WO2023122910A1 - 控制方法、终端设备和网络设备 - Google Patents

控制方法、终端设备和网络设备 Download PDF

Info

Publication number
WO2023122910A1
WO2023122910A1 PCT/CN2021/141777 CN2021141777W WO2023122910A1 WO 2023122910 A1 WO2023122910 A1 WO 2023122910A1 CN 2021141777 W CN2021141777 W CN 2021141777W WO 2023122910 A1 WO2023122910 A1 WO 2023122910A1
Authority
WO
WIPO (PCT)
Prior art keywords
state
terminal device
receiving state
timer
controlling
Prior art date
Application number
PCT/CN2021/141777
Other languages
English (en)
French (fr)
Inventor
胡奕
李海涛
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2021/141777 priority Critical patent/WO2023122910A1/zh
Publication of WO2023122910A1 publication Critical patent/WO2023122910A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the communication field, and more specifically, to a control method, terminal equipment and network equipment.
  • the traditional connection state energy saving technology is designed for the main receiver of the terminal to be always on.
  • the terminal device After the introduction of the lower power consumption wake up signal (LP-WUS, ultra-low power Wake Up Signal) mechanism, the terminal device After receiving LP-WUS, start the main receiver (Main Radio) to monitor the downlink signal to achieve the purpose of energy saving. Therefore, the UE needs to be in the normal receiving state (such as the main receiver is in the normal working state) and the low power receiving state (such as only the LP-WUS receiver is in the working state, and the main receiver is in the off or deep sleep state) according to the business situation. convert between. How to control related configurations when the UE performs state transition becomes a technical problem to be solved.
  • the embodiments of the present application provide a control method, a terminal device, and a network device, which can control related configurations when the UE performs a state transition.
  • the embodiment of this application provides a control method, including:
  • the terminal device When the terminal device undergoes a state transition and/or receives an instruction to trigger the state transition, the terminal device controls at least one of resource configuration and timer.
  • the embodiment of this application provides a control method, including:
  • the network device sends an instruction to trigger the terminal device to perform state transition
  • the network device controls at least one of resource configuration and timer.
  • An embodiment of the present application provides a terminal device, including:
  • the first control unit is configured to control at least one of resource configuration and timer when the terminal device has a state transition and/or receives an instruction triggering the state transition.
  • An embodiment of the present application provides a network device, including:
  • the sending unit is used for the network device to send an instruction to trigger the terminal device to perform state transition
  • the second control unit is used for the network device to control at least one of resource configuration and timer.
  • An embodiment of the present application provides a terminal device, including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory, so that the terminal device executes the above-mentioned control method.
  • An embodiment of the present application provides a network device, including a processor and a memory.
  • the memory is used to store computer programs
  • the processor is used to call and run the computer programs stored in the memory, so that the network device executes the above-mentioned control method.
  • An embodiment of the present application provides a chip configured to implement the foregoing control method.
  • the chip includes: a processor, configured to call and run a computer program from the memory, so that the device installed with the chip executes the above-mentioned control method.
  • An embodiment of the present application provides a computer-readable storage medium, which is used to store a computer program, and when the computer program is run by a device, the device executes the above control method.
  • An embodiment of the present application provides a computer program product, including computer program instructions, where the computer program instructions cause a computer to execute the above control method.
  • An embodiment of the present application provides a computer program, which, when running on a computer, causes the computer to execute the above control method.
  • the terminal device controls at least one of resource configuration and timer when a state transition occurs and/or receives an instruction to trigger a state transition, so as to realize the control of related configuration when the UE performs state transition.
  • Fig. 1 is a schematic diagram of an application scenario according to an embodiment of the present application.
  • Figure 2 is a schematic diagram of the working principle of LP-WUS.
  • Fig. 3 is a schematic flowchart of a control method according to an embodiment of the present application.
  • Fig. 4 is a schematic diagram of control for uplink and downlink transmission in a control method according to an embodiment of the present application.
  • Fig. 5 is a schematic diagram of controlling an SCell state in a control method according to an embodiment of the present application.
  • Fig. 6 is a schematic diagram of controlling a data inactive timer in a control method according to an embodiment of the present application.
  • Fig. 7 is a schematic flowchart of a control method according to an embodiment of the present application.
  • Fig. 8 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • Fig. 9 is a schematic block diagram of a network device according to an embodiment of the present application.
  • Fig. 10 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • Fig. 12 is a schematic block diagram of a communication system according to an embodiment of the present application.
  • the technical solution of the embodiment of the present application can be applied to various communication systems, such as: Global System of Mobile communication (Global System of Mobile communication, GSM) system, code division multiple access (Code Division Multiple Access, CDMA) system, broadband code division multiple access (Wideband Code Division Multiple Access, WCDMA) system, General Packet Radio Service (GPRS), Long Term Evolution (LTE) system, Advanced long term evolution (LTE-A) system , New Radio (NR) system, evolution system of NR system, LTE (LTE-based access to unlicensed spectrum, LTE-U) system on unlicensed spectrum, NR (NR-based access to unlicensed spectrum) on unlicensed spectrum unlicensed spectrum (NR-U) system, Non-Terrestrial Networks (NTN) system, Universal Mobile Telecommunications System (UMTS), Wireless Local Area Networks (WLAN), Wireless Fidelity (Wireless Fidelity, WiFi), fifth-generation communication (5th-Generation, 5G) system or other communication systems, etc.
  • GSM Global System of Mobile
  • D2D Device to Device
  • M2M Machine to Machine
  • MTC Machine Type Communication
  • V2V Vehicle to Vehicle
  • V2X Vehicle to everything
  • the communication system in the embodiment of the present application may be applied to a carrier aggregation (Carrier Aggregation, CA) scenario, may also be applied to a dual connectivity (Dual Connectivity, DC) scenario, and may also be applied to an independent ( Standalone, SA) network deployment scene.
  • Carrier Aggregation, CA Carrier Aggregation
  • DC Dual Connectivity
  • SA Standalone
  • the communication system in the embodiment of the present application can be applied to an unlicensed spectrum, where the unlicensed spectrum can also be considered as a shared spectrum; or, the communication system in the embodiment of the present application can also be applied to Licensed spectrum, where the licensed spectrum can also be considered as non-shared spectrum.
  • the embodiments of the present application describe various embodiments in conjunction with network equipment and terminal equipment, wherein the terminal equipment may also be referred to as user equipment (User Equipment, UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • user equipment User Equipment, UE
  • access terminal user unit
  • user station mobile station
  • mobile station mobile station
  • remote station remote terminal
  • mobile device user terminal
  • terminal wireless communication device
  • wireless communication device user agent or user device
  • the terminal device can be a station (STAION, ST) in the WLAN, a cellular phone, a cordless phone, a Session Initiation Protocol (Session Initiation Protocol, SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital processing (Personal Digital Assistant, PDA) devices, handheld devices with wireless communication functions, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, next-generation communication systems such as terminal devices in NR networks, or future Terminal equipment in the evolved public land mobile network (Public Land Mobile Network, PLMN) network, etc.
  • STAION, ST Session Initiation Protocol
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the terminal device can be deployed on land, including indoor or outdoor, handheld, wearable or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as aircraft, balloons and satellites) superior).
  • the terminal device may be a mobile phone (Mobile Phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (Virtual Reality, VR) terminal device, an augmented reality (Augmented Reality, AR) terminal Equipment, wireless terminal equipment in industrial control, wireless terminal equipment in self driving, wireless terminal equipment in remote medical, wireless terminal equipment in smart grid , wireless terminal equipment in transportation safety, wireless terminal equipment in smart city, or wireless terminal equipment in smart home.
  • a virtual reality (Virtual Reality, VR) terminal device an augmented reality (Augmented Reality, AR) terminal Equipment
  • wireless terminal equipment in industrial control wireless terminal equipment in self driving
  • wireless terminal equipment in remote medical wireless terminal equipment in smart grid
  • wireless terminal equipment in transportation safety wireless terminal equipment in smart city, or wireless terminal equipment in smart home.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices, which is a general term for the application of wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are not only a hardware device, but also achieve powerful functions through software support, data interaction, and cloud interaction.
  • Generalized wearable smart devices include full-featured, large-sized, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, etc., and only focus on a certain type of application functions, and need to cooperate with other devices such as smart phones Use, such as various smart bracelets and smart jewelry for physical sign monitoring.
  • the network device may be a device for communicating with the mobile device, and the network device may be an access point (Access Point, AP) in WLAN, a base station (Base Transceiver Station, BTS) in GSM or CDMA , or a base station (NodeB, NB) in WCDMA, or an evolved base station (Evolutional Node B, eNB or eNodeB) in LTE, or a relay station or access point, or a vehicle-mounted device, a wearable device, and an NR network
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • Evolutional Node B, eNB or eNodeB evolved base station
  • LTE Long Term Evolutional Node B, eNB or eNodeB
  • gNB network equipment in the network or the network equipment in the future evolved PLMN network or the network equipment in the NTN network, etc.
  • the network device may have a mobile feature, for example, the network device may be a mobile device.
  • the network equipment may be a satellite or a balloon station.
  • the satellite can be a low earth orbit (low earth orbit, LEO) satellite, a medium earth orbit (medium earth orbit, MEO) satellite, a geosynchronous earth orbit (geosynchronous earth orbit, GEO) satellite, a high elliptical orbit (High Elliptical Orbit, HEO) satellite. ) Satellite etc.
  • the network device may also be a base station installed on land, water, and other locations.
  • the network device may provide services for a cell, and the terminal device communicates with the network device through the transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell, and the cell may be a network device ( For example, a cell corresponding to a base station), the cell may belong to a macro base station, or may belong to a base station corresponding to a small cell (Small cell), and the small cell here may include: a metro cell (Metro cell), a micro cell (Micro cell), a pico cell ( Pico cell), Femto cell, etc. These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-speed data transmission services.
  • the transmission resources for example, frequency domain resources, or spectrum resources
  • the cell may be a network device (
  • the cell may belong to a macro base station, or may belong to a base station corresponding to a small cell (Small cell)
  • the small cell here may include: a metro cell (Metro cell), a micro cell (Micro
  • FIG. 1 exemplarily shows a communication system 100 .
  • the communication system includes a network device 110 and two terminal devices 120 .
  • the communication system 100 may include multiple network devices 110, and each network device 110 may include other numbers of terminal devices 120 within the coverage area, which is not limited in this embodiment of the present application.
  • the communication system 100 may also include other network entities such as a mobility management entity (Mobility Management Entity, MME), an access and mobility management function (Access and Mobility Management Function, AMF), etc.
  • MME Mobility Management Entity
  • AMF Access and Mobility Management Function
  • the network equipment may further include access network equipment and core network equipment. That is, the wireless communication system also includes multiple core networks for communicating with access network devices.
  • the access network device may be a long-term evolution (long-term evolution, LTE) system, a next-generation (mobile communication system) (next radio, NR) system or an authorized auxiliary access long-term evolution (LAA- Evolved base station (evolutional node B, abbreviated as eNB or e-NodeB) macro base station, micro base station (also called “small base station”), pico base station, access point (access point, AP), Transmission point (transmission point, TP) or new generation base station (new generation Node B, gNodeB), etc.
  • LTE long-term evolution
  • NR next-generation
  • LAA- Evolved base station evolutional node B, abbreviated as eNB or e-NodeB
  • eNB next-generation
  • NR next-generation
  • a device with a communication function in the network/system in the embodiment of the present application may be referred to as a communication device.
  • the communication equipment may include network equipment and terminal equipment with communication functions. It may include other devices in the communication system, such as network controllers, mobility management entities and other network entities, which are not limited in this embodiment of the present application.
  • the "indication" mentioned in the embodiments of the present application may be a direct indication, may also be an indirect indication, and may also mean that there is an association relationship.
  • a indicates B which can mean that A directly indicates B, for example, B can be obtained through A; it can also indicate that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also indicate that there is an association between A and B relation.
  • the term "corresponding" may indicate that there is a direct or indirect correspondence between the two, or that there is an association between the two, or that it indicates and is indicated, configuration and is configuration etc.
  • a discontinuous reception (DRX, Discontinuous Reception) mechanism and a WUS mechanism.
  • DRX discontinuous reception
  • WUS Wireless Fidelity
  • LP-WUS lower power wake-up signal
  • the terminal After receiving the LP-WUS, the terminal starts the main receiver to monitor the downlink signal, so as to achieve the purpose of energy saving.
  • a UE in the radio resource control (RRC, Radio Resource Control) connection state needs to be in the normal receiving state (that is, the main receiver is in the normal working state) and the low power receiving state (that is, only the LP-WUS receiver is in the active, while the main receiver is off or in deep sleep).
  • RRC Radio Resource Control
  • Figure 2 is a schematic diagram of the working principle of LP-WUS. As shown in Figure 2, when the UE receives the indication of entering the low-power receiving state, it enters the low-power receiving state. At this time, the LP-WUS receiver is in the working state, and the main receiver is in the off or deep sleep state; When receiving the LP-WUS signal, it enters the normal receiving state, and the main receiver enters the working state.
  • FIG. 3 is a schematic flowchart of a control method 300 according to an embodiment of the present application.
  • the method can optionally be applied to the system shown in Fig. 1, but is not limited thereto.
  • the method includes at least some of the following.
  • the terminal device controls at least one of resource configuration and a timer.
  • the state transition of the above-mentioned terminal equipment includes:
  • the end device transitions from a normal receive state to a low power receive state
  • the terminal device transitions from a low-power receiving state to a normal receiving state.
  • the foregoing normal receiving state includes that a main receiver (Main Radio) of the terminal device is in a working state.
  • the above-mentioned low-power receiving state includes that the low-power receiver of the terminal device is in the working state, and/or the main receiver of the terminal device is in the off state or deep sleep state.
  • the above indication of state transition includes at least one of the following:
  • the terminal device when the terminal device receives the indication of entering the low-power receiving state, it can switch from the normal receiving state to the low-power receiving state; when the terminal device receives the LP-WUS signal, it can switch from the low-power receiving state Transition to normal receive state.
  • the embodiment of the present application can report the uplink and downlink pre-configuration authorization, channel state information (CSI, Channel State Information), and sounding reference signal (SRS, Sounding Reference Signal) when a state transition occurs and/or an indication of a trigger state transition is received , Physical Uplink Control Channel (PUCCH, Physical Uplink Control Channel), Power Headroom Report (PHR, Power Headroom Report), Secondary Serving Cell (SCell, Secondary Cell) status and at least one of the data inactivation timer to control.
  • PUCCH Physical Uplink Control Channel
  • PHR Power Headroom Report
  • SCell Secondary Cell
  • the embodiments of the present application may also control other related configurations and timers when a state transition occurs and/or when an instruction to trigger a state transition is received, which are not exhaustive here.
  • Fig. 4 is a schematic diagram of control for uplink and downlink transmission in a control method according to an embodiment of the present application.
  • the UE receives an indication of entering the low-power receiving state from the network at T1, and transitions from the normal receiving state (such as Main Radio is in the working state) to the low-power receiving state (such as only low-power receiving The machine is in the working state, while the Main Radio is in the off state or deep sleep state); or, the UE transitions from the normal receiving state (such as the Main Radio is in the working state) to the low power receiving state (such as Only the low-power receiver is working, and the Main Radio is off or in deep sleep).
  • the UE performs at least one of the following controls.
  • Controlling the uplink and downlink pre-configuration authorization including at least one of the following:
  • Controlling CSI reporting including at least one of the following:
  • PUCCH Physical Uplink Control Channel
  • the above-mentioned suspended (suspend) or cleared (clear) PUCCH may be a PUCCH used for scheduling request (SR, Scheduling Request) transmission, a hybrid automatic repeat request (HARQ, Hybrid Automatic Repeat Request) At least one of a PUCCH for acknowledging (ACK)/negation (NACK) transmission and a PUCCH for CSI reporting.
  • SR Scheduling Request
  • HARQ Hybrid Automatic Repeat Request
  • Control PHR including:
  • the network device when the UE performs the above control, the network device (such as the base station) can perform the same control. For example, the network device sends an instruction to trigger the terminal device to switch from the normal receiving state to the low-power receiving state (for example, sending an instruction to enter the low-power receiving state, which is received by the terminal device at time T1), and executes the above control.
  • the network device sends an instruction to trigger the terminal device to switch from the normal receiving state to the low-power receiving state (for example, sending an instruction to enter the low-power receiving state, which is received by the terminal device at time T1), and executes the above control.
  • the network device sends an instruction to trigger the terminal device to switch from the normal receiving state to the low-power receiving state (for example, sending an instruction to enter the low-power receiving state, which is received by the terminal device at time T1), and executes the above control.
  • the UE receives the LP-WUS signal from the network at T2, and transitions from the low-power receiving state (for example, only the low-power receiver is in the working state, and the Main Radio is in the off state or deep sleep state) It is in the normal receiving state (such as the Main Radio is in the working state); or, the UE is in the low power receiving state at T2 based on other trigger conditions (such as only the low power receiver is in the working state, and the Main Radio is in the off state or deep sleep state) to normal receiving state (such as Main Radio is in working state).
  • the UE performs at least one of the following controls.
  • Control the uplink and downlink pre-configuration authorization including:
  • the UE initializes (or re-initializes) or restores the suspended type1CG according to the stored configuration.
  • the suspended type1CG initialized or restored in the embodiment of the present application is a type1CG configured on a special serving cell (SpCell, Special Cell) and/or configured on an activated secondary serving cell (SCell, Secondary Cell) ) on type1CG.
  • SpCell Special Cell
  • SCell Secondary Cell
  • Controlling CSI reporting including at least one of the following:
  • the UE may initialize (or re-initialize) or resume suspended periodic CSI reporting and/or semi-persistent CSI reporting.
  • the UE can initialize (or re-initialize) according to the stored configuration ) or resume suspended periodic SRS and/or semi-persistent SRS.
  • the UE may initialize (or re-initialize) or restore the suspended PUCCH according to the stored configuration.
  • the above-mentioned PUCCH may be at least one of the PUCCH used for SR transmission, the PUCCH used for HARQ ACK/NACK transmission, and the PUCCH used for CSI reporting.
  • Control PHR including:
  • the control operation performed by the UE on the PHR cycle timer, PHR prohibition timer or MPE prohibition timer at the above T1 time is to suspend the PHR cycle timer, PHR prohibition timer or MPE prohibition timer, then this situation The next UE can resume running the PHR period timer, PHR prohibit timer or MPE prohibit timer.
  • the control operation performed by the UE on the PHR cycle timer, PHR prohibition timer or MPE prohibition timer at the above T1 time is to stop the PHR cycle timer, PHR prohibition timer or MPE prohibition timer, in this case the UE can Start the PHR period timer, PHR disable timer or MPE disable timer.
  • the network device when the UE performs the above control, the network device (such as the base station) can perform the same control.
  • the network device sends an instruction to trigger the terminal device to switch from the low-power receiving state to the normal receiving state (for example, sending an LP-WUS signal, which is received by the terminal device at T2), and executes the above control.
  • the network device sends an instruction to trigger the terminal device to switch from the low-power receiving state to the normal receiving state (for example, sending an LP-WUS signal, which is received by the terminal device at T2), and executes the above control.
  • Fig. 5 is a schematic diagram of controlling an SCell state in a control method according to an embodiment of the present application.
  • the UE receives an indication of entering the low-power receiving state from the network at T1, and transitions from the normal receiving state (such as Main Radio is in the working state) to the low-power receiving state (such as only low-power receiving The machine is in the working state, while the Main Radio is in the off state or deep sleep state); or, the UE transitions from the normal receiving state (such as the Main Radio is in the working state) to the low power receiving state (such as Only the low-power receiver is working, and the Main Radio is off or in deep sleep).
  • the UE deactivates the SCell. For example, UE may deactivate all SCells.
  • the network device when the UE performs the above control, the network device (such as the base station) can perform the same control. For example, the network device sends an instruction to trigger the terminal device to switch from the normal receiving state to the low-power receiving state (such as sending an instruction to enter the low-power receiving state, which is received by the terminal device at time T1), and deactivates the UE's All SCells.
  • the network device sends an instruction to trigger the terminal device to switch from the normal receiving state to the low-power receiving state (such as sending an instruction to enter the low-power receiving state, which is received by the terminal device at time T1), and deactivates the UE's All SCells.
  • the UE receives the LP-WUS signal from the network at T2, and transitions from the low-power receiving state (for example, only the low-power receiver is in the working state, and the Main Radio is in the off state or deep sleep state) It is in the normal receiving state (such as the Main Radio is in the working state); or, the UE is in the low power receiving state at T2 based on other trigger conditions (such as only the low power receiver is in the working state, and the Main Radio is in the off state or deep sleep state) to normal receiving state (such as Main Radio is in working state).
  • the UE activates all or part of the SCells.
  • this embodiment proposes at least the following two ways:
  • the SCell that has transitioned from the activated state to the deactivated state is used as the target SCell.
  • the UE transitions from the normal receiving state to the low-power receiving state, and deactivates all SCells of the UE, including SCell1, SCell2 and SCell3.
  • the UE transitions from the low-power receiving state to the normal receiving state, and the SCell1, SCell2, and SCell3 undergoing state transition at T1 are the target SCells; Reactivate.
  • the network configures the first initial state for each SCell of the UE through UE-specific signaling, such as RRC signaling or Media Access Control (MAC, Media Access Control) Control Element (CE, Control Element) or LP-WUS.
  • UE-specific signaling such as RRC signaling or Media Access Control (MAC, Media Access Control) Control Element (CE, Control Element) or LP-WUS.
  • An initial state can be an active state or a deactivated state.
  • the UE sets the SCell whose first initial state is the activated state as the target SCell.
  • the UE when the UE transitions from the low-power receiving state to the normal receiving state and/or receives LP-WUS, it activates all or part of the SCells, including:
  • the UE determines the SCells that are transitioned from the activated state to the deactivated state during the latest state transition process of the UE;
  • the UE activates the determined SCell.
  • the UE when the UE transitions from the low-power receiving state to the normal receiving state and/or receives LP-WUS, it activates all or part of the SCells, including:
  • the UE determines to activate all or part of the SCells according to the first indication.
  • the first indication is carried in at least one of RRC signaling, MAC CE and LP-WUS.
  • the first indication may carry the first initial state configured for each SCell described in the second manner above. For example, when the UE transitions from the low power consumption receiving state to the normal receiving state and/or receives the LP-WUS, activates the SCell whose first initial state is the active state indicated in the first indication.
  • the network device when the UE performs the above control, the network device (such as the base station) can perform the same control.
  • the network device sends an instruction to trigger the terminal device to switch from the low-power receiving state to the normal receiving state (for example, sending an LP-WUS signal, which is received by the terminal device at T2), and executes the above control.
  • the network device sends an instruction to trigger the terminal device to switch from the low-power receiving state to the normal receiving state (for example, sending an LP-WUS signal, which is received by the terminal device at T2), and executes the above control.
  • Fig. 6 is a schematic diagram of controlling a data inactive timer in a control method according to an embodiment of the present application.
  • the UE receives an indication of entering the low-power receiving state from the network at time T1, and transitions from the normal receiving state (for example, Main Radio is in the working state) to the low-power receiving state (for example, only low-power receiving The machine is in the working state, while the Main Radio is in the off state or deep sleep state); or, the UE transitions from the normal receiving state (such as the Main Radio is in the working state) to the low power receiving state (such as Only the low-power receiver is working, and the Main Radio is off or in deep sleep).
  • the UE controls the data inactivity timer, such as stopping the data inactivity timer (dataInactivityTimer).
  • the network device when the UE performs the above control, the network device (such as the base station) can perform the same control. For example, the network device sends an instruction that triggers the terminal device to switch from the normal receiving state to the low-power receiving state (such as sending an instruction to enter the low-power receiving state, which is received by the terminal device at time T1), and stops data inactivation Timer (dataInactivityTimer).
  • the network device sends an instruction that triggers the terminal device to switch from the normal receiving state to the low-power receiving state (such as sending an instruction to enter the low-power receiving state, which is received by the terminal device at time T1), and stops data inactivation Timer (dataInactivityTimer).
  • the UE receives the LP-WUS signal from the network at T2, and transitions from the low-power receiving state (for example, only the low-power receiver is in the working state, while the Main Radio is in the off state or deep sleep state) It is in the normal receiving state (such as the Main Radio is in the working state); or, the UE is in the low power receiving state at T2 based on other trigger conditions (such as only the low power receiver is in the working state, and the Main Radio is in the off state or deep sleep state) to normal receiving state (such as Main Radio is in working state).
  • the UE controls the data inactivity timer, such as starting (or restarting) the data inactivity timer (dataInactivityTimer).
  • the network device (such as the base station) can perform the same control.
  • the network device sends an instruction that triggers the terminal device to switch from the low-power receiving state to the normal receiving state (such as sending an LP-WUS signal, which is received by the terminal device at T2), and starts (or restarts) the data inactive Timer (dataInactivityTimer).
  • the UE may receive an indication of entering the low-power receiving state and/or switch from the normal receiving state to the low-power receiving state when it is in the RRC connected state, or it may be in the RRC inactive state or the RRC idle state When receiving an indication of entering a low-power receiving state and/or transitioning from a normal receiving state to a low-power receiving state.
  • the network device may send an indication of entering the low-power reception state or other indications for triggering the state transition of the terminal equipment to the terminal equipment in the RRC connected state, RRC inactive state or RRC idle state, so as to trigger the UE to switch from normal to normal.
  • the receive state transitions to a low-power receive state.
  • the present application proposes a control method for a terminal supporting a low-power receiver to process a network indication message. At least include: when the UE transitions from the normal receiving state to the low power receiving state, the UE clears or suspends the uplink/downlink transmission configuration, and at the same time stops or suspends the PHR related timer; when the UE transitions from the low power consumption reception to the normal reception state, the UE resumes the suspended uplink/downlink transmission configuration, resumes the suspended timer, and triggers PHR at the same time.
  • the UE deactivates all SCells; when the UE transitions from the low-power receiving state to the normal receiving state, the UE automatically activates some or all SCells.
  • the UE stops the dataInactivityTimer; when the UE transitions from the low-power receiving state to the normal receiving state, the UE starts the dataInactivityTimer. Therefore, the present application realizes the control of related configurations when the UE performs state transition.
  • Fig. 7 is a schematic flowchart of a control method 700 according to an embodiment of the present application.
  • the method can optionally be applied to the system shown in Fig. 1, but is not limited thereto.
  • the method includes at least some of the following.
  • the network device sends an instruction to trigger the terminal device to perform state transition
  • the network device controls at least one of resource configuration and timer.
  • the above indication of state transition includes at least one of the following:
  • the indication of entering the low-power receiving state is used to trigger the terminal device to switch from the normal receiving state to the low-power receiving state; the above-mentioned LP-WUS is used to trigger the terminal device to switch from the low-power receiving state It is in normal receiving state.
  • the foregoing normal receiving state includes that the main receiver of the terminal device is in a working state.
  • the above low-power receiving state includes that the low-power receiver of the terminal device is in a working state, and/or the main receiver of the terminal device is in an off state or in a deep sleep state.
  • a manner in which the network device controls at least one of the resource configuration and the timer of the network device is the same as the manner described in the foregoing embodiment for the terminal device.
  • the network device controls at least one of uplink and downlink pre-configuration authorization, CSI reporting, SRS, PUCCH, PHR, SCell state and data inactivation timer.
  • the network device controls the uplink and downlink pre-configuration authorization, including at least one of the following:
  • the network device controls the CSI reporting, including at least one of the following:
  • the network device controls the SRS, including at least one of the following:
  • the network device controls the PUCCH, including: suspending or clearing the PUCCH.
  • the above-mentioned suspended or cleared PUCCH may be at least one of the PUCCH used for SR transmission, the PUCCH used for HARQ ACK/NACK transmission, and the PUCCH used for CSI reporting.
  • the network device controls the PHR, including:
  • the network device controls the state of the SCell, including: deactivating the SCell.
  • the network device controls the data inactive timer, including: stopping the data inactive timer.
  • the network device controls the uplink and downlink pre-configuration authorization, including: initializing or restoring the suspended first type CG.
  • the suspended first type CG may be the first type CG configured on the SpCell and/or the first type CG configured on the activated Scell.
  • the network device controls the CSI report, including at least one of the following:
  • the network device controls the SRS, including at least one of the following:
  • the network device controls the PUCCH, including: initializing or recovering the suspended PUCCH.
  • the above-mentioned PUCCH may be at least one of the PUCCH used for SR transmission, the PUCCH used for HARQ ACK/NACK transmission, and the PUCCH used for CSI reporting.
  • the network device controls the PHR, including:
  • the network device When the network device sends the LP-WUS, the network device controls the state of the SCells, including: activating all or part of the SCells.
  • the activation of all or part of the SCells by the network device may include:
  • the network device determines the SCells that were converted from the activated state to the deactivated state during the latest state transition process of the terminal device;
  • the network device activates the determined SCell.
  • the activation of all or part of the SCells by the network device may include:
  • the network device determines to activate all or part of the SCells according to the first indication sent to the terminal device.
  • the above-mentioned first indication may be carried in at least one of RRC signaling, MAC CE and LP-WUS.
  • the first indication may carry the first initial state configured by the network device for each SCell of the terminal device.
  • the network device can configure the first initialization for each SCell of the UE through UE-specific signaling, such as RRC signaling or Media Access Control (MAC, Media Access Control) Control Element (CE, Control Element) or LP-WUS. state, the first initial state may be an activated state or a deactivated state.
  • UE-specific signaling such as RRC signaling or Media Access Control (MAC, Media Access Control) Control Element (CE, Control Element) or LP-WUS.
  • the first initial state may be an activated state or a deactivated state.
  • the network device controls the data inactive timer, including: starting the data inactive timer.
  • the network device may send a low-power receiving state indication to the terminal device in the RRC connected state, RRC inactive state or RRC idle state, to trigger the terminal device to switch from the normal receiving state to the low-power receiving state .
  • the control performed by the network device is the same as that performed by the terminal device in the above embodiment when the terminal device receives a low power consumption receiving state indication; the network device sends the LP-WUS In the case of the signal, the control performed by the network device is the same as the control performed by the terminal device when the terminal device receives the LP-WUS signal in the above embodiment. In this way, the network device and the terminal device can control related configurations such as resource configuration and timers when the UE is performing state transition.
  • Fig. 8 is a schematic block diagram of a terminal device 800 according to an embodiment of the present application.
  • the terminal device 800 may include:
  • the first control unit 810 is configured to control at least one of resource configuration and timer when the terminal device undergoes a state transition and/or receives an instruction triggering the state transition.
  • the state transition of the terminal device includes:
  • the terminal device transitions from a normal receiving state to a low power receiving state; and/or,
  • the terminal device transitions from a low power consumption receiving state to a normal receiving state.
  • the normal receiving state includes that the main receiver of the terminal device is in a working state.
  • the low-power receiving state includes that the low-power receiver of the terminal device is in a working state, and/or the main receiver of the terminal device is in an off state or in a deep sleep state.
  • the state transition indication includes at least one of the following:
  • the first control unit authorizes the uplink and downlink pre-configuration , CSI reporting, SRS, PUCCH, PHR, SCell state and at least one of the data inactive timer is controlled.
  • the first control unit controlling the uplink and downlink pre-configuration authorization includes at least one of the following:
  • the first control unit controlling CSI reporting includes at least one of the following:
  • the first control unit controlling the SRS includes at least one of the following:
  • controlling the PUCCH by the first control unit includes suspending or clearing the PUCCH.
  • the above-mentioned PUCCH may be at least one of the PUCCH used for SR transmission, the PUCCH used for HARQ ACK/NACK transmission, and the PUCCH used for CSI reporting.
  • the first control unit controlling the PHR includes:
  • controlling the state of the SCell by the first control unit includes: deactivating the SCell.
  • controlling the data inactive timer by the first control unit includes: stopping the data inactive timer.
  • the first control unit when the terminal device transitions from the low-power receiving state to the normal receiving state and/or receives LP-WUS, the first control unit performs authorization for uplink and downlink pre-configuration, CSI reporting, SRS, At least one of PUCCH, PHR, SCell state and data inactivity timer is controlled.
  • controlling the uplink and downlink pre-configuration grant by the first control unit includes: initializing or restoring the suspended first type CG.
  • the suspended first type CG is the first type CG configured on the SpCell and/or the first type CG configured on the activated Scell.
  • the first control unit controlling CSI reporting includes at least one of the following:
  • the first control unit controlling the SRS includes at least one of the following:
  • controlling the PUCCH by the first control unit includes initializing or recovering the suspended PUCCH.
  • the above-mentioned PUCCH may be at least one of the PUCCH used for SR transmission, the PUCCH used for HARQ ACK/NACK transmission, and the PUCCH used for CSI reporting.
  • the first control unit controlling the PHR includes:
  • controlling the SCell state by the first control unit includes: activating all or part of the SCells.
  • the first control unit activates all or part of the SCells, including:
  • the determined SCell is activated.
  • the first control unit activates all or part of the SCells, including:
  • the first indication is carried in at least one of RRC signaling, MAC CE and LP-WUS.
  • controlling the data inactivity timer by the first control unit includes: starting the data inactivity timer.
  • the transition of the terminal device from the normal receiving state to the low-power receiving state includes: when the terminal device is in the RRC connected state, the RRC inactive state or the RRC idle state, switching from the normal receiving state It is the low power receiving state;
  • the terminal device when the terminal device is in an RRC connected state, an RRC inactive state or an RRC idle state, it receives the low power consumption receiving state indication.
  • the terminal device 800 in the embodiment of the present application can implement the corresponding functions of the terminal device in the foregoing method embodiments.
  • each module (submodule, unit or component, etc.) in the terminal device 800 refers to the corresponding description in the above method embodiment, and details are not repeated here.
  • the functions described by the various modules (submodules, units or components, etc.) in the terminal device 800 of the embodiment of the application can be realized by different modules (submodules, units or components, etc.), or by the same Module (submodule, unit or component, etc.) implementation.
  • Fig. 9 is a schematic block diagram of a network device 900 according to an embodiment of the present application.
  • the network device 900 may include:
  • a sending unit 910 configured to send an indication that triggers the terminal device to perform a state transition
  • the second control unit 920 is configured to control at least one of resource configuration and timer.
  • the instruction to trigger the terminal device to perform state transition includes at least one of the following:
  • the indication of entering the low-power receiving state is used to trigger the terminal device to switch from the normal receiving state to the low-power receiving state.
  • the LP-WUS is used to trigger the terminal device to switch from a low power consumption receiving state to a normal receiving state.
  • the normal receiving state includes that the main receiver of the terminal device is in a working state.
  • the low-power receiving state includes that the low-power receiver of the terminal device is in a working state, and/or the main receiver of the terminal device is in an off state or in a deep sleep state.
  • the second control unit 920 is configured to control at least one of uplink and downlink pre-configuration grants, CSI reporting, SRS, PUCCH, PHR, SCell status, and data inactivation timer .
  • the second control unit controlling the uplink and downlink pre-configuration authorization includes at least one of the following:
  • the second control unit controlling CSI reporting includes at least one of the following:
  • the control of the SRS by the second control unit includes at least one of the following:
  • controlling the PUCCH by the second control unit includes: suspending or clearing the PUCCH.
  • the above-mentioned PUCCH may be at least one of the PUCCH used for SR transmission, the PUCCH used for HARQ ACK/NACK transmission, and the PUCCH used for CSI reporting.
  • controlling the PHR by the second control unit includes:
  • controlling the state of the SCell by the second control unit includes: deactivating the SCell.
  • controlling the data inactive timer by the second control unit includes: stopping the data inactive timer.
  • the second control unit controlling the uplink and downlink pre-configuration authorization includes: initializing or restoring the suspended first type CG .
  • the suspended first type CG is the first type CG configured on the SpCell and/or the first type CG configured on the activated Scell.
  • the second control unit controlling CSI reporting includes at least one of the following:
  • controlling the SRS by the second control unit includes at least one of the following:
  • controlling the PUCCH by the second control unit includes: initializing or restoring a suspended PUCCH.
  • the above-mentioned PUCCH may be at least one of the PUCCH used for SR transmission, the PUCCH used for HARQ ACK/NACK transmission, and the PUCCH used for CSI reporting.
  • controlling the PHR by the second control unit includes:
  • controlling the SCell state by the second control unit includes: activating all or part of the SCells.
  • the second control unit activates all or part of the SCells, including:
  • the determined SCell is activated.
  • the second control unit activates all or part of the SCells, including:
  • the second control unit determines to activate all or part of the SCells according to the first indication sent to the terminal device.
  • the first indication is carried in at least one of RRC signaling, MAC CE and LP-WUS.
  • controlling the data inactivity timer by the second control unit includes: starting the data inactivity timer.
  • the sending unit sending the indication of entering the low power consumption receiving state includes:
  • the sending unit sends the low power consumption receiving state indication to a terminal device in an RRC connected state, an RRC inactive state or an RRC idle state.
  • the network device 900 in the embodiment of the present application can implement the corresponding functions of the network device in the foregoing method embodiments.
  • For the procedures, functions, implementations, and beneficial effects corresponding to each module (submodule, unit, or component) in the network device 900 refer to the corresponding description in the above method embodiments, and details are not repeated here.
  • the functions described by the various modules (submodules, units or components, etc.) in the network device 900 of the embodiment of the application can be realized by different modules (submodules, units or components, etc.), or by the same Module (submodule, unit or component, etc.) implementation.
  • Fig. 10 is a schematic structural diagram of a communication device 1000 according to an embodiment of the present application.
  • the communication device 1000 includes a processor 1010, and the processor 1010 can invoke and run a computer program from a memory, so that the communication device 1000 implements the method in the embodiment of the present application.
  • the communication device 1000 may further include a memory 1020 .
  • the processor 1010 may call and run a computer program from the memory 1020, so that the communication device 1000 implements the method in the embodiment of the present application.
  • the memory 1020 may be an independent device independent of the processor 1010 , or may be integrated in the processor 1010 .
  • the communication device 1000 may further include a transceiver 1030, and the processor 1010 may control the transceiver 1030 to communicate with other devices, specifically, to send information or data to other devices, or to receive information from other devices information or data sent.
  • the transceiver 1030 may include a transmitter and a receiver.
  • the transceiver 1030 may further include antennas, and the number of antennas may be one or more.
  • the communication device 1000 may be the network device of the embodiment of the present application, and the communication device 1000 may implement the corresponding processes implemented by the network device in each method of the embodiment of the present application. For the sake of brevity, the This will not be repeated here.
  • the communication device 1000 may be a terminal device in the embodiment of the present application, and the communication device 1000 may implement the corresponding processes implemented by the terminal device in each method of the embodiment of the present application. For the sake of brevity, the This will not be repeated here.
  • FIG. 11 is a schematic structural diagram of a chip 1100 according to an embodiment of the present application.
  • the chip 1100 includes a processor 1110, and the processor 1110 can invoke and run a computer program from a memory, so as to implement the method in the embodiment of the present application.
  • the chip 1100 may further include a memory 1120 .
  • the processor 1110 may call and run a computer program from the memory 1120, so as to implement the method executed by the terminal device or the network device in the embodiment of the present application.
  • the memory 1120 may be an independent device independent of the processor 1110 , or may be integrated in the processor 1110 .
  • the chip 1100 may further include an input interface 1130 .
  • the processor 1110 can control the input interface 1130 to communicate with other devices or chips, specifically, can obtain information or data sent by other devices or chips.
  • the chip 1100 may further include an output interface 1140 .
  • the processor 1110 can control the output interface 1140 to communicate with other devices or chips, specifically, can output information or data to other devices or chips.
  • the chip can be applied to the network device in the embodiment of the application, and the chip can implement the corresponding processes implemented by the network device in the methods of the embodiment of the application.
  • the Let me repeat for the sake of brevity, the Let me repeat.
  • the chip can be applied to the terminal device in the embodiment of the present application, and the chip can implement the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the Let me repeat for the sake of brevity, the Let me repeat.
  • Chips applied to network devices and terminal devices may be the same chip or different chips.
  • the chip mentioned in the embodiment of the present application may also be called a system-on-chip, a system-on-chip, a system-on-a-chip, or a system-on-a-chip.
  • the processor mentioned above can be a general-purpose processor, a digital signal processor (DSP), an off-the-shelf programmable gate array (FPGA), an application specific integrated circuit (ASIC) or Other programmable logic devices, transistor logic devices, discrete hardware components, etc.
  • DSP digital signal processor
  • FPGA off-the-shelf programmable gate array
  • ASIC application specific integrated circuit
  • the general-purpose processor mentioned above may be a microprocessor or any conventional processor or the like.
  • the aforementioned memories may be volatile memories or nonvolatile memories, or may include both volatile and nonvolatile memories.
  • the non-volatile memory can be read-only memory (read-only memory, ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically programmable Erases programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM).
  • the memory in the embodiment of the present application may also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM), etc. That is, the memory in the embodiments of the present application is intended to include, but not be limited to, these and any other suitable types of memory.
  • Fig. 12 is a schematic block diagram of a communication system 1200 according to an embodiment of the present application.
  • the communication system 1200 includes a terminal device 1210 and a network device 1220 .
  • the terminal device 1210 may be used to realize the corresponding functions realized by the terminal device in the above method
  • the network device 1220 may be used to realize the corresponding functions realized by the network device in the above method.
  • details are not repeated here.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on the computer, the processes or functions according to the embodiments of the present application will be generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, e.g.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (such as a floppy disk, a hard disk, or a magnetic tape), an optical medium (such as a DVD), or a semiconductor medium (such as a solid state disk (Solid State Disk, SSD)), etc.
  • sequence numbers of the above-mentioned processes do not mean the order of execution, and the execution order of the processes should be determined by their functions and internal logic, and should not be used in the embodiments of the present application.
  • the implementation process constitutes any limitation.

Abstract

本申请涉及通信领域,更具体地,涉及一种控制方法、终端设备和网络设备。具体实现方式为:终端设备发生状态转换和/或收到触发所述状态转换的指示时,所述终端设备对资源配置和定时器中的至少一项进行控制。本申请能够实现在UE进行状态转换时对相关配置进行控制。

Description

控制方法、终端设备和网络设备 技术领域
本申请涉及通信领域,更具体地,涉及一种控制方法、终端设备和网络设备。
背景技术
传统的连接态节能技术都是针对终端主接收机一直处于开启状态而设计的,在引入了更低功耗的唤醒信号(LP-WUS,ultra-low power Wake Up Signal)机制之后,终端设备在接收到LP-WUS后才启动主接收机(Main Radio)来监听下行信号,以达到节能的目的。因此,UE需要根据业务情况在正常接收状态(如主接收机处于正常工作状态)和低功耗接收状态(如只有LP-WUS接收机处于工作状态,而主接收机处于关闭或深度睡眠状态)之间进行转换。UE在进行状态转换时,如何对相关配置进行控制,成为需要解决的技术问题。
发明内容
本申请实施例提供一种控制方法、终端设备和网络设备,可以实现在UE进行状态转换时对相关配置进行控制。
本申请实施例提供一种控制方法,包括:
终端设备发生状态转换和/或收到触发所述状态转换的指示时,所述终端设备对资源配置和定时器中的至少一项进行控制。
本申请实施例提供一种控制方法,包括:
网络设备发送触发终端设备进行状态转换的指示;
所述网络设备对资源配置和定时器中的至少一项进行控制。
本申请实施例提供一种终端设备,包括:
第一控制单元,用于终端设备发生状态转换和/或收到触发所述状态转换的指示时,所述终端设备对资源配置和定时器中的至少一项进行控制。
本申请实施例提供一种网络设备,包括:
发送单元,用于网络设备发送触发终端设备进行状态转换的指示;
第二控制单元,用于所述网络设备对资源配置和定时器中的至少一项进行控制。
本申请实施例提供一种终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,以使该终端设备执行上述的控制方法。
本申请实施例提供一种网络设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,以使该网络设备执行上述的控制方法。
本申请实施例提供一种芯片,用于实现上述的控制方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行上述的控制方法。
本申请实施例提供一种计算机可读存储介质,用于存储计算机程序,当该计算机程序被设备运行时使得该设备执行上述的控制方法。
本申请实施例提供一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述的控制方法。
本申请实施例提供一种计算机程序,当其在计算机上运行时,使得计算机执行上述的控制方法。
本申请实施例,通过终端设备在发生状态转换和/或收到触发状态转换的指示时对资源配置和定时器中的至少一项进行控制,实现了UE进行状态转换时对相关配置的控制。
附图说明
图1是根据本申请实施例的应用场景的示意图。
图2是LP-WUS的工作原理示意图。
图3是根据本申请一实施例的控制方法的示意性流程图。
图4是根据本申请一实施例控制方法中,针对上下行传输的控制示意图。
图5是根据本申请一实施例控制方法中,针对SCell状态的控制示意图。
图6是根据本申请一实施例控制方法中,针对数据非激活定时器的控制示意图。
图7是根据本申请一实施例的控制方法的示意性流程图。
图8是根据本申请一实施例的终端设备的示意性框图。
图9是根据本申请一实施例的网络设备的示意性框图。
图10是根据本申请实施例的通信设备示意性结构图。
图11是根据本申请实施例的芯片的示意性结构图。
图12是根据本申请实施例的通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新无线(New Radio,NR)系统、NR系统的演进系统、非授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、非授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、非地面通信网络(Non-Terrestrial Networks,NTN)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、第五代通信(5th-Generation,5G)系统或其他通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),车辆间(Vehicle to Vehicle,V2V)通信,或车联网(Vehicle to everything,V2X)通信等,本申请实施例也可以应用于这些通信系统。
在一种可能的实现方式中,本申请实施例中的通信系统可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景。
在一种可能的实现方式中,本申请实施例中的通信系统可以应用于非授权频谱,其中,非授权频谱也可以认为是共享频谱;或者,本申请实施例中的通信系统也可以应用于授权频谱,其中,授权频谱也可以认为是非共享频谱。
本申请实施例结合网络设备和终端设备描述了各个实施例,其中,终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。
终端设备可以是WLAN中的站点(STAION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、下一代通信系统例如NR网络中的终端设备,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备等。
在本申请实施例中,终端设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。
在本申请实施例中,终端设备可以是手机(Mobile Phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self driving)中的无线终端设备、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备或智慧家庭(smart home)中的无线终端设备等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
在本申请实施例中,网络设备可以是用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及NR网络中的网络设备(gNB)或者未来演进的PLMN网络中的网络设备或者NTN网络中的网络设备等。
作为示例而非限定,在本申请实施例中,网络设备可以具有移动特性,例如网络设备可以为移动的设备。可选地,网络设备可以为卫星、气球站。例如,卫星可以为低地球轨道(low earth orbit,LEO)卫星、中地球轨道(medium earth orbit,MEO)卫星、地球同步轨道(geostationary earth orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等。可选地,网络设备还可以为设置在陆地、水域等位置的基站。
在本申请实施例中,网络设备可以为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
图1示例性地示出了一种通信系统100。该通信系统包括一个网络设备110和两个终端设备120。在一种可能的实现方式中,该通信系统100可以包括多个网络设备110,并且每个网络设备110的覆盖范围内可以包括其它数量的终端设备120,本申请实施例对此不做限定。
在一种可能的实现方式中,该通信系统100还可以包括移动性管理实体(Mobility Management Entity,MME)、接入与移动性管理功能(Access and Mobility Management Function,AMF)等其他网络实体,本申请实施例对此不作限定。
其中,网络设备又可以包括接入网设备和核心网设备。即无线通信系统还包括用于与接入网设备进行通信的多个核心网。接入网设备可以是长期演进(long-term evolution,LTE)系统、下一代(移动通信系统)(next radio,NR)系统或者授权辅助接入长期演进(authorized auxiliary access long-term evolution,LAA-LTE)系统中的演进型基站(evolutional node B,简称可以为eNB或e-NodeB)宏基站、微基站(也称为“小基站”)、微微基站、接入站点(access point,AP)、传输站点(transmission point,TP)或新一代基站(new generation Node B,gNodeB)等。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统为例,通信设备可包括具有通信功能的网络设备和终端设备,网络设备和终端设备可以为本申请实施例中的具体设备,此处不再赘述;通信设备还可包括通信系统中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例的描述中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
为便于理解本申请实施例的技术方案,以下对本申请实施例的相关技术进行说明,以下相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。
传统的连接态节能技术都是针对终端设备的主接收机一直处于开启状态而设计的,包括非连续接收(DRX,Discontinuous Reception)机制和WUS机制。目前引入了更低功耗的唤醒信号,即LP-WUS。与WUS机制相比,LP-WUS机制更节能,可以使用更低功耗的LP-WUS接收机。终端接收到LP-WUS后才启动主接收机来监听下行信号,以达到节能的目的。
例如,处于无线资源控制(RRC,Radio Resource Control)连接态的UE需要根据业务情况在正常接收状态(即主接收机处于正常工作状态)和低功耗接收状态(即只有LP-WUS接收机处于工作状态,而主接收机处于关闭或深度睡眠状态)之间进行转换。UE在进行状态转换时,是否需要对上下行传输的配置以及相关定时器做特殊操作,目前尚还没有相关方案。
图2是LP-WUS的工作原理示意图。如图2所示,UE在接收到进入低功耗接收状态指示时,进入低功耗接收状态,此时LP-WUS接收机处于工作状态,而主接收机处于关闭或深度睡眠状态;UE在接收到LP-WUS信号时,进入正常接收状态,主接收机进入工作状态。
本申请提出一种控制方法,图3是根据本申请一实施例的控制方法300的示意性流程图。该方法可选地可以应用于图1所示的系统,但并不仅限于此。该方法包括以下内容的至少部分内容。
S310、终端设备发生状态转换和/或收到触发所述状态转换的指示时,该终端设备对资源配置和定时器中的至少一项进行控制。
在一种可能的实现方式中,上述终端设备设备发生状态转换包括:
终端设备从正常接收状态转换为低功耗接收状态;和/或,
终端设备从低功耗接收状态转换为正常接收状态。
在一种可能的实现方式中,在本申请实施例中,上述正常接收状态包括终端设备的主接收机(Main Radio)处于工作状态。
在一种可能的实现方式中,在本申请实施例中,上述低功耗接收状态包括终端设备的低功耗接收机处于工作状态,和/或终端设备的主接收机处于关闭状态或者深度睡眠状态。
在一种可能的实现方式中,上述状态转换的指示包括以下至少一项:
进入低功耗接收状态指示;
LP-WUS信号。
在本申请实施例中,终端设备接收到进入低功耗接收状态指示时,可以从正常接收状态转换为低功耗接收状态;终端设备接收到LP-WUS信号时,可以从低功耗接收状态转换为正常接收状态。
本申请实施例可以在发生状态转换和/或收到触发状态转换的指示时,对上下行预配置授权、信道状态信息(CSI,Channel State Information)上报、探测参考信号(SRS,Sounding Reference Signal)、物理上行控制信道(PUCCH,Physical Uplink Control Channel)、功率余量报告(PHR,Power Headroom Report)、辅服务小区(SCell,Secondary Cell)状态和数据非激活定时器中的至少一项进行控制。本申请实施例还可以在发生状态转换和/或收到触发状态转换的指示时,对其他相关配置和定时器进行控制,在此不进行穷举。
以下结合附图,对上述控制方式进行详细说明。
图4是根据本申请一实施例控制方法中,针对上下行传输的控制示意图。如图4所示,UE在T1时刻收到来自网络的进入低功耗接收状态指示,从正常接收状态(如Main Radio处于工作状态状态)转换为低功耗接收状态(如只有低功耗接收机处于工作状态,而Main Radio处于关闭状态或深度睡眠状态);或者,UE在T1时刻基于其他触发条件,从正常接收状态(如Main Radio处于工作状态状态)转换为低功耗接收状态(如只有低功耗接收机处于工作状态,而Main Radio处于关闭状态或深度睡眠状态)。这种情况下,UE进行以下至少一种控制。
(1)对上下行预配置授权进行控制,包括以下至少一项:
挂起(suspend)第一类型配置授权(CG)(type1Configured Grant);
清除(clear)第一类型CG(type1CG);
清除(clear)或去激活半持续调度(SPS,Semi-Persistent Scheduling);
清除(clear)或去激活第二类型CG(type2CG)。
(2)对CSI上报进行控制,包括以下至少一项:
挂起(suspend)或清除(clear)周期CSI上报;
挂起(suspend)、清除(clear)或去激活半持续CSI上报。
(3)对SRS进行控制,包括以下至少一项:
挂起(suspend)或清除(clear)周期SRS;
挂起(suspend)、清除(clear)或去激活半持续SRS。
(4)对PUCCH进行控制,包括:
挂起(suspend)或清除(clear)物理上行控制信道(PUCCH,Physical Uplink Control Channel)。
在一些实施方式中,上述挂起(suspend)或清除(clear)的PUCCH可以为用于调度请求(SR,Scheduling Request)传输的PUCCH、用于混合自动重传请求(HARQ,Hybrid Automatic Repeat Request)确认(ACK)/否认(NACK)传输的PUCCH和用于CSI上报的PUCCH中的至少一种。
(5)对PHR进行控制,包括:
停止(stop)或挂起(suspend)以下至少一个定时器:
PHR周期定时器(phr-PeriodicTimer);
PHR禁止定时器(phr-ProhibitTimer);
MPE禁止定时器(mpe-ProhibitTimer)。
相应地,在UE进行上述控制时,网络设备(如基站)可以进行同样的控制。例如,网络设备发送触发终端设备进行从正常接收状态转换为低功耗接收状态的指示(如发送进入低功耗接收状态指示, 该指示于T1时刻被终端设备接收到),并执行上述控制。具体的控制方式可参见上述终端设备的控制方式,在此不再赘述。
如图4所示,UE在T2时刻收到来自网络的LP-WUS信号,从低功耗接收状态(如只有低功耗接收机处于工作状态,而Main Radio处于关闭状态或深度睡眠状态)转换为正常接收状态(如Main Radio处于工作状态状态);或者,UE在T2时刻基于其他触发条件,从低功耗接收状态(如只有低功耗接收机处于工作状态,而Main Radio处于关闭状态或深度睡眠状态)转换为正常接收状态(如Main Radio处于工作状态状态)。这种情况下,UE进行以下至少一种控制。
(1)对上下行预配置授权进行控制,包括:
初始化或恢复被挂起的第一类型CG(type1CG)。
例如,如果UE在上述T1时刻对type1CG执行的控制操作为挂起type1CG,则这种情况下,UE根据储存的配置初始化(或重新初始化)或恢复被挂起的type1CG。
在一些实施方式中,本申请实施例中初始化或恢复的被挂起的type1CG为配置在特殊服务小区(SpCell,Special Cell)上的type1CG和/或配置在激活的辅服务小区(SCell,Secondary Cell)上的type1CG。
(2)对CSI上报进行控制,包括以下至少一项:
初始化或恢复被挂起的周期CSI上报;
初始化或恢复被挂起的半持续CSI上报。
例如,如果UE在上述T1时刻对周期CSI上报和/或半持续CSI上报执行的控制操作为挂起该周期CSI上报和/或半持续CSI上报,则这种情况下UE可以根据储存的配置初始化(或重新初始化)或恢复被挂起的周期CSI上报和/或半持续CSI上报。
(3)对SRS进行控制,包括以下至少一项:
初始化或恢复被挂起的周期SRS;
初始化或恢复被挂起的半持续SRS。
例如,如果UE在上述T1时刻对周期SRS和/或半持续SRS执行的控制操作为挂起该周期SRS和/或半持续SRS,则这种情况下UE可以根据储存的配置初始化(或重新初始化)或恢复被挂起的周期SRS和/或半持续SRS。
(4)对PUCCH进行控制,包括:
初始化或恢复被挂起的PUCCH。
例如,如果UE在上述T1时刻对PUCCH执行的控制操作为挂起该PUCCH,则这种情况下UE可以根据储存的配置初始化(或重新初始化)或恢复被挂起的PUCCH。
在一些实施方式中,上述PUCCH可以为用于SR传输的PUCCH、用于HARQ ACK/NACK传输的PUCCH和用于CSI上报的PUCCH中的至少一种。
(5)对PHR进行控制,包括:
触发PHR;
恢复或启动PHR周期定时器、PHR禁止定时器和MPE禁止定时器中的至少一项。
例如,如果UE在上述T1时刻对PHR周期定时器、PHR禁止定时器或MPE禁止定时器执行的控制操作为挂起该PHR周期定时器、PHR禁止定时器或MPE禁止定时器,则这种情况下UE可以恢复运行该PHR周期定时器、PHR禁止定时器或MPE禁止定时器。如果UE在上述T1时刻对PHR周期定时器、PHR禁止定时器或MPE禁止定时器执行的控制操作为停止该PHR周期定时器、PHR禁止定时器或MPE禁止定时器,则这种情况下UE可以启动该PHR周期定时器、PHR禁止定时器或MPE禁止定时器。
相应地,在UE进行上述控制时,网络设备(如基站)可以进行同样的控制。网络设备发送触发终端设备进行从低功耗接收状态的指示转换为正常接收状态(如发送LP-WUS信号,该信号于T2时刻被终端设备接收到),并执行上述控制。具体的控制方式可参见上述终端设备的控制,在此不再赘述。
图5是根据本申请一实施例控制方法中,针对SCell状态的控制示意图。
如图5所示,UE在T1时刻收到来自网络的进入低功耗接收状态指示,从正常接收状态(如Main Radio处于工作状态状态)转换为低功耗接收状态(如只有低功耗接收机处于工作状态,而Main Radio处于关闭状态或深度睡眠状态);或者,UE在T1时刻基于其他触发条件,从正常接收状态(如Main Radio处于工作状态状态)转换为低功耗接收状态(如只有低功耗接收机处于工作状态,而Main Radio处于关闭状态或深度睡眠状态)。这种情况下,UE去激活SCell。例如,UE可以去激活所有SCell。
相应地,在UE进行上述控制时,网络设备(如基站)可以进行同样的控制。例如,网络设备发送触发终端设备进行从正常接收状态转换为低功耗接收状态的指示(如发送进入低功耗接收状态指示, 该指示于T1时刻被终端设备接收到),并去激活UE的所有SCell。
如图5所示,UE在T2时刻收到来自网络的LP-WUS信号,从低功耗接收状态(如只有低功耗接收机处于工作状态,而Main Radio处于关闭状态或深度睡眠状态)转换为正常接收状态(如Main Radio处于工作状态状态);或者,UE在T2时刻基于其他触发条件,从低功耗接收状态(如只有低功耗接收机处于工作状态,而Main Radio处于关闭状态或深度睡眠状态)转换为正常接收状态(如Main Radio处于工作状态状态)。这种情况下,UE激活全部或部分SCell。
对于如何确定要激活的SCell(可以称为目标SCell),本实施例至少提出以下两种方式:
方式一:
将UE最近一次从正常接收状态转换为低功耗接收状态过程中,由激活状态转换为去激活状态的SCell作为目标SCell。
例如,在T1时刻,UE从正常接收状态转换为低功耗接收状态,将UE所有的SCell去激活,包括SCell1、SCell2和SCell3。之后,在T2时刻,UE从低功耗接收状态转换为正常接收状态,则T1时刻进行状态转换的SCell1、SCell2和SCell3即为目标SCell;此时UE将目标SCell(即SCell1、SCell2和SCell3)重新激活。
方式二:
网络通过UE专属信令,如RRC信令或媒体接入控制(MAC,Media Access Control)控制元素(CE,Control Element)或LP-WUS,为UE的每个SCell配置第一初始状态,该第一初始状态可以为激活状态或者去激活状态。UE将该第一初始状态为激活状态的SCell作为目标SCell。
对应上述方式一,UE从低功耗接收状态转换为正常接收状态和/或收到LP-WUS时,激活全部或部分SCell,包括:
UE确定在该UE的最近一次状态转换过程中,由激活状态转换为去激活状态的SCell;
UE将确定出的SCell激活。
对应上述方式二,UE从低功耗接收状态转换为正常接收状态和/或收到LP-WUS时,激活全部或部分SCell,包括:
UE根据第一指示确定激活全部或部分SCell。
其中,第一指示在RRC信令、MAC CE和LP-WUS的至少之一中携带。第一指示可以携带上述方式二中所述的为每个SCell配置的第一初始状态。例如,UE从低功耗接收状态转换为正常接收状态和/或收到LP-WUS时,将第一指示中所指示的第一初始状态为激活状态的SCell激活。
相应地,在UE进行上述控制时,网络设备(如基站)可以进行同样的控制。网络设备发送触发终端设备进行从低功耗接收状态的指示转换为正常接收状态(如发送LP-WUS信号,该信号于T2时刻被终端设备接收到),并执行上述控制。具体的控制方式可参考上述终端设备的控制,在此不再赘述。
图6是根据本申请一实施例控制方法中,针对数据非激活定时器的控制示意图。
如图6所示,UE在T1时刻收到来自网络的进入低功耗接收状态指示,从正常接收状态(如Main Radio处于工作状态状态)转换为低功耗接收状态(如只有低功耗接收机处于工作状态,而Main Radio处于关闭状态或深度睡眠状态);或者,UE在T1时刻基于其他触发条件,从正常接收状态(如Main Radio处于工作状态状态)转换为低功耗接收状态(如只有低功耗接收机处于工作状态,而Main Radio处于关闭状态或深度睡眠状态)。这种情况下,UE对数据非激活定时器进行控制,如停止数据非激活定时器(dataInactivityTimer)。
相应地,在UE进行上述控制时,网络设备(如基站)可以进行同样的控制。例如,网络设备发送触发终端设备进行从正常接收状态转换为低功耗接收状态的指示(如发送进入低功耗接收状态指示,该指示于T1时刻被终端设备接收到),并停止数据非激活定时器(dataInactivityTimer)。
如图6所示,UE在T2时刻收到来自网络的LP-WUS信号,从低功耗接收状态(如只有低功耗接收机处于工作状态,而Main Radio处于关闭状态或深度睡眠状态)转换为正常接收状态(如Main Radio处于工作状态状态);或者,UE在T2时刻基于其他触发条件,从低功耗接收状态(如只有低功耗接收机处于工作状态,而Main Radio处于关闭状态或深度睡眠状态)转换为正常接收状态(如Main Radio处于工作状态状态)。这种情况下,UE对数据非激活定时器进行控制,如启动(或重新启动)数据非激活定时器(dataInactivityTimer)。
相应地,在UE进行上述控制时,网络设备(如基站)可以进行同样的控制。网络设备发送触发终端设备进行从低功耗接收状态的指示转换为正常接收状态(如发送LP-WUS信号,该信号于T2时刻被终端设备接收到),并启动(或重新启动)数据非激活定时器(dataInactivityTimer)。
上述各实施例中,UE可以在处于RRC连接态时收到进入低功耗接收状态指示和/或从正常接收状态转换为低功耗接收状态,也可以在处于RRC非激活态或RRC空闲态时收到进入低功耗接收状态指示 和/或从正常接收状态转换为低功耗接收状态。相应地,网络设备可以向处于RRC连接态、RRC非激活态或RRC空闲态的终端设备发送进入低功耗接收状态指示或其他用于触发终端设备进行状态转换的指示,用于触发UE从正常接收状态转换为低功耗接收状态。
综上可见,本申请提出了一种支持低功耗接收机的终端处理网络指示消息的控制方法。至少包括:当UE从正常接收状态转换为低功耗接收状态时,UE清除或挂起上/下行传输配置,同时停止或挂起PHR相关定时器;当UE从低功耗接收转换为正常接收状态时,UE恢复被挂起的上/下行传输配置,恢复被挂起的定时器,同时触发PHR。当UE从正常接收状态转换为低功耗接收状态时,UE去激活所有SCell;当UE从低功耗接收转换为正常接收状态时,UE自动激活部分或所有SCell。当UE从正常接收状态转换为低功耗接收状态时,UE停止dataInactivityTimer;当UE从低功耗接收转换为正常接收状态时,UE启动dataInactivityTimer。因此,本申请实现了在UE进行状态转换时,对相关配置进行控制。
本申请实施例还提出另一种控制方法,该控制方法可以应用于网络设备。图7是根据本申请一实施例的控制方法700的示意性流程图。该方法可选地可以应用于图1所示的系统,但并不仅限于此。该方法包括以下内容的至少部分内容。
S710、网络设备发送触发终端设备进行状态转换的指示;
S720、该网络设备对资源配置和定时器中的至少一项进行控制。
在一种可能的实现方式中,上述状态转换的指示包括以下至少一项:
进入低功耗接收状态指示;
LP-WUS信号。
在一种可能的实现方式中,上述进入低功耗接收状态指示用于触发终端设备从正常接收状态转换为低功耗接收状态;上述LP-WUS用于触发终端设备从低功耗接收状态转换为正常接收状态。
在一种可能的实现方式中,上述正常接收状态包括所述终端设备的主接收机处于工作状态。
在一种可能的实现方式中,上述低功耗接收状态包括所述终端设备的低功耗接收机处于工作状态,和/或所述终端设备的主接收机处于关闭状态或者深度睡眠状态。
网络设备对网络设备对资源配置和定时器中的至少一项进行控制的方式与上述针对终端设备的实施例中介绍的方式相同。例如,网络设备对上下行预配置授权、CSI上报、SRS、PUCCH、PHR、SCell状态和数据非激活定时器中的至少一项进行控制。
例如,在网络设备发送进入低功耗接收状态指示的情况下,网络设备对上下行预配置授权进行控制,包括以下至少一项:
挂起第一类型CG;
清除第一类型CG;
清除或去激活SPS;
清除或去激活第二类型CG。
在网络设备发送进入低功耗接收状态指示的情况下,网络设备对CSI上报进行控制,包括以下至少一项:
挂起或清除周期CSI上报;
挂起、清除或去激活半持续CSI上报。
在网络设备发送进入低功耗接收状态指示的情况下,网络设备对SRS进行控制,包括以下至少一项:
挂起或清除周期SRS;
挂起、清除或去激活半持续SRS。
在网络设备发送进入低功耗接收状态指示的情况下,网络设备对PUCCH进行控制,包括:挂起或清除PUCCH。
在一些实施方式中,上述挂起或清除的PUCCH可以为用于SR传输的PUCCH、用于HARQ ACK/NACK传输的PUCCH和用于CSI上报的PUCCH中的至少一种。
在网络设备发送进入低功耗接收状态指示的情况下,网络设备对PHR进行控制,包括:
停止或挂起PHR周期定时器、PHR禁止定时器和MPE禁止定时器中的至少一项。
在网络设备发送进入低功耗接收状态指示的情况下,网络设备对SCell状态进行控制,包括:去激活SCell。
在网络设备发送进入低功耗接收状态指示的情况下,网络设备对数据非激活定时器进行控制,包括:停止数据非激活定时器。
在网络设备发送LP-WUS的情况下,网络设备对上下行预配置授权进行控制,包括:初始化或恢复被挂起的第一类型CG。
其中,被挂起的第一类型CG可以为配置在SpCell上的第一类型CG和/或配置在激活的Scell上的第一类型CG。
在网络设备发送LP-WUS的情况下,网络设备对CSI上报进行控制,包括以下至少一项:
初始化或恢复被挂起的周期CSI上报;
初始化或恢复被挂起的半持续CSI上报。
在网络设备发送LP-WUS的情况下,网络设备对SRS进行控制,包括以下至少一项:
初始化或恢复被挂起的周期SRS;
初始化或恢复被挂起的半持续SRS。
在网络设备发送LP-WUS的情况下,网络设备对对PUCCH进行控制,包括:初始化或恢复被挂起的PUCCH。
在一些实施方式中,上述PUCCH可以为用于SR传输的PUCCH、用于HARQ ACK/NACK传输的PUCCH和用于CSI上报的PUCCH中的至少一种。
在网络设备发送LP-WUS的情况下,网络设备对PHR进行控制,包括:
触发PHR;
恢复或启动PHR周期定时器、PHR禁止定时器和MPE禁止定时器中的至少一项。
在网络设备发送LP-WUS的情况下,网络设备对SCell状态进行控制,包括:激活全部或部分SCell。
其中,网络设备激活全部或部分SCell可以包括:
所述网络设备确定在所述终端设备最近一次状态转换过程中,由激活状态转换为去激活状态的SCell;
所述网络设备将确定出的SCell激活。
其中,网络设备激活全部或部分SCell可以包括:
所述网络设备根据向所述终端设备发送的第一指示,确定激活全部或部分SCell。
上述第一指示可以在RRC信令、MAC CE和LP-WUS的至少之一中携带。
上述网络设备确定激活的全部或部分SCell可以为目标SCell。第一指示可以携带网络设备为终端设备的每个SCell配置的第一初始状态。例如,网络设备可以通过UE专属信令,如RRC信令或媒体接入控制(MAC,Media Access Control)控制元素(CE,Control Element)或LP-WUS,为UE的每个SCell配置第一初始状态,该第一初始状态可以为激活状态或者去激活状态。在UE从低功耗接收状态转换为正常接收状态的情况下,UE和网络设备均将该第一初始状态为激活状态的SCell作为目标SCell,并激活目标SCell。
在网络设备发送LP-WUS的情况下,网络设备对数据非激活定时器进行控制,包括:启动数据非激活定时器。
在一些实施方式中,网络设备可以向处于RRC连接态、RRC非激活态或RRC空闲态的终端设备发送低功耗接收状态指示,用于触发终端设备由正常接收状态转换为低功耗接收状态。
网络设备发送低功耗接收状态指示的情况下、网络设备执行的控制与上述实施例中终端设备接收到低功耗接收状态指示的情况下、终端设备执行的控制相同;网络设备发送LP-WUS信号的情况下、网络设备执行的控制与上述实施例中终端设备接收到LP-WUS信号的情况下、终端设备执行的控制相同。通过这种方式,实现了在UE在进行状态转换时,网络设备和终端设备对资源配置和定时器等相关配置的控制。
图8是根据本申请一实施例的终端设备800的示意性框图。该终端设备800可以包括:
第一控制单元810,用于终端设备发生状态转换和/或收到触发所述状态转换的指示时,对资源配置和定时器中的至少一项进行控制。
在一种可能的实现方式中,所述终端设备发生状态转换包括:
所述终端设备从正常接收状态转换为低功耗接收状态;和/或,
所述终端设备从低功耗接收状态转换为正常接收状态。
在一种可能的实现方式中,所述正常接收状态包括所述终端设备的主接收机处于工作状态。
在一种可能的实现方式中,所述低功耗接收状态包括所述终端设备的低功耗接收机处于工作状态,和/或所述终端设备的主接收机处于关闭状态或者深度睡眠状态。
在一种可能的实现方式中,所述状态转换的指示包括以下至少一项:
进入低功耗接收状态指示;
更低功耗的唤醒信号LP-WUS。
在一种可能的实现方式中,所述终端设备从正常接收状态转换为低功耗接收状态和/或收到进入低功耗接收状态指示时,所述第一控制单元对上下行预配置授权、CSI上报、SRS、PUCCH、PHR、SCell 状态和数据非激活定时器中的至少一项进行控制。
在一种可能的实现方式中,所述第一控制单元对上下行预配置授权进行控制包括以下至少一项:
挂起第一类型配置授权CG;
清除第一类型CG;
清除或去激活SPS;
清除或去激活第二类型CG。
在一种可能的实现方式中,第一控制单元对CSI上报进行控制包括以下至少一项:
挂起或清除周期CSI上报;
挂起、清除或去激活半持续CSI上报。
在一种可能的实现方式中,第一控制单元对SRS进行控制包括以下至少一项:
挂起或清除周期SRS;
挂起、清除或去激活半持续SRS。
在一种可能的实现方式中,第一控制单元对PUCCH进行控制包括挂起或清除PUCCH。
在一些实施方式中,上述PUCCH可以为用于SR传输的PUCCH、用于HARQ ACK/NACK传输的PUCCH和用于CSI上报的PUCCH中的至少一种。
在一种可能的实现方式中,第一控制单元对PHR进行控制包括:
停止或挂起PHR周期定时器、PHR禁止定时器和MPE禁止定时器中的至少一项。
在一种可能的实现方式中,第一控制单元对SCell状态进行控制包括:去激活SCell。
在一种可能的实现方式中,第一控制单元对数据非激活定时器进行控制包括:停止数据非激活定时器。
在一种可能的实现方式中,所述终端设备从低功耗接收状态转换为正常接收状态和/或收到LP-WUS时,第一控制单元对上下行预配置授权、CSI上报、SRS、PUCCH、PHR、SCell状态和数据非激活定时器中的至少一项进行控制。
在一种可能的实现方式中,第一控制单元对上下行预配置授权进行控制包括:初始化或恢复被挂起的第一类型CG。
在一种可能的实现方式中,所述被挂起的第一类型CG为配置在SpCell上的第一类型CG和/或配置在激活的Scell上的第一类型CG。
在一种可能的实现方式中,第一控制单元对CSI上报进行控制包括以下至少一项:
初始化或恢复被挂起的周期CSI上报;
初始化或恢复被挂起的半持续CSI上报。
在一种可能的实现方式中,第一控制单元对SRS进行控制包括以下至少一项:
初始化或恢复被挂起的周期SRS;
初始化或恢复被挂起的半持续SRS。
在一种可能的实现方式中,第一控制单元对PUCCH进行控制包括初始化或恢复被挂起的PUCCH。
在一些实施方式中,上述PUCCH可以为用于SR传输的PUCCH、用于HARQ ACK/NACK传输的PUCCH和用于CSI上报的PUCCH中的至少一种。
在一种可能的实现方式中,第一控制单元对PHR进行控制包括:
触发PHR;
恢复或启动PHR周期定时器、PHR禁止定时器和MPE禁止定时器中的至少一项。
在一种可能的实现方式中,第一控制单元对SCell状态进行控制包括:激活全部或部分SCell。
在一种可能的实现方式中,第一控制单元激活全部或部分SCell,包括:
确定在所述终端设备最近一次状态转换过程中,由激活状态转换为去激活状态的SCell;
将确定出的SCell激活。
在一种可能的实现方式中,第一控制单元激活全部或部分SCell,包括:
根据第一指示确定激活全部或部分SCell。
在一种可能的实现方式中,所述第一指示在RRC信令、MAC CE和LP-WUS的至少之一中携带。
在一种可能的实现方式中,第一控制单元对数据非激活定时器进行控制包括:启动数据非激活定时器。
在一种可能的实现方式中,所述终端设备从正常接收状态转换为低功耗接收状态包括:所述终端设备处于RRC连接态、RRC非激活态或RRC空闲态时,从正常接收状态转换为低功耗接收状态;
在一种可能的实现方式中,所述终端设备处于RRC连接态、RRC非激活态或RRC空闲态时,收到所述低功耗接收状态指示。
本申请实施例的终端设备800能够实现前述的方法实施例中的终端设备的对应功能。该终端设备800中的各个模块(子模块、单元或组件等)对应的流程、功能、实现方式以及有益效果,可参见上述方法实施例中的对应描述,在此不再赘述。需要说明,关于申请实施例的终端设备800中的各个模块(子模块、单元或组件等)所描述的功能,可以由不同的模块(子模块、单元或组件等)实现,也可以由同一个模块(子模块、单元或组件等)实现。
图9是根据本申请一实施例的网络设备900的示意性框图。该网络设备900可以包括:
发送单元910,用于发送触发终端设备进行状态转换的指示;
第二控制单元920,用于对资源配置和定时器中的至少一项进行控制。
在一种可能的实现方式中,所述触发终端设备进行状态转换的指示包括以下至少一项:
进入低功耗接收状态指示;
LP-WUS。
在一种可能的实现方式中,所述进入低功耗接收状态指示用于触发所述终端设备从正常接收状态转换为低功耗接收状态。
在一种可能的实现方式中,所述LP-WUS用于触发终端设备从低功耗接收状态转换为正常接收状态。
在一种可能的实现方式中,所述正常接收状态包括所述终端设备的主接收机处于工作状态。
在一种可能的实现方式中,所述低功耗接收状态包括所述终端设备的低功耗接收机处于工作状态,和/或所述终端设备的主接收机处于关闭状态或者深度睡眠状态。
在一种可能的实现方式中,所述第二控制单元920用于,对上下行预配置授权、CSI上报、SRS、PUCCH、PHR、SCell状态和数据非激活定时器中的至少一项进行控制。
在一种可能的实现方式中,所述发送单元发送所述进入低功耗接收状态指示的情况下,所述第二控制单元对上下行预配置授权进行控制包括以下至少一项:
挂起第一类型配置授权CG;
清除第一类型CG;
清除或去激活SPS;
清除或去激活第二类型CG。
在一种可能的实现方式中,所述发送单元发送所述进入低功耗接收状态指示的情况下,所述第二控制单元对CSI上报进行控制包括以下至少一项:
挂起或清除周期CSI上报;
挂起、清除或去激活半持续CSI上报。
在一种可能的实现方式中,所所述发送单元发送所述进入低功耗接收状态指示的情况下,所述第二控制单元对SRS进行控制包括以下至少一项:
挂起或清除周期SRS;
挂起、清除或去激活半持续SRS。
在一种可能的实现方式中,所述发送单元发送所述进入低功耗接收状态指示的情况下,所述第二控制单元对PUCCH进行控制包括:挂起或清除PUCCH。
在一些实施方式中,上述PUCCH可以为用于SR传输的PUCCH、用于HARQ ACK/NACK传输的PUCCH和用于CSI上报的PUCCH中的至少一种。
在一种可能的实现方式中,所述发送单元发送所述进入低功耗接收状态指示的情况下,所述第二控制单元对PHR进行控制包括:
停止或挂起PHR周期定时器、PHR禁止定时器和MPE禁止定时器中的至少一项。
在一种可能的实现方式中,所述发送单元发送所述进入低功耗接收状态指示的情况下,所述第二控制单元对SCell状态进行控制包括:去激活SCell。
在一种可能的实现方式中,所述发送单元发送所述进入低功耗接收状态指示的情况下,所述第二控制单元对数据非激活定时器进行控制包括:停止数据非激活定时器。
在一种可能的实现方式中,所述发送单元发送所述LP-WUS的情况下,所述第二控制单元对上下行预配置授权进行控制包括:初始化或恢复被挂起的第一类型CG。
在一种可能的实现方式中,所述被挂起的第一类型CG为配置在SpCell上的第一类型CG和/或配置在激活的Scell上的第一类型CG。
在一种可能的实现方式中,所述发送单元发送所述LP-WUS的情况下,所述第二控制单元对CSI上报进行控制包括以下至少一项:
初始化或恢复被挂起的周期CSI上报;
初始化或恢复被挂起的半持续CSI上报。
在一种可能的实现方式中,所述发送单元发送所述LP-WUS的情况下,所述第二控制单元对SRS进行控制包括以下至少一项:
初始化或恢复被挂起的周期SRS;
初始化或恢复被挂起的半持续SRS。
在一种可能的实现方式中,所述发送单元发送所述LP-WUS的情况下,所述第二控制单元对PUCCH进行控制包括:初始化或恢复被挂起的PUCCH。
在一些实施方式中,上述PUCCH可以为用于SR传输的PUCCH、用于HARQ ACK/NACK传输的PUCCH和用于CSI上报的PUCCH中的至少一种。
在一种可能的实现方式中,所述发送单元发送所述LP-WUS的情况下,所述第二控制单元对PHR进行控制包括:
触发PHR;
恢复或启动PHR周期定时器、PHR禁止定时器和MPE禁止定时器中的至少一项。
在一种可能的实现方式中,所述发送单元发送所述LP-WUS的情况下,所述第二控制单元对SCell状态进行控制包括:激活全部或部分SCell。
在一种可能的实现方式中,所述第二控制单元激活全部或部分SCell,包括:
确定在所述终端设备最近一次状态转换过程中,由激活状态转换为去激活状态的SCell;
将确定出的SCell激活。
在一种可能的实现方式中,所述第二控制单元激活全部或部分SCell,包括:
所述第二控制单元根据向所述终端设备发送的第一指示,确定激活全部或部分SCell。
在一种可能的实现方式中,所述第一指示在RRC信令、MAC CE和LP-WUS的至少之一中携带。
在一种可能的实现方式中,所述发送单元发送所述LP-WUS的情况下,所述第二控制单元对数据非激活定时器进行控制包括:启动数据非激活定时器。
在一种可能的实现方式中,所述发送单元发送所述进入低功耗接收状态指示,包括:
所述发送单元向处于RRC连接态、RRC非激活态或RRC空闲态的终端设备发送所述低功耗接收状态指示。
本申请实施例的网络设备900能够实现前述的方法实施例中的网络设备的对应功能。该网络设备900中的各个模块(子模块、单元或组件等)对应的流程、功能、实现方式以及有益效果,可参见上述方法实施例中的对应描述,在此不再赘述。需要说明,关于申请实施例的网络设备900中的各个模块(子模块、单元或组件等)所描述的功能,可以由不同的模块(子模块、单元或组件等)实现,也可以由同一个模块(子模块、单元或组件等)实现。
图10是根据本申请实施例的通信设备1000示意性结构图。该通信设备1000包括处理器1010,处理器1010可以从存储器中调用并运行计算机程序,以使通信设备1000实现本申请实施例中的方法。
在一种可能的实现方式中,通信设备1000还可以包括存储器1020。其中,处理器1010可以从存储器1020中调用并运行计算机程序,以使通信设备1000实现本申请实施例中的方法。
其中,存储器1020可以是独立于处理器1010的一个单独的器件,也可以集成在处理器1010中。
在一种可能的实现方式中,通信设备1000还可以包括收发器1030,处理器1010可以控制该收发器1030与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器1030可以包括发射机和接收机。收发器1030还可以进一步包括天线,天线的数量可以为一个或多个。
在一种可能的实现方式中,该通信设备1000可为本申请实施例的网络设备,并且该通信设备1000可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
在一种可能的实现方式中,该通信设备1000可为本申请实施例的终端设备,并且该通信设备1000可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
图11是根据本申请实施例的芯片1100的示意性结构图。该芯片1100包括处理器1110,处理器1110可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
在一种可能的实现方式中,芯片1100还可以包括存储器1120。其中,处理器1110可以从存储器1120中调用并运行计算机程序,以实现本申请实施例中由终端设备或者网络设备执行的方法。
其中,存储器1120可以是独立于处理器1110的一个单独的器件,也可以集成在处理器1110中。
在一种可能的实现方式中,该芯片1100还可以包括输入接口1130。其中,处理器1110可以控制该输入接口1130与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
在一种可能的实现方式中,该芯片1100还可以包括输出接口1140。其中,处理器1110可以控制该输出接口1140与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
在一种可能的实现方式中,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
在一种可能的实现方式中,该芯片可应用于本申请实施例中的终端设备,并且该芯片可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
应用于网络设备和终端设备的芯片可以是相同的芯片或不同的芯片。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
上述提及的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、现成可编程门阵列(field programmable gate array,FPGA)、专用集成电路(application specific integrated circuit,ASIC)或者其他可编程逻辑器件、晶体管逻辑器件、分立硬件组件等。其中,上述提到的通用处理器可以是微处理器或者也可以是任何常规的处理器等。
上述提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM)。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
图12是根据本申请实施例的通信系统1200的示意性框图。该通信系统1200包括终端设备1210和网络设备1220。
其中,该终端设备1210可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备1220可以用于实现上述方法中由网络设备实现的相应的功能。为了简洁,在此不再赘述。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行该计算机程序指令时,全部或部分地产生按照本申请实施例中的流程或功能。该计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。该计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,该计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(Digital Subscriber Line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。该计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。该可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(Solid State Disk,SSD))等。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以该权利要求的保护范围为准。

Claims (117)

  1. 一种控制方法,包括:
    终端设备发生状态转换和/或收到触发所述状态转换的指示时,所述终端设备对资源配置和定时器中的至少一项进行控制。
  2. 根据权利要求1所述的方法,其中,所述终端设备发生状态转换包括:
    所述终端设备从正常接收状态转换为低功耗接收状态;和/或,
    所述终端设备从低功耗接收状态转换为正常接收状态。
  3. 根据权利要求2所述的方法,其中,所述正常接收状态包括所述终端设备的主接收机处于工作状态。
  4. 根据权利要求2所述的方法,其中,所述低功耗接收状态包括所述终端设备的低功耗接收机处于工作状态,和/或所述终端设备的主接收机处于关闭状态或者深度睡眠状态。
  5. 根据权利要求1至4中任一所述的方法,其中,所述状态转换的指示包括以下至少一项:
    进入低功耗接收状态指示;
    更低功耗的唤醒信号LP-WUS。
  6. 根据权利要求1至5中任一所述的方法,其中,所述终端设备从正常接收状态转换为低功耗接收状态和/或收到进入低功耗接收状态指示时,所述终端设备对上下行预配置授权、CSI上报、SRS、PUCCH、PHR、SCell状态和数据非激活定时器中的至少一项进行控制。
  7. 根据权利要求6所述的方法,其中,所述终端设备对上下行预配置授权进行控制包括以下至少一项:
    挂起第一类型配置授权CG;
    清除第一类型CG;
    清除或去激活SPS;
    清除或去激活第二类型CG。
  8. 根据权利要求6所述的方法,其中,所述终端设备对CSI上报进行控制包括以下至少一项:
    挂起或清除周期CSI上报;
    挂起、清除或去激活半持续CSI上报。
  9. 根据权利要求6所述的方法,其中,所述终端设备对SRS进行控制包括以下至少一项:
    挂起或清除周期SRS;
    挂起、清除或去激活半持续SRS。
  10. 根据权利要求6所述的方法,其中,所述终端设备对PUCCH进行控制包括挂起或清除PUCCH。
  11. 根据权利要求6所述的方法,其中,所述终端设备对PHR进行控制包括:
    停止或挂起PHR周期定时器、PHR禁止定时器和MPE禁止定时器中的至少一项。
  12. 根据权利要求6所述的方法,其中,所述终端设备对SCell状态进行控制包括:去激活SCell。
  13. 根据权利要求6所述的方法,其中,所述终端设备对数据非激活定时器进行控制包括:停止数据非激活定时器。
  14. 根据权利要求1至5中任一所述的方法,其中,所述终端设备从低功耗接收状态转换为正常接收状态和/或收到LP-WUS时,所述终端设备对上下行预配置授权、CSI上报、SRS、PUCCH、PHR、SCell状态和数据非激活定时器中的至少一项进行控制。
  15. 根据权利要求14所述的方法,其中,所述终端设备对上下行预配置授权进行控制包括:初始化或恢复被挂起的第一类型CG。
  16. 根据权利要求15所述的方法,其中,所述被挂起的第一类型CG为配置在SpCell上的第一类型CG和/或配置在激活的Scell上的第一类型CG。
  17. 根据权利要求14所述的方法,其中,所述终端设备对CSI上报进行控制包括以下至少一项:
    初始化或恢复被挂起的周期CSI上报;
    初始化或恢复被挂起的半持续CSI上报。
  18. 根据权利要求14所述的方法,其中,所述终端设备对SRS进行控制包括以下至少一项:
    初始化或恢复被挂起的周期SRS;
    初始化或恢复被挂起的半持续SRS。
  19. 根据权利要求14所述的方法,其中,所述终端设备对PUCCH进行控制包括初始化或恢复被挂起的PUCCH。
  20. 根据权利要求14所述的方法,其中,所述终端设备对PHR进行控制包括:
    触发PHR;
    恢复或启动PHR周期定时器、PHR禁止定时器和MPE禁止定时器中的至少一项。
  21. 根据权利要求14所述的方法,其中,所述终端设备对SCell状态进行控制包括:激活全部或部分SCell。
  22. 根据权利要求21所述的方法,其中,所述终端设备激活全部或部分SCell,包括:
    所述终端设备确定在所述终端设备最近一次状态转换过程中,由激活状态转换为去激活状态的SCell;
    所述终端设备将确定出的SCell激活。
  23. 根据权利要求21所述的方法,其中,所述终端设备激活全部或部分SCell,包括:
    所述终端设备根据第一指示确定激活全部或部分SCell。
  24. 根据权利要求23所述的方法,其中,所述第一指示在RRC信令、MAC CE和LP-WUS的至少之一中携带。
  25. 根据权利要求14所述的方法,其中,所述终端设备对数据非激活定时器进行控制包括:启动数据非激活定时器。
  26. 根据权利要求2至4中任一所述的方法,其中,所述终端设备从正常接收状态转换为低功耗接收状态包括:所述终端设备处于RRC连接态、RRC非激活态或RRC空闲态时,从正常接收状态转换为低功耗接收状态。
  27. 根据权利要求5所述的方法,其中,所述终端设备处于RRC连接态、RRC非激活态或RRC空闲态时,收到所述低功耗接收状态指示。
  28. 一种控制方法,包括:
    网络设备发送触发终端设备进行状态转换的指示;
    所述网络设备对资源配置和定时器中的至少一项进行控制。
  29. 根据权利要求28所述的方法,其中,所述触发终端设备进行状态转换的指示包括以下至少一项:
    进入低功耗接收状态指示;
    LP-WUS。
  30. 根据权利要求29所述的方法,其中,所述进入低功耗接收状态指示用于触发所述终端设备从正常接收状态转换为低功耗接收状态。
  31. 根据权利要求29所述的方法,其中,所述LP-WUS用于触发终端设备从低功耗接收状态转换为正常接收状态。
  32. 根据权利要求30或31所述的方法,其中,所述正常接收状态包括所述终端设备的主接收机处于工作状态。
  33. 根据权利要求30或31所述的方法,其中,所述低功耗接收状态包括所述终端设备的低功耗接收机处于工作状态,和/或所述终端设备的主接收机处于关闭状态或者深度睡眠状态。
  34. 根据权利要求28至33中任一所述的方法,其中,所述网络设备对资源配置和定时器中的至少一项进行控制,包括:
    所述网络设备对上下行预配置授权、CSI上报、SRS、PUCCH、PHR、SCell状态和数据非激活定时器中的至少一项进行控制。
  35. 根据权利要求34所述的方法,其中,所述网络设备发送所述进入低功耗接收状态指示的情况下,所述网络设备对上下行预配置授权进行控制包括以下至少一项:
    挂起第一类型配置授权CG;
    清除第一类型CG;
    清除或去激活SPS;
    清除或去激活第二类型CG。
  36. 根据权利要求34所述的方法,其中,所述网络设备发送所述进入低功耗接收状态指示的情况下,所述网络设备对CSI上报进行控制包括以下至少一项:
    挂起或清除周期CSI上报;
    挂起、清除或去激活半持续CSI上报。
  37. 根据权利要求34所述的方法,其中,所述网络设备发送所述进入低功耗接收状态指示的情况下,所述网络设备对SRS进行控制包括以下至少一项:
    挂起或清除周期SRS;
    挂起、清除或去激活半持续SRS。
  38. 根据权利要求34所述的方法,其中,所述网络设备发送所述进入低功耗接收状态指示的情况下,所述网络设备对PUCCH进行控制包括:挂起或清除PUCCH。
  39. 根据权利要求34所述的方法,其中,所述网络设备发送所述进入低功耗接收状态指示的情况下,所述网络设备对PHR进行控制包括:
    停止或挂起PHR周期定时器、PHR禁止定时器和MPE禁止定时器中的至少一项。
  40. 根据权利要求34所述的方法,其中,所述网络设备发送所述进入低功耗接收状态指示的情况下,所述网络设备对SCell状态进行控制包括:去激活SCell。
  41. 根据权利要求34所述的方法,其中,所述网络设备发送所述进入低功耗接收状态指示的情况下,所述网络设备对数据非激活定时器进行控制包括:停止数据非激活定时器。
  42. 根据权利要求34所述的方法,其中,所述网络设备发送所述LP-WUS的情况下,所述网络设备对上下行预配置授权进行控制包括:初始化或恢复被挂起的第一类型CG。
  43. 根据权利要求42所述的方法,其中,所述被挂起的第一类型CG为配置在SpCell上的第一类型CG和/或配置在激活的Scell上的第一类型CG。
  44. 根据权利要求34所述的方法,其中,所述网络设备发送所述LP-WUS的情况下,所述网络设备对CSI上报进行控制包括以下至少一项:
    初始化或恢复被挂起的周期CSI上报;
    初始化或恢复被挂起的半持续CSI上报。
  45. 根据权利要求34所述的方法,其中,所述网络设备发送所述LP-WUS的情况下,所述网络设备对SRS进行控制包括以下至少一项:
    初始化或恢复被挂起的周期SRS;
    初始化或恢复被挂起的半持续SRS。
  46. 根据权利要求34所述的方法,其中,所述网络设备发送所述LP-WUS的情况下,所述网络设备对PUCCH进行控制包括:初始化或恢复被挂起的PUCCH。
  47. 根据权利要求34所述的方法,其中,所述网络设备发送所述LP-WUS的情况下,所述网络设备对PHR进行控制包括:
    触发PHR;
    恢复或启动PHR周期定时器、PHR禁止定时器和MPE禁止定时器中的至少一项。
  48. 根据权利要求34所述的方法,其中,所述网络设备发送所述LP-WUS的情况下,所述网络设备对SCell状态进行控制包括:激活全部或部分SCell。
  49. 根据权利要求48所述的方法,其中,所述网络设备激活全部或部分SCell,包括:
    所述网络设备确定在所述终端设备最近一次状态转换过程中,由激活状态转换为去激活状态的SCell;
    所述网络设备将确定出的SCell激活。
  50. 根据权利要求48所述的方法,其中,所述网络设备激活全部或部分SCell,包括:
    所述网络设备根据向所述终端设备发送的第一指示,确定激活全部或部分SCell。
  51. 根据权利要求50所述的方法,其中,所述第一指示在RRC信令、MAC CE和LP-WUS的至少之一中携带。
  52. 根据权利要求34所述的方法,其中,所述网络设备发送所述LP-WUS的情况下,所述网络设备对数据非激活定时器进行控制包括:启动数据非激活定时器。
  53. 根据权利要求29至33中任一所述的方法,其中,所述网络设备发送所述进入低功耗接收状态指示,包括:
    所述网络设备向处于RRC连接态、RRC非激活态或RRC空闲态的终端设备发送所述低功耗接收状态指示。
  54. 一种终端设备,包括:
    第一控制单元,用于终端设备发生状态转换和/或收到触发所述状态转换的指示时,对资源配置和定时器中的至少一项进行控制。
  55. 根据权利要求54所述的设备,其中,所述终端设备发生状态转换包括:
    所述终端设备从正常接收状态转换为低功耗接收状态;和/或,
    所述终端设备从低功耗接收状态转换为正常接收状态。
  56. 根据权利要求55所述的设备,其中,所述正常接收状态包括所述终端设备的主接收机处于工作状态。
  57. 根据权利要求55所述的设备,其中,所述低功耗接收状态包括所述终端设备的低功耗接收机 处于工作状态,和/或所述终端设备的主接收机处于关闭状态或者深度睡眠状态。
  58. 根据权利要求54至57中任一所述的设备,其中,所述状态转换的指示包括以下至少一项:
    进入低功耗接收状态指示;
    更低功耗的唤醒信号LP-WUS。
  59. 根据权利要求54至58中任一所述的设备,其中,所述终端设备从正常接收状态转换为低功耗接收状态和/或收到进入低功耗接收状态指示时,所述第一控制单元对上下行预配置授权、CSI上报、SRS、PUCCH、PHR、SCell状态和数据非激活定时器中的至少一项进行控制。
  60. 根据权利要求59所述的设备,其中,所述第一控制单元对上下行预配置授权进行控制包括以下至少一项:
    挂起第一类型配置授权CG;
    清除第一类型CG;
    清除或去激活SPS;
    清除或去激活第二类型CG。
  61. 根据权利要求59所述的设备,其中,所述第一控制单元对CSI上报进行控制包括以下至少一项:
    挂起或清除周期CSI上报;
    挂起、清除或去激活半持续CSI上报。
  62. 根据权利要求59所述的设备,其中,所述第一控制单元对SRS进行控制包括以下至少一项:
    挂起或清除周期SRS;
    挂起、清除或去激活半持续SRS。
  63. 根据权利要求59所述的设备,其中,所述第一控制单元对PUCCH进行控制包括挂起或清除的PUCCH。
  64. 根据权利要求59所述的设备,其中,所述第一控制单元对PHR进行控制包括:
    停止或挂起PHR周期定时器、PHR禁止定时器和MPE禁止定时器中的至少一项。
  65. 根据权利要求59所述的设备,其中,所述第一控制单元对SCell状态进行控制包括:去激活SCell。
  66. 根据权利要求59所述的设备,其中,所述第一控制单元对数据非激活定时器进行控制包括:停止数据非激活定时器。
  67. 根据权利要求54至58中任一所述的设备,其中,所述终端设备从低功耗接收状态转换为正常接收状态和/或收到LP-WUS时,所述第一控制单元对上下行预配置授权、CSI上报、SRS、PUCCH、PHR、SCell状态和数据非激活定时器中的至少一项进行控制。
  68. 根据权利要求67所述的设备,其中,所述第一控制单元对上下行预配置授权进行控制包括:初始化或恢复被挂起的第一类型CG。
  69. 根据权利要求68所述的设备,其中,所述被挂起的第一类型CG为配置在SpCell上的第一类型CG和/或配置在激活的Scell上的第一类型CG。
  70. 根据权利要求67所述的设备,其中,所述第一控制单元对CSI上报进行控制包括以下至少一项:
    初始化或恢复被挂起的周期CSI上报;
    初始化或恢复被挂起的半持续CSI上报。
  71. 根据权利要求67所述的设备,其中,所述第一控制单元对SRS进行控制包括以下至少一项:
    初始化或恢复被挂起的周期SRS;
    初始化或恢复被挂起的半持续SRS。
  72. 根据权利要求67所述的设备,其中,所述第一控制单元对PUCCH进行控制包括初始化或恢复被挂起的PUCCH。
  73. 根据权利要求67所述的设备,其中,所述第一控制单元对PHR进行控制包括:
    触发PHR;
    恢复或启动PHR周期定时器、PHR禁止定时器和MPE禁止定时器中的至少一项。
  74. 根据权利要求67所述的设备,其中,所述第一控制单元对SCell状态进行控制包括:激活全部或部分SCell。
  75. 根据权利要求74所述的设备,其中,所述第一控制单元激活全部或部分SCell,包括:
    确定在所述终端设备最近一次状态转换过程中,由激活状态转换为去激活状态的SCell;
    将确定出的SCell激活。
  76. 根据权利要求74所述的设备,其中,所述第一控制单元激活全部或部分SCell,包括:
    根据第一指示确定激活全部或部分SCell。
  77. 根据权利要求76所述的设备,其中,所述第一指示在RRC信令、MAC CE和LP-WUS的至少之一中携带。
  78. 根据权利要求67所述的设备,其中,所述第一控制单元对数据非激活定时器进行控制包括:启动数据非激活定时器。
  79. 根据权利要求55至57中任一所述的设备,其中,所述终端设备从正常接收状态转换为低功耗接收状态包括:所述终端设备处于RRC连接态、RRC非激活态或RRC空闲态时,从正常接收状态转换为低功耗接收状态。
  80. 根据权利要求58所述的设备,其中,所述终端设备处于RRC连接态、RRC非激活态或RRC空闲态时,收到所述低功耗接收状态指示。
  81. 一种网络设备,包括:
    发送单元,用于发送触发终端设备进行状态转换的指示;
    第二控制单元,用于对资源配置和定时器中的至少一项进行控制。
  82. 根据权利要求81所述的设备,其中,所述触发终端设备进行状态转换的指示包括以下至少一项:
    进入低功耗接收状态指示;
    LP-WUS。
  83. 根据权利要求82所述的设备,其中,所述进入低功耗接收状态指示用于触发所述终端设备从正常接收状态转换为低功耗接收状态。
  84. 根据权利要求82所述的设备,其中,所述LP-WUS用于触发终端设备从低功耗接收状态转换为正常接收状态。
  85. 根据权利要求83或84所述的设备,其中,所述正常接收状态包括所述终端设备的主接收机处于工作状态。
  86. 根据权利要求83或84所述的设备,其中,所述低功耗接收状态包括所述终端设备的低功耗接收机处于工作状态,和/或所述终端设备的主接收机处于关闭状态或者深度睡眠状态。
  87. 根据权利要求81至86中任一所述的设备,其中,所述第二控制单元用于,对上下行预配置授权、CSI上报、SRS、PUCCH、PHR、SCell状态和数据非激活定时器中的至少一项进行控制。
  88. 根据权利要求87所述的设备,其中,所述发送单元发送所述进入低功耗接收状态指示的情况下,所述第二控制单元对上下行预配置授权进行控制包括以下至少一项:
    挂起第一类型配置授权CG;
    清除第一类型CG;
    清除或去激活SPS;
    清除或去激活第二类型CG。
  89. 根据权利要求87所述的设备,其中,所述发送单元发送所述进入低功耗接收状态指示的情况下,所述第二控制单元对CSI上报进行控制包括以下至少一项:
    挂起或清除周期CSI上报;
    挂起、清除或去激活半持续CSI上报。
  90. 根据权利要求87所述的设备,其中,所述发送单元发送所述进入低功耗接收状态指示的情况下,所述第二控制单元对SRS进行控制包括以下至少一项:
    挂起或清除周期SRS;
    挂起、清除或去激活半持续SRS。
  91. 根据权利要求87所述的设备,其中,所述发送单元发送所述进入低功耗接收状态指示的情况下,所述第二控制单元对PUCCH进行控制包括:挂起或清除PUCCH。
  92. 根据权利要求87所述的设备,其中,所述发送单元发送所述进入低功耗接收状态指示的情况下,所述第二控制单元对PHR进行控制包括:
    停止或挂起PHR周期定时器、PHR禁止定时器和MPE禁止定时器中的至少一项。
  93. 根据权利要求87所述的设备,其中,所述发送单元发送所述进入低功耗接收状态指示的情况下,所述第二控制单元对SCell状态进行控制包括:去激活SCell。
  94. 根据权利要求87所述的设备,其中,所述发送单元发送所述进入低功耗接收状态指示的情况下,所述第二控制单元对数据非激活定时器进行控制包括:停止数据非激活定时器。
  95. 根据权利要求87所述的设备,其中,所述发送单元发送所述LP-WUS的情况下,所述第二控 制单元对上下行预配置授权进行控制包括:初始化或恢复被挂起的第一类型CG。
  96. 根据权利要求95所述的设备,其中,所述被挂起的第一类型CG为配置在SpCell上的第一类型CG和/或配置在激活的Scell上的第一类型CG。
  97. 根据权利要求87所述的设备,其中,所述发送单元发送所述LP-WUS的情况下,所述第二控制单元对CSI上报进行控制包括以下至少一项:
    初始化或恢复被挂起的周期CSI上报;
    初始化或恢复被挂起的半持续CSI上报。
  98. 根据权利要求87所述的设备,其中,所述发送单元发送所述LP-WUS的情况下,所述第二控制单元对SRS进行控制包括以下至少一项:
    初始化或恢复被挂起的周期SRS;
    初始化或恢复被挂起的半持续SRS。
  99. 根据权利要求87所述的设备,其中,所述发送单元发送所述LP-WUS的情况下,所述第二控制单元对PUCCH进行控制包括:初始化或恢复被挂起的PUCCH。
  100. 根据权利要求87所述的设备,其中,所述发送单元发送所述LP-WUS的情况下,所述第二控制单元对PHR进行控制包括:
    触发PHR;
    恢复或启动PHR周期定时器、PHR禁止定时器和MPE禁止定时器中的至少一项。
  101. 根据权利要求87所述的设备,其中,所述发送单元发送所述LP-WUS的情况下,所述第二控制单元对SCell状态进行控制包括:激活全部或部分SCell。
  102. 根据权利要求101所述的设备,其中,所述第二控制单元激活全部或部分SCell,包括:
    确定在所述终端设备最近一次状态转换过程中,由激活状态转换为去激活状态的SCell;
    将确定出的SCell激活。
  103. 根据权利要求101所述的设备,其中,所述第二控制单元激活全部或部分SCell,包括:
    所述第二控制单元根据向所述终端设备发送的第一指示,确定激活全部或部分SCell。
  104. 根据权利要求103所述的设备,其中,所述第一指示在RRC信令、MAC CE和LP-WUS的至少之一中携带。
  105. 根据权利要求87所述的设备,其中,所述发送单元发送所述LP-WUS的情况下,所述第二控制单元对数据非激活定时器进行控制包括:启动数据非激活定时器。
  106. 根据权利要求82至86中任一所述的设备,其中,所述发送单元发送所述进入低功耗接收状态指示,包括:
    所述发送单元向处于RRC连接态、RRC非激活态或RRC空闲态的终端设备发送所述低功耗接收状态指示。
  107. 一种通信设备,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以使所述终端设备执行如权利要求1至27中任一项所述的方法。
  108. 一种通信设备,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以使所述网络设备执行如权利要求28至53中任一项所述的方法。
  109. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至27中任一项所述的方法。
  110. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求28至53中任一项所述的方法。
  111. 一种计算机可读存储介质,用于存储计算机程序,当所述计算机程序被设备运行时使得所述设备执行如权利要求1至27中任一项所述的方法。
  112. 一种计算机可读存储介质,用于存储计算机程序,当所述计算机程序被设备运行时使得所述设备执行如权利要求28至53中任一项所述的方法。
  113. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至27中任一项所述的方法。
  114. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求28至53中任一项所述的方法。
  115. 一种计算机程序,所述计算机程序使得计算机执行如权利要求1至27中任一项所述的方法。
  116. 一种计算机程序,所述计算机程序使得计算机执行如权利要求28至53中任一项所述的方法。
  117. 一种通信系统,包括:
    终端设备,用于执行如权利要求1至27中任一项所述的方法;
    网络设备,用于执行如权利要求28至53中任一项所述的方法。
PCT/CN2021/141777 2021-12-27 2021-12-27 控制方法、终端设备和网络设备 WO2023122910A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/141777 WO2023122910A1 (zh) 2021-12-27 2021-12-27 控制方法、终端设备和网络设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/141777 WO2023122910A1 (zh) 2021-12-27 2021-12-27 控制方法、终端设备和网络设备

Publications (1)

Publication Number Publication Date
WO2023122910A1 true WO2023122910A1 (zh) 2023-07-06

Family

ID=86996842

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/141777 WO2023122910A1 (zh) 2021-12-27 2021-12-27 控制方法、终端设备和网络设备

Country Status (1)

Country Link
WO (1) WO2023122910A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108668343A (zh) * 2017-04-01 2018-10-16 中国移动通信有限公司研究院 一种终端设备的状态控制方法、网络侧设备及终端设备
US20190208429A1 (en) * 2018-01-04 2019-07-04 Kt Corporation Methods for controlling scell state and apparatuses thereof
CN110536380A (zh) * 2018-08-10 2019-12-03 中兴通讯股份有限公司 状态确定、指示方法、通信设备、系统及存储介质
CN110612778A (zh) * 2017-05-12 2019-12-24 高通股份有限公司 用于新无线电中的多状态drx的技术
CN110831259A (zh) * 2018-08-10 2020-02-21 电信科学技术研究院有限公司 一种状态转换方法、装置、终端及计算机可读存储介质
CN113228787A (zh) * 2019-01-04 2021-08-06 中兴通讯股份有限公司 用于在节能状态下进行数据发送的方法、设备和系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108668343A (zh) * 2017-04-01 2018-10-16 中国移动通信有限公司研究院 一种终端设备的状态控制方法、网络侧设备及终端设备
CN110612778A (zh) * 2017-05-12 2019-12-24 高通股份有限公司 用于新无线电中的多状态drx的技术
US20190208429A1 (en) * 2018-01-04 2019-07-04 Kt Corporation Methods for controlling scell state and apparatuses thereof
CN110536380A (zh) * 2018-08-10 2019-12-03 中兴通讯股份有限公司 状态确定、指示方法、通信设备、系统及存储介质
CN110831259A (zh) * 2018-08-10 2020-02-21 电信科学技术研究院有限公司 一种状态转换方法、装置、终端及计算机可读存储介质
CN113228787A (zh) * 2019-01-04 2021-08-06 中兴通讯股份有限公司 用于在节能状态下进行数据发送的方法、设备和系统

Similar Documents

Publication Publication Date Title
US20210204214A1 (en) Method for Monitoring Physical Downlink Control Channel, Communications Device, and Network Device
US20220007408A1 (en) Pdcch monitoring method, terminal device, and network device
WO2022027488A1 (zh) 无线通信的方法、终端设备和网络设备
US20230397298A1 (en) Timer operating method, terminal device, and network device
EP4171162A1 (en) Data transmission method and terminal device
US20240023015A1 (en) Sidelink transmission method and terminal
WO2021092861A1 (zh) 无线通信的方法、终端设备和网络设备
WO2020164025A1 (zh) 状态转移的方法和设备
WO2023108454A1 (zh) 上行同步中的定时提前量维持方法、终端设备和网络设备
WO2023122910A1 (zh) 控制方法、终端设备和网络设备
WO2023056604A1 (zh) 无线通信的方法、终端设备和网络设备
WO2022205095A1 (zh) 无线通信的方法及终端设备
WO2022151292A1 (en) Transmission in small data transmission mode
WO2022056684A1 (zh) 节能方法、终端设备和网络设备
WO2021258262A1 (zh) 无线通信方法、终端设备和网络设备
WO2023102788A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023115565A1 (zh) 无线通信的方法、终端设备、接入网设备和核心网设备
WO2022067729A1 (zh) 非连续接收的方法、终端设备和网络设备
WO2023133745A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023092526A1 (zh) 寻呼方法、终端设备和网络设备
WO2022193198A1 (zh) 侧行链路资源请求方法、终端设备和网络设备
WO2021163978A1 (zh) 控制辅小区组状态的方法和终端设备
WO2022246667A1 (zh) 侧行链路重传资源处理方法、终端设备和网络设备
WO2023201489A1 (zh) 通信方法、终端设备和网络设备
US20240023070A1 (en) Wireless communication method and terminal device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21969296

Country of ref document: EP

Kind code of ref document: A1