WO2023122904A9 - 用于电动车辆的热管理系统及电动车辆 - Google Patents

用于电动车辆的热管理系统及电动车辆 Download PDF

Info

Publication number
WO2023122904A9
WO2023122904A9 PCT/CN2021/141761 CN2021141761W WO2023122904A9 WO 2023122904 A9 WO2023122904 A9 WO 2023122904A9 CN 2021141761 W CN2021141761 W CN 2021141761W WO 2023122904 A9 WO2023122904 A9 WO 2023122904A9
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchange
management system
thermal management
exchange device
battery
Prior art date
Application number
PCT/CN2021/141761
Other languages
English (en)
French (fr)
Other versions
WO2023122904A1 (zh
Inventor
刘耀
赵宇
周正柱
姜利文
吴凯
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to CN202180063702.2A priority Critical patent/CN116745169A/zh
Priority to PCT/CN2021/141761 priority patent/WO2023122904A1/zh
Priority to EP21969290.2A priority patent/EP4269168A4/en
Publication of WO2023122904A1 publication Critical patent/WO2023122904A1/zh
Priority to US18/353,185 priority patent/US20240017585A1/en
Publication of WO2023122904A9 publication Critical patent/WO2023122904A9/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00357Air-conditioning arrangements specially adapted for particular vehicles
    • B60H1/00385Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell
    • B60H1/00392Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell for electric vehicles having only electric drive means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3228Cooling devices using compression characterised by refrigerant circuit configurations
    • B60H1/32281Cooling devices using compression characterised by refrigerant circuit configurations comprising a single secondary circuit, e.g. at evaporator or condenser side
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00007Combined heating, ventilating, or cooling devices
    • B60H1/00021Air flow details of HVAC devices
    • B60H1/00064Air flow details of HVAC devices for sending air streams of different temperatures into the passenger compartment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H1/00278HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit for the battery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00885Controlling the flow of heating or cooling liquid, e.g. valves or pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00899Controlling the flow of liquid in a heat pump system
    • B60H1/00914Controlling the flow of liquid in a heat pump system where the flow direction of the refrigerant does not change and there is a bypass of the condenser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/02Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant
    • B60H1/14Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant otherwise than from cooling liquid of the plant, e.g. heat from the grease oil, the brakes, the transmission unit
    • B60H1/143Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant otherwise than from cooling liquid of the plant, e.g. heat from the grease oil, the brakes, the transmission unit the heat being derived from cooling an electric component, e.g. electric motors, electric circuits, fuel cells or batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/27Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/635Control systems based on ambient temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/66Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells
    • H01M10/663Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells the system being an air-conditioner or an engine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H2001/00307Component temperature regulation using a liquid flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H2001/00935Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices comprising four way valves for controlling the fluid direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H2001/00949Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices comprising additional heating/cooling sources, e.g. second evaporator

Definitions

  • the present application relates to the field of thermal management, in particular to a thermal management system for an electric vehicle and the electric vehicle.
  • the three major thermal management systems are generally independently designed, and all require batteries to supply power to each system.
  • the integration rate between the systems is low, and the energy utilization rate is low, resulting in large power loss, which is not conducive to improving the efficiency of electric vehicles. cruising range.
  • the present application was made in view of the above-mentioned problems, and an object thereof is to provide a thermal management system for an electric vehicle and the electric vehicle, which are advantageous in avoiding a reduction in the cruising range of the electric vehicle at low temperatures.
  • the specific technical scheme is as follows:
  • the first aspect of the present application proposes a thermal management system for an electric vehicle, the electric vehicle includes a battery, and the battery is used to provide electric energy to the electric vehicle, and the feature is that the thermal management system includes: a first heat exchange device for temperature adjustment of the interior of the vehicle; and a second heat exchange device for temperature adjustment of the battery; wherein the first heat exchange device and the second heat exchange device are connected in series or in parallel for simultaneous temperature adjustment of the interior of the vehicle and the battery .
  • the thermal management system for an electric vehicle uses the first heat exchange device and the second heat exchange device to simultaneously adjust the temperature of the battery and the interior of the vehicle, that is, the thermal management system inside the vehicle and the battery heat
  • the proper integrated design of the management system is conducive to keeping the battery in the normal operating temperature range, and at the same time, it is conducive to improving the energy utilization rate, which in turn is conducive to improving the cruising range of the electric vehicle.
  • the temperature of the battery and the interior of the vehicle are raised or lowered through the first heat exchange device and the second heat exchange device respectively.
  • the ambient temperature is high
  • the temperature inside the vehicle can be cooled through the first heat exchange device
  • the temperature of the battery can be cooled through the second heat exchange device.
  • the first heat exchanging device and the second heat exchanging device are connected in series, heat exchange can be performed between the first heat exchanging device and the second heat exchanging device, thereby realizing the temperature control of the vehicle interior and the battery at the same time. For example, when the vehicle is just started, the battery temperature is low.
  • the low-temperature battery can exchange heat with the interior of the vehicle, and then the battery can be heated up quickly. , to cool down the interior of the vehicle until the battery is in the normal operating temperature range; or, the temperature of the battery is relatively high after a long time of operation, through the series connection of the first heat exchange device and the second heat exchange device, the heat of the high-temperature battery and the Heat is exchanged inside the vehicle, and then the battery heat is recovered for heating the interior of the vehicle to improve energy utilization. Therefore, through the heat management system of the embodiment of the present application, it is beneficial to keep the battery in a normal operating temperature range, and at the same time, it is beneficial to improve the energy utilization rate, which in turn is beneficial to increase the cruising range of the electric vehicle.
  • the thermal management system includes a first loop of the battery, the first loop of the battery includes a battery and a second heat exchange device, and the battery exchanges heat with the second heat exchanger through the first four-way valve and the second four-way valve respectively.
  • Devices can be connected in series or not.
  • the first circuit of the battery is a circuit for temperature regulation of the battery, which is connected to the second heat exchange device through the first four-way valve and the second four-way valve.
  • the two four-way valves have multiple working states, so that the battery and the second heat exchange device can be connected in series or not. By setting two four-way valves, multiple modes of battery temperature regulation can be realized, which is beneficial to reduce the complexity of the thermal management system.
  • the thermal management system further includes a motor for driving the electric vehicle.
  • the motor is connected in series with the battery through the first four-way valve and the second four-way valve or not.
  • the battery can also adjust the temperature through the temperature generated by the motor to achieve heat recovery; when the motor is not connected to the battery, the battery can be heated through the first heat exchange device or the second heat exchange device. Temperature regulation. That is to say, the thermal management system of the present application also has an appropriate integrated design for the motor, which is beneficial to further improve battery loss.
  • the thermal management system also includes a third heat exchange device, which is connected in series with the first heat exchange device, and the third heat exchange device is used for exchanging heat between the refrigerant and the outdoor air, and the first heat exchange device is used for passing The refrigerant cycle regulates the temperature inside the vehicle, and the second heat exchange device is used to regulate the temperature of the battery through the refrigerant cycle.
  • the third heat exchange device By providing the third heat exchange device, the heat of the vehicle interior and the battery can be released to the outdoor air, or the heat of the outdoor air can be transferred to the vehicle interior and the battery, thereby regulating the temperature of the vehicle interior and the battery.
  • the thermal management system has a first working mode; when the thermal management system is in the first working mode, the third heat exchange device absorbs heat from the outdoor air, and the first heat exchange device sends heat to the interior of the vehicle. The heat is released, the second heat exchange device releases heat, and the first circuit of the battery is turned on to heat the battery through the second heat exchange device.
  • the third heat exchange device transfers the heat in the air to the interior of the vehicle and the battery, so that the battery and the interior of the vehicle can be heated simultaneously.
  • the thermal management system when the thermal management system is in the first working mode, the motor is not connected to the battery. At this time, the second heat exchange device only heats the battery, which is beneficial to speed up the heating efficiency of the battery. At the same time, it is also beneficial to avoid overheating of the motor.
  • the first heat exchange device includes an indoor condenser; the thermal management system further includes a compressor and a first throttling device; when the thermal management system is in the first working mode, the compressor, the indoor condensing The device, the first throttling device and the third heat exchange device are connected in sequence to form the first refrigerant heating cycle; the compressor, the second heat exchange device, the first throttling device and the third heat exchange device are connected in sequence to form the second refrigerant Heating loop.
  • the embodiment of the present application specifically describes the working mode of the first working mode, which can absorb the heat of the environment through the first refrigerant heating cycle and the second refrigerant heating cycle in a low temperature environment, and then simultaneously perform internal heat treatment on the battery and the interior of the vehicle. heating.
  • the first heat exchange device includes an indoor condenser, and the compressor compresses and drives the refrigerant. At this time, the refrigerant is in a gaseous state at high temperature and high pressure. Then the refrigerant is sent to the indoor condenser and the second heat exchange device respectively.
  • the refrigerant releases heat to the low-temperature vehicle interior and the second heat exchange device respectively, and the second heat exchange device also passes through the first four-way valve and the second four-way valve.
  • the valve is connected to the battery, so that the interior of the vehicle and the battery can be heated at the same time, and the refrigerant becomes a high-pressure, low-temperature liquid.
  • the refrigerant coming out of the indoor condenser and the second heat exchange device passes through the first throttling device and becomes a low-pressure and low-temperature liquid, and then flows through the third heat exchange device.
  • the third heat exchange device can be an outdoor heat exchanger. After absorbing ambient heat through the third heat exchange device, it is vaporized into gas and enters the compressor to continue the next cycle.
  • the thermal management system further includes a first liquid pump, and the first liquid pump is arranged in the first circuit of the battery.
  • the first liquid pump can provide power to drive the liquid in the first circuit of the battery to flow, thereby facilitating sufficient heat exchange between the battery and the second heat exchange device.
  • the thermal management system has a second working mode; when the thermal management system is in the second working mode, the first heat exchange device absorbs heat from the interior of the vehicle, the second heat exchange device releases heat, and the second heat exchange device releases heat.
  • a battery loop is turned on to heat the battery through the second heat exchange device.
  • the first heat exchange device and the second heat exchange device are connected in series, and the second heat exchange device is connected to the battery, so that the first heat exchange device and the second heat exchange device exchange heat Swap to heat the battery.
  • the thermal management system when the thermal management system is in the second working mode, the motor is not connected to the battery. At this time, the second heat exchange device only heats the battery, which is beneficial to speed up the heating efficiency of the battery. At the same time, it is also beneficial to avoid overheating of the motor.
  • the first heat exchange device includes an evaporator; the heat management system further includes a compressor and a second throttling device; when the heat management system is in the second working mode, the compressor, the second heat exchanger The heating device, the second throttling device and the evaporator are sequentially connected to form a third refrigerant heating cycle.
  • the embodiment of the present application specifically describes the working mode of the second working mode, which can absorb the heat inside the vehicle through the third refrigerant heating cycle in a low-temperature environment, and then heat the battery.
  • the first heat exchange device includes an evaporator, and the compressor compresses and drives the refrigerant. At this time, the refrigerant is in a gaseous state at high temperature and high pressure. Then the refrigerant is sent to the second heat exchange device and releases heat to the second heat exchange device, and the second heat exchange device is also communicated with the battery through the first four-way valve and the second four-way valve, so that the second heat exchange device When the battery is heated, the refrigerant releases heat and becomes a high-pressure, low-temperature liquid.
  • the refrigerant coming out of the second heat exchange device passes through the second throttling device and becomes a low-pressure and low-temperature liquid, and then flows through the evaporator inside the vehicle. Start the next cycle.
  • the battery is heated by the heat inside the vehicle, so that the battery is at a good working temperature, which is beneficial to avoid energy and power attenuation of the battery, improve the service life of the battery, and further help to ensure the normal power supply of the electric vehicle.
  • the thermal management system further includes an electric heating device, which is used to supply heat to the interior of the vehicle by means of electric heating. By setting the electric heating device, the vehicle interior can be heated up to avoid excessive heat loss inside the vehicle.
  • the thermal management system further includes a first liquid pump, and the first liquid pump is arranged in the first circuit of the battery.
  • the first liquid pump can provide power to drive the liquid in the first circuit of the battery to flow, thereby facilitating sufficient heat exchange between the battery and the second heat exchange device.
  • the thermal management system has a third working mode; when the thermal management system is in the third working mode, the third heat exchange device absorbs heat from the outdoor air, and the first heat exchange device sends heat to the interior of the vehicle. Release heat, the second heat exchange device absorbs heat, and the battery is not connected to the second heat exchange device.
  • the battery In the third working mode, the battery is not connected to the second heat exchanging device, and the third heat exchanging device and the second heat exchanging device transfer the external heat to the interior of the vehicle, so that the interior of the vehicle can be heated at low temperature.
  • the heat management system also includes a water exchange tank, which is connected in series or not with the second heat exchange device through the first four-way valve and the second four-way valve; when the heat management system is in the third working mode, The heat exchange tank is connected in series with the second heat exchange device.
  • the second heat exchange device is also connected in series with the water exchange tank, and at this time, the second heat exchange device can exchange heat with the water exchange tank. That is to say, the second heat exchange device can absorb the heat of the heat exchange tank to heat the interior of the vehicle.
  • the motor when the thermal management system is in the third working mode, the motor is connected in series with the battery.
  • the battery is connected to the motor through the first four-way valve and the second four-way valve, so that the heat generated by the motor can heat the battery, thereby recovering the heat of the motor, which is conducive to improving energy utilization Rate.
  • the first heat exchange device includes an indoor condenser;
  • the thermal management system further includes a compressor, a first throttling device, and a third throttling device; when the thermal management system is in the third working mode, the compressor, the indoor condenser
  • the compressor, the first throttling device and the third heat exchange device are connected in sequence to form the first refrigerant heating cycle; the compressor, the indoor condenser, the third throttling device and the second heat exchange device are connected in sequence to form the fourth refrigerant heating cycle. loop loop.
  • the embodiment of the present application specifically describes the working mode of the third working mode, which can absorb external heat through the first refrigerant heating cycle loop and the fourth refrigerant heating cycle loop in a low-temperature environment, and then heat the interior of the vehicle.
  • the first heat exchange device includes an indoor condenser, and the indoor condenser and the second heat exchange device are connected in parallel.
  • the compressor compresses and drives the refrigerant.
  • the refrigerant is in a gaseous state at high temperature and high pressure.
  • the refrigerant is sent to the indoor condenser and releases heat to the interior of the vehicle.
  • the refrigerant releases heat and becomes a liquid at high pressure and low temperature.
  • the refrigerant coming out of the indoor condenser flows through two paths.
  • the first path is: the refrigerant passes through the first throttling device and becomes a low-pressure and low-temperature liquid, then flows through the third heat exchange device, absorbs heat from the external environment through the third heat exchange device, and then vaporizes into gas, then enters the compressor and continues to the next step Circulation;
  • the second path is: after the refrigerant passes through the third throttling device and becomes a low-pressure and low-temperature liquid, then flows through the second heat exchange device, absorbs heat from the external environment through the second heat exchange device, and then vaporizes into gas, then enters the compressor to continue next cycle. That is to say, the refrigerant absorbs the outdoor heat on the two branch circuits at the same time to heat the interior of the vehicle, which is beneficial to improve the heating efficiency of the interior of the vehicle.
  • the thermal management system further includes a first liquid pump, and the first liquid pump is arranged between the second heat exchange device and the first four-way valve or between the second heat exchange device and the second four-way valve between;
  • the first liquid pump is used to provide power for the water circulation between the heat exchange tank and the second heat exchange device.
  • the thermal management system further includes a second liquid pump, and the second liquid pump is arranged between the motor and the first four-way valve or between the motor and the second four-way valve; In the case of the three working modes, the second liquid pump is used to power the water circulation between the motor and the battery.
  • the thermal management system has a fourth working mode; when the thermal management system is in the fourth working mode, the third heat exchange device releases heat to the outdoor air, and the first heat exchange device absorbs heat from the interior of the vehicle The second heat exchange device absorbs heat, and the first circuit of the battery is turned on to cool the battery through the second heat exchange device.
  • the first heat exchanging device and the second heat exchanging device respectively transfer the heat of the interior of the vehicle and the battery to the outside air, thereby simultaneously cooling the battery and the interior of the vehicle at high temperatures.
  • the heat management system also includes a water exchange tank, which is connected in series or not with the second heat exchange device through the first four-way valve and the second four-way valve; when the heat management system is in the fourth working mode, The motor is not connected to the battery, the heat exchange tank is not connected to the second heat exchange device, and the heat exchange tank is connected in series with the motor.
  • the heat dissipation requirement for the motor is realized by setting a heat exchange tank.
  • the high heat generated by the motor circulates through the water circulation to the heat exchange tank, and then the heat exchange tank transfers the heat to the air, thereby dissipating heat from the motor and keeping the motor in a normal state. operating temperature range. In this way, it is beneficial to improve the life of the motor.
  • the first heat exchange device includes an evaporator;
  • the thermal management system further includes a compressor, a second throttling device, and a third throttling device; when the thermal management system is in the fourth working mode, The compressor, the third heat exchange device, the second throttling device and the evaporator are connected in sequence to form the fifth refrigerant heating cycle; the compressor, the third heat exchange device, the third throttling device and the second heat exchange device are connected in sequence A sixth refrigerant heating cycle is formed.
  • the embodiment of the present application specifically describes the working mode of the fourth working mode, which can absorb the heat of the vehicle interior and the battery through the fifth refrigerant heating cycle loop and the sixth refrigerant heating cycle loop in a high-temperature environment, so that the battery and the vehicle The internal temperature decreases.
  • the first heat exchange device includes an evaporator, and the evaporator and the second heat exchange device are connected in parallel.
  • the compressor compresses and drives the refrigerant.
  • the refrigerant is in a gaseous state at high temperature and high pressure.
  • the refrigerant is sent to the third heat exchange device and releases heat to the outside air.
  • the refrigerant releases heat and becomes a high-pressure and low-temperature liquid.
  • the refrigerant coming out of the third heat exchange device flows through two paths.
  • the first path is: the refrigerant passes through the second throttling device and becomes a low-pressure and low-temperature liquid, then flows through the evaporator, absorbs the heat inside the vehicle through the evaporator, and then vaporizes into gas, then enters the compressor to continue the next cycle. At this time, The temperature inside the vehicle drops.
  • the second path is: after the refrigerant passes through the third throttling device and becomes a low-pressure and low-temperature liquid, it then flows through the second heat exchange device, and the second heat exchange device is connected to the battery through the first four-way valve and the second four-way valve. That is, the first circuit of the battery is turned on, so the refrigerant absorbs the heat of the battery through the second heat exchange device and evaporates into gas, enters the compressor to continue the next cycle, and at this time, the temperature of the battery drops.
  • the thermal management system further includes a first liquid pump and a second liquid pump, and the first liquid pump is arranged between the second heat exchange device and the first four-way valve or between the second heat exchange device and the first four-way valve. Between the second four-way valve, the second liquid pump is arranged between the motor and the first four-way valve or between the motor and the second four-way valve; when the thermal management system is in the fourth working mode, the first liquid pump It is used to provide power for the water circulation between the battery and the second heat exchange device, and the second liquid pump is used to provide power for the water circulation between the motor and the heat exchange tank.
  • the arrangement of the first liquid pump facilitates sufficient heat exchange between the second heat exchange device and the battery; the arrangement of the second liquid pump facilitates sufficient heat exchange between the motor and the heat exchange tank.
  • the thermal management system has a fifth working mode; when the thermal management system is in the fifth working mode, the first heat exchange device absorbs heat from the interior of the vehicle while releasing heat to the interior of the vehicle, so as to The interior of the vehicle is dehumidified, the third heat exchange device absorbs heat from the outdoor air, the second heat exchange device absorbs heat, and the battery is connected in series with the second heat exchange device to recover the heat of the battery through the second heat exchange device.
  • the second heat exchanging device is connected in series with the battery, and the first heat exchanging device exchanges heat with the third heat exchanging device and the second heat exchanging device, thereby transferring the heat of the outdoor air and the heat of the battery to the
  • the interior of the vehicle is heated to the interior of the vehicle, which also realizes the recovery of battery heat, which is conducive to improving energy utilization.
  • the first heat exchange device can also dehumidify the interior of the vehicle.
  • the motor is connected in series with the battery and the second heat exchange device.
  • the heat of the motor can also be recovered through the second heat exchange device, which is beneficial to further improving the energy utilization rate.
  • the first heat exchange device includes an indoor condenser and an evaporator;
  • the thermal management system further includes a compressor, a first throttling device, a second throttling device, and a third throttling device; the thermal management When the system is in the fifth working mode, the compressor, the indoor condenser, the first throttling device and the third heat exchange device are sequentially connected to form the first refrigerant heating cycle; the compressor, the indoor condenser, the second throttling The device and the evaporator are connected in sequence to form the seventh refrigerant heating cycle; the compressor, the indoor condenser, the third throttling device and the second heat exchange device are connected in sequence to form the eighth refrigerant heating cycle.
  • the embodiment of the present application specifically illustrates the working manner of the fifth working mode.
  • the first refrigerant heating cycle can absorb the heat of the outside air, thereby heating the interior of the vehicle; the seventh refrigerant heating cycle can absorb moisture inside the vehicle, thereby dehumidifying the interior of the vehicle; the eighth refrigerant heating cycle can absorb The heat of the battery and the motor is used to heat the interior of the vehicle, that is, the eighth refrigerant heating cycle recovers the heat of the battery and the motor.
  • the first heat exchange device includes an indoor condenser and an evaporator, and the third heat exchange device, the evaporator, and the second heat exchange device are connected in parallel. The compressor compresses and drives the refrigerant.
  • the refrigerant is in a gaseous state at high temperature and high pressure. Then the refrigerant is sent to the indoor condenser and releases heat to the interior of the vehicle. At this time, the refrigerant releases heat and becomes a liquid at high pressure and low temperature. Then, the refrigerant coming out of the indoor condenser flows through three paths.
  • the first path is: the refrigerant passes through the first throttling device and becomes a low-pressure and low-temperature liquid, then flows through the third heat exchange device, absorbs heat from the external environment through the third heat exchange device, and then vaporizes into gas, then enters the compressor and continues to the next step circulation;
  • the second way is: after the refrigerant passes through the second throttling device and becomes a low-pressure and low-temperature liquid, it then flows through the evaporator.
  • the refrigerant absorbs the heat inside the vehicle through the evaporator and then vaporizes into gas, then enters the compressor to continue the next cycle;
  • the third path is: after the refrigerant passes through the third throttling device and becomes a low-pressure and low-temperature liquid, it flows again Pass through the second heat exchange device, and the second heat exchange device is connected in series with the motor and the battery. Therefore, the refrigerant absorbs the heat of the battery and the motor through the second heat exchange device and then vaporizes into gas, and then enters the compressor to continue the next cycle. In this way, the heat of the battery and the motor can be used to heat the interior of the vehicle, that is, the heat recovery of the battery and the motor can be realized, thereby improving the energy utilization rate.
  • the thermal management system further includes a first liquid pump and a second liquid pump, and the first liquid pump is arranged between the second heat exchange device and the first four-way valve or between the second heat exchange device and the first four-way valve. Between the second four-way valve, the second liquid pump is arranged between the motor and the first four-way valve or between the motor and the second four-way valve; when the thermal management system is in the fourth working mode, the first liquid pump and the second liquid pump are used to provide power for water circulation between the battery, the motor and the second heat exchange device.
  • the second aspect of the present application provides an electric vehicle, including the heat management system described in the first aspect above.
  • the thermal management system used in the electric vehicle simultaneously regulates the temperature of the battery and the interior of the vehicle through the first heat exchange device and the second heat exchange device. That is to say, the proper integrated design of the vehicle's internal thermal management system and the battery thermal management system is conducive to keeping the battery in a normal operating temperature range, and at the same time is conducive to improving energy utilization, which in turn is conducive to improving the cruising range of electric vehicles.
  • FIG. 1 is a schematic structural diagram of an electric vehicle according to an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of one of the thermal management systems of the embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of the first working mode of the thermal management system of the embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of the second working mode of the thermal management system of the embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of the third working mode of the thermal management system of the embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of the fourth working mode of the thermal management system of the embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a fifth working mode of the thermal management system of the embodiment of the present application.
  • multiple refers to more than two (including two), similarly, “multiple groups” refers to more than two groups (including two), and “multiple pieces” refers to More than two pieces (including two pieces).
  • an electric vehicle 1 usually has three major thermal management systems: a vehicle internal thermal management system, a battery thermal management system, and a motor thermal management system.
  • the vehicle interior thermal management system is used to regulate the temperature inside the vehicle, and the interior of the vehicle may be a passenger compartment, that is to say, the vehicle interior thermal management system may be an air-conditioning or heating system for cooling or heating the passenger compartment.
  • the battery thermal management system is used to dissipate heat or heat the battery so that the battery is in a normal operating temperature range.
  • the motor thermal management system is used to dissipate heat from the motor so that the motor is within a normal operating temperature range.
  • the three thermal management systems are generally designed independently, and all of them require batteries to supply power to each system.
  • the battery provides electrical energy, but the battery itself cannot be heated by the vehicle's internal thermal management system.
  • the battery thermal management system can only be used to heat up, and the battery heat The management system will consume additional power, and when the battery works for a long time and the temperature rises to a high level, the excess heat of the battery can only be dissipated to the outside air through the battery thermal management system, and heat recovery cannot be performed.
  • the heat generated by the motor during operation can only be dissipated to the outside air through the motor thermal management system, and heat recovery cannot be performed. That is to say, in the related art, the integration rate among various thermal management systems inside the vehicle is low, resulting in low energy utilization rate, which in turn causes large power loss, which is not conducive to improving the cruising range of the electric vehicle 1 .
  • the present inventor has studied a thermal management system for an electric vehicle 1, and properly integrated the internal thermal management system of the vehicle and the battery thermal management system, which in turn facilitates keeping the battery in a normal operating temperature range , and at the same time, it is beneficial to improve the energy utilization rate, which in turn is beneficial to increase the cruising range of the electric vehicle 1 .
  • the thermal management system of the embodiment of the present application can be used on various types of electric vehicles 1, for example, electric engineering vehicles (excavators, cranes, etc.), electric passenger vehicles, electric commercial vehicles (trucks, heavy trucks, etc.) )etc.
  • the electric vehicle 1 applying the thermal management system of the embodiment of the present application is beneficial to improve the energy utilization rate, and further to improve the cruising range of the electric vehicle 1 .
  • FIG. 1 it is a schematic structural diagram of an electric vehicle 1 using a thermal management system 100 according to an embodiment of the present application.
  • a motor 40 , a controller 30 and a battery 10 can be arranged inside the electric vehicle 1 , and the controller 30 is used to control the battery 10 To supply power to the motor 40, at the same time, the controller 30 can also control the thermal management system to be in different working modes, so as to realize various thermal management functions.
  • the battery 10 mentioned in the embodiments of the present application refers to a single physical module including one or more battery cells to provide higher voltage and capacity.
  • a plurality of battery cells can be connected in series and/or in parallel via poles for various applications.
  • the application of the battery includes three levels: battery cells, battery modules and battery packs.
  • a battery module is formed by electrically connecting a certain number of battery cells together and putting them in a frame in order to protect the battery cells from external shock, heat, vibration, etc.
  • the battery pack is the final state of the battery system installed in the electric vehicle 1 .
  • a battery pack generally includes a case for enclosing one or more battery cells. The box can prevent liquid or other foreign objects from affecting the charging or discharging of the battery cells.
  • the box body is generally composed of a cover body and a box shell.
  • Most of the current battery packs are made by assembling various control and protection systems such as battery management system (BMS) and thermal management components on one or more battery modules.
  • BMS battery management system
  • the level of the battery module can be omitted, that is, the battery pack is formed directly from the battery cells. This improvement has improved the gravimetric energy density and volumetric energy density of the battery system while significantly reducing the number of components.
  • the battery 10 mentioned in this application may be a battery pack.
  • the first aspect of the present application proposes a thermal management system 100 for an electric vehicle 1.
  • the electric vehicle 1 includes a battery 10 for providing electric energy to the electric vehicle 1.
  • the thermal management system 100 includes The first heat exchange device 110 and the second heat exchange device 120 .
  • the first heat exchange device 110 is used to adjust the temperature of the vehicle interior 20
  • the second heat exchange device 120 is used to adjust the temperature of the battery 10 .
  • the first heat exchanging device 110 and the second heat exchanging device 120 are connected in series or in parallel for simultaneously adjusting the temperature of the vehicle interior 20 and the battery 10 .
  • the thermal management system 100 refers to a system for temperature management of the electric vehicle 1 , for example, it may include the aforementioned battery thermal management system, motor thermal management system, and vehicle interior thermal management system. The temperature of various parts of the electric vehicle 1 can be controlled in real time through the thermal management system 100 .
  • the first heat exchange device 110 refers to a device for regulating the temperature of the vehicle interior 20 , which may include one or more of a condenser, an evaporator, an electric heating device 230 and the like.
  • the condenser is a kind of heat exchanger, which can convert gas or vapor into liquid, and quickly transfer heat to the nearby air.
  • the working process of the condenser is an exothermic process, and the interior of the vehicle can be heated through the condenser.
  • the evaporator is also a kind of heat exchanger.
  • the low-temperature condensed liquid exchanges heat with the outside air through the evaporator, so that the liquid vaporizes and absorbs heat to achieve the effect of cooling the space;
  • the electric heating device 230 refers to the use of heat
  • the heating device designed with the constant temperature heating characteristics of the sensitive resistor can heat the interior of the vehicle by consuming electric energy.
  • the vehicle interior 20 may be a passenger compartment on the vehicle for accommodating people.
  • the second heat exchange device 120 refers to a device for regulating the temperature of the battery 10 , for example, it may be a battery heat exchanger.
  • the battery heat exchanger generally includes a refrigerant channel and a battery cooling liquid channel, and controls the temperature of the battery through heat exchange between the refrigerant and the battery cooling liquid.
  • the thermal management system 100 for the electric vehicle 1 of the embodiment of the present application through the first heat exchange device 110 and the second heat exchange device 120, simultaneously regulates the temperature of the battery 10 and the vehicle interior 20, that is, the vehicle interior
  • the proper integrated design of the thermal management system 100 and the battery thermal management system 100 is conducive to keeping the battery 10 in a normal operating temperature range, and at the same time is conducive to improving energy utilization, thereby improving the cruising range of the electric vehicle 1 .
  • the temperature of the battery 10 and the vehicle interior 20 are raised or lowered by the first heat exchange device 110 and the second heat exchange device 120 respectively.
  • the temperature of the vehicle interior 20 can be cooled through the first heat exchange device 110
  • the temperature of the battery 10 can be cooled through the second heat exchange device 120 .
  • the first heat exchange device 110 and the second heat exchange device 120 are connected in series, heat can be exchanged between the first heat exchange device 110 and the second heat exchange device 120, so that the temperature of the vehicle interior 20 and the battery 10 can also be achieved simultaneously. regulation. For example, when the vehicle is just started, the temperature of the battery 10 is relatively low.
  • the low temperature battery 10 can be exchanged with the vehicle interior 20, thereby both The temperature of the vehicle interior 20 can be lowered, and the temperature of the battery 10 can also be rapidly raised until the battery 10 is in the normal operating temperature range;
  • the series connection of the heat exchange device 120 can exchange the heat of the high-temperature battery 10 with the vehicle interior 20 , and then recover the heat of the battery 10 and use it to heat the vehicle interior 20 , thereby improving the energy utilization rate. Therefore, through the thermal management system 100 of the embodiment of the present application, it is beneficial to keep the battery 10 in a normal operating temperature range, and at the same time, it is beneficial to improve the energy utilization rate, thereby improving the cruising range of the electric vehicle 1 .
  • the thermal management system 100 includes a battery first loop 130, the battery first loop 130 includes a battery 10 and a second heat exchange device 120, and the battery 10 passes through a first four-way valve 140 and a second four-way valve 140 respectively.
  • the through valve 150 is connected in series or not with the second heat exchange device 120 .
  • the battery 10 and the second heat exchange device 120 together form a battery first circuit 130 , which is connected to the second heat exchange device 120 through a first four-way valve 140 and a second four-way valve 150 .
  • the first four-way valve 140 and the second four-way valve 150 refer to valve switches having four outlets and switchable communication circuits.
  • the two four-way valves have multiple working states, so that the battery 10 and the second heat exchange device 120 can be connected in series or not.
  • the second heat exchange device 120 can When the battery 10 is not connected to the second heat exchange device 120, that is to say, after the two four-way valves switch the communication position, so that the battery 10 is not connected to the second heat exchange device 120, the battery 10 is not connected to the second heat exchange device 120.
  • the temperature is regulated by the second heat exchange device 120 .
  • the thermal management system 100 also includes a motor 40 for driving the electric vehicle 1.
  • the motor 40 is connected in series with the battery 10 through the first four-way valve 140 and the second four-way valve 150 or is not connected to each other. .
  • the motor 40 refers to a device that converts electrical energy into mechanical energy and serves as a power source for electrical appliances or various machines.
  • the motor 40 is used as a driving device of the electric vehicle 1 to drive the vehicle to run.
  • the motor 40 in addition to converting electrical energy into mechanical energy to drive the vehicle, the motor 40 can also recover mechanical energy when the electric vehicle 1 is braking, and convert the mechanical energy into electrical energy and send it to the battery.
  • the motor 40 may be a DC motor, an AC asynchronous motor or a permanent magnet synchronous motor, etc., which are not limited in this application.
  • the battery 10 can also be temperature-regulated by the temperature generated when the motor 40 works, so as to realize heat recovery; 110 or the second heat exchange device 120 for temperature regulation. That is to say, the thermal management system 100 of the present application also has an appropriate integrated design for the electric motor 40 , which is beneficial to further improving the energy utilization rate and further improving the cruising range of the electric vehicle 1 .
  • the thermal management system 100 also includes a third heat exchange device 160, which is connected in series with the first heat exchange device 110, and the third heat exchange device 160 is used for exchanging heat between the refrigerant and the outdoor air.
  • the heat device 110 is used to regulate the temperature of the vehicle interior 20 through the circulation of the refrigerant
  • the second heat exchange device 120 is used to regulate the temperature of the battery 10 through the circulation of the refrigerant.
  • the third heat exchange device 160 refers to equipment for exchanging heat with outdoor air, which may be an outdoor condenser or an evaporator.
  • the condenser is used to release heat to the outside air
  • the evaporator is used to absorb heat to the outside air.
  • the heat of the vehicle interior 20 and the battery 10 can be released to the outdoor air, or the heat of the outdoor air can be transferred to the vehicle interior 20 and the battery 10, thereby controlling the temperature of the vehicle interior 20 and the battery 10. adjust.
  • the thermal management system 100 has a first working mode A.
  • the third heat exchange device 160 absorbs heat from the outdoor air
  • the first heat exchange device 110 releases heat to the vehicle interior 20, and the second heat exchange device 160
  • the heat exchanging device 120 releases heat
  • the first circuit 130 of the battery is turned on, so as to heat the battery 10 through the second heat exchanging device 120 .
  • the third heat exchange device 160 transfers the heat in the outdoor air to the vehicle interior 20 and the battery 10 , so that the battery 10 and the vehicle interior 20 can be heated simultaneously.
  • the first working mode A is suitable for the situation that the vehicle is in a low temperature environment.
  • the thermal management system 100 heats the vehicle interior 20 and the battery 10 at the same time through the first working mode A. On the one hand, it realizes heat supply to the passenger compartment; resulting in reduced discharge capacity.
  • the motor 40 is not connected to the battery 10 .
  • the fact that the motor 40 is not connected to the battery 10 means that the motor 40 is not related to the battery 10 .
  • the second heat exchange device 120 only heats the battery 10, which is beneficial to speed up the heating efficiency of the battery 10. At the same time, it is also beneficial to avoid overheating of the motor 40 .
  • the first heat exchange device 110 includes an indoor condenser 111; the thermal management system 100 further includes a compressor 170 and a first throttling device 180; when the thermal management system 100 is in the first working mode A Next, the compressor 170, the indoor condenser 111, the first throttling device 180 and the third heat exchanging device 160 are sequentially connected to form the first refrigerant heating cycle; the compressor 170, the second heat exchanging device 120, the first throttling device The device 180 and the third heat exchange device 160 are sequentially connected to form a second refrigerant heating cycle.
  • the compressor 170 refers to a driven fluid machine that raises low-pressure gas to high-pressure gas. It inhales low-temperature and low-pressure refrigerant from the suction port, drives the piston to compress it through the operation of the motor, and discharges high-temperature and high-pressure refrigerant to the exhaust port to provide power for the refrigeration or heating cycle.
  • a throttling device refers to a device that controls fluid flow by changing the throttling section or throttling length, which is essentially a flow control device.
  • the throttling device reduces the pressure of the high-pressure liquid through throttling.
  • Common throttling devices include capillary tubes, throttle valves, etc.
  • the throttling device can also adjust the flow of liquid according to the load, thereby controlling the cooling or heating effect.
  • Refrigerant also known as refrigerant
  • refrigerant is a substance that easily absorbs heat and becomes a gas, and easily releases heat to become a liquid. Through the conversion of the gas-liquid state of the refrigerant, heat exchange in different spaces can be realized. For example, the refrigerant absorbs heat when it vaporizes in the evaporator, and releases heat when it condenses in the condenser.
  • refrigerants commonly used are ammonia, Freon, water and a few hydrocarbons.
  • the embodiment of the present application specifically illustrates the working mode of the first working mode A. It can absorb the heat of the outdoor environment through the first refrigerant heating cycle loop and the second refrigerant heating cycle loop, and then heat the battery 10 and the vehicle interior 20 at the same time.
  • the working process of one cycle of the first working mode A is as follows: the first heat exchange device 110 includes an indoor condenser 111 .
  • the compressor 170 compresses and drives the refrigerant, which is a substance that easily absorbs heat and becomes a gas, and easily releases heat to become a liquid. At this time, the refrigerant is in a gaseous state at high temperature and high pressure.
  • the refrigerant is sent to the indoor condenser 111 and the second heat exchange device 120 respectively, and then releases heat to the vehicle interior 20 and the second heat exchange device 120 respectively, and the second heat exchange device 120 also passes through the first four-way valve 140 and the second heat exchange device 120.
  • the second four-way valve 150 communicates with the battery 10 to heat the vehicle interior 20 and the battery 10 at the same time. At this time, the temperature of the vehicle interior 20 and the battery 10 rises, and the refrigerant becomes a high-pressure, low-temperature liquid.
  • the thermal management system 100 further includes a first liquid pump 300 , and the first liquid pump 300 is arranged in the first circuit 130 of the battery.
  • the first liquid pump 300 can provide power to drive the liquid in the first circuit 130 of the battery to flow, thereby facilitating sufficient heat exchange between the battery 10 and the second heat exchange device 120 through the liquid.
  • the liquid pump may be a gear pump, a vane pump, or a plunger pump, etc.; the liquid may be a cooling liquid or water in the first circuit 130 of the battery, which has good heat transfer properties.
  • the thermal management system 100 has a second working mode B. 2 and 4, when the thermal management system 100 is in the second working mode B, the first heat exchange device 110 absorbs heat from the vehicle interior 20, the second heat exchange device 120 releases heat, and the first battery 10 loop conducts heat. to heat the battery 10 through the second heat exchange device 120 .
  • the first heat exchanging device 110 and the second heat exchanging device 120 are connected in series, and the second heat exchanging device 120 communicates with the battery 10, so that the first heat exchanging device 110 and the second heat exchanging device 110 are connected in series.
  • the two heat exchange devices 120 perform heat exchange to heat the battery 10 .
  • the second working mode B is applicable when the vehicle is in a low temperature environment.
  • the thermal management system 100 heats the battery 10 by absorbing the temperature of the vehicle interior 20 (passenger compartment) through the second operation mode B.
  • the second working mode B can be adopted in order to heat up the battery 10 relatively quickly, so that the battery 10 can quickly return to a good working temperature range. After the vehicle is started for a period of time, the thermal management system 100 can be switched back to the first working mode A.
  • the thermal management system 100 when the thermal management system 100 is in the second working mode B, the motor 40 is not connected to the battery 10 .
  • the second heat exchange device 120 only heats the battery 10 , which is beneficial to speed up the heating efficiency of the battery 10 .
  • the first heat exchange device 110 includes an evaporator 112; the thermal management system 100 further includes a compressor 170 and a second throttling device 181; when the thermal management system 100 is in the second working mode B The compressor 170, the second heat exchange device 120, the second throttling device 181 and the evaporator 112 are sequentially connected to form a third refrigerant heating cycle.
  • the embodiment of the present application specifically illustrates the working manner of the second working mode B. It absorbs the heat of the vehicle interior 20 through the third refrigerant heating cycle, and then heats the battery 10 .
  • the following is the working process of a cycle of the second working mode B: the first heat exchange device 110 includes the evaporator 112, and the compressor 170 compresses and drives the refrigerant, and at this time, the refrigerant is in a high-temperature and high-pressure gaseous state.
  • the refrigerant is sent to the second heat exchange device 120 and releases heat to the second heat exchange device 120, and the second heat exchange device 120 is also communicated with the battery 10 through the first four-way valve 140 and the second four-way valve 150, thereby The second heat exchange device 120 is used to heat the battery 10.
  • the temperature of the battery 10 rises, and the refrigerant releases heat and becomes a high-pressure, low-temperature liquid.
  • the refrigerant coming out of the second heat exchange device 120 passes through the second throttling device 181 to become a low-pressure and low-temperature liquid, and then flows through the evaporator 112 of the vehicle interior 20 , and the refrigerant absorbs the heat of the vehicle interior 20 through the evaporator 112 After being vaporized into gas, it enters the compressor 170 and continues to start the next cycle.
  • the heat of the vehicle interior 20 is used to heat the battery 10, so that the battery 10 is at a good working temperature, which is beneficial to reduce the probability of energy and heat dissipation power attenuation of the battery 10, and improve the service life of the battery 10.
  • the thermal management system 100 further includes an electric heating device 230 for supplying heat to the vehicle interior 20 by means of electric heating.
  • an electric heating device 230 for supplying heat to the vehicle interior 20 by means of electric heating.
  • the thermal management system 100 further includes a first liquid pump 300 , and the first liquid pump 300 is arranged in the first circuit 130 of the battery.
  • the first liquid pump 300 can provide power to drive the liquid in the first circuit 130 of the battery to flow, thereby facilitating sufficient heat exchange between the battery 10 and the second heat exchange device 120 .
  • the thermal management system 100 has a third working mode C. 2 and 5, when the thermal management system 100 is in the third working mode C, the third heat exchange device 160 absorbs heat from the outdoor air, the first heat exchange device 110 releases heat to the vehicle interior 20, and the second heat exchange device 160 releases heat to the vehicle interior 20.
  • the heat exchange device 120 absorbs heat, and the battery 10 is not connected to the second heat exchange device 120 .
  • the battery 10 is not connected to the second heat exchanging device 120, and both the third heat exchanging device 160 and the second heat exchanging device 120 absorb the heat of the external air and transfer it to the vehicle interior 20, thereby achieving Heating of the vehicle interior 20 .
  • the heat management system 100 also includes a heat exchange tank 400, which is connected in series or not with the second heat exchange device 120 through the first four-way valve 140 and the second four-way valve 150; the heat management system 100 is in the first In the case of the three working mode C, the heat exchange tank 400 is connected in series with the second heat exchange device 120 .
  • the heat exchange tank 400 cools the motor 40 through water circulation, which is a heat exchange device that ensures the continuous operation of the motor 40 within a normal temperature range.
  • the heat exchange tank 400 is also equipped with a fan, and through the blowing effect of the fan, the heat exchange tank 400 continuously dissipates the heat of the motor 40 to the outside air through the water circulation.
  • the second heat exchange device 120 is also connected in series with the water exchange tank 400 , and at this time, the second heat exchange device 120 can exchange heat with the water exchange tank 400 . That is to say, the second heat exchange device 120 can also absorb the heat of the heat exchange tank 400 to heat the vehicle interior 20 .
  • the motor 40 when the thermal management system 100 is in the third working mode C, the motor 40 is connected in series with the battery 10 .
  • the battery 10 is not communicated with the second heat exchange device 120, but is communicated with the motor 40 through the first four-way valve 140 and the second four-way valve 150, so that the heat generated by the motor 40 can be
  • the battery 10 is heated to recover the heat of the motor 40, which is beneficial to improve the energy utilization rate of the thermal management system.
  • the third working mode C is suitable for the situation that the vehicle is in a low-temperature environment.
  • the thermal management system 100 heats the interior 20 of the vehicle through the third working mode C, thereby realizing heat supply to the passenger compartment.
  • the battery 10 is heated by the heat generated when the motor 40 is working, thus, while the heat of the motor 40 is recovered and reused, the battery 10 can also be prevented from being discharged due to the temperature being too low. Weakened capacity.
  • the first heat exchange device 110 includes an indoor condenser 111; the thermal management system 100 further includes a compressor 170, a first throttling device 180, and a third throttling device 181; the thermal management system 100 is in the third working mode C
  • the compressor 170, the indoor condenser 111, the first throttling device 180 and the third heat exchange device 160 are sequentially connected to form the first refrigerant heating cycle; the compressor 170, the indoor condenser 111, and the third throttling device 181 and the second heat exchange device 120 are sequentially connected to form a fourth refrigerant heating cycle.
  • the embodiment of the present application specifically describes the working mode of the third working mode, which absorbs external heat through the first refrigerant heating cycle loop and the fourth refrigerant heating cycle loop, and then heats the vehicle interior 20 .
  • the working process of one cycle of the third working mode C is as follows: the first heat exchange device 110 includes an indoor condenser 111 , and the indoor condenser 111 and the second heat exchange device 120 are connected in parallel.
  • the compressor 170 compresses and drives the refrigerant, and at this time, the refrigerant is in a gaseous state at high temperature and high pressure. Then the refrigerant is sent to the indoor condenser 111 and releases heat to the vehicle interior 20.
  • the first path is: the refrigerant passes through the first throttling device 180 to become a low-pressure and low-temperature liquid, then flows through the third heat exchange device 160, absorbs heat from the external environment through the third heat exchange device 160, and then vaporizes into gas, then enters the compressor 170
  • the second path is: after the refrigerant passes through the third throttling device 181 to become a low-pressure and low-temperature liquid, then flows through the second heat exchange device 120, and absorbs the heat of the external environment through the second heat exchange device 120, such as a pipeline After the heat of the liquid in the gas is vaporized into gas, it enters the compressor 170 and continues to start the next cycle. That is to say, the refrigerant absorbs outdoor
  • the thermal management system 100 further includes a first liquid pump 300, and the first liquid pump 300 is arranged between the second heat exchange device 120 and the first four-way valve 140 or the second heat exchange device 120 Between and the second four-way valve 150 ; when the thermal management system 100 is in the third working mode C, the first liquid pump 300 is used to provide power for the water circulation between the heat exchange tank 400 and the second heat exchange device 120 .
  • the position of the first liquid pump 300 can be selected according to the actual situation.
  • the thermal management system 100 further includes a second liquid pump 301, and the second liquid pump 301 is arranged between the motor 40 and the first four-way valve 140 or between the motor 40 and the second four-way valve 150 When the thermal management system 100 is in the third working mode C, the second liquid pump 301 is used to provide power for the water circulation between the motor 40 and the battery 10 .
  • the position of the second liquid pump 301 can be selected according to the actual situation.
  • the second liquid pump 301 By setting the second liquid pump 301 , it is beneficial to have sufficient heat exchange between the battery 10 and the motor 40 , and then the heat generated by the motor is transferred to the battery 10 through the water circulation to heat the battery 10 . Therefore, it is beneficial to further improve the energy utilization rate.
  • the thermal management system 100 has a fourth working mode D. 2 and 6, when the thermal management system 100 is in the fourth working mode D, the third heat exchange device 160 releases heat to the outdoor air, the first heat exchange device 110 absorbs heat from the vehicle interior 20, and the second heat exchange device 160 The heat device 120 absorbs heat, and the first circuit 130 of the battery is turned on, so as to cool the battery 10 through the second heat exchange device 120 .
  • the second heat exchange device 120 communicates with the battery 10 .
  • the first heat exchanging device 110 and the second heat exchanging device 120 respectively transfer the heat of the vehicle interior 20 and the battery 10 to the outside air, thereby cooling the battery 10 and the vehicle interior 20 at the same time.
  • the fourth working mode D is applicable when the vehicle is in a high temperature environment.
  • the thermal management system 100 cools down the interior of the vehicle 20 and the battery 10 at the same time through the fourth working mode D.
  • the passenger compartment is cooled, and on the other hand, the battery 10 is cooled to prevent the battery 10 from overheating. cause safety hazards.
  • the heat management system 100 also includes a heat exchange tank 400, which is connected in series or not with the second heat exchange device 120 through the first four-way valve 140 and the second four-way valve 150; the heat management system 100 is in the first In the case of four working modes D, the motor 40 is not connected to the battery 10 , the heat exchange tank 400 is not connected to the second heat exchange device 120 , and the heat exchange tank 400 is connected in series with the motor 40 .
  • the embodiment of the present application realizes the cooling requirement for the motor 40 by setting the heat exchange tank 400 . Since the motor 40 is connected in series with the heat exchange tank 400, the high heat generated by the motor 40 circulates through the water circulation to the heat exchange tank 400, and then the heat exchange tank 400 transfers the heat to the air, thereby dissipating heat from the motor 40 and keeping the motor 40 in a normal state. operating temperature range. In this way, it is beneficial to improve the life of the motor 40 .
  • the first heat exchange device 110 includes an evaporator 112; the thermal management system 100 further includes a compressor 170, a second throttling device 181 and a third throttling device 181; the thermal management system 100 is in the first In the case of the four working mode D, the compressor 170, the third heat exchange device 160, the second throttling device 181 and the evaporator 112 are sequentially connected to form the fifth refrigerant heating cycle; the compressor 170, the third heat exchange device 160 , the third throttling device 181 and the second heat exchange device 120 are sequentially connected to form a sixth refrigerant heating cycle.
  • the embodiment of the present application specifically describes the working mode of the fourth working mode D, which can absorb the heat of the vehicle interior 20 and the battery 10 through the fifth refrigerant heating cycle loop and the sixth refrigerant heating cycle loop, so that the battery 10 and the vehicle interior 20 The temperature is lowered.
  • the working process of one cycle of the fourth working mode D is as follows: the first heat exchange device 110 includes an evaporator 112 , and the evaporator 112 and the second heat exchange device 120 are connected in parallel.
  • the compressor 170 compresses and drives the refrigerant, and at this time, the refrigerant is in a gaseous state at high temperature and high pressure. Then the refrigerant is sent to the third heat exchange device 160 and releases heat to the outside air.
  • the refrigerant releases heat and becomes a high-pressure, low-temperature liquid.
  • the high-pressure and low-temperature liquid refrigerant coming out of the third heat exchange device 160 flows through two paths.
  • the first path is: the refrigerant passes through the second throttling device 181 and becomes a low-pressure and low-temperature liquid, then flows through the evaporator 112, absorbs the heat of the vehicle interior 20 through the evaporator 112, and then vaporizes into a gas, then enters the compressor 170 and continues to the next step. Circulation, at this time, the temperature inside the vehicle 20 decreases.
  • the second path is: the refrigerant passes through the third throttling device 181 and becomes a low-pressure and low-temperature liquid, and then flows through the second heat exchange device 120, and the second heat exchange device 120 passes through the first four-way valve 140 and the second four-way valve 150 is connected to the battery 10, that is, the first circuit 130 of the battery is turned on, therefore, the refrigerant passes through the second heat exchange device 120 to absorb the heat of the battery 10 and then vaporizes into gas, enters the compressor 170 and continues to start the next cycle. At this time, the battery 10 temperature reduction.
  • the thermal management system 100 further includes a first liquid pump 300 and a second liquid pump 301, and the first liquid pump 300 is arranged between the second heat exchange device 120 and the first four-way valve 140 or Between the second heat exchange device 120 and the second four-way valve 150, the second liquid pump 301 is arranged between the motor 40 and the first four-way valve 140 or between the motor 40 and the second four-way valve 150; the thermal management system
  • the first liquid pump 300 is used to provide power for the water circulation between the battery 10 and the second heat exchange device 120
  • the second liquid pump 301 is used to provide power for the motor 40 and the heat exchange tank 400 The water cycle between provides power.
  • the first liquid pump 300 By setting the first liquid pump 300, it is beneficial to make sufficient heat exchange between the second heat exchange device 120 and the battery 10, so that the heat generated by the battery 10 is transferred to the second heat exchange device 120 through the water circulation, and then passed through the second heat exchange device 120.
  • the heat exchange between the second heat exchange device 120 and the refrigerant releases heat to the outdoor air, which is beneficial to ensure that the battery is in a normal operating temperature range.
  • the second liquid pump 301 By setting the second liquid pump 301 , it is beneficial to have sufficient heat exchange between the motor 40 and the heat exchange tank 400 , and then the heat generated by the motor 40 is transferred to the heat exchange tank 400 through the water circulation to dissipate heat from the motor 40 . Therefore, it is beneficial to improve the reliability of the motor 40 .
  • the thermal management system 100 has a fifth working mode E. Please refer to FIG. 2 and FIG. 7 , when the thermal management system 100 is in the fifth working mode E, the first heat exchange device 110 absorbs heat from the vehicle interior 20 while releasing heat to the vehicle interior 20 to dehumidify the vehicle interior 20 , the third heat exchange device 160 absorbs heat from the outdoor air, the second heat exchange device 120 absorbs heat, and the battery 10 is connected in series with the second heat exchange device 120 to recover the heat of the battery 10 through the second heat exchange device 120 .
  • the second heat exchange device 120 is connected in series with the battery 10, and the first heat exchange device 110 performs heat exchange with the third heat exchange device 160 and the second heat exchange device 120 respectively, so that the heat of the outdoor air And the heat of the battery 10 is transferred to the vehicle interior 20 to heat the vehicle interior 20 , which also realizes the recovery of the heat of the battery 10 , which is beneficial to improve the energy utilization rate.
  • the first heat exchange device 110 can also dehumidify the vehicle interior 20 .
  • the fifth working mode E is applicable when the vehicle is in a medium-temperature environment, and the fifth working mode E may also be called the dehumidification mode of the passenger compartment.
  • the thermal management system 100 dehumidifies the passenger compartment through the fifth working mode E.
  • the heat generated when the battery 10 is in operation is recovered by the second heat exchange device 120 , which can promote the state transition of the refrigerant, thereby saving the energy consumption of the thermal management system 100 .
  • the motor 40 is connected in series with the battery 10 and the second heat exchange device 120 .
  • the heat generated by the motor 40 can also be transferred to the refrigerant through the second heat exchange device 120 for recovery, which is beneficial to further improve the energy utilization rate.
  • the first heat exchange device 110 includes an indoor condenser 111 and an evaporator 112; the thermal management system 100 further includes a compressor 170, a first throttling device 180, a second throttling device 181 and a second Three throttling devices 181; when the thermal management system 100 is in the fifth working mode E, the compressor 170, the indoor condenser 111, the first throttling device 180 and the third heat exchange device 160 are sequentially connected to form the first refrigerant heating Circulation circuit; compressor 170, indoor condenser 111, second throttling device 181 and evaporator 112 are sequentially connected to form a seventh refrigerant heating cycle; compressor 170, indoor condenser 111, third throttling device 181 and the first The two heat exchange devices 120 are connected in sequence to form an eighth refrigerant heating cycle.
  • the embodiment of the present application specifically illustrates the working manner of the fifth working mode E.
  • the first refrigerant heating cycle can absorb the heat of the outside air, thereby heating the vehicle interior 20;
  • the seventh refrigerant heating cycle can absorb the water vapor in the vehicle interior 20, thereby dehumidifying the vehicle interior 20;
  • the circulation loop can absorb the heat of the battery 10 and the motor 40 to heat the vehicle interior 20 , that is, the eighth refrigerant heating circulation loop recovers the heat of the battery 10 and the motor 40 .
  • the working process of one cycle of the fifth working mode E is as follows: the first heat exchange device 110 includes an indoor condenser 111 and an evaporator 112 , and the third heat exchange device 160 , the evaporator 112 and the second heat exchange device 120 are connected in parallel.
  • the compressor 170 compresses and drives the refrigerant, and at this time, the refrigerant is in a gaseous state at high temperature and high pressure. Then the refrigerant is sent to the indoor condenser 111 and releases heat to the vehicle interior 20. At this time, the temperature of the vehicle interior 20 rises, and the refrigerant becomes a high-pressure, low-temperature liquid after releasing heat.
  • the refrigerant coming out of the indoor condenser 111 flows through three paths.
  • the first path is: the refrigerant passes through the first throttling device 180 and becomes a low-pressure and low-temperature liquid, then flows through the third heat exchange device 160, absorbs heat from the external environment through the third heat exchange device 160, and then vaporizes into a gas, then enters the compressor 170 Continue to start the next cycle; the second path is: the refrigerant passes through the second throttling device 181 to become a low-pressure and low-temperature liquid, and then flows through the evaporator 112.
  • the water vapor in the vehicle interior 20 passes through The evaporator 112 is then cooled and liquefied to dehumidify the vehicle interior 20 .
  • the refrigerant absorbs the heat of the vehicle interior 20 through the evaporator 112 and then vaporizes into a gas, enters the compressor 170 and continues to start the next cycle; the third path is: the refrigerant passes through the third throttling device 181 and becomes a low-pressure and low-temperature liquid, and then flows through the first Two heat exchanging devices 120, and the second heat exchanging device 120 is connected in series with the motor 40 and the battery 10.
  • the refrigerant absorbs the heat of the battery 10 and the motor 40 through the second heat exchanging device 120 and then vaporizes into gas, and enters the compressor 170 Continue to start the next cycle.
  • the heat of the battery 10 and the motor 40 can be used to heat the vehicle interior 20 , that is, the heat recovery of the battery 10 and the motor 40 can be realized.
  • the thermal management system 100 further includes a first liquid pump 300 and a second liquid pump 301, and the first liquid pump 300 is arranged between the second heat exchange device 120 and the first four-way valve 140 or Between the second heat exchange device 120 and the second four-way valve 150, the second liquid pump 301 is arranged between the motor 40 and the first four-way valve 140 or between the motor 40 and the second four-way valve 150; the thermal management system When 100 is in the fourth working mode D, both the first liquid pump 300 and the second liquid pump 301 are used to provide power for water circulation between the battery 10 , the motor 40 and the second heat exchange device 120 .
  • the thermal management system 100 further includes a gas-liquid separator 500 .
  • the gas-liquid separator is used to separate the liquid refrigerant from the gas refrigerant, so that the gas refrigerant entering the compressor 170 is dry gas refrigerant.
  • the thermal management system 100 further includes a three-way water valve 700 , and the three-way water valve 700 is located between the heat exchange tank 400 and the second four-way valve 150 .
  • the three-way water valve 700 By arranging the three-way water valve 700 , it is possible to select whether the liquid for water circulation flows through the heat exchange tank, thereby reducing the complexity of the thermal management system 100 .
  • the thermal management system 100 further includes a first switch 601 disposed between the inlet of the compressor 170 and the third heat exchange device 160 , a first switch 601 disposed between the indoor condenser 111 and the compressor
  • the second switch 602 between the outlet of the compressor 170, the third switch 603 arranged between the evaporator 112 and the second heat exchange device 120, the fourth switch arranged between the outlet of the compressor 170 and the second heat exchange device 120 604 , the fifth switch 605 arranged between the second heat exchange device 120 and the inlet of the compressor 170 , and the sixth switch 606 arranged between the outlet of the compressor 170 and the third heat exchange device 160 .
  • the thermal management system 100 further includes a first one-way valve 801 , a second one-way valve 802 and a third one-way valve 803 .
  • the first one-way valve 801 is used to conduct the direction from the third heat exchange device 160 to the first heat exchange device 110, and the first one-way valve 801 is connected in parallel with the first throttling device 180;
  • the second one-way valve 802 is used to conduct the direction from the first heat exchange device 110 to the third heat exchange device 160, and the second one-way valve 802 is connected in series with the first throttling device 180;
  • the third one-way valve 803 is used to connect the direction from the second heat exchange device 120 to the third heat exchange device 160 , and the third one-way valve 803 is connected in parallel with the third throttling device 182 .
  • a one-way valve is a valve that conducts in one direction and does not conduct in the opposite direction. By arranging a plurality of one-way valves, it is beneficial to conveniently control the conduction or disconnection state of each component in a specific direction in each working mode.
  • the thermal management system 100 includes a gas-liquid separator 500, a compressor 170, an indoor condenser 111, an evaporator 112, an electric heating device 230, a third heat exchange device 160, a second heat exchange device 120, a battery 10, a motor 40, a second A four-way valve 140, a second four-way valve 150, a water exchange tank 400, a three-way water valve 700, a first liquid pump 300, a second liquid pump 301, a first switch 601, a second switch 602, and a third switch 603 , the fourth switch 604, the fifth switch 605, the sixth switch 606, the first one-way valve 801, the second one-way valve 802, the third one-way valve 803, the first throttle device 180, the second throttle device 181 and a third throttling device 182 .
  • the thermal management system of the embodiment of the present application includes
  • the first switch 601, the second switch 602 and the fourth switch 604 are turned on, and the third switch 603, the fifth switch 605 and the sixth switch 606 are turned off; the battery 10 passes through the first four-way The valve 140 and the second four-way valve 150 are connected to the second heat exchange device 120 .
  • the fourth switch 604 and the third switch 603 are turned on, and the first switch 601, the second switch 602, the fifth switch 605 and the sixth switch 606 are turned off; the battery 10 passes through the first four-way The valve 140 and the second four-way valve 150 are connected to the second heat exchange device 120 .
  • the first switch 601, the second switch 602 and the fifth switch 605 are turned on, and the third switch 603, the fourth switch 604 and the sixth switch 606 are turned off; the second heat exchange device 120 passes The first four-way valve 140 , the second four-way valve 150 and the three-way valve 700 are connected to the heat exchange tank 400 .
  • the third switch 603, the fifth switch 605 and the sixth switch 606 are turned on, and the first switch 601, the second switch 602 and the fourth switch 604 are turned off; the battery 10 passes through the first four-way The valve 140 and the second four-way valve 150 are connected to the second heat exchange device 120 ; the motor 40 is connected to the heat exchange tank 400 through the first four-way valve 140 , the second four-way valve 150 and the three-way valve 700 .
  • the first switch 601, the second switch 602, the third switch 603 and the fifth switch 605 are turned on, and the second switch 602 and the sixth switch 606 are turned off; the battery 10, the motor 40 and the
  • the second heat exchange device 120 is connected in series through the first four-way valve 140 and the second four-way valve 150 ;
  • thermal management system 100 of the embodiment of the present application it is beneficial to keep the battery 10 in a normal operating temperature range, and at the same time, it is beneficial to improve the energy utilization rate, thereby improving the cruising range of the electric vehicle 1 .
  • the second aspect of the present application proposes an electric vehicle 1 , including the thermal management system 100 described in the first aspect above.
  • the electric vehicle 1 of the embodiment of the present application uses the thermal management system 100 described in the first aspect.
  • the thermal management system 100 simultaneously regulates the temperature of the battery 10 and the vehicle interior 20 through the first heat exchange device 110 and the second heat exchange device 120, that is, the vehicle interior thermal management system 100 and the battery thermal management system 100 are properly adjusted.
  • the integrated design is beneficial to keep the battery 10 in a normal operating temperature range, and at the same time, it is beneficial to improve the energy utilization rate, thereby improving the cruising range of the electric vehicle 1 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Transportation (AREA)
  • Power Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种用于电动车辆的热管理系统(100),该电动车辆(1)包括电池(10),电池(10)用于对电动车辆(1)提供电能,热管理系统(100)包括:第一换热装置(110),用于对车辆内部进行温度调节;和第二换热装置(120),用于对电池(10)进行温度调节;其中,第一换热装置(110)与第二换热装置(120)串联或者并联,用于对车辆内部和电池(10)同时进行温度调节。该用于电动车辆的热管理系统(100)通过第一换热装置(110)与第二换热装置(120)同时对电池(10)与车辆内部进行温度调节,将车辆内部热管理系统和电池热管理系统进行了适当的集成设计,有利于使电池(10)处于正常的工作温度范围,同时有利于提高能量利用率及电动车辆的续航里程。还公开了一种电动车辆。

Description

用于电动车辆的热管理系统及电动车辆 技术领域
本申请涉及热管理领域,尤其涉及一种用于电动车辆的热管理系统及电动车辆。
背景技术
随着新能源技术的快速发展,动力电池在整车上的应用也越来越广泛。目前,电动车辆上通常具有车辆内部热管理系统、电池热管理系统以及电机热管理系统三大热管理系统。
相关技术中,三大热管理系统一般为独立设计,且均需要电池对各系统供电,各系统之间集成率较低,能量利用率较低,进而造成电量损耗较大,不利于提高电动车辆的续航里程。
发明内容
本申请是鉴于上述课题而进行的,其目的在于提供一种用于电动车辆的热管理系统及电动车辆,从而有利于避免低温时电动车辆续航里程的衰减。具体技术方案如下:
本申请第一个方面提出了一种用于电动车辆的热管理系统,电动车辆包括电池,电池用于对电动车辆提供电能,其特征在于,热管理系统包括:第一换热装置,用于对车辆内部进行温度调节;和第二换热装置,用于对电池进行温度调节;其中,第一换热装置与第二换热装置串联或者并联,用于对车辆内部和电池同时进行温度调节。
通常,电池若处于低温状态时,其可用能量和功率衰减比较严重,且长期处于低温状态使用会加速电池的老化,缩短使用寿命。本申请实施例的用于电动车辆的热管理系统,其通过第一换热装置与第二换热装置,同时对电池与车辆内部进行温度调节,也即,将车辆内部热管理系统和电池热管理系统进行了适当的集成设计,有利于使电池处于正常的工作温度范围,同时有利于提高能量利用率,进而利于提高电动车辆的续航里程。
当第一换热装置与第二换热装置并联时,电池与车辆内部分别通过第一换热装置与第二换热装置进行升温或降温。例如,当环境温度较高时,可通过第一换热装置对车辆内部降温,同时通过第二换热装置对电池进行降温。当第一换热装置与第二换热装置串联时,第一换热装置与第二换热装置之间可进行热量交换,从而同时实现车辆内部以及电池的温度调控。例如,当车辆刚启动时,电池温度较低,此时,通过第一换热装置与第二换热装置的串联,可将低温的电池与车辆内部进行热量交换,进而可对电池进行快速升温,对车辆内部进行降温,直至电池处于正常的工作温度范围;或者,电池在长时间工作后温度较高,通过第一换热装置与第二换热装置的串联,可将高温电池的热量与车辆内部进行热量 交换,进而对电池热量进行回收用于对车辆内部加热,提高能量利用率。因此,通过本申请实施例的热管理系统,有利于使电池处于正常的工作温度范围,同时有利于提高能量利用率,进而利于提高电动车辆的续航里程。
根据本申请实施例的用于电动车辆的热管理系统,还可具有如下附加的技术特征:
在本申请的一些实施例中,热管理系统包括电池第一回路,电池第一回路包括电池和第二换热装置,电池分别通过第一四通阀和第二四通阀与第二换热装置串联或者不相连。
电池第一回路是用来对电池进行温度调控的回路,其通过第一四通阀和第二四通阀与第二换热装置连接。两个四通阀具有多个工作状态,从而可实现电池与第二换热装置的串联或者或不相连。通过设置两个四通阀,从而可以实现电池温度调控的多种模式,有利于降低热管理系统的复杂性。
进一步地,热管理系统还包括电机,用于驱动电动车辆,在热管理系统中,电机通过第一四通阀和第二四通阀与电池串联或者互不相连。当电机与电池串联时,电池还可通过电机工作时产生的温度来进行温度调节,从而实现热量回收;当电机与电池不相连时,电池可通过第一换热装置或第二换热装置进行温度调控。也就是说,本申请的热管理系统还将电机进行了适当的集成设计,有利于进一步地改善电池损耗。
进一步地,热管理系统还包括第三换热装置,第三换热装置与第一换热装置串联,第三换热装置用于冷媒与室外空气进行换热,第一换热装置用于通过冷媒循环对车辆内部进行温度调节,第二换热装置用于通过冷媒循环对电池进行温度调节。通过设置第三换热装置,从而可将车辆内部以及电池的热量释放至室外空气,或者将室外空气的热量传递至车辆内部以及电池,进而对车辆内部以及电池进行温度调节。
在本申请的一些实施例中,热管理系统具有第一工作模式;热管理系统处于第一工作模式的情况下,第三换热装置从室外空气中吸收热量,第一换热装置向车辆内部释放热量,第二换热装置释放热量,电池第一回路导通,以通过第二换热装置对电池进行加热。
第一工作模式下,第三换热装置将空气中的热量传递至车辆内部和电池,从而可实现同时对电池与车辆内部的加热。
进一步地,热管理系统处于第一工作模式的情况下,电机与电池不相连。此时,第二换热装置只对电池进行加热,有利于加快电池的加热效率。同时,也有利于避免电机过热。
在本申请的一些实施例中,第一换热装置包括室内冷凝器;热管理系统还包括压缩机和第一节流装置;热管理系统处于第一工作模式的情况下,压缩机、室内冷凝器、第一节 流装置和第三换热装置依次连接形成第一冷媒制热循环回路;压缩机、第二换热装置、第一节流装置和第三换热装置依次连接形成第二冷媒制热循环回路。
本申请实施例具体说明了第一工作模式的工作方式,其可在低温环境下,通过第一冷媒制热循环回路以及第二冷媒制热循环回路吸收环境热量,然后同时对电池和车辆内部进行加热。具体地,第一换热装置包括室内冷凝器,压缩机压缩并驱动冷媒,此时,冷媒为高温高压状态的气态。然后冷媒分别被送至室内冷凝器以及第二换热装置,冷媒分别对低温的车辆内部和第二换热装置放热,而第二换热装置还通过第一四通阀和第二四通阀与电池连通,从而可对车辆内部以及电池同时加热,冷媒则变成高压低温的液态。接着,从室内冷凝器和第二换热装置出来的冷媒经过第一节流装置成为低压低温的液态后,再流经第三换热装置,第三换热装置可以是室外换热器,冷媒通过第三换热装置吸收环境热量后汽化为气体进入压缩机继续开始下一个循环。
进一步地,热管理系统还包括第一液体泵,第一液体泵设置在电池第一回路中。第一液体泵可提供动力驱动电池第一回路中的液体流动,从而有利于使电池与第二换热装置之间进行充分的热量交换。
在本申请的一些实施例中,热管理系统具有第二工作模式;热管理系统处于第二工作模式的情况下,第一换热装置从车辆内部吸收热量,第二换热装置释放热量,第一电池回路导通,以通过第二换热装置对电池进行加热。
本申请实施例的第二工作模式,通过将第一换热装置与第二换热装置串联,且第二换热装置与电池连通,从而使第一换热装置与第二换热装置进行热量交换,以对电池进行加热。
进一步地,热管理系统处于第二工作模式的情况下,电机与电池不相连。此时,第二换热装置只对电池进行加热,有利于加快电池的加热效率。同时,也有利于避免电机过热。
在本申请的一些实施例中,第一换热装置包括蒸发器;热管理系统还包括压缩机和第二节流装置;热管理系统处于第二工作模式的情况下,压缩机、第二换热装置、第二节流装置和蒸发器依次连接形成第三冷媒制热循环回路。
本申请实施例具体说明了第二工作模式的工作方式,其可在低温环境中,通过第三冷媒制热循环回路吸收车辆内部的热量,然后对电池进行加热。具体地,第一换热装置包括蒸发器,压缩机压缩并驱动冷媒,此时,冷媒为高温高压状态的气态。然后冷媒被送至第二换热装置并对第二换热装置放热,而第二换热装置还通过第一四通阀和第二四通阀与电 池连通,从而使第二换热装置对电池加热,冷媒释放热量后则变成高压低温的液态。接着,从第二换热装置出来的冷媒经过第二节流装置成为低压低温的液态后,再流经车辆内部的蒸发器,冷媒通过蒸发器吸收车辆内部的热量后汽化为气体进入压缩机继续开始下一个循环。本申请实施例通过车辆内部的热量对电池进行加热,使电池处于良好的工作温度之中,有利于避免电池的能量和功率衰减,提高电池使用寿命,进而利于保证电动车辆正常的电量供应。
进一步地,热管理系统还包括电加热装置,电加热装置用于以电加热的方式对车辆内部进行供热。通过设置电加热装置,可对车辆内部进行辅助升温,避免车辆内部热量损失过大。
进一步地,热管理系统还包括第一液体泵,第一液体泵设置在电池第一回路中。第一液体泵可提供动力驱动电池第一回路中的液体流动,从而有利于使电池与第二换热装置之间进行充分的热量交换。
在本申请的一些实施例中,热管理系统具有第三工作模式;热管理系统处于第三工作模式的情况下,第三换热装置从室外空气中吸收热量,第一换热装置向车辆内部释放热量,第二换热装置吸收热量,电池与第二换热装置不相连。
第三工作模式下,电池与第二换热装置不相连,第三换热装置和第二换热装置将外部热量传递至车辆内部,从而可实现低温时对车辆内部的加热。
进一步地,热管理系统还包括换热水箱,换热水箱通过第一四通阀和第二四通阀与第二换热装置串联或者不相连;热管理系统处于第三工作模式的情况下,换热水箱与第二换热装置串联。
在第三工作模式下,第二换热装置还与换热水箱串联,此时,第二换热装置可与换热水箱进行热量交换。也就是说,第二换热装置可吸收换热水箱的热量对车辆内部加热。
在本申请的一些实施例中,热管理系统处于第三工作模式的情况下,电机与电池串联。
在第三工作模式中,电池通过第一四通阀和第二四通阀连通电机,这样,电机工作时产生的热量可对电池进行加热,从而对电机的热量进行回收,有利于提高能量利用率。
具体地,第一换热装置包括室内冷凝器;热管理系统还包括压缩机、第一节流装置和第三节流装置;热管理系统处于第三工作模式的情况下,压缩机、室内冷凝器、第一节流装置和第三换热装置依次连接形成第一冷媒制热循环回路;压缩机、室内冷凝器、第三节流装置和第二换热装置依次连接形成第四冷媒制热循环回路。
本申请实施例具体说明了第三工作模式的工作方式,其可在低温环境中,通过第一冷媒制热循环回路以及第四冷媒制热循环回路吸收外部热量,然后对车辆内部进行加热。具体地,第一换热装置包括室内冷凝器,室内冷凝器和第二换热装置并联。压缩机压缩并驱动冷媒,此时,冷媒为高温高压状态的气态。然后冷媒被送至室内冷凝器并对车辆内部放热,此时,冷媒释放热量后变成高压低温的液态。接着,从室内冷凝器出来的冷媒流经两路。第一路为:冷媒经过第一节流装置成为低压低温的液态后,再流经第三换热装置,通过第三换热装置吸收外部环境热量后汽化为气体,进入压缩机继续开始下一个循环;第二路为:冷媒经过第三节流装置成为低压低温的液态后,再流经第二换热装置,通过第二换热装置吸收外部环境热量后汽化为气体,进入压缩机继续开始下一个循环。也就是说,冷媒同时在两个分支回路上吸收室外的热量对车辆内部加热,有利于提高车辆内部的加热效率。
在本申请的一些实施例中,热管理系统还包括第一液体泵,第一液体泵设置在第二换热装置和第一四通阀之间或者第二换热装置和第二四通阀之间;
热管理系统处于第三工作模式的情况下,第一液体泵用于为换热水箱和第二换热装置之间的水循环提供动力。
通过设置第一液体泵,有利于使第二换热装置与换热水箱之间进行充分的热量交换。
在本申请的一些实施例中,热管理系统还包括第二液体泵,第二液体泵设置在电机和第一四通阀之间或者电机和第二四通阀之间;热管理系统处于第三工作模式的情况下,第二液体泵用于为电机和电池之间的水循环提供动力。
通过设置第二液体泵,有利于使电池与电机之间进行充分的热量交换。
在本申请的一些实施例中,热管理系统具有第四工作模式;热管理系统处于第四工作模式的情况下,第三换热装置向室外空气释放热量,第一换热装置从车辆内部吸收热量,第二换热装置吸收热量,电池第一回路导通,以通过第二换热装置对电池进行冷却。
在第四工作模式中,第一换热装置和第二换热装置分别将车辆内部以及电池的热量传递至外部空气中,从而可实现高温时同时对电池与车辆内部的降温。
进一步地,热管理系统还包括换热水箱,换热水箱通过第一四通阀和第二四通阀与第二换热装置串联或者不相连;热管理系统处于第四工作模式的情况下,电机与电池不相连,换热水箱与第二换热装置不相连,换热水箱与电机串联。
本申请实施例通过设置换热水箱,从而实现对电机的散热需求。在第四工作模式中, 由于电机与换热水箱串联,电机产生的高热量通过水循环流通至换热水箱,换热水箱再将热量传递至空气中,从而对电机进行散热,使电机处于正常的工作温度范围内。这样,有利于提高电机的寿命。
在本申请的一些实施例中,第一换热装置包括蒸发器;热管理系统还包括压缩机、第二节流装置和第三节流装置;热管理系统处于第四工作模式的情况下,压缩机、第三换热装置、第二节流装置和蒸发器依次连接形成第五冷媒制热循环回路;压缩机、第三换热装置、第三节流装置和第二换热装置依次连接形成第六冷媒制热循环回路。
本申请实施例具体说明了第四工作模式的工作方式,其可在高温环境中,通过第五冷媒制热循环回路以及第六冷媒制热循环回路吸收车辆内部以及电池的热量,使电池与车辆内部温度降低。具体地,第一换热装置包括蒸发器,蒸发器和第二换热装置并联。压缩机压缩并驱动冷媒,此时,冷媒为高温高压状态的气态。然后冷媒被送至第三换热装置并对外部空气放热,此时,冷媒释放热量后变成高压低温的液态。接着,从第三换热装置出来的冷媒流经两路。第一路为:冷媒经过第二节流装置成为低压低温的液态后,再流经蒸发器,通过蒸发器吸收车辆内部的热量后汽化为气体,进入压缩机继续开始下一个循环,此时,车辆内部温度降低。第二路为:冷媒经过第三节流装置成为低压低温的液态后,再流经第二换热装置,而第二换热装置通过第一四通阀和第二四通阀连通电池,也即,电池第一回路导通,因此,冷媒通过第二换热装置吸收电池热量后汽化为气体,进入压缩机继续开始下一个循环,此时,电池的温度降低。
在本申请的一些实施例中,热管理系统还包括第一液体泵和第二液体泵,第一液体泵设置在第二换热装置和第一四通阀之间或者第二换热装置和第二四通阀之间,第二液体泵设置在电机和第一四通阀之间或者电机和第二四通阀之间;热管理系统处于第四工作模式的情况下,第一液体泵用于为电池和第二换热装置之间的水循环提供动力,第二液体泵用于为电机和换热水箱之间的水循环提供动力。
通过设置第一液体泵,有利于使第二换热装置与电池之间进行充分的热量交换;通过设置第二液体泵,有利于使电机与换热水箱之间进行充分的热量交换。
在本申请的一些实施例中,热管理系统具有第五工作模式;热管理系统处于第五工作模式的情况下,第一换热装置从车辆内部吸收热量的同时向车辆内部释放热量,以对车辆内部进行除湿,第三换热装置从室外空气中吸收热量,第二换热装置吸收热量,电池与第二换热装置串联,以通过第二换热装置回收电池的热量。
在第五工作模式中,第二换热装置与电池串联,第一换热装置分别与第三换热装置和第二换热装置进行热量交换,从而将室外空气的热量以及电池的热量传递至车辆内部对车辆内部加热,也实现了电池热量的回收,有利于提高能量利用率。同时,第一换热装置还可对车辆内部进行除湿。
进一步地,热管理系统处于第五工作模式的情况下,电机与电池、第二换热装置串联。
这样设置,还可将电机的热量通过第二换热装置进行回收,有利于进一步提高能量利用率。
在本申请的一些实施例中,第一换热装置包括室内冷凝器和蒸发器;热管理系统还包括压缩机、第一节流装置、第二节流装置和第三节流装置;热管理系统处于第五工作模式的情况下,压缩机、室内冷凝器、第一节流装置和第三换热装置依次连接形成第一冷媒制热循环回路;压缩机、室内冷凝器、第二节流装置和蒸发器依次连接形成第七冷媒制热循环回路;压缩机、室内冷凝器、第三节流装置和第二换热装置依次连接形成第八冷媒制热循环回路。
本申请实施例具体说明了第五工作模式的工作方式。第一冷媒制热循环回路可吸收外部空气的热量,从而对车辆内部进行加热;第七冷媒制热循环回路可吸收车辆内部的水分,从而对车辆内部除湿;第八冷媒制热循环回路可吸收电池、电机的热量,从而对车辆内部进行加热,也即,第八冷媒制热循环回路对电池和电机的热量进行回收。具体地,第一换热装置包括室内冷凝器和蒸发器,第三换热装置、蒸发器和第二换热装置并联。压缩机压缩并驱动冷媒,此时,冷媒为高温高压状态的气态。然后冷媒被送至室内冷凝器并对车辆内部放热,此时,冷媒释放热量后变成高压低温的液态。接着,从室内冷凝器出来的冷媒流经三路。第一路为:冷媒经过第一节流装置成为低压低温的液态后,再流经第三换热装置,通过第三换热装置吸收外部环境热量后汽化为气体,进入压缩机继续开始下一个循环;第二路为:冷媒经过第二节流装置成为低压低温的液态后,再流经蒸发器,此时由于冷媒为低温状态,车辆内部的水蒸气经过蒸发器后受冷液化,从而可对车辆内部进行除湿,冷媒通过蒸发器吸收车辆内部的热量后汽化为气体,进入压缩机继续开始下一个循环;第三路为:冷媒经过第三节流装置成为低压低温的液态后,再流经第二换热装置,而第二换热装置与电机和电池为串联连接,因此,冷媒通过第二换热装置吸收电池和电机的热量后汽化为气体,进入压缩机继续开始下一个循环,这样,可将电池与电机的热量用来对车辆内部加热,也即,可实现对电池与电机的热量回收,从而有利于提高能量利用率。
在本申请的一些实施例中,热管理系统还包括第一液体泵和第二液体泵,第一液体泵设置在第二换热装置和第一四通阀之间或者第二换热装置和第二四通阀之间,第二液体泵设置在电机和第一四通阀之间或者电机和第二四通阀之间;热管理系统处于第四工作模式的情况下,第一液体泵和第二液体泵均用于为电池、电机和第二换热装置之间的水循环提供动力。
通过设置第一液体泵和第二液体泵,有利于使第二换热装置与电池、电机之间进行充分的热量交换。
本申请第二方面提出了一种电动车辆,包括上述第一方面所述的热管理系统。
本申请实施例的电动车辆所用的热管理系统,通过第一换热装置与第二换热装置,同时对电池与车辆内部进行温度调节。也即,将车辆内部热管理系统和电池热管理系统进行了适当的集成设计,有利于使电池处于正常的工作温度范围,同时有利于提高能量利用率,进而利于提高电动车辆的续航里程。
附图说明
图1为本申请实施例的一种电动车辆的结构示意图;
图2为本申请实施例的其中一种热管理系统的结构示意图;
图3位本申请实施例的热管理系统的第一工作模式的结构示意图;
图4位本申请实施例的热管理系统的第二工作模式的结构示意图;
图5位本申请实施例的热管理系统的第三工作模式的结构示意图;
图6位本申请实施例的热管理系统的第四工作模式的结构示意图;
图7位本申请实施例的热管理系统的第五工作模式的结构示意图。
附图标记:
1-电动车辆;10-电池;20-车辆内部;30-控制器;40-电机;100-热管理系统;110-第一换热装置;120-第二换热装置;130-电池第一回路;140-第一四通阀;150-第二四通阀;160-第三换热装置;A-第一工作模式;111-室内冷凝器;112-蒸发器;170-压缩机;180-第一节流装置;181-第二节流装置;182-第三节流装置;230-电加热装置;300-第一液体泵;301-第二液体泵;B-第二工作模式;C-第三工作模式;400-换热水箱;D-第四工作模式;E-第五工作模式;500-气液分离器;601-第一开关;602第二开关;603第三开关;604-第四开关;605-第五开关;606-第六开关;700-三通水阀;801-第一单向阀;802-第二单向阀;803-第三单向阀。
具体实施方式
下面将结合附图对本申请技术方案的实施例进行详细的描述。以下实施例仅用于更加清楚地说明本申请的技术方案,因此只作为示例,而不能以此来限制本申请的保护范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本文中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。
在本申请实施例的描述中,技术术语“第一”“第二”等仅用于区别不同对象,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量、特定顺序或主次关系。在本申请实施例的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请实施例的描述中,术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请实施例的描述中,术语“多个”指的是两个以上(包括两个),同理,“多组”指的是两组以上(包括两组),“多片”指的是两片以上(包括两片)。
在本申请实施例的描述中,技术术语“中心”“纵向”“横向”“长度”“宽度”“厚度”“上”“下”“前”“后”“左”“右”“竖直”“水平”“顶”“底”“内”“外”“顺时针”“逆时针”“轴向”“径向”“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。
在本申请实施例的描述中,除非另有明确的规定和限定,技术术语“安装”“相连”“连接”“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;也可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含义。
随着新能源技术的快速发展,动力电池在整车上的应用也越来越广泛。目前,电动车辆1上通常具备车辆内部热管理系统、电池热管理系统以及电机热管理系统三大热管理系统。车辆内部热管理系统用于对车辆内部的温度进行调控,车辆内部可以是乘员舱,也就是说,车辆内部热管理系统可以是对乘员舱进行降温或加热的空调或暖风系统。电池热管理系统用于对电池进行散热或加热,以使电池处于正常的工作温度范围。电机热管理系统用于对电机进行散热,使电机处于正常的工作温度范围。
相关技术中,三大热管理系统一般为独立设计,且均需要电池对各系统供电。例如,在低温环境中,使用车辆内部热管理系统对车辆内部加热时,电池提供电能,而电池自身却无法通过车辆内部热管理系统进行加热,只能使用电池热管理系统进行升温,而电池热管理系统又会额外耗费电能,且当电池长时间工作而温度升至较高时,电池多余的热量只能通过电池热管理系统散发至外部空气中,无法进行热量回收。同时,电机在运转过程中产生的热量也只能通过电机热管理系统散发至外部空气中,无法进行热量回收。也就是说,相关技术中的车辆内部各热管理系统之间集成率较低,导致能量利用率较低,进而造成电量损耗较大,不利于提高电动车辆1的续航里程。
基于上述问题,本发明人研究了一种用于电动车辆1的热管理系统,将车辆内部热管理系统和电池热管理系统进行了适当的集成设计,进而有利于使电池处于正常的工作温度范围,同时有利于提高能量利用率,进而利于提高电动车辆1的续航里程。
本申请实施例的热管理系统,可以用在各种类型的电动车辆1上,例如,电动工程车辆(挖掘机、起重机等)、电动乘用车、电动商用车(载货车、重型卡车等)等等。应用本申请实施例的热管理系统的电动车辆1,有利于提高能量利用率,进而利于提高电动车辆1的续航里程。
如图1所示,为使用本申请实施例的热管理系统100的电动车辆1的结构示意图,电动车辆1的内部可以设置电机40、控制器30以及电池10,控制器30用来控制电池10为电机40供电,同时,控制器30还可控制热管理系统处于不同的工作模式,从而实现多种热管理功能。
本申请的实施例所提到的电池10是指包括一个或多个电池单体以提供更高的电压和容量的单一的物理模块。多个电池单体可经由极柱而被串联和/或并联在一起以应用于各种应用场合。例如在电动车辆1的大功率应用场合,电池的应用包括三个层次:电池单体、电池模组和电池包。电池模组是为了从外部冲击、热、振动等中保护电池单体,将一定数 目的电池单体电连接在一起并放入一个框架中而形成的。电池包则是装入电动车辆1的电池系统的最终状态。电池包一般包括用于封装一个或多个电池单体的箱体。箱体可以避免液体或其他异物影响电池单体的充电或放电。箱体一般由盖体和箱壳组成。目前的大部分电池包是在一个或多个电池模组上装配电池管理系统(BMS)、热管理部件等各种控制和保护系统而制成的。随着技术的发展,电池模组这个层次可以被省略,也即,直接由电池单体形成电池包。这一改进使得电池系统的重量能量密度、体积能量密度得到提升的同时零部件数量显著下降。本申请中所提到的电池10可以是电池包。
如图2所示,本申请第一个方面提出了一种用于电动车辆1的热管理系统100,电动车辆1包括电池10,电池10用于对电动车辆1提供电能,热管理系统100包括第一换热装置110和第二换热装置120。第一换热装置110用于对车辆内部20进行温度调节,第二换热装置120用于对电池10进行温度调节。其中,第一换热装置110与第二换热装置120串联或者并联,用于对车辆内部20和电池10同时进行温度调节。
热管理系统100是指对电动车辆1进行温度管理的系统,例如,其可以包括前述所述的电池热管理系统、电机热管理系统以及车辆内部热管理系统等。通过热管理系统100,可以实时控制电动车辆1各部位的温度。
第一换热装置110是指对车辆内部20进行温度调节的设备,其可以包括冷凝器、蒸发器、电加热装置230等的一种或多种。冷凝器属于换热器的一种,能把气体或蒸气转变成液体,并将热量快速传到附近的空气中,冷凝器工作过程是个放热的过程,通过冷凝器可以对车辆内部加热。蒸发器也属于换热器的一种,低温的冷凝液体通过蒸发器与外界的空气进行热交换,从而使液体气化吸热,以达到对空间制冷的效果;电加热装置230是指利用热敏电阻恒温发热特性设计的加热器件,其可通过耗费电能对车辆内部进行加热。
车辆内部20可以为车辆上用于容纳人员的乘员舱。
第二换热装置120是指对电池10进行温度调节的设备,例如,其可以是电池换热器。电池换热器一般包括冷媒通道和电池冷却液通道,通过冷媒与电池冷却液的热量交换,从而对电池进行温度控制。
通常,电池10若处于低温状态时,其可用能量和功率衰减比较严重,且长期处于低温状态使用会加速电池10的老化,缩短使用寿命。本申请实施例的用于电动车辆1的热管理系统100,其通过第一换热装置110与第二换热装置120,同时对电池10与车辆内部20进行温度调节,也即,将车辆内部热管理系统100和电池热管理系统100进行了适当的集成设计, 进而有利于使电池10处于正常的工作温度范围,同时有利于提高能量利用率,进而利于提高电动车辆1的续航里程。
具体地,当第一换热装置110与第二换热装置120并联时,电池10与车辆内部20分别通过第一换热装置110与第二换热装置120同时进行升温或降温。例如,当环境温度较高时,可通过第一换热装置110对车辆内部20降温,同时通过第二换热装置120对电池10进行降温。当第一换热装置110与第二换热装置120串联时,第一换热装置110与第二换热装置120之间可进行热量交换,从而也可同时实现车辆内部20以及电池10的温度调控。例如,当车辆刚启动时,电池10温度较低,此时,通过第一换热装置110与第二换热装置120的串联,可将低温的电池10与车辆内部20进行热量交换,进而既可对车辆内部20进行降温,还可对电池10进行快速升温,直至电池10处于正常的工作温度范围;或者,电池10在长时间工作时温度较高,通过第一换热装置110与第二换热装置120的串联,可将高温电池10的热量与车辆内部20进行热量交换,进而对电池10热量进行回收,并用于对车辆内部20加热,继而提高能量利用率。因此,通过本申请实施例的热管理系统100,有利于使电池10处于正常的工作温度范围,同时有利于提高能量利用率,进而利于提高电动车辆1的续航里程。
在本申请的一些实施例中,热管理系统100包括电池第一回路130,电池第一回路130包括电池10和第二换热装置120,电池10分别通过第一四通阀140和第二四通阀150与第二换热装置120串联或者不相连。
电池10和第二换热装置120共同组成了电池第一回路130,且其通过第一四通阀140和第二四通阀150连接第二换热装置120。
第一四通阀140和第二四通阀150是指具有四个出口并且可切换连通回路的阀门开关。两个四通阀具有多个工作状态,从而可实现电池10与第二换热装置120的串联或者或不相连。例如,当电池10与第二换热装置120的串联时,也即,两个四通阀分别接通电池10和第二换热装置120,此时,第二换热装置120可对电池10进行升温或降温;当电池10与第二换热装置120不相连时,也就是说,两个四通阀切换连通位置后,致使电池10不与第二换热装置120连通时,电池10不通过第二换热装置120进行温度调控。
通过设置两个四通阀,从而可以实现电动车辆温度调控的多种模式,有利于降低热管理系统的复杂性。
进一步地,热管理系统100还包括电机40,用于驱动电动车辆1,在热管理系统100中,电机40通过第一四通阀140和第二四通阀150与电池10串联或者互不相连。
电机40是指将电能转化为机械能,并作为用电器或各种机械的动力源的装置。在本申请实施例中,电机40作为电动车辆1的驱动装置,驱动车辆行驶。当然,在一些实施例中,电机40除了将电能转化为机械能,驱动车辆行驶外,还可在电动车辆1进行制动时回收机械能,并将机械能转化为电能输送至电池。电机40可以为直流电机、交流异步电机或永磁同步电机等,本申请不作限制。
当电机40与电池10串联时,电池10还可通过电机40工作时产生的温度来进行温度调节,从而实现热量回收;当电机40与电池10不相连时,电池10可通过第一换热装置110或第二换热装置120进行温度调控。也就是说,本申请的热管理系统100还将电机40进行了适当的集成设计,有利于进一步提高能量利用率,进而利于提高电动车辆1的续航里程。
进一步地,热管理系统100还包括第三换热装置160,第三换热装置160与第一换热装置110串联,第三换热装置160用于冷媒与室外空气进行换热,第一换热装置110用于通过冷媒循环对车辆内部20进行温度调节,第二换热装置120用于通过冷媒循环对电池10进行温度调节。
第三换热装置160是指与室外空气进行热量交换的设备,其可以是室外冷凝器或蒸发器。冷凝器用于向外部空气释放热量,蒸发器用于向外部空气吸收热量。
通过设置第三换热装置160,从而可将车辆内部20以及电池10的热量释放至室外空气,或者将室外空气的热量传递至车辆内部20以及电池10,进而对车辆内部20以及电池10进行温度调节。
在本申请的一些实施例中,热管理系统100具有第一工作模式A。请参考图2和图3,热管理系统100处于第一工作模式A的情况下,第三换热装置160从室外空气中吸收热量,第一换热装置110向车辆内部20释放热量,第二换热装置120释放热量,电池第一回路130导通,以通过第二换热装置120对电池10进行加热。
在第一工作模式A下,第三换热装置160将室外空气中的热量传递至车辆内部20和电池10,从而可实现同时对电池10与车辆内部20的加热。第一工作模式A适用于车辆处于低温环境的情况。当车辆处于低温环境时,热管理系统100通过第一工作模式A,给车辆内部20和电池10同时加热,一方面实现了给乘员舱供热,另一方面可以避免电池10因温度过低而导致放电能力减弱。
进一步地,热管理系统100处于第一工作模式A的情况下,电机40与电池10不相连。
电机40与电池10不相连是指电机40与电池10不相关。此时,第二换热装置120只对电 池10进行加热,有利于加快电池10的加热效率。同时,也有利于避免电机40过热。
在本申请的一些实施例中,第一换热装置110包括室内冷凝器111;热管理系统100还包括压缩机170和第一节流装置180;热管理系统100处于第一工作模式A的情况下,压缩机170、室内冷凝器111、第一节流装置180和第三换热装置160依次连接形成第一冷媒制热循环回路;压缩机170、第二换热装置120、第一节流装置180和第三换热装置160依次连接形成第二冷媒制热循环回路。
压缩机170是指将低压气体提升为高压气体的从动的流体机械。它从吸气口吸入低温低压的冷媒,通过电机运转带动活塞对其进行压缩后,向排气口排出高温高压的冷媒,为制冷或制热循环提供动力。
节流装置是指通过改变节流截面或节流长度以控制流体流量的装置,其本质上是一种流量控制装置。节流装置通过节流作用使高压液体降压。常见的节流装置包括毛细管、节流阀等。通常,节流装置还可以根据负荷调节液体的流量,进而控制制冷或制热效果。
冷媒也称为制冷剂,是一种容易吸热变成气体,又容易放热变成液体的物质。通过冷媒的气液状态的转换,从而可以实现不同空间下的热量交换。例如,冷媒在蒸发器中汽化时吸热,在冷凝器中凝结时放热。目前,冷媒的种类较多,常用的有氨、氟利昂类、水和少数碳氢化合物等。
本申请实施例具体说明了第一工作模式A的工作方式。其可通过第一冷媒制热循环回路以及第二冷媒制热循环回路吸收室外环境热量,然后同时对电池10和车辆内部20进行加热。以下为第一工作模式A的一个循环的工作过程:第一换热装置110包括室内冷凝器111。压缩机170压缩并驱动冷媒,冷媒是一种容易吸热变成气体,又容易放热变成液体的物质。此时,冷媒为高温高压状态的气态。然后冷媒分别被送至室内冷凝器111以及第二换热装置120,进而分别对车辆内部20和第二换热装置120放热,而第二换热装置120还通过第一四通阀140和第二四通阀150与电池10连通,从而可对车辆内部20以及电池10同时加热,此时,车辆内部20以及电池10的温度升高,冷媒则变成高压低温的液态。在这之后,从室内冷凝器111和第二换热装置120出来的冷媒经过第一节流装置180成为低压低温的液态后,再流经第三换热装置160,第三换热装置160可以是室外蒸发器,冷媒通过第三换热装置160吸收环境热量后汽化为气体,进入压缩机170继续开始下一个循环。在持续的循环过程下,即可同时对电池10和车辆内部20进行加热。进一步地,热管理系统100还包括第一液体泵300,第一液体泵300设置在电池第一回路130中。第一液体泵300可提供动力驱动电池第一回路 130中的液体流动,从而有利于使电池10通过液体与第二换热装置120之间进行充分的热量交换。液体泵可以是齿轮泵、叶片泵或柱塞泵等;液体可以为电池第一回路130中的冷却液或水等具有良好的热传递性的液体。
在本申请的一些实施例中,热管理系统100具有第二工作模式B。请参考图2和图4,热管理系统100处于第二工作模式B的情况下,第一换热装置110从车辆内部20吸收热量,第二换热装置120释放热量,第一电池10回路导通,以通过第二换热装置120对电池10进行加热。
本申请实施例的第二工作模式B,通过将第一换热装置110与第二换热装置120串联,且第二换热装置120与电池10连通,从而使第一换热装置110与第二换热装置120进行热量交换,以对电池10进行加热。第二工作模式B适用于车辆处于低温环境的情况。当车辆处于低温环境时,热管理系统100通过第二工作模式B,通过吸收车辆内部20(乘员舱)的温度,给电池10加热。在车辆刚刚启动时,可以采用第二工作模式B,以便于较为快速地给电池10升温,使电池10快速回到良好的工作温度范围内。当车辆启动一段时间之后,可以将热管理系统100切换回第一工作模式A。
进一步地,热管理系统100处于第二工作模式B的情况下,电机40与电池10不相连。此时,第二换热装置120只对电池10进行加热,有利于加快电池10的加热效率。同时,也有利于避免电机40过热。
在本申请的一些实施例中,第一换热装置110包括蒸发器112;热管理系统100还包括压缩机170和第二节流装置181;热管理系统100处于第二工作模式B的情况下,压缩机170、第二换热装置120、第二节流装置181和蒸发器112依次连接形成第三冷媒制热循环回路。
本申请实施例具体说明了第二工作模式B的工作方式。其通过第三冷媒制热循环回路吸收车辆内部20的热量,然后对电池10进行加热。以下是第二工作模式B的一个循环的工作过程:第一换热装置110包括蒸发器112,压缩机170压缩并驱动冷媒,此时,冷媒为高温高压状态的气态。然后冷媒被送至第二换热装置120并对第二换热装置120放热,而第二换热装置120还通过第一四通阀140和第二四通阀150与电池10连通,从而使第二换热装置120对电池10加热,此时,电池10的温度升高,冷媒释放热量后变成高压低温的液态。在这之后,从第二换热装置120出来的冷媒经过第二节流装置181成为低压低温的液态后,再流经车辆内部20的蒸发器112,冷媒通过蒸发器112吸收车辆内部20的热量后汽化为气体,进入压缩机170继续开始下一个循环。本申请实施例利用车辆内部20的热量对电池10进行加热, 使电池10处于良好的工作温度之中,有利于减少电池10的能量和放热功率衰减状况发生的概率,提高电池10使用寿命,进而利于保证电动车辆1正常的电量供应。进一步地,热管理系统100还包括电加热装置230,电加热装置230用于以电加热的方式对车辆内部20进行供热。通过设置电加热装置230,可对车辆内部20进行辅助升温,避免车辆内部20热量损失过大。
进一步地,热管理系统100还包括第一液体泵300,第一液体泵300设置在电池第一回路130中。
第一液体泵300可提供动力驱动电池第一回路130中的液体流动,从而有利于使电池10与第二换热装置120之间进行充分的热量交换。
在本申请的一些实施例中,热管理系统100具有第三工作模式C。请参考图2和图5,热管理系统100处于第三工作模式C的情况下,第三换热装置160从室外空气中吸收热量,第一换热装置110向车辆内部20释放热量,第二换热装置120吸收热量,电池10与第二换热装置120不相连。
在第三工作模式C下,电池10与第二换热装置120不相连,第三换热装置160和第二换热装置120均吸收外部空气的热量,并传递至车辆内部20,从而实现对车辆内部20的加热。
进一步地,热管理系统100还包括换热水箱400,换热水箱400通过第一四通阀140和第二四通阀150与第二换热装置120串联或者不相连;热管理系统100处于第三工作模式C的情况下,换热水箱400与第二换热装置120串联。
换热水箱400通过水循环对电机40进行冷却,其是一种保证电机40在正常温度范围内连续工作的换热装置。通常,换热水箱400还配置有风扇,通过风扇的吹风作用,使换热水箱400通过水循环源源不断的将电机40的热量散发至外部空气中。
在第三工作模式C下,第二换热装置120还与换热水箱400串联,此时,第二换热装置120可与换热水箱400进行热量交换。也就是说,第二换热装置120还可吸收换热水箱400的热量对车辆内部20加热。
在本申请的一些实施例中,热管理系统100处于第三工作模式C的情况下,电机40与电池10串联。
在第三工作模式C中,电池10不与第二换热装置120连通,而是通过第一四通阀140和第二四通阀150连通电机40,这样,电机40工作时产生的热量可对电池10进行加热,从而对电机40的热量进行回收,有利于提高热管理系统的能量利用率。
第三工作模式C适用于车辆处于低温环境的情况。当车辆处于低温环境时,热管理系统100通过第三工作模式C,给车辆内部20加热,从而实现了给乘员舱供热。另外,在第三工作模式C下,电池10通过电机40工作时产生的热量进行加热,由此,在对电机40的热量回收再利用的同时,也可以避免电池10因温度过低而导致放电能力减弱。
具体地,第一换热装置110包括室内冷凝器111;热管理系统100还包括压缩机170、第一节流装置180和第三节流装置181;热管理系统100处于第三工作模式C的情况下,压缩机170、室内冷凝器111、第一节流装置180和第三换热装置160依次连接形成第一冷媒制热循环回路;压缩机170、室内冷凝器111、第三节流装置181和第二换热装置120依次连接形成第四冷媒制热循环回路。
本申请实施例具体说明了工作模式三的工作方式,其通过第一冷媒制热循环回路以及第四冷媒制热循环回路吸收外部热量,然后对车辆内部20进行加热。以下为第三工作模式C的一个循环的工作过程:第一换热装置110包括室内冷凝器111,室内冷凝器111和第二换热装置120并联。压缩机170压缩并驱动冷媒,此时,冷媒为高温高压状态的气态。然后冷媒被送至室内冷凝器111并对车辆内部20放热,此时,车辆内部20的温度升高,冷媒释放热量后变成高压低温的液态。在这之后,从室内冷凝器111出来的冷媒流经两路。第一路为:冷媒经过第一节流装置180成为低压低温的液态后,再流经第三换热装置160,通过第三换热装置160吸收外部环境热量后汽化为气体,进入压缩机170继续开始下一个循环;第二路为:冷媒经过第三节流装置181成为低压低温的液态后,再流经第二换热装置120,通过第二换热装置120吸收外部环境热量例如管路内的液体热量后汽化为气体,进入压缩机170继续开始下一个循环。也就是说,冷媒同时在两个分支回路上吸收室外的热量对车辆内部20加热,有利于提高车辆内部20的加热效率。
在本申请的一些实施例中,热管理系统100还包括第一液体泵300,第一液体泵300设置在第二换热装置120和第一四通阀140之间或者第二换热装置120和第二四通阀150之间;热管理系统100处于第三工作模式C的情况下,第一液体泵300用于为换热水箱400和第二换热装置120之间的水循环提供动力。
在第三工作模式C下,第一液体泵300的位置可根据实际情况自行选择。通过设置第一液体泵300,有利于使第二换热装置120与换热水箱400之间进行充分的热量交换,进而使换热水箱400吸收的热量通过水循环传递至第二换热装置120,再由第二换热装置120内的冷媒传递至车辆内部20,以对车辆内部20进行加热。从而有利于进一步提高能量利用率。
在本申请的一些实施例中,热管理系统100还包括第二液体泵301,第二液体泵301设置在电机40和第一四通阀140之间或者电机40和第二四通阀150之间;热管理系统100处于第三工作模式C的情况下,第二液体泵301用于为电机40和电池10之间的水循环提供动力。
在第三工作模式C下,第二液体泵301的位置可根据实际情况自行选择。
通过设置第二液体泵301,有利于使电池10与电机40之间进行充分的热量交换,进而使电机工作产生的热量通过水循环传递至电池10,以对电池10进行加热。从而有利于进一步提高能量利用率。
在本申请的一些实施例中,热管理系统100具有第四工作模式D。请参考图2和图6,热管理系统100处于第四工作模式D的情况下,第三换热装置160向室外空气释放热量,第一换热装置110从车辆内部20吸收热量,第二换热装置120吸收热量,电池第一回路130导通,以通过第二换热装置120对电池10进行冷却。
在第四工作模式D中,第二换热装置120与电池10连通。第一换热装置110和第二换热装置120分别将车辆内部20以及电池10的热量传递至外部空气中,从而可同时对电池10与车辆内部20进行降温。第四工作模式D适用于车辆处于高温环境的情况。当车辆处于高温环境时,热管理系统100通过第四工作模式D,给车辆内部20和电池10同时降温,一方面实现了给乘员舱制冷,另一方给电池10实施冷却,避免电池10过热而引发安全隐患。
进一步地,热管理系统100还包括换热水箱400,换热水箱400通过第一四通阀140和第二四通阀150与第二换热装置120串联或者不相连;热管理系统100处于第四工作模式D的情况下,电机40与电池10不相连,换热水箱400与第二换热装置120不相连,换热水箱400与电机40串联。
在第四工作模式D中,本申请实施例通过设置换热水箱400,从而实现对电机40的散热需求。由于电机40与换热水箱400串联,电机40产生的高热量通过水循环流通至换热水箱400,换热水箱400再将热量传递至空气中,从而对电机40进行散热,使电机40处于正常的工作温度范围内。这样,有利于提高电机40的寿命。
在本申请的一些实施例中,第一换热装置110包括蒸发器112;热管理系统100还包括压缩机170、第二节流装置181和第三节流装置181;热管理系统100处于第四工作模式D的情况下,压缩机170、第三换热装置160、第二节流装置181和蒸发器112依次连接形成第五冷媒制热循环回路;压缩机170、第三换热装置160、第三节流装置181和第二换热装置120依次连接形成第六冷媒制热循环回路。
本申请实施例具体说明了第四工作模式D的工作方式,其可通过第五冷媒制热循环回路以及第六冷媒制热循环回路吸收车辆内部20以及电池10的热量,使电池10与车辆内部20温度降低。以下为第四工作模式D的一个循环的工作过程:第一换热装置110包括蒸发器112,蒸发器112和第二换热装置120并联。压缩机170压缩并驱动冷媒,此时,冷媒为高温高压状态的气态。然后冷媒被送至第三换热装置160并对外部空气放热,此时,冷媒释放热量后变成高压低温的液态。在这之后,从第三换热装置160出来的高压低温的液态冷媒流经两路。第一路为:冷媒经过第二节流装置181成为低压低温的液态后,再流经蒸发器112,通过蒸发器112吸收车辆内部20的热量后汽化为气体,进入压缩机170继续开始下一个循环,此时,车辆内部20温度降低。第二路为:冷媒经过第三节流装置181成为低压低温的液态后,再流经第二换热装置120,而第二换热装置120通过第一四通阀140和第二四通阀150连通电池10,也即,电池第一回路130导通,因此,冷媒通过第二换热装置120吸收电池10的热量后汽化为气体,进入压缩机170继续开始下一个循环,此时,电池10的温度降低。
在本申请的一些实施例中,热管理系统100还包括第一液体泵300和第二液体泵301,第一液体泵300设置在第二换热装置120和第一四通阀140之间或者第二换热装置120和第二四通阀150之间,第二液体泵301设置在电机40和第一四通阀140之间或者电机40和第二四通阀150之间;热管理系统100处于第四工作模式D的情况下,第一液体泵300用于为电池10和第二换热装置120之间的水循环提供动力,第二液体泵301用于为电机40和换热水箱400之间的水循环提供动力。
通过设置第一液体泵300,有利于使第二换热装置120与电池10之间进行充分的热量交换,从而使电池10工作产生的热量通过水循环传递至第二换热装置120,再通过第二换热装置120与冷媒的热交换将热量释放至室外空气中,从而有利于保证电池处于正常的工作温度范围。
通过设置第二液体泵301,有利于使电机40与换热水箱400之间进行充分的热量交换,进而使电机40工作产生的热量通过水循环传递至换热水箱400,以对电机40进行散热。从而有利于提高电机40的可靠性。
在本申请的一些实施例中,热管理系统100具有第五工作模式E。请参考图2和图7,热管理系统100处于第五工作模式E的情况下,第一换热装置110从车辆内部20吸收热量的同时向车辆内部20释放热量,以对车辆内部20进行除湿,第三换热装置160从室外空气中吸收热量,第二换热装置120吸收热量,电池10与第二换热装置120串联,以通过第二换热装 置120回收电池10的热量。
在第五工作模式E中,第二换热装置120与电池10串联,第一换热装置110分别与第三换热装置160和第二换热装置120进行热量交换,从而将室外空气的热量以及电池10的热量传递至车辆内部20对车辆内部20加热,也实现了电池10热量的回收,有利于提高能量利用率。同时,第一换热装置110还可对车辆内部20进行除湿。
第五工作模式E适用于车辆处于中温环境的情况,第五工作模式E也可称之为乘员舱除湿模式。热管理系统100通过第五工作模式E,对乘员舱进行除湿。另一方面,电池10工作时产生的热量,通过第二换热装置120进行回收,可以促进冷媒的状态转换,从而节约热管理系统100的能量消耗。
进一步地,热管理系统100处于第五工作模式E的情况下,电机40与电池10、第二换热装置120串联。
这样设置,还可将电机40工作产生的热量通过第二换热装置120传递至冷媒进行回收,有利于进一步提高能量利用率。
在本申请的一些实施例中,第一换热装置110包括室内冷凝器111和蒸发器112;热管理系统100还包括压缩机170、第一节流装置180、第二节流装置181和第三节流装置181;热管理系统100处于第五工作模式E的情况下,压缩机170、室内冷凝器111、第一节流装置180和第三换热装置160依次连接形成第一冷媒制热循环回路;压缩机170、室内冷凝器111、第二节流装置181和蒸发器112依次连接形成第七冷媒制热循环回路;压缩机170、室内冷凝器111、第三节流装置181和第二换热装置120依次连接形成第八冷媒制热循环回路。
本申请实施例具体说明了第五工作模式E的工作方式。第一冷媒制热循环回路可吸收外部空气的热量,从而对车辆内部20进行加热;第七冷媒制热循环回路可吸收车辆内部20的水蒸气,从而对车辆内部20除湿;第八冷媒制热循环回路可吸收电池10、电机40的热量,从而对车辆内部20进行加热,也即,第八冷媒制热循环回路对电池10和电机40的热量进行回收。以下为第五工作模式E的一个循环的工作过程:第一换热装置110包括室内冷凝器111和蒸发器112,第三换热装置160、蒸发器112和第二换热装置120并联。压缩机170压缩并驱动冷媒,此时,冷媒为高温高压状态的气态。然后冷媒被送至室内冷凝器111并对车辆内部20放热,此时,车辆内部20温度升高,冷媒释放热量后变成高压低温的液态。在这之后,从室内冷凝器111出来的冷媒流经三路。第一路为:冷媒经过第一节流装置180成为低压低温的液态后,再流经第三换热装置160,通过第三换热装置160吸收外部环境热量后汽化为 气体,进入压缩机170继续开始下一个循环;第二路为:冷媒经过第二节流装置181成为低压低温的液态后,再流经蒸发器112,此时由于蒸发器内具有低温冷媒,车辆内部20的水蒸气经过蒸发器112后受冷液化,从而可对车辆内部20进行除湿。冷媒通过蒸发器112吸收车辆内部20的热量后汽化为气体,进入压缩机170继续开始下一个循环;第三路为:冷媒经过第三节流装置181成为低压低温的液态后,再流经第二换热装置120,而第二换热装置120与电机40和电池10为串联连接,因此,冷媒通过第二换热装置120吸收电池10和电机40的热量后汽化为气体,进入压缩机170继续开始下一个循环,这样,可将电池10与电机40的热量用来对车辆内部20加热,也即,可实现对电池10与电机40的热量回收。
在本申请的一些实施例中,热管理系统100还包括第一液体泵300和第二液体泵301,第一液体泵300设置在第二换热装置120和第一四通阀140之间或者第二换热装置120和第二四通阀150之间,第二液体泵301设置在电机40和第一四通阀140之间或者电机40和第二四通阀150之间;热管理系统100处于第四工作模式D的情况下,第一液体泵300和第二液体泵301均用于为电池10、电机40和第二换热装置120之间的水循环提供动力。
通过设置第一液体泵300和第二液体泵301,有利于使第二换热装置120与电池10、电机40之间进行充分的热量交换。
在本申请的一些实施例中,热管理系统100还包括气液分离器500。气液分离器用于将液态冷媒和气态冷媒分离,从而使进入压缩机170的为干燥的气体冷媒。
如图2所示,在本申请的一些实施例中,热管理系统100还包括三通水阀700,三通水阀700位于换热水箱400与第二四通阀150之间。通过设置三通水阀700,可以使进行水循环的液体选择是否流经换热水箱,进而有利于降低热管理系统100的复杂性。
如图2所示,在本申请的一些实施例中,热管理系统100还包括设置于压缩机170进口与第三换热装置160之间的第一开关601、设置于室内冷凝器111与压缩机170出口之间的第二开关602、设置于蒸发器112与第二换热装置120之间的第三开关603、设置于压缩机170出口与第二换热装置120之间的第四开关604、设置于第二换热装置120与压缩机170进口之间的第五开关605以及设置于压缩机170出口与第三换热装置160之间的第六开关606。通过设置多个通路开关,有利于方便控制各个部件在各个工作模式的工作状态。
如图2所示,在本申请的一些实施例中,热管理系统100还包括第一单向阀801、第二单向阀802以及第三单向阀803。第一单向阀801用于使第三换热装置160至第一换热装置110的方向导通,且第一单向阀801与第一节流装置180并联;
第二单向阀802用于使第一换热装置110至第三换热装置160的方向导通,且第二单向阀802与第一节流装置180串联;
第三单向阀803用于使第二换热装置120至第三换热装置160的方向导通,且第三单向阀803与第三节流装置182并联。
单向阀是指一种在一个方向导通而在相反方向不导通的阀门。通过设置多个单向阀,有利于方便控制各个部件之间在各个工作模式时特定方向的导通或断开状态。
基于上述热管理系统100的的多种工作模式,本申请实施例提出了一种热管理系统100,具体如图1所示。热管理系统100包括气液分离器500、压缩机170、室内冷凝器111、蒸发器112、电加热装置230、第三换热装置160、第二换热装置120、电池10、电机40、第一四通阀140、第二四通阀150、换热水箱400、三通水阀700、第一液体泵300、第二液体泵301、第一开关601、第二开关602、第三开关603、第四开关604、第五开关605、第六开关606、第一单向阀801、第二单向阀802、第三单向阀803、第一节流装置180、第二节流装置181以及第三节流装置182。本申请实施例的热管理系统至少包括前述的五种工作模式,且可通过切换多个开关、切换三通阀以及切换两个四通阀的状态从而实现各个工作模式的自由切换。
当第一工作模式A工作时,第一开关601、第二开关602和第四开关604接通,第三开关603、第五开关605和第六开关606断开;电池10通过第一四通阀140和第二四通阀150接通第二换热装置120。
当第二工作模式B工作时,第四开关604和第三开关603接通,第一开关601、第二开关602、第五开关605和第六开关606断开;电池10通过第一四通阀140和第二四通阀150接通第二换热装置120。
当第三工作模式C工作时,第一开关601、第二开关602和第五开关605接通,第三开关603、第四开关604和第六开关606断开;第二换热装置120通过第一四通阀140和第二四通阀150以及三通阀700接通换热水箱400。
当第四工作模式D工作时,第三开关603、第五开关605和第六开关606接通,第一开关601、第二开关602和第四开关604断开;电池10通过第一四通阀140和第二四通阀150接通第二换热装置120;电机40通过第一四通阀140和第二四通阀150以及三通阀700接通换热水箱400。
当第五工作模式E工作时,第一开关601、第二开关602、第三开关603和第五开关605 接通,第二开关602和第六开关606断开;电池10、电机40以及第二换热装置120通过第一四通阀140和第二四通阀150串联连接;三通阀700使水循环不经过换热水箱400。
通过本申请实施例的热管理系统100,有利于使电池10处于正常的工作温度范围,同时有利于提高能量利用率,进而利于提高电动车辆1的续航里程。
本申请第二方面提出了一种电动车辆1,包括上述第一方面所述的热管理系统100。
本申请实施例的电动车辆1使用第一方面所述的热管理系统100。热管理系统100通过第一换热装置110与第二换热装置120,同时对电池10与车辆内部20进行温度调节,也即,将车辆内部热管理系统100和电池热管理系统100进行了适当的集成设计,进而有利于使电池10处于正常的工作温度范围,同时有利于提高能量利用率,进而利于提高电动车辆1的续航里程。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围,其均应涵盖在本申请的权利要求和说明书的范围当中。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (28)

  1. 一种用于电动车辆的热管理系统,所述电动车辆包括电池,所述电池用于对所述电动车辆提供电能,其特征在于,所述热管理系统包括:
    第一换热装置,用于对车辆内部进行温度调节;和
    第二换热装置,用于对所述电池进行温度调节;
    其中,所述第一换热装置与所述第二换热装置串联或者并联,用于对所述车辆内部和所述电池同时进行温度调节。
  2. 根据权利要求1所述的热管理系统,其特征在于,所述热管理系统包括电池第一回路,所述电池第一回路包括所述电池和所述第二换热装置,所述电池分别通过第一四通阀和第二四通阀与所述第二换热装置串联或者不相连。
  3. 根据权利要求2所述的热管理系统,其特征在于,还包括电机,用于驱动所述电动车辆,在所述热管理系统中,所述电机通过所述第一四通阀和第二四通阀与所述电池串联或者互不相连。
  4. 根据权利要求3所述的热管理系统,其特征在于,所述热管理系统还包括第三换热装置,所述第三换热装置与所述第一换热装置串联,所述第三换热装置用于冷媒与室外空气进行换热,所述第一换热装置用于通过冷媒循环对所述车辆内部进行温度调节,所述第二换热装置用于通过冷媒循环对所述电池进行温度调节。
  5. 根据权利要求4所述的热管理系统,其特征在于,所述热管理系统具有第一工作模式;
    所述热管理系统处于所述第一工作模式的情况下,所述第三换热装置从室外空气中吸收热量,所述第一换热装置向所述车辆内部释放热量,所述第二换热装置释放热量,所述电池第一回路导通,以通过所述第二换热装置对所述电池进行加热。
  6. 根据权利要求5所述的热管理系统,其特征在于,所述热管理系统处于所述第一工作模式的情况下,所述电机与所述电池不相连。
  7. 根据权利要求5所述的热管理系统,其特征在于,所述第一换热装置包括室内冷凝器;
    所述热管理系统还包括压缩机和第一节流装置;
    所述热管理系统处于所述第一工作模式的情况下,所述压缩机、所述室内冷凝器、所述第一节流装置和所述第三换热装置依次连接形成第一冷媒制热循环回路;所述压缩机、 所述第二换热装置、所述第一节流装置和所述第三换热装置依次连接形成第二冷媒制热循环回路。
  8. 根据权利要求5所述的热管理系统,其特征在于,所述热管理系统还包括第一液体泵,所述第一液体泵设置在所述电池第一回路中。
  9. 根据权利要求4所述的热管理系统,其特征在于,所述热管理系统具有第二工作模式;
    所述热管理系统处于所述第二工作模式的情况下,所述第一换热装置从所述车辆内部吸收热量,所述第二换热装置释放热量,所述第一电池回路导通,以通过所述第二换热装置对所述电池进行加热。
  10. 根据权利要求9所述的热管理系统,其特征在于,所述热管理系统处于所述第二工作模式的情况下,所述电机与所述电池不相连。
  11. 根据权利要求9所述的热管理系统,其特征在于,所述第一换热装置包括蒸发器;
    所述热管理系统还包括压缩机和第二节流装置;
    所述热管理系统处于所述第二工作模式的情况下,所述压缩机、所述第二换热装置、所述第二节流装置和所述蒸发器依次连接形成第三冷媒制热循环回路。
  12. 根据权利要求9所述的热管理系统,其特征在于,所述热管理系统还包括电加热装置,所述电加热装置用于以电加热的方式对所述车辆内部进行供热。
  13. 根据权利要求9所述的热管理系统,其特征在于,所述热管理系统还包括第一液体泵,所述第一液体泵设置在所述电池第一回路中。
  14. 根据权利要求4所述的热管理系统,其特征在于,所述热管理系统具有第三工作模式;
    所述热管理系统处于所述第三工作模式的情况下,所述第三换热装置从室外空气中吸收热量,所述第一换热装置向所述车辆内部释放热量,所述第二换热装置吸收热量,所述电池与所述第二换热装置不相连。
  15. 根据权利要求14所述的热管理系统,所述热管理系统还包括换热水箱,所述换热水箱通过所述第一四通阀和所述第二四通阀与所述第二换热装置串联或者不相连;
    所述热管理系统处于所述第三工作模式的情况下,所述换热水箱与所述第二换热装置串联。
  16. 根据权利要求14所述的热管理系统,其特征在于,所述热管理系统处于所述第三 工作模式的情况下,所述电机与所述电池串联。
  17. 根据权利要求14所述的热管理系统,其特征在于,所述第一换热装置包括室内冷凝器;
    所述热管理系统还包括压缩机、第一节流装置和第三节流装置;
    所述热管理系统处于所述第三工作模式的情况下,所述压缩机、所述室内冷凝器、所述第一节流装置和所述第三换热装置依次连接形成第一冷媒制热循环回路;所述压缩机、所述室内冷凝器、所述第三节流装置和所述第二换热装置依次连接形成第四冷媒制热循环回路。
  18. 根据权利要求15所述的热管理系统,其特征在于,所述热管理系统还包括第一液体泵,所述第一液体泵设置在所述第二换热装置和所述第一四通阀之间或者所述第二换热装置和所述第二四通阀之间;
    所述热管理系统处于所述第三工作模式的情况下,所述第一液体泵用于为所述换热水箱和所述第二换热装置之间的水循环提供动力。
  19. 根据权利要求16所述的热管理系统,其特征在于,所述热管理系统还包括第二液体泵,所述第二液体泵设置在所述电机和所述第一四通阀之间或者所述电机和所述第二四通阀之间;
    所述热管理系统处于所述第三工作模式的情况下,所述第二液体泵用于为所述电机和所述电池之间的水循环提供动力。
  20. 根据权利要求4所述的热管理系统,其特征在于,所述热管理系统具有第四工作模式;
    所述热管理系统处于所述第四工作模式的情况下,所述第三换热装置向室外空气释放热量,所述第一换热装置从所述车辆内部吸收热量,所述第二换热装置吸收热量,所述电池第一回路导通,以通过所述第二换热装置对所述电池进行冷却。
  21. 根据权利要求20所述的热管理系统,其特征在于,所述热管理系统还包括换热水箱,所述换热水箱通过所述第一四通阀和所述第二四通阀与所述第二换热装置串联或者不相连;
    所述热管理系统处于所述第四工作模式的情况下,所述电机与所述电池不相连,所述换热水箱与所述第二换热装置不相连,所述换热水箱与所述电机串联。
  22. 根据权利要求20所述的热管理系统,其特征在于,所述第一换热装置包括蒸发器;
    所述热管理系统还包括压缩机、第二节流装置和第三节流装置;
    所述热管理系统处于所述第四工作模式的情况下,所述压缩机、所述第三换热装置、所述第二节流装置和所述蒸发器依次连接形成第五冷媒制热循环回路;所述压缩机、所述第三换热装置、所述第三节流装置和所述第二换热装置依次连接形成第六冷媒制热循环回路。
  23. 根据权利要求21所述的热管理系统,其特征在于,所述热管理系统还包括第一液体泵和第二液体泵,所述第一液体泵设置在所述第二换热装置和所述第一四通阀之间或者所述第二换热装置和所述第二四通阀之间,所述第二液体泵设置在所述电机和所述第一四通阀之间或者所述电机和所述第二四通阀之间;所述热管理系统处于所述第四工作模式的情况下,所述第一液体泵用于为所述电池和所述第二换热装置之间的水循环提供动力,所述第二液体泵用于为所述电机和所述换热水箱之间的水循环提供动力。
  24. 根据权利要求4所述的热管理系统,其特征在于,所述热管理系统具有第五工作模式;
    所述热管理系统处于所述第五工作模式的情况下,所述第一换热装置从所述车辆内部吸收热量的同时向车辆内部释放热量,以对所述车辆内部进行除湿,所述第三换热装置从室外空气中吸收热量,所述第二换热装置吸收热量,所述电池与所述第二换热装置串联,以通过所述第二换热装置回收所述电池的热量。
  25. 根据权利要求24所述的热管理系统,其特征在于,所述热管理系统处于所述第五工作模式的情况下,所述电机与所述电池、所述第二换热装置串联。
  26. 根据权利要求24所述的热管理系统,其特征在于,所述第一换热装置包括室内冷凝器和蒸发器;
    所述热管理系统还包括压缩机、第一节流装置、第二节流装置和第三节流装置;
    所述热管理系统处于第五工作模式的情况下,所述压缩机、所述室内冷凝器、所述第一节流装置和所述第三换热装置依次连接形成第一冷媒制热循环回路;所压缩机、所述室内冷凝器、所述第二节流装置和所述蒸发器依次连接形成第七冷媒制热循环回路;所述压缩机、所述室内冷凝器、所述第三节流装置和所述第二换热装置依次连接形成第八冷媒制热循环回路。
  27. 根据权利要求25所述的热管理系统,其特征在于,所述热管理系统还包括第一液体泵和第二液体泵,所述第一液体泵设置在所述第二换热装置和所述第一四通阀之间或者 所述第二换热装置和所述第二四通阀之间,所述第二液体泵设置在所述电机和所述第一四通阀之间或者所述电机和所述第二四通阀之间;所述热管理系统处于所述第四工作模式的情况下,所述第一液体泵和所述第二液体泵均用于为所述电池、所述电机和所述第二换热装置之间的水循环提供动力。
  28. 一种电动车辆,其特征在于,包括根据权利要求1至27中任一项所述的热管理系统。
PCT/CN2021/141761 2021-12-27 2021-12-27 用于电动车辆的热管理系统及电动车辆 WO2023122904A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180063702.2A CN116745169A (zh) 2021-12-27 2021-12-27 用于电动车辆的热管理系统及电动车辆
PCT/CN2021/141761 WO2023122904A1 (zh) 2021-12-27 2021-12-27 用于电动车辆的热管理系统及电动车辆
EP21969290.2A EP4269168A4 (en) 2021-12-27 2021-12-27 THERMAL MANAGEMENT SYSTEM USED FOR AN ELECTRIC VEHICLE, AND ELECTRIC VEHICLE
US18/353,185 US20240017585A1 (en) 2021-12-27 2023-07-17 Thermal management system for electric vehicle and electric vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/141761 WO2023122904A1 (zh) 2021-12-27 2021-12-27 用于电动车辆的热管理系统及电动车辆

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/353,185 Continuation US20240017585A1 (en) 2021-12-27 2023-07-17 Thermal management system for electric vehicle and electric vehicle

Publications (2)

Publication Number Publication Date
WO2023122904A1 WO2023122904A1 (zh) 2023-07-06
WO2023122904A9 true WO2023122904A9 (zh) 2023-08-03

Family

ID=86996834

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/141761 WO2023122904A1 (zh) 2021-12-27 2021-12-27 用于电动车辆的热管理系统及电动车辆

Country Status (4)

Country Link
US (1) US20240017585A1 (zh)
EP (1) EP4269168A4 (zh)
CN (1) CN116745169A (zh)
WO (1) WO2023122904A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117360174B (zh) * 2023-12-08 2024-03-01 山东科技大学 一种燃料电池汽车耦合热管理系统

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3910384B2 (ja) * 2000-10-13 2007-04-25 本田技研工業株式会社 車両用バッテリ冷却装置
US7789176B2 (en) * 2007-04-11 2010-09-07 Tesla Motors, Inc. Electric vehicle thermal management system
US8997503B2 (en) * 2010-01-15 2015-04-07 Mitsubishi Heavy Industries, Ltd. Vehicle air-conditioning system and operation control method therefor
CN105048023B (zh) * 2015-07-20 2017-07-28 安徽江淮汽车集团股份有限公司 一种汽车双向热交换系统
CN105196832A (zh) * 2015-09-30 2015-12-30 上海交通大学 充量自动调节的电动汽车废热回收热泵式综合热管理系统
CN205355204U (zh) * 2016-03-02 2016-06-29 宁德时代新能源科技股份有限公司 电池包热管理系统
CN106585414B (zh) * 2016-12-27 2018-01-19 上海思致汽车工程技术有限公司 一种智能化多回路电动汽车冷却系统
CN110048185B (zh) * 2019-03-26 2022-06-17 开沃新能源汽车集团有限公司 一种带四通阀的电池包冷却系统布置结构
CN112046237A (zh) * 2020-08-14 2020-12-08 珠海格力电器股份有限公司 一种热管理系统、控制方法和电动车

Also Published As

Publication number Publication date
US20240017585A1 (en) 2024-01-18
WO2023122904A1 (zh) 2023-07-06
EP4269168A4 (en) 2024-03-06
CN116745169A (zh) 2023-09-12
EP4269168A1 (en) 2023-11-01

Similar Documents

Publication Publication Date Title
JP7326074B2 (ja) 車両用ヒートポンプシステム
CN110525169B (zh) 纯电动汽车用集成乘员舱热泵空调及三电热管理系统
WO2020088106A1 (zh) 一种基于热泵空调的集成电池、电机、电控的综合热管理系统及其方法
JP7357498B2 (ja) 車両用熱管理システム
KR102320361B1 (ko) 차량 객실 가열 회로 및 배터리 가열 회로를 구비한 차량용 열 펌프 장치
KR20210003457A (ko) 차량용 열 관리 시스템
JP2012083100A (ja) 車両冷却システム
TWI787989B (zh) 電動汽車集成熱管理系統及實現方法
KR20220021201A (ko) 차량용 열 관리 시스템
CN115503445B (zh) 带五通阀的可集成式热泵空调与热管理系统及其控制方法
US20240017585A1 (en) Thermal management system for electric vehicle and electric vehicle
CN114212002B (zh) 一种电动汽车热管理系统
CN114368263B (zh) 多联式电动车辆热管理系统
EP4043250A1 (en) Vehicle thermal management system, and vehicle
CN114771206A (zh) 热管理系统和车辆
CN111391616B (zh) 一种空调系统
WO2023208175A1 (zh) 汽车空调系统、热管理系统及其控制方法、车辆
KR20200103391A (ko) 전기자동차용 냉난방 시스템
CN113580882B (zh) 热管理系统以及交通工具
CN218702613U (zh) 一种热管理系统及电动车辆
CN115626030B (zh) 热管理系统及车辆
NL2033595B1 (en) Integrated heat pump air-conditioning and thermal management system with five way valves and a control method
WO2024092646A1 (zh) 一种交通设备及其热管理系统和热管理方法
CN115817110B (zh) 一种电动汽车的热管理系统
CN220555302U (zh) 直冷直热式热管理系统及汽车

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202180063702.2

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2021969290

Country of ref document: EP

Effective date: 20230725

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21969290

Country of ref document: EP

Kind code of ref document: A1