WO2023122978A1 - 转接结构、天线及终端 - Google Patents

转接结构、天线及终端 Download PDF

Info

Publication number
WO2023122978A1
WO2023122978A1 PCT/CN2021/142161 CN2021142161W WO2023122978A1 WO 2023122978 A1 WO2023122978 A1 WO 2023122978A1 CN 2021142161 W CN2021142161 W CN 2021142161W WO 2023122978 A1 WO2023122978 A1 WO 2023122978A1
Authority
WO
WIPO (PCT)
Prior art keywords
strip
waveguide
shaped opening
opening
structure according
Prior art date
Application number
PCT/CN2021/142161
Other languages
English (en)
French (fr)
Inventor
何银
唐中善
高琛
彭大庆
杨小盼
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN202180045951.9A priority Critical patent/CN116670925A/zh
Priority to PCT/CN2021/142161 priority patent/WO2023122978A1/zh
Publication of WO2023122978A1 publication Critical patent/WO2023122978A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/08Coupling devices of the waveguide type for linking dissimilar lines or devices
    • H01P5/10Coupling devices of the waveguide type for linking dissimilar lines or devices for coupling balanced lines or devices with unbalanced lines or devices
    • H01P5/107Hollow-waveguide/strip-line transitions

Definitions

  • the present application relates to the technical field of communication, and more specifically, to a switching structure, an antenna and a terminal.
  • Intelligent vehicles can bring people a safer and more comfortable driving experience.
  • sensors can be installed on a smart vehicle to obtain its surrounding environment information through the sensors, and realize assisted driving or automatic driving based on the surrounding environment information.
  • Sensors include, for example, cameras, laser radars, millimeter-wave radars, ultrasonic sensors, and the like.
  • Millimeter-wave radar uses millimeter-wave as the detection medium, which can measure the distance, angle and moving speed from the millimeter-wave radar to the measured object.
  • the millimeter-wave radar can send signals to the antenna radiator through the feed source, and the antenna radiator can radiate the signal to the waveguide, and the signal is transferred through the waveguide, so that the millimeter-wave radar can relatively accurately detect the position and moving speed of the measured object.
  • the effective bandwidth of millimeter-wave radar has a great influence on the performance of millimeter-wave. How to improve the effective bandwidth of millimeter-wave radar is a problem that needs to be solved.
  • the embodiment of the present application provides a switching structure, and the purpose is to expand the working bandwidth range of the switching structure.
  • a transition structure including a circuit board, the circuit board includes a first metal layer, a second metal layer and a dielectric layer, the dielectric layer is located between the first metal layer and the second metal layer, and the first metal layer
  • the layer includes a radiation part and a microstrip line, the microstrip line is connected to one end of the radiation part, and the second metal layer is grounded; wherein the radiation part has openings, so that the radiation part forms at least two resonant frequencies.
  • the present application provides a transfer structure.
  • the transfer structure includes a circuit board, and a dielectric layer on the circuit board is located between the first metal layer and the second metal layer.
  • the transfer structure provided by the present application is beneficial to reduce the space corresponding to the metal back cavity and reduce the overall thickness of the circuit board, thereby facilitating the integration of the transfer structure with other components.
  • the opening of the radiating part of the first metal layer expands the bandwidth of the transfer structure, so that the transfer structure can be applied to more scenarios.
  • the transfer structure further includes a waveguide, the waveguide is located on the side of the circuit board close to the first metal layer, the waveguide includes a microstrip avoidance slot and a waveguide port, and the microstrip line It is arranged opposite to the microstrip avoidance groove and spaced apart from the groove wall of the microstrip avoidance groove.
  • the waveguide port is arranged opposite to the radiation part, and the signal emitted by the radiation part passes through the waveguide port and exits the transfer structure.
  • the transfer structure of the present application also improves the waveguide.
  • the waveguide has a waveguide port and a microstrip avoidance groove.
  • the existence of the microstrip avoidance groove makes it possible to reduce the possibility of electromagnetic wave energy leakage or It is beneficial to reduce the leakage of electromagnetic wave energy due to the contact between the microstrip line and the waveguide, so that the electromagnetic wave can enter the radiation part from the microstrip line on the circuit board, and then radiate out of the entire transfer structure through the waveguide port.
  • the radiation part is rectangular, and the microstrip line is arranged away from the symmetry axis of the radiation part.
  • the symmetry axis of the radiating part and the microstrip line on the circuit board deviates from the setting, which is beneficial to reduce the energy reflection caused by the transition of the electromagnetic wave from the microstrip line to the radiating part, that is, to enhance the impedance matching of the transition of the electromagnetic wave from the microstrip line to the radiating part , to improve the matching bandwidth of the switching structure.
  • the opening is a strip-shaped opening, and the opening is spaced apart from the edge of the radiation portion.
  • the opening of the radiation part is inside the radiation part, and the strip-shaped opening inside the radiation part makes the current form multiple resonance frequencies near the strip-shaped opening, thereby expanding the working bandwidth range of the switching structure.
  • the opening is a strip-shaped opening, and one end of the opening is connected to the edge of the radiation part away from the microstrip line.
  • the opening of the radiating part is connected to the edge of the microstrip line away from the radiating part, and through several openings connected to the edge, the diffraction path of the current is increased, and the working bandwidth of the switching structure is increased.
  • the opening includes a first strip-shaped opening section and a second strip-shaped opening section, and one end of the second strip-shaped opening section is connected to one end of the first strip-shaped opening section .
  • the ends of the two strip-shaped openings are connected so that a certain angle can be formed.
  • the electromagnetic wave passes through the radiation part, it can bypass the structure formed by the two strip-shaped openings and pass through the two strip-shaped openings.
  • the formed structure is emitted near, thereby increasing the radiation position of electromagnetic wave energy and improving the working bandwidth of the transfer structure.
  • the opening further includes a third strip-shaped opening section, the third strip-shaped opening section is connected to the other end of the second strip-shaped opening section, and the second strip-shaped opening section The other end of the strip is far away from the end connected to the first strip-shaped opening section, and the third strip-shaped opening section is arranged parallel to and spaced apart from the first strip-shaped opening section.
  • the structure formed by the three sections of openings in the radiation part further increases the current resonance point and expands the working bandwidth range of the switching structure.
  • the second strip-shaped opening segment is vertically arranged relative to the first strip-shaped opening segment.
  • the opening of the radiation part is roughly a U-shaped opening, so that the radiation part forms a multi-tuning circuit, which reduces the quality factor and increases its bandwidth range.
  • the length of the opening is 0.5* ⁇ 1.5* ⁇ , for example, the length of the opening may be 0.5* ⁇ , or may be ⁇ , or may be 1.5* ⁇ .
  • the width of the opening is 0.01* ⁇ ⁇ 0.2* ⁇ , for example, the width of the opening may be 0.05* ⁇ , or may be 0.1* ⁇ .
  • is the working wavelength of the switching structure.
  • the opening is strip-shaped, the total length is about 0.5* ⁇ -1.5* ⁇ , and the width is about 0.01* ⁇ -0.2* ⁇ .
  • the specific shape is not limited, so openings of different shapes in the radiation part can increase the current diffraction path and increase the working bandwidth of the transfer structure.
  • the opening includes a fourth strip-shaped opening section and a fifth strip-shaped opening section, and the fourth strip-shaped opening section extends to the first edge of the radiation portion along the first direction , the fifth strip-shaped opening section extends to the first edge along the second direction, and the fourth strip-shaped opening section and the fifth strip-shaped opening section intersect at the first edge.
  • the shape of the opening on the radiation part is V-shaped, which increases the diffraction path of the current and expands the working bandwidth of the transfer structure.
  • the first edge is adjacent to an edge of the radiation part connected to the microstrip line.
  • the vertex of the V-shaped opening of the radiation part is on the adjacent side of the edge connected to the radiation part and the microstrip line, so that the actual length of the adjacent side increases, and the edge of the adjacent side extends to the inside of the radiation part, and the energy of electromagnetic wave radiation is redistributed , to increase the working bandwidth range of the switching structure.
  • the waveguide further includes a shielding groove, the shielding groove is disposed on a side of the waveguide close to the waveguide entrance, and is spaced apart from the waveguide entrance and the microstrip avoidance groove.
  • the shielding groove around the waveguide port can reduce the leakage of electromagnetic wave energy, so that most of the energy can radiate out of the transition structure through the waveguide port.
  • the shielding groove surrounds the outer periphery of the waveguide opening.
  • the shielding groove surrounds the outer periphery of the waveguide port, so that a relatively large area of the waveguide port can be surrounded by the shielding groove, which is beneficial to limit energy consumption and improve energy utilization in the transfer process.
  • the depth of the shielding groove is an odd multiple of ⁇ /4, and ⁇ is the working wavelength of the transition structure.
  • the shape of the shielding groove on the waveguide is not limited, for example, it may be in the shape of a rectangular strip.
  • the rectangular strip-shaped shielding groove is beneficial to reduce the energy leaked from one side of the strip.
  • the shielding groove can also surround the waveguide opening, so as to better reduce the energy leakage of electromagnetic waves.
  • the depth of the shielding groove is set to be an odd multiple of ⁇ /4, so that after impedance transformation, the shielding groove has a relatively large impedance.
  • the waveguide further includes a waveguide body and a boss, and the boss protrudes from the waveguide body toward the circuit board and contacts the circuit board.
  • the waveguide body and the boss can be integrally formed.
  • the waveguide is brought into contact with the circuit board through the set boss to reduce the contact area, thereby reducing the influence of the waveguide or the processing size tolerance of the circuit board on assembly.
  • the first metal layer further includes a first transition part for impedance matching between the microstrip line and the radiation part, and the first transition part is connected between the radiation part and the microstrip line Between, along the direction from the radiation part to the microstrip line.
  • Providing a transition section between the radiation part and the microstrip line can make the impedance on the transmission path gradually change, and reduce energy loss such as reflection during electromagnetic wave transmission.
  • the first metal layer further includes a ground part, the ground part surrounds the outer circumference of the radiation part and the microstrip line, and is spaced apart from the radiation part and the microstrip line, and the ground part The part is in contact with the waveguide, and the ground part is connected to the second metal layer.
  • the outside of the radiating part surrounds the grounding part, so that when the waveguide and the circuit board are used together, the waveguide and the grounding part achieve good contact.
  • the ground portion conducts with the second metal layer through a metallized via hole or a metal wall.
  • the metallized through hole between the ground part and the second metal layer makes good contact between the ground part and the second metal layer.
  • the metal wall or the metallized through hole can further limit the outward radiation of electromagnetic wave energy and improve the reliability of the transition structure. efficiency.
  • the orthographic projection of the waveguide port on the circuit board is located within the area surrounded by the inner contour of the grounding portion.
  • the area enclosed by the inner contour of the grounding part is the transition area between the circuit board and the waveguide.
  • the transition area can be slightly larger than the size of the waveguide port, thereby reducing the impact of alignment errors on the transition performance and achieving good transition performance. .
  • the grounding part includes a grounding part body and a grounding extension part, and the grounding extension part is opposite to and spaced from the connection between the microstrip line and the radiation part, and the grounding part is formed by the grounding part The body extends toward the connection.
  • the ground part has a ground extension part, and the ground extension part extends to the connection between the radiation part and the microstrip line.
  • the ground extension part can increase the impedance matching degree of electromagnetic wave transmission.
  • an antenna in a second aspect, includes the switching structure according to any implementation manner of the first aspect.
  • a detection device in a third aspect, includes the antenna in any implementation manner of the second aspect.
  • the detection device is radar.
  • a terminal in a fourth aspect, includes the detecting device in any one of the implementation manners of the third aspect.
  • the terminal is a vehicle.
  • a vehicle in a fifth aspect, includes the detection device in any implementation manner of the third aspect.
  • FIG. 1 is a diagram of a scenario where the switching structure provided by the embodiment of the present application is applicable.
  • Fig. 2 is a perspective view of a transition structure provided by an embodiment of the present application.
  • FIG. 3 is a schematic structure diagram corresponding to a first metal layer of the circuit board of FIG. 2 .
  • FIG. 4 is a schematic structural diagram of the first transition portion corresponding to FIG. 3 .
  • Fig. 5 is a perspective view of another transition structure provided by the embodiment of the present application.
  • FIG. 6 is a schematic structural view corresponding to the first end face of the waveguide in FIG. 5 .
  • FIG. 7 is a perspective view corresponding to FIG. 5 .
  • Fig. 8 is a schematic structural diagram of an opening of a radiation part provided by an embodiment of the present application.
  • FIG. 9 is a simulation result diagram corresponding to the opening of the radiating part in FIG. 8 .
  • Fig. 10 is a schematic structural diagram of the opening of the radiation part provided by the embodiment of the present application.
  • Fig. 11 is a schematic structural diagram of an opening of a radiation part provided by an embodiment of the present application.
  • Fig. 12 is a schematic structural view of the opening of the radiation part provided by the embodiment of the present application.
  • Fig. 13 is a schematic structure diagram of a switching structure array provided by an embodiment of the present application.
  • Fig. 14 is a schematic diagram of another switching structure provided by an embodiment of the present application.
  • the technical solution disclosed in this application takes the application in the radar field as an example, but it is not limited to the radar system, and the switching structure can be applied to any scene that requires switching between waveguides and circuit boards.
  • the circuit board used in this application can be a common printed circuit board (printed circuit board, PCB), or a substrate integrated waveguide (substrate integrated waveguide, SIW).
  • PCB printed circuit board
  • SIW substrate integrated waveguide
  • the waveguide applicable to this application can be a rectangular waveguide, or a tubular waveguide with other non-standard or standard waveguide ports.
  • the metal waveguide with a rectangular waveguide port is used as an example to introduce the main technical solution of this application.
  • the waveguide port is other The situation is similar for shape.
  • FIG. 1 shows a schematic diagram of a radar structure in the form of a waveguide antenna applicable to the switching structure of the present application.
  • the radar includes:
  • the shielding layer 110 is used to reduce the influence of the external electromagnetic field on the whole antenna.
  • the shielding layer can be grounded, so that external interference signals are guided to the ground by this layer.
  • the shielding layer can also prevent the circuit inside the antenna from radiating electromagnetic energy, thereby reducing the loss of internal signal transmission.
  • the shielding layer can also have excellent thermal conductivity, so that the heat generated by the internal circuit can be exported to the whole device, so that the internal circuit can operate at a relatively stable temperature.
  • the PCB layer 120, the active device is located on this layer, and the signal generated by the active device can be processed, and the processed signal can enter the next layer structure from this layer through radiation or transmission lines.
  • the cooling layer 130 is located between the PCB layer 120 and the filtering/feeding layer 140. Like the shielding layer, it can quickly transfer the heat generated in the antenna to the entire antenna system.
  • the specific design of the layer shape can also facilitate the PCB layer 120 and the filtering/feeding layer. feed layer 140 transition.
  • the filtering/feeding layer 140 is used for filtering the signal from the PCB layer 120 to obtain electromagnetic waves within a certain bandwidth.
  • the radiation layer 150 which includes a slot radiation array composed of several slots, is used to radiate the electromagnetic waves processed by the filtering/feeding layer 140 out of the entire millimeter wave antenna device through the array.
  • the transitions associated with the PCB layer 120 have a significant impact on the performance of the overall device. Therefore, the technical solution provided by the present application covers a wider bandwidth range by optimizing the connection between the PCB layer 120 and the waveguide, and has the advantage of a low profile, which facilitates the installation of the entire module.
  • Fig. 2 shows a perspective view of a transition structure provided by an embodiment of the present application.
  • the transition structure provided in the embodiment of the present application may include a circuit board 20 .
  • the circuit board 20 in FIG. 2 can be equivalent to the PCB layer 120 in FIG. 1.
  • the circuit board 20 includes a first metal layer 230, a second metal layer 210 and a dielectric layer 220. Between the two metal layers 210, the dielectric layer 220 may be an insulating material, and the second metal layer 210 is grounded.
  • the first metal layer 230 and the second metal layer 210 may be two adjacent metal layers of the circuit board 20 .
  • the first metal layer 230 and the second metal layer 210 may be disposed on both surfaces of the dielectric layer 220 by means of electroplating or the like.
  • the circuit board 20 in order to reduce processing difficulty and production cost, adopts a structure without a back cavity, and directly under the first metal layer 230 is the dielectric layer 220, without other metal back cavity, which can effectively reduce the processing difficulty, and The thickness of the entire circuit board 20 is relatively small, effectively saving costs.
  • the thickness of the NF30 plate of the vehicle radar board is only 0.05-0.2mm, for example, it may be 0.12mm.
  • FIG. 3 shows the structure of the first metal layer 230 of the switching structure circuit board 20 of the present application.
  • the first metal layer 230 includes a radiation part 231 and a microstrip line 232.
  • One end of the microstrip line 232 is connected to the feed source part, which can be the entire transition structure or a circuit board or a feeder in an electronic device. source.
  • the other end of the microstrip line 232 may be connected to the radiation part 231 .
  • the radiation part 231 and the microstrip line 232 may be directly connected.
  • the radiation part 231 and the microstrip line 232 can also be connected by a first transition part 233, the first transition part 233 is also a metal, the existence of the first transition part 233 can make the electromagnetic wave from the microstrip line
  • the impedance from the microstrip line 232 to the radiation part 231 presents a gradual change state, thereby reducing the reflection of electromagnetic wave energy at the junction of the microstrip line 232 and the radiation part 231, which is conducive to increasing the energy entering the radiation part 231. energy and reduce loss.
  • the width of the first transition portion 233 at a position close to the microstrip line 232 may be smaller than the width of the first transition portion 233 at a position close to the radiation portion 231 .
  • the width direction of the first transition portion 233 may be perpendicular to the direction from the microstrip line 232 to the radiation portion 231 and parallel to the direction of the first metal layer 230, for example, the width direction of the first transition portion 233 may be perpendicular to the microstrip line 232 Extension direction.
  • Fig. 4 shows the structure of the first transition part provided by the embodiment of the present application.
  • the width of the first transition portion 233 may gradually increase from the microstrip line 232 to the radiation portion 231 , for example, increase linearly.
  • the width of the first transition portion 233 may increase in steps from the microstrip line 232 to the radiation portion 231 . That is, the edge of the first transition portion 233 may be stepped.
  • the edge of the first transition portion 233 may include a first step side 2331 and a second step side 2332 parallel to the width direction of the first transition portion 233 , and a third step side perpendicular to the width direction of the first transition portion 233 2333, the fourth step side 2334, the third step side 2333 can be connected between the first step side 2331 and the second step side 2332, and the fourth step side 2334 can be connected between the second step side 2332 and the microstrip line 232 .
  • the width of the first transition portion 233 at the first step side is different from the width of the first transition portion 233 at the second step side.
  • the radiation part 231 may be rectangular. In some embodiments, the symmetry axis in the extension direction of the microstrip line 232 may deviate from the symmetry axis of the radiation part 231 .
  • the impedance state it presents is the impedance value conducted from the back-end circuit.
  • the impedance is generally set to 50 ohms.
  • Seen from the transfer port, that is, the radiation part 231 the impedance it presents is the impedance of the entire transfer structure. By offsetting the microstrip line relative to the radiation part, the difference between the two can be reduced.
  • the impedance value presented in the middle part is generally small, which is not conducive to impedance matching, and the impedance at the edge is relatively large, and an appropriate offset size can be selected.
  • the debugging difficulty of impedance matching can be greatly reduced, thereby facilitating impedance matching between the microstrip line 232 and the radiation part 231 .
  • the symmetry axis in the extension direction of the microstrip line 232 may be in the extension direction of the symmetry axis of the radiation part 231 .
  • the radiating part 231 has an opening 234, so that the radiating part forms at least two resonant frequencies.
  • the opening 234 is a pattern formed by removing part of the metal of the radiation part 231 to expose the dielectric layer ( 220 ) under the radiation part 231 .
  • the opening on the radiation part 231 may also be called a slit.
  • the existence of the opening 234 on the radiation part 231 changes the capacitance and inductance components, which can cause the current to form a new resonant frequency near the opening, so that at least two resonant frequencies are formed on the radiation part 231, expanding the working bandwidth of the transfer structure.
  • the opening 234 may be located inside the radiation portion 231 , that is, spaced apart from the edge of the radiation portion 231 , or may be connected to the edge of the radiation portion 231 .
  • the outside of the radiation part 231 and the microstrip line 232 of the first metal layer 230 may further include a ground part 235 , and the ground part 235 surrounds the radiation part 231 and the microstrip line 232 .
  • the metal between the radiation part 231 and the microstrip line 232 and the ground part 235 is removed by means of chemical etching, so that the radiation part 231 is separated or separated from the microstrip line 232 and the ground part 235 .
  • the middle part can be removed from the complete metal layer on the dielectric layer 220, and the radiation part 231 and the microstrip line 232 are fixed on the middle part as a whole, and the middle part is not provided with the radiation part 231 and the microstrip line 232.
  • the region may expose part of the surface of the dielectric layer 220 (the exposed part of the dielectric layer is indicated by a shaded part in FIG. 3 ).
  • the ground part 235 can be grounded through a transmission line, or can be connected to the second metal layer 210 through a plurality of metallized via holes 237 disposed on the ground part 235 close to the radiation part 231 and the microstrip line 232 , so as to be grounded.
  • the distance between the multiple metallized through holes may be smaller than the target threshold, so that the energy of the electromagnetic wave is limited within the area surrounded by the metallized through holes 237 , reducing the loss of electromagnetic wave energy.
  • the metallized vias 237 can also be replaced by metal walls connecting the ground portion 235 and the second metal layer 210 .
  • the ground part 235 may include a ground part body and a ground extension part 236.
  • the ground extension part 236 is located near the position where the microstrip line 232 is connected to the radiation part 231.
  • the distance between the ground extension part 236 and the microstrip line 232 is smaller than that between the ground part body and the microstrip line. Take the distance of line 232.
  • the distance between the ground portion 235 and the microstrip line 232 may be the length from somewhere on the inner contour of the ground portion to the microstrip line 232 in a direction perpendicular to the extending direction of the microstrip line 232 .
  • the ground extension 236 extends from the ground body to the microstrip line 232 .
  • the ground extension part is disposed opposite to the junction of the radiation part 231 and the microstrip line 232 , and may extend toward the junction of the radiation part 231 and the microstrip line 232 .
  • the setting of the ground extension part 236 can further improve the impedance matching between the radiation part 231 and the microstrip line 232 , and the entire ground part 235 and the ground extension part 236 are not in contact with the microstrip line 232 and the radiation part 231 .
  • Fig. 5 shows a perspective view of another transition structure provided by the embodiment of the present application.
  • the transition structure provided in the embodiment of the present application may further include a waveguide 30 .
  • the waveguide 30 is processed from a single piece of metal, and various structures of the waveguide 30 of the present application can be processed on the first end surface of the waveguide 30 by milling or other processing methods.
  • the waveguide 30 may include a waveguide opening 311 and a microstrip avoidance groove 312 .
  • the waveguide port 311 may be a standard waveguide port, such as a WR12 waveguide port (the size of the WR12 standard waveguide port is 3.0988mm*1.5494mm); it may also be a non-standard waveguide port.
  • the waveguide opening 311 penetrates from the first end face of the waveguide 30 to the opposite side of the first end face, so as to guide the electromagnetic waves out of the waveguide 30 .
  • the first end surface of the waveguide 30 may be an end surface of the waveguide 30 close to the circuit board 20 . As shown in FIG. 4 , the first metal layer 230 of the circuit board 20 may be located on a side of the circuit board 20 close to the waveguide 30 .
  • the waveguide opening 311 on the first end face of the waveguide 30 faces the first metal layer 230 of the circuit board 20, so that the energy of the electromagnetic wave passes through the waveguide opening from the first metal layer 230 of the circuit board 20 311 radiates outward.
  • FIG. 6 shows a schematic structure diagram corresponding to the first end face of the waveguide 30 in FIG. 5 .
  • the waveguide 30 has various structures processed on the first end surface.
  • the waveguide port 311 and the microstrip avoidance groove 312 can be directly connected, and can also be connected through the second transition part 313.
  • the second transition part 313 can be a strip-shaped groove with a width smaller than the microstrip avoidance groove 312.
  • the second transition part The width of 313 may also vary linearly or in steps, and the width of the second transition portion 313 is the length of the second transition portion 313 in a direction perpendicular to the extending direction of the microstrip avoidance groove 312 .
  • shielding groove 314 near the outside of the waveguide port 311, and the shielding groove 314 is spaced apart from the waveguide port 311 and the microstrip avoidance groove 312 connecting the waveguide port 311, so as to limit the main energy of electromagnetic waves to the shielding groove 314 within the range of the side close to the waveguide port 311.
  • the shielding groove 314 can surround the periphery of the waveguide port 311.
  • the shielding groove 314 can include a first bar-shaped groove 3141, a second bar-shaped groove 3142 and The third strip-shaped groove 3143, the first strip-shaped groove 3141 and the third strip-shaped groove 3143 can be arranged at intervals, and the second strip-shaped groove 3142 can be connected to the first strip-shaped groove 3141 and the third strip-shaped groove Between slots 3143.
  • the arrangement of the three-segment bar-shaped groove is beneficial to confine the electromagnetic wave energy within the range formed by the shielding groove, and reduce the electromagnetic wave energy loss of the transfer structure.
  • the depth of the shielding groove 314 is not limited. In some embodiments, the depth of the shielding groove 314 may be an odd multiple of ⁇ /4, so that the impedance at the opening of the groove, that is, the first end surface, is relatively large, and the propagation of electromagnetic wave energy is suppressed. In some other embodiments, the shielding groove 314 may pass through from the first end surface of the waveguide 30 to the opposite side of the first end surface. The depth direction of the shielding groove is the normal direction of the first end face of the waveguide.
  • the width of the shielding groove 314 may not be limited, for example, the width of the shielding groove 314 may be 0.5 mm.
  • the width direction of the shielding groove 314 may be parallel to the direction of the first end face and perpendicular to the extending direction of the shielding groove 314 , and the extending direction of the shielding groove 314 may be the axial direction of the shielding groove 314 .
  • the shape of the shielding groove 314 is also not limited, and may be circular or polygonal.
  • the shielding groove 314 can be closed outside the waveguide port, for example, the first strip-shaped groove 3141, the second strip-shaped groove 3142 and the third strip-shaped groove 3142 in FIG. At least one of the grooves 3143 is replaced with a polygonal annular groove formed by connecting several bar-shaped grooves end to end.
  • the shielding groove 314 may include a fourth groove 3144, a fifth groove 3145, and a sixth groove 3146 as shown in the shaded part in (b) of FIG.
  • the outer contour is a concentric rectangle, and the waveguide opening 311 can be disposed outside the groove.
  • the shape of the above-mentioned grooves can also be replaced with circular grooves or other irregular shapes, which is not limited in this application.
  • the shielding groove 314 surrounds the outside of the waveguide opening 311 in an unclosed manner, that is, the structure of the shielding groove 314 shown in (a) of FIG. 6 .
  • the waveguide 30 may also include a waveguide body and a boss 315 .
  • the waveguide body includes structures such as a waveguide opening 311 , a microstrip avoidance groove 312 , and a shielding groove 314 .
  • the boss 315 protrudes from the waveguide body toward the circuit board 20 and contacts the circuit board 20 .
  • the position of the boss 315 is not limited, and the shape of the boss 315 is also not limited.
  • the boss 315 can be integrally formed.
  • the boss 315 may include a first boss part 3151 , a second boss part 3152 and a third boss part 3153 .
  • the first boss portion 3151 is located outside the shielding groove 314.
  • the first boss portion 3151 may also include a boss portion located on the side of the first row of grooves 3141 away from the waveguide opening 311, a boss portion located on the side of the second row of grooves 3142 away from the waveguide outlet 311, and a boss portion located on the side of the third row of grooves 3143 The boss portion on the side away from the waveguide opening 311 .
  • the second boss portion 3152 is a region between the waveguide opening 311 and the shielding groove 314 .
  • the third boss portion 3153 includes boss portions located on both sides of the microstrip avoidance groove 312, the two boss portions are strip-shaped bosses, and the axes of the two strip-shaped bosses are parallel to the microstrip avoidance groove 312 in the direction of extension.
  • the boss may only include a part surrounding the waveguide port, such as the boss 315 shown in (b) of FIG. Part of it surrounds the waveguide opening 311 and is in contact with the outer contour of the waveguide opening 311 .
  • the shape and position of the boss 315 in Fig. 6 are only schematically provided, and the shape of the boss 315 can not be limited, and the boss 315 can also include a number of sub-bosses arranged at different intervals, each part of the boss 315
  • the distances from the microstrip avoidance groove 312 , the waveguide opening 311 and the shielding groove 314 are also not limited.
  • the waveguide 30 is in contact with the circuit board 20 through the boss 315. Since the area of the boss 315 is smaller than the area of the first end surface of the waveguide 30, the contact between the boss 315 and the circuit board 20 reduces the contact between the waveguide 30 and the circuit board 20. area, so as to reduce the influence of the processing tolerance of the waveguide 30 and the circuit board 20 on assembly, and the height of the boss 315 may not be limited. In some embodiments, the surface of the boss 315 facing the circuit board 20 may be flat so as to contact and fit with the planar structure on the circuit board 20 .
  • the surface of the boss 315 facing the circuit board 20 may be a curved surface, so as to adapt to certain curved surface structures on the circuit board 20 , or the usage situation that the circuit board 20 is a curved surface.
  • the surface of the boss 315 can also continue to etch other structures, such as grooves, slits, etc., to further reduce the contact area and reduce the influence of the processing tolerance between the boss 315 and the circuit board on assembly.
  • FIG. 7 shows a projected view corresponding to the partial structure of the waveguide 30 in FIG. 5 on the circuit board 20 .
  • the structure shown by the dotted line is the projection of the partial structure of the waveguide 30 on the circuit board 20 when the circuit board 20 is used together with the waveguide 30 .
  • the orthographic projection 316 of the outer contour of the waveguide port 311 on the circuit board 20 and the orthographic projection 317 of the outer contour of the microstrip avoidance groove 312 on the circuit board 20 are outside the radiation part 231 and the microstrip line 232, that is, the outer contour of the waveguide port 311
  • the orthographic projection 316 of and the radiating part 231 are arranged at intervals, and the orthographic projection 317 of the outer contour of the microstrip line avoidance groove is arranged at an interval with the microstrip line 232 .
  • the microstrip line 232 is spaced apart from the wall of the microstrip line avoidance groove 312 , so as to avoid a short circuit when the electromagnetic wave does not enter the waveguide opening 311 .
  • the inner contour of the ground part 235 of the circuit board 20 includes a first part 2351 close to the radiation part, a second part 2352 close to the ground extension part, and a third part 2353 close to the main body of the microstrip avoidance slot.
  • the first part 2351 can be located outside the projection 316 of the waveguide opening 311 on the circuit board 20, that is, the orthographic projection of the waveguide opening 311 on the circuit board 20 is surrounded by the inner contour of the grounding portion 235 In the region, the alignment error can be reduced (as shown by the projection 3161 of the waveguide port on the circuit board shown in FIG.
  • the first part 2351 can also coincide with the projection 316 of the waveguide port 311 on the circuit board 20 .
  • the relationship between the second portion 2352 or the third portion 2353 and the outer contour projection 318 of the second transition portion 313 of the waveguide 30 and the outer contour projection 317 of the microstrip avoidance groove is not limited.
  • the waveguide 30 and the circuit board 20 may also include structures for connection and positioning, such as screw holes, limiting holes, etc., which are not shown in the figure.
  • the present application expands the bandwidth of the transition structure by changing the shape of the radiation portion opening 234 of the first metal layer 230 on the circuit board 20.
  • the opening 234 of the radiation portion 231 can be arranged inside the radiation portion 231, that is, spaced from the radiation portion 231, or Intersects with the edge of the radiation portion 231 .
  • the opening 234 of the radiation part may be a strip opening.
  • the length of the strip-shaped opening is the dimension of its extending direction, and the width of the strip-shaped opening may be the dimension perpendicular to its extending direction.
  • the opening can be a strip-shaped opening with equal width everywhere, wherein the total length of the axis of the strip-shaped opening can be 0.5* ⁇ 1.5* ⁇ , for example, the length of the opening can be 0.5* ⁇ , or can be is ⁇ , or may be 1.5* ⁇ .
  • the width of the strip opening may be 0.01* ⁇ ⁇ 0.2* ⁇ , for example, the width of the opening may be 0.05* ⁇ , or 0.1* ⁇ , where ⁇ is the working wavelength of the transfer structure.
  • the strip opening can consist of different parts.
  • the strip-shaped opening can be composed of a first strip-shaped opening section and a second strip-shaped opening section, and one end of the first strip-shaped opening section can be connected with one end of the second strip-shaped opening section, so that the two strips Shaped openings form a certain angle, for example, when the included angle is 90°, that is, when the first row of openings is perpendicular to the second strip-shaped opening, the opening is roughly L-shaped, and when the included angle is not 90°, the opening is roughly into a V shape.
  • the opening 234 in addition to the above-mentioned first strip-shaped opening section and the second strip-shaped opening section, also includes a third strip-shaped opening section, and one end of the third strip-shaped opening section is connected to the second strip-shaped opening section. The other ends are connected, the other end of the second strip-shaped opening section is away from the end connected to the first strip-shaped opening section, and the third strip-shaped opening section is parallel to and spaced apart from the first strip-shaped opening section.
  • the second strip-shaped opening section may be perpendicular to the first strip-shaped opening section, so that the three sections form a U-shaped structure.
  • the opening 234 may include a fourth strip-shaped opening section and a fifth strip-shaped opening section, the fourth strip-shaped opening section extends to the first edge of the radiation portion along the first direction, and the fifth strip-shaped opening section Extending to the first edge along the second direction, the fourth strip-shaped opening section and the fifth strip-shaped opening section intersect at the first edge.
  • the fourth strip-shaped opening section and the fifth strip-shaped opening section roughly form a V-shaped structure, which expands the working bandwidth range of the switching structure.
  • the first edge may be adjacent to an edge of the radiation part 231 connected to the microstrip line 232 .
  • V vertex of the above-mentioned V-shaped opening is on the adjacent side of the edge where the radiation part 231 is connected to the microstrip line 232 .
  • Fig. 8 shows a schematic structural diagram of the opening 234 of the radiation part of the first metal layer 230 of the circuit board 20 provided by the embodiment of the present application.
  • the openings are strip-shaped openings located inside the radiation portion 231 , including a first strip-shaped opening section 2341 , a second strip-shaped opening section 2342 and a third strip-shaped opening section 2343 .
  • the first strip-shaped opening segment 2341 and the third strip-shaped opening segment 2343 are parallel to each other, and the second row-shaped opening segment 2342 connects the first row-shaped opening segment 2341 and the third strip-shaped opening segment 2343 .
  • the second strip-shaped opening section 2342 is perpendicular to the first strip-shaped opening section 2341, and the three strip-shaped opening sections roughly form a U-shaped structure.
  • the total length 2a+b of the three strip-shaped opening sections is about 0.5* ⁇ 1.5* ⁇ , Exemplarily, a is 0.3* ⁇ , b is 0.6* ⁇ ; or a is 0.15* ⁇ , b is 0.3* ⁇ .
  • the width e of the strip-shaped opening segment is about 0.01* ⁇ ⁇ 0.2* ⁇ . Exemplarily, e may be 0.01* ⁇ , or e may be 0.05* ⁇ , or e may be 0.1* ⁇ .
  • the length of the first strip-shaped opening section 2341 and the second strip-shaped opening section 2342 of the U-shaped opening may be 0.25* ⁇ , and the length of the third strip-shaped opening section 2343 may be 0.55* ⁇ , each The width of each strip-shaped opening section can be 0.05* ⁇ , and the length and width of the entire radiation portion 231 are not limited.
  • the width c can be 0.45* ⁇ ⁇
  • the length d of the radiation portion can be 0.75* ⁇ ⁇ 2* ⁇
  • is the working wavelength of the switching structure.
  • FIG. 9 shows a graph of simulation results corresponding to the relationship between scattering parameters and operating frequency in FIG. 8 .
  • the transmission coefficient i.e., the s12 line shown by the dotted line in Figure 9
  • the return loss the s11 line shown by the solid line in the figure
  • the impedance matching of the transfer structure of the present application is better, which reduces the energy loss of electromagnetic wave reflection caused by impedance discontinuity when electromagnetic waves enter the circuit board from the microstrip line, and has a larger working bandwidth.
  • the openings may also be V-shaped openings, W-shaped openings, and the like.
  • the total length and width of the opening meet requirements such as impedance matching performance.
  • Fig. 10 shows a schematic structural view of the opening of the radiation part provided by the embodiment of the present application.
  • the right edge of the radiating portion is the second edge 1001 , and the figure also shows two symmetry axes 1002 and 1003 of the radiating portion.
  • FIG. 10 is an embodiment of the internal opening of the radiating part.
  • the internal opening includes four strip-shaped openings, one end of the first strip-shaped opening is connected to one end of the second strip-shaped opening, and the first strip-shaped opening Extending to the opposite side of the second edge 1001 , and the extending direction deviates from the symmetric axis 1002 of the radiating portion.
  • the third strip-shaped opening is connected to one end of the fourth strip-shaped opening, the third strip-shaped opening extends to the opposite side of the second edge 1001, and the extension direction deviates from the symmetric axis 1002 of the radiation part, the fourth strip-shaped opening Extending toward the second edge 1001 , the extending direction deviates from the symmetric axis 1002 of the radiation part.
  • the second segment of the strip-shaped opening is connected to the other end of the third segment of the strip-shaped opening, and the fourth segment of the strip-shaped opening is in a W shape.
  • first section of strip-shaped openings and the fourth section of strip-shaped openings may be symmetrical with respect to the axis of symmetry 1002
  • second section of strip-shaped openings and the third section of strip-shaped openings may be symmetrical with respect to the axis of symmetry 1002 .
  • FIG. 10 is an embodiment of the internal opening of the radiating part.
  • the internal opening includes two strip-shaped openings.
  • the symmetry axis 1002 of the radiation part extends to the adjacent side of the second edge 1001, and the second strip-shaped opening extends to the second edge 1001 along the symmetry axis 1003 of the radiating part.
  • the two strip-shaped openings form an L-shape as a whole.
  • FIG. 10 is an embodiment of the internal opening of the radiating part.
  • the internal opening includes two strip-shaped openings, one end of which is connected to each other, and one section of the strip-shaped opening extends to the opposite side of the second edge 1001, extending
  • the direction deviates from the direction of the symmetry axis 1003 of the radiating part, and the other segment of the strip-shaped opening extends toward the second edge 1001, and the extension direction deviates from the direction of the symmetric axis 1003 of the radiating part, and the two segments of the strip-shaped opening form a V shape as a whole.
  • one segment of the strip-shaped opening and another segment of the strip-shaped opening may be symmetrical with respect to the axis of symmetry 1002 .
  • FIG. 10 is an embodiment of the internal opening of the radiating part.
  • the internal opening includes three sections of strip-shaped openings, wherein the first section of the strip-shaped opening is connected to one end of the second section of the strip-shaped opening, and the first section of the strip-shaped opening is connected from one end to the other.
  • the end portion of the radial part extends to the opposite side of the second edge 1001 along the direction of the symmetry axis 1003 of the radiation part, the second section of strip-shaped opening extends from the connected end to the opposite side of the second edge 1001 in a direction deviated from the symmetry axis, and the third section
  • the strip-shaped opening is connected to the end of the second segment of the strip-shaped opening that is far away from the first segment of the strip-shaped opening, and the third segment of the strip-shaped opening extends toward the second edge 1001 along the direction of the symmetric axis 1003 of the radiation part.
  • the opening forms a Z shape as a whole.
  • the opening in addition to the shape of the internal opening of the radiating part shown in FIG. 7 and FIG. 10 , the opening can also be in other shapes, as long as the internal opening is not closed and meets the above requirements for the total length and width of the opening.
  • the above opening can also be rotated at a certain angle or one of the two ends of the opening can be connected to the edge of the radiation part.
  • the various opening structures shown in FIG. 10 change the coupling capacitance value at a certain frequency point of the transfer structure, increase the resonance point, and expand the matching bandwidth of the transfer structure.
  • Fig. 11 shows a schematic structural diagram of an opening of a radiation part provided by an embodiment of the present application.
  • the size of the first opening 1101 is W1*L1
  • the size of the second opening 1102 is W2*L2
  • the size of the third opening 1103 is W3*L3 (radiation
  • the right edge of the part is the second edge 1104, which is connected to the microstrip line 232, which is not shown in the microstrip line diagram).
  • L1 or L2 is smaller than the width of the radiation part
  • W1+W2+W3 is smaller than the length of the radiation part.
  • the above-mentioned W1, W2, W3 are the dimensions of each opening in a direction perpendicular to the second edge
  • the above-mentioned L1, L2, L3 are the dimensions of each opening in a direction parallel to the second edge.
  • W1*L1 can be about (0.1* ⁇ )*(0.15* ⁇ )
  • W1*L1 can also be about (0.1* ⁇ )*(0.15* ⁇ )
  • W3*L3 can be ( About 0.05* ⁇ )*(0.05* ⁇ ).
  • the current diffraction path can be increased, the working bandwidth of the switching structure can be expanded, and the application scenarios of the switching structure of the present application can be improved.
  • the second edge where the radiation part 231 is connected to the microstrip line 232 and the edge opposite to the edge where the radiation part 231 is connected to the microstrip line 232 may also be open.
  • Fig. 12 shows a schematic structural view of the opening of the radiation part provided by the embodiment of the present application.
  • the right edge of the radiation part is defined as the second edge 1201, that is, the edge where the microstrip line 232 is connected to the radiation part 231 (the microstrip line is not shown), and the two symmetry axes of the radiation part are 1202 and 1203 respectively (regardless of the symmetry of the opening).
  • FIG. 12 is an embodiment of the edge opening of the radiating part, and the edge opening includes two sections of strip-shaped openings: one of the strip-shaped openings is from the vertex where an adjacent side of the second edge intersects with the second edge to the adjacent side The opposite side of the adjacent side extends, and the extension direction deviates from the direction of the symmetry axis 1202 of the radiating part; the other strip-shaped opening extends from the other vertex of the adjacent side to the opposite side of the adjacent side, and the extension direction deviates from the direction of the symmetry axis 1202 of the radiating part.
  • one of the strip-shaped openings extends from a vertex where an adjacent side of the second edge intersects with the second edge to an opposite side of the second edge, and the extension direction deviates from the direction of the symmetry axis 1202 of the radiation portion; the other The strip-shaped opening extends from another vertex of the adjacent side to the second edge, and the extending direction deviates from the symmetry axis 1202 of the radiating part.
  • FIG. 12 is another embodiment of the edge opening of the radiating part, the edge opening includes two strip-shaped openings, one end of the two strip-shaped openings is connected at a point on an adjacent side of the second edge, and one of the strip-shaped openings Extending from the connected point to the second edge, the extension direction deviates from the direction of the symmetry axis 1202 , and another strip-shaped opening extends from the connected point to the opposite side of the second edge, and the extension direction deviates from the direction of the symmetry axis of the radiating part.
  • FIG. 12 is another embodiment of the edge opening of the radiating part.
  • the edge opening includes a strip-shaped opening, one end of which is at a point above one adjacent side of the second edge, and extends toward the other adjacent side.
  • the extending direction is parallel to the direction of the symmetry axis 1202 of the radiation part.
  • Figure 12(d) is another embodiment of the edge opening of the radiating part, the edge opening includes two strip-shaped openings, one end of one section of the strip-shaped opening is at a point on one adjacent side of the second edge, and extends to the other adjacent side , the extension direction is parallel to the direction of the symmetry axis 1202 of the radiating part; one end of the other strip-shaped opening is at another point of the adjacent side, and extends to the other adjacent side, and the extension direction is parallel to the direction of the symmetry axis 1202 of the radiating part.
  • the two strip-shaped openings may be symmetrical with respect to the symmetry axis 1202 of the radiating part 231 .
  • FIG. 12 is another embodiment of the edge opening of the radiating part.
  • the edge opening includes a strip-shaped opening.
  • One end of the strip-shaped opening is at a point on the opposite side of the second edge and extends toward the second edge. It is parallel to the direction of the symmetry axis 1203 of the radiation part. That is to say, the strip-shaped opening can be vertically arranged relative to the second edge.
  • FIG. 12 is another embodiment of the edge opening of the radiating part, the edge opening includes two strip-shaped openings, one end of one section of the strip-shaped opening is on the opposite side of the second edge, and extends toward the second edge, the extension direction Parallel to the direction of the symmetry axis 1203 of the radiating part; one end of the other strip-shaped opening is at a point on the adjacent side of the second edge, and extends to the opposite side of the adjacent side, and the extension direction is parallel to the direction of the other symmetric axis 1202 of the radiating part, The two strip openings do not intersect.
  • the length, width, and position of the edge opening can be set arbitrarily, and the technical effect of the present application can be achieved, that is, the bandwidth of the transition structure is expanded.
  • the transfer structure of the present application can be implemented in an array.
  • a plurality of radiation parts and their microstrip lines 232 are arranged on the circuit board 20 in a certain manner.
  • the waveguides they can also be arranged in the same way as the radiating part, and besides, the waveguides can share one or more edges of the shielding groove.
  • the various opening structures shown in FIG. 12 change the coupling capacitance value at a certain frequency point of the transfer structure, increase the resonance point, and expand the matching bandwidth of the transfer structure.
  • FIG. 13 shows a schematic structure diagram of a switching structure array provided by an embodiment of the present application.
  • the transition structure may include multiple waveguides, and the multiple waveguides may include waveguides a, waveguides b, waveguides c, and waveguides d, and the multiple waveguides may be arranged in an array, for example.
  • the waveguide openings of waveguide a and waveguide b can be arranged opposite to each other, and the microstrip avoidance groove of waveguide a and the microstrip avoidance groove of waveguide b are respectively located on both sides of the respective waveguide openings and extend in directions away from the waveguide openings.
  • the waveguide opening of the waveguide a and the waveguide opening of the waveguide c are arranged oppositely, and the microstrip avoidance groove of the waveguide a and the microstrip avoidance groove of the waveguide c are arranged oppositely.
  • the waveguide openings of waveguide c and waveguide d can be arranged facing each other, and the microstrip avoidance groove of waveguide c and the microstrip avoidance groove of waveguide d are respectively located on both sides of the respective waveguide openings and extend in directions away from the waveguide openings.
  • the shielding groove includes a first side 1301 , a second side 1302 , a third side 1303 , a fourth side 1304 , a fifth side 1305 , a sixth side 1306 , a seventh side 1307 and an eighth side 1308 .
  • the first side 1301, the third side 1303, and the fourth side 1304 surround the waveguide port 1 of the waveguide a; the second side 1302, the third side 1303, and the fifth side 1305 surround the waveguide port 2 of the waveguide b; the fourth side 1304, the fourth side
  • the six sides 1306 and the seventh side 1307 surround the waveguide opening 3 of the waveguide c; the fifth side 1305 , the sixth side 1306 and the eighth side 1308 surround the waveguide opening 4 of the waveguide d.
  • the waveguide ports of waveguide a and waveguide b are located on both sides of the third side 1303, the waveguide ports of waveguide a and waveguide c are located on both sides of the fourth side 1304, and the waveguide ports of waveguide b and waveguide d are located on both sides of the fifth side 1305 , the waveguide openings of waveguides c and d are located on both sides of the sixth side 1306 , and adjacent waveguides share a side of the shielding groove.
  • Waveguide a and waveguide b share the third side 1303 of the shielding groove
  • waveguide a and waveguide c share the fourth side 1304 of the shielding groove
  • waveguide b and waveguide d share the fifth side 1305 of the shielding groove
  • waveguide c and waveguide d The sixth side 1306 of the shielding groove is shared.
  • the radiating parts on the circuit board 20 can be arranged in the same manner inside the four waveguide ports in FIG. 13 , and the microstrip lines 232 extend along the four microstrip lines 232 escape slots. Therefore, the technical solution of the switching structure of the present application can form an array and be integrated into other devices or modules.
  • FIG. 13 only exemplifies an array arrangement of the waveguide, the radiation part and the microstrip line 232, and the present application can also arrange the waveguide, the radiation part and the microstrip line 232 in other ways, thereby enhancing the present application.
  • the degree of integration of the switching structure is not limited to an array arrangement of the waveguide, the radiation part and the microstrip line 232, and the present application can also arrange the waveguide, the radiation part and the microstrip line 232 in other ways, thereby enhancing the present application.
  • the above are all applications where the microstrip line 232 and the waveguide of the switching structure circuit board 20 of the present application are located on the same side, that is, the microstrip line or the feed source and the waveguide are coplanarly switched on the same side of the circuit board. That is, the transfer is performed on the side of the first metal layer, and the transfer structure of the present application can also be applied to transfer on different planes.
  • FIG. 14 shows a schematic diagram of another switching structure provided by the embodiment of the present application.
  • the microstrip line 232 is divided into two sections, the first section 2321 on the first metal layer 230 in contact with the waveguide and the second section 2322 on the second metal layer 210 on the circuit board 20 (Fig. 12 shown by a dotted line), the second section 2322 located on the second metal layer 210 can be connected to the feed source of the entire transfer structure, and the two sections of microstrip line are connected through the metal via hole 2323, so that the electromagnetic wave is transmitted from the second metal layer 210, the first metal layer 230 is connected to the waveguide through metal vias.
  • the transfer structure of the embodiment of the present application it is possible to flexibly transfer the different planes of the circuit board 20 and the waveguide. Compared with the common different plane transfer method, the solution of the metal via hole is easy to integrate, and the opening of the radiation part can be effectively Expand the bandwidth of the switching structure of this application.
  • the transfer structure introduced in this application can be flexibly applied to various scenarios of co-planar transfer and non-planar transfer, can effectively expand the bandwidth of the transfer structure, covers the common bandwidth range, is easy to assemble, and can be applied to various radars ,testing scenarios.
  • the transfer structure of this application is only illustrated by taking the feed source entering the transfer structure of the radiation part from the microstrip line 23 as an example.
  • the feed source of the transfer structure of this application can also be a structure on the waveguide side, including a waveguide or its The upper-level antenna, SIW, etc., so that the electromagnetic wave energy is introduced from the waveguide into the microstrip line and enters other structures of the circuit board for further processing.
  • An embodiment of the present application further provides an antenna, and the antenna includes any structure in FIG. 2 to FIG. 14 .
  • the embodiment of the present application also provides a detection device, the detection device includes the aforementioned antenna.
  • the detection device is radar.
  • the embodiment of the present application also provides a terminal, the terminal includes the detection device mentioned above, for example, the terminal may be a vehicle.
  • An embodiment of the present application also provides a vehicle, which includes the detection device described above.

Landscapes

  • Details Of Aerials (AREA)
  • Waveguide Aerials (AREA)

Abstract

本申请实施例提供了一种转接结构、天线和终端,转接结构包括电路板,电路板包括第一金属层、第二金属层和介质层,介质层位于第一金属层和第二金属层之间,第一金属层包括辐射部和微带线,微带线与辐射部的一端连接,第二金属层接地;其中,辐射部具有开口,以使得辐射部形成至少两个谐振频率。本申请实施例提供的方案可以扩展转接结构的工作带宽。

Description

转接结构、天线及终端 技术领域
本申请涉及通信技术领域,更具体地,涉及一种转接结构、天线及终端。
背景技术
随着科技的发展与进步,车辆的智能化已经逐步成为车辆领域的研究热点。智能化的车辆(简称智能车辆)可以为人们带来更加安全和舒适的驾驶体验。例如,智能车辆上可以安装多种传感器,以通过传感器获取其周围的环境信息,并基于周边环境信息实现辅助驾驶或自动驾驶。传感器例如包括摄像头、激光雷达、毫米波雷达、超声波传感器等。
毫米波雷达以毫米波为探测介质,可以测量从毫米波雷达到被测物体之间的距离、角度和移动速度等。毫米波雷达可以通过馈源向天线辐射体发送信号,天线辐射体可以向波导辐射信号,通过波导转接信号,可以使毫米波雷达相对精准地检测被测物体的位置、移动速度等。毫米波雷达的有效带宽对毫米波的性能影响较大,如何提高毫米波雷达的有效带宽是需要解决的问题。
发明内容
本申请实施例提供一种转接结构,目的是扩展转接结构的工作带宽范围。
第一方面,提供了一种转接结构,包括电路板,电路板包括第一金属层、第二金属层和介质层,介质层位于第一金属层和第二金属层之间,第一金属层包括辐射部和微带线,微带线与辐射部的一端连接,第二金属层接地;其中,辐射部具有开口,以使得辐射部形成至少两个谐振频率。
本申请提供了转接结构,转接结构包括电路板,电路板上的介质层位于第一金属层和第二金属层之间。本申请提供的转接结构有利于缩减金属背腔对应的空间,减小了电路板整体厚度,从而便于该转接结构与其他部件集成。第一金属层的辐射部开口扩展了转接结构的带宽,使得该转接结构能够应用于更多的场景。
结合第一方面,在第一方面的某些实现方式中,转接结构还包括波导,波导位于电路板的靠近第一金属层一侧,波导包括微带线避让槽和波导口,微带线与微带线避让槽相对设置,并与微带线避让槽的槽壁间隔设置,波导口与辐射部相对设置,辐射部发射的信号穿过波导口射出转接结构。
本申请的转接结构还对波导进行了改进,波导上有波导口和微带线避让槽,微带线避让槽的存在使得波导与电路板配合使用时,可以降低电磁波能量泄露的可能性或有利于减少电磁波能量因为微带线与波导的接触而导致的泄露量,从而电磁波可以从电路板上的微带线进入辐射部,再通过波导口辐射出整个转接结构。
结合第一方面,在第一方面的某些实现方式中,辐射部为矩形,微带线偏离辐射部的对称轴设置。
电路板上的辐射部和微带线的对称轴偏离设置,从而有利于减小电磁波在微带线到辐射部过渡所造成的能量反射,即增强电磁波从微带线到辐射部过渡的阻抗匹配,提升转接结构的匹配带宽。
结合第一方面,在第一方面的某些实现方式中,开口为条状开口,开口与辐射部的边缘间隔设置。
辐射部的开口在辐射部的内部,辐射部内部的条状开口使得电流在该条状开口附近形成多个谐振频率,从而扩展转接结构的工作带宽范围。
结合第一方面,在第一方面的某些实现方式中,开口为条状开口,开口的一端与辐射部远离与微带线相连的边缘相连。
辐射部的开口与辐射部远离辐射部与微带线的边缘相连,通过若干与边缘相连的开口,增加电流的绕射路径,增加转接结构的工作带宽。
结合第一方面,在第一方面的某些实现方式中,开口包括第一条形开口段、第二条形开口段,第二条形开口段的一端与第一条形开口段的一端相连。
在本申请实施例中,两段条形开口段端部相连,从而可以形成一定角度,电磁波经过辐射部时,可以绕过两段条形开口段形成的结构,并在两段条形开口段形成的结构附近射出,从而增加电磁波能量的辐射位置,提高转接结构的工作带宽。
结合第一方面,在第一方面的某些实现方式中,开口还包括第三条形开口段,第三条形开口段与第二条形开口段的另一端相连,第二条形开口段的另一端远离与第一条形开口段相连的一端,第三条形开口段与第一条形开口段平行且间隔设置。
辐射部的三段开口形成的结构,进一步增加电流谐振点,扩展转接结构的工作带宽范围。
结合第一方面,在第一方面的某些实现方式中,第二条形开口段相对于第一条形开口段垂直设置。
辐射部的开口大致为U型开口,使得辐射部形成多调谐电路,降低品质因数,提高其带宽范围。
结合第一方面,在第一方面的某些实现方式中,开口的长度为0.5*λ~1.5*λ,例如,开口的长度可以为0.5*λ,或者可以为λ,或者可以为1.5*λ。开口的宽度为0.01*λ~0.2*λ,例如,开口的宽度可以为0.05*λ,或者可以为0.1*λ。λ为转接结构的工作波长。
开口为条形,总长度在0.5*λ~1.5*λ左右,宽度为0.01*λ~0.2*λ左右。具体形状可以不限定,从而辐射部不同形状的开口能够增加电流绕射路径,增加转接结构的工作带宽。
结合第一方面,在第一方面的某些实现方式中,开口包括第四条形开口段和第五条形开口段,第四条形开口段沿第一方向延伸至辐射部的第一边缘,第五条形开口段沿第二方向延伸至第一边缘,第四条形开口段与第五条形开口段在第一边缘相交。
辐射部上的开口形状为V形,增加电流的绕射路径,扩大转接结构的工作带宽。
结合第一方面,在第一方面的某些实现方式中,第一边缘与辐射部的与微带线相连的边缘相邻。
辐射部V形开口的顶点在与辐射部与微带线相连的边缘的邻边上,从而使得该邻边的实际长度增长,且邻边的边缘向辐射部内部延伸,电磁波辐射的能量重新分布,增加转接结构工作带宽范围。
结合第一方面,在第一方面的某些实现方式中,波导还包括屏蔽凹槽,屏蔽凹槽设置在波导的靠近波导口的一侧,且与波导口和微带线避让槽间隔设置。
波导口周围的屏蔽凹槽可以减少电磁波能量向外泄露,使得大部分能量能够通过波导口辐射出转接结构。
结合第一方面,在第一方面的某些实现方式中,屏蔽凹槽环绕于波导口的外周。
屏蔽凹槽环绕与波导口的外周,从而使得波导口的相对较多的区域可以被屏蔽凹槽包围,有利于限制能量耗损,提高能量在转接过程中的利用率。
结合第一方面,在第一方面的某些实现方式中,屏蔽凹槽的深度为λ/4的奇数倍,λ为转接结构的工作波长。
波导上的屏蔽凹槽的形状可以不受限定,例如可以为矩形长条状。矩形长条状的屏蔽凹槽有利于减少从长条的一侧泄露的能量。又如,屏蔽凹槽也可以包围波导口,以更好地减少电磁波的能量泄露。屏蔽凹槽的深度设置为λ/4的奇数倍,从而经过阻抗变换,屏蔽凹槽具有相对较大的阻抗。
结合第一方面,在第一方面的某些实现方式中,波导还包括波导本体和凸台,凸台由波导本体朝向电路板突出,并与电路板接触。示例性的,波导本体与凸台可以一体化成型。
使波导通过设置的凸台与电路板接触,减小接触面积,从而减小波导或者电路板加工的尺寸公差对装配的影响。
结合第一方面,在第一方面的某些实现方式中,第一金属层还包括用于微带线与辐射部阻抗匹配的第一过渡部,第一过渡部连接在辐射部和微带线之间,沿辐射部到微带线的方向上。
在辐射部和微带线之间设置过渡段,能够使得传输路径上的阻抗呈现渐变状态,减小电磁波传输过程中的反射等能量耗损。
结合第一方面,在第一方面的某些实现方式中,第一金属层还包括接地部,接地部环绕在辐射部和微带线的外周,并与辐射部和微带线间隔设置,接地部与波导接触,接地部与第二金属层导通。
辐射部的外部围绕着接地部,从而波导与电路板配合使用时,波导与接地部实现良好接触。
结合第一方面,在第一方面的某些实现方式中,接地部通过金属化通孔或金属壁与第二金属层导通。
接地部与第二金属层之间的金属化通孔使得接地部与第二金属层的接触良好,此外,金属壁或金属化通孔能够进一步限制电磁波能量的向外辐射,提高转接结构的效率。
结合第一方面,在第一方面的某些实现方式中,波导口在电路板上的正投影位于接地部的内轮廓围成的区域内。
接地部的内轮廓围成的区域即为电路板和波导的转接区域,转接区域可以略大于波导口的尺寸,从而减小对位误差对转接性能的影响,实现良好的转接性能。
结合第一方面,在第一方面的某些实现方式中,接地部包括接地部本体和接地延伸部,接地延伸部与微带线和辐射部连接处相对且间隔设置,接地延伸部由接地部本体朝向连接处延伸。
接地部具有接地延伸部,接地延伸部向辐射部与微带线连接处延伸,设置接地延伸部 能够增加电磁波传输的阻抗匹配程度。
第二方面,提供了一种天线,天线包括如第一方面任意一种实现方式的转接结构。
第三方面,提供了一种探测装置,该探测装置包括第二方面任意一种实现方式的天线。示例性地,所述探测装置为雷达。
第四方面,提供了一种终端,该终端包括第三方面任意一种实现方式的探测装置。
结合第四方面,在第四方面的某些实现方式中,该终端为车辆。
第五方面,提供了一种车辆,该车辆包括第三方面任意一种实现方式的探测装置。
附图说明
图1是本申请实施例提供的转接结构适用的场景图。
图2是本申请实施例提供的一种转接结构的立体图。
图3是对应于图2的电路板的第一金属层的示意性结构图。
图4是对应于图3的第一过渡部的示意性结构图。
图5是本申请实施例提供的另一种转接结构的立体图。
图6是对应于图5的波导的第一端面的示意性结构图。
图7是对应于图5的投影图。
图8是本申请实施例提供的一种辐射部开口的结构示意图。
图9是对应于图8的辐射部开口的模拟结果图。
图10是本申请实施例提供的辐射部开口的结构示意图。
图11是本申请实施例提供的一种辐射部开口的结构示意图。
图12是本申请实施例提供的辐射部开口的示意性结构图。
图13是本申请实施例提供的一种转接结构阵列示意性结构图。
图14是本申请实施例提供的另一种转接结构的示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请的一部分实施例,而不是全部实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应属于本申请保护的范围。
本申请所公开的技术方案以在雷达领域的应用为例,但是不仅仅局限在雷达系统,该转接结构可以应用于需要波导和电路板转接的任何场景。
本申请使用的电路板可以是普通印制电路板(printed circuit board,PCB),也可以是基片集成波导(substrate integrated waveguide,SIW)。
本申请适用的波导可以是矩形波导,也可以是具有其他非标准或标准波导口的管状波导,以下,以具有矩形波导口的金属波导为例介绍本申请的主要技术方案,当波导口为其他形状时,情况类似。
图1示出了本申请转接结构适用的波导天线形式的雷达结构示意图。如图1所示,雷达包括:
屏蔽层110,用于减小外部电磁场对整个天线的影响。屏蔽层可以接地,从而使得外来的干扰信号被该层导入大地。屏蔽层也能防止天线内部的电路向外辐射电磁能,从而减 小内部信号传输的损耗。屏蔽层还可以具有优良的导热性能,从而将内部线路产生的热量导出整个装置,使得内部线路在相对稳定的温度下运行。
PCB层120,有源器件位于该层,且能够对有源器件产生的信号进行处理,经过处理的信号可以从该层通过辐射或传输线进入下一层结构。
冷却层130,位于PCB层120与滤波/馈层140之间,和屏蔽层一样可以将天线内产生热量快速传导出整个天线系统,该层形状的特异性设计还可以便于PCB层120和滤波/馈层140的过渡。
滤波/馈层140,用于将来自PCB层120的信号进行滤波等处理从而获得在一定带宽范围内的电磁波。
辐射层150,该层包括若干缝隙组成的缝隙辐射阵列,用于将经过滤波/馈层140处理的电磁波通过阵列辐射出整个毫米波天线装置。
在图1所示的雷达中,与PCB层120相关的转接对于整个装置的性能有重要的影响。因此,本申请提供的技术方案通过优化PCB层120与波导的转接从而覆盖较宽带宽范围,同时具有低剖面的优势,便于整个模块的安装。
图2示出了本申请实施例提供的一种转接结构的立体图。如图2所示,本申请实施例提供的转接结构可以包括电路板20。
图2中的电路板20即可以相当于图1中的PCB层120,电路板20包括第一金属层230、第二金属层210和介质层220,介质层220位于第一金属层230和第二金属层210之间,介质层220可以为绝缘材料,第二金属层210接地。
在一个实施例中,第一金属层230和第二金属层210可以是电路板20的两个相邻的金属层。第一金属层230和第二金属层210可以通过电镀等方式设置在介质层220两个表面。
在本申请实施例中,为了降低加工难度及制作成本,电路板20采用无背腔结构,第一金属层230之下直接为介质层220,无其他金属背腔,能够有效降低加工难度,且整个电路板20的厚度较小,有效节约成本。
例如,车载雷达板NF30板材的厚度仅为0.05~0.2mm,示例性的,可以为0.12mm。
图3示出了本申请转接结构电路板20的第一金属层230的结构。如图3所示,第一金属层230包括辐射部231和微带线232,微带线232的一端连接馈源部分,馈源部分可以是整个转接结构或电路板或电子设备内的馈源。微带线232的另一端可以和辐射部231连接。
在一些实施例中,辐射部231和微带线232可以直接相连。在另一些实施例中,在辐射部231和微带线232之间还可以通过第一过渡部233连接,第一过渡部233也是金属,第一过渡部233的存在可以使得电磁波从微带线232进入辐射部231时,从微带线232到辐射部231的阻抗呈现渐变状态,从而减小电磁波能量在微带线232和辐射部231的连接处的反射,有利于增加进入辐射部231的能量,减小损耗。
第一过渡部233在靠近微带线232的位置的宽度可以小于第一过渡部233在靠近辐射部231的位置的宽度。第一过渡部233的宽度方向可以垂直于从微带线232至辐射部231的方向且平行于第一金属层230的方向,例如,第一过渡部233的宽度方向可以垂直于微带线232延伸方向。
图4示出了本申请实施例提供的第一过渡部的结构。如图4的(a)所示,第一过渡部233可以从微带线232至辐射部231,宽度逐渐增加,例如线性增加。
如图4的(b)所示,第一过渡部233可以从微带线232至辐射部231,宽度呈阶梯状增加。即第一过渡部233的边缘可以呈阶梯形。第一过渡部233的边缘可以包括相对于第一过渡部233的宽度方向平行的第一台阶边2331和第二台阶边2332,以及相对于第一过渡部233的宽度方向垂直的第三台阶边2333、第四台阶边2334,第三台阶2333边可以连接在第一台阶边2331和第二台阶边2332之间,第四台阶边2334可以连接于第二台阶边2332和微带线232之间。第一过渡部233在第一台阶边处的宽度与第一过渡部233在第二台阶边处的宽度不同。
辐射部231可以为矩形。在一些实施例中,微带线232的延伸方向上的对称轴可以与辐射部231的对称轴偏离设置。
从微带线231端口看,其所呈现的阻抗状态为从后端电路传导的阻抗值,通常出于功率容量以及各方面因素的考虑,一般将其阻抗设置为50欧姆。从转接端口即辐射部231看,其呈现的阻抗为整个转接结构的阻抗。通过将微带线相对辐射部偏离设置,可以减小二者之间的差异。
此外,对于辐射部231而言,其中间部分呈现的阻抗值通常较小,不利于进行阻抗匹配,边缘的阻抗较大,通过选择合适的偏置尺寸。可大幅减小阻抗匹配的调试难度,从而利于微带线232和辐射部231之间阻抗匹配。
在另一些实施例中,微带线232的延伸方向上的对称轴可以在辐射部231的对称轴的延伸方向上。
辐射部231上具有开口234,以使得所述辐射部形成至少两个谐振频率。
开口234是将辐射部231的部分金属去除从而位于辐射部231下的介质层(220)露出而形成的图案,在一些实施例中,辐射部231上的开口也可以被称为缝隙。辐射部231上的开口234的存在改变电容和电感分量,可以使得电流在开口附近形成新的谐振频率,从而辐射部231上至少形成两个谐振频率,扩大转接结构的工作带宽。
开口234可以在辐射部231的内部,即与辐射部231的边缘间隔设置,也可以与辐射部231的边缘相连。
第一金属层230的辐射部231和微带线232的外部还可以包括接地部235,接地部235围绕于辐射部231和微带线232。经过化学蚀刻等方式将辐射部231和微带线232、接地部235之间的金属去除,从而使得辐射部231和微带线232、接地部235分离或间隔开。或者,可以由介质层220之上完整的金属层去除中间部分,并将辐射部231和微带线232作为一个整体固定在该中间部分,该中间部分未设置辐射部231和微带线232的区域可以露出介质层220的部分表面(在图3中以阴影部分示意露出的部分介质层)。
接地部235可以通过传输线接地,也可以通过设置于接地部235上靠近辐射部231和微带线232的位置的多个金属化通孔237与第二金属层210相连,从而接地。多个金属化通孔之间的距离可以小于目标阈值,从而将电磁波的能量限制于金属化通孔237围成的区域范围内,减少电磁波能量的损耗。
在一些实施例中,该若干金属化通孔237也可以替换为连接接地部235和第二金属层210的金属壁。
接地部235可以包括接地部本体和接地延伸部236,接地延伸部236位于靠近微带线232与辐射部231相连接的位置,接地延伸部236与微带线232的距离小于接地部本体与微带线232的距离。接地部235与微带线232之间的距离是可以为接地部内轮廓某处至微带线232在垂直于微带线232延伸方向的长度。
在一些实施例中,如图3所示,接地延伸部236从接地部本体向微带线232延伸。
在另一些实施例中,接地延伸部与辐射部231以及微带线232连接处相对设置,且可以向辐射部231与微带线232连接处延伸。
接地延伸部236的设置可以进一步提高辐射部231和微带线232之间的阻抗匹配,整个接地部235和接地延伸部236不与微带线232及辐射部231接触。
图5示出了本申请实施例提供的另一种转接结构的立体图。本申请实施例提供的转接结构还可以包括波导30。波导30是整块的金属加工而成,可以通过铣削等加工方式在波导30的第一端面上加工出本申请波导30的各个结构。
波导30可以包括波导口311和微带线避让槽312。波导口311可以是标准波导口,例如WR12波导口(WR12标准波导口尺寸为3.0988mm*1.5494mm);也可以是非标准波导口。波导口311从波导30的第一端面贯通至第一端面的对侧面,从而将电磁波导出波导30。波导30的第一端面可以是波导30的靠近电路板20的端面。如图4所示,电路板20的第一金属层230可以位于电路板20的靠近波导30的一侧。
在电路板20与波导30配合使用时,波导30的第一端面上的波导口311面向电路板20的第一金属层230,从而电磁波的能量从电路板20的第一金属层230通过波导口311向外辐射。
图6示出了对应于图5的波导30的第一端面的示意性结构图。如图6所示,波导30的第一端面上有加工的各种结构。第一端面上有波导口311和微带线避让槽312,波导口311和微带线避让槽312连接或贯通,微带线避让槽312的深度可以为0.6mm左右,也可以为其他值,本申请对此不做限定。
波导口311和微带线避让槽312可以直接连接,也可以通过第二过渡部313进行连接,第二过渡部313可以为宽度小于微带线避让槽312的条形凹槽,第二过渡部313的宽度也可以线性或阶梯状变化,第二过渡部313的宽度为第二过渡部313在垂直于微带线避让槽312延伸方向的长度。
波导口311的外部附近还可以有屏蔽凹槽314,屏蔽凹槽314与波导口311和连接波导口311的微带线避让槽312间隔设置,用于将电磁波的主要能量限制在屏蔽凹槽314的靠近波导口311一侧范围之内。
屏蔽凹槽314可以环绕于波导口311的外周,在一些实施例中,屏蔽凹槽314可以包括图6的(a)所示的第一条形凹槽3141、第二条形凹槽3142和第三条形凹槽3143,第一条型凹槽3141和第三条形凹槽3143可以间隔设置,第二条形凹槽3142可以连接在第一条型凹槽3141和第三条形凹槽3143之间。三段条形凹槽的设置有利于将电磁波能量限制于屏蔽凹槽形成的范围之内,减小转接结构的电磁波能量损失。
屏蔽凹槽314的深度可以不受限定。在一些实施例中,屏蔽凹槽314的深度可以为λ/4的奇数倍,从而在凹槽开口即第一端面上的阻抗较大,抑制电磁波能量的传播。在另一些实施例中,屏蔽凹槽314可以从波导30的第一端面贯通至第一端面的对侧面。屏蔽凹槽 的深度方向即为波导的第一端面的法向。
屏蔽凹槽314的宽度可以不受限定,例如屏蔽凹槽314的宽度可以为0.5mm。屏蔽凹槽314的宽度方向可以是平行于第一端面方向且垂直于屏蔽凹槽314的延伸方向,屏蔽凹槽314的延伸方向可以是屏蔽凹槽314的轴向。屏蔽凹槽314的形状也可以不受限定,可以为圆形或多边形。
在一些实施例中,屏蔽凹槽314可以闭合地设置于波导口外部,例如可以将图6的(a)中的第一条形凹槽3141、第二条形凹槽3142和第三条形凹槽3143中的至少一个替换成若干条形凹槽首尾相接形成的多边形环状凹槽。示例性的,屏蔽凹槽314可以包括如图6的(b)中阴影部分所示的第四凹槽3144、第五凹槽3145、第六凹槽3146,即每个凹槽的内轮廓和外轮廓为同心矩形,且波导口311可以设置于凹槽之外。上述凹槽的形状也可以替换成圆环状凹槽或者其他不规则形状凹槽,本申请对此不做限定。
在另一些实施例中,屏蔽凹槽314不闭合地包围在波导口311外部,即如图6的(a)所示的屏蔽凹槽314结构。
波导30还可以包括波导本体和凸台315。波导本体包括波导口311、微带线避让槽312和屏蔽凹槽314等结构,凸台315由波导本体向电路板20突出,并与电路板20接触。凸台315的位置可以不受限定,凸台315的形状也可以不受限定。在一些实施例中,如图6所示,凸台315可以一体化成型。示例性的,凸台315可以包括第一凸台部3151、第二凸台部3152和第三凸台部3153。第一凸台部3151位于屏蔽凹槽314的外部,当屏蔽凹槽314包括第一条行凹槽3141、第二条行凹槽3142和第三条型凹槽3143时,第一凸台部3151也可以包括位于第一条行凹槽3141远离波导口311一侧的凸台部分、位于第二条行凹槽3142远离波导口311一侧的凸台部分和位于第三条行凹槽3143远离波导口311一侧的凸台部分。第二凸台部3152是位于波导口311与屏蔽凹槽314之间的区域。第三凸台部3153包括位于微带线避让槽312两侧的凸台部分,该两个凸台部分都是条形凸台,该两个条形凸台的轴线平行于微带线避让槽312的延伸方向。
在另一些实施例中,凸台也可以仅包括围绕于波导口周围的部分,例如图6的(b)所示的凸台315,凸台315与微带线避让槽312连接波导口311的部分环绕于波导口311周围,且与波导口311的外轮廓接触。图6中凸台315的形状、位置仅是示意性给出,凸台315的形状可以不受限定,凸台315也可以包括数量不等的间隔设置的子凸台,凸台315的各个部分距离微带线避让槽312、波导口311和屏蔽凹槽314的距离也可以不受限定。
波导30通过该凸台315与电路板20接触,由于凸台315的面积小于波导30第一端面的面积,因此由凸台315与电路板20相接触减小了波导30与电路板20的接触面积,从而降低波导30与电路板20的加工公差对于装配的影响,凸台315的高度可以不受限定。在一些实施例中,凸台315的面向电路板20的表面可以是平面,从而与电路板20上的平面结构接触配合。
在另一些实施例中,凸台315的面向电路板20的表面可以是曲面,以适配电路板20上的某些曲面结构,或者电路板20为曲面的使用情况。
凸台315的表面也可以继续蚀刻出其他结构,如凹槽、缝隙等,进一步减小接触面积,降低凸台315与电路板的加工公差对于装配的影响。
图7示出了对应于图5的波导30部分结构在电路板20上的投影图。如图7所示,虚线所示的结构,是电路板20与波导30配合使用时,波导30的部分结构在电路板20上的投影。波导口311外轮廓在电路板20上的正投影316和微带线避让槽312外轮廓在电路板20上的正投影317在辐射部231和微带线232的外部,即波导口311外轮廓的正投影316和辐射部231间隔设置,微带线避让槽外轮廓的正投影317和微带线232间隔设置。此外,在配合使用时,微带线232与微带线避让槽312的槽壁间隔设置,从而避免电磁波在未进入波导口311时发生短路。
电路板20的接地部235的内轮廓包括靠近辐射部的第一部分2351、靠近接地延伸部的第二部分2352、靠近微带线避让槽主体的第三部分2353。当电路板20与波导30配合时,第一部分2351可以位于波导口311在电路板20上的投影316的外部,即波导口311在电路板20上的正投影位于接地部235的内轮廓围成的区域内,从而能够减小对位误差(如图7所示的波导口在电路板上的投影3161所示);第一部分2351也可以与波导口311在电路板20上的投影316重合。第二部分2352或第三部分2353与波导30的第二过渡部313的外轮廓投影318、微带线避让槽的外轮廓投影317关系不限定。
波导30和电路板20上还可以包括用于连接、定位的结构如螺孔、限位孔等等,图中未示出。
本申请通过改变电路板20上第一金属层230的辐射部开口234的形状扩展转接结构的带宽,辐射部231的开口234可以在辐射部231内部,即与辐射部231间隔设置,也可以与辐射部231的边缘相交。
辐射部的开口234可以为条状开口。条状开口的长度是其延伸方向的尺寸,条状开口的宽度可以是垂直于其延伸方向的尺寸。在一些实施例中,该开口可以为宽度处处相等的条状开口,其中条状开口的轴线的总长度可以为0.5*λ~1.5*λ,例如,开口的长度可以为0.5*λ,或者可以为λ,或者可以为1.5*λ。条状开口的宽度可以为0.01*λ~0.2*λ,例如,开口的宽度可以为0.05*λ,或者可以为0.1*λ,λ为转接结构的工作波长。
条状开口可以由不同的部分组成。在一些实施例中,条状开口可以由第一条形开口段和第二条形开口段组成,第一条形开口段的一端可以与第二条形开口段的一端相连,从而两个条形开口段成一定的夹角,例如夹角为90°时,即第一条行开口段与第二条形开口段垂直时,开口大致成L形,夹角不为90°时,开口大致成V形。
在另一些实施例中,除了上述第一条形开口段和第二条形开口段,开口234还包括第三条形开口段,第三条形开口段的一端与第二条形开口段的另一端相连,第二条形开口段的另一端远离与第一条形开口段相连的一端,第三条形开口段与第一条形开口段平行且间隔设置。第二条形开口段可以和第一条形开口段垂直,从而三段形成U形结构。
在另一些实施例中,开口234可以包括第四条形开口段和第五条形开口段,第四条形开口段沿第一方向延伸至辐射部的第一边缘,第五条形开口段沿第二方向延伸至第一边缘,第四条形开口段与第五条形开口段在第一边缘相交。
第四条形开口段与第五条形开口段大致形成V形结构,扩展转接结构的工作带宽范围。
第一边缘可以与辐射部231的与微带线232相连的边缘相邻。
上述V形开口的“V”顶点在辐射部231与微带线232相连的边缘的邻边上。
图8示出了本申请实施例提供的一种电路板20第一金属层230辐射部开口234的结 构示意图。如图8所示,开口为条形开口,位于辐射部231的内部,包括第一条行开口段2341,第二条形开口段2342和第三条形开口段2343。其中,第一条形开口段2341和第三条形开口段2343互相平行,第二条行开口段2342连接第一条行开口段2341和第三条形开口段2343。第二条形开口段2342与第一条形开口段2341垂直,三个条形开口段大致形成U形结构,三个条形开口段的总长度2a+b约为0.5*λ~1.5*λ,示例性的,a为0.3*λ,b为0.6*λ;或者a为0.15*λ,b为0.3*λ。条形开口段的宽度e约为0.01*λ~0.2*λ,示例性的,e可以为0.01*λ,或者e可以为0.05*λ,或者e可以为0.1*λ。
在本申请一些实施例中,U型开口的第一条形开口段2341和第二条形开口段2342长度可以为0.25*λ,第三条形开口段2343的长度可以为0.55*λ,每个条形开口段的宽度可以为0.05*λ,整个辐射部231的长度和宽度不受限定,例如,宽度c可以为0.45*λ~λ,辐射部的长度d可以为0.75*λ~2*λ,λ为转接结构的工作波长。
图9示出了对应于图8的散射参数与工作频率之间的关系的模拟结果图。如图9所示,频率为76GHz时,s12为-2.77dB,s11为-22.4dB,频率为81GHz时,s12为-3.3dB,s11为-24.2dB。在76GHz至81GHz的频率范围内,传输系数(即图9中虚线所示的s12线)变化较为平缓,大于-3.3dB;回波损耗(图中实线所示的s11线)显示数个谐振点,但在76GHz~81GHz范围内,几乎都小于-20dB。由此可以看出,本申请转接结构阻抗匹配较好,减小了电磁波从微带线进入电路板时由于阻抗不连续导致的电磁波反射能量损耗,工作带宽范围较大。
除了以上的U形开口,开口还可以为V形开口、W形开口等。开口的总长度、宽度满足阻抗匹配性能等的要求。
图10示出了本申请实施例提供的辐射部开口的示意性结构图。
在图10中,辐射部的右侧边缘为第二边缘1001,图中还示出辐射部的两条对称轴1002和1003。
图10的(a)为辐射部内部开口的一个实施例,内部开口包括四段条形开口,第一段条形开口的一端与第二段条形开口的一端相连,第一段条形开口向第二边缘1001的对边延伸,且延伸方向与辐射部对称轴1002偏离,第二段条形开口向第二边缘1001延伸,延伸方向偏离辐射部对称轴1002。第三段条形开口与第四段条形开口的一端相连,第三段条形开口向第二边缘1001的对边延伸,且延伸方向与辐射部对称轴1002偏离,第四段条形开口向第二边缘1001延伸,延伸方向偏离辐射部对称轴1002。其中第二段条形开口和第三段条形开口各自的另一端相连,四段条形开口成W形。在一些实施例中,第一段条形开口与第四段条形开口可以相对于对称轴1002对称,第二段条形开口与第三段条形开口可以相对于对称轴1002对称。
图10的(b)为辐射部内部开口的一个实施例,内部开口包括两段条形开口,第一段条形开口与第二段条形开口垂直相连,第一段条形开口沿着辐射部的对称轴1002方向向第二边缘1001的邻边延伸,第二段条形开口沿着辐射部对称轴1003方向向第二边缘1001延伸,两段条形开口整体形成L形。
图10的(c)为辐射部内部开口的一个实施例,内部开口包括两段条形开口,两段条形开口的一端相连,其中一段条形开口向第二边缘1001的对边延伸,延伸方向偏离辐射部对称轴1003方向,另一段条形开口向第二边缘1001延伸,延伸方向偏离辐射部对称轴 1003方向,两段条形开口整体形成V形。在一些实施例中,一段条形开口与另一段条形开口可以相对于对称轴1002对称。
图10的(d)为辐射部内部开口的一个实施例,内部开口包括三段条形开口,其中第一段条形开口与第二段条形开口一端相连,第一段条形开口从相连的端部沿辐射部对称轴1003方向向第二边缘1001的对边延伸,第二段条形开口从相连的端部沿偏离对称轴的方向向第二边缘1001的对边延伸,第三段条形开口与第二段条形开口的远离第一段条形开口相连的一端相连,且第三段条形开口沿着辐射部对称轴1003的方向向第二边缘1001延伸,三段条形开口整体形成Z形。
应理解,除了图7和图10示意的辐射部内部开口形状,开口还可以为其他形状,内部开口不闭合且满足以上对于开口总长度和宽度的要求即可。
此外,除了开口完全在内部的情况,以上开口还可以旋转一定角度或开口的两个端部之一与辐射部的边缘相连。
图10示出的各种开口结构,改变了转接结构某个频点的耦合电容值,增加了谐振点,拓展了转接结构的匹配带宽。
图11示出了本申请实施例提供的一种辐射部开口的示意性结构图。如图11所示,辐射部的两个边缘有三个开口,第一开口1101的尺寸为W1*L1,第二开口1102的尺寸为W2*L2,第三开口1103的尺寸为W3*L3(辐射部的右边缘为第二边缘1104,连接微带线232,微带线图中未示出)。L1或L2小于辐射部的宽度,W1+W2+W3小于辐射部的长度即可。上述W1、W2、W3为各个开口在与第二边缘垂直的方向上的尺寸,上述L1、L2、L3为各个开口在与第二边缘平行的方向上的尺寸。
在本申请实施例中,W1*L1可以为(0.1*λ)*(0.15*λ)左右,W1*L1也可以为(0.1*λ)*(0.15*λ)左右,W3*L3可以为(0.05*λ)*(0.05*λ)左右。
通过在辐射部的边缘开口,可以增加电流绕射路径,扩展转接结构的工作带宽,提高本申请转接结构的应用场景。
在本申请实施例中,辐射部231与微带线232连接的第二边缘、与辐射部231与微带线232连接边缘相对的边缘也可以开口。
图12示出了本申请实施例提供的辐射部开口的示意性结构图。
图12中定义辐射部的右侧边缘都为第二边缘1201,即微带线232与辐射部231相连的边缘(其中微带线未示出),辐射部两条对称轴分别为1202和1203(不考虑开口的对称)。
图12的(a)为辐射部边缘开口的一个实施例,边缘开口包括两段条形开口:其中一个条形开口从第二边缘的一个邻边与第二边缘的相交的顶点向该邻边的对边延伸,延伸方向偏离辐射部的对称轴1202方向;另一个条形开口从该邻边的另一个顶点向该邻边的对边延伸,延伸方向偏离辐射部的对称轴1202方向。
在另一个实施例中,其中一个条形开口从第二边缘的一个邻边与第二边缘的相交的顶点向第二边缘的对边延伸,延伸方向偏离辐射部的对称轴1202方向;另一个条形开口从该邻边的另一个顶点向第二边缘延伸,延伸方向偏离辐射部的对称轴1202方向。
图12的(b)为辐射部边缘开口的另一个实施例,边缘开口包括两段条形开口,两个条形开口的一端在第二边缘一个邻边的上一点相连,其中一个条形开口从该相连的点向第 二边缘延伸,延伸方向偏离对称轴1202方向,另一个条形开口从该相连的点向第二边缘的对边延伸,延伸方向偏离辐射部的对称轴方向。
图12的(c)为辐射部边缘开口的另一个实施例,边缘开口包括一段条形开口,该条形开口的一端在第二边缘一个邻边的上一点,且向另一个邻边延伸。在一个实施例中,延伸方向与辐射部的对称轴1202方向平行。
图12的(d)为辐射部边缘开口的另一个实施例,边缘开口包括两段条形开口,其中一段条形开口的一端在第二边缘一个邻边的一点,且向另一个邻边延伸,延伸方向与辐射部的对称轴1202方向平行;另一段条形开口的一端在该邻边的另一点,且向另一个邻边延伸,延伸方向与辐射部的对称轴1202方向平行。两段条形开口可以相对于辐射部231的对称轴1202对称。
图12的(e)为辐射部边缘开口的另一个实施例,边缘开口包括一段条形开口,该条形开口的一端在第二边缘的对边上一点,且向第二边缘延伸,延伸方向与辐射部的对称轴1203方向平行。也就是说,条形开口可以相对于第二边缘垂直设置。
图12的(f)为辐射部边缘开口的另一个实施例,边缘开口包括两段条形开口,其中一段条形开口的一端在第二边缘的对边,且向第二边缘延伸,延伸方向与辐射部对称轴1203方向平行;另一段条形开口的一端在第二边缘的邻边上一点,且向该邻边的对边延伸,延伸方向与辐射部的另一个对称轴1202方向平行,两段条形开口不相交。
由图12可以看出,对于边缘开口的长度、宽度、位置均可以任意设置,都能达到本申请的技术效果,即扩展转接结构的带宽。
此外,本申请的转接结构可以以阵列的方式实现,对于电路板20,将多个辐射部及其微带线232以一定方式排列在电路板20上。对于波导,也可以按照与辐射部相同的方式排列,此外,波导可以共用屏蔽凹槽的一边或多个边缘。
图12示出的各种开口结构,改变了转接结构某个频点的耦合电容值,增加了谐振点,拓展了转接结构的匹配带宽。
图13示出了本申请实施例提供的一种转接结构阵列示意性结构图。如图13所示,转接结构可以包括多个波导,多个波导可以包括波导a、波导b、波导c、波导d,多个波导例如可以阵列排布。波导a和波导b的波导口可以相向设置,波导a的微带线避让槽和波导b的微带线避让槽分别位于各自波导口的两侧,并向各自远离波导口的方向延伸。波导a的波导口和波导c的波导口相对设置,波导a的微带线避让槽和波导c的微带线避让槽相对设置。波导c和波导d的波导口可以相向设置,波导c的微带线避让槽和波导d的微带线避让槽分别位于各自波导口的两侧,并向各自远离波导口的方向延伸。
屏蔽凹槽包括第一边1301、第二边1302、第三边1303、第四边1304、第五边1305、第六边1306、第七边1307和第八边1308。第一边1301、第三边1303、第四边1304包围波导a的波导口1;第二边1302、第三边1303、第五边1305包围波导b的波导口2;第四边1304、第六边1306、第七边1307包围波导c的波导口3;第五边1305、第六边1306、第八边1308包围波导d的波导口4。波导a和波导b的波导口位于第三边1303的两侧,波导a和波导c的波导口位于第四边1304的两侧,波导b和波导d的波导口位于第五边1305的两侧,波导c和波导d的波导口位于第六边1306的两侧,相邻波导共用一个屏蔽凹槽的边。波导a和波导b共用屏蔽凹槽的第三边1303,波导a和波导c共用屏蔽凹槽的 第四边1304,波导b和波导d共用屏蔽凹槽的第五边1305,波导c和波导d共用屏蔽凹槽的第六边1306。
电路板20上的辐射部即可以以相同方式排列于图13中四个波导口内部,微带线232沿着四个微带线232避让槽延伸。从而本申请的转接结构的技术方案可以形成阵列,集成于其他装置或模块中。
应理解,图13仅示例性给出一种波导与辐射部及微带线232阵列排列的方式,本申请也可以以其他方式对波导及辐射部与微带线232进行排列,从而增强本申请转接结构的集成度。
此外,以上均是本申请转接结构电路板20的微带线232与波导位于同侧的应用,即微带线或者馈源与波导在电路板的同一侧进行共面转接,本申请中即在第一金属层侧进行转接,本申请的转接结构也可以应用于异面转接。
图14示出了本申请实施例提供的另一种转接结构的示意图。
由图14可以看出,微带线232分成两段,与波导相接触的第一金属层230上的第一段2321与位于电路板20上第二金属层210上的第二段2322(图12中以虚线示出),位于第二金属层210上的第二段2322可以连接整个转接结构的馈源,两段微带线通过金属过孔2323连接,从而使得电磁波从第二金属层210一侧,通过金属过孔在第一金属层230与波导进行转接。通过本申请实施例的转接结构,可以灵活的进行电路板20和波导的异面转接,与普通异面转接方式相比,金属过孔的方案易于集成,且通过辐射部开口能够有效扩展本申请转接结构的带宽。
本申请介绍的转接结构可以灵活地应用于各种共面转接和异面转接的场景,能够有效扩展转接结构的带宽,覆盖常用带宽范围,且易于装配,能够应用于各种雷达、测试场景。
本申请转接结构仅以馈源从微带线23进入辐射部转接结构为例说明,在其他情况下,本申请的转接结构的馈源也可以是波导侧的结构,包括波导或其上一级的天线、SIW等,从而将电磁波能量从波导中引入微带线并进入电路板的其他结构进行进一步处理。
本申请实施例还提供了一种天线,该天线包括图2至图14中的任意结构。
本申请实施例还提供了一种探测装置,该探测装置包括前文所述的天线。示例性的,该探测装置为雷达。
本申请实施例还提供了一种终端,终端包括前文所述的探测装置,示例性的,该终端可以为车辆。
本申请实施例还提供了一种车辆,该车辆包括前文所述的探测装置。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (24)

  1. 一种转接结构,其特征在于,包括电路板(20),所述电路板(20)包括第一金属层(230)、第二金属层(210)和介质层(220),所述介质层(220)位于所述第一金属层(230)和所述第二金属层(210)之间,所述第一金属层(230)包括辐射部(231)和微带线(232),所述微带线(232)与所述辐射部(231)的一端连接,所述第二金属层(210)接地;
    其中,所述辐射部(231)具有开口(234),以使得所述辐射部(231)形成至少两个谐振频率。
  2. 如权利要求1所述的转接结构,其特征在于,所述转接结构还包括波导(30),位于所述电路板(20)的靠近所述第一金属层(230)一侧,所述波导(30)包括微带线避让槽(312)和波导口(311),所述微带线(232)与所述微带线避让槽(312)相对设置,并与所述微带线避让槽(312)的槽壁间隔设置,所述波导口(311)与所述辐射部(231)相对设置,所述辐射部(231)发射的信号穿过所述波导口(311)射出所述转接结构。
  3. 如权利要求1或2所述的转接结构,其特征在于,所述辐射部(231)为矩形,所述微带线(232)偏离所述辐射部(231)的对称轴设置。
  4. 如权利要求1至3中任一项所述的转接结构,其特征在于,所述开口(234)为条状开口,所述开口(234)与所述辐射部(231)的边缘间隔设置。
  5. 如权利要求3所述的转接结构,其特征在于,所述开口(234)为条状开口,所述开口(234)的一端与所述辐射部(231)的远离与所述微带线(232)相连的边缘相连。
  6. 如权利要求4或5所述的转接结构,其特征在于,所述开口(234)包括第一条形开口段、第二条形开口段,所述第二条形开口段一端与所述第一条形开口段的一端相连。
  7. 如权利要求6所述的转接结构,其特征在于,所述开口(234)还包括第三条形开口段,所述第三条形开口段的一端与所述第二条形开口段的另一端相连,所述第二条形开口段的另一端远离与所述第一条形开口段相连的一端,所述第三条形开口段与所述第一条形开口段平行且间隔设置。
  8. 如权利要求6或7所述的转接结构,其特征在于,所述第二条形开口段相对于所述第一条形开口段垂直设置。
  9. 如权利要求4至8中任一项所述的转接结构,其特征在于,所述开口(234)的长度为0.5*λ~1.5*λ,所述开口(234)的宽度为0.01*λ~0.2*λ,λ为所述转接结构的工作波长。
  10. 如权利要求3所述的转接结构,其特征在于,所述开口(234)包括第四条形开口段和第五条形开口段,所述第四条形开口段沿第一方向延伸至所述辐射部(231)的第一边缘,所述第五条形开口段沿第二方向延伸至所述第一边缘,所述第四条形开口段与所述第五条形开口段在所述第一边缘相交。
  11. 如权利要求10所述的转接结构,其特征在于,所述第一边缘与所述辐射部(231)的与所述微带线(232)相连的边缘相邻。
  12. 如权利要求2至11中任一项所述的转接结构,其特征在于,所述波导(30)还 包括屏蔽凹槽(314),所述屏蔽凹槽(314)设置在所述波导(30)的靠近所述波导口(311)的一侧,且与所述波导口(311)和所述微带线避让槽(312)间隔设置。
  13. 如权利要求12所述的转接结构,其特征在于,所述屏蔽凹槽(314)环绕于所述波导口(311)的外周。
  14. 如权利要求12或13所述的转接结构,其特征在于,所述屏蔽凹槽(314)的深度为λ/4的奇数倍,λ为所述转接结构的工作波长。
  15. 如权利要求2至14中任一项所述的转接结构,其特征在于,所述波导(30)还包括波导本体和凸台(315),所述凸台(315)由所述波导本体朝向所述电路板(20)突出,并与所述电路板(20)接触。
  16. 如权利要求1至15中任一项所述的转接结构,其特征在于,所述第一金属层(230)还包括用于所述微带线(232)与所述辐射部(231)阻抗匹配的第一过渡部(233),所述第一过渡部(233)连接在所述辐射部(231)和所述微带线(232)之间,沿所述辐射部(231)到所述微带线(232)的方向上。
  17. 如权利要求1至16中任一项所述的转接结构,其特征在于,所述第一金属层(230)还包括接地部,所述接地部环绕在所述辐射部(231)和所述微带线(232)的外周,并与所述辐射部(231)和所述微带线(232)间隔设置,所述接地部与所述波导(30)接触,所述接地部与所述第二金属层(210)导通。
  18. 如权利要求17所述的转接结构,其特征在于,所述接地部(235)通过金属化通孔(237)或金属壁与所述第二金属层(210)导通。
  19. 如权利要求17或18所述的转接结构,其特征在于,所述波导口(311)在所述电路板(20)上的正投影位于所述接地部(235)的内轮廓围成的区域内。
  20. 如权利要求17至19中任一项所述的转接结构,其特征在于,所述接地部包括接地部本体和接地延伸部(236),所述接地延伸部(236)与所述微带线(232)和所述辐射部(231)连接处相对且间隔设置,所述接地延伸部(236)由所述接地部本体朝向所述连接处延伸。
  21. 一种天线,其特征在于,所述天线包括如权利要求1至20中任一项所述的转接结构。
  22. 一种探测装置,其特征在于,所述探测装置包括如权利要求21所述的天线。
  23. 一种终端,其特征在于,所述终端包括如权利要求22所述的探测装置。
  24. 根据权利要求23所述的终端,其特征在于,所述终端为车辆。
PCT/CN2021/142161 2021-12-28 2021-12-28 转接结构、天线及终端 WO2023122978A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180045951.9A CN116670925A (zh) 2021-12-28 2021-12-28 转接结构、天线及终端
PCT/CN2021/142161 WO2023122978A1 (zh) 2021-12-28 2021-12-28 转接结构、天线及终端

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/142161 WO2023122978A1 (zh) 2021-12-28 2021-12-28 转接结构、天线及终端

Publications (1)

Publication Number Publication Date
WO2023122978A1 true WO2023122978A1 (zh) 2023-07-06

Family

ID=86996907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/142161 WO2023122978A1 (zh) 2021-12-28 2021-12-28 转接结构、天线及终端

Country Status (2)

Country Link
CN (1) CN116670925A (zh)
WO (1) WO2023122978A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080266196A1 (en) * 2007-04-27 2008-10-30 Shawn Shi Waveguide to microstrip line coupling apparatus
CN107946744A (zh) * 2016-10-12 2018-04-20 Vega格里沙贝两合公司 用于雷达天线的波导耦合结构
WO2020258214A1 (zh) * 2019-06-28 2020-12-30 深圳市大疆创新科技有限公司 背馈式行波天线阵列、雷达和可移动平台
US20210028537A1 (en) * 2019-07-23 2021-01-28 Veoneer Us, Inc. Feed to waveguide transition structures and related sensor assemblies
CN112655114A (zh) * 2020-07-29 2021-04-13 华为技术有限公司 间隙波导天线结构及电子设备
WO2021105961A1 (en) * 2019-11-30 2021-06-03 Indian Institute of Technology Kharagpur Wideband electromagnetically coupled microstrip patch antenna for 60 ghz millimeter wave phased array

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103515683A (zh) * 2013-01-06 2014-01-15 中国电子科技集团公司第十研究所 波导微带线转换器
CN111740231A (zh) * 2020-07-21 2020-10-02 无锡国芯微电子系统有限公司 一种基于波导馈电的宽带微带天线阵列
CN112563708B (zh) * 2021-02-22 2021-06-04 成都天锐星通科技有限公司 一种传输线转换结构与天线驻波测试系统
CN113725599B (zh) * 2021-09-06 2024-02-02 华中科技大学温州先进制造技术研究院 一种用于毫米波汽车雷达的组合天线

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080266196A1 (en) * 2007-04-27 2008-10-30 Shawn Shi Waveguide to microstrip line coupling apparatus
CN107946744A (zh) * 2016-10-12 2018-04-20 Vega格里沙贝两合公司 用于雷达天线的波导耦合结构
WO2020258214A1 (zh) * 2019-06-28 2020-12-30 深圳市大疆创新科技有限公司 背馈式行波天线阵列、雷达和可移动平台
US20210028537A1 (en) * 2019-07-23 2021-01-28 Veoneer Us, Inc. Feed to waveguide transition structures and related sensor assemblies
WO2021105961A1 (en) * 2019-11-30 2021-06-03 Indian Institute of Technology Kharagpur Wideband electromagnetically coupled microstrip patch antenna for 60 ghz millimeter wave phased array
CN112655114A (zh) * 2020-07-29 2021-04-13 华为技术有限公司 间隙波导天线结构及电子设备

Also Published As

Publication number Publication date
CN116670925A (zh) 2023-08-29

Similar Documents

Publication Publication Date Title
US9673532B2 (en) Antenna
CN107134653B (zh) 基于基片集成波导谐振腔的平面紧凑型缝隙天线阵列
CN103490156B (zh) 与平面馈源一体化集成的毫米波折合式反射阵天线
US6317094B1 (en) Feed structures for tapered slot antennas
US7994881B2 (en) Waveguide connection between a multilayer waveguide substrate and a metal waveguide substrate including a choke structure in the multilayer waveguide
WO2016112839A1 (en) Combination antenna element, array and printed circuit board
CN113113782B (zh) 一种宽带金属平板阵列天线、雷达、无线通信系统
JPWO2006098054A1 (ja) 平面アンテナモジュール、トリプレート型平面アレーアンテナ、およびトリプレート線路−導波管変換器
CN110739514B (zh) 一种基片集成波导到矩形波导的毫米波转接结构
CN103022614B (zh) 基片集成波导与矩形金属波导的过渡结构
CN215119195U (zh) 一种k波段窄面插入磁耦合波导微带过渡结构
WO2023122978A1 (zh) 转接结构、天线及终端
CN1937316B (zh) 单脉冲基片集成波导缝隙阵列天线
CN115036701B (zh) 基于非辐射边侧馈转波导结构的车载雷达天线单元
CN114566778B (zh) 一种基于宽导带的直通式波导微带过渡结构
CN113612029B (zh) 多层波导馈电低成本毫米波高增益缝隙天线阵列
CN114156624A (zh) 基于间隙波导结构的毫米波宽带低损耗定向耦合器
CN115207589A (zh) 耦合装置及制造方法、波导天线、雷达、终端、pcb
CN111244619A (zh) 基于空气基片集成波导的贴片阵列天线
CN215418545U (zh) 微带转波导的垂直过渡结构
CN218827835U (zh) 共面馈电波导缝隙天线及雷达
CN114284672B (zh) 波导转换装置、电路模块及电磁波转换方法
CN220963771U (zh) 一种波导缝隙天线
CN217064090U (zh) 信号传输结构及雷达装置
CN114171909B (zh) 一种siw圆极化单脉冲天线

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202180045951.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21969357

Country of ref document: EP

Kind code of ref document: A1