WO2023122862A1 - 光学镜片 - Google Patents

光学镜片 Download PDF

Info

Publication number
WO2023122862A1
WO2023122862A1 PCT/CN2021/141528 CN2021141528W WO2023122862A1 WO 2023122862 A1 WO2023122862 A1 WO 2023122862A1 CN 2021141528 W CN2021141528 W CN 2021141528W WO 2023122862 A1 WO2023122862 A1 WO 2023122862A1
Authority
WO
WIPO (PCT)
Prior art keywords
zone
diopter
optical
optical lens
area
Prior art date
Application number
PCT/CN2021/141528
Other languages
English (en)
French (fr)
Inventor
黄逸芳
林士翔
Original Assignee
晶硕光学股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 晶硕光学股份有限公司 filed Critical 晶硕光学股份有限公司
Priority to JP2022562051A priority Critical patent/JP2024504527A/ja
Priority to US18/012,983 priority patent/US20240103298A1/en
Priority to CN202180008839.8A priority patent/CN116830023A/zh
Priority to PCT/CN2021/141528 priority patent/WO2023122862A1/zh
Priority to KR1020247024680A priority patent/KR20240128929A/ko
Priority to AU2021481573A priority patent/AU2021481573A1/en
Priority to EP21955297.3A priority patent/EP4459362A1/en
Publication of WO2023122862A1 publication Critical patent/WO2023122862A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • A61P27/10Ophthalmic agents for accommodation disorders, e.g. myopia
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/04Contact lenses for the eyes
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/04Contact lenses for the eyes
    • G02C7/041Contact lenses for the eyes bifocal; multifocal
    • G02C7/044Annular configuration, e.g. pupil tuned
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/04Contact lenses for the eyes
    • G02C7/049Contact lenses having special fitting or structural features achieved by special materials or material structures
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/10Filters, e.g. for facilitating adaptation of the eyes to the dark; Sunglasses
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C2202/00Generic optical aspects applicable to one or more of the subgroups of G02C7/00
    • G02C2202/24Myopia progression prevention

Definitions

  • the invention relates to an optical lens, in particular to a myopia correction lens with decompression function.
  • Myopia correction lenses provide a single focus design, although they can effectively focus on the center of the retina to correct myopia, but the peripheral retinal imaging is behind the eye axis, resulting in continuous growth of the eye axis. Therefore, although the single vision lens can correct myopia, it will lead to the increase of myopia.
  • some myopia correction lenses such as circular defocus
  • the myopia correction lens When the myopia correction lens is applied to children's myopia correction, it will affect the children's willingness to wear it, resulting in poor correction effect.
  • a technical aspect of the present invention is an optical lens applied to correct myopia.
  • the optical lens includes an optical zone, wherein the optical zone includes a decompression zone, a photopic zone, and a defocus zone.
  • the photopic zone surrounds the decompression zone.
  • the out-of-focus area surrounds the photopic area and the decompression area, and the diopter of the decompression area decreases gradually along the direction from the center of the optical area to the edge of the optical area.
  • the addition degree of the decompression zone ranges from +0.25D to +1.00D.
  • the diopter of the photopic area is a constant value.
  • the diopter of the photopic zone increases along the direction from the decompression zone to the edge of the optical zone.
  • the diopter of the out-of-focus zone increases along the direction from the clear vision zone to the edge of the optical zone.
  • the optical zone further includes an enhanced zone surrounding the out-of-focus zone.
  • the diopter of the enhanced zone increases gradually from the edge between the out-of-focus zone and the enhanced zone to the edge of the optical zone.
  • the diopter of the enhanced area decreases gradually from the edge between the out-of-focus area and the enhanced area to the edge of the optical area.
  • the absolute value of the diopter change in the enhanced area is greater than the absolute value of the diopter change in the out-of-focus area, wherein the diopter change is the ratio of the diopter divided by the radius of the lens.
  • the diopter of the enhanced area is cyclically reciprocated within an interval.
  • the optical lens is a hard contact lens or a soft contact lens.
  • the material of the optical lens includes hydrogel or silicone hydrogel.
  • the optical lens is configured to be stored in a lens preservation solution, wherein the lens preservation solution has a low content of mydriatic agent, and wherein the mydriatic agent is configured to relax the ciliary muscle of the eyeball and increase the effect of slowing down the progression of myopia.
  • the optical lens is an anti-blue light lens.
  • the optical lens has an astigmatism diopter and an astigmatism axis, and is configured to correct the astigmatism.
  • the optical lens of the present invention can reduce the discomfort caused by long-term over-adjustment of the eyeball by setting the decompression zone.
  • the diopter of the out-of-focus area increases along the direction from the photopic area to the edge of the optical area, instead of being the same as the diopter of the photopic area, which can improve the continuous growth of the eye axis caused by the out-of-focus area of the traditional single-focal lens being imaged behind the retina problem, slow down the progression of myopia.
  • FIG. 1A is a top view of an optical lens according to an embodiment of the present invention.
  • FIG. 1B is a cross-sectional view along line 1B-1B of FIG. 1A .
  • FIG. 2 is a graph showing the relationship between the diopter and the radius of an optical lens according to an embodiment of the present invention.
  • Fig. 3 is an imaging simulation diagram of an optical lens according to an embodiment of the present invention.
  • FIG. 4 is a graph showing the relationship between the diopter and the radius of an optical lens according to another embodiment of the present invention.
  • FIG. 5 is a graph showing the relationship between the diopter and the radius of an optical lens according to another embodiment of the present invention.
  • Fig. 6 is an imaging simulation diagram of an optical lens according to another embodiment of the present invention.
  • FIG. 7 is a graph showing the relationship between the diopter and the radius of an optical lens according to another embodiment of the present invention.
  • Fig. 8A is a top view of an astigmatism lens according to an embodiment of the present invention.
  • Fig. 8B is a top view of an astigmatic lens according to another embodiment of the present invention.
  • Fig. 9 is a diopter distribution diagram of an astigmatism lens according to an embodiment of the present invention.
  • Fig. 10 is a diagram showing the relationship between the diopter and the radius of the astigmatic lens along different angles in the optical zone according to an embodiment of the present invention.
  • optical lens 102 center
  • OZ Optical Zone
  • PZ Peripheral Zone
  • BC base arc
  • FC front arc
  • FIG. 1A is a top view of an optical lens 100 according to an embodiment of the invention.
  • the optical lens 100 includes an optical zone OZ, a peripheral zone PZ and a center 102 .
  • the optical zone OZ includes a decompression zone 110 (Relax Zone), a clear vision zone 120 (Distance Zone), a defocus zone 130 (Defocus Zone), and an enhancement zone 140 (Enhance Zone).
  • the photopic area 120 surrounds the decompression area 110
  • the out-of-focus area 130 surrounds the photopic area 120 and the decompression area 110 .
  • the optical lens 100 of the present invention is used to correct myopia and slow down myopia progression.
  • a low-content mydriatic agent can be added to the preservation solution of the optical lens 100 to relax the ciliary muscle of the eyeball to avoid over-adjustment of the eyeball and enhance the effect of alleviating myopia.
  • the optical lens 100 can be a hard contact lens, a soft contact lens, or a hard contact lens with high oxygen permeability.
  • the conventional manufacturing method of hard recessed eyes refers to the combination of front curve (Front curve) and back arc (Base curve) with single or multiple radii of curvature to process hard polymer materials ( Example: PMMA) to meet the optical characteristics and the adaptability of the corneal curvature of the eye.
  • the conventional manufacturing method of soft contact lenses is manufactured by combining the upper half mold of the back arc and the lower half of the front arc with lens optics and configuration, filling the upper and lower half molds with liquid soft contact lens polymer material In the cavity, it is polymerized at high temperature into a solid state, and then hydrated, packaged with a preservation solution (for example: PP blister packing) and sterilized to make a finished product, which is then packaged and labeled as a commodity.
  • the material of the optical lens 100 may include hydrogel or silicone hydrogel.
  • hydrogels for soft contact lenses are polyhydroxyethylmethacrylate (p-HEMA), and their air permeability (Dk/t x10 -9 ) is about 15 to 40, such as Etafilcon A; and silicone hydrogels
  • the material refers to adding high oxygen permeability silicon material to the water gel, and its air permeability (Dk/t x10 -9 ) is about 50-150, for example senofilcon A.
  • the optical lens 100 can be an anti-blue light lens.
  • Anti-blue light lenses refer to the use of materials that can absorb or block part or all of blue light wavelengths between 380nm and 500nm.
  • the known common technology is dyeing or coating, which can achieve the above-mentioned functions of different blue light absorption rates.
  • FIG. 1B is a cross-sectional view along line 1B-1B of FIG. 1A .
  • the optical lens 100 has a base curve BC (Base Curve), a front curve FC (Front Curve), a central thickness CT, and a diameter D.
  • the diameter D is 8mm as an example, but the present invention is not limited thereto.
  • the base curve BC can be adjusted according to the characteristics of the wearer's eyeballs to meet the wearing needs of people with different symptoms or ages, while the front curve FC can control the required degrees.
  • FIG. 2 is a graph showing the relationship between the diopter and the radius of an optical lens according to an embodiment of the present invention.
  • the decompression zone 110 ranges from a radius of 0 mm (ie, the center 102 ) to a radius of 1 mm.
  • the range of the clear vision zone 120 is approximately from a radius of 1 mm to a radius of 2 mm.
  • the range of the out-of-focus area 130 is approximately from a radius of 2 mm to a radius of 3.5 mm.
  • the enhanced area 140 ranges from approximately a radius of 3.5 mm to a radius of 4 mm.
  • the ranges of the above-mentioned regions are examples only, and are not intended to limit the present invention.
  • the diopter of the photopic area 120 is determined according to the diopter required to correct myopia.
  • the diopter of the photopic area 120 is -3.0D, which is a constant value.
  • the diopter of the decompression zone 110 decreases gradually along the direction from the center 102 of the optical zone OZ to the edge 142 of the optical zone OZ, that is, the diopter of the decompression zone 110 is greater than that of the photopic zone 120 .
  • the addition degree (ADD) of the decompression zone 110 ranges from +0.25D to +1.00D. In a preferred embodiment, the addition degree (ADD) of the decompression zone 110 ranges from +0.50D to +0.75D.
  • the diopter of the decompression zone 110 in this embodiment decreases from -2.5D to -3.0D, that is, the addition degree of the decompression zone 110 is +0.5D.
  • the diopter of the out-of-focus zone 130 increases along the direction from the photopic zone 120 to the enhanced zone 140 (ie, toward the edge 142 of the optical zone OZ).
  • the diopter of the out-of-focus area 130 increases from -3.0D to about -0.5D, instead of being the same as the diopter of the clear vision area 120 . This solves the problem that the out-of-focus area of the traditional single-focus lens is imaged behind the retina and causes the eye axis to continue to grow.
  • the diopter of the enhanced area 140 decreases gradually from the edge 132 between the out-of-focus area 130 and the enhanced area 140 to the edge 142 of the optical zone OZ, for example, the diopter of the enhanced area 140 decreases from -0.5D to -3.5D.
  • the slope of the diopter line segment in the enhanced area 140 is greater than the slope of the diopter line segment in the out-of-focus area 130, and the slopes of the two are opposite.
  • the diopter change is defined here as the ratio of the diopter divided by the radius of the lens.
  • the absolute value of the diopter change in the enhanced area 140 is 3.0D divided by 0.5, which is equal to 6.
  • the absolute value of the diopter change in the out-of-focus area 130 is 2.5D divided by 1.5 equals 1.7. It can be seen from this that the absolute value of the diopter change in the enhanced area 140 is greater than the absolute value of the diopter change in the out-of-focus area 130 . With the design of the obvious difference in diopter change between the out-of-focus area 130 and the intensified area 140, imaging interference can be eliminated to improve the focus on the imaging of the photopic area 120 and the out-of-focus area 130 and the corresponding correction Myopia and defocus effect.
  • Fig. 3 is an imaging simulation diagram of the optical lens according to Fig. 2 .
  • an image is generated at a focal point F focused on the retina 300 .
  • the virtual image 230 generated by the out-of-focus region 130 and the virtual image 240 generated by the enhanced region 140 are shown in dashed lines.
  • the virtual image 240 of the enhanced area 140 is more difficult to be recognized by the brain, thus producing an effect similar to masking the enhanced area 140 .
  • the virtual image 240 here is not only incoherent with the image of the out-of-focus area 230 , but may also be impossible to image. In this way, the brain is hardly able to identify or process the virtual image 240 of the enhanced area 140 , thereby enhancing the concentration on the out-of-focus area 130 and the photopic area 120 . Therefore, the optical lens 100 of the present invention can enable the wearer to have clear visual effects when watching both near-distance objects and distant objects.
  • FIG. 4 is a graph showing the relationship between the diopter and the radius of an optical lens according to another embodiment of the present invention.
  • This embodiment is substantially the same as the embodiment shown in FIG. 2 , the difference being that the diopter of the out-of-focus area 130 a gradually increases from the clear vision area 120 a to the edge 132 of the out-of-focus area 130 a.
  • the change in diopter between the photopic area 120a and the out-of-focus area 130a is gradual, that is, the change in diopter is relatively gentle. This can reduce the blurring or double image caused by the obvious change of diopter, so that the wearer can have a clear visual effect.
  • FIG. 5 is a graph showing the relationship between the diopter and the radius of an optical lens according to another embodiment of the present invention.
  • This embodiment is substantially the same as the embodiment shown in FIG. 2 , the difference being that the diopter of the enhanced zone 140 a increases along the direction from the defocus zone 130 to the edge 142 of the optical zone OZ.
  • the slope of the diopter line segment in the enhanced area 140 is in the same direction as the slope of the diopter line segment in the out-of-focus area 130 , but the slope of the diopter line segment in the enhanced area 140 is still significantly greater than the slope of the diopter line segment in the out-of-focus area 130 .
  • Fig. 6 is an imaging simulation diagram of the optical lens according to Fig. 5 .
  • the virtual image 230 generated by the out-of-focus region 130 and the virtual image 240a generated by the enhanced region 140a are shown in dashed lines.
  • the brain can barely recognize or process the virtual image 240 a of the enhanced area 140 , so that the focus on the out-of-focus area 130 and the photopic area 120 can be enhanced.
  • imaging interference can be eliminated to improve the focus on the imaging of the photopic area 120 and the out-of-focus area 130 and its Corresponding correction of myopia and defocus effects.
  • FIG. 7 is a graph showing the relationship between the diopter and the radius of an optical lens according to another embodiment of the present invention.
  • This embodiment is substantially the same as the embodiment shown in FIG. 2 , and the difference is that the diopter of the enhanced area 140b is cyclically reciprocated within a range.
  • the diopter of the enhanced area 140 repeatedly increases and decreases within the interval between 1.0D and 0.4D. Therefore, the sharply changing diopter in the enhanced area 140 makes it difficult for the light to form an image, so the brain can hardly recognize or process the virtual image of the enhanced area 140b, thereby enhancing the focus on the out-of-focus area 130 and the photopic area 120 .
  • imaging interference can be eliminated to improve the concentration and focus on the imaging generated by the photopic area 120 and the out-of-focus area 130 Corresponding correction of myopia and defocus effects.
  • FIG. 8A is a top view of an astigmatic lens 400 according to an embodiment of the present invention.
  • the astigmatic lens 400 includes an astigmatic optical zone 410 and an astigmatic thickening stabilization zone 420 .
  • the astigmatism thickening and stabilization zone 420 of this embodiment is located below the lens, and is a Prism-Ballast Type astigmatism lens 400 .
  • Fig. 8B is a top view of an astigmatic lens 400a according to another embodiment of the present invention.
  • the toric lens 400a also includes an astigmatic optic zone 410a and an astigmatic thickening stabilization zone 420a.
  • This embodiment has two astigmatism thickening and stabilizing regions 420a, which are respectively located on the left and right sides of the lens, and are double slab-off type astigmatism lens 400a.
  • the aforementioned astigmatic optical zones 410 , 410 a both include the aforementioned decompression zone 110 , photopic zone 120 , out-of-focus zone 130 and enhancement zone 140 . That is to say, the astigmatism optical zone 410, 410a has the functions of correcting myopia, decompression, and improving concentration as described in the foregoing embodiments.
  • the astigmatic thickening stabilization zone 420, 420a is configured so that the lens does not rotate after wearing to maintain correct corrective function, and the design of the stabilization zone is not limited to the above-mentioned types.
  • Fig. 9 is a diopter distribution diagram of an astigmatism lens according to an embodiment of the present invention.
  • astigmatism optics is a double diopter change type, including Sphere Power, Cylinder Power, and Cylinder Axis.
  • the embodiment in FIG. 9 takes spherical diopter of -3.00D, astigmatic diopter of -1.25D (astigmatism of 125 degrees), and astigmatism axis of 180 degrees as an example. Therefore, the diopter between lens angle 0° and lens angle 180° is about -3.00D, and the diopter between lens angle 90° and lens angle 270° is about -4.25.
  • the present invention includes changes in diopters of the aforementioned decompression zone 110 , photopic zone 120 , out-of-focus zone 130 , and enhanced zone 140 .
  • the above optical characteristics of astigmatism only take the axial variation of the photopic zone as an example.
  • FIG. 10 is a diagram showing the relationship between the diopter and the radius of the astigmatic lens along different angles in the optical zone according to an embodiment of the present invention.
  • FIG. 8A shows an axis AX1 of 0 degrees, an axis AX2 of 45 degrees, and an axis AX3 of 90 degrees.
  • Curves S1 , S2 , and S3 in FIG. 10 respectively represent the diopter-radius relationship curves along the axes AX1 , AX2 , and AX3 .
  • the optical zone OZ diopter distribution shown in FIG. 3 is taken as an example.
  • the spherical diopter of -3.00D, the astigmatic diopter of -1.25D, the axis of 180 degrees, and the addition of +0.5D (that is, the addition of the decompression zone) are taken as examples.
  • the segment with a radius of 1 mm to 2 mm in the embodiment is equivalent to the clear vision area, and the spherical diopter -3.00D is the degree required for the correction of myopia.
  • the relationship between the diopter and the radius along the axis AX1 is substantially the same as that of the embodiment in FIG. 2 .
  • the relationship between the diopter and the radius along the axis AX2 is increased by about -0.63D astigmatism diopter compared with the curve S1, but the curve S2 has a similar changing trend with the radius as the curve S1.
  • the relationship between the diopter and the radius along the axis AX3 is increased by about -1.25D astigmatism diopter compared with the curve S1, but the curve S2 has a similar changing trend with the radius as the curve S1.
  • the above-mentioned optical designs can be set on the same side of the lens (front curve FC or base curve BC), or can be set on a single side of the lens respectively, both of which can have the effect of reducing pressure and correcting myopia and astigmatism.
  • the spherical diopter range of the astigmatism lens can be in the range of +10.0D to -10.0D
  • the astigmatism diopter can be in the range of -0.50D to -3.50D
  • the astigmatism axis can be in the range of 5° to 180° in the range.
  • the astigmatism lens of the present invention can simultaneously meet the requirements of the relationship between diopter and radius as shown in FIG. 2 and the requirements of astigmatism diopter and astigmatism axis. In this way, such a design can provide patients with astigmatism with clear vision both far and near. It also includes the effects of the aforementioned decompression zone 110 , clear vision zone 120 , defocus zone 130 and enhancement zone 140 .
  • the optical lens of the present invention can avoid discomfort caused by excessive adjustment of the eyeball for a long time by setting the decompression zone.
  • the diopter of the out-of-focus area increases along the direction from the photopic area to the edge of the optical area, instead of being the same as the diopter of the photopic area, which can improve the continuous growth of the eye axis caused by the out-of-focus area of the traditional single-focal lens being imaged behind the retina question.
  • the design of the obvious difference in diopter change between the out-of-focus area and the enhanced area can eliminate imaging interference to improve the focus on the imaging of the photopic area and the out-of-focus area and the corresponding effect of correcting myopia and defocus.

Landscapes

  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Eyeglasses (AREA)
  • Rehabilitation Tools (AREA)

Abstract

一种光学镜片(100),包含光学区(OZ),其中光学区(OZ)包含减压区(110)、明视区(120)、以及离焦区(130),明视区(120)环绕减压区(110),离焦区(130)环绕明视区(120)与减压区(110),减压区(110)的屈光度沿着自光学区(OZ)的中心(102)往光学区(OZ)的边缘(142)的方向递减。光学镜片(100)借由设置减压区(110),可降低眼球因长时间过度调节引发的不适感。离焦区(130)的屈光度沿着自明视区(120)往光学区(OZ)的边缘(142)的方向递增,而非与明视区(120)的屈光度相同,可改善传统单焦镜片的离焦区成像于视网膜后方而导致眼轴持续增长的问题,减缓近视加深。

Description

光学镜片 技术领域
本发明是有关于一种光学镜片,尤其是一种具有减压功能的近视矫正镜片。
背景技术
近视矫正镜片提供单焦设计,虽可有效地聚焦于视网膜中心而矫正近视,但是视网膜周边成像在眼轴后方导致眼轴持续增长。因此,单焦镜片虽可矫正近视却会导致近视的增加。
在一些近视矫正镜片的设计中,例如环型离焦,易导致叠影。当近视矫正镜片应用于儿童近视矫正时,会影响而儿童的配戴意愿造成矫正效果不佳。此外,在长时间近距离用眼调节时,容易累积压力而产生不适。
有鉴于此,如何提供一种可解决上述问题的光学镜片仍是目前业界努力研究的目标之一。
发明内容
本发明的一技术态样为一种光学镜片,应用于矫正近视。
在本发明一实施例中,光学镜片包含光学区,其中光学区包含减压区、明视区、以及离焦区。明视区环绕减压区。离焦区环绕明视区与减压区,减压区的屈光度沿着自光学区的中心往光学区的边缘的方向递减。
在本发明一实施例中,减压区的加入度介于+0.25D至+1.00D。
在本发明一实施例中,明视区的屈光度为定值。
在本发明一实施例中,明视区的屈光度沿着自减压区往光学区的边缘的方向递增。
在本发明一实施例中,离焦区的屈光度沿着自明视区往光学区的边缘的方向递增。
在本发明一实施例中,光学区还包含围绕离焦区的强化区。
在本发明一实施例中,强化区的屈光度沿着自离焦区与强化区之间的边缘往光学区的边缘递增。
在本发明一实施例中,强化区的屈光度沿着自离焦区与强化区之间的边缘往光学区的边缘递减。
在本发明一实施例中,强化区的屈光度变化量的绝对值大于离焦区的屈光度变化量的绝对值,其中屈光度变化量为屈光度除以镜片半径的比值。
在本发明一实施例中,强化区的屈光度在一区间内循环往复。
在本发明一实施例中,光学镜片为硬式隐眼(Hard contact lens)或软式隐眼(Soft contact lens)。
在本发明一实施例中,光学镜片的材料包含水胶或硅水胶。
在本发明一实施例中,光学镜片配置以保存于镜片保存液,其中镜片保存液具有低含量的散瞳剂,其中散瞳剂配置以放松眼球睫状肌,增加减缓近视加深的效果。
在本发明一实施例中,光学镜片为抗蓝光镜片。
在本发明一实施例中,光学镜片具有散光屈光度以及散光轴度,配置以矫正散光。
在上述实施例中,本发明的光学镜片借由设置减压区,可降低眼球因长时间过度调节引发的不适感。离焦区的屈光度沿着自明视区往光学区的边缘的方向递增,而非与明视区的屈光度相同,可改善传统单焦镜片的离焦区成像于视网膜后方而导致眼轴持续增长的问题,减缓近视加深。
附图的简要说明
图1A为根据本发明一实施例的光学镜片的俯视图。
图1B为沿着图1A线段1B-1B的剖面图。
图2为根据本发明一实施例的光学镜片的屈光度与半径关系图。
图3为根据本发明一实施例的光学镜片的成像模拟图。
图4为根据本发明另一实施例的光学镜片的屈光度与半径关系图。
图5为根据本发明另一实施例的光学镜片的屈光度与半径关系图。
图6为根据本发明另一实施例的光学镜片的成像模拟图。
图7为根据本发明另一实施例的光学镜片的屈光度与半径关系图。
图8A为根据本发明一实施例的散光镜片的俯视图。
图8B为根据本发明另一实施例的散光镜片的俯视图。
图9为根据本发明一实施例的散光镜片屈光度分布图。
图10为根据本发明一实施例的散光镜片沿着光学区内不同角度的屈光度与半径关系图。
【主要元件符号说明】
100:光学镜片                     102:中心
110:减压区                       120,120a:明视区
130,130a:离焦区                  132:边缘
140,140a,140b:强化区             142:边缘
200:光线                         230:240,240a:虚拟成像
300:视网膜                       400,400a:散光镜片
410,410a:散光光学区              420,420a:散光增厚稳定区
OZ:光学区                        PZ:周边区
BC:基弧                          FC:前弧
CT:中心厚度                      D:直径
F:焦点                           AX1,AX2,AX3:轴向
S1,S2,S3:曲线                    1B-1B:线段
实现发明的最佳方式
以下将以图式揭露本发明的多个实施方式,为明确说明起见,许多实务上的细节将在以下叙述中一并说明。然而,应了解到,这些实务上的细节不应用以限制本发明。也就是说,在本发明部分实施方式中,这些实务上的细节是非必要的。此外,为简化图式起见,一些现有习知惯用的结构与元件在图式中将以简单示意的方式绘示之。且为了清楚起见,图式中的层和区域的厚度可能被夸大,并且在图式的描述中相同的元件符号表示相同的元件。
图1A为根据本发明一实施例的光学镜片100的俯视图。光学镜片100包含光学区OZ、周边区PZ以及中心102。光学区OZ包含减压区110(Relax Zone)、明视区120(Distance Zone)、离焦区130(Defocus Zone)、以及强化区140(Enhance Zone)。明视区120环绕减压区110,离焦区130环绕明视区120与减压区110。本发明的光学镜片100是应用于矫正近视与减缓近视加深。光学镜片100的保存液中可加入低含量的散瞳剂,放松眼球睫状肌以避免眼球过度调节,加强近视减缓效果。光学镜片100可以为硬式隐眼、软式隐眼、硬式高透氧隐眼。硬式隐眼习知制造方式,是指以超精密加工机(例:Ametek Optoform80),以单一或多段曲率半径的前弧(Front curve)、背弧(Base curve)组合加工硬质高分子材料(例:PMMA)而成,以符合光学特性与眼球角膜曲率适配性。软式隐眼习知制造方式,举例以具有镜片光学及构形的背弧上半模与前弧下半模结合的铸模法制造,将液态软式隐眼高分子材料填充至上下半模模腔中,加以高温聚合为固态,并经水 化、保存液封包(例:PP blister packing)与灭菌制成成品,加以包装贴标为商品。光学镜片100的材料可包含水胶或硅水胶。一般常见软式隐眼的水胶成分为聚甲基丙烯酸羟乙酯(p-HEMA),其透气率(Dk/t x10 -9)约略介于15~40,举例Etafilcon A;而硅水胶材料是指在水胶加入高透氧的硅材质,其透气率(Dk/t x10 -9)约略介于50~150,举例senofilcon A。在一些实施例中,光学镜片100可为抗蓝光镜片。抗蓝光镜片是指使用可以吸收或阻隔部分或完整介于380纳米至500纳米蓝光波长的材质。习知常见技术为染色或镀膜,即可达到上述不同蓝光吸收率的功能。
图1B为沿着图1A线段1B-1B的剖面图。光学镜片100具有基弧BC(Base Curve)、前弧FC(Front Curve)、中心厚度CT、以及直径D。本实施例中以直径D为8毫米做为示例,但本发明不限于此。基弧BC可根据配戴者眼球特性调整以适应不同症状或年龄者的佩戴需求,而前弧FC可控制所需度数。
图2为根据本发明一实施例的光学镜片的屈光度与半径关系图。在本实施例中,减压区110的范围大约为自半径0毫米(即中心102)至半径1毫米处。明视区120的范围大约为自半径1毫米至半径2毫米处。离焦区130的范围大约为自半径2毫米至半径3.5毫米处。强化区140的范围大约为自半径3.5毫米至半径4毫米处。上述各区域范围仅为示例,其并非用以限制本发明。
如图2所示,明视区120的屈光度是根据矫正近视所需的屈光度而定。本实施例中,明视区120的屈光度为-3.0D,且为定值。减压区110的屈光度沿着自光学区OZ的中心102往光学区OZ的边缘142方向递减,亦即减压区110的屈光度大于明视区120的屈光度。减压区110的加入度(ADD)介于+0.25D至+1.00D。在较佳实施例中,减压区110的加入度(ADD)介于+0.50D至+0.75D。举例来说,本实施例的减压区110的屈光度自-2.5D递减至-3.0D,也就是减压区110的加入度为+0.5D。借由设置减压区110,可降低眼球因长时间过度调节引发的不适感。
离焦区130的屈光度沿着自明视区120往强化区140的方向递增(亦即往光学区OZ的边缘142的方向)。本实施例中,离焦区130的屈光度从-3.0D递增至约-0.5D,而非与明视区120的屈光度相同。借此改善传统单焦镜片的离焦区成像于视网膜后方而导致眼轴持续增长的问题。
在本实施例中,强化区140的屈光度自离焦区130与强化区140之间的边缘132往光学区OZ的边缘142递减,例如强化区140的屈光度从-0.5D递减至-3.5D。如图中屈光度的线段所示,强化区140的屈光度线段斜率大 于离焦区130的屈光度线段斜率,且两者的斜率为反向。此处定义屈光度变化量为屈光度除以镜片半径的比值。强化区140的屈光度变化量的绝对值为3.0D除以0.5,等于6。离焦区130的屈光度变化量的绝对值为2.5D除以1.5等于1.7。由此可知,强化区140的屈光度变化量的绝对值大于离焦区130的屈光度变化量的绝对值。借由上述离焦区130与强化区140之间明显的屈光度变化量差异的设计,可以消除成像干扰以提升对于明视区120与离焦区130的所产生成像的专注度及其对应的矫正近视与离焦效果。
图3为根据图2的光学镜片的成像模拟图。光线200通过光学镜片100后产生成像集中于视网膜300的焦点F。图中以虚线绘示离焦区130产生的虚拟成像230以及强化区140产生的虚拟成像240。如同前述,由于离焦区130产生的虚拟成像230位于视网膜300前方,可避免眼轴持续增长导致近视加深。强化区140的虚拟成像240较难以被大脑辨识,因而产生类似遮蔽强化区140的效果。此外,由于本实施例中强化区140的屈光度线段斜率与离焦区130的屈光度线段斜率为反向,因此此处的虚拟成像240不只与离焦区230的成像不连贯,也有可能无法成像。如此一来,大脑几乎无法辨识或处理强化区140的虚拟成像240,借此可强化对于离焦区130与明视区120的专注度。因此,本发明的光学镜片100可使得配戴者在观看近距离物体与远距离物体时皆可具有清晰的视觉效果。
图4为根据本发明另一实施例的光学镜片的屈光度与半径关系图。本实施例与图2的实施例大致相同,其差异在于离焦区130a的屈光度自明视区120a往离焦区130a的边缘132递增。换句话说,明视区120a与离焦区130a之间的屈光度变化量为渐进的,亦即屈光度变化较为平缓。借此可减少屈光度明显变化导致的模糊或叠影等状况,使配戴者具有清晰的视觉效果。
图5为根据本发明另一实施例的光学镜片的屈光度与半径关系图。本实施例与图2的实施例大致相同,其差异在于强化区140a的屈光度沿着自离焦区130往光学区OZ的边缘142的方向递增。强化区140的屈光度线段斜率与离焦区130的屈光度线段斜率为同方向,然而强化区140的屈光度线段斜率仍明显地大于离焦区130的屈光度线段斜率。
图6为根据图5的光学镜片的成像模拟图。图中以虚线绘示离焦区130产生的虚拟成像230以及强化区140a产生的虚拟成像240a。如同前述,大脑几乎无法辨识或处理强化区140的虚拟成像240a,借此可强化对于离焦区130与明视区120的专注度。如此一来,借由离焦区130与强化区140a 之间明显的屈光度变化量差异的设计,可以消除成像干扰以提升对于明视区120与离焦区130的所产生成像的专注度及其对应的矫正近视与离焦效果。
图7为根据本发明另一实施例的光学镜片的屈光度与半径关系图。本实施例与图2的实施例大致相同,其差异在于强化区140b的屈光度在一区间内循环往复。举例来说,本实施例中强化区140的屈光度是在1.0D与0.4D的区间内反复地增减。因此,强化区140内急遽变化的屈光度使得光线难以成像,因此大脑几乎无法辨识或处理强化区140b的虚拟成像,借此可强化对于离焦区130与明视区120的专注度。如此一来,借由离焦区130与强化区140b之间明显的屈光度变化量差异的设计,可以消除成像干扰以提升对于明视区120与离焦区130的所产生成像的专注度及其对应的矫正近视与离焦效果。
图8A为根据本发明一实施例的散光镜片400的俯视图。散光镜片400包含散光光学区410与散光增厚稳定区420。本实施例的散光增厚稳定区420位于镜片下方,为菱镜垂重型式(Prism-Ballast Type)的散光镜片400。
图8B为根据本发明另一实施例的散光镜片400a的俯视图。散光镜片400a也包含散光光学区410a与散光增厚稳定区420a。本实施具有两个散光增厚稳定区420a,分别位于镜片左右两侧,为上下削薄型式(Double Slab-off Type)的散光镜片400a。
上述的散光光学区410,410a皆包含前述的减压区110、明视区120、离焦区130以及强化区140。也就是说,散光光学区410,410a具有前述实施例中所述用于矫正近视、减压、提升专注度等功能。散光增厚稳定区420,420a配置以使得镜片在配戴后不转动,以维持正确的矫正功能,且稳定区设计不限于上述种类。
图9为根据本发明一实施例的散光镜片屈光度分布图。具体而言,散光光学为双屈光度变化型态,包含球面屈光度(Sphere Power)、散光屈光度(Cylinder Power)、以及散光轴度(Cylinder Axis)。图9中的实施例是以球面屈光度-3.00D、散光屈光度-1.25D(散光度数125度)、以及散光轴度180度为例。因此,在镜片角度0度与镜片角度180度的屈光度约为-3.00D,镜片角度90度与镜片角度270度的屈光度约为-4.25。本发明包含前述的减压区110、明视区120、离焦区130以及强化区140的变化屈光度,上述散光光学特性,仅以明视区的轴向变化为例。
图10为根据本发明一实施例的散光镜片沿着光学区内不同角度的屈光 度与半径关系图。同时参照图8A与图10。图8A中绘示了分别为0度的轴向AX1、45度的轴向AX2、以及90度的轴向AX3。图10中的曲线S1、S2、S3分别代表沿着轴向AX1、AX2、AX3上的屈光度与半径关系曲线。
本实施例以前述图3所示的光学区OZ屈光度分布做为示例。在本实施例中,以球面屈光度-3.00D、散光屈光度-1.25D、轴度180度、以及加入度+0.5D(亦即减压区的加入度)为例。实施例半径1毫米至2毫米的区段相当于明视区,以球面屈光度-3.00D为矫正近视所需度数。
同时参照图8A与图10。如曲线S1所示,沿着轴向AX1上的屈光度与半径关系与图2的实施例大致相同。如曲线S2所示,沿着轴向AX2上的屈光度与半径关系相较于曲线S1增加了约-0.63D的散光屈光度,然而曲线S2具有与曲线S1相似的随半径变化趋势。如曲线S3所示,沿着轴向AX3上的屈光度与半径关系相较于曲线S1增加了约-1.25D的散光屈光度,然而曲线S2具有与曲线S1相似的随半径变化趋势。上述的光学设计可同时设置于镜片同一侧(前弧FC或基弧BC)、或分别设置于镜片单一侧,皆可具有减压以及矫正近视与散光的效果。在一些实施例中,散光镜片的球面屈光度范围可在+10.0D~-10.0D的范围中、散光屈光度可在-0.50D~-3.50D的范围中,散光轴度可在5°~180°的范围中。
根据上述,本发明的散光镜片可同时满足如图2所示的屈光度与半径关系以及散光屈光度与散光轴度的需求。如此一来,这样的设计可提供散光患者看远看近皆清晰的视觉效果。同时包含前述的减压区110、明视区120、离焦区130以及强化区140的效果。
综上所述,本发明的光学镜片借由设置减压区,可避免眼球因长时间过度调节引发的不适感。离焦区的屈光度沿着自明视区往光学区的边缘的方向递增,而非与明视区的屈光度相同,可改善传统单焦镜片的离焦区成像于视网膜后方而导致眼轴持续增长的问题。离焦区与强化区之间明显的屈光度变化量差异的设计,可以消除成像干扰以提升对于明视区与离焦区的所产生成像的专注度及其对应的矫正近视与离焦效果。
虽然本发明已以实施方式揭露如上,然其并非用以限定本发明,任何熟习此技艺者,在不脱离本发明的精神和范围内,当可作各种的更动与润饰,因此本发明的保护范围当申请专利范围所界定者为准。

Claims (15)

  1. 一种光学镜片,应用于矫正近视与减缓度数加深,该减压镜片包含光学区,其特征在于,其中该光学区包含:
    减压区;
    明视区,环绕该减压区;以及
    离焦区,环绕该明视区与该减压区,其中该减压区的屈光度沿着自该光学区的中心往该光学区的边缘的方向递减。
  2. 根据权利要求1所述的光学镜片,其特征在于,其中该减压区的加入度介于+0.25D至+1.00D。
  3. 根据权利要求1所述的光学镜片,其特征在于,其中该明视区的屈光度为定值。
  4. 根据权利要求1所述的光学镜片,其特征在于,其中该明视区的屈光度沿着自该减压区往该光学区的该边缘的方向递增。
  5. 根据权利要求1所述的光学镜片,其特征在于,其中该离焦区的屈光度沿着自该明视区往该光学区的该边缘的方向递增。
  6. 根据权利要求5所述的光学镜片,其特征在于,其中该光学区还包含围绕该离焦区的强化区。
  7. 根据权利要求6所述的光学镜片,其特征在于,其中该强化区的屈光度沿着自该离焦区与该强化区之间的边缘往该光学区的该边缘的方向递增。
  8. 根据权利要求6所述的光学镜片,其特征在于,其中该强化区的屈光度自该离焦区与该强化区之间的边缘往该光学区的该边缘的方向递减。
  9. 根据权利要求6所述的光学镜片,其特征在于,其中该强化区的屈光度变化量的绝对值大于该离焦区的屈光度变化量的绝对值,其中屈光度 变化量为屈光度除以镜片半径的比值。
  10. 根据权利要求6所述的光学镜片,其特征在于,其中该强化区的屈光度在一区间内循环往复。
  11. 根据权利要求1所述的光学镜片,其特征在于,其中该光学镜片为硬式隐眼或软式隐眼。
  12. 根据权利要求1所述的光学镜片,其特征在于,其中该光学镜片的材料包含水胶或硅水胶。
  13. 根据权利要求12所述的光学镜片,其特征在于,其中该光学镜片配置以保存于镜片保存液,其中该镜片保存液具有低含量的散瞳剂,其中该散瞳剂配置以放松眼球睫状肌,增加减缓近视加深的效果。
  14. 根据权利要求1所述的光学镜片,其特征在于,其中该光学镜片为抗蓝光镜片。
  15. 根据权利要求1所述的光学镜片,其特征在于,其中该光学镜片具有散光屈光度以及散光轴度,配置以矫正散光。
PCT/CN2021/141528 2021-12-27 2021-12-27 光学镜片 WO2023122862A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2022562051A JP2024504527A (ja) 2021-12-27 2021-12-27 光学レンズ
US18/012,983 US20240103298A1 (en) 2021-12-27 2021-12-27 Optical lens
CN202180008839.8A CN116830023A (zh) 2021-12-27 2021-12-27 光学镜片
PCT/CN2021/141528 WO2023122862A1 (zh) 2021-12-27 2021-12-27 光学镜片
KR1020247024680A KR20240128929A (ko) 2021-12-27 2021-12-27 광학 렌즈
AU2021481573A AU2021481573A1 (en) 2021-12-27 2021-12-27 Optical lens
EP21955297.3A EP4459362A1 (en) 2021-12-27 2021-12-27 Optical lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/141528 WO2023122862A1 (zh) 2021-12-27 2021-12-27 光学镜片

Publications (1)

Publication Number Publication Date
WO2023122862A1 true WO2023122862A1 (zh) 2023-07-06

Family

ID=86996764

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/141528 WO2023122862A1 (zh) 2021-12-27 2021-12-27 光学镜片

Country Status (7)

Country Link
US (1) US20240103298A1 (zh)
EP (1) EP4459362A1 (zh)
JP (1) JP2024504527A (zh)
KR (1) KR20240128929A (zh)
CN (1) CN116830023A (zh)
AU (1) AU2021481573A1 (zh)
WO (1) WO2023122862A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116699871A (zh) * 2023-05-29 2023-09-05 江苏全真光学科技股份有限公司 一种多点离焦变色眼镜片及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113608363B (zh) * 2021-08-24 2023-04-14 江苏康耐特光学有限公司 一种制备高折射率树脂镜片的前弯弯度设计方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040054408A1 (en) * 2002-09-13 2004-03-18 Advanced Medical Optics, Inc. Accommodating intraocular lens assembly with aspheric optic design
CN102119354A (zh) * 2008-08-11 2011-07-06 诺瓦提斯公司 用于防止或延缓近视发展的透镜设计和方法
CN109426007A (zh) * 2017-08-28 2019-03-05 精华光学股份有限公司 视力矫正用光学镜片
TWI736212B (zh) * 2020-04-08 2021-08-11 晶碩光學股份有限公司 隱形眼鏡及其光學減壓區
CN113514962A (zh) * 2021-04-29 2021-10-19 上允生技股份有限公司 连续变焦隐形眼镜

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040054408A1 (en) * 2002-09-13 2004-03-18 Advanced Medical Optics, Inc. Accommodating intraocular lens assembly with aspheric optic design
CN102119354A (zh) * 2008-08-11 2011-07-06 诺瓦提斯公司 用于防止或延缓近视发展的透镜设计和方法
CN109426007A (zh) * 2017-08-28 2019-03-05 精华光学股份有限公司 视力矫正用光学镜片
TWI736212B (zh) * 2020-04-08 2021-08-11 晶碩光學股份有限公司 隱形眼鏡及其光學減壓區
CN113514962A (zh) * 2021-04-29 2021-10-19 上允生技股份有限公司 连续变焦隐形眼镜

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116699871A (zh) * 2023-05-29 2023-09-05 江苏全真光学科技股份有限公司 一种多点离焦变色眼镜片及其制备方法
CN116699871B (zh) * 2023-05-29 2023-11-10 江苏全真光学科技股份有限公司 一种多点离焦变色眼镜片及其制备方法

Also Published As

Publication number Publication date
CN116830023A (zh) 2023-09-29
AU2021481573A1 (en) 2024-08-08
JP2024504527A (ja) 2024-02-01
US20240103298A1 (en) 2024-03-28
KR20240128929A (ko) 2024-08-27
EP4459362A1 (en) 2024-11-06

Similar Documents

Publication Publication Date Title
TWI688797B (zh) 用於預防及/或減緩近視加深之包含非同軸微透鏡的隱形眼鏡
TWI828696B (zh) 包含用於預防及/或減緩近視加深之微透鏡的眼用鏡片
CN100342268C (zh) 角膜矫正和双光隐形眼镜
CA2807846C (en) Multi-axis lens design for astigmatism
TWI557466B (zh) 轉換式老花隱形眼鏡對
RU2664161C2 (ru) Контактные линзы со стабилизацией против трения
JP6474542B2 (ja) フィット特性が改善されたコンタクトレンズ
WO2023122862A1 (zh) 光学镜片
JP6388771B2 (ja) 周縁高弾性率ゾーンを有するコンタクトレンズ
TWI823364B (zh) 用於預防或減緩近視之發展或惡化之隱形眼鏡及相關方法
TWI820551B (zh) 光學鏡片
US20220283449A1 (en) Contact lens
TWI821026B (zh) 舒壓隱形眼鏡
TW202232199A (zh) 智慧多焦點散光鏡片
TW202041924A (zh) 體積變量減少的軟式隱形眼鏡
CN114911072B (zh) 智能多焦点镜片及多焦点散光镜片
CN219715854U (zh) 一种双非球面角膜塑形镜
TWI758731B (zh) 一種隱形眼鏡之定位結構
WO2023240675A1 (zh) 基于角膜形态和屈光数据的角膜塑形镜制作方法和装置
Cox et al. How Contact Lenses Have Influenced Research Developments in Optics and Vision Science
CN114911072A (zh) 智能多焦点镜片及多焦点散光镜片
WO2017013644A2 (en) Contact lens for vision correction
AU2015268675A1 (en) Multi-axis lens design for astigmatism

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202180008839.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022562051

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18012983

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21955297

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 3242187

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2401004280

Country of ref document: TH

ENP Entry into the national phase

Ref document number: 20247024680

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: AU21481573

Country of ref document: AU

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 11202404434R

Country of ref document: SG

ENP Entry into the national phase

Ref document number: 2021955297

Country of ref document: EP

Effective date: 20240729

ENP Entry into the national phase

Ref document number: 2021481573

Country of ref document: AU

Date of ref document: 20211227

Kind code of ref document: A