WO2023123298A1 - 透明振子单元、透明天线及天线系统 - Google Patents

透明振子单元、透明天线及天线系统 Download PDF

Info

Publication number
WO2023123298A1
WO2023123298A1 PCT/CN2021/143478 CN2021143478W WO2023123298A1 WO 2023123298 A1 WO2023123298 A1 WO 2023123298A1 CN 2021143478 W CN2021143478 W CN 2021143478W WO 2023123298 A1 WO2023123298 A1 WO 2023123298A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent
carrying
unit according
antenna
side plate
Prior art date
Application number
PCT/CN2021/143478
Other languages
English (en)
French (fr)
Inventor
金允男
张志锋
Original Assignee
京东方科技集团股份有限公司
北京京东方传感技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方传感技术有限公司 filed Critical 京东方科技集团股份有限公司
Priority to CN202180004388.0A priority Critical patent/CN116897471A/zh
Priority to PCT/CN2021/143478 priority patent/WO2023123298A1/zh
Priority to US18/274,983 priority patent/US20240154319A1/en
Publication of WO2023123298A1 publication Critical patent/WO2023123298A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/08Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a rectilinear path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/045Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means
    • H01Q9/0457Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means electromagnetically coupled to the feed line
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/1271Supports; Mounting means for mounting on windscreens

Definitions

  • the disclosure belongs to the technical field of communication, and in particular relates to a transparent dipole unit, a transparent antenna and an antenna system.
  • Massive MIMO Antennas technology is one of the key technologies of 5G. Compared with the 4T4R or 8T8R antenna arrangement in the 4G era, Massive MIMO mainly adopts the 32T32R or 64T64R antenna arrangement. Obviously, the demand for antennas has multiplied.
  • Massive MIMO antenna solutions mainly include PCB oscillator solutions, sheet metal stamping oscillator solutions, and plastic oscillator solutions.
  • the PCB vibrator scheme and the sheet metal stamping vibrator scheme are all completed through the one-by-one welding process between the soldering feet of the vibrator and the pads of the high-frequency board, which eventually deteriorates the consistency of the antenna.
  • the plastic vibrator solution came into being.
  • the plastic vibrator solution completes the whole set of antennas through integral injection molding, laser radium engraving, and electroless plating or electroplating.
  • the plastic vibrator solution improves the consistency of the antenna, it is facing increasing demand for low-cost antennas.
  • the plastic vibrator solution does not have an advantage when dealing with large-area laser engraved graphics. Therefore, a Massive MIMO antenna solution that can reduce processing pressure and save processing cost is imperative.
  • the present invention aims to solve at least one of the technical problems in the prior art, and provides a transparent dipole unit, a transparent antenna and an antenna system.
  • a transparent vibrator unit which includes:
  • first bearing structure having a first surface and a second surface oppositely disposed
  • a feeding structure disposed on the second surface of the first carrying structure
  • the second carrying structure is arranged on a side of the feeding structure away from the radiation component, and is fixed to the first carrying structure;
  • the reference electrode layer is disposed on the second carrying structure; wherein,
  • Orthographic projections of any two of the radiating component, the feeding structure, and the reference electrode layer on the second carrying structure at least partially overlap.
  • the first load bearing structure includes:
  • a carrier substrate having a third surface and a fourth surface oppositely disposed
  • the carrying boss is arranged on the first carrying substrate, and the carrying boss is arranged on the third surface of the carrying substrate; the carrying boss has a fifth surface and a sixth surface oppositely arranged, and the The fifth surface is connected to the third surface to form the first surface; the sixth surface is connected to the fourth surface to form the second surface;
  • the radiation component is arranged on the fifth surface, and the feeding structure is arranged on the fourth surface and the sixth surface.
  • the carrying boss has an inner recess; the carrying substrate has a first opening corresponding to the inner recess;
  • the fifth surface includes a first subsurface, and a first connecting side connecting the third surface and the first subsurface;
  • the sixth surface includes a second subsurface, and is connected to the fourth surface and the second subsurface and the second connecting side;
  • the radiation component is disposed on the first sub-surface; the feeding structure extends from the fourth surface to the second sub-surface through the second connection side.
  • the second sub-surface includes a first portion and a second portion; a partial structure of the feed structure is located on the first portion, and the distance between the first portion and the second load-bearing structure is not greater than greater than the distance between the second portion and the second bearing structure.
  • the first carrying structure further includes: a first side plate and a second side plate; the carrying substrate includes a first side and a second side extending along the first direction and oppositely arranged in the second direction. Two sides; the first side plate is connected to the first side surface, and the second side plate is connected to the second side; both the first side plate and the second side protrude on said fifth and sixth surfaces;
  • a first isolation layer is provided on the surface of the first side plate away from the first side; a second isolation layer is provided on the surface of the second side plate away from the second side.
  • At least one of the first isolation layer and the second isolation layer has a second opening.
  • the length of the second opening in the first direction is half a wavelength.
  • the first isolation layer includes a first base material and a first conductive layer that are laminated; the first base material is fixed to the first side plate;
  • the second isolation layer includes a second base material and a second conductive layer which are laminated; the second base material is fixed to the second side plate.
  • both the first conductive layer and the second conductive layer include a metal grid structure.
  • first side plate, the second side plate, the bearing substrate and the bearing boss are integrally structured.
  • the feed structure includes a first feed structure and a second feed structure; the first feed structure and the second feed structure are orthographically projected on the second bearing structure, and The overlapping parts of the radiating component on the orthographic projection of the second bearing structure are respectively a first line segment and a second line segment; the extension directions of the first line segment and the second line segment both pass through the radiating component At the center of the orthographic projection of the second bearing structure, the extension directions of the first line segment and the second line segment intersect.
  • the radiating elements are centrosymmetric.
  • the radiating assembly satisfies at least one of the following conditions:
  • Each corner is chamfered
  • Each corner has a convex corner.
  • the radiation assembly is bonded to the first surface of the first load-bearing structure through an adhesive layer.
  • the radiation component includes a third base material and a third conductive layer that are laminated; the third base material is fixed to the first surface of the first carrying structure.
  • the third conductive layer includes a metal grid structure.
  • the line width of the metal grid is 2-30 ⁇ m; the line spacing is 50-250 ⁇ m; and the line thickness is 1-10 ⁇ m.
  • an embodiment of the present disclosure provides a transparent antenna including any one of the transparent oscillator units described above.
  • the transparent antenna includes a plurality of sub-arrays, each of the sub-arrays includes a plurality of the transparent dipole units arranged side by side along the first direction; the transparent dipole units in each of the sub-arrays Shared feed structure.
  • the feed structure includes a first feed port, a plurality of second feed ports and a plurality of transmission lines, and the second feed port is connected to the transparent oscillator unit in the sub-array
  • the radiating components are in one-to-one correspondence; one transmission line is connected between the first feeding port and one of the second feeding ports; The length of the transmission line connected to the feed port monotonically increases or monotonically decreases along the first direction.
  • the operating frequency of the transparent antenna is 3400MHz-3600MHz.
  • an embodiment of the present disclosure provides an antenna system, which includes any one of the transparent antennas described above.
  • FIG. 1 is a front perspective perspective view of a transparent vibrator unit according to an embodiment of the present disclosure.
  • FIG. 2 is a perspective view of a transparent vibrator unit according to an embodiment of the disclosure from a reverse perspective.
  • FIG. 3 is a partial cross-sectional view of a transparent vibrator unit according to an embodiment of the present disclosure.
  • FIG. 4 is a cross-sectional view of the first surface of the first carrying structure of the transparent vibrator unit according to the embodiment of the present disclosure.
  • FIG 5 is a cross-sectional view of the second surface of the first carrying structure of the transparent vibrator unit according to the embodiment of the present disclosure.
  • Fig. 6 is an enlarged view of position A in Fig. 1 .
  • FIG. 7 is a schematic diagram of a radiation component of a transparent oscillator unit according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of performance parameters of S11 and S21 of the transparent vibrator unit according to an embodiment of the present disclosure.
  • FIG. 9 is a horizontal plane and a vertical plane pattern at a central frequency of the transparent vibrator unit according to an embodiment of the present disclosure.
  • FIG. 10 is a top view of a sub-array in a transparent antenna according to an embodiment of the present disclosure.
  • FIG. 11 is a bottom view of a sub-array in the transparent antenna in an embodiment of the present disclosure.
  • FIG. 12 is a top view of a transparent antenna in an embodiment of the present disclosure.
  • Fig. 13 is a bottom view of a transparent antenna in an embodiment of the present disclosure.
  • FIG. 14 is a schematic diagram of performance parameters S11 and S21 of a sub-array of the transparent antenna of the disclosed embodiment.
  • FIG. 15 is a horizontal plane and a vertical plane pattern at a center frequency of a sub-array of the transparent antenna of the disclosed embodiment.
  • an embodiment of the present disclosure provides a transparent dipole antenna unit, and the transparent dipole antenna unit is mainly used in a massive (Massive MIMO) antenna system.
  • FIG. 1 is a front perspective perspective view of a transparent vibrator unit according to an embodiment of the present disclosure
  • FIG. 2 is a reverse perspective perspective view of a transparent vibrator unit according to an embodiment of the present disclosure
  • FIG. 3 is a partial cross-sectional view of a transparent vibrator unit according to an embodiment of the present disclosure
  • FIG. 4 It is a cross-sectional view of the first surface S1 of the first carrying structure 1 of the transparent vibrator unit according to the embodiment of the present disclosure;
  • FIG. 1 is a front perspective perspective view of a transparent vibrator unit according to an embodiment of the present disclosure
  • FIG. 2 is a reverse perspective perspective view of a transparent vibrator unit according to an embodiment of the present disclosure
  • FIG. 3 is a partial cross-sectional view of a transparent vibrator unit according to an embodiment of the present disclosure
  • FIG. 4 It is
  • the transparent dipole antenna unit may include: a first carrying structure 1 , a second carrying structure 5 , a radiation component 2 , a feeding structure and a reference electrode layer 6 .
  • the first carrying structure 1 includes a first surface S1 and a second surface S2 oppositely arranged.
  • the radiation element is arranged on the first surface S1 of the first carrying structure 1
  • the feeding structure is arranged on the second surface S2 of the first carrying structure 1 .
  • the second carrying structure 5 is arranged on a side of the feeding structure away from the radiation component 2 , and is fixed to the first carrying structure 1 .
  • the reference electrode layer 6 is arranged on the second carrying structure 5 .
  • the radiation component 2 used in the embodiment of the present disclosure can be a pre-prepared transparent conductive film, for example, including a metal grid structure, and then can be pasted on the first surface S1 of the first carrying structure 1 by using a film bonding process.
  • the structure and preparation method are not only convenient to process but also low in cost.
  • the first carrying structure 1 may specifically include a carrying substrate 11 and a carrying boss 12 disposed on the carrying substrate 11 .
  • the carrying substrate 11 includes a third surface S11 and a fourth surface S21 oppositely arranged;
  • the carrying boss 12 includes a fifth surface S12 and a sixth surface S22 oppositely arranged.
  • the third surface S11 of the carrier substrate 11 is connected to the fifth surface S12 of the carrier boss 12 to form the first surface S1 of the first carrier structure 1, and the fourth surface S21 of the carrier substrate 11 is connected to the sixth surface S22 of the carrier boss 12.
  • the second surface S2 of the first carrying structure 1 is formed. It can be understood that, as the name implies, the carrying boss 12 is a protruding structure.
  • the carrying boss 12 protrudes toward the direction away from the second carrying substrate 11.
  • the fifth surface S12 of the carrying boss 12 is bound to is a convex surface.
  • the radiation component 2 is disposed on the fifth surface S12 of the carrying boss 12 , for example, disposed on a part of the fifth surface S12 parallel to the reference electrode layer 6 .
  • the feed structure is disposed on the fourth surface S21 and the sixth surface S22.
  • the carrying boss 12 of the first carrying structure 1 has an inner recess
  • the corresponding carrying substrate 11 has a first opening corresponding to the inner recess.
  • the fifth surface S12 of the carrying boss 12 includes a first subsurface S121 and a first connecting side S122 connecting the third surface S11 and the first subsurface S121
  • the fifth surface S122 of the carrying boss 12 The six-surface S22 includes a second sub-surface S221 and a second connection side S222 connecting the fourth surface S21 and the second sub-surface S221.
  • the radiation component 2 is disposed on the first sub-surface S121; the feeding structure extends from the fourth surface S21 to the second sub-surface S221 through the second connection side S222. Since the carrying boss 12 of the first carrying structure 1 has an inner concave part, the microwave loss when the feeding structure couples the microwave signal to the radiation component 2 can be reduced, and at the same time, the structure of the transparent dipole antenna unit in the embodiment of the present disclosure can be made more portable. .
  • the second subsurface S221 of the bearing boss 12 can be a stepped surface, that is, the second subsurface S221 can include the first part S221a ( First step surface) and the second part S221b (second step surface), the distance between the first part S221a and the second carrying structure 5 is not greater than the distance between the second part S221b and the second carrying structure 5 . That is to say, the thickness of the radiation assembly 2 disposed on the part of the first carrying structure 1 parallel to the second carrying structure 5 is greater than the thickness of the remaining part.
  • the second sub-surface S221 can also be a flat surface, that is, the thickness of the part of the first carrying structure 1 parallel to the second carrying structure 5 is uniform, as long as the thickness satisfies the requirements of the feeding structure and the radiation component 2. The coupling distance between them is sufficient.
  • the first carrying structure 1 in the embodiment of the present disclosure not only includes the above-mentioned carrying substrate 11 and carrying boss 12 , but also includes a first side plate 13 and a second side plate 14 , and the first isolation layer 31 disposed on the first side plate 13, and the second isolation layer (not shown) disposed on the second side plate 14.
  • the carrier substrate 11 includes a first side and a second side extending along the first direction X and oppositely arranged in the second direction Y, the first side plate 13 is connected to the first side, and the second side plate 14 is connected to the On the second side, and both the first side plate 13 and the second side plate 14 protrude from the fifth surface S12 and the sixth surface S22 of the carrier substrate 11, that is to say, the first side plate 13 and the second side plate 14
  • the height in the direction perpendicular to the fifth surface S12 (sixth surface S22 ) of the carrier substrate 11 is greater than the thickness of the carrier substrate 11 .
  • the first isolation layer 31 is fixed on the side of the first side plate 13 away from the first side of the carrier substrate 11
  • the second isolation layer is fixed on the side of the second side plate 14 away from the second side of the carrier substrate 11
  • the first isolation layer is fixed on the first side plate 13, and the second isolation layer is fixed on the second side plate 14 to form two isolation walls.
  • the reason for this arrangement is that when the transparent dipole unit is applied to the transparent antenna, the radiation components 2 located in different sub-arrays 100 of the transparent antenna are mutually coupled.
  • each sub-array 100 includes a plurality of transparent oscillator units arranged along the first direction X, and each isolation wall of each of the plurality of transparent oscillator units is an integral structure. If the sub-arrays 100 in the transparent antenna are arranged side by side along the second direction Y, the partition wall can reduce the risk of mutual coupling between the radiation components 2 of the adjacent transparent dipole units arranged in the second direction Y.
  • the first isolation layer 31 and the second isolation layer is formed with a second opening 30 .
  • both the first isolation layer 31 and the second isolation layer are provided with the second opening 30 .
  • the reason why the second opening 30 is provided on the first isolation layer 31 and the second isolation layer is to improve the cross-polarization ratio of the transparent oscillator unit and improve the signal resolution capability.
  • the second opening 30 on the first isolation layer 31 can be arranged in the middle area of the second isolation layer, and similarly, the second opening 30 on the second isolation layer can be arranged in the middle area of the second isolation layer. .
  • the extension direction of the connection line between the center of the first isolation layer 31 and the center of the second opening 30 is perpendicular to the first direction X.
  • the extension of the connection line between the center of the second isolation layer and the center of the second opening 30 The direction is perpendicular to the first direction X.
  • the second opening 30 on the first isolation layer extends through the first isolation layer 31 along the first direction X and faces away from the side of the second carrier substrate 11.
  • the second opening on the second isolation layer 30 extends through the second isolation layer along the first direction X and away from the side of the second carrier substrate 11 .
  • the length of the second opening 30 on the first isolation layer 31 in the first direction X is half a wavelength.
  • the length of the second opening 30 on the second isolation layer 31 in the first direction X is half wavelength.
  • the reason why the length of the second opening 30 is set to half the wavelength is to improve the cross-polarization ratio of the transparent oscillator unit.
  • the first isolation layer may include a first base material and a first conductive layer that are stacked.
  • the first substrate layer serves as a support layer for the first conductive layer.
  • the first substrate is a flexible substrate, and its material includes but not limited to polyethylene terephthalate (Polyethylene Terephthalate; PET) or polyimide (PI).
  • the thickness of the first substrate is about 50-250 ⁇ m.
  • the first substrate can be attached to the first side panel 13 through an adhesive layer.
  • the material of the bonding layer includes but not limited to Optically Clear Adhesive (OCA).
  • the first conductive layer may adopt a metal grid structure, so as to ensure the optical transmittance of the transparent vibrator unit. For example: FIG.
  • the metal grid structure may include multiple first metal wires 71 intersecting and multiple second metal wires 72 intersecting.
  • the first metal lines 71 are arranged side by side along the first direction X and extend along the second direction Y; the second metal lines 72 are arranged side by side along the first direction X and extend along the third direction.
  • the light transmittance of the metal grid structure is about 70%-88%.
  • the extension directions of the first metal wires 71 and the second metal wires 72 of the metal grid structure may be perpendicular to each other, and in this case, a positive direction or a rectangular hollow part is formed.
  • the extending directions of the first metal wires 71 and the second metal wires 72 of the metal mesh structure may be non-perpendicular, for example: the angle between the extending directions of the first metal wires 71 and the second metal wires 72 is 45°, which means Then form a diamond-shaped hollow part.
  • the line width, line thickness and line spacing of the first metal lines 71 and the second metal lines 72 of the metal grid structure are preferably the same, but of course they can also be different.
  • the line width W1 of the first metal line 71 and the second metal line 72 is about 1-30 ⁇ m
  • the line spacing W2 is about 50-250 ⁇ m
  • the line thickness is about 0.5-10 ⁇ m.
  • the second isolation layer in the embodiment of the present disclosure may include a second substrate and a second conductive layer that are stacked, and the second substrate layer serves as a supporting layer for the second conductive layer.
  • the second substrate can be attached to the second side panel 14 through an adhesive layer.
  • the second substrate can adopt the same material as the above-mentioned first substrate
  • the second conductive layer can adopt the same material and structure as the above-mentioned first conductive layer, so the second substrate and the second conductive layer can no longer be used here.
  • the materials and structures of the layers are described in detail.
  • the carrying substrate 11, carrying boss 12, first side plate 13 and second side plate 14 in the first carrying structure 1 can be integrated, and the first carrying structure 1 can be formed by injection molding.
  • the forming process is simple and the cost is low.
  • the carrying substrate 11 , the carrying boss 12 , the first side plate 13 and the second side plate 14 can also be fixed and assembled together by means including but not limited to screw connection.
  • the first supporting structure 1 is used as the supporting component of the feed structure and the radiating component 2, which can be made of transparent hard material, such as: plastic, and further specific materials include but are not limited to polycarbonate plastic (Polycarbonate; PC ), Copolymers of Cycloolefin (COP) or acrylic/plexiglass (Polymethyl Methacrylate; PMMA), etc.
  • PC polycarbonate plastic
  • COP Copolymers of Cycloolefin
  • PMMA Polymethyl Methacrylate
  • the feed structure in the embodiments of the present disclosure may include a first feed structure 41 and a second feed structure 42 .
  • the first feed structure 41 and the second feed structure 42 are orthographically projected on the second carrying structure 5, and the parts overlapping the orthographic projection of the radiation component 2 on the second carrying structure 5 are the first line segment and the second line segment respectively.
  • Two line segments; the extension directions of the first line segment and the second line segment both pass through the center of the orthographic projection of the radiation component 2 on the second bearing structure 5, and the extension directions of the first line segment and the second line segment intersect, for example, The extension directions of the first line segment and the second line segment are perpendicular to each other.
  • the transparent dipole unit can be a dual-polarized antenna.
  • the first feed structure 41 and the second feed structure 42 in the embodiments of the present disclosure include but are not limited to transmission lines.
  • the feeding structure includes a first feeding structure 41 and a second feeding structure 42 as an example for illustration.
  • the first feed structure 41 and the second feed structure 42 of the embodiment of the present disclosure can also adopt a metal grid structure 401 , and the metal grid structure can also be formed on a flexible substrate 402 , and fixed on the first carrying structure 1 by means of an adhesive layer 403 attached.
  • the orthographic projection of the radiation assembly 2 on the second bearing structure 5 is located on the second subsurface S221 at the second The orthographic projection on the carrying structure 5 is within, and the center of the radiation component 2 coincides with the orthographic projection of the center of the second sub-surface S221 on the second carrying structure 5 .
  • the shape of the outer contour of the first sub-surface S121 is the same as that of the radiation element 2 .
  • the shape of the outer contour of the radiation element 2 is a circle or a polygon, and correspondingly, the shape of the outer contour of the first sub-surface S121 is a circle or a polygon.
  • the shape of the radiation assembly 2 in the embodiments of the present disclosure may be a centrally symmetrical figure, such as a square, a circle, and the like.
  • the radiating component 2 meets at least one of the following conditions: the radiating component 2 has a central hole; has convex corners.
  • the outline of the radiation component 2 is a square, and the radiation is a complete square planar structure.
  • the profile of the radiation assembly 2 is a square, and there is a central hole in the center of the radiation element, the shape of the central hole can be circular, and the center of the central hole is aligned with the radiation assembly. The centers of the 2 coincide.
  • the radiation component 2 has four sides with equal lengths, and any side has a notch that is concave toward the center of the radiation element.
  • the center of the radiation assembly 2 has a central hole, the shape of the central hole can be circular, and the center The center of the hole coincides with the center of the radiation component 2 .
  • the four corners of the radiating element 2 are chamfered.
  • the radiation component 2 is equivalent to cutting off four right angles in the four second examples to form flat chamfers.
  • the reason why the flat chamfers are formed is to achieve impedance matching and reduce loss.
  • the center of the radiation assembly 2 has a central hole, the shape of the central hole can be circular, and the center The center of the hole coincides with the center of the radiation component 2 .
  • the four flat chamfers of the radiating component 2 are all formed with convex corners.
  • the lobes include but are not limited to squares.
  • the center of the radiation assembly 2 has a central hole, the shape of the central hole can be circular, and the center The center of the hole coincides with the center of the radiation component 2 .
  • the radiating element is a polygon with four chamfered corners. This polygon is equivalent to cutting off the four right angles of the square to form flat chamfers. The reason why the flat chamfers are formed is to achieve impedance matching and reduce loss.
  • the center of the radiation assembly 2 has a central hole, the shape of the central hole can be circular, and the center The center of the hole coincides with the center of the radiation component 2 .
  • the four flat chamfers of the radiation component 2 are all formed with convex corners.
  • the lobes include but are not limited to squares.
  • the center of the radiation assembly 2 has a central hole, and the shape of the central hole can be circular, And the center of the central hole coincides with the center of the radiation component 2 .
  • the radiation component 2 may include a third base material 102 and a third conductive layer 101 that are laminated; the third base material 102 and the first carrying structure 1
  • the first surface S1 is fixed.
  • the third base material 102 is attached on the first carrying structure 1 through the adhesive layer 103 .
  • the third substrate 102 may be a flexible substrate, and its material includes but not limited to polyethylene terephthalate or polyimide.
  • the thickness of the first substrate is about 50-250 ⁇ m.
  • the material of the bonding layer 103 includes but not limited to transparent optical glue.
  • the third conductive layer 101 may adopt a metal grid structure, so as to ensure the optical transmittance of the transparent vibrator unit.
  • the metal grid structure may include a plurality of first metal wires 71 intersecting and a plurality of second metal wires 72 intersecting.
  • the first metal lines 71 are arranged side by side along the first direction X and extend along the second direction Y; the second metal lines 72 are arranged side by side along the first direction X and extend along the third direction.
  • the light transmittance of the metal grid structure is about 70%-88%.
  • the extension directions of the first metal wires 71 and the second metal wires 72 of the metal grid structure may be perpendicular to each other, and in this case, a positive direction or a rectangular hollow part is formed.
  • the extending directions of the first metal wires 71 and the second metal wires 72 of the metal mesh structure may be non-perpendicular, for example: the angle between the extending directions of the first metal wires 71 and the second metal wires 72 is 45°, which means Then form a diamond-shaped hollow part.
  • the line width, line thickness and line spacing of the first metal lines 71 and the second metal lines 72 of the metal grid structure are preferably the same, but of course they can also be different.
  • the line width W1 of the first metal line 71 and the second metal line 72 is about 1-30 ⁇ m
  • the line spacing W2 is about 50-250 ⁇ m
  • the line thickness is about 0.5-10 ⁇ m.
  • the second load-bearing structure 5 can be made of the same material as the first load-bearing structure 1, that is, a transparent hard material, such as plastic, and further specific materials include but are not limited to polycarbonate plastic, cycloolefin Polymer plastic or acrylic/plexiglass etc.
  • the second bearing structure 5 and the first bearing structure 1 may be fixed by means including but not limited to screw connection.
  • the reference electrode layer 6 includes but not limited to a ground electrode layer, and can be attached on the side of the second carrying structure 5 away from the first carrying structure 1 .
  • the reference electrode layer 6 may include a fourth base material and a fourth conductive layer arranged in stacked layers. Wherein, the fourth substrate can be attached to the second carrying structure 5 through an adhesive layer.
  • the fourth substrate can use the same material as the third substrate 102
  • the fourth conductive layer can use the same material and structure as the third conductive layer 101 .
  • the hollowed-out parts of the metal conductive grid of the two are on the second carrying structure 5
  • the orthographic projections overlap, so that the light transmittance of the transparent vibrator unit can be effectively improved.
  • the material of any metal grid structure mentioned above includes, but is not limited to, metal materials such as copper, silver, aluminum, etc., which are not limited in the embodiments of the present disclosure.
  • the size of the transparent vibrator unit is about 55mm ⁇ 43mm (0.64 ⁇ c ⁇ 0.5 ⁇ c, where ⁇ c is the wavelength of the center frequency point).
  • the transparent oscillator unit includes: a first carrying structure 1 , a second carrying structure 5 , a radiation component 2 , a first feeding structure 41 , a second feeding structure 42 and a reference electrode layer 6 .
  • the first carrying structure 1 includes a carrying substrate 11 , a carrying boss 12 , a first side plate 13 , a second side plate 14 , a first isolation layer and a second isolation layer.
  • the carrier substrate 11 includes a third surface S11 and a fourth surface S21 opposite to each other; the carrier boss 12 includes a fifth surface S12 and a sixth surface S22 opposite to each other.
  • the third surface S11 of the carrier substrate 11 is connected to the fifth surface S12 of the carrier boss 12 to form the first surface S1 of the first carrier structure 1, and the fourth surface S21 of the carrier substrate 11 is connected to the sixth surface S22 of the carrier boss 12.
  • the second surface S2 of the first carrying structure 1 is formed.
  • the radiation component 2 is arranged on the fifth surface S12 of the carrying boss 12, and the feeding structure is arranged on the fourth surface S21 and the sixth surface S22.
  • the carrier substrate 11 has a first opening corresponding to the concave portion.
  • the radiation component 2 is disposed on the first sub-surface S121; the feeding structure extends from the fourth surface S21 to the second sub-surface S221 through the second connection side S222. Both the first isolation layer and the second isolation layer are provided with second openings.
  • the first isolation layer may include a first base material and a first conductive layer that are stacked.
  • the second isolation layer may include a second base material and a second conductive layer that are stacked.
  • the radiation component 2 includes a third substrate 102 and a third conductive layer 101 which are laminated.
  • the reference electrode layer 6 includes a fourth base material and a fourth conductive layer that are laminated. Wherein, the first base material, the second base material, the third base material 102 and the fourth base material can all use the same materials as above.
  • the first conductive layer, the second conductive layer, the third conductive layer 101 and the fourth conductive layer can also use the same materials and structures as above, so the description will not be repeated.
  • FIG. 8 is a schematic diagram of the performance parameters of S11 and S21 of the transparent oscillator unit according to the embodiment of the present disclosure; as shown in FIG. 8 , the transparent oscillator unit satisfies that S11 is less than -22dB at a frequency of 3400-3600MHz, and S21 means that the isolation is greater than 20dB;
  • FIG. 9 It is the horizontal plane and vertical plane pattern at the center frequency of the transparent oscillator unit in the embodiment of the present disclosure; as shown in FIG. 9 , the transparent oscillator unit can achieve a gain of 7.5 dBi at the center frequency.
  • the 3dB beamwidth in the horizontal plane can reach 82°, while the 3dB beamwidth in the vertical plane can reach 75°.
  • FIG. 10 is a top view of a sub-array 100 in a transparent antenna in an embodiment of the present disclosure
  • FIG. 11 is a bottom view of a sub-array 100 in a transparent antenna in an embodiment of the present disclosure
  • FIG. 12 is a view of the present disclosure
  • FIG. 13 is a bottom view of the transparent antenna in the embodiment of the present disclosure.
  • An embodiment of the present disclosure provides a transparent antenna, and the dipole unit in the transparent antenna adopts the transparent dipole unit in the foregoing embodiments.
  • the transparent antenna includes a plurality of sub-arrays 100, each sub-array 100 includes a plurality of transparent dipole units arranged side by side along the first direction X, and the feeding structure of the transparent dipole units in any sub-array 100 is shared.
  • the feed structure includes a first feed port 401, a plurality of second feed ports 402 and a plurality of transmission lines 403, and the second feed port 402 is connected to the radiation element 2 of the transparent oscillator unit in the sub-array 100.
  • one transmission line 403 is connected between the first feed port 401 and one second feed port 402; the second feed corresponding to the radiation component 2 of each transparent oscillator unit in the sub-array 100
  • the length of the transmission line 403 connected to the port 402 monotonically increases or monotonically decreases along the first direction X.
  • each sub-array 100 includes three transparent oscillator units as an example.
  • the lengths of the three transmission lines 403 corresponding to the three transparent oscillator units decrease sequentially. Such setting is to ensure that the delays of the three transparent oscillator units in each sub-array 100 are consistent and the radiation is uniform.
  • a 1 ⁇ 3 sub-array 100 in the antenna unit has a size of 165mm ⁇ 43mm ⁇ 12mm (1.92 ⁇ c ⁇ 0.5 ⁇ c ⁇ 0.13 ⁇ c).
  • Fig. 14 is a schematic diagram of S11 and S21 performance parameters of a sub-array 100 of the transparent antenna of the disclosed embodiment; Greater than 17dB, and maintain isolation greater than 20dB.
  • Fig. 15 is a horizontal plane and a vertical plane diagram of a sub-array 100 of the transparent antenna of the disclosed embodiment at the central frequency; as shown in Fig. 15 , the antenna 1 ⁇ 3 sub-array 100 of the disclosed embodiment has an antenna above 11dBi gain.
  • the 3dB width of the horizontal plane and vertical plane is about 79° and 28° respectively.
  • the overall vertical beam has a 3° electrical downtilt characteristic, and ensures that the gain difference between the upper side lobe and the main lobe is more than 15dB.
  • FIGS. 12 and 13 are complete structural diagrams of the transparent antenna of the disclosed embodiment, which includes 96 transparent dipole units or 32 groups of 1 ⁇ 3 sub-arrays 100 .
  • the size of the transparent antenna in the disclosed embodiment is 660mm ⁇ 351mm ⁇ 12mm (7.7 ⁇ _c ⁇ 4.1 ⁇ c ⁇ 0.13 ⁇ c).
  • the transparent antenna of the embodiment of the present disclosure not only has good concealment features, but also has the features of simple and cheap processing.
  • an embodiment of the present disclosure provides an antenna system, which may include the above-mentioned transparent antenna.
  • the antenna system provided by the embodiments of the present disclosure further includes a transceiver unit, a radio frequency transceiver, a signal amplifier, a power amplifier, and a filter unit.
  • the transparent antenna in the antenna system can be used as a transmitting antenna or as a receiving antenna.
  • the transceiver unit may include a baseband and a receiving end.
  • the baseband provides signals of at least one frequency band, such as 2G signals, 3G signals, 4G signals, 5G signals, etc., and sends the signals of at least one frequency band to the radio frequency transceiver.
  • After the transparent antenna in the antenna system receives the signal it can be processed by the filter unit, power amplifier, signal amplifier, and radio frequency transceiver, and then transmitted to the receiving end in the sending unit.
  • the receiving end can be a smart gateway, for example.
  • the radio frequency transceiver is connected with the transceiver unit, and is used for modulating the signal sent by the transceiver unit, or used for demodulating the signal received by the transparent antenna and then transmitting it to the transceiver unit.
  • the radio frequency transceiver may include a transmitting circuit, a receiving circuit, a modulating circuit, and a demodulating circuit. After the transmitting circuit receives various types of signals provided by the substrate, the modulating circuit may modulate the various types of signals provided by the baseband, and then sent to the antenna.
  • the transparent antenna receives the signal and transmits it to the receiving circuit of the radio frequency transceiver, and the receiving circuit transmits the signal to the demodulation circuit, and the demodulation circuit demodulates the signal and then transmits it to the receiving end.
  • the radio frequency transceiver is connected to a signal amplifier and a power amplifier, and the signal amplifier and the power amplifier are connected to a filtering unit, and the filtering unit is connected to at least one transparent antenna.
  • the signal amplifier is used to improve the signal-to-noise ratio of the signal output by the radio frequency transceiver and then transmitted to the filter unit;
  • the power amplifier is used to amplify the power of the signal output by the radio frequency transceiver and then transmitted to the filter unit;
  • the filter unit may include a duplexer and a filter circuit. The filter unit combines the signals output by the signal amplifier and the power amplifier, filters out clutter, and then transmits the signal to the transparent antenna.
  • the transparent antenna radiates the signal.
  • the transparent antenna receives the signal and transmits it to the filter unit.
  • the filter unit filters the signal received by the antenna and then transmits it to the signal amplifier and power amplifier.
  • the signal amplifier gains the signal received by the antenna. , to increase the signal-to-noise ratio of the signal; the power amplifier amplifies the power of the signal received by the transparent antenna.
  • the signal received by the transparent antenna is processed by the power amplifier and the signal amplifier, and then transmitted to the radio frequency transceiver, and then transmitted to the transceiver unit.
  • the signal amplifier may include various types of signal amplifiers, such as a low noise amplifier, which is not limited here.
  • the antenna system provided by the embodiments of the present disclosure further includes a power management unit, which is connected to a power amplifier and provides the power amplifier with a voltage for amplifying signals.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Details Of Aerials (AREA)

Abstract

本公开提供一种透明振子单元、透明天线及天线系统,属于通信技术领域。本公开的透明振子单元,其包括:第一承载结构,具有相对设置的第一表面和第二表面;辐射组件,设置在所述第一承载结构的第一表面;馈电结构,设置在所述第一承载结构的第二表面;第二承载结构,设置在所述馈电结构背离所述辐射组件的一侧,且与所述第一承载结构相固定;参考电极层,设置在所述第二承载结构上;其中,所述辐射组件、所述馈电结构、所述参考电极层中任意两者在所述第二承载结构上的正投影至少部分重叠。

Description

透明振子单元、透明天线及天线系统 技术领域
本公开属于通信技术领域,具体涉及一种透明振子单元、透明天线和天线系统。
背景技术
大规模天线(Massive MIMO Antennas)技术是5G的关键技术之一,相比4G时代的4T4R或8T8R天线排布,Massive MIMO主要采用32T32R或64T64R的天线排布方式。显而易见,天线的需求量成倍增加。
目前,Massive MIMO天线解决方案主要有PCB振子方案,钣金冲压振子方案,以及塑料化振子三大方案。其中,PCB振子方案和钣金冲压振子方案均是通过振子的焊脚与高频板的焊盘一一焊接工序完成的,最终恶化了天线的一致性。为了提高Massive MIMO天线的一致性,塑料振子方案应运而生。塑料振子方案通过一体注塑成型,激光镭雕,以及化镀或电镀等工序完成整套天线。虽然塑料振子方案提高的天线的一致性,但对面日益要求低成本的天线需求,塑料振子方案在处理大面积镭雕图形时并不占优势。因此,一种既能减轻加工压力,又可以节省加工成本的Massive MIMO天线解决方案势在必行。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一,提供一种透明振子单元、透明天线和天线系统。
解决本发明技术问题所采用的技术方案是一种透明振子单元,其包括:
第一承载结构,具有相对设置的第一表面和第二表面;
辐射组件,设置在所述第一承载结构的第一表面;
馈电结构,设置在所述第一承载结构的第二表面;
第二承载结构,设置在所述馈电结构背离所述辐射组件的一侧,且与所述第一承载结构相固定;
参考电极层,设置在所述第二承载结构上;其中,
所述辐射组件、所述馈电结构、所述参考电极层中任意两者在所述第二承载结构上的正投影至少部分重叠。
在一些示例中,所述第一承载结构包括:
承载基板,具有相对设置的第三表面和第四表面;
承载凸台,设置在所述第一承载基板上,所述承载凸台设置在所述承载基板的第三表面上;所述承载凸台具有相对设置的第五表面和第六表面,且所述第五表面和所述第三表面连接形成所述第一表面;所述第六表面和所述第四表面连接形成所述第二表面;
所述辐射组件设置在所述第五表面上,所述馈电结构设置在所述第四表面和所述第六表面上。
在一些示例中,所述承载凸台具有内凹部;所述承载基板具有与所述内凹部对应第一开口;
所述第五表面包括第一子表面,以及连接所述第三表面和所述第一子表面的第一连接侧面;所述第六表面包括第二子表面,以及连接在所述第四表面和第二子表面和第二连接侧面;
所述辐射组件设置在所述第一子表面上;所述馈电结构由所述第四表面经过所述所述第二连接侧面延伸至所述第二子表面。
在一些示例中,所述第二子表面包括第一部分和第二部分;所述馈电结构的部分结构位于所述第一部分上,所述第一部分到所述第二承载结构之间的距离不大于所述第二部分到所述第二承载结构之间的距离。
在一些示例中,所述第一承载结构还包括包括:第一侧板和第二侧板;所述承载基板包括沿第一方向延伸,且在第二方向上相对设置的第一侧面和第二侧面;所述第一侧板连接在所述第一侧表面上,所述第二侧板连接在所述第二侧面上;所述第一侧板和所述第二侧边均凸出于所述第五表面和第六表面;
所述第一侧板背离所述第一侧面的表面设置有第一隔离层;所述第二侧板背离所述第二侧面的表面设置有第二隔离层。
在一些示例中,所述第一隔离层和第二隔离层中至少一者具有第二开口。
在一些示例中,所述第二开口的在所述第一方向上的长度为半波长。
在一些示例中,所述第一隔离层包括叠层设置的第一基材和第一导电层;所述第一基材与所述第一侧板相固定;
所述第二隔离层包括叠层设置的第二基材和第二导电层;所述第二基材与所述第二侧板相固定。
在一些示例中,所述第一导电层和第二导电层均包括金属网格结构。
在一些示例中,所述第一侧板、所述第二侧板、所述承载基板和所述承载凸台为一体结构。
在一些示例中,所述馈电结构包括第一馈电结构和第二馈电结构;所述第一馈电结构和所述第二馈电结构在所述第二承载结构正投影,与在所述辐射组件在所述第二承载结构正投影重叠的部分分别为第一线段和第二线段;所述第一线段和所述第二线段的延伸方向均贯穿所述所述辐射组件在所述第二承载结构正投影的中心,且所述第一线段和所述第二线段的延伸方向相交。
在一些示例中,所述辐射组件为中心对称图形。
在一些示例中,所述辐射组件满足以下条件中的至少之一:
具有中心孔;
侧边上朝向中心内凹的缺口;
各拐角为平倒角;
各拐角上具有凸角。
在一些示例中,所述辐射组件通过粘结层与所述第一承载结构的第一表面粘结。
在一些示例中,所述辐射组件包括叠层设置的第三基材和第三导电层;所述第三基材与所述第一承载结构的第一表面相固定。
在一些示例中,所述第三导电层包括金属网格结构。
在一些示例中,所述金属网格的线宽为2-30μm;线间距为50-250μm;线厚度为1-10μm。
第二方面,本公开实施例提供一种透明天线,其包上述任一所述的透明振子单元。
在一些示例中,所述透明天线包括多个子阵列,每个所述子阵列包括沿第一方向并排设置的多个所述透明振子单元;每个所述子阵列中的透明振子单元的所述馈电结构共用。
在一些示例中,所述馈电结构包括一个第一馈电端口、多个第二馈电端口和多条传输线,所述第二馈电端口与所述子阵列中的所述透明振子单元的辐射组件一一对应;所述第一馈电端口与一个所述第二馈电端口之间连接一条所述传输线;所述子阵列中的各所述透明振子单元的辐射组件所对应的第二馈电端口所连接传输线的线长沿所述第一方向单调增或者单调减。
在一些示例中,所述透明天线的工作频率为3400MHz-3600MHz。
第三方面,本公开实施例提供一种天线系统,其包括上述任一所述的透明天线。
附图说明
图1为本公开实施例的透明振子单元的正面视角立体图。
图2为本公开实施例的透明振子单元的反面视角立体图。
图3为本公开实施例的透明振子单元的局部截面图。
图4为本公开实施例的透明振子单元的第一承载结构的第一表面的截面图。
图5为本公开实施例的透明振子单元的第一承载结构的第二表面的截面图。
图6为图1中A位置的放大图。
图7为本公开实施例的透明振子单元的辐射组件的示意图。
图8为本公开实施例的透明振子单元的S11及S21性能参数示意图。
图9为本公开实施例的透明振子单元的在中心频率下的水平面及垂直面方向图。
图10为本公开实施例中的透明天线中的一个子阵列的俯视图。
图11为本公开实施例中的透明天线中的一个子阵列的仰视图。
图12为本公开实施例中的透明天线的俯视图。
图13为本公开实施例中的透明天线仰视图。
图14为公开实施例的透明天线的一个子阵列的S11及S21性能参数示意图。
图15为为公开实施例的透明天线的一个子阵列在中心频率下的水平面以及垂直面方向图。
具体实施方式
为使本领域技术人员更好地理解本发明的技术方案,下面结合附图和具体实施方式对本发明作进一步详细描述。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”、“一”或者“该”等类似词语也不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
第一方面,本公开实施例提供一种透明振子天线单元,该透明振子天线单元主要应用在大规模(Massive MIMO)天线系统中。图1为本公开实施例的透明振子单元的正面视角立体图;图2为本公开实施例的透明振子单元的反面视角立体图;图3为本公开实施例的透明振子单元的局部截面图;图4为本公开实施例的透明振子单元的第一承载结构1的第一表面S1的截面图;图5为本公开实施例的透明振子单元的第一承载结构1的第二表面S2的截面图;如图1-5所示,该透明振子天线单元可以包括:第一承载结构1、第二承载结构5、辐射组件2、馈电结构和参考电极层6。其中,第一承载结构1包括相对设置的第一表面S1和第二表面S2。辐射元件设置在第一承载结构1的第一表面S1上,馈电结构设置在第一承载结构1的第二表面S2上。第二承载结构5设置在馈电结构背离辐射组件2的一侧,且与第一承载结构1相固定。参考电极层6则设置在第二承载结构5上。辐射组件2、馈电结构、参考电极层6中任意两者在第二承载结构5上的正投影至少部分重叠,以使得辐射组件2、馈电结构、参考电极层6之间形成电流回路,此时馈电结构馈入的微波信号可以耦合至辐射组件2,以实现微波信号的传输。
在本公开实施例中所采用的辐射组件2可以为预先制备完成的透明导电薄膜,例如包括金属网格结构,之后可以利用薄膜贴合工艺贴附在第一承载结构1的第一表面S1上,该种结构和制备方法不仅加工方便且成本较低。
在一些示例中,参照图1-3所示,第一承载结构1具体可以包括承载基板11和设置在承载基板11上的承载凸台12。其中,承载基板11包括相对设置的第三表面S11和第四表面S21;承载凸台12包括相对设置的第五表面S12和第六表面S22。承载基板11的第三表面S11和承载凸台12的第五表面S12连接形成第一承载结构1的第一表面S1,承载基板11的第四表面S21和承载凸台12的第六表面S22连接形成第一承载结构1的第二表面S2。可以理解的是,承载凸台12顾名思义为一凸出结构,本公开实施中承载凸台12朝向背离第二承载基板11的方向凸出,与此同时,承载凸台12的第五表面S12势必为一凸出面。在该种情况下,辐射组件2设置在承载凸台12的第五表面S12上,例如设置在第五表面S12与参考电极层6平行的部 分。馈电结构则设置在第四表面S21和第六表面S22上。
在一个示例中,参照图1-5所示,第一承载结构1的承载凸台12具有内凹部,相应的承载基板11具有与内凹部对应的第一开口。由于承载凸台12具有内凹部,故承载凸台12的第五表面S12包括第一子表面S121和连接第三表面S11和第一子表面S121的第一连接侧面S122,承载凸台12的第六表面S22包括第二子表面S221和连接第四表面S21和第二子表面S221的第二连接侧面S222。辐射组件2设置在第一子表面S121上;馈电结构由第四表面S21经过所述第二连接侧面S222延伸至第二子表面S221。由于第一承载结构1的承载凸台12具有内凹部,可以减小馈电结构将微波信号耦合至辐射组件2时的微波损耗,同时还可以使得本公开实施例的透明振子天线单元结构更加轻便。
进一步的,参照图3,为满足馈电结构和辐射组件2之间耦合间距,承载凸台12的第二子表面S221可以为一台阶面,也即第二子表面S221可以包括第一部分S221a(一阶台阶面)和第二部分S221b(二阶台阶面),第一部分S221a到第二承载结构5之间的距离不大于所述第二部分S221b到第二承载结构5之间的距离。也就是说,第一承载结构1平行于第二承载结构5部分上设置辐射组件2的厚度大于其余部分的厚度。需要说明的是,第二子表面S221也可以为一平坦表面,也即第一承载结构1平行于第二承载结构5的部分的厚度是均一的,只要该厚度满足馈电结构和辐射组件2之间耦合间距即可。
在一些示例中,继续参照图1和2,本公开实施例中的第一承载结构1不仅包括上述的承载基板11和承载凸台12,而且还包括第一侧板13和第二侧板14,以及设置在第一侧板13上的第一隔离层31,设置在第二侧板14上的第二隔离层(图中未示)。例如:承载基板11包括沿第一方向X延伸,且在第二方向Y上相对设置的第一侧面和第二侧面,第一侧板13连接在第一侧面上,第二侧板14连接在第二侧面上,且第一侧板13和第二侧板14均凸出于承载基板11的第五表面S12和第六表面S22,也就是说,第一侧板13和第二侧板14在垂直于承载基板11的第五表面S12(第六表面S22) 方向上的高度大于承载基板11的厚度。第一隔离层31固定在第一侧板13背离承载基板11的第一侧面的一侧,第二隔离层则固定在第二侧板14背离承载基板11的第二侧面的一侧。第一隔离层固定在第一侧板13上,第二隔离层固定在第二侧板14上形成两面隔离墙。之所以如此设置是为了,当透明振子单元应用于透明天线中,位于透明天线的不同子阵列100中的辐射组件2发生互耦。需要说明的是,每个子阵列100中包括沿第一方向X排布的多个透明振子单元,且各个多个透明振子单元的每一面隔离墙为一体结构。如果透明天线中的子阵列100沿第二方向Y并排设置,此时隔离墙则可以降低在第二方向Y上相邻设置的透明振子单元的辐射组件2发生互耦的风险。
进一步的,本公开实施例的第一隔离层31和第二隔离层中至少一者上形成有第二开口30。本公开实施例中以第一隔离层31和第二隔离层上均设置有第二开口30为例。之所以在第一隔离层31和第二隔离层上设置第二开口30是为了提高透明振子单元的交叉极化比,提高信号的解析能力。在一些示例中,第一隔离层31上的第二开口30可以设置在第二隔离层的中间区域,同理,第二隔离层上的第二开口30可以设置正第二隔离层的中间区域。例如:第一隔离层31的中心与第二开口30的中心的连线的延伸方向垂直与第一方向X,同理,第二隔离层的中心与第二开口30的中心的连线的延伸方向垂直与第一方向X。在一些示例中,第一隔离层上的第二开口30贯穿第一隔离层31沿第一方向X延伸且背离第二承载基板11的侧边,同理,第二隔离层上的第二开口30贯穿第二隔离层沿第一方向X延伸且背离第二承载基板11的侧边。在一些示例中,第一隔离层31上的第二开口30在第一方向X上的长度为半波长,同理,第二隔离层上的第二开口30在第一方向X上的长度为半波长。在本公开实施例中,之所以将第二开口30长度设置为半波长是为了提高透明振子单元的交叉极化比。
进一步的,本公开实施例中第一隔离层可以包括叠层设置的第一基材和第一导电层。第一基材层作为第一导电层的支撑层。第一基材为柔性基材,其材料包括但不限于聚对苯二甲酸乙二醇酯(Polyethylene Terephthalate;PET)或者聚酰亚胺(PI)等。第一基材厚度大约在50-250μm左右。第一 基材可以通过粘结层贴附在第一侧板13上。其中,粘结层的材料包括但不限于透明光学胶(Optically Clear Adhesive;OCA)。在一些示例中,第一导电层可以采用金属网格结构,以此可以保证透明振子单元的光学透过率。例如:图6为图1中A位置的放大图;参照图6,金属网格结构可以包括交叉设置的多条第一金属线71和多条交叉设置的第二金属线72。其中,各第一金属线71沿第一方向X并排设置,且沿第二方向Y延伸;各第二金属线72沿第一方向X并排设置,且沿第三方向延伸。金属网格结构的光线透过率在70%-88%左右。在本公开实施例中,金属网格结构的第一金属线71和第二金属线72的延伸方向可以相互垂直,此时则形成正方向或者矩形镂空部。当然,金属网格结构的第一金属线71和第二金属线72的延伸方向可以非垂直设置,例如:第一金属线71和第二金属线72的延伸方向的夹角为45°,此时则形成菱形镂空部。金属网格结构的第一金属线71和第二金属线72的线宽、线厚度和线间距优选均相同,当然也可以不相同。例如:第一金属线71和第二金属线72的线宽W1均为1-30μm左右、线间距W2为50-250μm左右;线厚度为0.5-10μm左右。
相应的,本公开实施例中的第二隔离层可以包括叠层设置的第二基材和第二导电层,第二基材层作为第二导电层的支撑层。第二基材可以通过粘结层贴附在第二侧板14上。其中,第二基材可以采用与上述第一基材相同的材料,第二导电层可以采用与上述第一导电层相同的材料和结构,故在此不再对第二基材和第二导电层的材料和结构进行具体说明。
在一些示例中,第一承载结构1中的承载基板11、承载凸台12、第一侧板13和第二侧板14可以为一体结构,此时第一承载结构1可以采用注塑成型的方式形成,工艺简单,且成本较低。当然,承载基板11、承载凸台12、第一侧板13和第二侧板14也可以通过包括但不限于螺接的方式固定组装在一起。
在一些示例中,第一承载结构1作为馈电结构和辐射组件2的支撑组件,其可以选用透明硬质材料,例如:塑料,进一步的具体材料包括但不限于聚碳酸酯塑料(Polycarbonate;PC)、环烯烃聚合物塑料(Copolymers of  Cycloolefin;COP)或者亚克力/有机玻璃(Polymethyl Methacrylate;PMMA)等。
在一些示例中,本公开实施例中的馈电结构可以包括第一馈电结构41和第二馈电结构42。第一馈电结构41和第二馈电结构42在所述第二承载结构5正投影,与在所述辐射组件2在第二承载结构5正投影重叠的部分分别为第一线段和第二线段;第一线段和第二线段的延伸方向均贯穿所述辐射组件2在所述第二承载结构5正投影的中心,且第一线段和第二线段的延伸方向相交,例如,第一线段和第二线段的延伸方向相互垂直。由于本公开实施例中的馈电结构包括第一馈电结构41和第二馈电结构42,故该透明振子单元可以双极化天线。在一些示例中,本公开实施实施例中的第一馈电结构41和第二馈电结构42包括但不限于传输线。在本公开实施例中,以馈电结构包括第一馈电结构41和第二馈电结构42为例进行说明。
在一些示例中,参照图3,本公开实施例的第一馈电结构41和第二馈电结构42也可以采用金属网格结构401,且该金属网格结构同样可以形成在柔性基材402上,并通过粘结层403贴附的方式固定在第一承载结构1上。
在一些示例中,当承载凸台12的第五表面S12包括第一子表面S121和第一连接侧面S122时,辐射组件2在第二承载结构5上正投影位于第二子表面S221在第二承载结构5上的正投影内,且辐射组件2的中心与第二子表面S221的中心在第二承载结构5上的正投影重合。例如:第一子表面S121的外轮廓与辐射组件2的外轮廓的形状相同。例如:辐射组件2的外轮廓的形状为圆形或者多边形等,相应的,第一子表面S121的外轮廓的形状为圆形或者多边形等。在一些示例中,本公开实施例中的辐射组件2的形状可以为中心对称图形,例如:正方形、圆形等。辐射组件2满足以下条件中的至少之一:辐射组件2具有中心孔;辐射组件2的侧边上朝向中心内凹的缺口;辐射组件2的各拐角为平倒角;辐射组件2的各拐角上具有凸角。通过改变对辐射组件2的图形设计,使得电流路径变长,相当于增加了天线的物理尺寸,使得天线的谐振频率降低,实现天线小型化的目的。以下结合具体示例进行说明。
第一种示例,如图7中(a)所示,辐射组件2的轮廓为正方形,且该辐射为完整的正方形平面结构。
第二种示例,如图7中(b)所示,辐射组件2的轮廓为正方形,且在辐射元件的中心具有中心孔,中心孔的形状可以为圆形,且中心孔的中心与辐射组件2的中心重合。
第三种示例,如图7中(c)所示,辐射组件2具有边长相等的四条边,且任一边上具有形成有朝向辐射元件中心凹陷的缺口。
第四种示例,如图7中(d)所示,相较于第三种示例的辐射组件2而言,该辐射组件2的中心具有中心孔,中心孔的形状可以为圆形,且中心孔的中心与辐射组件2的中心重合。
第五种示例,如图7中(e)所示,相较于第三种示例的辐射组件2而言,该辐射组件2的四个拐角为平倒角。此时,该辐射组件2相当于将四个第二种示例中的四个直角切除,形成平倒角,之所以形成平倒角的是为了实现阻抗匹配,以降低损耗。当辐射组件2采用该种结构时,第一馈电结构41和第二馈电结构42在第二承载结构5上的正投影,分别与该辐射元件在周向上两个相邻设置的平倒角在第二承载结构5上的正投影相交,此时可以降低出微波信号的传输损耗。
第六种示例,如图7中(f)所示,相较于第五种示例的辐射组件2而言,该辐射组件2的中心具有中心孔,中心孔的形状可以为圆形,且中心孔的中心与辐射组件2的中心重合。
第七种示例,如图7中(g)所示,相较于第五种示例的辐射组件2而言,该辐射组件2的四个平倒角上均形成有凸角。该凸角包括但不限于正方形。
第八种示例,如图7中(h)所示,相较于第七种示例的辐射组件2而言,该辐射组件2的中心具有中心孔,中心孔的形状可以为圆形,且中心孔的中心与辐射组件2的中心重合。
第九种示例,如图7中(i)所示,该辐射元件为一个具有四个平倒角 的多边形。该多边形相当于将正方形的四个直角切除,形成平倒角,之所以形成平倒角的是为了实现阻抗匹配,以降低损耗。
第十种示例,如图7中(j)所示,相较于第九种示例的辐射组件2而言,该辐射组件2的中心具有中心孔,中心孔的形状可以为圆形,且中心孔的中心与辐射组件2的中心重合。
第十一种示例,如图7中(k)所示,相较于第九种示例的辐射组件2而言,该辐射组件2的四个平倒角上均形成有凸角。该凸角包括但不限于正方形。
第十二种示例,如图7中(l)所示,相较于第十一种示例的辐射组件2而言,该辐射组件2的中心具有中心孔,中心孔的形状可以为圆形,且中心孔的中心与辐射组件2的中心重合。
无论本公开实施例中的辐射组件2采用上述任意一种,该辐射组件2均可以包括叠层设置的第三基材102和第三导电层101;第三基材102与第一承载结构1的第一表面S1相固定。例如:第三基材102通过粘结层103贴附在第一承载结构1上。其中,第三基材102可以采用柔性基材,其材料包括但不限于聚对苯二甲酸乙二醇酯或者聚酰亚胺等。第一基材厚度大约在50-250μm左右。其中,粘结层103的材料包括但不限于透明光学胶。在一些示例中,第三导电层101可以采用金属网格结构,以此可以保证透明振子单元的光学透过率。例如:金属网格结构可以包括交叉设置的多条第一金属线71和多条交叉设置的第二金属线72。其中,各第一金属线71沿第一方向X并排设置,且沿第二方向Y延伸;各第二金属线72沿第一方向X并排设置,且沿第三方向延伸。金属网格结构的光线透过率在70%-88%左右。在本公开实施例中,金属网格结构的第一金属线71和第二金属线72的延伸方向可以相互垂直,此时则形成正方向或者矩形镂空部。当然,金属网格结构的第一金属线71和第二金属线72的延伸方向可以非垂直设置,例如:第一金属线71和第二金属线72的延伸方向的夹角为45°,此时则形成菱形镂空部。金属网格结构的第一金属线71和第二金属线72的线宽、线厚度和线间距优选均相同,当然也可以不相同。例如:第一金属线71和第二金属 线72的线宽W1均为1-30μm左右、线间距W2为50-250μm左右;线厚度为0.5-10μm左右。
在一些示例中,第二承载结构5可以用选用与第一承载结构1相同的材料,也即采用透明硬质材料,例如:塑料,进一步的具体材料包括但不限于聚碳酸酯塑料、环烯烃聚合物塑料或者亚克力/有机玻璃等。第二承载结构5与第一承载结构1可以采用包括但不限于螺接的方式相固定。
在一些示例中,参考电极层6包括但不限于接地电极层,且可以贴附在第二承载结构5背离第一承载结构1的一侧。参考电极层6可以包括叠层设置第四基材和第四导电层。其中,第四基材可以通过粘结层贴附在第二承载结构5上。第四基材可以采用第三基材102相同的材料,第四导电层可以采用第三导电层101相同的材料和结构。
在一些示例中,当参考电极层6的第四导电层和辐射组件2第三导电层101均采用金属网格结构时,二者的金属导电网格的镂空部在第二承载结构5上的正投影重合,从而可以有效的提高透明振子单元的光线透过率。
在一些示例中,上述的任一金属网格结构的材料均包括但不限于例如铜、银、铝等金属材料,在本公开实施例对此并不进行限定。
为了更清楚本公开实施例中的透明振子单元的结构和效果,以下给出一种具体的透明振子单元结构。
参照图1-6,该透明振子单元的尺寸在55mm×43mm左右(0.64λc×0.5λc,λc为中心频点波长)。该透明振子单元包括:第一承载结构1、第二承载结构5、辐射组件2、第一馈电结构41、第二馈电结构42和参考电极层6。其中,第一承载结构1包括承载基板11、承载凸台12、第一侧板13、第二侧板14、第一隔离层和第二隔离层。承载基板11包括相对设置的第三表面S11和第四表面S21;承载凸台12包括相对设置的第五表面S12和第六表面S22。承载基板11的第三表面S11和承载凸台12的第五表面S12连接形成第一承载结构1的第一表面S1,承载基板11的第四表面S21和承载凸台12的第六表面S22连接形成第一承载结构1的第二表面S2。辐射组件2设置在承 载凸台12的第五表面S12上,馈电结构则设置在第四表面S21和第六表面S22上。承载基板11具有与内凹部对应的第一开口。辐射组件2设置在第一子表面S121上;馈电结构由第四表面S21经过所述第二连接侧面S222延伸至第二子表面S221。第一隔离层和第二隔离层上均设置有第二开口。第一隔离层可以包括叠层设置的第一基材和第一导电层。第二隔离层可以包括叠层设置的第二基材和第二导电层。辐射组件2包括叠层设置的第三基材102和第三导电层101。参考电极层6包括叠层设置的第四基材和第四导电层。其中,第一基材、第二基材、第三基材102和第四基材均可以采用上述相同的材料。第一导电层、第二导电层、第三导电层101和第四导电层也可以采用上述相同材料及结构,故在不再重复描述。
基于上述透明振子单元,发明人进行了仿真实验。图8为本公开实施例的透明振子单元的S11及S21性能参数示意图;如图8所示,本透明振子单元在3400-3600MHz频率内满足S11小于-22dB,S21即隔离度大于20dB;图9为本公开实施例的透明振子单元的在中心频率下的水平面及垂直面方向图;如图9所示,本透明振子单元在中心频率下可可实现7.5dBi的增益。水平面3dB波束宽度可达82°,而垂直面3dB波束宽度可达75°。
第二方面,图10为本公开实施例中的透明天线中的一个子阵列100的俯视图;图11为本公开实施例中的透明天线中的一个子阵列100的仰视图;图12为本公开实施例中的透明天线的俯视图;图13为本公开实施例中的透明天线仰视图。本公开实施例提供一种透明天线,该透明天线中的振子单元采用上述实施例中的透明振子单元。具体的,透明天线包括多个子阵列100,每个子阵列100中包括沿第一方向X并排设置的多个透明振子单元,任一子阵列100中的透明振子单元的馈电结构共用。
例如:馈电结构包括一个第一馈电端口401、多个第二馈电端口402和多条传输线403,第二馈电端口402与所述子阵列100中的透明振子单元的辐射组件2一一对应;所述第一馈电端口401与一个所述第二馈电端口402之间连接一条所述传输线403;子阵列100中的各透明振子单元的辐射组件2所对应的第二馈电端口402所连接传输线403的线长沿所述第一方向X单 调增或者单调减。图10和11中,每个子阵列100中包括三个透明振子单元为例,沿第一方向X,且由左到右,三个透明振子单元分别对应的三条传输线403的线长依次减小。如此设置是为了保证每个子阵列100中的三个透明振子单元延时一致,辐射均一。
如图10和11所示,该天线单元中的一个1×3子阵列100尺寸为165mm×43mm×12mm(1.92λc×0.5λc×0.13λc)。图14为公开实施例的透明天线的一个子阵列100的S11及S21性能参数示意图;如图14所示,本公开实施例的透明天线1×3子阵列100在工作频率3400-3600MHz内满足S11大于17dB,并保持隔离度大于20dB。
图15为为公开实施例的透明天线的一个子阵列100在中心频率下的水平面以及垂直面方向图;如图15所示,本公开实施例的天线1×3子阵列100具备11dBi以上的天线增益。水平面和垂直面3dB波宽分别约为79°及28°。同时,垂直面波束整体具备3°电下倾特性,并保证上旁瓣与主瓣增益相差15dB以上。
图12和13为公开实施例的透明天线完整结构图,其包含96个透明振子单元或32组1×3子阵列100。本公开实施例的透明天线尺寸为660mm×351mm×12mm(7.7λ_c×4.1λc×0.13λc)。本公开实施例的透明天线除具备良好的隐藏特点外,还具备加工简单廉价等特点。
第三方面,本公开实施例中提供一种天线系统,其可以包括上述的透明天线。本公开实施例提供的天线系统还包括收发单元、射频收发机、信号放大器、功率放大器、滤波单元。天线系统中的透明天线可以作为发送天线,也可以作为接收天线。其中,收发单元可以包括基带和接收端,基带提供至少一个频段的信号,例如提供2G信号、3G信号、4G信号、5G信号等,并将至少一个频段的信号发送给射频收发机。而天线系统中的透明天线接收到信号后,可以经过滤波单元、功率放大器、信号放大器、射频收发机的处理后传输给首发单元中的接收端,接收端例如可以为智慧网关等。
进一步地,射频收发机与收发单元相连,用于调制收发单元发送的信号, 或用于解调透明天线接收的信号后传输给收发单元。具体地,射频收发机可以包括发射电路、接收电路、调制电路、解调电路,发射电路接收基底提供的多种类型的信号后,调制电路可以对基带提供的多种类型的信号进行调制,再发送给天线。而透明天线接收信号传输给射频收发机的接收电路,接收电路将信号传输给解调电路,解调电路对信号进行解调后传输给接收端。
进一步地,射频收发机连接信号放大器和功率放大器,信号放大器和功率放大器再连接滤波单元,滤波单元连接至少一个透明天线。在天线系统进行发送信号的过程中,信号放大器用于提高射频收发机输出的信号的信噪比后传输给滤波单元;功率放大器用于放大射频收发机输出的信号的功率后传输给滤波单元;滤波单元具体可以包括双工器和滤波电路,滤波单元将信号放大器和功率放大器输出的信号进行合路且滤除杂波后传输给透明天线,透明天线将信号辐射出去。在天线系统进行接收信号的过程中,透明天线接收到信号后传输给滤波单元,滤波单元将天线接收的信号滤除杂波后传输给信号放大器和功率放大器,信号放大器将天线接收的信号进行增益,增加信号的信噪比;功率放大器将透明天线接收的信号的功率放大。透明天线接收的信号经过功率放大器、信号放大器处理后传输给射频收发机,射频收发机再传输给收发单元。
在一些示例中,信号放大器可以包括多种类型的信号放大器,例如低噪声放大器,在此不做限制。
在一些示例中,本公开实施例提供的天线系统还包括电源管理单元,电源管理单元连接功率放大器,为功率放大器提供用于放大信号的电压。
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。

Claims (22)

  1. 一种透明振子单元,其包括:
    第一承载结构,具有相对设置的第一表面和第二表面;
    辐射组件,设置在所述第一承载结构的第一表面;
    馈电结构,设置在所述第一承载结构的第二表面;
    第二承载结构,设置在所述馈电结构背离所述辐射组件的一侧,且与所述第一承载结构相固定;
    参考电极层,设置在所述第二承载结构上;其中,
    所述辐射组件、所述馈电结构、所述参考电极层中任意两者在所述第二承载结构上的正投影至少部分重叠。
  2. 根据权利要求1所述的透明振子单元,其中,所述第一承载结构包括:
    承载基板,具有相对设置的第三表面和第四表面;
    承载凸台,设置在所述第一承载基板上,所述承载凸台设置在所述承载基板的第三表面上;所述承载凸台具有相对设置的第五表面和第六表面,且所述第五表面和所述第三表面连接形成所述第一表面;所述第六表面和所述第四表面连接形成所述第二表面;
    所述辐射组件设置在所述第五表面上,所述馈电结构设置在所述第四表面和所述第六表面上。
  3. 根据权利要求2所述的透明振子单元,其中,所述承载凸台具有内凹部;所述承载基板具有与所述内凹部对应第一开口;
    所述第五表面包括第一子表面,以及连接所述第三表面和所述第一子表面的第一连接侧面;所述第六表面包括第二子表面,以及连接在所述第四表面和第二子表面和第二连接侧面;
    所述辐射组件设置在所述第一子表面上;所述馈电结构由所述第四表面经过所述所述第二连接侧面延伸至所述第二子表面。
  4. 根据权利要求3所述的透明振子单元,其中,所述第二子表面包括第一部分和第二部分;所述馈电结构的部分结构位于所述第一部分上,所述第一部分到所述第二承载结构之间的距离不大于所述第二部分到所述第二承载结构之间的距离。
  5. 根据权利要求2所述的透明振子单元,其中,所述第一承载结构还包括包括:第一侧板和第二侧板;所述承载基板包括沿第一方向延伸,且在第二方向上相对设置的第一侧面和第二侧面;所述第一侧板连接在所述第一侧表面上,所述第二侧板连接在所述第二侧面上;所述第一侧板和所述第二侧边均凸出于所述第五表面和第六表面;
    所述第一侧板背离所述第一侧面的表面设置有第一隔离层;所述第二侧板背离所述第二侧面的表面设置有第二隔离层。
  6. 根据权利要求5所述的透明振子单元,其中,所述第一隔离层和第二隔离层中至少一者具有第二开口。
  7. 根据权利要求6所述的透明振子单元,其中,所述第二开口的在所述第一方向上的长度为半波长。
  8. 根据权利要求6所述的透明振子单元,其中,所述第一隔离层包括叠层设置的第一基材和第一导电层;所述第一基材与所述第一侧板相固定;
    所述第二隔离层包括叠层设置的第二基材和第二导电层;所述第二基材与所述第二侧板相固定。
  9. 根据权利要求8所述的透明振子单元,其中,所述第一导电层和第二导电层均包括金属网格结构。
  10. 根据权利要求5所述的透明振子单元,其中,所述第一侧板、所述第二侧板、所述承载基板和所述承载凸台为一体结构。
  11. 根据权利要求1-10中任一项所述的透明振子单元,其中,所述馈电结构包括第一馈电结构和第二馈电结构;所述第一馈电结构和所述第二馈电结构在所述第二承载结构正投影,与在所述辐射组件在所述第二承载结构正投影重叠的部分分别为第一线段和第二线段;所述第一线段和所述第二线段 的延伸方向均贯穿所述所述辐射组件在所述第二承载结构正投影的中心,且所述第一线段和所述第二线段的延伸方向相交。
  12. 根据权利要求1-10中任一项所述的透明振子单元,其中,所述辐射组件为中心对称图形。
  13. 根据权利要求12所述的透明振子单元,其中,所述辐射组件满足以下条件中的至少之一:
    具有中心孔;
    侧边上朝向中心内凹的缺口;
    各拐角为平倒角;
    各拐角上具有凸角。
  14. 根据权利要求1-10中任一项所述的透明振子单元,其中,所述辐射组件通过粘结层与所述第一承载结构的第一表面粘结。
  15. 根据权利要求1-10中任一项所述的透明振子单元,其中,所述辐射组件包括叠层设置的第三基材和第三导电层;所述第三基材与所述第一承载结构的第一表面相固定。
  16. 根据权利要求15所述的透明振子单元,其中,所述第三导电层包括金属网格结构。
  17. 根据权利要求16所述的透明振子单元,其中,所述金属网格的线宽为2-30μm;线间距为50-250μm;线厚度为1-10μm。
  18. 一种透明天线,其包括权利要求1-17中任一项所述的透明振子单元。
  19. 根据权利要求18所述的透明天线,其中,所述透明天线包括多个子阵列,每个所述子阵列包括沿第一方向并排设置的多个所述透明振子单元;每个所述子阵列中的透明振子单元的所述馈电结构共用。
  20. 根据权利要求19所述的透明天线,其中,所述馈电结构包括一个第一馈电端口、多个第二馈电端口和多条传输线,所述第二馈电端口与所述 子阵列中的所述透明振子单元的辐射组件一一对应;所述第一馈电端口与一个所述第二馈电端口之间连接一条所述传输线;所述子阵列中的各所述透明振子单元的辐射组件所对应的第二馈电端口所连接传输线的线长沿所述第一方向单调增或者单调减。
  21. 根据权利要求19所述的透明天线,其中,所述透明天线的工作频率为3400MHz-3600MHz。
  22. 一种天线系统,其包括权利要求18-21中任一项所述的透明天线。
PCT/CN2021/143478 2021-12-31 2021-12-31 透明振子单元、透明天线及天线系统 WO2023123298A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180004388.0A CN116897471A (zh) 2021-12-31 2021-12-31 透明振子单元、透明天线及天线系统
PCT/CN2021/143478 WO2023123298A1 (zh) 2021-12-31 2021-12-31 透明振子单元、透明天线及天线系统
US18/274,983 US20240154319A1 (en) 2021-12-31 2021-12-31 Transparent oscillator unit, transparent antenna and antenna system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/143478 WO2023123298A1 (zh) 2021-12-31 2021-12-31 透明振子单元、透明天线及天线系统

Publications (1)

Publication Number Publication Date
WO2023123298A1 true WO2023123298A1 (zh) 2023-07-06

Family

ID=86997135

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/143478 WO2023123298A1 (zh) 2021-12-31 2021-12-31 透明振子单元、透明天线及天线系统

Country Status (3)

Country Link
US (1) US20240154319A1 (zh)
CN (1) CN116897471A (zh)
WO (1) WO2023123298A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105870619A (zh) * 2016-05-19 2016-08-17 华南理工大学 一种具有高共模抑制的差分滤波微带阵列天线
CN109950691A (zh) * 2018-12-28 2019-06-28 瑞声科技(新加坡)有限公司 毫米波阵列天线和移动终端
WO2019163024A1 (ja) * 2018-02-21 2019-08-29 日本電業工作株式会社 アンテナ構造体
CN110466323A (zh) * 2019-08-09 2019-11-19 福耀玻璃工业集团股份有限公司 车窗玻璃及车辆
CN111063997A (zh) * 2019-12-31 2020-04-24 京信通信技术(广州)有限公司 阵列天线
CN111129737A (zh) * 2019-12-31 2020-05-08 京信通信技术(广州)有限公司 天线单元及阵列天线
CN211126057U (zh) * 2020-02-28 2020-07-28 盐城东山通信技术有限公司 一种天线振子组件
CN212277392U (zh) * 2020-07-17 2021-01-01 中兴通讯股份有限公司 振子模组、天线及通讯设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105870619A (zh) * 2016-05-19 2016-08-17 华南理工大学 一种具有高共模抑制的差分滤波微带阵列天线
WO2019163024A1 (ja) * 2018-02-21 2019-08-29 日本電業工作株式会社 アンテナ構造体
CN109950691A (zh) * 2018-12-28 2019-06-28 瑞声科技(新加坡)有限公司 毫米波阵列天线和移动终端
CN110466323A (zh) * 2019-08-09 2019-11-19 福耀玻璃工业集团股份有限公司 车窗玻璃及车辆
CN111063997A (zh) * 2019-12-31 2020-04-24 京信通信技术(广州)有限公司 阵列天线
CN111129737A (zh) * 2019-12-31 2020-05-08 京信通信技术(广州)有限公司 天线单元及阵列天线
CN211126057U (zh) * 2020-02-28 2020-07-28 盐城东山通信技术有限公司 一种天线振子组件
CN212277392U (zh) * 2020-07-17 2021-01-01 中兴通讯股份有限公司 振子模组、天线及通讯设备

Also Published As

Publication number Publication date
CN116897471A (zh) 2023-10-17
US20240154319A1 (en) 2024-05-09

Similar Documents

Publication Publication Date Title
JP4506728B2 (ja) アンテナ装置およびレーダ
JP2001094340A (ja) キャビティ付きスロットアレーアンテナ
CN207611862U (zh) 一种实现多模态涡旋电磁波的阵列天线
CN110401029B (zh) 辐射方向图可重构的宽角扫描天线
EP1291966B1 (en) Planar antenna for beam scanning
CN108134197A (zh) 一体化四点差分馈电低剖面双极化振子单元及基站天线
WO2018130014A1 (zh) 多波束背腔式高增益天线阵
CN109728440B (zh) 一种基于收发结构形式的平面宽带透镜天线
US12015205B2 (en) Transparent antenna and communication system
KR102711801B1 (ko) 시프트 직렬 급전을 이용한 이중편파 안테나
US12068769B2 (en) Transparent antenna and communication system
CN114300838A (zh) 应用于神经网络驱动相控阵双极化宽带宽角扫描阵列天线
CN106803615A (zh) 一种增益天线装置
WO2023123298A1 (zh) 透明振子单元、透明天线及天线系统
CN109326892B (zh) 毫米波天线阵元、天线阵列、通信装置
US7138947B2 (en) Antenna
WO2023184087A1 (zh) 天线及电子设备
US20240250403A1 (en) Antenna and communication system
JPH02214303A (ja) 平面アンテナ
US20240243463A1 (en) Transparent antenna and communication system
US20240275053A1 (en) Antenna and electronic device
US20240275054A1 (en) Antenna and electronic device
CN213026471U (zh) 一种三孔陶瓷基片及其天线
US20240322425A1 (en) Antenna and electronic device
TWM633009U (zh) 雙頻雙極化平面天線

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 18274983

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21969655

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE