis. Kinetic simulation calculations to re-determine the melting point value of the target crystal structure.
  • the periodic structure of benzene crystals obtained from the CSD database contains 4 benzene molecules, and the side lengths of the original cells are 7.39 angstroms, 9.42 angstroms and 6.81 angstroms respectively, which is an orthorhombic crystal structure.
  • the periodic structure model of benzene crystal is shown in Fig. 2.
  • the periodic structure model of benzene crystal is expanded from the original unit cell model into a 6*3*4 supercellular periodic structure model, which contains 288 benzene molecules.
  • the cavities are generated by directly deleting the corresponding position and number of molecules in the supercellular periodic structure model, and the size of the cavities in each target structure model containing cavities is obtained.
  • the sizes are 8, 16, 24, 32, 40, 48 benzene molecules.
  • the shape of the cavity in the target structure model tends to be a cuboid, and the maximum cavity size is 16.7% of the total volume.
  • the target structure models with different void sizes are shown in Fig. 3.
  • (a) is the structure model of 0 holes
  • the structure model of the 0 holes is the periodic structure model of the supercell obtained by expanding the original unit cell periodic structure model
  • (b) is the target structure model of 8 molecular holes
  • (c) is the target structure model of 16 molecular cavities
  • (d) is the target structure model of 24 molecular cavities
  • (e) is the target structure model of 32 molecular cavities
  • (f) is the target structure model of 40 molecular cavities
  • ( g) is the target structure model of 48 molecular cavities.
  • the simulation calculation using the opls-aa force field to describe the interaction between molecules in benzene crystals.
  • the energy minimization calculation was first performed on each target structure model, and then the optimized target structure model was relaxed for 1,000,000 steps at a temperature of 200K, and then the temperature was continuously raised from 200K to 400K, and the number of simulated heating steps was 4,000,000 steps.
  • the time step in the relaxation and heating process is 1fs, and the ensemble method is NPT.
  • Simulation results analyze the temperature and density data of the system during the heating simulation process, and obtain the melting point value of each target structure model.
  • the relationship between simulated temperature and density is shown in Figure 4, and the melting point values of target structure models containing different voids are obtained. Among them, in Fig.
  • the density decreases with increasing temperature.
  • the density of the system drops suddenly, and the temperature at the midpoint of the sudden change can be taken as the melting point.
  • the volume of the cavity in the model is large, under the action of the pressure coupling of the NPT ensemble, the atoms close to the cavity in some models cannot support the original structure, resulting in the collapse of the cavity. At this time, the volume of the model may suddenly change below the melting point temperature. Small. But in this example, when the cavity collapses, the sudden increase in density is far away from the melting point, which does not affect the judgment of the melting point.
  • the calculated melting point does not decrease significantly with the increase of the cavity, and the difference between the melting point values is less than 10K, when the melting point value hardly changes with the size of the void (the void is 30-40 molecular size), the calculated average melting point value is very close to the experimental value indicated by the dotted line. Therefore, compared with the traditional molecular dynamics simulation method (melting point value obtained under 0 voids), the calculation accuracy of the melting point is significantly improved by adopting the technical solution of the present application.
  • the cesium metal crystal has a body-centered cubic structure, and the side length of the unit cell is 6.14 angstroms.
  • the original cell structure of the cesium crystal is shown in Figure 6.
  • the unit cell periodic structure model is expanded into a 20*10*10 supercell periodic structure model, which contains 4000 cesium atoms.
  • construct holes which are generated by directly deleting the corresponding positions and numbers of atoms in the supercell periodic structure model.
  • the holes in the target structure model containing holes are 100, 200, 300, 400, 500, 600, 700, and 800, respectively.
  • the size of a cesium atom The shape of the cavity in the target structure model tends to be a cuboid, and the maximum cavity size is 20% of the total volume.
  • the target structure model with different vacancy sizes is shown in Figure 7 below.
  • (a) is the structure model of 0 holes
  • the structure model of the 0 holes is the periodic structure model of the supercell obtained by expanding the original unit cell periodic structure model
  • (b) is the target structure model of 100 atomic holes
  • (c) is the target structure model of 200 atom holes
  • (d) is the target structure model of 300 atom holes
  • (e) is the target structure model of 400 atom holes
  • (f) is the target structure model of 500 atom holes
  • ( g) is the target structure model of the 600-atom cavity
  • (h) is the target structure model of the 700-atom cavity
  • (i) is the target structure model of the 800-atom cavity.
  • Simulation calculation use eam force field to describe the interaction between cesium atoms, and use lammps software to perform molecular dynamics simulation on the above target structure models.
  • the energy minimization calculation is performed on the target structure model, and then the optimized target structure model is relaxed for 1,000,000 steps at a temperature of 250K, and then the temperature is continuously raised from 250K to 400K, and the number of simulated temperature rise steps is 3,000,000 steps.
  • the time step in the relaxation and heating process is 1fs, and the ensemble method is NPT.
  • FIG. 8 (a) is the variation state of the density of the structure model under the 0-atom cavity with temperature, (b) is the variation state of the density of the structure model with the temperature of the 100-atom cavity, and (c) is the structure model of the 200-atom cavity
  • the state of the density change with temperature (d) is the change state of the density of the structure model with temperature under the 300-atom cavity, (e) is the change state of the density of the structure model with temperature under the 400-atom cavity, (f) is the change state of the structure model with 500 atoms
  • the density of the structural model under the void varies with temperature
  • (g) is the density of the structural model under the 600-atom void varies with temperature
  • (h) is the density of the structural model under the 700-atom void varies with temperature
  • (i ) is the change state of the
  • the density decreases with increasing temperature.
  • the density of the system drops suddenly, and the temperature at the midpoint of the sudden change can be taken as the melting point.
  • the volume of the cavity in the model is large, under the action of the pressure coupling of the NPT ensemble, the atoms close to the cavity in some models cannot support the original structure, resulting in the collapse of the cavity.
  • the volume of the model may suddenly change below the melting point temperature. Small.
  • the temperature of the void collapse is close to the melting temperature, the collapse process may merge with the sudden density drop of the system, resulting in only a small density drop after the sudden density increase.
  • the melting temperature at this time can be considered as the temperature at the end of the collapse.
  • the atoms in the crystal structure vibrate back and forth around the equilibrium position before melting, when the atoms are not far from the equilibrium position.
  • the atoms leave their equilibrium positions and begin to diffuse to other positions. This process is reflected on the rmsd curve.
  • the rmsd value is small and rises slowly with the increase of temperature; when the structure is melted, the rmsd increases rapidly with the simulation, due to the temperature rise The higher the particle diffusion rate, the higher the temperature and therefore the faster the rmsd value increases.
  • there is a clear jump in the rmsd value through which the temperature at the time of melting can be determined.
  • FIG. 9 The rmsd of target structure models with different void sizes as a function of temperature is shown in Figure 9.
  • (a) in Figure 9 is the rmsd of the structural model under the 0-atom cavity varies with temperature
  • (b) is the rmsd of the structural model under the 100-atom cavity varies with temperature
  • (c) is the structural model under the 200-atom cavity
  • the rmsd of the structure model varies with temperature
  • (d) is the rmsd of the structural model under the 300-atom cavity varies with temperature
  • (e) is the rmsd of the structural model under the 400-atom cavity varies with temperature
  • (f) is the 500-atom cavity
  • (g) is the variation state of the rmsd of the structure model under the 600-atom cavity with temperature
  • (h) is the variation state of the rmsd of the structure model under the 700-atom cavity with temperature
  • the embodiment of the present application also provides a crystal screening method, comprising the following steps:
  • the embodiment of the present application also provides a molecular dynamics-based crystal melting point calculation device, which can be used to implement the molecular dynamics-based crystal melting point calculation method provided in the foregoing embodiments.
  • the device may include:
  • An acquisition module 1110 configured to acquire the target crystal structure
  • a construction module 1120 configured to construct a periodic structure model according to the target crystal structure
  • the generation module 1130 is used to generate a plurality of target structure models containing cavities by using the periodic structure model, wherein the cavities contained in each target structure model have different volumes;
  • the processing module 1140 is used to perform molecular dynamics heating simulation on each target structure model, and respectively obtain the structure information of each target structure model under a preset temperature range;
  • the calculation module 1150 is configured to obtain the melting point value of the target crystal structure according to the change state of the structure information of each target structure model within a preset temperature range.
  • the device shown in Figure 11 may also include:
  • the cell expansion module is used to expand the periodic structure model to obtain the supercellular periodic structure model
  • the generation module 1130 can be specifically configured to use the supercellular periodic structure model to generate multiple target structure models containing cavities.
  • the generation module 1130 respectively deletes atoms or molecules with different preset thresholds in the supercell periodic structure model to generate multiple target structure models containing holes; where the different preset thresholds are sorted according to size , between any two adjacent preset thresholds conforms to the preset change rule.
  • the device shown in Figure 11 may also include:
  • An optimization module is used to perform structural optimization on each target structure model to obtain optimized target structure models respectively;
  • processing module 1140 can specifically be used to perform molecular dynamics temperature raising simulation on each optimized target structure model.
  • the device shown in Figure 11 may also include:
  • a determination module is used to determine the target force field according to the periodic structure model
  • the optimization module can be used to optimize the structure of each target structure model by using a preset algorithm corresponding to the target force field, so as to minimize the energy of the target structure model, and obtain optimized target structure models respectively.
  • the structural information may include but not limited to at least one of potential energy, density, atomic coordinates and mean square displacement of atomic coordinates of the target structural model.
  • calculation module 1150 may include:
  • the first determination unit is configured to determine the abrupt change point of the structural information of each target structural model within the preset temperature range according to the change state of the structural information of each target structural model within the preset temperature range;
  • the second determination unit is used to determine the melting point value of each target structure model according to the temperature value corresponding to the mutation point of each target structure model;
  • the third determination unit is configured to determine the melting point value of the target crystal structure according to the melting point value of each target structure model.
  • the first determination unit may be specifically configured to determine that the variation of the structural information of each target structural model within the preset temperature range exceeds Preset the sudden change temperature range of the variation; determine the corresponding sudden change point according to the sudden change temperature range of each target structure model.
  • the third determining unit can specifically be used to sort the multiple target structure models according to the volume of the cavity; according to the sorting result, determine whether there is a preset number or a preset proportion of the melting point values of the target structure models that are continuously arranged Satisfy the preset condition; if it exists, determine the melting point value of the target crystal structure according to the melting point values of the target structure model of the preset number or preset proportion arranged continuously.
  • the generation module 1130 can use the periodic structure model to generate a larger number of target structure models containing holes; or Use the periodic structure model to generate multiple target structure models with smaller cavity volume differences; or use the periodic structure model to generate target structure models with smaller cavity volume differences and more quantities; or for periodic structure models Cell expansion is performed to generate a larger-sized supercellular periodic structure model.
  • the third determining unit determines whether there is a preset number or a preset proportion of melting point values of the target structure model in a continuous arrangement that meets the preset condition may include: determining whether there is a continuous sequence according to the sorting result The difference between the melting point values of any two target structure models in the preset number of permutations or preset proportions is less than a first preset value; or, according to the sorting result, determining whether there is a preset number of consecutive permutations Or the mean square error or the root mean square error between the melting point values of the target structure model of the preset proportion is smaller than the second preset value.
  • the implementation of determining the melting point value of the target crystal structure by the third determining unit according to the preset number of consecutive arrangements or the melting point value of the target structure model of a preset ratio may include: calculating the preset number or preset ratio of continuous arrangements The average melting point value of the melting point values of the scaled target structure models; the average melting point value is determined as the melting point value of the target crystal structure.
  • the device in the embodiment of the present application establishes a series of structural models containing different cavities, performs molecular dynamics simulation on each structural model, and determines the melting point of the crystal structure by analyzing the dynamics simulation results, which overcomes the traditional molecular dynamics simulation.
  • the overheating phenomenon in the medium system makes the calculated melting point results more accurate; at the same time, the method is simple, does not require manual intervention, and is easy to process and automate; and the calculation can be parallelized, and the results can be quickly calculated.
  • the embodiment of the present application also provides a crystal screening device, which can be used to implement the crystal screening method provided in the foregoing embodiments.
  • the device may include:
  • an acquisition module configured to acquire at least two crystal structures
  • Calculation module for using the computing device based on the crystal melting point of molecular dynamics as provided in the foregoing embodiment to calculate the crystal melting point of the above-mentioned at least two crystal structures, and obtain the melting point value of each crystal structure;
  • the determining module is configured to determine a candidate crystal structure from the above at least two crystal structures according to the melting point value of each crystal structure.
  • an electronic device 1200 includes a memory 1210 and a processor 1220 .
  • the processor 1220 can be a central processing unit (Central Processing Unit, CPU), and can also be other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application specific integrated circuits (Application Specific Integrated Circuit, ASIC), on-site Field-Programmable Gate Array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the memory 1210 may include various types of storage units such as system memory, read only memory (ROM), and persistent storage.
  • the ROM may store static data or instructions required by the processor 1220 or other modules of the computer.
  • the persistent storage device may be a readable and writable storage device.
  • Persistent storage may be a non-volatile storage device that does not lose stored instructions and data even if the computer is powered off.
  • the permanent storage device adopts a mass storage device (such as a magnetic or optical disk, flash memory) as the permanent storage device.
  • the permanent storage device may be a removable storage device (such as a floppy disk, an optical drive).
  • the system memory can be a readable and writable storage device or a volatile readable and writable storage device, such as dynamic random access memory.
  • System memory can store some or all of the instructions and data that the processor needs at runtime.
  • the memory 1210 may include any combination of computer-readable storage media, including various types of semiconductor memory chips (eg, DRAM, SRAM, SDRAM, flash memory, programmable read-only memory), and magnetic disks and/or optical disks may also be used.
  • memory 1210 may include a readable and/or writable removable storage device, such as a compact disc (CD), a read-only digital versatile disc (e.g., DVD-ROM, dual-layer DVD-ROM), Read-only Blu-ray Disc, Super Density Disc, Flash memory card (such as SD card, min SD card, Micro-SD card, etc.), magnetic floppy disk, etc.
  • a readable and/or writable removable storage device such as a compact disc (CD), a read-only digital versatile disc (e.g., DVD-ROM, dual-layer DVD-ROM), Read-only Blu-ray Disc, Super Density Disc, Flash memory card (such as SD card, min SD card, Micro-SD card, etc.), magnetic floppy disk, etc.
  • Computer-readable storage media do not contain carrier waves and transient electronic signals transmitted by wireless or wire.
  • Executable codes are stored in the memory 1210 , and when the executable codes are processed by the processor 1220 , the processor 1220 may execute part or all of the methods mentioned above.
  • the method according to the present application can also be implemented as a computer program or computer program product, the computer program or computer program product including computer program code instructions for executing some or all of the steps in the above method of the present application.
  • the present application may also be implemented as a computer-readable storage medium (or a non-transitory machine-readable storage medium or a machine-readable storage medium), on which executable code (or computer program or computer instruction code) is stored,
  • executable code or computer program or computer instruction code
  • the processor of the electronic device or server, etc.
  • the processor is made to perform part or all of the steps of the above-mentioned method according to the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computing Systems (AREA)
  • Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Evolutionary Computation (AREA)
  • Computer Hardware Design (AREA)
  • General Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

一种基于分子动力学的晶体熔点的计算方法、装置及存储介质。其中,该方法包括:S110、获取目标晶体结构,并根据目标晶体结构构建周期性结构模型;S120、利用周期性结构模型,生成含有空洞的多个目标结构模型;S130、对每个目标结构模型进行分子动力学升温模拟,分别获得每个目标结构模型在预设温度范围下的结构信息;S140、根据每个目标结构模型的结构信息在预设温度范围内的变化状态,得到目标晶体结构的熔点值。该技术方案能够提高熔点的计算精度。

Description

基于分子动力学的晶体熔点的计算方法、装置及存储介质 技术领域
本申请属于计算化学技术领域,尤其涉及一种基于分子动力学的晶体熔点的计算方法、装置及存储介质。
背景技术
目前,在确定晶体物质的熔点时大多采用分子动力学升温模拟方法。分子动力学升温模拟法使用分子动力学方法对晶体结构进行连续或者阶梯式升温模拟,记录模拟过程中晶体体系的势能、动能、密度、均方根位移等变化量,通过定位这些量随温度变化的跳变点对应的温度确定熔点的数值。但是分子动力学升温模拟中会出现过热现象,导致计算的熔点结果相对于实验结果偏高许多,即计算结果的精度低。
技术问题
为解决或部分解决相关技术中存在的问题,本申请提供一种基于分子动力学的晶体熔点的计算方法、装置及存储介质,能够提高熔点的计算精度。
技术解决方案
本申请第一方面提供一种基于分子动力学的晶体熔点的计算方法,包括:
获取目标晶体结构,并根据所述目标晶体结构构建周期性结构模型;
利用所述周期性结构模型,生成含有空洞的多个目标结构模型,其中,每个所述目标结构模型包含的所述空洞的体积不同;
对每个所述目标结构模型进行分子动力学升温模拟,分别获得每个所述目标结构模型在预设温度范围下的结构信息;
根据每个所述目标结构模型的结构信息在所述预设温度范围内的变化状态,得到所述目标晶体结构的熔点值。
优选的,所述方法还包括:
对所述周期性结构模型进行扩胞,得到超胞周期性结构模型;
所述利用所述周期性结构模型,生成含有空洞的多个目标结构模型,包括:
利用所述超胞周期性结构模型,生成含有空洞的多个目标结构模型。
优选的,所述利用所述超胞周期性结构模型,生成含有空洞的多个目标结构模型,包括:
分别将所述超胞周期性结构模型中的不同预设阈值的原子或分子进行删除,生成含有空洞的多个目标结构模型;
其中,不同的所述预设阈值按照大小进行排序后,任意相邻的两个所述预设阈值之间符合预设变化规律。
优选的,所述方法还包括:
对每个所述目标结构模型进行结构优化,分别得到优化后的所述目标结构模型;
所述对每个所述目标结构模型进行分子动力学升温模拟,包括:
对每个优化后的所述目标结构模型进行分子动力学升温模拟。
优选的,所述方法还包括:
根据所述周期性结构模型,确定目标力场;
所述对每个所述目标结构模型进行结构优化,分别得到优化后的所述目标结构模型,包括:
利用与所述目标力场相对应的预设算法对每个所述目标结构模型进行结构优化,使得所述目标结构模型的能量最小化,分别得到优化后的所述目标结构模型。
优选的,所述结构信息包括所述目标结构模型的势能、密度、原子坐标和原子坐标的均方位移中的至少一种。
优选的,所述根据每个所述目标结构模型的结构信息在所述预设温度范围内的变化状态,得到所述目标晶体结构的熔点值,包括:
根据每个所述目标结构模型的结构信息在所述预设温度范围内的变化状态,确定每个所述目标结构模型的结构信息在所述预设温度范围内的突变点;
根据每个所述目标结构模型的突变点对应的温度值,确定每个所述目标结构模型的熔点值;
根据每个所述目标结构模型的熔点值,确定所述目标晶体结构的熔点值。
优选的,所述根据每个所述目标结构模型的结构信息在所述预设温度范围内的变化状态,确定每个所述目标结构模型的结构信息在所述预设温度范围内的突变点,包括:
根据每个所述目标结构模型的结构信息在所述预设温度范围内的变化状态,确定在所述预设温度范围内每个所述目标结构模型的结构信息的变化量超过预设变化量的突变温度区间;
根据每个所述目标结构模型的突变温度区间,确定对应的突变点。
优选的,所述根据每个所述目标结构模型的熔点值,确定所述目标晶体结构的熔点值,包括:
对多个所述目标结构模型按照空洞的体积大小进行排序;
根据排序结果,确定是否存在连续排列的预设数量或预设比例的所述目标结构模型的熔点值满足预设条件;
若存在,根据所述连续排列的预设数量或预设比例的所述目标结构模型的熔点值,确定所述目标晶体结构的熔点值。
优选的,所述根据排序结果,确定是否存在连续排列的预设数量或预设比例的所述目标结构模型的熔点值满足预设条件,包括:
根据排序结果,确定是否存在连续排列的预设数量或预设比例的所述目标结构模型中任意两个所述目标结构模型的熔点值之间的差异值小于第一预设值;或者,
根据排序结果,确定是否存在连续排列的预设数量或预设比例的所述目标结构模型的熔点值之间的均方误差或均方根误差小于第二预设值。
优选的,所述根据所述连续排列的预设数量或预设比例的所述目标结构模型的熔点值,确定所述目标晶体结构的熔点值,包括:
计算所述连续排列的预设数量或预设比例的所述目标结构模型的熔点值的平均熔点值;
将所述平均熔点值确定为所述目标晶体结构的熔点值。
优选的,所述方法还包括:
若不存在连续排列的预设数量或预设比例的所述目标结构模型的熔点值满足所述预设条件,利用所述周期性结构模型,生成更多数量的含有空洞的目标结构模型;或者利用所述周期性结构模型,生成空洞的体积差异更小的多个目标结构模型;或者利用所述周期性结构模型,生成空洞的体积差异更小的且数量更多的目标结构模型;或者对所述周期性结构模型进行扩胞,生成更大尺寸的超胞周期性结构模型。
本申请第二方面提供一种晶体筛选方法,包括:
获取至少两个晶体结构;
利用如本申请第一方面提供的所述基于分子动力学的晶体熔点的计算方法对所述至少两个晶体结构进行晶体熔点计算,得到每一所述晶体结构的熔点值;
根据每一所述晶体结构的熔点值,从所述至少两个晶体结构中确定出候选晶体结构。
本申请第三方面提供一种基于分子动力学的晶体熔点的计算装置,包括:
获取模块,用于获取目标晶体结构;
构建模块,用于根据所述目标晶体结构构建周期性结构模型;
生成模块,用于利用所述周期性结构模型,生成含有空洞的多个目标结构模型,其中,每个所述目标结构模型包含的所述空洞的体积不同;
处理模块,用于对每个所述目标结构模型进行分子动力学升温模拟,分别获得每个所述目标结构模型在预设温度范围下的结构信息;
计算模块,用于根据每个所述目标结构模型的结构信息在所述预设温度范围内的变化状态,得到所述目标晶体结构的熔点值。
优选的,还包括:扩胞模块;
所述扩胞模块,用于对周期性结构模型进行扩胞,得到超胞周期性结构模型;
相应地,所述生成模块,用于利用超胞周期性结构模型,生成含有空洞的多个目标结构模型。
优选的,所述生成模块利用超胞周期性结构模型,生成含有空洞的多个目标结构模型,包括:
分别将所述超胞周期性结构模型中的不同预设阈值的原子或分子进行删除,生成含有空洞的多个目标结构模型;
其中,不同的所述预设阈值按照大小进行排序后,任意相邻的两个所述预设阈值之间符合预设变化规律。
优选的,还包括:优化模块;
所述优化模块,用于对每个目标结构模型进行结构优化,分别得到优化后的目标结构模型;
相应地,所述处理模块,用于对每个优化后的目标结构模型进行分子动力学升温模拟。
优选的,还包括:确定模块;
所述确定模块,用于根据周期性结构模型,确定目标力场;
相应地,所述优化模块,用于利用与目标力场相对应的预设算法对每个目标结构模型进行结构优化,使得目标结构模型的能量最小化,分别得到优化后的目标结构模型。
优选的,所述结构信息包括所述目标结构模型的势能、密度、原子坐标和原子坐标的均方位移中的至少一种。
优选的,所述计算模块,包括:
第一确定单元,用于根据每个所述目标结构模型的结构信息在所述预设温度范围内的变化状态,确定每个所述目标结构模型的结构信息在所述预设温度范围内的突变点;
第二确定单元,用于根据每个所述目标结构模型的突变点对应的温度值,确定每个所述目标结构模型的熔点值;
第三确定单元,用于根据每个所述目标结构模型的熔点值,确定所述目标晶体结构的熔点值。
优选的,所述第一确定单元根据每个所述目标结构模型的结构信息在所述预设温度范围内的变化状态,确定每个所述目标结构模型的结构信息在所述预设温度范围内的突变点,包括:
根据每个所述目标结构模型的结构信息在所述预设温度范围内的变化状态,确定在所述预设温度范围内每个所述目标结构模型的结构信息的变化量超过预设变化量的突变温度区间;
根据每个所述目标结构模型的突变温度区间,确定对应的突变点。
优选的,所述第三确定单元根据每个所述目标结构模型的熔点值,确定所述目标晶体结构的熔点值,包括:
对多个所述目标结构模型按照空洞的体积大小进行排序;
根据排序结果,确定是否存在连续排列的预设数量或预设比例的所述目标结构模型的熔点值满足预设条件;
若存在,根据所述连续排列的预设数量或预设比例的所述目标结构模型的熔点值,确定所述目标晶体结构的熔点值。
优选的,所述第三确定单元根据排序结果,确定是否存在连续排列的预设数量或预设比例的所述目标结构模型的熔点值满足预设条件,包括:
根据排序结果,确定是否存在连续排列的预设数量或预设比例的所述目标结构模型中任意两个所述目标结构模型的熔点值之间的差异值小于第一预设值;或者,
根据排序结果,确定是否存在连续排列的预设数量或预设比例的所述目标结构模型的熔点值之间的均方误差或均方根误差小于第二预设值。
优选的,所述第三确定单元根据所述连续排列的预设数量或预设比例的所述目标结构模型的熔点值,确定所述目标晶体结构的熔点值,包括:
计算所述连续排列的预设数量或预设比例的所述目标结构模型的熔点值的平均熔点值;
将所述平均熔点值确定为所述目标晶体结构的熔点值。
优选的,所述生成模块还用于当所述第三确定单元确定出不存在连续排列的预设数量或预设比例的所述目标结构模型的熔点值满足所述预设条件时,利用所述周期性结构模型,生成更多数量的含有空洞的目标结构模型;或者利用所述周期性结构模型,生成空洞的体积差异更小的多个目标结构模型;或者利用所述周期性结构模型,生成空洞的体积差异更小的且数量更多的目标结构模型;或者对所述周期性结构模型进行扩胞,生成更大尺寸的超胞周期性结构模型。
本申请第四方面提供一种晶体筛选装置,包括:
获取模块,用于获取至少两个晶体结构;
计算模块,用于利用如本申请第三方面提供的所述基于分子动力学的晶体熔点的计算装置对所述至少两个晶体结构进行晶体熔点计算,得到每一所述晶体结构的熔点值;
确定模块,用于根据每一所述晶体结构的熔点值,从所述至少两个晶体结构中确定出候选晶体结构。
本申请第五方面提供一种电子设备,包括:
处理器;以及
存储器,其上存储有可执行代码,当所述可执行代码被所述处理器执行时,使所述处理器执行如本申请第一方面提供的所述基于分子动力学的晶体熔点的计算方法或本申请第二方面提供的所述晶体筛选方法。
本申请第六方面提供一种计算机可读存储介质,其上存储有可执行代码,当所述可执行代码被电子设备的处理器执行时,使所述处理器执行如本申请第一方面提供的所述基于分子动力学的晶体熔点的计算方法或本申请第二方面提供的所述晶体筛选方法。
有益效果
采用本申请的技术方案,通过建立一系列含有不同空洞的结构模型,对各个结构模型进行分子动力学模拟升温,通过分析动力学模拟结果从而确定晶体结构的熔点,克服了传统分子动力学模拟中体系存在的过热现象,使计算得到的熔点结果更加准确;同时方法简单,不需人工介入,易于流程化、自动化;并且计算可并行化,可快速计算获得结果。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本申请。
附图说明
通过结合附图对本申请示例性实施方式进行更详细地描述,本申请的上述以及其它目的、特征和优势将变得更加明显,其中,在本申请示例性实施方式中,相同的参考标号通常代表相同部件。
图1是本申请实施例提供的一种基于分子动力学的晶体熔点的计算方法的流程示意图;
图2是本申请实施例提供的一种苯晶体结构的示意图;
图3是图2所示的苯晶体结构的含有不同空洞大小的目标结构模型的结构示意图;
图4是图3所示的含有不同空洞大小的目标结构模型的密度随模拟温度的变化曲线图;
图5是图3所示的含有不同空洞大小的目标结构模型的熔点值随空洞大小的变化曲线图;
图6是本申请实施例提供的一种铯金属晶体结构的示意图;
图7是图6所示的铯金属晶体结构的含有不同空洞大小的目标结构模型的结构示意图;
图8是图7所示的含有不同空洞大小的目标结构模型的密度随模拟温度的变化曲线图;
图9是图7所示的含有不同空洞大小的目标结构模型的均方位移(rmsd)随模拟温度的变化曲线图;
图10是图7所示的含有不同空洞大小的目标结构模型的熔点值随空洞大小的变化曲线图;
图11是本申请实施例提供的一种基于分子动力学的晶体熔点的计算装置的结构示意图;
图12是本申请实施例提供的一种电子设备的结构示意图。
本发明的实施方式
下面将参照附图更详细地描述本申请的实施方式。虽然附图中显示了本申请的实施方式,然而应该理解,可以以各种形式实现本申请而不应被这里阐述的实施方式所限制。相反,提供这些实施方式是为了使本申请更加透彻和完整,并且能够将本申请的范围完整地传达给本领域的技术人员。
在本申请使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本申请可能采用术语“第一”、“第二”、“第三”等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本申请范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
本申请实施例提供了一种基于分子动力学升温模拟法计算晶体熔点的方法。如图1所示,该方法可以包括以下步骤:
S110、获取目标晶体结构,并根据目标晶体结构构建周期性结构模型。
其中,目标晶体结构可以是分子型晶体结构或原子型晶体结构。可以通过商用的或者公开的结构数据库,或者文献等等方式获取目标晶体结构,比如从CSD数据库中获取。周期性结构模型的构建可以使用具有编辑功能的图形化操作软件(如Material Studio、Mecury等)编辑生成,或者编辑修改数据库或者文献中的结构建立。在已知目标晶体结构中原子的位置和晶格常数信息的情况下,可以使用软件编辑建立周期性结构模型。
S120、利用周期性结构模型,生成含有空洞的多个目标结构模型。
其中,每个目标结构模型包含的空洞的体积不同。一个目标结构模型中可以包含有一个连续的空洞,不同目标结构模型中空洞的位置可以有重叠,优选的,每个目标结构模型中的空洞位置可以是从结构模型的一个短边向其相对的另一短边方向延伸。空洞的形状可以呈长方体、正方体或其他规则或不规则形状。可以理解的是,不同目标结构模型中的空洞的位置也可以是随机生成的,例如有些目标结构模型中的空洞位置位于结构边界处,有些目标结构模型中的空洞位置位于结构中间部位等等,这里不作限定。
另外,不同目标结构模型中的空洞的体积大小可以呈一定规律递增,例如,呈等差变化、呈等比变化等。当然,不同目标结构模型中的空洞的体积大小也可以不呈规律变化,如在一定范围内随机取值。
在一实施方式中,可以先对周期性结构模型进行扩胞,得到超胞周期性结构模型;然后利用超胞周期性结构模型,生成含有空洞的多个目标结构模型。
其中,扩胞后得到的超胞结构的晶格矢量的长度均可以大于第一阈值,第一阈值可以根据经验进行设定,例如第一阈值的取值可以为18埃、20埃、22埃、25埃或其他值。将单胞的周期性结构模型扩胞成超胞结构,能够尽量保证后续对结构模型进行分子动力学模拟时,其结果不受到结构模型尺寸的影响。
在一实施方式中,利用超胞周期性结构模型,生成含有空洞的多个目标结构模型的实现方式可以包括:分别将超胞周期性结构模型中的不同预设阈值的原子或分子进行删除,生成含有空洞的多个目标结构模型;
本实施方式中,可以删除超胞周期性结构模型中的部分原子或者分子,以在结构模型中建立不同体积大小的空洞,从而可以获得含有一定体积大小的空洞的多个目标结构模型。其中,一个目标结构模型中包含一个连续的空洞,且不同目标结构模型中包含的空洞的体积大小不同。
当目标晶体结构为分子类晶体结构时,每次删除的为整数个数的分子;当目标晶体结构为原子类晶体结构时,每次删除的原子个数与该目标晶体结构的化学计量比有关。例如,目标晶体为三氧化二铁(Fe 2O 3),则第一个目标结构模型中可以是删除两个Fe原子和三个O原子形成的空洞结构,此时,删除的原子总数为5;第二个目标结构模型中可以是删除四个Fe原子和六个O原子形成的空洞结构,此时,删除的原子总数为10;第三个目标结构模型中可以是删除六个Fe原子和九个O原子形成的空洞结构,此时,删除的原子总数为15;第四个目标结构模型中可以是删除八个Fe原子和十二个O原子形成的空洞结构,此时,删除的原子总数为20。按照上述规律,依次得到多个包含空洞的目标结构模型,且每个目标结构模型中删除的Fe原子个数和O原子个数比符合化学计算比2:3,此外,每个目标结构模型中空洞的体积大小呈等差变化。
其中,不同的预设阈值按照大小进行排序后,任意相邻的两个预设阈值之间符合预设变化规律。该预设变化规律可以为呈等差变化规律、等比变化规律等。为了保证最终结果的准确性,生成的含有空洞的目标结构模型的数量可以大于第二阈值,第二阈值可以根据经验进行设定,例如第二阈值可以为5个、6个、8个、10个或其他值。
此外,为了避免空洞过大在后续对目标结构模型进行升温模拟时空洞坍塌过大对最终结果造成影响,每个目标结构模型中的空洞的体积大小占目标结构模型的总体积大小的百分比应小于第三阈值,第三阈值可以为28%、25%、22%、20%或其他值。
S130、对每个目标结构模型进行分子动力学升温模拟,分别获得每个目标结构模型在预设温度范围下的结构信息。
其中,预设温度范围包括下限的第一预设温度至上限的第二预设温度。第一预设温度可以低于目标晶体结构的可能最低熔点值,第二预设温度可以高于目标晶体结构的可能最低熔点值。目标晶体结构的可能最低熔点值可以是一预设值,也可以通过文献查询到或过往实验获得。
目标结构模型的结构信息可以包括但不限于目标结构模型的势能、密度、原子坐标和原子坐标的均方位移(RMSD)等中的至少一种数据在预设温度范围内的变化情况。其中,在预设温度范围内原子的坐标变化情况可以看作为一条轨迹,不同原子的坐标变化情况可以构成一份轨迹文件。
在一实施方式中,在对每个目标结构模型进行分子动力学升温模拟之前,可以先对每个目标结构模型进行结构优化,分别得到优化后的目标结构模型,从而对每个优化后的目标结构模型进行分子动力学升温模拟。
其中,可以采用预设算法对目标结构模型进行结构优化。这里的结构优化可以是将目标结构模型的结构能量最小化处理,以得到稳定的结构模型。
在一实施方式中,当用于结构优化的预设算法有多种时,可以先根据周期性结构模型或超胞周期性结构模型,确定用于描述该结构模型中原子间相互作用的目标力场,再利用与该目标力场相对应的预设算法对每个目标结构模型进行结构优化,使得目标结构模型的能量最小化,分别得到优化后的目标结构模型。
具体的,可以将周期性结构模型或超胞周期性结构模型中的分子输入处理软件(如Antechamber,CGenFF,gmxtop等软件),计算得到该结构模型的目标力场,或者从文献和/或公开力场数据库中获取得到相应的结构模型的目标力场。
本申请实施例中,对每个目标结构模型进行分子动力学升温模拟的实施方式可以包括:使用NPT系综方法对每个目标结构模型进行初始恒温模拟,模拟步数可以设为一固定步数(如1000000步),步长为一定大小(如1fs);之后使用NPT系综方法进行连续升温的分子动力学模拟,模拟升温速率不高于预设速率(如100K/1500000步),步长为一定大小(如1fs);模拟获得目标结构模型的势能、密度、均方位移(RMSD)、轨迹文件等结果数据随温度的变化状态。其中,模拟压力可以设定为1个大气压,模拟开始温度(第一预设温度)应低于可能最低熔点值(如50K),结束温度(第二预设温度)应高于可能最高熔点值(50K)。
S140、根据每个目标结构模型的结构信息在预设温度范围内的变化状态,得到目标晶体结构的熔点值。
本申请实施例中,可以根据每个目标结构模型的结构信息在预设温度范围内的变化状态,确定每个目标结构模型的结构信息在预设温度范围内的突变点;根据每个目标结构模型的突变点对应的温度值,确定每个目标结构模型的熔点值;根据每个目标结构模型的熔点值,确定目标晶体结构的熔点值。
在一实施方式中,根据每个目标结构模型的结构信息在预设温度范围内的变化状态,确定每个目标结构模型的结构信息在预设温度范围内的突变点的实施方式可以包括:根据每个目标结构模型的结构信息在预设温度范围内的变化状态,确定在预设温度范围内每个目标结构模型的结构信息的变化量超过预设变化量的突变温度区间;根据每个目标结构模型的突变温度区间,确定对应的突变点。
具体的,可以绘制每个目标结构模型的结构信息随温度变化的曲线,判断曲线中是否存在某一温度区间内结构信息的变化量较大,该温度区间内结构信息的数据随温度升高呈下降趋势,且结构信息的最大值与最小值之间的变化量超过预设变化量,若存在,则将该温度区间确定为突变温度区间。进一步地,可以将该突变温度区间的中间温度确定为该目标结构模型的突变点,并且可以将该突变点对应的温度值作为该目标结构模型的熔点值。按照上述方法,可以确定出每一目标结构模型的突变点及其熔点值。
在一实施方式中,根据每个目标结构模型的熔点值,确定目标晶体结构的熔点值的实施方式可以包括:对多个目标结构模型按照空洞的体积大小进行排序;根据排序结果,确定是否存在连续排列的预设数量或预设比例的目标结构模型的熔点值满足预设条件;若存在,根据连续排列的预设数量或预设比例的目标结构模型的熔点值,确定目标晶体结构的熔点值。
其中,预设数量可以为3个或3个以上,预设比例可以为1/2、3/5、2/3或其他值。
具体的,根据排序结果,确定是否存在连续排列的预设数量或预设比例的目标结构模型的熔点值满足预设条件的实施方式可以包括:根据排序结果,确定是否存在连续排列的预设数量或预设比例的目标结构模型中任意两个目标结构模型的熔点值之间的差异值小于第一预设值。其中,该差异值可以是绝对差值或比值等。
或者,根据排序结果,确定是否存在连续排列的预设数量或预设比例的目标结构模型的熔点值之间的均方误差或均方根误差小于第二预设值。
另外,若不存在连续排列的预设数量或预设比例的目标结构模型的熔点值满足上述预设条件,则可以利用周期性结构模型或超胞周期性结构模型,生成更多数量的含有空洞的目标结构模型;或者利用周期性结构模型或超胞周期性结构模型,生成空洞的体积差异更小的多个目标结构模型;或者利用周期性结构模型或超胞周期性结构模型,生成空洞的体积差异更小的且数量更多的目标结构模型;或者对周期性结构模型进行扩胞,生成更大尺寸的超胞周期性结构模型。
在一实施方式中,根据连续排列的预设数量或预设比例的目标结构模型的熔点值,确 定目标晶体结构的熔点值的实施方式可以包括:计算连续排列的预设数量或预设比例的目标结构模型的熔点值的平均熔点值;将平均熔点值确定为目标晶体结构的熔点值。
具体的,可以绘制不同空洞体积大小的目标结构模型的熔点值变化曲线(熔点值-空洞体积大小),判断曲线中是否存在熔点值随空洞增大变化较平坦区域(例如该区域内平均熔点值与该区域内的任意单个目标结构模型的熔点值之间的差别均小于第一预设值,如15K,或者该区域内任意两个目标结构模型的熔点值之间的差别均小于15K,或者该区域内某一目标结构模型的熔点值与其它目标结构模型的熔点值之间的均方误差或均方根误差小于第二预设值)。若存在,可以计算该区间内的平均熔点值,并将该平均熔点值作为目标晶体结构的最终熔点值。若不存在,则可以返回步骤S120,建立尺寸更大的超胞周期性结构模型,或空洞体积差别更小的、数量更多的含有空洞的目标结构模型,并继续步骤S130和步骤S140进行分子动力学模拟计算,以重新确定目标晶体结构的熔点值。
以下将结合具体实例进行详细说明。
以苯晶体的熔点计算为例。
模型:从CSD数据库中获得的苯晶体周期性结构原胞中含有4个苯分子,原胞边长分别为7.39埃,9.42埃和6.81埃,为正交晶系结构。苯晶体的周期性结构模型如图2所示。
按照上述的步骤,首先将苯晶体的周期性结构模型由原始单胞模型扩胞成的6*3*4的超胞周期性结构模型,超胞周期性结构模型中包含288个苯分子。
其次,构建空洞,得到一系列的含有空洞的目标结构模型;空洞由直接删除超胞周期性结构模型中的对应位置和数量的分子的方法生成,得到各个含有空洞的目标结构模型中空洞大小分别为8、16、24、32、40、48个苯分子大小。目标结构模型中空洞的形状趋于长方体,最大空洞大小为总体积的16.7%。含有不同空洞大小的目标结构模型如图3所示。其中,(a)为0空洞的结构模型,该0空洞的结构模型为由原始单胞周期性结构模型通过扩胞得到的超胞周期性结构模型,(b)为8分子空洞的目标结构模型,(c)为16分子空洞的目标结构模型,(d)为24分子空洞的目标结构模型,(e)为32分子空洞的目标结构模型,(f)为40分子空洞的目标结构模型,(g)为48分子空洞的目标结构模型。
再则,模拟计算:使用opls-aa力场描述苯晶体中分子间的相互作用。使用gromacs软件首先对每个目标结构模型进行能量最小化计算,然后对优化后的目标结构模型在200K温度下弛豫1000000步,之后从200K连续升温至400K,模拟升温步数为4000000步。弛豫和升温过程中时间步长均为1fs,系综方法为NPT。
模拟结果:对升温模拟过程中体系的温度、密度数据进行分析,获得每个目标结构模型的熔点值大小。模拟温度与密度关系如图4所示,获得含有不同空洞的目标结构模型的熔点值。其中,图4中(a)为0空洞下结构模型的密度随温度的变化状态,(b)为8分子空洞下结构模型的密度随温度的变化状态,(c)为16分子空洞下结构模型的密度随温度的变化状态,(d)为24分子空洞下结构模型的密度随温度的变化状态,(e)为32分子空洞下结构模型的密度随温度的变化状态,(f)为40分子空洞下结构模型的密度随温度的变化状态,(g)为48分子空洞下结构模型的密度随温度的变化状态。
模拟过程中,随着温度的升高密度下降。在融化时,体系的密度突然下降,此时可以取突变段的中点的温度作为熔点值。在模型中空洞体积较大时,在NPT系综的压力耦合的作用下,部分模型中靠近空洞部分的原子无法支撑原来的结构,导致空洞坍塌,此时模型体积可能会在熔点温度以下突然变小。但本例中,空洞坍塌时密度突然上升段离熔点较远,不影响熔点值的判断。
最后,绘制熔点结果的大小随空洞体积大小的变化曲线,如图5所示。可见,没有空洞的结构模型(即空洞大小为0的结构模型),模拟计算的熔点结果为340K,较实验结果高了许多,存在严重的过热现象。添加空洞之后,晶体的熔点随着空洞的大小变大开始降低,在空洞大小在15-40个分子区间,计算熔点结果随着空洞的变大不再显著降低,且熔点值之间的差别小于10K,熔点值几乎不随空洞大小变化时(空洞为30-40个分子大小),计算获得的平均熔点值与虚线表示的实验值非常接近。因此,采用本申请的技术方案与传统的分子动力学模拟方法(0空洞下获得的熔点值)相比,其熔点的计算精度得到显著提高。
以铯金属的熔点计算为例。
模型:铯金属晶体为体心立方结构,晶胞边长为6.14埃,铯晶体原胞结构如图6所示。
首先由单胞周期性结构模型扩胞成20*10*10的超胞周期性结构模型,超胞周期性结构模型中包含4000个铯原子。
其次,构建空洞,空洞由直接删除超胞周期性结构模型中的对应位置和数量的原子生成,含有空洞的目标结构模型中空洞分别是100、200、300、400、500、600、700、800个铯原子大小。目标结构模型中空洞的形状趋于长方体,最大空洞大小为总体积的20%。含有不同空位大小的目标结构模型如下图7所示。其中,(a)为0空洞的结构模型,该0空洞的结构模型为由原始单胞周期性结构模型通过扩胞得到的超胞周期性结构模型,(b) 为100原子空洞的目标结构模型,(c)为200原子空洞的目标结构模型,(d)为300原子空洞的目标结构模型,(e)为400原子空洞的目标结构模型,(f)为500原子空洞的目标结构模型,(g)为600原子空洞的目标结构模型,(h)为700原子空洞的目标结构模型,(i)为800原子空洞的目标结构模型。
模拟计算:使用eam力场描述铯原子间的相互作用,使用lammps软件对以上各目标结构模型进行分子动力学模拟。首先对目标结构模型进行能量最小化计算,之后优化的目标结构模型在250K温度下弛豫1000000步,之后从250K连续升温至400K,模拟升温步数为3000000步。弛豫和升温过程中时间步长均为1fs,系综方法为NPT。
模拟结果:对升温模拟过程中体系的温度、密度数据进行分析,获得每个目标结构模型的熔点值大小。模拟温度与密度关系如下图8所示。其中,图8中(a)为0空洞下结构模型的密度随温度的变化状态,(b)为100原子空洞下结构模型的密度随温度的变化状态,(c)为200原子空洞下结构模型的密度随温度的变化状态,(d)为300原子空洞下结构模型的密度随温度的变化状态,(e)为400原子空洞下结构模型的密度随温度的变化状态,(f)为500原子空洞下结构模型的密度随温度的变化状态,(g)为600原子空洞下结构模型的密度随温度的变化状态,(h)为700原子空洞下结构模型的密度随温度的变化状态,(i)为800原子空洞下结构模型的密度随温度的变化状态。
模拟过程中,随着温度的升高密度下降。在融化时,体系的密度突然下降,此时可以取突变段的中点的温度作为熔点值。在模型中空洞体积较大时,在NPT系综的压力耦合的作用下,部分模型中靠近空洞部分的原子无法支撑原来的结构,导致空洞坍塌,此时模型体积可能会在熔点温度以下突然变小。当空洞坍塌时的温度与融化温度接近时,坍塌过程可能与体系的密度突然下降过程合并,导致密度突然上升后,仅有很小的密度下降存在。此时融化温度可以认为是坍塌结束时候的温度。
晶体结构中的原子在未熔化之前在平衡位置附近来回振动,此时原子离平衡位置不远。当晶体熔化时,原子离开平衡位置,开始向其它位置扩散。这个过程反应在rmsd曲线上则是,当结构处于晶体状态时,rmsd值较小,随着温度的升高缓慢上升;当结构熔化后,rmsd随着模拟的进行快速增大,由于温度的升高粒子扩散速度越快,因此温度越高,rmsd值增加也越快。在晶体熔化之前和熔化之后,rmsd值存在明显的跃变,通过该跃变可以确定熔化时的温度。
含有不同空洞大小的目标结构模型的rmsd随温度的变化如图9。其中,图9中(a)为0空洞下结构模型的rmsd随温度的变化状态,(b)为100原子空洞下结构模型的rmsd 随温度的变化状态,(c)为200原子空洞下结构模型的rmsd随温度的变化状态,(d)为300原子空洞下结构模型的rmsd随温度的变化状态,(e)为400原子空洞下结构模型的rmsd随温度的变化状态,(f)为500原子空洞下结构模型的rmsd随温度的变化状态,(g)为600原子空洞下结构模型的rmsd随温度的变化状态,(h)为700原子空洞下结构模型的rmsd随温度的变化状态,(i)为800原子空洞下结构模型的rmsd随温度的变化状态。从图9可以看到,由rmsd跃变确定的熔点大小与密度跃变确定的熔点相同,两种方法具有很好的一致性。
最后,绘制熔点结果的大小随空洞体积大小的变化曲线,如图10所示。可见,0空洞的结构模型,模拟计算的熔点结果较实验结果高了许多,存在严重的过热现象。添加空洞之后,铯金属晶体的熔点计算结果随空洞大小先下降,之后随着空洞增大则基本不再变化,熔点值相互之间的差别较小,且在计算熔点几乎不随空洞数量变化的300-800个原子区段,熔点的平均值结果与曲线表示的实验值基本一致。因此,采用本申请的技术方案与传统的分子动力学模拟方法(0空洞下获得的熔点值)相比,其熔点的计算精度得到显著提高。
采用本申请的技术方案,通过建立一系列含有不同空洞的结构模型,对各个结构模型进行分子动力学模拟升温,通过分析动力学模拟结果从而确定晶体结构的熔点,克服了传统分子动力学模拟中体系存在的过热现象,使计算得到的熔点结果更加准确;同时方法简单,不需人工介入,易于流程化、自动化;并且计算可并行化,可快速计算获得结果。
本申请实施例还提供了一种晶体筛选方法,包括以下步骤:
S1、获取至少两个晶体结构;
S2、利用前述实施例提高的基于分子动力学的晶体熔点的计算方法对上述至少两个晶体结构进行晶体熔点计算,得到每一晶体结构的熔点值;
S3、根据每一晶体结构的熔点值,从上述至少两个晶体结构中确定出候选晶体结构。
采用上述方法,可以对多个晶体结构进行快速而准确的熔点值计算,并对这些晶体结构进行熔点值排序,以确定各晶体结构的熔点值的大小关系,方便在后续应用中能够快速地从中选出所需熔点的候选晶体结构。
本申请实施例还提供了一种基于分子动力学的晶体熔点的计算装置,该装置可以用于执行前述实施例提供的基于分子动力学的晶体熔点的计算方法。如图11所示,该装置可以包括:
获取模块1110,用于获取目标晶体结构;
构建模块1120,用于根据目标晶体结构构建周期性结构模型;
生成模块1130,用于利用周期性结构模型,生成含有空洞的多个目标结构模型,其中,每个目标结构模型包含的空洞的体积不同;
处理模块1140,用于对每个目标结构模型进行分子动力学升温模拟,分别获得每个目标结构模型在预设温度范围下的结构信息;
计算模块1150,用于根据每个目标结构模型的结构信息在预设温度范围内的变化状态,得到目标晶体结构的熔点值。
可选的,图11所示的装置还可以包括:
扩胞模块,用于对周期性结构模型进行扩胞,得到超胞周期性结构模型;
相应地,生成模块1130具体可以用于利用超胞周期性结构模型,生成含有空洞的多个目标结构模型。
可选的,生成模块1130分别将超胞周期性结构模型中的不同预设阈值的原子或分子进行删除,生成含有空洞的多个目标结构模型;其中,不同的预设阈值按照大小进行排序后,任意相邻的两个预设阈值之间符合预设变化规律。
可选的,图11所示的装置还可以包括:
优化模块,用于对每个目标结构模型进行结构优化,分别得到优化后的目标结构模型;
相应地,处理模块1140具体可以用于对每个优化后的目标结构模型进行分子动力学升温模拟。
可选的,图11所示的装置还可以包括:
确定模块,用于根据周期性结构模型,确定目标力场;
优化模块具体可以用于利用与目标力场相对应的预设算法对每个目标结构模型进行结构优化,使得目标结构模型的能量最小化,分别得到优化后的目标结构模型。
其中,结构信息可以包括但不限于目标结构模型的势能、密度、原子坐标和原子坐标的均方位移中的至少一种。
可选的,计算模块1150可以包括:
第一确定单元,用于根据每个目标结构模型的结构信息在预设温度范围内的变化状态,确定每个目标结构模型的结构信息在预设温度范围内的突变点;
第二确定单元,用于根据每个目标结构模型的突变点对应的温度值,确定每个目标结构模型的熔点值;
第三确定单元,用于根据每个目标结构模型的熔点值,确定目标晶体结构的熔点值。
可选的,第一确定单元具体可以用于根据每个目标结构模型的结构信息在预设温度范围内的变化状态,确定在预设温度范围内每个目标结构模型的结构信息的变化量超过预设变化量的突变温度区间;根据每个目标结构模型的突变温度区间,确定对应的突变点。
可选的,第三确定单元具体可以用于对多个目标结构模型按照空洞的体积大小进行排序;根据排序结果,确定是否存在连续排列的预设数量或预设比例的目标结构模型的熔点值满足预设条件;若存在,根据连续排列的预设数量或预设比例的目标结构模型的熔点值,确定目标晶体结构的熔点值。
若不存在连续排列的预设数量或预设比例的目标结构模型的熔点值满足预设条件,则可以使生成模块1130利用周期性结构模型,生成更多数量的含有空洞的目标结构模型;或者利用周期性结构模型,生成空洞的体积差异更小的多个目标结构模型;或者利用周期性结构模型,生成空洞的体积差异更小的且数量更多的目标结构模型;或者对周期性结构模型进行扩胞,生成更大尺寸的超胞周期性结构模型。
可选的,第三确定单元根据排序结果,确定是否存在连续排列的预设数量或预设比例的目标结构模型的熔点值满足预设条件的实施方式可以包括:根据排序结果,确定是否存在连续排列的预设数量或预设比例的目标结构模型中任意两个目标结构模型的熔点值之间的差异值小于第一预设值;或者,根据排序结果,确定是否存在连续排列的预设数量或预设比例的目标结构模型的熔点值之间的均方误差或均方根误差小于第二预设值。
可选的,第三确定单元根据连续排列的预设数量或预设比例的目标结构模型的熔点值,确定目标晶体结构的熔点值的实施方式可以包括:计算连续排列的预设数量或预设比例的目标结构模型的熔点值的平均熔点值;将该平均熔点值确定为目标晶体结构的熔点值。
本申请实施例中的装置,通过建立一系列含有不同空洞的结构模型,对各个结构模型进行分子动力学模拟升温,通过分析动力学模拟结果从而确定晶体结构的熔点,克服了传统分子动力学模拟中体系存在的过热现象,使计算得到的熔点结果更加准确;同时方法简单,不需人工介入,易于流程化、自动化;并且计算可并行化,可快速计算获得结果。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不再做详细阐述说明。
本申请实施例还提供了一种晶体筛选装置,可以用于执行前述实施例提供的晶体筛选方法。具体的,该装置可以包括:
获取模块,用于获取至少两个晶体结构;
计算模块,用于利用如前述实施例提供的基于分子动力学的晶体熔点的计算装置对上 述至少两个晶体结构进行晶体熔点计算,得到每一晶体结构的熔点值;
确定模块,用于根据每一晶体结构的熔点值,从上述至少两个晶体结构中确定出候选晶体结构。
本申请实施例还提供了一种电子设备,可以用于执行前述实施例提供的基于分子动力学的晶体熔点的计算方法和/或晶体筛选方法。如图12所示,电子设备1200包括存储器1210和处理器1220。
处理器1220可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
存储器1210可以包括各种类型的存储单元,例如系统内存、只读存储器(ROM)和永久存储装置。其中,ROM可以存储处理器1220或者计算机的其他模块需要的静态数据或者指令。永久存储装置可以是可读写的存储装置。永久存储装置可以是即使计算机断电后也不会失去存储的指令和数据的非易失性存储设备。在一些实施方式中,永久性存储装置采用大容量存储装置(例如磁或光盘、闪存)作为永久存储装置。另外一些实施方式中,永久性存储装置可以是可移除的存储设备(例如软盘、光驱)。系统内存可以是可读写存储设备或者易失性可读写存储设备,例如动态随机访问内存。系统内存可以存储一些或者所有处理器在运行时需要的指令和数据。此外,存储器1210可以包括任意计算机可读存储媒介的组合,包括各种类型的半导体存储芯片(例如DRAM,SRAM,SDRAM,闪存,可编程只读存储器),磁盘和/或光盘也可以采用。在一些实施方式中,存储器1210可以包括可读和/或写的可移除的存储设备,例如激光唱片(CD)、只读数字多功能光盘(例如DVD-ROM,双层DVD-ROM)、只读蓝光光盘、超密度光盘、闪存卡(例如SD卡、min SD卡、Micro-SD卡等)、磁性软盘等。计算机可读存储媒介不包含载波和通过无线或有线传输的瞬间电子信号。
存储器1210上存储有可执行代码,当可执行代码被处理器1220处理时,可以使处理器1220执行上文述及的方法中的部分或全部。
此外,根据本申请的方法还可以实现为一种计算机程序或计算机程序产品,该计算机程序或计算机程序产品包括用于执行本申请的上述方法中部分或全部步骤的计算机程序代码指令。
或者,本申请还可以实施为一种计算机可读存储介质(或非暂时性机器可读存储介质或机器可读存储介质),其上存储有可执行代码(或计算机程序或计算机指令代码),当可执行代码(或计算机程序或计算机指令代码)被电子设备(或服务器等)的处理器执行时,使处理器执行根据本申请的上述方法的各个步骤的部分或全部。
以上已经描述了本申请的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。本文中所用术语的选择,旨在最好地解释各实施例的原理、实际应用或对市场中的技术的改进,或者使本技术领域的其他普通技术人员能理解本文披露的各实施例。

Claims (28)

  1. 一种基于分子动力学的晶体熔点的计算方法,其特征在于,包括:
    获取目标晶体结构,并根据所述目标晶体结构构建周期性结构模型;
    利用所述周期性结构模型,生成含有空洞的多个目标结构模型,其中,每个所述目标结构模型包含的所述空洞的体积不同;
    对每个所述目标结构模型进行分子动力学升温模拟,分别获得每个所述目标结构模型在预设温度范围下的结构信息;
    根据每个所述目标结构模型的结构信息在所述预设温度范围内的变化状态,得到所述目标晶体结构的熔点值。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    对所述周期性结构模型进行扩胞,得到超胞周期性结构模型;
    所述利用所述周期性结构模型,生成含有空洞的多个目标结构模型,包括:
    利用所述超胞周期性结构模型,生成含有空洞的多个目标结构模型。
  3. 根据权利要求2所述的方法,其特征在于,所述利用所述超胞周期性结构模型,生成含有空洞的多个目标结构模型,包括:
    分别将所述超胞周期性结构模型中的不同预设阈值的原子或分子进行删除,生成含有空洞的多个目标结构模型;
    其中,不同的所述预设阈值按照大小进行排序后,任意相邻的两个所述预设阈值之间符合预设变化规律。
  4. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    对每个所述目标结构模型进行结构优化,分别得到优化后的所述目标结构模型;
    所述对每个所述目标结构模型进行分子动力学升温模拟,包括:
    对每个优化后的所述目标结构模型进行分子动力学升温模拟。
  5. 根据权利要求4所述的方法,其特征在于,所述方法还包括:
    根据所述周期性结构模型,确定目标力场;
    所述对每个所述目标结构模型进行结构优化,分别得到优化后的所述目标结构模型,包括:
    利用与所述目标力场相对应的预设算法对每个所述目标结构模型进行结构优化,使得所述目标结构模型的能量最小化,分别得到优化后的所述目标结构模型。
  6. 根据权利要求1所述的方法,其特征在于,所述结构信息包括所述目标结构 模型的势能、密度、原子坐标和原子坐标的均方位移中的至少一种。
  7. 根据权利要求1-6任一所述的方法,其特征在于,所述根据每个所述目标结构模型的结构信息在所述预设温度范围内的变化状态,得到所述目标晶体结构的熔点值,包括:
    根据每个所述目标结构模型的结构信息在所述预设温度范围内的变化状态,确定每个所述目标结构模型的结构信息在所述预设温度范围内的突变点;
    根据每个所述目标结构模型的突变点对应的温度值,确定每个所述目标结构模型的熔点值;
    根据每个所述目标结构模型的熔点值,确定所述目标晶体结构的熔点值。
  8. 根据权利要求7所述的方法,其特征在于,所述根据每个所述目标结构模型的结构信息在所述预设温度范围内的变化状态,确定每个所述目标结构模型的结构信息在所述预设温度范围内的突变点,包括:
    根据每个所述目标结构模型的结构信息在所述预设温度范围内的变化状态,确定在所述预设温度范围内每个所述目标结构模型的结构信息的变化量超过预设变化量的突变温度区间;
    根据每个所述目标结构模型的突变温度区间,确定对应的突变点。
  9. 根据权利要求7所述的方法,其特征在于,所述根据每个所述目标结构模型的熔点值,确定所述目标晶体结构的熔点值,包括:
    对多个所述目标结构模型按照空洞的体积大小进行排序;
    根据排序结果,确定是否存在连续排列的预设数量或预设比例的所述目标结构模型的熔点值满足预设条件;
    若存在,根据所述连续排列的预设数量或预设比例的所述目标结构模型的熔点值,确定所述目标晶体结构的熔点值。
  10. 根据权利要求9所述的方法,其特征在于,所述根据排序结果,确定是否存在连续排列的预设数量或预设比例的所述目标结构模型的熔点值满足预设条件,包括:
    根据排序结果,确定是否存在连续排列的预设数量或预设比例的所述目标结构模型中任意两个所述目标结构模型的熔点值之间的差异值小于第一预设值;或者,
    根据排序结果,确定是否存在连续排列的预设数量或预设比例的所述目标结构模型的熔点值之间的均方误差或均方根误差小于第二预设值。
  11. 根据权利要求9所述的方法,其特征在于,所述根据所述连续排列的预设数 量或预设比例的所述目标结构模型的熔点值,确定所述目标晶体结构的熔点值,包括:
    计算所述连续排列的预设数量或预设比例的所述目标结构模型的熔点值的平均熔点值;
    将所述平均熔点值确定为所述目标晶体结构的熔点值。
  12. 根据权利要求9所述的方法,其特征在于,所述方法还包括:
    若不存在连续排列的预设数量或预设比例的所述目标结构模型的熔点值满足所述预设条件,利用所述周期性结构模型,生成更多数量的含有空洞的目标结构模型;或者利用所述周期性结构模型,生成空洞的体积差异更小的多个目标结构模型;或者利用所述周期性结构模型,生成空洞的体积差异更小的且数量更多的目标结构模型;或者对所述周期性结构模型进行扩胞,生成更大尺寸的超胞周期性结构模型。
  13. 一种晶体筛选方法,其特征在于,包括:
    获取至少两个晶体结构;
    利用如权利要求1-12任一项所述的方法对所述至少两个晶体结构进行晶体熔点计算,得到每一所述晶体结构的熔点值;
    根据每一所述晶体结构的熔点值,从所述至少两个晶体结构中确定出候选晶体结构。
  14. 一种基于分子动力学的晶体熔点的计算装置,其特征在于,包括:
    获取模块,用于获取目标晶体结构;
    构建模块,用于根据所述目标晶体结构构建周期性结构模型;
    生成模块,用于利用所述周期性结构模型,生成含有空洞的多个目标结构模型,其中,每个所述目标结构模型包含的所述空洞的体积不同;
    处理模块,用于对每个所述目标结构模型进行分子动力学升温模拟,分别获得每个所述目标结构模型在预设温度范围下的结构信息;
    计算模块,用于根据每个所述目标结构模型的结构信息在所述预设温度范围内的变化状态,得到所述目标晶体结构的熔点值。
  15. 根据权利要求14所述的装置,其特征在于,还包括:扩胞模块;
    所述扩胞模块,用于对周期性结构模型进行扩胞,得到超胞周期性结构模型;
    所述生成模块具体用于利用所述超胞周期性结构模型,生成含有空洞的多个目标结构模型。
  16. 根据权利要求15所述的装置,其特征在于,所述生成模块利用超胞周期性 结构模型,生成含有空洞的多个目标结构模型,包括:
    分别将所述超胞周期性结构模型中的不同预设阈值的原子或分子进行删除,生成含有空洞的多个目标结构模型;
    其中,不同的所述预设阈值按照大小进行排序后,任意相邻的两个所述预设阈值之间符合预设变化规律。
  17. 根据权利要求14所述的装置,其特征在于,还包括:优化模块;
    所述优化模块,用于对每个目标结构模型进行结构优化,分别得到优化后的目标结构模型;
    所述处理模块具体用于对每个优化后的目标结构模型进行分子动力学升温模拟。
  18. 根据权利要求17所述的装置,其特征在于,还包括:确定模块;
    所述确定模块,用于根据周期性结构模型,确定目标力场;
    所述优化模块具体用于利用与所述目标力场相对应的预设算法对每个目标结构模型进行结构优化,使得目标结构模型的能量最小化,分别得到优化后的目标结构模型。
  19. 根据权利要求14所述的装置,其特征在于,所述结构信息包括所述目标结构模型的势能、密度、原子坐标和原子坐标的均方位移中的至少一种。
  20. 根据权利要求14~19中任一所述的装置,其特征在于,所述计算模块,包括:
    第一确定单元,用于根据每个所述目标结构模型的结构信息在所述预设温度范围内的变化状态,确定每个所述目标结构模型的结构信息在所述预设温度范围内的突变点;
    第二确定单元,用于根据每个所述目标结构模型的突变点对应的温度值,确定每个所述目标结构模型的熔点值;
    第三确定单元,用于根据每个所述目标结构模型的熔点值,确定所述目标晶体结构的熔点值。
  21. 根据权利要求20所述的装置,其特征在于,所述第一确定单元根据每个所述目标结构模型的结构信息在所述预设温度范围内的变化状态,确定每个所述目标结构模型的结构信息在所述预设温度范围内的突变点,包括:
    根据每个所述目标结构模型的结构信息在所述预设温度范围内的变化状态,确定在所述预设温度范围内每个所述目标结构模型的结构信息的变化量超过预设变化量的突变温度区间;
    根据每个所述目标结构模型的突变温度区间,确定对应的突变点。
  22. 根据权利要求20所述的装置,其特征在于,所述第三确定单元根据每个所述目标结构模型的熔点值,确定所述目标晶体结构的熔点值,包括:
    对多个所述目标结构模型按照空洞的体积大小进行排序;
    根据排序结果,确定是否存在连续排列的预设数量或预设比例的所述目标结构模型的熔点值满足预设条件;
    若存在,根据所述连续排列的预设数量或预设比例的所述目标结构模型的熔点值,确定所述目标晶体结构的熔点值。
  23. 根据权利要求22所述的装置,其特征在于,所述第三确定单元根据排序结果,确定是否存在连续排列的预设数量或预设比例的所述目标结构模型的熔点值满足预设条件,包括:
    根据排序结果,确定是否存在连续排列的预设数量或预设比例的所述目标结构模型中任意两个所述目标结构模型的熔点值之间的差异值小于第一预设值;或者,
    根据排序结果,确定是否存在连续排列的预设数量或预设比例的所述目标结构模型的熔点值之间的均方误差或均方根误差小于第二预设值。
  24. 根据权利要求22所述的装置,其特征在于,所述第三确定单元根据所述连续排列的预设数量或预设比例的所述目标结构模型的熔点值,确定所述目标晶体结构的熔点值,包括:
    计算所述连续排列的预设数量或预设比例的所述目标结构模型的熔点值的平均熔点值;
    将所述平均熔点值确定为所述目标晶体结构的熔点值。
  25. 根据权利要求22所述的装置,其特征在于,所述生成模块还用于当所述第三确定单元确定出不存在连续排列的预设数量或预设比例的所述目标结构模型的熔点值满足所述预设条件时,利用所述周期性结构模型,生成更多数量的含有空洞的目标结构模型;或者利用所述周期性结构模型,生成空洞的体积差异更小的多个目标结构模型;或者利用所述周期性结构模型,生成空洞的体积差异更小的且数量更多的目标结构模型;或者对所述周期性结构模型进行扩胞,生成更大尺寸的超胞周期性结构模型。
  26. 一种晶体筛选装置,其特征在于,包括:
    获取模块,用于获取至少两个晶体结构;
    计算模块,用于利用如权利要求14-25任一项所述的装置对所述至少两个晶体结构进行晶体熔点计算,得到每一所述晶体结构的熔点值;
    确定模块,用于根据每一所述晶体结构的熔点值,从所述至少两个晶体结构中确定出候选晶体结构。
  27. 一种电子设备,其特征在于,包括:
    处理器;以及
    存储器,其上存储有可执行代码,当所述可执行代码被所述处理器执行时,使所述处理器执行如权利要求1-13中任一项所述的方法。
  28. 一种计算机可读存储介质,其上存储有可执行代码,当所述可执行代码被电子设备的处理器执行时,使所述处理器执行如权利要求1-13中任一项所述的方法。
PCT/CN2021/143745 2021-12-31 2021-12-31 基于分子动力学的晶体熔点的计算方法、装置及存储介质 WO2023123382A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/143745 WO2023123382A1 (zh) 2021-12-31 2021-12-31 基于分子动力学的晶体熔点的计算方法、装置及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/143745 WO2023123382A1 (zh) 2021-12-31 2021-12-31 基于分子动力学的晶体熔点的计算方法、装置及存储介质

Publications (1)

Publication Number Publication Date
WO2023123382A1 true WO2023123382A1 (zh) 2023-07-06

Family

ID=86997237

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/143745 WO2023123382A1 (zh) 2021-12-31 2021-12-31 基于分子动力学的晶体熔点的计算方法、装置及存储介质

Country Status (1)

Country Link
WO (1) WO2023123382A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117672387A (zh) * 2023-12-01 2024-03-08 东北石油大学 一种从微观到宏观的页岩储层岩石弹性力学性质求解方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180018408A1 (en) * 2016-07-12 2018-01-18 Hitachi, Ltd. Material generation apparatus and material generation method
CN112086132A (zh) * 2020-08-18 2020-12-15 深圳晶泰科技有限公司 有机分子晶体构建方法及系统
CN112287489A (zh) * 2020-11-06 2021-01-29 中国石油大学(北京) 基于多物理场仿真的电弧熔丝增材制造工艺参数确定方法
CN113270158A (zh) * 2021-06-03 2021-08-17 深圳晶泰科技有限公司 一种高效晶体展胞方法及其系统
CN113782104A (zh) * 2021-08-20 2021-12-10 西北工业大学 镍基单晶合金模型构建方法、装置、存储介质及设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180018408A1 (en) * 2016-07-12 2018-01-18 Hitachi, Ltd. Material generation apparatus and material generation method
CN112086132A (zh) * 2020-08-18 2020-12-15 深圳晶泰科技有限公司 有机分子晶体构建方法及系统
CN112287489A (zh) * 2020-11-06 2021-01-29 中国石油大学(北京) 基于多物理场仿真的电弧熔丝增材制造工艺参数确定方法
CN113270158A (zh) * 2021-06-03 2021-08-17 深圳晶泰科技有限公司 一种高效晶体展胞方法及其系统
CN113782104A (zh) * 2021-08-20 2021-12-10 西北工业大学 镍基单晶合金模型构建方法、装置、存储介质及设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117672387A (zh) * 2023-12-01 2024-03-08 东北石油大学 一种从微观到宏观的页岩储层岩石弹性力学性质求解方法

Similar Documents

Publication Publication Date Title
Almgren Variational algorithms and pattern formation in dendritic solidification
Lan et al. An adaptive finite volume method for incompressible heat flow problems in solidification
WO2023123382A1 (zh) 基于分子动力学的晶体熔点的计算方法、装置及存储介质
CN102289542A (zh) 一种铸件宏观偏析数值模拟的方法
CN115394365A (zh) 晶体结构相似度计算方法、筛选方法、装置及设备
CN109858158B (zh) 一种计算流体力学模拟的参数配置方法及系统
JP2020205049A (ja) 最適化装置、最適化装置の制御方法及び最適化装置の制御プログラム
CN116839560B (zh) 半球谐振陀螺及其半球谐振子质量调平方法、设备及介质
JP2004038630A (ja) 混合格子型解適合格子法を用いた数値解析装置
CN114117874A (zh) 宏观热导率计算方法及其计算装置、存储介质和设备
CN114139482A (zh) 一种基于深度度量学习的eda电路失效分析方法
JP2009258879A (ja) 設計支援装置
Krzywicki Stability of random surfaces
JP7553802B2 (ja) 最適化プログラム、最適化方法及び情報処理装置
CN111860622A (zh) 一种应用于编程现场大数据的聚类方法及系统
CN114464264A (zh) 基于分子动力学的晶体熔点的计算方法、装置及存储介质
JP3807911B2 (ja) 解析装置、解析方法および解析プログラムを記録した記録媒体
KR102363140B1 (ko) 주파수 선택 표면 필터 설계 방법과 컴퓨터 프로그램을 저장하는 저장 매체
WO2019028710A1 (zh) 基于图结构数据的候选项集支持度计算方法及其应用
CN110349265B (zh) 一种四面体拓扑网格生成方法及电子设备
WO2023233758A1 (ja) 多孔体設計方法、多孔体製造方法
Manoj et al. Phase separation driven by a fluctuating two-dimensional self-affine potential field
CN117742969B (zh) 堆芯moc程序与cfd程序网格映射分析方法及系统
JP2020194487A (ja) 構造探索装置、構造探索方法、及び構造探索プログラム
JP2022122696A (ja) モルフォロジー探索装置、モルフォロジー探索方法及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21969732

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE