WO2023123180A1 - 一种高焓激波风洞参数诊断方法和系统 - Google Patents
一种高焓激波风洞参数诊断方法和系统 Download PDFInfo
- Publication number
- WO2023123180A1 WO2023123180A1 PCT/CN2021/142954 CN2021142954W WO2023123180A1 WO 2023123180 A1 WO2023123180 A1 WO 2023123180A1 CN 2021142954 W CN2021142954 W CN 2021142954W WO 2023123180 A1 WO2023123180 A1 WO 2023123180A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- enthalpy
- shock
- flow field
- nozzle
- flow
- Prior art date
Links
- 230000035939 shock Effects 0.000 title claims abstract description 136
- 238000000034 method Methods 0.000 title claims abstract description 30
- 238000003745 diagnosis Methods 0.000 title claims abstract description 19
- 238000012360 testing method Methods 0.000 claims abstract description 35
- 238000000295 emission spectrum Methods 0.000 claims abstract description 12
- 238000004088 simulation Methods 0.000 claims abstract description 12
- 238000001228 spectrum Methods 0.000 claims abstract description 4
- 239000000523 sample Substances 0.000 claims description 55
- 238000004847 absorption spectroscopy Methods 0.000 claims description 31
- 238000012545 processing Methods 0.000 claims description 28
- 230000003068 static effect Effects 0.000 claims description 26
- 238000005259 measurement Methods 0.000 claims description 24
- 238000004993 emission spectroscopy Methods 0.000 claims description 22
- 230000003595 spectral effect Effects 0.000 claims description 13
- 238000001514 detection method Methods 0.000 claims description 8
- 239000013307 optical fiber Substances 0.000 claims description 6
- 238000004364 calculation method Methods 0.000 claims description 3
- 238000010521 absorption reaction Methods 0.000 claims 1
- 238000004020 luminiscence type Methods 0.000 claims 1
- 238000000862 absorption spectrum Methods 0.000 abstract description 5
- 238000000691 measurement method Methods 0.000 abstract 5
- 239000007921 spray Substances 0.000 abstract 2
- 238000005516 engineering process Methods 0.000 description 25
- 230000003287 optical effect Effects 0.000 description 4
- 239000000126 substance Substances 0.000 description 3
- 238000010494 dissociation reaction Methods 0.000 description 2
- 230000005593 dissociations Effects 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000005286 illumination Methods 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M9/00—Aerodynamic testing; Arrangements in or on wind tunnels
- G01M9/06—Measuring arrangements specially adapted for aerodynamic testing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M9/00—Aerodynamic testing; Arrangements in or on wind tunnels
- G01M9/02—Wind tunnels
- G01M9/04—Details
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M9/00—Aerodynamic testing; Arrangements in or on wind tunnels
- G01M9/06—Measuring arrangements specially adapted for aerodynamic testing
- G01M9/065—Measuring arrangements specially adapted for aerodynamic testing dealing with flow
- G01M9/067—Measuring arrangements specially adapted for aerodynamic testing dealing with flow visualisation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M9/00—Aerodynamic testing; Arrangements in or on wind tunnels
- G01M9/08—Aerodynamic models
Definitions
- the invention relates to a high-enthalpy shock tunnel parameter diagnosis method and system, belonging to the field of hypersonic aerodynamic tests.
- the physical ground simulation of reentry is usually carried out by using the high enthalpy shock tunnel.
- the characteristic of high-enthalpy flow in re-entry physical ground simulation is that it has a strong spontaneous emission characteristic, and the air is dissociated or even ionized, and the information content is extremely rich. It is a relatively precious experimental data for studying the equilibrium and non-equilibrium properties of the flow.
- the technical solution of the present invention is: aiming at the characteristics of high-enthalpy shock tunnels producing high-temperature, high-pressure test gas and short effective flow field time, using contact measurement technology, laser schlieren technology, non-contact absorption spectrum technology, non-contact emission spectrum Technology and multi-component multi-question numerical simulation technology to diagnose high-enthalpy flow gas information, and propose a high-enthalpy shock tunnel flow field parameter diagnosis method and system.
- the accuracy of the flow field in the high-enthalpy shock tunnel test is improved, and more accurate free flow parameters can be obtained.
- a high enthalpy shock tunnel flow field parameter diagnosis system including: piezoelectric sensor, total pressure sensor, absorption spectrum system, emission spectrum system, pitot pressure probe, static pressure probe, a stagnation point heat flow probe, a first data processing system, and a second data processing system;
- a number of piezoelectric sensors are installed on the shock tube, and a total pressure sensor is installed at the end of the shock tube; collimators and detectors of the non-contact absorption spectroscopy system and emission spectroscopy system are installed near the total pressure sensor at the end of the shock tube.
- the collimators and detectors of the non-contact absorption spectroscopy system and emission spectroscopy system are installed in the test section; Pitot pressure probes, static pressure probes, and stagnation heat flow probes are installed on the bent racks in the test section to measure the test section.
- the measurement band of the emission spectroscopy system is from 0.1 ⁇ m to 6 ⁇ m, which is determined according to the spectral information of the shock tube terminal chamber and the free flow parameters of the high-enthalpy nozzle.
- the non-contact absorption spectroscopy system uses NO and O lasers to measure the concentration of NO and O in the end chamber of the shock tube and the free flow components of the nozzle; using a near-infrared detection device, a spectral line is used to measure the concentration of the shock tube end chamber and The temperature of the free flow of the high-enthalpy nozzle; a near-infrared detection device is installed on the cross-bar in the test section, and two spectral lines are used to measure the velocity. The angle between the two optical paths of the velocity measurement is 30°-60°.
- the laser schlieren system penetrates the self-illuminating flow field at the exit of the high-enthalpy nozzle, filters the self-illumination, and captures the clear distance of the shock wave from the head of the ball head; the monochromatic laser light source penetrates strong light and high temperature areas, and passes through Install the matching filter in front of the camera to observe the clear flow field structure.
- the first data acquisition system and the second data acquisition system use a PXI test platform, and multiple sets of PXIe chassis are cascaded to realize multi-channel cascading, and the acquisition frequency is greater than 100kHz.
- a method for diagnosing flow field parameters in a high-enthalpy shock tunnel comprising the following steps:
- Step (1) install some piezoelectric sensors on the shock tube, install the total pressure sensor at the end of the shock tube; install the collimator and Detector, install the collimator and detector of the non-contact absorption spectroscopy system and the emission spectroscopy system in the test section; install pitot pressure probes, static pressure probes, and stagnation heat flow probes on the bent racks in the test section, It is used to measure the Pitot pressure, static pressure and stagnation heat flow of the flow field in the test section; the data measured by the non-contact absorption spectroscopy system, emission spectroscopy system and Pitot pressure probe, static pressure probe and stagnation heat flow probe send to the first data processing system and the second data processing system respectively through optical fiber or data line for data processing;
- Step (3) using a total pressure sensor installed on the end wall of the shock tube to measure the total pressure P0 of the chamber at the end of the shock tube after the incident shock wave is reflected;
- Step (4) using a non-contact absorption spectroscopy system to measure the translational temperature and NO/O component concentration of the gas in the chamber at the end of the shock tube and the free-flow gas of the high-enthalpy nozzle (3);
- Step (5) using the emission spectrum system to measure the vibration temperature and component spectrum information of the gas in the chamber at the end of the shock tube and the free-flow gas of the nozzle;
- Step (6) install the ball head on the cross-bracket of the test section, use the laser schlieren system to measure the structure of the flow field around the ball head, and obtain the distance of the shock wave at the head of the ball head;
- Step (7) using the pitot pressure probe, static pressure probe and stagnation point heat flow probe installed on the test section cross-bracket to obtain the pitot pressure, static pressure and stagnation point heat flow of the flow field;
- Step (8) use step (2) and step (3) to measure and obtain the incident shock wave velocity V and the total pressure P 0 of the end chamber of the shock tube, using the thermodynamic numerical model of high-temperature air and the theory of quasi-one-dimensional shock wave management , calculate the shock tube end chamber parameters under high temperature conditions (2000K ⁇ 10000K), and compare the shock tube end chamber parameters with the shock tube end chamber temperature measured in step (4) and the NO/O group If the deviation of the two data is greater than the set threshold a, it is necessary to modify the thermodynamic numerical model and iterate again until the deviation of the two data ⁇ the set threshold a;
- Step (9) using the resident parameters at the end of the shock tube iteratively completed in step (8) as input values to calculate the initial conditions of the flow field of the high-enthalpy nozzle, the calculation of the flow field of the high-enthalpy nozzle uses the multi-component and multi-temperature
- the thermochemical non-equilibrium numerical simulation method is carried out, and the calculated high-enthalpy nozzle outlet parameters are obtained; the high-enthalpy nozzle outlet parameters are compared with the measured data in steps (3) to (7), if the deviation of the two data is greater than The set threshold b, then modify the numerical model and iterate again until the deviation of the two data ⁇ the set threshold b.
- the method for diagnosing flow field parameters of a high-enthalpy shock wave wind tunnel uses an emission spectrum system to measure the free-flow gas components in the high-enthalpy nozzle chamber and nozzle outlet, and judges whether the wind tunnel is effective according to whether there is a driving gas component. running time t1;
- the effective running time t3 of the wind tunnel is judged according to the shock wave distance of the ball head taken off the body by the laser schlieren system; the minimum value among time t1, time t2 and time t3 is taken as the effective running time of the wind tunnel.
- the wavelength range of the monochromatic laser light source used in the laser schlieren system is 520-720nm.
- the present invention uses contact measurement technology, laser schlieren technology, non-contact absorption spectrum measurement technology, non-contact emission spectrum measurement technology and multi-component multi-temperature numerical simulation technology to jointly diagnose the resident parameters of the shock tube end of the high-enthalpy shock tunnel And nozzle free flow parameters, not only the flow field temperature, pressure, flow field component category and component concentration can be obtained, but also the flow field non-equilibrium state information and the effective operation time of the wind tunnel can be obtained.
- a high-enthalpy shock tunnel flow field parameter diagnosis method of the present invention a high-enthalpy flow field parameter measurement platform can be built, which has very high sensitivity, continuous time resolution and fast time response, and is a better preferred method .
- Fig. 1 is a flowchart of a method for diagnosing flow field parameters in a high-enthalpy shock tunnel according to the present invention.
- Fig. 2 is a schematic diagram of a method for diagnosing flow field parameters in a high-enthalpy shock tunnel according to the present invention.
- a high-enthalpy shock wave wind tunnel flow field parameter diagnosis system includes: piezoelectric sensor, total pressure sensor, absorption spectroscopy system 7, emission spectroscopy system 9, pitot pressure probe, static pressure probe, station Point heat flow probe, first data processing system 8 and second data processing system 10;
- a number of piezoelectric sensors are installed on the shock tube 1, and a total pressure sensor is installed at the end of the shock tube 1; near the total pressure sensor at the end of the shock tube 1, the collimator and the collimator of the non-contact absorption spectroscopy system 7 and the emission spectroscopy system 9 are installed.
- Detector, non-contact absorption spectroscopy system 7 is installed in test section 4 (the optical fiber probe of absorption spectroscopy system 7 is arranged at the optical window 6 of test section 4) and the collimator and detector of emission spectroscopy system 9; Pitot pressure probes, static pressure probes, and stagnation point heat flow probes are installed on the bent frame 5 in the middle to measure the pitot pressure, static pressure, and stagnation point heat flow of the flow field in the test section; the non-contact absorption spectroscopy system 7, The data measured by the emission spectroscopy system 9 and the pitot pressure probe, static pressure probe, and stagnation heat flow probe are sent to the first data processing system 8 and the second data processing system 10 respectively through optical fibers or data lines for data processing .
- the measurement band of the emission spectroscopy system 9 is 0.1 ⁇ m to 6 ⁇ m, which is determined according to the spectral information of the end chamber of the shock tube 1 and the free flow parameters of the high-enthalpy nozzle 3 .
- the non-contact absorption spectroscopy system 7 uses NO and O lasers to measure the concentration of NO and O in the free flow components at the end of the shock tube 1 and in the nozzle; uses a near-infrared detection device to measure the concentration of the end of the shock tube 1 using a spectral line The temperature of the resident chamber and the free flow of the high-enthalpy nozzle 3; a near-infrared detection device is installed on the crossbow 5 in the test section, and two spectral lines are used to measure the velocity. The angle between the two optical paths of the velocity measurement is 30°-60°.
- the laser schlieren system penetrates the self-illuminating flow field at the outlet of the high-enthalpy nozzle 3, and filters the self-illumination to capture a clear shock distance from the head of the ball head; the monochromatic laser light source penetrates strong light and high temperature areas, By installing a matching filter in front of the camera, a clear flow field structure can be observed.
- the first data acquisition system 8 and the second data acquisition system 10 adopt a PXI test platform, adopt multiple sets of PXIe chassis to cascade to realize multi-channel cascade, and the acquisition frequency is greater than 100kHz.
- the present invention provides a method for diagnosing flow field parameters in a high-enthalpy shock wave wind tunnel, providing a feasible idea that has been verified by experiments for the diagnosis of high-enthalpy flow field parameters.
- the key points utilize contact measurement technology, laser schlieren technology, non-contact absorption spectroscopy measurement technology, non-contact emission spectroscopy measurement technology and multi-component multi-temperature numerical simulation technology to jointly diagnose the resident parameters at the end of the shock tube 1 of the high-enthalpy shock tunnel and the free flow parameters of the nozzle.
- the results meet the requirements of the flow field, that is, when the test measurement results match the numerical simulation results, the flow field parameter diagnosis of the high-enthalpy shock tunnel is completed.
- the invention not only can obtain flow field temperature, pressure, flow field component category and component concentration, but also can obtain flow field non-equilibrium state information and wind tunnel effective running time.
- Step 1 Install a series of piezoelectric sensors on the shock tube 1 and install a total pressure sensor at the end of the shock tube 1 .
- the collimator and detector of the non-contact absorption spectroscopy system 7 and the emission spectroscopy system 9 are installed near the total pressure sensor at the end of the shock tube 1, and the collimators of the non-contact absorption spectroscopy system 7 and the emission spectroscopy system 9 are also installed in the test section 4. Straighteners and detectors.
- Pitot pressure probes, static pressure probes, and stagnation point heat flow probes are installed on cross bracket 5 in test section 4, and non-contact absorption spectroscopy system 7, emission spectroscopy system 9, pitot pressure probes, static pressure
- the data measured by the probe and the stagnation heat flow probe are respectively sent to the first data processing system 8 and the second data processing system 10 through optical fiber or data line for data processing; between the shock tube 1 and the high-enthalpy nozzle 3 Set diaphragm 2.
- Step 3 Install a total pressure sensor on the end wall of the shock tube 1, measure the total pressure P 0 of the chamber at the end of the shock tube 1 after the incident shock wave is reflected, and obtain the velocity V of the incident shock wave and the pressure of the chamber at the end of the shock tube 1.
- the total pressure P 0 using the thermodynamic data of high temperature air, calculates the resident parameters under high temperature conditions.
- Step 4 using the non-contact absorption spectroscopy system 7 to measure the translational temperature, NO/O component concentration, etc. of the resident gas at the end of the shock tube 1 and the free-flow gas of the high-enthalpy nozzle 3 .
- Step 5 Install the emission spectroscopy system 9 at the end of the shock tube 1 close to the total pressure sensor and in the test section, and measure the vibration temperature and component spectrum information of the resident gas at the end of the shock tube 1 and the free-flow gas of the nozzle 3 .
- Step 6 Install the ball head in the uniform flow field area of the test section 4, and use the laser schlieren system to measure the structure of the flow field around the ball head to obtain the distance of the shock wave at the head of the ball head.
- Step 7 Install pitot pressure probes, static pressure probes and stagnation point heat flow probes in the uniform flow field area of test section 4 to obtain the pitot pressure, static pressure and stagnation point heat flow of the flow field.
- Step 8 Obtain the incident shock wave velocity V and the total pressure P 0 of the chamber at the end of the shock tube 1 by using steps 2 and 3, and use the thermodynamic numerical model of high-temperature air and quasi-one-dimensional shock management theory to calculate the high-temperature state conditions (2000K ⁇ 10000K) for the resident parameters of the shock tube 1 end, compare the resident parameters of the shock tube 1 end with the measured temperature and NO/O component concentration of the shock tube 1 end resident chamber, if the two data If the deviation is greater than 4%, it is necessary to modify the thermodynamic numerical model and iterate again until the deviation of the two data is ⁇ 4%;
- Step 9 Use the resident parameters at the end of the shock tube 1 iteratively completed in step 8 as the input value to calculate the initial conditions of the flow field of the high-enthalpy nozzle 3.
- the calculation of the flow field of the high-enthalpy nozzle 3 uses the heat of multi-component and multi-temperature
- the chemical non-equilibrium numerical simulation method is carried out, and the calculated high-enthalpy nozzle 3 outlet parameters are compared; the high-enthalpy nozzle 3 outlet parameters are compared with the measured data in steps 3 to 7, if the deviation between the two data is greater than 6%, Then modify the numerical model and iterate again until the deviation between the two data is ⁇ 6%.
- non-contact absorption spectroscopy system 7 uses the non-contact absorption spectroscopy system 7 to measure the NO/O concentration in the chamber of the high-enthalpy nozzle 3 and the free flow at the outlet of the nozzle, and determine the effective running time t2 of the wind tunnel;
- the effective running time t3 of the wind tunnel is judged according to the shock wave distance of the ball head taken off the body by the laser schlieren system; the minimum value among time t1, time t2 and time t3 is taken as the effective running time of the wind tunnel.
- the present invention uses contact measurement technology, laser schlieren technology, non-contact absorption spectrum measurement technology, non-contact emission spectrum measurement technology and multi-component multi-temperature numerical simulation technology to jointly diagnose the chamber at the end of shock tube 1 in a high-enthalpy shock tunnel.
- Parameters and nozzle free flow parameters not only the flow field temperature, pressure, flow field component category and component concentration can be obtained, but also the flow field non-equilibrium state information and the effective operation time of the wind tunnel can be obtained.
- a high-enthalpy shock tunnel flow field parameter diagnosis method of the present invention a high-enthalpy flow field parameter measurement platform can be built, which has very high sensitivity, continuous time resolution and fast time response, and is a better preferred method .
Landscapes
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- General Physics & Mathematics (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)
Abstract
一种高焓激波风洞流场参数诊断方法和系统,涉及到高焓激波风洞试验领域。诊断方法利用高焓激波风洞,采用接触测量技术和非接触光谱测量技术,测量激波管(1)末端驻室参数和喷管(3)自由流参数,诊断高焓激波风洞流场。利用接触测量技术、激光纹影技术、非接触吸收光谱测量技术、非接触发射光谱测量技术和多组分多温度数值模拟技术诊断高焓激波风洞激波管(1)末端驻室参数及喷管(3)自由流参数,不仅仅可以获得流场温度、压力、流场组分类别和组分浓度,还可以获得流场非平衡态信息、风洞有效运行时间。
Description
本申请要求于2021年12月27日提交中国专利局、申请号为202111619055.7、发明名称为“一种高焓激波风洞参数诊断方法和系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本发明涉及一种高焓激波风洞参数诊断方法和系统,属于高超声速空气动力学试验领域。
随着人类航天科技不断进步,近地空间可能存在各类超声速及高超声速再入式飞行物体,当再入体高速重返大气层时,再入体与大气之间存在强烈摩擦,其前端形成很强的脱体激波,在激波强烈压缩作用下,大量的飞行器动能转化为热能,形成高焓流动,引起气体分子振动能激发、离解、复合和电离等复杂物理化学变化。
为研究此类再入体再入现象,通常利用高焓激波风洞进行再入物理地面模拟。再入物理地面模拟中高焓流动特点是具有较强的自发发射特性,空气发生离解甚至电离,信息含量极其丰富,是研究流动的平衡与非平衡性质较珍贵的试验资料。
高焓流动中气体分子振动能激发、离解、复合和电离等复杂物理化学变化过程中发生的能级跃迁,导致能量发生变化,此变化会造成分子具有有特定光谱线,因此利用接触测量技术结合非接触光谱技术来诊断高焓流动气体信息,进而获得高焓激波风洞自由流的平动温度、振动温度、气体组分及流动时间等参数,联合多组分多温度数值模拟技术,为高焓激波风洞驻室及自由流参数诊断提供一种经过试验验证的可行思路。本发明即基于上述背景开展。
发明内容
本发明的技术解决问题是:针对高焓激波风洞产生高温、高压试验气体及有效流场时间短的特点,利用接触测量技术、激光纹影技术、非接触吸收光谱技术、非接触发射光谱技术和多组分多问数值模拟技术来诊断高焓流动气体信息,提出了一种高焓激波风洞流场参数诊断方法和系统。提高了高焓激波风洞试验流场精度,能够获得更加准确的自由流参数。
本发明的技术方案是:一种高焓激波风洞流场参数诊断系统,包括:压电传感器、总压传感器、吸收光谱系统、发射光谱系统、皮托压探针、静压探针、驻点热流探针、第一数据处理系统和第二数据处理系统;
在激波管上安装若干压电传感器,在激波管末端安装总压传感器;在激波管末端总压传感器附近安装非接触吸收光谱系统和发射光谱系统的准直器及探测器,在试验段安装非接触吸收光谱系统和发射光谱系统的准直器及探测器;在试验段中的排架上安装皮托压探针、静压探针、驻点热流探针,用于测量试验段流场的皮托压、静压和驻点热流;非接触吸收光谱系统、发射光谱系统和皮托压探针、静压探针、驻点热流探针所测量的数据通过光纤或者数据线分别发送至第一数据处理系统和第二数据处理系统中进行数据处理。
发射光谱系统的测量波段在0.1μm~6μm,根据激波管末端驻室和高焓喷管自由流参数的光谱信息决定。
非接触吸收光谱系统采用NO和O激光器,测量激波管末端驻室和喷管自由流组分NO和O的浓度;利用近红外探测装置,采用一条光谱谱线测量激波管末端驻室和高焓喷管自由流的温度;在试验段的十字排架上安装近红外探测装置,采用两条谱线进行测速,测速的两条光路夹角为30°~60°。
激光纹影系统穿透高焓喷管出口的自发光的流场,并将自发光过滤,拍摄清晰的球头头部脱体激波距离;单色激光光源穿透强光和高温区域,通过在相机前安装配套的滤光片,能够观察到清晰的流场结构。
第一数据采集系统、第二数据采集系统采用PXI测试平台,采用多套 PXIe机箱级联方式实现多通道级联,采集频率大于100kHz。
一种高焓激波风洞流场参数诊断方法,包括以下步骤:
步骤(一)、在激波管上安装若干压电传感器,在激波管末端安装总压传感器;在激波管末端总压传感器附近安装非接触吸收光谱系统和发射光谱系统的准直器及探测器,在试验段安装非接触吸收光谱系统和发射光谱系统的准直器及探测器;在试验段中的排架上安装皮托压探针、静压探针、驻点热流探针,用于测量试验段流场的皮托压、静压和驻点热流;将非接触吸收光谱系统、发射光谱系统和皮托压探针、静压探针、驻点热流探针所测量的数据通过光纤或者数据线分别发送至第一数据处理系统和第二数据处理系统中进行数据处理;
步骤(二)、利用激波管上壁面的压电传感器,测量入射激波经过压电传感器的时间间隔Δt,根据压电传感器彼此间的距离ΔL,计算入射激波速度V=ΔL/Δt;
步骤(三)、利用激波管末端壁面安装总压传感器,测量入射激波反射后激波管末端驻室的总压P
0;
步骤(四)、利用非接触吸收光谱系统测量激波管末端驻室气体和高焓喷管(3)自由流气体的平动温度、NO/O组分浓度;
步骤(五)、利用发射光谱系统测量激波管末端驻室气体和喷管自由流气体的振动温度、组分光谱信息;
步骤(六)、在试验段十字排架上安装球头,利用激光纹影系统,测量球头周围流场的结构,获得球头头部激波的距离;
步骤(七)、利用试验段十字排架上安装皮托压探针、静压探针和驻点热流探针,获得流场的皮托压、静压和驻点热流;
步骤(八)、利用步骤(二)和步骤(三)测量获得入射激波速度V和激波管末端驻室的总压P
0,采用高温空气的热力学数值模型和准一维激波管理论,计算高温状态条件(2000K~10000K)下的激波管末端驻室参数,将激 波管末端驻室参数与步骤(四)中测得的激波管末端驻室的温度和NO/O组分浓度进行对比,若两者数据的偏差大于设定的阈值a,则需要修改热力学数值模型,再次迭代,直到两者数据的偏差≤设定的阈值a;
步骤(九)、将步骤(八)中迭代完成的激波管末端驻室参数作为输入数值,计算高焓喷管流场的初始条件,高焓喷管流场计算利用多组分多温度的热化学非平衡数值模拟方法进行,计算得到的高焓喷管出口参数;将高焓喷管出口参数与步骤(三)~步骤(七)中的测量数据进行对比,若两者数据的偏差大于设定的阈值b,则修改数值模型,再次迭代,直到两者数据的偏差≤设定的阈值b。
所述的一种高焓激波风洞流场参数诊断方法,利用发射光谱系统测量高焓喷管驻室和喷管出口自由流气体组分,根据是否有驱动气体组分,判断风洞有效运行时间t1;
利用非接触吸收光谱系统测量高焓喷管驻室和喷管出口自由流的NO/O浓度大小,判断风洞有效运行时间t2;
利用激光纹影系统拍摄的球头脱体激波距离,根据脱体激波距离,判断风洞有效运行时间t3;取时间t1、时间t2和时间t3中的最小值作为风洞有效运行时间。
激光纹影系统中采用的单色激光光源的波长范围为520~720nm。
本发明与现有技术相比的有益效果是:
本发明利用接触测量技术、激光纹影技术、非接触吸收光谱测量技术、非接触发射光谱测量技术和多组分多温度数值模拟技术等共同诊断高焓激波风洞激波管末端驻室参数及喷管自由流参数,不仅仅可以获得流场温度、压力、流场组分类别和组分浓度,还可以获得流场非平衡态信息、风洞有效运行时间。利用本发明的高焓激波风洞流场参数诊断方法,可以搭建高焓流场参数测量平台,具有非常高的灵敏度,连续的时间分辨率及快速时间响应,是一种较好的优选方法。
图1为本发明涉及的高焓激波风洞流场参数诊断方法流程。
图2为本发明涉及的高焓激波风洞流场参数诊断方法示意图。
其中,1.激波管,2.膜片,3.高焓喷管,4.试验段,5.安装传感器的十字排架,6.光学窗口,7.吸收光谱系统,8.数据处理系统,9.发射光谱系统,10.数据处理系统。
下面通过对本发明进行详细说明,本发明的特点和优点将随着这些说明而变得更为清楚、明确。
在这里专用的词“示例性”意为“用作例子、实施例或说明性”。这里作为“示例性”所说明的任何实施例不必解释为优于或好于其它实施例。尽管在附图中示出了实施例的各种方面,但是除非特别指出,不必按比例绘制附图。
如图2,一种高焓激波风洞流场参数诊断系统,包括:压电传感器、总压传感器、吸收光谱系统7、发射光谱系统9、皮托压探针、静压探针、驻点热流探针、第一数据处理系统8和第二数据处理系统10;
在激波管1上安装若干压电传感器,在激波管1末端安装总压传感器;在激波管1末端总压传感器附近安装非接触吸收光谱系统7和发射光谱系统9的准直器及探测器,在试验段4安装非接触吸收光谱系统7(吸收光谱系统7的光纤探头设置在试验段4的光学窗口6处)和发射光谱系统9的准直器及探测器;在试验段4中的排架5上安装皮托压探针、静压探针、驻点热流探针,用于测量试验段流场的皮托压、静压和驻点热流;非接触吸收光谱系统7、发射光谱系统9和皮托压探针、静压探针、驻点热流探针所测量的数据通过光纤或者数据线分别发送至第一数据处理系统8和第二数据处理系统10中进行数据处理。
发射光谱系统9的测量波段在0.1μm~6μm,根据激波管1末端驻室和高焓喷管3自由流参数的光谱信息决定。
非接触吸收光谱系统7采用NO和O激光器,测量激波管1末端驻室和喷管自由流组分NO和O的浓度;利用近红外探测装置,采用一条光谱谱线测量激波管1末端驻室和高焓喷管3自由流的温度;在试验段的十字排架5上安装近红外探测装置,采用两条谱线进行测速,测速的两条光路夹角为30°~60°。
激光纹影系统穿透高焓喷管3出口的自发光的流场,并将自发光过滤,拍摄清晰的球头头部脱体激波距离;单色激光光源穿透强光和高温区域,通过在相机前安装配套的滤光片,能够观察到清晰的流场结构。
第一数据采集系统8、第二数据采集系统10采用PXI测试平台,采用多套PXIe机箱级联方式实现多通道级联,采集频率大于100kHz。
如图1,本发明给出一种高焓激波风洞流场参数诊断方法,为高焓流场参数诊断提供一种经过试验验证的可行思路,关键点利用利用接触测量技术、激光纹影技术、非接触吸收光谱测量技术、非接触发射光谱测量技术和多组分多温度数值模拟技术等共同诊断高焓激波风洞激波管1末端驻室参数及喷管自由流参数,当验证结果满足流场要求,即试验测量结果与数值模拟结果相匹配时,完成高焓激波风洞流场参数诊断。本发明不仅仅可以获得流场温度、压力、流场组分类别和组分浓度,还可以获得流场非平衡态信息、风洞有效运行时间。
步骤一、在激波管1上安装一系列压电传感器,在激波管1末端安装总压传感器。在激波管1末端总压传感器附近安装非接触吸收光谱系统7和发射光谱系统9的准直器及探测器,同时在试验段4也安装非接触吸收光谱系统7和发射光谱系统9的准直器及探测器。在试验段4中的十字排架5上安装皮托压探针、静压探针、驻点热流探针,将非接触吸收光谱系统7、发射光谱系统9和皮托压探针、静压探针、驻点热流探针所测量的数据通过光纤或者数据线分别发送至第一数据处理系统8和第二数据处理系统10中进行数据处理;激波管1和高焓喷管3之间设置膜片2。
步骤二、利用激波管1上壁面的压电传感器,测量入射激波经过压电传感器的时间间隔Δt,根据压电传感器彼此间的距离ΔL,计算入射激波速度V=ΔL/Δt。
步骤三、利用激波管1末端壁面安装总压传感器,测量入射激波反射后激波管1末端驻室的总压P
0,测量获得入射激波速度V和激波管1末端驻室的总压P
0,采用高温空气的热力学数据,计算高温状态条件下的驻室参数。
步骤四、利用非接触吸收光谱系统7测量激波管1末端驻室气体和高焓喷管3自由流气体的平动温度、NO/O组分浓度等。
步骤五、在激波管1末端靠近总压传感器位置以及试验段都安装发射光谱系统9,测量激波管1末端驻室气体和喷管3自由流气体的振动温度、组分光谱信息。
步骤六、在试验段4流场均匀区安装球头,利用激光纹影系统,测量球头周围流场的结构,获得球头头部激波的距离。
步骤七、在试验段4流场均匀区安装皮托压探针、静压探针和驻点热流探针,获得流场的皮托压、静压和驻点热流。
步骤八、利用步骤二和步骤三测量获得入射激波速度V和激波管1末端驻室的总压P
0,采用高温空气的热力学数值模型和准一维激波管理论,计算高温状态条件(2000K~10000K)下的激波管1末端驻室参数,将激波管1末端驻室参数与测量激波管1末端驻室的温度和NO/O组分浓度进行对比,若两者数据的偏差大于4%,则需要修改热力学数值模型,再次迭代,直到两者数据的偏差≤4%;
步骤九、将步骤八中迭代完成的激波管1末端驻室参数作为输入数值,计算高焓喷管3流场的初始条件,高焓喷管3流场计算利用多组分多温度的热化学非平衡数值模拟方法进行,计算得到的高焓喷管3出口参数;将高焓喷管3出口参数与步骤三~步骤七中的测量数据进行对比,若两者数据的偏差大于6%,则修改数值模型,再次迭代,直到两者数据的偏差≤6%。
利用发射光谱系统9测量高焓喷管3驻室和喷管出口自由流气体组分,根据是否有驱动气体组分,判断风洞有效运行时间t1;
利用非接触吸收光谱系统7测量高焓喷管3驻室和喷管出口自由流的NO/O浓度大小,判断风洞有效运行时间t2;
利用激光纹影系统拍摄的球头脱体激波距离,根据脱体激波距离,判断风洞有效运行时间t3;取时间t1、时间t2和时间t3中的最小值作为风洞有效运行时间。
本发明利用接触测量技术、激光纹影技术、非接触吸收光谱测量技术、非接触发射光谱测量技术和多组分多温度数值模拟技术等共同诊断高焓激波风洞激波管1末端驻室参数及喷管自由流参数,不仅仅可以获得流场温度、压力、流场组分类别和组分浓度,还可以获得流场非平衡态信息、风洞有效运行时间。利用本发明的高焓激波风洞流场参数诊断方法,可以搭建高焓流场参数测量平台,具有非常高的灵敏度,连续的时间分辨率及快速时间响应,是一种较好的优选方法。
本发明说明书中未作详细描述的内容属于本领域专业技术人员的公知技术。
Claims (13)
- 一种高焓激波风洞流场参数诊断方法,其特征在于,包括以下步骤:步骤(一)、在激波管(1)上安装若干压电传感器,在激波管(1)末端安装总压传感器;在激波管(1)末端总压传感器附近安装非接触吸收光谱系统(7)和发射光谱系统(9)的准直器及探测器,在试验段(4)安装非接触吸收光谱系统(7)和发射光谱系统(9)的准直器及探测器;在试验段(4)中的排架(5)上安装皮托压探针、静压探针、驻点热流探针,用于测量试验段流场的皮托压、静压和驻点热流;将非接触吸收光谱系统(7)、发射光谱系统(9)和皮托压探针、静压探针、驻点热流探针所测量的数据通过光纤或者数据线分别发送至第一数据处理系统(8)和第二数据处理系统(10)中进行数据处理;步骤(二)、利用激波管(1)上壁面的压电传感器,测量入射激波经过压电传感器的时间间隔Δt,根据压电传感器彼此间的距离ΔL,计算入射激波速度V=ΔL/Δt;步骤(三)、利用激波管(1)末端壁面安装总压传感器,测量入射激波反射后激波管(1)末端驻室的总压P 0;步骤(四)、利用非接触吸收光谱系统(7)测量激波管(1)末端驻室气体和高焓喷管(3)自由流气体的平动温度、NO/O组分浓度;步骤(五)、利用发射光谱系统(9)测量激波管(1)末端驻室气体和喷管(3)自由流气体的振动温度、组分光谱信息;步骤(六)、在试验段十字排架(5)上安装球头,利用激光纹影系统,测量球头周围流场的结构,获得球头头部激波的距离;步骤(七)、利用试验段十字排架(5)上安装皮托压探针、静压探针和驻点热流探针,获得流场的皮托压、静压和驻点热流;步骤(八)、利用步骤(二)和步骤(三)测量获得入射激波速度V和激波管(1)末端驻室的总压P 0,采用高温空气的热力学数值模型和准一维 激波管理论,计算高温状态条件下的激波管(1)末端驻室参数,将激波管(1)末端驻室参数与步骤(四)中测得的激波管(1)末端驻室的温度和NO/O组分浓度进行对比,若两者数据的偏差大于设定的阈值a,则需要修改热力学数值模型,再次迭代,直到两者数据的偏差≤设定的阈值a;步骤(九)、将步骤(八)中迭代完成的激波管(1)末端驻室参数作为输入数值,计算高焓喷管(3)流场的初始条件,高焓喷管(3)流场计算利用多组分多温度的热化学非平衡数值模拟方法进行,计算得到的高焓喷管(3)出口参数;将高焓喷管(3)出口参数与步骤(三)~步骤(七)中的测量数据进行对比,若两者数据的偏差大于设定的阈值b,则修改数值模型,再次迭代,直到两者数据的偏差≤设定的阈值b。
- 根据权利要求1所述的一种高焓激波风洞流场参数诊断方法,其特征在于:发射光谱系统(9)的测量波段在0.1μm~6μm,根据激波管(1)末端驻室和高焓喷管(3)自由流参数的光谱信息决定。
- 根据权利要求2所述的一种高焓激波风洞流场参数诊断方法,其特征在于:非接触吸收光谱系统(7)采用NO和O激光器,测量激波管(1)末端驻室和喷管自由流组分NO和O的浓度;利用近红外探测装置,采用一条光谱谱线测量激波管(1)末端驻室和高焓喷管(3)自由流的温度;在试验段的十字排架(5)上安装近红外探测装置,采用两条谱线进行测速,测速的两条光路夹角为30°~60°。
- 根据权利要求3所述的一种高焓激波风洞流场参数诊断方法,其特征在于:激光纹影系统穿透高焓喷管(3)出口的自发光的流场,并将自发光过滤,拍摄清晰的球头头部脱体激波距离;单色激光光源穿透强光和高温区域,通过在相机前安装配套的滤光片,能够观察到清晰的流场结构。
- 根据权利要求4所述的一种高焓激波风洞流场参数诊断方法,其特征在于:激光纹影系统中采用的单色激光光源的波长范围为520~720nm。
- 根据权利要求5所述的一种高焓激波风洞流场参数诊断方法,其特征 在于:第一数据采集系统(8)、第二数据采集系统(10)采用PXI测试平台,采用多套PXIe机箱级联方式实现多通道级联,采集频率大于100kHz。
- 根据权利要求1所述的一种高焓激波风洞流场参数诊断方法,其特征在于:利用发射光谱系统(9)测量高焓喷管(3)驻室和喷管出口自由流气体组分,根据是否有驱动气体组分,判断风洞有效运行时间t1;利用非接触吸收光谱系统(7)测量高焓喷管(3)驻室和喷管出口自由流的NO/O浓度大小,判断风洞有效运行时间t2;利用激光纹影系统拍摄的球头脱体激波距离,根据脱体激波距离,判断风洞有效运行时间t3;取时间t1、时间t2和时间t3中的最小值作为风洞有效运行时间。
- 一种高焓激波风洞流场参数诊断系统,其特征在于,包括:压电传感器、总压传感器、吸收光谱系统(7)、发射光谱系统(9)、皮托压探针、静压探针、驻点热流探针、第一数据处理系统(8)和第二数据处理系统(10);在激波管(1)上安装若干压电传感器,在激波管(1)末端安装总压传感器;在激波管(1)末端总压传感器附近安装非接触吸收光谱系统(7)和发射光谱系统(9)的准直器及探测器,在试验段(4)安装非接触吸收光谱系统(7)和发射光谱系统(9)的准直器及探测器;在试验段(4)中的排架(5)上安装皮托压探针、静压探针、驻点热流探针,用于测量试验段流场的皮托压、静压和驻点热流;非接触吸收光谱系统(7)、发射光谱系统(9)和皮托压探针、静压探针、驻点热流探针所测量的数据通过光纤或者数据线分别发送至第一数据处理系统(8)和第二数据处理系统(10)中进行数据处理。
- 根据权利要求8所述的一种高焓激波风洞流场参数诊断系统,其特征在于:发射光谱系统(9)的测量波段在0.1μm~6μm,根据激波管(1)末端驻室和高焓喷管(3)自由流参数的光谱信息决定。
- 根据权利要求9所述的一种高焓激波风洞流场参数诊断系统,其特 征在于:非接触吸收光谱系统(7)采用NO和O激光器,测量激波管(1)末端驻室和喷管自由流组分NO和O的浓度;利用近红外探测装置,采用一条光谱谱线测量激波管(1)末端驻室和高焓喷管(3)自由流的温度;在试验段的十字排架(5)上安装近红外探测装置,采用两条谱线进行测速,测速的两条光路夹角为30°~60°。
- 根据权利要求10所述的一种高焓激波风洞流场参数诊断系统,其特征在于:激光纹影系统穿透高焓喷管(3)出口的自发光的流场,并将自发光过滤,拍摄清晰的球头头部脱体激波距离;单色激光光源穿透强光和高温区域,通过在相机前安装配套的滤光片,能够观察到清晰的流场结构。
- 根据权利要求11所述的一种高焓激波风洞流场参数诊断系统,其特征在于:激光纹影系统中采用的单色激光光源的波长范围为520~720nm。
- 根据权利要求12所述的一种高焓激波风洞流场参数诊断系统,其特征在于:第一数据采集系统(8)、第二数据采集系统(10)采用PXI测试平台,采用多套PXIe机箱级联方式实现多通道级联,采集频率大于100kHz。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/023,679 US20240310240A1 (en) | 2021-12-27 | 2021-12-30 | Method and system for diagnosing high-enthalpy shock tunnel parameters |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111619055.7 | 2021-12-27 | ||
CN202111619055.7A CN114486155B (zh) | 2021-12-27 | 2021-12-27 | 一种高焓激波风洞参数诊断方法和系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023123180A1 true WO2023123180A1 (zh) | 2023-07-06 |
Family
ID=81496526
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/142954 WO2023123180A1 (zh) | 2021-12-27 | 2021-12-30 | 一种高焓激波风洞参数诊断方法和系统 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20240310240A1 (zh) |
CN (1) | CN114486155B (zh) |
WO (1) | WO2023123180A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118376379A (zh) * | 2024-06-21 | 2024-07-23 | 中国空气动力研究与发展中心超高速空气动力研究所 | 高焓瞬时流场光辐射多角度多波段的同时测量装置及方法 |
CN118533420A (zh) * | 2024-07-26 | 2024-08-23 | 中国空气动力研究与发展中心超高速空气动力研究所 | 基于光纤的嵌入式模型绕流光辐射测量装置与测量方法 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115343016B (zh) * | 2022-07-18 | 2024-08-06 | 中国航天空气动力技术研究院 | 一种高焓激波风洞流场动压的测量方法及系统 |
CN115618168B (zh) * | 2022-11-30 | 2023-03-14 | 中国空气动力研究与发展中心空天技术研究所 | 高马赫数高焓风洞中皮托压数据处理方法 |
CN116296227B (zh) * | 2023-05-26 | 2023-07-25 | 中国空气动力研究与发展中心超高速空气动力研究所 | 一种用于高焓膨胀风洞模型表面辐射热流测量的试验方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06258177A (ja) * | 1993-03-08 | 1994-09-16 | Mitsubishi Heavy Ind Ltd | 高エンタルピ風洞 |
CN102937655A (zh) * | 2012-10-31 | 2013-02-20 | 中国科学院力学研究所 | 一种测量激波速度的系统和方法 |
CN107806977A (zh) * | 2017-11-29 | 2018-03-16 | 中国航空工业集团公司沈阳空气动力研究所 | 一种组合式宽马赫数高焓脉冲风洞管体结构 |
CN111024357A (zh) * | 2019-12-11 | 2020-04-17 | 中国航天空气动力技术研究院 | 一种大尺寸自由活塞高焓激波风洞模拟飞行环境的方法 |
CN112067241A (zh) * | 2020-08-19 | 2020-12-11 | 中国航天空气动力技术研究院 | 一种高焓激波风洞总温测量方法 |
CN112067243A (zh) * | 2020-08-25 | 2020-12-11 | 中国航天空气动力技术研究院 | 一种用于高焓激波风洞的流场温度测量方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3409083B2 (ja) * | 2001-05-11 | 2003-05-19 | 独立行政法人航空宇宙技術研究所 | 自由噴流式極超音速風洞試験装置 |
US8833153B2 (en) * | 2012-09-20 | 2014-09-16 | The Boeing Company | Correction of pressure signals measured during supersonic wind tunnel testing |
CN107976295B (zh) * | 2017-12-27 | 2020-04-10 | 中国航天空气动力技术研究院 | 一种2m量级自由活塞驱动的高焓激波风洞 |
CN207703439U (zh) * | 2017-12-27 | 2018-08-07 | 中国航天空气动力技术研究院 | 一种2m量级自由活塞驱动的高焓激波风洞 |
CN109655227B (zh) * | 2018-12-07 | 2020-12-18 | 中国航天空气动力技术研究院 | 一种低焓电弧加热器气流焓值诊断系统及诊断方法 |
CN112649172B (zh) * | 2020-12-21 | 2022-12-16 | 中国航天空气动力技术研究院 | 静压探针及高焓激波风洞静压测量方法 |
CN113280996B (zh) * | 2021-04-25 | 2023-02-03 | 中国航天空气动力技术研究院 | 一种高焓流场自由流的速度测量方法 |
-
2021
- 2021-12-27 CN CN202111619055.7A patent/CN114486155B/zh active Active
- 2021-12-30 WO PCT/CN2021/142954 patent/WO2023123180A1/zh active Application Filing
- 2021-12-30 US US18/023,679 patent/US20240310240A1/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06258177A (ja) * | 1993-03-08 | 1994-09-16 | Mitsubishi Heavy Ind Ltd | 高エンタルピ風洞 |
CN102937655A (zh) * | 2012-10-31 | 2013-02-20 | 中国科学院力学研究所 | 一种测量激波速度的系统和方法 |
CN107806977A (zh) * | 2017-11-29 | 2018-03-16 | 中国航空工业集团公司沈阳空气动力研究所 | 一种组合式宽马赫数高焓脉冲风洞管体结构 |
CN111024357A (zh) * | 2019-12-11 | 2020-04-17 | 中国航天空气动力技术研究院 | 一种大尺寸自由活塞高焓激波风洞模拟飞行环境的方法 |
CN112067241A (zh) * | 2020-08-19 | 2020-12-11 | 中国航天空气动力技术研究院 | 一种高焓激波风洞总温测量方法 |
CN112067243A (zh) * | 2020-08-25 | 2020-12-11 | 中国航天空气动力技术研究院 | 一种用于高焓激波风洞的流场温度测量方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118376379A (zh) * | 2024-06-21 | 2024-07-23 | 中国空气动力研究与发展中心超高速空气动力研究所 | 高焓瞬时流场光辐射多角度多波段的同时测量装置及方法 |
CN118533420A (zh) * | 2024-07-26 | 2024-08-23 | 中国空气动力研究与发展中心超高速空气动力研究所 | 基于光纤的嵌入式模型绕流光辐射测量装置与测量方法 |
Also Published As
Publication number | Publication date |
---|---|
US20240310240A1 (en) | 2024-09-19 |
CN114486155B (zh) | 2022-10-14 |
CN114486155A (zh) | 2022-05-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023123180A1 (zh) | 一种高焓激波风洞参数诊断方法和系统 | |
CN107884392B (zh) | 电弧加热器气流焓值光谱测量系统 | |
Fang et al. | Application of fast-responding pressure-sensitive paint to a hemispherical dome in unsteady transonic flow | |
Burns et al. | Application of FLEET velocimetry in the NASA Langley 0.3-meter transonic cryogenic tunnel | |
Dogariu et al. | Single shot temperature measurements using coherent anti-Stokes Raman scattering in Mach 14 flow at the Hypervelocity AEDC Tunnel 9 | |
Alba et al. | Comparison of experimentally measured and computed second-mode disturbances in hypersonic boundary-layers | |
Dhanagopal et al. | High-Speed Pressure Sensitive Paint Measurements of the Initial Concept 3. X Vehicle at Mach 7 | |
Hoberg et al. | Freestream Characterization and Condensation Detection in the AFOSR--Notre Dame Large Mach-6 Quiet Tunnel | |
Grinstead et al. | Flow property measurements using laser-induced fluorescence in the nasa ames interaction heating facility arc jet | |
Marineau et al. | Investigation of hypersonic laminar heating augmentation in the stagnation region | |
Rao et al. | Visualization and image processing of compressible flow in a supersonic gaseous ejector | |
Lara et al. | Experimental investigation of the shock wave/boundary layer interaction at a compression corner and an incident shock wave generator | |
CN106500951B (zh) | 测量高超声速气流参数的测量探头、测量系统和方法 | |
Radespiel et al. | Hypersonic ludwieg tube | |
CN114184348B (zh) | 一种高焓流场光电特性辨识装置及方法 | |
Xu et al. | A tunable diode laser absorption based velocity sensor for local field in hypersonic flows | |
Vialta et al. | Methodology for the application of velocimetry by molecular tagging of hypersonic flows | |
Parker et al. | Space launch system base heating test: tunable diode laser absorption spectroscopy | |
Ozawa | A highly temperature sensitive and ultra-fast response TSP (Temperature-Sensitive-Paints) for unsteady aerothermodynamics on shock-tube wall | |
Stevenson et al. | Development of a fs/ps CARS system for temperature measurements in supersonic and hypersonic environments | |
Tanno et al. | Measurement of hypersonic high-enthalpy boundary layer transition on a 7º cone model | |
Dankert et al. | Local measurement of temperatures and concentrations: A review for hypersonic flows | |
Pinto et al. | Flow characterization of the T3 hypersonic shock tunnel | |
Kinsey et al. | Measurement of Heat Flux on a 3D printed hemisphere with IR Thermography | |
Stevenson et al. | Development of a fs/Ps CARS System for Temperature Measurements Within Supersonic and Hypersonic Environments |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 18023679 Country of ref document: US |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21969545 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |