WO2023123140A1 - 一种渗透式反应墙防治污染羽迁移的方法 - Google Patents

一种渗透式反应墙防治污染羽迁移的方法 Download PDF

Info

Publication number
WO2023123140A1
WO2023123140A1 PCT/CN2021/142739 CN2021142739W WO2023123140A1 WO 2023123140 A1 WO2023123140 A1 WO 2023123140A1 CN 2021142739 W CN2021142739 W CN 2021142739W WO 2023123140 A1 WO2023123140 A1 WO 2023123140A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction wall
wall
concentration
reaction
preset range
Prior art date
Application number
PCT/CN2021/142739
Other languages
English (en)
French (fr)
Inventor
郭丽莉
李嘉晨
徐宏伟
熊静
刘亚茹
康绍果
王祺
李书鹏
张家铭
Original Assignee
北京建工环境修复股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京建工环境修复股份有限公司 filed Critical 北京建工环境修复股份有限公司
Priority to PCT/CN2021/142739 priority Critical patent/WO2023123140A1/zh
Publication of WO2023123140A1 publication Critical patent/WO2023123140A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • C02F2101/22Chromium or chromium compounds, e.g. chromates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/06Contaminated groundwater or leachate

Definitions

  • the invention relates to the technical field of soil and groundwater pollution control, in particular to a method for preventing and controlling the migration of pollution plumes by a permeable reaction wall.
  • the permeable reactive wall technology is to install a wall filled with active fillers underground in the polluted site to form a passive reaction area to intercept or remove pollutants in groundwater.
  • the bio-glue used in the construction will remain inside the built wall, resulting in a decrease in the overall permeability coefficient, which needs to be monitored to determine whether it needs to be further removed.
  • the ability of the reaction wall to intercept and control pollutants will be greatly reduced, and eventually it will fail.
  • the technical problem to be solved by the present invention is to overcome the defect that the ability of the permeable reaction wall in the prior art to control pollution will obviously decrease or even fail as the operation time increases, thereby providing a method for preventing and controlling the migration of pollution plumes by the permeable reaction wall. method.
  • the present invention provides a method for preventing and controlling the migration of pollution plume by a permeable reactive wall, comprising the following steps:
  • the change state of the operating parameters it is judged whether the microbial content in the reaction wall is greater than the microbial preset value, and if it is greater, antibacterial treatment is performed on the reaction wall.
  • the operating parameter is one or more of hexavalent chromium concentration, pH value, temperature, groundwater level and flow rate, oxidation-reduction potential, resistivity, biochemical oxygen demand, chemical oxygen demand, product gas content, and permeability coefficient.
  • hexavalent chromium concentration pH value
  • temperature temperature, groundwater level and flow rate
  • oxidation-reduction potential resistivity
  • biochemical oxygen demand chemical oxygen demand
  • product gas content permeability coefficient
  • the product gas content is a nitrogen content and/or a methane content and/or a hydrogen content.
  • it also includes: after the construction of the reaction wall is completed, if the permeability coefficient of the reaction wall is less than the preset range of permeability, injecting biological enzymes into the reaction wall.
  • it also includes: after the construction of the reaction wall is completed, if the permeability coefficient of the reaction wall is greater than the preset range of penetration and the concentration of hexavalent chromium is greater than the preset range of concentration, it is determined that there is a defect in the reaction wall at the corresponding detection position. The parts are repaired.
  • the active filler in the reaction wall is passivated ;
  • the reaction wall if the hexavalent chromium concentration downstream of the reaction wall rises beyond the concentration preset range, and the product gas content in the reaction wall remains unchanged, the permeability coefficient decreases, and the pH value increases, it is determined that the reaction wall
  • the internal active filler is passivated
  • a filler cleaning agent is injected into the reaction wall until the concentration of hexavalent chromium downstream of the reaction wall changes to the concentration preset range, and the depassivation treatment is completed.
  • the reaction wall if the hexavalent chromium concentration downstream of the reaction wall rises beyond the concentration preset range, and the product gas content in the reaction wall increases and the permeability coefficient decreases, it is determined that there is gas blockage in the active filler;
  • the concentration of hexavalent chromium downstream of the reaction wall rises beyond the concentration preset range, and the biochemical oxygen demand and chemical oxygen demand in the reaction wall increase, and the permeability coefficient decreases, then It is determined that the microbial content in the wall is greater than the microbial preset value;
  • a bacteriostatic agent is injected into the reaction wall to complete the antibacterial treatment.
  • the method for preventing and controlling pollution plume migration in the permeable reaction wall comprises the following steps: installing monitoring components in the reaction wall and downstream of the reaction wall to monitor the operating parameters of the active filler in the reaction wall and the downstream water body of the reaction wall in real time ;According to the change state of the operating parameters, it is judged whether the active filler in the reaction wall is passivated. If passivation occurs, the reaction wall is depassivated. , if it exists, conduct gas conduction treatment on the reaction wall; judge whether the microbial content in the reaction wall is greater than the microbial preset value according to the change state of the operating parameters, and if it is greater, perform antibacterial treatment on the reaction wall.
  • the method for preventing and controlling the migration of pollution plume provided by the present invention, during the operation of the reaction wall, if the hexavalent chromium concentration downstream of the reaction wall rises beyond the concentration preset range, and the product gas content in the reaction wall remains unchanged,
  • the permeability coefficient decreases and the pH value increases, it is determined that the active filler in the reaction wall is passivated; when it is determined that the active filler in the reaction wall is passivated, inject a filler cleaning agent into the reaction wall until the concentration of hexavalent chromium in the downstream of the reaction wall changes.
  • To the concentration preset range complete the depassivation treatment. Real-time monitoring of the operation of the reaction wall is carried out through the monitoring component.
  • the monitored operating parameters are used to control the processing steps.
  • the processing process can be completed. , to realize the precise treatment of the reaction wall, while ensuring the treatment effect, avoiding the waste of filler cleaning agent during treatment, reducing the use of chemicals, and preventing the impact of excessive penetration of chemicals into the soil and groundwater.
  • Fig. 1 is a schematic structural diagram of a biologically filled permeable reaction wall provided in an embodiment of the present invention.
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. Connected, or integrally connected; it may be mechanically connected or electrically connected; it may be directly connected or indirectly connected through an intermediary, and it may be the internal communication of two components. Those of ordinary skill in the art can understand the specific meanings of the above terms in the present invention in specific situations.
  • a permeable reaction wall provided in this embodiment includes: a holding tank, an active filler 2 disposed in the holding tank, a circulation air duct 3 and an isolation cover 5 .
  • the inside of the holding tank is filled with active filler 2 .
  • the circulation air guide pipe 3 is buried in the active filler 2, and there are multiple groups of the circulation air guide pipe 3 arranged at intervals along the length direction of the holding tank.
  • the isolation cover 5 is arranged on the upper side of the active filler 2 , and the circulation air duct 3 is arranged through the isolation cover 5 .
  • the circulating air guiding pipe 3 is provided with a plurality of circulating air guiding branch pipes 4 at intervals along the axial direction. .
  • the gas guide branch is arranged inclined downwards.
  • the isolation cover 5 is also penetrated with a one-way vent pipe 1, the one-way vent pipe 1 extends vertically towards the active filler 2, and a gas one-way valve or a one-way vent membrane is installed in the one-way vent pipe 1 to realize one-way ventilation.
  • the air is ventilated so that the gas can only flow outward from the reaction wall, and the air or rainwater outside the reaction wall will not enter the wall through the one-way ventilation pipe.
  • a plurality of monitoring components are installed in the lumen of the circulating air guide pipe buried in the active filler 2 .
  • the monitoring component has built-in monitoring equipment such as microbial electrodes, temperature sensors, water level gauges, flow rate velocimeters, potentiometer probes, and PH composite electrodes to monitor the pH, temperature, groundwater level and flow rate, oxidation-reduction potential, resistivity, Parameters such as permeability coefficient are monitored in real time.
  • Monitoring components are installed in the active filler in the reaction wall and in the groundwater downstream of the reaction wall to monitor the operating parameters of the active filler in the reaction wall and the water body downstream of the reaction wall in real time.
  • the monitoring component is installed in the lumen of the circulation air guiding branch pipe.
  • a circulating air duct 3 is arranged every 10-20 meters, and the specific interval distance can be determined according to the actual conditions of the soil and groundwater at the construction site.
  • a peristaltic pump is installed on the top of the circulating air duct in the groundwater, and the groundwater is regularly and quantitatively drawn to test some indicators.
  • a one-way ventilation pipe and a circulation air pipe are installed in the permeable reaction wall, and a microbubble collector is arranged in the circulation air pipe. After separation, the gas is vented and the liquid is injected back into the active packing in the reaction wall.
  • Operating parameters include hexavalent chromium concentration, pH value, temperature, groundwater level and flow rate, redox potential, resistivity, biochemical oxygen demand, chemical oxygen demand, product gas content, and permeability coefficient.
  • the product gas content is nitrogen content and methane content and hydrogen content.
  • the signals of the monitoring components can be centrally transmitted to the monitoring and early warning system, and the monitoring data are uploaded to the online control platform in real time. If the indicators in some areas exceed the set normal range value, the system will automatically alarm, and it can be done manually or automatically after authorization. Carry out segmented maintenance on reaction walls with abnormal indicators.
  • the active filler of the reaction wall has a lot of biological glue used to support the side wall of the holding tank during the construction process.
  • the bioglue blocks the pores of the active filler and affects the permeability of the reactive wall.
  • biological enzymes are injected into the reaction wall through the circulating air duct to accelerate the degradation process of the bio-glue and eliminate its influence on the permeability coefficient of the reaction wall.
  • the permeability coefficient of the reaction wall is greater than the preset range of penetration and the concentration of hexavalent chromium is greater than the preset range of concentration, it is determined that there is a defect in the reaction wall at the corresponding detection position, and the water flow has not been purified by the reaction wall. Directly flow through, at this time, set up partitions or build patches for defective parts for repairing.
  • the reaction wall is depassivated. Specifically, during the operation of the reaction wall, if the oxidation-reduction potential in the reaction wall exceeds the potential preset range, and the hexavalent chromium concentration downstream of the reaction wall rises beyond the concentration preset range, it is determined that the active filler in the reaction wall is passivated.
  • the filler cleaning agent is injected into the reaction wall through the circulation air duct until the concentration of hexavalent chromium downstream of the reaction wall changes to the concentration preset range, and the depassivation treatment is completed.
  • the gas conduction treatment is performed on the reaction wall. Specifically, during the operation of the reaction wall, if the hexavalent chromium concentration downstream of the reaction wall rises beyond the concentration preset range, and the product gas content in the reaction wall increases and the permeability coefficient decreases, it is determined that there is gas blockage in the active filler; when it is determined that there is gas blockage in the active filler, extract and guide the reaction wall through the circulating air guide pipe until the hexavalent chromium concentration in the downstream of the reaction wall changes to the concentration preset range, and the product gas content in the reaction wall decreases and the permeability coefficient Return to the preset range of penetration and complete the air-guiding treatment.
  • the microbial content in the reaction wall is greater than the microbial preset value, and if it is greater, antibacterial treatment is performed on the reaction wall. Specifically, during the operation of the reaction wall, if the concentration of hexavalent chromium downstream of the reaction wall rises beyond the preset concentration range, and the biochemical oxygen demand and chemical oxygen demand in the reaction wall increase, and the permeability coefficient decreases, it is determined that The microbial content in the wall is greater than the microbial preset value; when it is determined that the microbial content in the reaction wall is greater than the microbial preset value, the antibacterial agent is injected into the reaction wall through the circulating air duct, and when the concentration of hexavalent chromium in the downstream of the reaction wall returns to normal When the biochemical oxygen demand and chemical oxygen demand in the reaction wall are reduced to normal levels and the permeability coefficient is restored, it is proved that the microbial content is reduced, and the injection of antibacterial agents is

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Microbiology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

本方法涉及土壤及地下水污染治理技术领域,具体涉及一种渗透式反应墙防治污染羽迁移的方法,包括以下步骤:安装监测组件,以实时监控反应墙内活性填料以及反应墙下游水体的运行参数;根据运行参数的变化状态,判断反应墙内活性填料是否钝化,若发生钝化,则对反应墙进行去钝化处理;根据运行参数的变化状态,判断反应墙内活性填料是否存在气体堵塞,若存在,则对反应墙进行导气处理;根据运行参数的变化状态,判断反应墙内微生物含量是否大于微生物预设值,若大于,则对反应墙进行抑菌处理。实时监控反应墙运行过程中出现的问题,并及时做出相应的解决办法,能够精确多种因素造成的反应墙失效,使得反应墙能够长时间稳定运行。

Description

一种渗透式反应墙防治污染羽迁移的方法 技术领域
本发明涉及土壤及地下水污染治理技术领域,具体涉及一种渗透式反应墙防治污染羽迁移的方法。
背景技术
渗透式反应墙技术是通过在污染场地的地下安装填有活性填料的墙体,形成一个被动反应区域,拦截或者去除地下水中污染物。现有技术中通过生物胶装填法建造反应墙体时,建成的墙体内部会残留有建造时使用的生物胶,造成整体渗透系数下降,需要进行监测判断是否需要进一步清除。随着反应墙的运行时间不断增长,反应墙对污染物的截留治理能力会大大下降,最终失效。
发明内容
因此,本发明要解决的技术问题在于克服现有技术中的渗透式反应墙随运行时间加长其治理污染的能力会明显下降甚至失效的缺陷,从而提供一种渗透式反应墙防治污染羽迁移的方法。
为了解决上述技术问题,本发明提供一种渗透式反应墙防治污染羽迁移的方法,包括以下步骤:
在反应墙内以及反应墙的下游安装监测组件,以实时监控反应墙内活性填料以及反应墙下游水体的运行参数;
根据运行参数的变化状态,判断反应墙内活性填料是否钝化,若发生钝化,则对反应墙进行去钝化处理;
根据运行参数的变化状态,判断反应墙内活性填料是否存在气体堵塞,若存在,则对反应墙进行导气处理;
根据运行参数的变化状态,判断反应墙内微生物含量是否大于微生物预设值,若大于,则对反应墙进行抑菌处理。
可选地,运行参数为六价铬浓度、pH值、温度、地下水水位与流速、氧化还原电位、电阻率、生化需氧量、化学需氧量、产物气体含量、渗透系数中的一种或多种。
可选地,产物气体含量为氮气含量和/或甲烷含量和/或氢气含量。
可选地,还包括:在反应墙建造完成后,若反应墙的渗透系数小于渗透预设范围,则向反应墙内注入生物酶。
可选地,还包括:在反应墙建造完成后,若反应墙的渗透系数大于渗透预设范围且六价铬浓度大于浓度预设范围,则判定对应检测位置处的反应墙存在缺陷,对缺陷部位进行修补处理。
可选地,在反应墙运行期间,若反应墙内氧化还原电位超过电位预设范围,且反应墙下游的六价铬浓度上升至超出浓度预设范围,则判定反应墙内活性填料发生钝化;
当判定反应墙内活性填料发生钝化时,向反应墙内注入填料清洗剂直至氧化还原电位改变至预定范围内,且反应墙下游六价铬浓度改变至浓度预设范围内,则完成去钝化处理。
可选地,在反应墙运行期间,若反应墙下游的六价铬浓度上升至超出浓度预设范围,且反应墙内产物气体含量不变、渗透系数下降、pH值升高,则判定反应墙内活性填料发生钝化;
当判定反应墙内活性填料发生钝化时,向反应墙内注入填料清洗剂直至反应墙下游的六价铬浓度改变至浓度预设范围内,完成去钝化处理。
可选地,在反应墙运行期间,若反应墙下游的六价铬浓度上升至超出浓度预设范围,且反应墙内产物气体含量增大、渗透系数下降,则判定活性填料内存在气体堵塞;
当判定活性填料内存在气体堵塞时,对反应墙进行抽提及导气,直至反应墙下游六价铬浓度改变至浓度预设范围内、且反应墙内产物气体含量减少、渗透系数恢复至渗透预设范围内,完成导气处理。
可选地,在反应墙运行期间,若反应墙下游的六价铬浓度上升至超出浓度预设范围、且反应墙内生化需氧量增大、化学需氧量增大,渗透系数下降,则判定为墙体内微生物含量大于微生物预设值;
当判定反应墙内微生物含量大于微生物预设值时,向反应墙内注入抑菌剂,完成抑菌处理。
本发明技术方案,具有如下优点:
1.本发明提供的渗透式反应墙防治污染羽迁移的方法,包括以下步骤:在反应墙内以及反应墙的下游安装监测组件,以实时监控反应墙内活性填料以及反应墙下游水体的运行参数;根据运行参数的变化状态,判断反应墙内活性填料是否钝化,若发生钝化,则对反应墙进行去钝化处理;根据运行参数的变化状态,判断反应墙内活性填料是否存在气体堵塞,若存在,则对反应墙进行导气处理;根据运行参数的变化状态,判断反应墙内微生物含量是否大于微生物预设值,若大于,则对反应墙进行抑菌处理。
通过对反应墙以及反应墙下游的水体运行进行实时监测,在检验过程无需对反应墙进行开挖,对墙体无破坏。可实时监控反应墙运行过程中出现的问题,并及时做出相应的解决办法。能够精确避免因活性填料钝化或失活、气体堵塞活性填料内孔隙、微生物堵塞活性填料内孔隙等因素造成的反应墙失效,使得反应墙能够及时监控并处理运行过程中出现的问题,使得反应墙能够长时间稳定运行,延长反应墙的运行寿命。
2.本发明提供的渗透式反应墙防治污染羽迁移的方法,在反应墙运行期间,若反应墙下游的六价铬浓度上升至超出浓度预设范围,且反应墙内产物气体含量不变、渗透系数下降、pH值升高,则判定反应墙内活性填料发生钝化;当判定反应墙内活性填料发生钝化时,向反应墙内注入填料清洗剂直至反应墙下游的六价铬浓度改变至浓度预设范围内,完成去钝化处理。通过监测组件对反应墙运行进行实时监控,在对反应墙内活性填料处理时,利用监测到的运行参数,对处理步骤进行控制,当监测到的运行参数返回到正常水平时即可完成处理过程,实现了对反应墙的精准处理,在保证处理效果的同时,避免了处理 时填料清洗剂的浪费,减少药剂的使用,防止药剂过多渗入到土壤和地下水中造成影响。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明的实施方式中提供的生物装填渗透式反应墙的结构示意图。
附图标记说明:1、单向透气管;2、活性填料;3、循环导气管;4、循环导气支管;5、隔离盖体。
具体实施方式
下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
此外,下面所描述的本发明不同实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
如图1所示为本实施例提供的一种渗透式反应墙,包括:容纳池、设于容纳池内的活性填料2、循环导气管3以及隔离盖体5。
容纳池内部填充有活性填料2。循环导气管3埋设在活性填料2内,循环导气管3沿容纳池的长度方向间隔设置有多组。隔离盖体5设置在活性填料2上侧,循环导气管3贯穿隔离盖体5设置。
循环导气管3上沿轴向间隔设置有多个循环导气支管4,循环导气支管4与循环导气管3连通,相同高度处的循环导气支管4沿循环导气管3的周向均匀分布。导气支路向下倾斜设置。隔离盖体5上还贯穿设置有单向透气管1,单向透气管1沿竖直方向朝向活性填料2延伸,单向透气管1内安装有气体单向 阀或单向透气膜以实现单向透气,使气体只能从反应墙内向外流动,反应墙外的空气或雨水不会从单向透气管进入得到墙体中。
为了提升反应墙长期运行时的稳定性和污染防治的精准程度,活性填料2内埋设的循环导气支管的管腔内安装有多个监测组件。监测组件内置微生物电极、温度传感器、水位计、流速测速计、电位计探头、PH复合电极等监测设备,以对活性填料2内的pH、温度、地下水水位与流速、氧化还原电位、电阻率、渗透系数等参数进行实时监测。
本实施例提供的渗透式反应墙防治污染羽迁移的方法,包括以下步骤:
在反应墙中的活性填料内以及反应墙上下游地下水内安装监测组件,以实时监控反应墙内活性填料以及反应墙上下游水体的运行参数。本实施例中,监测组件安装在循环导气支管的内腔中。沿反应墙的延伸方向,每隔10-20米设置一个循环导气管3,具体间隔距离可根据施工地点的土壤和地下水的实际情况进行确定。在设于地下水中的循环导气管顶部安装蠕动泵,定期定量抽取地下水对部分指标进行检测。在渗透式反应墙中安装有单向透气管和循环导气管,在循环导气管中布有微气泡收集器,无法通过单向透气管将气体及时导出时,则采用抽提的方法,气液分离后,将气体排出后再将液体注回反应墙的活性填料中。
运行参数包括六价铬浓度、pH值、温度、地下水水位与流速、氧化还原电位、电阻率、生化需氧量、化学需氧量、产物气体含量、渗透系数。其中产物气体含量为氮气含量和甲烷含量和氢气含量。通过综合分析实时监测的数据,对墙体情况进行判定。若建造情况未达标,则采取快速补救措施;在反应墙运行过程中,通过对各项指标的实时监测,综合判定每段墙体的运行状态,根据具体问题对全部或局部墙体作出相应的处理。监控组件的信号可集中传输到监控预警系统,监测数据实时上传至在线控制平台,若有局部区域的指标超出设置的正常范围值,系统自动报警,并可通过人工或授权后自动进行的方式,对指标异常的反应墙进行分段维护。
在反应墙建造完成后运行初始阶段,若检测到某区域反应墙的渗透系数小于渗透预设范围,判断反应墙的活性填料中残留有较多建造过程中用于支撑容纳池侧壁的生物胶,生物胶将活性填料的孔隙阻塞,影响反应墙的渗透率。此时则通过循环导气管向反应墙内注入生物酶,加快生物胶的降解过程,消除其对反应墙渗透系数的影响。
在反应墙建造完成运行初始阶段,若反应墙的渗透系数大于渗透预设范围且六价铬浓度大于浓度预设范围,则判定对应检测位置处的反应墙存在缺陷,水流未经过反应墙净化后直接流过,此时对缺陷部位设置隔板或建造补丁进行修补处理。
在反应墙长期运行过程中:
根据运行参数的变化状态,判断反应墙内活性填料是否钝化,若发生钝化,则对反应墙进行去钝化处理。具体地,在反应墙运行期间,若反应墙内氧化还原电位超过电位预设范围,且反应墙下游的六价铬浓度上升至超出浓度预设范围,则判定反应墙内活性填料发生钝化。当判定反应墙内活性填料发生钝化时,通过循环导气管向反应墙内注入填料清洗剂直至氧化还原电位改变至预定范围内,且反应墙下游六价铬浓度改变至浓度预设范围内,完成去钝化处理。在反应墙运行期间,若反应墙下游的六价铬浓度 上升至超出浓度预设范围,且反应墙内产物气体含量不变、渗透系数下降、pH值升高,则判定反应墙内活性填料发生钝化;当判定反应墙内活性填料发生钝化时,通过循环导气管向反应墙内注入填料清洗剂直至反应墙下游的六价铬浓度改变至浓度预设范围内,完成去钝化处理。
根据运行参数的变化状态,判断反应墙内活性填料是否存在气体堵塞,若存在,则对反应墙进行导气处理。具体地,在反应墙运行期间,若反应墙下游的六价铬浓度上升至超出浓度预设范围,且反应墙内产物气体含量增大、渗透系数下降,则判定活性填料内存在气体堵塞;当判定活性填料内存在气体堵塞时,通过循环导气管对反应墙进行抽提及导气,直至反应墙下游六价铬浓度改变至浓度预设范围内、且反应墙内产物气体含量减少、渗透系数恢复至渗透预设范围内,完成导气处理。
根据运行参数的变化状态,判断反应墙内微生物含量是否大于微生物预设值,若大于,则对反应墙进行抑菌处理。具体地,在反应墙运行期间,若反应墙下游的六价铬浓度上升至超出浓度预设范围、且反应墙内生化需氧量增大、化学需氧量增大,渗透系数下降,则判定为墙体内微生物含量大于微生物预设值;当判定反应墙内微生物含量大于微生物预设值时,通过循环导气管向反应墙内注入抑菌剂,当反应墙下游六价铬浓度回到正常水平,且反应墙墙体内生化需氧量和化学需氧量降低至正常水平、渗透系数恢复时,证明微生物含量降低,停止注入抑菌剂,抑菌处理完成。
在保证处理效果的前提下,通过实时监控反应墙的运行情况,同时对反应墙多个局部进行分别监控,在修复时对墙体进行针对性精准定位修复,分段修复墙体能节省45%以上的处理成本。能够精确避免因为活性填料钝化或失活、气体堵塞活性填料内孔隙、微生物堵塞活性填料内孔隙等因素造成的反应墙失效,使得反应墙能够及时监控并处理运行过程中出现的问题,反应墙的使用寿命在该运行方法下可延长至原寿命的2.5倍。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (9)

  1. 一种渗透式反应墙防治污染羽迁移的方法,其特征在于,包括以下步骤:
    在反应墙内以及反应墙的下游安装监测组件,以实时监控反应墙内活性填料以及反应墙下游水体的运行参数;
    根据运行参数的变化状态,判断反应墙内活性填料是否钝化,若发生钝化,则对反应墙进行去钝化处理;
    根据运行参数的变化状态,判断反应墙内活性填料是否存在气体堵塞,若存在,则对反应墙进行导气处理;
    根据运行参数的变化状态,判断反应墙内微生物含量是否大于微生物预设值,若大于,则对反应墙进行抑菌处理。
  2. 根据权利要求1所述的渗透式反应墙防治污染羽迁移的方法,其特征在于,所述运行参数为六价铬浓度、pH值、温度、地下水水位与流速、氧化还原电位、电阻率、生化需氧量、化学需氧量、产物气体含量、渗透系数中的一种或多种。
  3. 根据权利要求2所述的渗透式反应墙防治污染羽迁移的方法,其特征在于,所述产物气体含量为氮气含量和/或甲烷含量和/或氢气含量。
  4. 根据权利要求1至3任一项所述的渗透式反应墙防治污染羽迁移的方法,其特征在于,还包括:在反应墙建造完成后,若反应墙的渗透系数小于渗透预设范围,则向反应墙内注入生物酶。
  5. 根据权利要求1至3任一项所述的渗透式反应墙防治污染羽迁移的方法,其特征在于,还包括:在反应墙建造完成后,若反应墙的渗透系数大于渗透预设范围且六价铬浓度大于浓度预设范围,则判定对应检测位置处的反应墙存在缺陷,对缺陷部位进行修补处理。
  6. 根据权利要求1至3任一项所述的渗透式反应墙防治污染羽迁移的方法,其特征在于,在反应墙运行期间,若反应墙内氧化还原电位超过电位预设范围,且反应墙下游的六价铬浓度上升至超出浓度预设范围,则判定反应墙内活性填料发生钝化;
    当判定反应墙内活性填料发生钝化时,向反应墙内注入填料清洗剂直至氧化还原电位改变至预定范围内,且反应墙下游六价铬浓度改变至浓度预设范围内,完成去钝化处理。
  7. 根据权利要求1至3任一项所述的渗透式反应墙防治污染羽迁移的方法,其特征在于,在反应墙运行期间,若反应墙下游的六价铬浓度上升至超出浓度预设范围,且反应墙内产物气体含量不变、渗透系数下降、pH值升高,则判定反应墙内活性填料发生钝化;
    当判定反应墙内活性填料发生钝化时,向反应墙内注入填料清洗剂直至反应墙下游的六价铬浓度改变至浓度预设范围内,完成去钝化处理。
  8. 根据权利要求1至3任一项所述的渗透式反应墙防治污染羽迁移的方法,其特征在于,在反应墙运行期间,若反应墙下游的六价铬浓度上升至超出浓度预设范围,且反应墙内产物气体含量增大、渗透系数下降,则判定活性填料内存在气体堵塞;
    当判定活性填料内存在气体堵塞时,对反应墙进行抽提及导气,直至反应墙下游六价铬浓度改变至浓度预设范围内、且反应墙内产物气体含量减少、渗透系数恢复至渗透预设范围内,完成导气处理。
  9. 根据权利要求1至3任一项所述的渗透式反应墙防治污染羽迁移的方法,其特征在于,在反应墙运行期间,若反应墙下游的六价铬浓度上升至超出浓度预设范围、且反应墙内生化需氧量增大、化学需氧量增大,渗透系数下降,则判定为墙体内微生物含量大于微生物预设值;
    当判定反应墙内微生物含量大于微生物预设值时,向反应墙内注入抑菌剂,完成抑菌处理。
PCT/CN2021/142739 2021-12-29 2021-12-29 一种渗透式反应墙防治污染羽迁移的方法 WO2023123140A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/142739 WO2023123140A1 (zh) 2021-12-29 2021-12-29 一种渗透式反应墙防治污染羽迁移的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/142739 WO2023123140A1 (zh) 2021-12-29 2021-12-29 一种渗透式反应墙防治污染羽迁移的方法

Publications (1)

Publication Number Publication Date
WO2023123140A1 true WO2023123140A1 (zh) 2023-07-06

Family

ID=86996971

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/142739 WO2023123140A1 (zh) 2021-12-29 2021-12-29 一种渗透式反应墙防治污染羽迁移的方法

Country Status (1)

Country Link
WO (1) WO2023123140A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998049106A1 (en) * 1997-04-25 1998-11-05 The University Of Iowa Research Foundation Fe(o)-based bioremediation of aquifers contaminated with mixed wastes
CN107739083A (zh) * 2017-10-31 2018-02-27 爱土工程环境科技有限公司 一种含氰地下水可渗透反应墙原位修复的方法
CN111018086A (zh) * 2019-12-24 2020-04-17 北京建工环境修复股份有限公司 一种渗透式反应墙结构及其处理污染羽的方法
CN210915560U (zh) * 2019-09-16 2020-07-03 内蒙古美成生态工程有限公司 一种应用于尾矿库地下水重金属Cr6+修复可渗透反应墙
CN112110571A (zh) * 2020-09-23 2020-12-22 北京高能时代环境技术股份有限公司 一种可渗透反应墙和修复方法
CN212954583U (zh) * 2019-12-11 2021-04-13 北京高能时代环境技术股份有限公司 修复六价铬污染地下水的系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998049106A1 (en) * 1997-04-25 1998-11-05 The University Of Iowa Research Foundation Fe(o)-based bioremediation of aquifers contaminated with mixed wastes
CN107739083A (zh) * 2017-10-31 2018-02-27 爱土工程环境科技有限公司 一种含氰地下水可渗透反应墙原位修复的方法
CN210915560U (zh) * 2019-09-16 2020-07-03 内蒙古美成生态工程有限公司 一种应用于尾矿库地下水重金属Cr6+修复可渗透反应墙
CN212954583U (zh) * 2019-12-11 2021-04-13 北京高能时代环境技术股份有限公司 修复六价铬污染地下水的系统
CN111018086A (zh) * 2019-12-24 2020-04-17 北京建工环境修复股份有限公司 一种渗透式反应墙结构及其处理污染羽的方法
CN112110571A (zh) * 2020-09-23 2020-12-22 北京高能时代环境技术股份有限公司 一种可渗透反应墙和修复方法

Similar Documents

Publication Publication Date Title
CN206708736U (zh) 一种多传感器热网泄漏预警监测系统
CN111003792A (zh) 一种有机污染地下水的原位氧化循环抽提修复系统及修复方法
US20210404905A1 (en) System for real-time detecting leakage of underground volatile compound
CN108755898B (zh) 一种分析地下管网地下水渗入和管道污水渗出分布的方法
CN111804723B (zh) 一种原位化学氧化修复监测与调控系统
CN106838627A (zh) 一种多传感器热网泄漏预警监测系统
CN204630899U (zh) 一种储罐底板检测模拟装置及模拟储罐
CN104833628A (zh) 一种储罐底板检测模拟装置及模拟储罐
WO2023123140A1 (zh) 一种渗透式反应墙防治污染羽迁移的方法
CN115481838A (zh) 管网实时监测方法与系统、存储介质
CN115321081A (zh) 一种集成化地下水封石洞油库工艺系统
CN114314859A (zh) 一种渗透式反应墙治理污染的方法
DE102005008308B4 (de) Verfahren zur Lecksuche an Leckschutzauskleidungen von Tanks und Behältern o. dgl.
CN204822749U (zh) 车道下直埋式玻璃钢双层油罐
CN203519468U (zh) 天然气管道在线腐蚀监测装置
CN213654929U (zh) 一种汽轮机主油箱u型管负压计监测装置
CN202404937U (zh) 检测导电液体泄漏的装置
CN207209024U (zh) 玻璃钢双层油罐
CN205446746U (zh) 一种用于天然气管网系统的泄露检查阀门
CN111854454A (zh) 一种转炉烟气余热锅炉氮气保护防爆装置及方法
CN216498526U (zh) 一种动态监测酸雾吸收器
CN109827768A (zh) 一种脉冲阀故障检测方法及系统
CN104818674A (zh) 一种悬索桥无粘结预应力锚固防腐的方法和结构
CN219652782U (zh) 自动水位监测控制反应仓填料替换的反应型循环井装置
CN221098350U (zh) 一种燃气管道泄露监测装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21969507

Country of ref document: EP

Kind code of ref document: A1