WO2023122852A1 - 气动式波浪能发电装置透平综合性能测试系统 - Google Patents

气动式波浪能发电装置透平综合性能测试系统 Download PDF

Info

Publication number
WO2023122852A1
WO2023122852A1 PCT/CN2021/141441 CN2021141441W WO2023122852A1 WO 2023122852 A1 WO2023122852 A1 WO 2023122852A1 CN 2021141441 W CN2021141441 W CN 2021141441W WO 2023122852 A1 WO2023122852 A1 WO 2023122852A1
Authority
WO
WIPO (PCT)
Prior art keywords
turbine
bellows
connecting plate
tube
sensor
Prior art date
Application number
PCT/CN2021/141441
Other languages
English (en)
French (fr)
Inventor
张崇伟
代洁娆
宁德志
Original Assignee
大连理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大连理工大学 filed Critical 大连理工大学
Priority to US17/799,577 priority Critical patent/US20230213014A1/en
Priority to PCT/CN2021/141441 priority patent/WO2023122852A1/zh
Publication of WO2023122852A1 publication Critical patent/WO2023122852A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/14Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy
    • F03B13/141Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy with a static energy collector
    • F03B13/142Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy with a static energy collector which creates an oscillating water column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B11/00Parts or details not provided for in, or of interest apart from, the preceding groups, e.g. wear-protection couplings, between turbine and generator
    • F03B11/008Measuring or testing arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Definitions

  • the invention relates to the technical field of ocean energy utilization, in particular to a turbine comprehensive performance testing system for an aerodynamic wave energy generating device.
  • Ocean wave energy is a renewable energy with huge reserves, wide distribution and great development potential.
  • wave energy generation devices which can be divided into pneumatic, hydraulic, mechanical, direct drive and other forms according to the principle of power generation.
  • the pneumatic wave energy generation device has the advantages of simple structure, few moving parts, and easy maintenance. It has great potential in industrial application.
  • the core structure of the pneumatic wave energy power generation device includes a water surface air chamber and an air turbine. When it is working, the water surface in the air chamber vibrates under the action of external waves, and then the gas in the air chamber is forced to reciprocate through the air pipe above the air chamber, and the gas pushes The turbine in the air duct rotates, which drives the electric motor to generate electricity.
  • the comprehensive performance of the turbine directly determines the efficiency and stability of the aerodynamic wave energy power generation device. Accurate testing and evaluation of the comprehensive performance of the turbine is a key link in the design and optimization of the wave energy device.
  • the traditional turbine test system mainly uses blowers or air compressors to generate unidirectional and stable airflow, and evaluates the performance of the turbine by testing the power generation effect of the turbine driven by the steady airflow, without considering the uniqueness of the aerodynamic wave energy device .
  • the airflow driving the turbine is generated by the complex water surface oscillation in the air chamber.
  • the airflow has the characteristics of reciprocation, oscillation and randomness, which cannot be realized by the traditional turbine test system. Therefore, the present invention aims to propose a mechanism that can simulate the complex oscillating air flow of the pneumatic wave energy generating device, and configure complete sensors and measurement systems for various performance indicators of the turbine system to form a set of pneumatic wave energy generating devices Turbine comprehensive performance test system.
  • the purpose of the present invention is to design a complete set of comprehensive performance testing system for the turbine system of the pneumatic wave energy power generation device.
  • the performance indicators of the flat system are equipped with a complete sensor and measurement system, and finally provide an effective technical evaluation method for the power generation benefit and comprehensive performance evaluation of the aerodynamic wave energy generation device.
  • a comprehensive performance testing system for a pneumatic wave energy generator turbine including a wave surface simulation system, a gas rectification system, a turbine device, a desktop support structure, an instrument support frame, and a sensor analysis system;
  • the wave surface simulation system includes a bellows rectifier connecting plate 23, a compressible bellows 24, a bellows cover 4, a push plate 3, a rigid connecting rod 2 and a programmable linear motor 1; It is fixedly connected with the push plate 3; the other side of the push plate 3 is in contact with the compressible bellows 24; the compressible bellows 24 is installed in the bellows cover 4, and through the support protection and restraint in the bellows cover 4, the compressible bellows 24 realizes two-way straight line Movement; the bellows rectification connecting plate 23 is embedded inside the bellows cover 4; the bellows rectifying connecting plate 23 is fixedly connected to the air outlet of the compressible bellows 24 and the gas rectifying system; the programmable linear motor 1 drives the rigid connecting rod 2 to change over time through the displacement setting signal The horizontal movement; the rigid connecting rod 2 drives the push plate 3 to squeeze the compressible bellows 24, and the gas in the compressible bellows 24 is compressed and expanded according to the set rule, simulating the effect
  • the gas rectification system includes a diversion turbine connecting plate 20, a spirit level 21, a diversion pipe 6, a rectifying pipe 5, a rectification bellows connecting plate 18, a rectification and diversion connecting plate 19, a honeycomb pipe 22 and a single detachable diversion cylinder 36;
  • the tube 5 is connected to the compressible bellows 24 through the rectifying bellows connecting plate 18 and the bellows rectifying connecting plate 23; the inside of the rectifying tube 5 is filled with a honeycomb tube 22, and the gas passes through the rectifying tube 5 to achieve the rectifying effect;
  • the rectifying tube 5 passes through the rectifying and guiding connecting plate 19 Connect with the guide tube 6;
  • the guide tube 6 has one or more sections; the outer wall of each section of the guide tube 6 is equipped with a spirit level 21 for judging the levelness of the guide tube 6; the last section of the guide tube 6 is the same as the guide turbine
  • the connecting plate 20 is connected, and the diverting turbine connecting plate 20 is connected with the gas chamber 7 of the turbine
  • the turbine device includes an air chamber 7, turbine blades 15, guide cone 16 and guide fan 17; gas enters the air chamber 7 from the guide pipe 6; the air chamber 7 is arranged with turbine blades 15, guide cone 16 and Guide fan 17; the gas passes through the diversion effect of the guide cone 16 and the guide fan 17, sprays the gas at an angle to the turbine blade 15, makes it rotate and then drives the connected motor to generate electricity;
  • the wave surface simulation system, gas rectification system and turbine device are respectively fixed on an independent table support structure;
  • the table support structure includes a table top 33, retractable table legs 32, short beams 31, threaded splicing holes 30 between tables and table leg pulleys 34;
  • the side of the desktop 33 is arranged with inter-desk threaded splicing holes 30, and each of the desktops 33 is connected through the inter-desk threaded splicing holes 30;
  • the short beam 31 is arranged on the lateral side of the desktop 33, and it is connected with telescopic table legs 32 to strengthen the structure of the desktop 33 Stability;
  • telescopic table legs 32 are telescopic rod-shaped structures, which are convenient for experimenters to adjust the height of the desktop support and the levelness of the overall instrument;
  • table leg pulleys 34 are installed on both sides of the telescopic table legs 32 bottoms;
  • table leg pulleys 34 are belt Pulleys with brake pads are easy to move and fix.
  • the instrument support frame is used to carry and fix the measuring instrument, and it is successively jaw 25, horizontal rotating column 26, telescopic column 27 and adjustable fixing groove 28 from bottom to top; the jaw 25 fixes the instrument support frame on the The edge of the desktop 33; the horizontal rotating column 26 is used to ensure that the measuring instrument above it faces any horizontal direction; the telescopic column 27 is used to adjust the height of the instrument support; the adjustable fixing groove 28 adjusts the opening size of the fixture according to the size of the measuring instrument to be clamped, for securing measuring instruments;
  • the sensor analysis system includes a torque sensor 8, a laser speed sensor 11, a wind speed sensor 35, a laser displacement sensor 29 and a pressure sensor 37; a coupling 9 connects the two ends of the torque sensor 8 to the air chamber 7 and the generator 10;
  • the sensor 11 is fixed by the turbine-end instrument support frame 12 and placed outside the turbine blade 15; by adjusting the attitude of the laser speed sensor 11 and the height of the turbine-end instrument support frame 12, the laser emitted by the laser speed sensor 11 is horizontally irradiated to the
  • the flat blade 15 is used to measure the instantaneous rotational speed of the turbine blade 15;
  • the wind speed sensor 35 is inserted into the central axis of the draft tube 6 through the small holes at the tops of both ends of the draft tube 6, and the small hole is sealed after the installation is completed;
  • the wind speed sensor 35 in order to measure the air flow velocity after rectification and the air flow velocity before the turbine;
  • the laser displacement sensor 29 is fixed by the instrument support frame 14 at the end of the push plate, by
  • the bellows rectification connecting plate 23, the diversion turbine connecting plate 20, the rectifying bellows connecting plate 18 and the rectifying and diverting connecting plate 19 are all provided with threaded holes of the same specification at the same position, and rubber gaskets are installed between adjacent connecting plates to ensure that the gas The airtightness of the room.
  • Step 1 the above-mentioned wave surface simulation system, gas rectification system, turbine device, desktop support structure, instrument support structure and sensor analysis system are assembled according to the needs of the experiment, and the attitude of the platform is adjusted to level;
  • Step 2 adjust the height of the instrument support frame and the attitude of each sensor, link the sensor line to the data processor 13, and observe the data in real time through the display screen of the data processor 13; when testing turbines of different sizes, make a
  • the outer diameter is equal to the radius of the diversion turbine connecting plate 20 and the inner diameter is equal to the annular diversion turbine connecting plate 20 of the radius of the air chamber 7 of the turbine device to be measured, and a threaded hole is made at the corresponding position;
  • Step 3 Carry out the test.
  • the programmable linear motor 1 horizontally pushes the rigid connecting rod 2 and drives the push plate 3 to reciprocate; the push plate 3 is always within the range of the bellows cover 4 Reciprocating motion; the push plate 3 drives the compressible bellows 24 to do reciprocating motions to squeeze the air; the laser displacement sensor 29 and the pressure sensor 37 measure the displacement change and force change curve of the push plate 3 in real time; the compressible bellows 24 passes through the bellows rectification connecting plate 23 is connected with the rectification tube 5; the compressible bellows 24 pushes the air into the rectification tube 5, and the gas rectification is carried out through the honeycomb tube 22;
  • the wind speed sensor b35-2 measures the wind speed; the diversion pipe 6 and the turbine device are sealed and connected through the diversion turbine connecting plate 20; the turbine systems of different sizes are realized by adjusting the position of the threaded hole on the diversion turbine connecting plate 20
  • the guide pipe 6 is closely connected with the
  • the method for evaluating the comprehensive performance index of the turbine is as follows: use the displacement data of the push plate 3 measured by the laser displacement sensor 29 and the pressure data measured by the pressure sensor 37 to calculate the mechanical energy input by the programmable linear motor 1 to the system; use the torque sensor 8 The measured torque and the rotational speed data measured by the laser rotational speed sensor 11 are used to calculate the mechanical energy obtained by the turbine device, and by comparing it with the mechanical energy input by the programmable linear motor 1 to the system, the energy capture efficiency of the turbine device is obtained ; Measure the power generated by the motor and compare it with the mechanical energy obtained by the turbine, and calculate the power generation efficiency of the turbine device.
  • the test platform has a modular design, easy assembly and disassembly process, and high flexibility. It can build a variety of test environments for different turbine sizes and test requirements.
  • Fig. 1 is the overall structure diagram of the comprehensive performance test system of the turbine of the pneumatic wave energy generating device
  • Fig. 2 is a structural diagram of the wave surface simulation system
  • Fig. 3 is a structural diagram of the gas rectification system
  • Fig. 4 is a structural diagram of a single detachable guide tube
  • Fig. 5 is a left view of the gas rectification system
  • Fig. 6 is a desktop support structure diagram
  • Fig. 7 is an instrument support structure diagram
  • Fig. 8 is a structural diagram of the bottom of the turbine device
  • Fig. 9 is an overall view of a turbine device, a torque sensor and a generator
  • Fig. 10 is a conceptual diagram of a data processor of a comprehensive performance test system for a turbine of an aerodynamic wave energy generating device.
  • 1 programmable linear motor 1 rigid connecting rod; 3 push plate; 4 bellows cover; 5 rectifier tube; 6 guide tube; 7 air chamber; 8 torque sensor; Speed sensor; 12 Turbine end instrument support frame; 13 Data processor; 14 Push plate end instrument support frame; 15 Turbine blade; 16 Guide cone; 17 Guide fan; ;20 diversion turbine connecting plate; 21 spirit level; 22 honeycomb tube; 23 bellows rectifying connecting plate; 24 compressible bellows; 25 jaw; 26 horizontal rotating column; 27 telescopic column; ;30 threaded splicing holes between tables; 31 short beam; 32 telescopic table legs; 33 desktop; 34 table corner pulley; 35 wind speed sensor; 35-1 wind speed sensor a; 35-2 wind speed sensor b; Barrel; 37 pressure sensors.
  • the comprehensive performance test system of the turbine of the aerodynamic wave energy power generation device includes a wave surface simulation system, a gas rectification system, a turbine system, a desktop support structure, an instrument support frame and a sensor analysis system.
  • the programmable linear motor 1 receives the set displacement electric signal input by the experimenter and starts to reciprocate horizontally, and drives the push plate 3 to do horizontal reciprocating motion through the rigid connecting rod 2 .
  • the push plate 3 drives the compressible bellows 24 to reciprocate to squeeze the air.
  • the laser displacement sensor 29 and the pressure sensor 37 start to collect data, and measure the displacement change curve and the force change curve of the pushing plate 3 .
  • the turbulent gas is rectified through the honeycomb tube 22.
  • the gas comes out of the rectifier tube 5, it enters the draft tube 6, and the wind speed sensor b35-2 placed at the end of the draft tube 6 performs the first wind speed measurement, and then the wind speed sensor a35-1 placed at the head 6 of the draft tube also performs the measurement.
  • First wind speed measurement After the gas enters the gas chamber 7 of the turbine device, the high-density gas is sprayed to the turbine blade 15 through the diversion effect of the guide cone 16 and the guide fan 17, and the speed sensor 11 starts to measure the speed of the turbine blade 15 at this time. Turning speed. Simultaneously, the turbine blade 15 will drive the bearing to rotate, so that the generator 10 starts to generate electricity, and the torque sensor 8 also starts to measure simultaneously.
  • the connecting plate is designed on the edge of each component. When building the test system, use spacers and other accessories to make each component be on the same level.
  • the device uses the push plate 3 to compress the gas to simulate the driving effect of the gas in the wave energy device on the water surface.
  • the device is spliced and installed, the airtightness of the gas passage between the push plate 3 and the turbine device is ensured. .
  • test system such as the diversion tube 6, the rectifier tube 5, the table support structure, the instrument support structure, the compressible bellows, and various pipeline box connection blocks.
  • the rigid connecting rod 2 is selected as a stainless steel pipe with a diameter of 0.05m and a length of 0.6m;
  • the cross-sectional size is 0.5m*0.5m;
  • the compressible bellows 24 uses Hevela fiber with a thickness of 0.3m as the skeleton material and flame-retardant platinum silicone resin with a thickness of 0.35mm as the surface material.
  • the rectification bellows connecting plate 18, rectifying and deflecting connecting plate 19, guiding tube 6, rectifying tube 5, guiding turbine connecting plate 20 and single detachable guiding tube 36 of the gas rectifying system are all made of plexiglass with a thickness of 0.01m
  • the total length of the gas rectification system is 0.3m, and the cross-sectional size is 0.5m*0.5m.
  • the air chamber 7 of the turbine device, the turbine blades 15, the guide cone 16 and the guide fan 17 are made of ABS resin material and made by 3D printing.
  • the number, shape and inclination angle of the turbine blades 15 and the guide fan 17 are the same.
  • the diameters of the turbine blades 15 of different turbine devices are different, and the diameter of the guide fan 17 is 0.01 m larger than that of the turbine blades 15 .
  • the air chamber 7 is in the shape of a cube, and its diameter is 0.02m larger than the circumscribed square of the guide fan 17 .
  • the desktop 33 of desktop support structure is 18 centimeters chipboards, sticks 2mm antistatic rubber outside.
  • the telescopic table legs 32 and the short beam 31 are all made of 40mm*40mm*1mm steel plates.
  • the diameter of the threaded splicing hole 30 between tables is 0.01m.
  • the jaw 25 of the instrument support structure, the horizontal rotation pin 26, the telescopic post 27 and the adjustable fixing groove 28 are all made of ABS resin material.
  • the cross section of the jaw 25 is 0.1m*0.08m*0.08m, and the wall thickness is 0.01m.
  • the diameter and the height of the horizontal rotating column 26 are 0.05m, and the top surface of the jaw 25 is rotated 360 degrees horizontally.
  • the lower half of the telescopic column 27 is a rectangular hollow column of 0.1m*0.05m*0.2m and a wall thickness of 5mm, and the upper half is a rectangular hollow column of 0.09m*0.04m*0.2m and a wall thickness of 5mm.
  • the adjustable fixing groove 28 is made up of slide blocks at two ends and a slide rail at the bottom.
  • the measuring range of the torque sensor 8 of the sensing analysis system is 5Nm to 100Nm; the measuring range of the laser displacement sensor is 10mm, the range is 30+-5mm, and the precision is 10 microns.
  • the pressure sensor has a measuring range of 2000N and an accuracy of 0.1%.
  • the generator 10 adopts a rare earth permanent magnet three-phase alternator with a rated power of 50W.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

本发明属于海洋能利用技术领域,提供了一种气动式波浪能发电装置透平综合性能测试系统。该气动式波浪能发电装置透平综合性能测试系统,包括波面模拟系统、气体整流系统、透平装置、桌面支撑结构、仪器支撑架和传感分析系统;利用可编程直线电机驱动风箱,来模拟气动式波浪能发电装置复杂振荡气流,并针对透平系统的各项性能指标配置完整的传感器和测量系统,最终为气动式波浪能发电装置的发电效益和综合性能评估提供一种有效的技术评价手段。本发明实现了对气动式波浪能发电装置气室内复杂振荡气流的实验室模拟,大大降低了实验风险和成本;拼装和拆卸工艺简便,具有很高的灵活性,可以针对不同透平尺寸和测试需求,搭建多种测试环境。

Description

气动式波浪能发电装置透平综合性能测试系统 技术领域
本发明涉及海洋能利用技术领域,尤其涉及气动式波浪能发电装置透平综合性能测试系统。
背景技术
海洋波浪能是一种储备巨大、分布广泛、极具发展潜力的可再生能源。波浪能发电装置形式多样,依据发电原理可以分为气动式、液压式、机械式、直驱式等形式,其中气动式波浪能发电装置因其结构简单、活动部件少、易于维护等优点,在产业化应用方面具有较大潜力。气动式波浪能发电装置的核心结构包括水面气室和空气透平,其工作时,气室内水面在外部波浪的作用下发生振动,进而迫使气室内气体往复通过气室上方的空气管道,气体推动空气管道内的透平发生旋转,由此驱动电机发电。透平的综合性能直接决定了气动式波浪能发电装置的效率与稳定性,对透平的综合性能进行准确测试和评估,是波浪能装置设计和优化的关键环节。
传统透平测试系统主要利用鼓风机或空气压缩机来产生单向和稳定气流,并通过测试透平在稳定气流驱动下的发电效果来评估透平的性能,未考虑气动式波浪能装置的独特性。对于气动式波浪能发电装置,驱动透平的气流由气室内复杂的水面振荡产生,该气流具有往复性、振荡性和随机性等特点,无法由传统透平测试系统实现。因此,本发明旨在提出一种可以模拟气动式波浪能发电装置复杂振荡气流的机构,并针对透平系统的各项性能指标配置完整的传感器和测量系统,形成一套气动式波浪能发电装置透平综合性能的测试系统。
技术问题
本发明目的在于针对气动式波浪能发电装置的透平系统,设计了一套完整的综合性能测试系统,利用可编程直线电机驱动风箱,来模拟气动式波浪能发电装置复杂振荡气流,并针对透平系统的各项性能指标配置完整的传感器和测量系统,最终为气动式波浪能发电装置的发电效益和综合性能评估提供一种有效的技术评价手段。
技术解决方案
一种气动式波浪能发电装置透平综合性能测试系统,包括波面模拟系统、气体整流系统、透平装置、桌面支撑结构、仪器支撑架和传感分析系统;
波面模拟系统包括风箱整流衔接板23、可压缩风箱24、风箱罩4、推动板3、刚性连杆2和可编程直线电机1;刚性连杆2水平放置,两端分别与可编程直线电机1和推动板3固连;推动板3另一侧同可压缩风箱24接触;可压缩风箱24安装于风箱罩4内,通过风箱罩4内的支撑保护和约束,使得可压缩风箱24实现双向直线运动;风箱整流衔接板23嵌入风箱罩4内部;风箱整流衔接板23固定连接可压缩风箱24出气口和气体整流系统;可编程直线电机1通过位移设定信号带动刚性连杆2进行随时间变换的水平运动;刚性连杆2带动推动板3挤压可压缩风箱24,可压缩风箱24内的气体,按照设定规律压缩和膨胀,模拟因波面运动而引起的气柱振荡效果;
气体整流系统包括导流透平衔接板20、水平仪21、导流管6、整流管5、整流风箱衔接板18、整流导流衔接板19、蜂窝管22和单个可拆卸导流筒36;整流管5通过整流风箱衔接板18和风箱整流衔接板23与可压缩风箱24相连;整流管5内部采用蜂窝管22填充,气体通过整流管5实现整流效果;整流管5通过整流导流衔接板19与导流管6连接;导流管6具有一段或多段;每一段导流管6外壁均安装水平仪21,用于判断导流管6的水平度;最后一段导流管6同导流透平衔接板20连接,导流透平衔接板20与透平装置的气室7相连接;气体依次通过整流管5和导流管6通过导流透平衔接板20进入透平装置;
透平装置包括气室7、透平叶片15、导流锥16和导流扇17;气体由导流管6进入气室7;气室7内布置有透平叶片15、导流锥16和导流扇17;气体经过导流锥16和导流扇17的导流作用,将气体呈角度喷向透平叶片15,使其转动进而带动所连接的电机发电;
波面模拟系统、气体整流系统和透平装置分别固定于独立的桌面支撑结构上;桌面支撑结构包括桌面33、可伸缩桌腿32、短梁31、桌间螺纹拼接孔30和桌脚滑轮34;桌面33侧布置桌间螺纹拼接孔30,各桌面33之间通过桌间螺纹拼接孔30连接;短梁31布置于桌面33的横向侧,其连接可伸缩桌腿32,以增强桌面33的结构稳定性;可伸缩桌腿32为可伸缩杆状结构,便于实验人员调节桌面支撑的高度和整体仪器的水平度;可伸缩桌腿32底部两侧安装桌脚滑轮34;桌脚滑轮34是带有刹车片的滑轮,既便于挪动,也便于固定。
仪器支撑架用于搭载和固定测量仪器,其自下至上依次为钳口25、水平旋转柱26、伸缩柱27和可调节固定槽28;钳口25通过调节下方的螺丝将仪器支撑架固定于桌面33边缘;水平旋转柱26用以保证其上方测量仪器朝向任意水平方向;伸缩柱27用来调节仪器支撑的高度;可调节固定槽28根据所要夹持测量仪器的尺寸来调节夹具开口大小,用以固定测量仪器;
传感分析系统包括扭矩传感器8、激光转速传感器11、风速传感器35、激光位移传感器29和压力传感器37;联轴器9将扭矩传感器8两端分别连接于气室7和发电机10;激光转速传感器11由透平端仪器支撑架12固定,置于透平叶片15外侧;通过调节激光转速传感器11的姿态和透平端仪器支撑架12的高度,将激光转速传感器11所发射的激光水平射向透平叶片15,用于测量透平叶片15的瞬时转速;风速传感器35经由导流管6两端顶部的小孔插至导流管6中心轴处,安装完成后对小孔进行密封;风速传感器35用以测量整流后的空气流速以及透平前的空气流速;激光位移传感器29由推板端仪器支撑架14固定,通过调节激光位移传感器29的姿态和推板端仪器支撑架14的高度,使激光位移传感器29所发射的激光水平射向推动板3,用以测量推动板3的实时位移,进而推算出导流管6内的气体通量变化;压力传感器37布置在推动板3和刚性连接杆2之间。
风箱整流衔接板23、导流透平衔接板20、整流风箱衔接板18和整流导流衔接板19上均在相同位置设置相同规格螺纹孔,相邻衔接板之间安装橡胶垫圈,以保证气室的密闭性。
具体使用步骤如下:
步骤一、首先根据实验需要将上述波面模拟系统、气体整流系统、透平装置、桌面支撑结构、仪器支撑结构和传感器分析系统组装完成,利用导流管6外壁上的水平仪21来调节平台姿态至水平;
步骤二、调整仪器支撑架的高度和各传感器姿态,将传感器线路链接到数据处理器13上,通过数据处理器13的显示屏实时观测数据;针对不同尺寸的透平装置开展测试时,制作一个外径等于导流透平衔接板20半径且内径等于所测透平装置气室7半径的环状导流透平衔接板20,并在相应位置做好螺纹孔;
步骤三、开展测试,可编程直线电机1接收到实验人员的输入位移设定信号后,水平推动刚性连杆2并带动推动板3做往复运动;推动板3始终在风箱罩4的范围内做往复运动;推动板3带动可压缩风箱24做往复运动,挤压空气;激光位移传感器29和压力传感器37实时测量推动板3的位移变化和受力变化曲线;可压缩风箱24通过风箱整流衔接板23与整流管5连接;可压缩风箱24推动空气进入整流管5,并通过蜂窝管22进行气体整流;整流后的气体进入导流管6,并由导流管内部的风速传感器a35-1和风速传感器b35-2进行风速测量;导流管6与透平装置通过导流透平衔接板20密封连接;不同尺寸的透平系统,通过调整导流透平衔接板20上的螺纹孔位置实现导流管6与透平装置紧密连接;气体进入透平结构气室7后,在导流锥16和导流扇17的导流作用下,呈角度射向透平叶片15,透平叶片15的转动速度由激光转速传感器11测量;透平叶片15带动轴承转动,带动发电机10发电,由扭矩传感器8测量透平叶片15与发电机10转轴之间的实时扭矩。
评估透平综合性能指标的方法如下:利用激光位移传感器29所测得推动板3的位移数据和压力传感器37所测得的压力数据,计算可编程直线电机1向系统输入的机械能;利用扭矩传感器8所测得的扭矩和激光转速传感器11所测得的转速数据,计算透平装置所获得的机械能,通过与可编程直线电机1向系统输入的机械能相比,得到透平装置的俘能效率;测量电机的发电功率与透平所获机械能相比,计算透平装置的发电效率。
有益效果
(1)实现了对气动式波浪能发电装置气室内复杂振荡气流的实验室模拟,并针对透平系统的各项性能指标配置完整的传感器和测量系统,形成了气动式波浪能发电装置透平综合性能的评估方法。
(2)将需要在水槽或者实际海洋中进行的模型测试实验,转至室内,大大降低了实验风险和成本。
(3)该测试平台模块化设计,拼装和拆卸工艺简便,具有很高的灵活性,可以针对不同透平尺寸和测试需求,搭建多种测试环境。
附图说明
图1是气动式波浪能发电装置透平综合性能测试系统的整体结构图;
图2是波面模拟系统结构图;
图3是气体整流系统结构图;
图4是单个可拆卸导流筒结构图;
图5是气体整流系统的左视图;
图6是桌面支撑结构图;
图7是仪器支撑结构图;
图8是透平装置底部结构图;
图9是透平装置、扭矩传感器和发电机整体图;
图10是气动式波浪能发电装置透平综合性能测试系统的数据处理器概念图。
图中:1可编程直线电机;2刚性连杆;3推动板;4风箱罩;5整流管;6导流管;7气室;8扭矩传感器;9联轴器;10发电机;11激光转速传感器;12透平端仪器支撑架;13数据处理器;14推板端仪器支撑架;15透平叶片;16导流锥;17导流扇;18整流风箱衔接板;19整流导流衔接板;20导流透平衔接板;21水平仪;22蜂窝管;23风箱整流衔接板;24可压缩风箱;25钳口;26水平旋转柱;27伸缩柱;28可调节固定槽;29激光位移传感器;30桌间螺纹拼接孔;31短梁;32可伸缩桌腿;33桌面;34桌角滑轮;35风速传感器;35-1风速传感器a;35-2风速传感器b;36单个可拆卸导流筒;37压力传感器。
本发明的实施方式
下面结合附图与具体实施例对本发明作进一步详细描述。
气动式波浪能发电装置透平综合性能测试系统包括波面模拟系统、气体整流系统、透平系统、桌面支撑结构、仪器支撑架和传感分析系统。开展测试工作时,可编程直线电机1接收到实验人员输入的设定位移电信号开始进行水平往复,通过刚性连杆2带动推动板3做水平往复运动。推动板3带动可压缩风箱24做往复运动,挤压空气。同时,激光位移传感器29和压力传感器37开始采集数据,测得推动板3的位移变化曲线和受力变化曲线。
气体进入整流管5后,经由蜂窝管22将紊乱的气体整流。气体从整流管5出来后进入导流管6,放置在导流管6尾部的风速传感器b35-2进行第一次风速测量,接着放置在导流管头6部的风速传感器a35-1也进行第一次风速测量。气体进入透平装置的气室7后,经由导流锥16和导流扇17的导流作用,将高密度的气体喷向透平叶片15,此时转速传感器11开始测量透平叶片15的转动速度。同时透平叶片15将带动轴承转动,使得发电机10开始发电,扭矩传感器8也同步开始测量工作。
本发明的产品设计要充分考虑以下因素:
(1)针对不同尺寸的透平装置进行测试时,要按照每个待测量的透平装置尺寸和导流管6的尺寸,制作一个外径等于导流透平衔接板20半径且内径等于所测透平装置气室7半径的圆环状导流透平衔接板20,并在相应的位置做好螺纹孔。由此重复利用该测试系统,对不同尺寸和形式的透平装置灵活进行测试分析。
(2)每个部件的边缘都设计了衔接板,在组建测试系统时,利用垫块等配件,使得各部件处于同一个水平面。
(3)装置采用推动板3压缩气体的方法来模拟水面对波浪能装置内气体的驱动效果,在进行装置拼接和安装时,确保推动板3与透平装置之间的气体通道的密闭性。
气动式波浪能发电装置透平综合性能测试系统的施工安装流程如下:
(1)按设计图纸要求,制作导流管6、整流管5、桌面支撑结构、仪器支撑结构、可压缩风箱、多种管道箱体衔接块等测试系统的各个部件。
(2)针对目标透平装置和导流管6的尺寸,制作一个外径等于导流透平衔接板20半径且内径等于所测透平装置气室7半径的圆环状导流透平衔接板20,并在相应的位置做好螺纹孔。
(3)拼装桌面支撑结构,将仪器支撑结构固定在桌面33相应的位置,制作风箱罩24。
(4)连接压力传感器33与推动板3,将可压缩风箱24两端的衔接板与可压缩风箱24密闭连接,并安装风箱罩4。
(5)连接刚性连杆2和可编程直线电机1,连接推动板3与可压缩风箱24的一端,连接刚性连杆2与推动板3,连接可压缩风箱24与整流管5,连接整流管5与导流管6,连接导流管6与透平装置。
(6)布置剩余传感器,并通过鼓风测试检查各部件的气密性。
(7)调整各部件和传感器的放置位置和角度等。由此完成系统的安装。
实施例的具体参数如下:
对于波面模拟系统,刚性连杆2选为直径0.05m、长度为0.6m的不锈钢管;推动板3、风箱罩4和风箱整流衔接板23均选取厚度为0.01m的有机玻璃板,风箱罩4横截面尺寸为0.5m*0.5m;可压缩风箱24采用厚度0.3m的海维拉纤维作为骨架材料和厚度为0.35mm的阻燃铂金硅树脂作为表面材料。
气体整流系统的整流风箱衔接板18、整流导流衔接板19、导流管6、整流管5、导流透平衔接板20和单个可拆卸导流筒36均采用厚度为0.01m的有机玻璃制成,气体整流系统总长0.3m,横截面尺寸为0.5m*0.5m。
透平装置的气室7、透平叶片15、导流锥16和导流扇17为ABS树脂材料,经由3D打印制成。透平叶片15与导流扇17的叶片数量、形状和倾斜角度都相同。不同透平装置的透平叶片15的直径不同,导流扇17的直径比透平叶片15的直径大0.01m。气室7为正方体形状,直径比导流扇17的外接正方形大0.02m。
桌面支撑结构的桌面33为18厘刨花板,外贴2mm防静电胶皮。可伸缩桌腿32、短梁31均由40mm*40mm*1mm钢板制成。桌间螺纹拼接孔30直径为0.01m。
仪器支撑结构的钳口25、水平旋转住26、伸缩柱27和可调节固定槽28均有ABS树脂材料制成。钳口25的横截面为0.1m*0.08m*0.08m,壁厚0.01m。水平旋转柱26的直径和高度均为0.05m,在钳口25的顶面做360度水平旋转。伸缩柱27的下半部分为0.1m*0.05m*0.2m、壁厚5mm的长方空心柱,上半部分为0.09m*0.04m*0.2m、壁厚5mm的长方空心柱。可调节固定槽28由两端的滑块和底部的滑轨组成。
传感分析系统的扭矩传感器8的量程范围为5Nm到100Nm;激光位移传感器量程为10mm,范围为30+-5mm,精度为10微米。压力传感器量程为2000N,精度为0.1%。发电机10采用稀土永磁三相交流发电机,额定功率为50W。

Claims (3)

  1. 一种气动式波浪能发电装置透平综合性能测试系统,其特征在于,该气动式波浪能发电装置透平综合性能测试系统包括波面模拟系统、气体整流系统、透平装置、桌面支撑结构、仪器支撑架和传感分析系统;
    波面模拟系统包括风箱整流衔接板(23)、可压缩风箱(24)、风箱罩(4)、推动板(3)、刚性连杆(2)和可编程直线电机(1);刚性连杆(2)水平放置,两端分别与可编程直线电机(1)和推动板(3)固连;推动板(3)另一侧同可压缩风箱(24)接触;可压缩风箱(24)安装于风箱罩(4)内,通过风箱罩(4)内的支撑保护和约束,使得可压缩风箱(24)实现双向直线运动;风箱整流衔接板(23)嵌入风箱罩(4)内部;风箱整流衔接板(23)固定连接可压缩风箱(24)出气口和气体整流系统;可编程直线电机(1)带动刚性连杆(2)进行水平运动;刚性连杆(2)带动推动板(3)挤压可压缩风箱(24),可压缩风箱(24)内的气体,按照设定规律压缩和膨胀,模拟因波面运动而引起的气柱振荡效果;
    气体整流系统包括导流透平衔接板(20)、水平仪(21)、导流管(6)、整流管(5)、整流风箱衔接板(18)、整流导流衔接板(19)、蜂窝管(22)和单个可拆卸导流筒(36);整流管(5)通过整流风箱衔接板(18)和风箱整流衔接板(23)与可压缩风箱(24)相连;整流管(5)内部采用蜂窝管(22)填充,气体通过整流管(5)实现整流效果;整流管(5)通过整流导流衔接板(19)与导流管(6)连接;导流管(6)具有一段或多段;每一段导流管(6)外壁均安装水平仪(21),用于判断导流管(6)的水平度;最后一段导流管(6)同导流透平衔接板(20)连接,导流透平衔接板(20)与透平装置的气室(7)相连接;气体依次通过整流管(5)和导流管(6)通过导流透平衔接板(20)进入透平装置;
    透平装置包括气室(7)、透平叶片(15)、导流锥(16)和导流扇(17);气体由导流管(6)进入气室(7);气室(7)内布置有透平叶片(15)、导流锥(16)和导流扇(17);气体经过导流锥(16)和导流扇(17)的导流作用,将气体呈角度喷向透平叶片(15),使其转动进而带动所连接的电机发电;
    波面模拟系统、气体整流系统和透平装置分别固定于独立的桌面支撑结构上;桌面支撑结构包括桌面(33)、可伸缩桌腿(32)、短梁(31)、桌间螺纹拼接孔(30)和桌脚滑轮(34);桌面(33)侧布置桌间螺纹拼接孔(30),各桌面(33)之间通过桌间螺纹拼接孔(30)连接;短梁(31)布置于桌面(33)的横向侧,其连接可伸缩桌腿(32);可伸缩桌腿(32)为可伸缩杆状结构;可伸缩桌腿(32)底部两侧安装桌脚滑轮(34);
    仪器支撑架用于搭载和固定测量仪器,其自下至上依次为钳口(25)、水平旋转柱(26)、伸缩柱(27)和可调节固定槽(28);钳口(25)通过调节下方的螺丝将仪器支撑架固定于桌面(33)边缘;水平旋转柱(26)用以保证其上方测量仪器朝向任意水平方向;伸缩柱(27)用来调节仪器支撑的高度;可调节固定槽(28)根据所要夹持测量仪器的尺寸来调节夹具开口大小,用以固定测量仪器;
    传感分析系统包括扭矩传感器(8)、激光转速传感器(11)、风速传感器(35)、激光位移传感器(29)和压力传感器(37);联轴器(9)将扭矩传感器(8)两端分别连接于气室(7)和发电机(10);激光转速传感器(11)由透平端仪器支撑架(12)固定,置于透平叶片(15)外侧;通过调节激光转速传感器(11)的姿态和透平端仪器支撑架(12)的高度,将激光转速传感器(11)所发射的激光水平射向透平叶片(15),用于测量透平叶片(15)的瞬时转速;风速传感器(35)经由导流管(6)两端顶部的小孔插至导流管(6)中心轴处,安装完成后对小孔进行密封;风速传感器(35)用以测量整流后的空气流速以及透平前的空气流速;激光位移传感器(29)由推板端仪器支撑架(14)固定,通过调节激光位移传感器(29)的姿态和推板端仪器支撑架(14)的高度,使激光位移传感器(29)所发射的激光水平射向推动板(3),用以测量推动板(3)的实时位移,进而推算出导流管(6)内的气体通量变化;压力传感器(37)布置在推动板(3)和刚性连接杆(2)之间。
  2. 根据权利要求1所述的一种气动式波浪能发电装置透平综合性能测试系统,其特征在于,风箱整流衔接板(23)、导流透平衔接板(20)、整流风箱衔接板(18)和整流导流衔接板(19)上均在相同位置设置相同规格螺纹孔,相邻衔接板之间安装橡胶垫圈,以保证气室的密闭性。
  3. 根据权利要求1或2所述的一种气动式波浪能发电装置透平综合性能测试系统,其特征在于,具体使用步骤如下:
    步骤一、首先根据实验需要将上述波面模拟系统、气体整流系统、透平装置、桌面支撑结构、仪器支撑结构和传感器分析系统组装完成,利用导流管(6)外壁上的水平仪(21)来调节平台姿态至水平;
    步骤二、调整仪器支撑架的高度和各传感器姿态,将传感器线路链接到数据处理器(13)上,通过数据处理器(13)的显示屏实时观测数据;针对不同尺寸的透平装置开展测试时,制作一个外径等于导流透平衔接板(20)半径且内径等于所测透平装置气室(7)半径的环状导流透平衔接板(20),并在相应位置做好螺纹孔;
    步骤三、开展测试,可编程直线电机(1)接收到实验人员的输入位移设定信号后,水平推动刚性连杆(2)并带动推动板(3)做往复运动;推动板(3)始终在风箱罩(4)的范围内做往复运动;推动板(3)带动可压缩风箱(24)做往复运动,挤压空气;激光位移传感器(29)和压力传感器(37)实时测量推动板(3)的位移变化和受力变化曲线;可压缩风箱(24)通过风箱整流衔接板(23)与整流管(5)连接;可压缩风箱(24)推动空气进入整流管(5),并通过蜂窝管(22)进行气体整流;整流后的气体进入导流管(6),并由导流管内部的风速传感器a(35-1)和风速传感器b(35-2)进行风速测量;导流管(6)与透平装置通过导流透平衔接板(20)密封连接;不同尺寸的透平系统,通过调整导流透平衔接板(20)上的螺纹孔位置实现导流管(6)与透平装置的紧密连接;气体进入透平结构气室(7)后,在导流锥(16)和导流扇(17)的导流作用下,呈角度射向透平叶片(15),透平叶片(15)的转动速度由激光转速传感器(11)测量;透平叶片(15)带动轴承转动,带动发电机(10)发电,由扭矩传感器(8)测量透平叶片(15)与发电机(10)转轴之间的实时扭矩。
PCT/CN2021/141441 2021-12-27 2021-12-27 气动式波浪能发电装置透平综合性能测试系统 WO2023122852A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/799,577 US20230213014A1 (en) 2021-12-27 2021-12-27 Test system for turbine comprehensive performance of pneumatic wave energy converter
PCT/CN2021/141441 WO2023122852A1 (zh) 2021-12-27 2021-12-27 气动式波浪能发电装置透平综合性能测试系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/141441 WO2023122852A1 (zh) 2021-12-27 2021-12-27 气动式波浪能发电装置透平综合性能测试系统

Publications (1)

Publication Number Publication Date
WO2023122852A1 true WO2023122852A1 (zh) 2023-07-06

Family

ID=86992481

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/141441 WO2023122852A1 (zh) 2021-12-27 2021-12-27 气动式波浪能发电装置透平综合性能测试系统

Country Status (2)

Country Link
US (1) US20230213014A1 (zh)
WO (1) WO2023122852A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117450255B (zh) * 2023-12-26 2024-03-15 沈阳仪表科学研究院有限公司 双面水平加压密封的测试装置及其测试方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105484933A (zh) * 2015-12-30 2016-04-13 华南理工大学 一种振荡浮子式波浪发电模拟装置
CN208267998U (zh) * 2018-03-19 2018-12-21 华北电力大学 一种高效气动式波浪能发电装置
CN110410266A (zh) * 2019-09-12 2019-11-05 吕林晏 一种压浪式波浪能转换装置
CN113266514A (zh) * 2021-05-25 2021-08-17 南京工程学院 一种利用单向气流做功的中心管波浪能发电装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105484933A (zh) * 2015-12-30 2016-04-13 华南理工大学 一种振荡浮子式波浪发电模拟装置
CN208267998U (zh) * 2018-03-19 2018-12-21 华北电力大学 一种高效气动式波浪能发电装置
CN110410266A (zh) * 2019-09-12 2019-11-05 吕林晏 一种压浪式波浪能转换装置
CN113266514A (zh) * 2021-05-25 2021-08-17 南京工程学院 一种利用单向气流做功的中心管波浪能发电装置

Also Published As

Publication number Publication date
US20230213014A1 (en) 2023-07-06

Similar Documents

Publication Publication Date Title
CN103969010B (zh) 桥梁风浪流耦合场、弹性模型及动态响应试验测试系统
CN101571448B (zh) 气动声学实验装置
CN108362466B (zh) 连续式跨声速风洞半柔壁喷管导轨水平式喉块驱动装置
WO2023122852A1 (zh) 气动式波浪能发电装置透平综合性能测试系统
CN101067586A (zh) 基于相对运动概念的带可调附加叶片的压气机叶栅实验装置
CN111780940A (zh) 一种航空发动机可调静子叶片运动控制实验装置
RU179254U1 (ru) Электромеханический стенд
CN203231879U (zh) 桥梁风浪流耦合场、弹性模型及动态响应试验测试系统
CN103175671B (zh) 一种调速空气层流流动测试模型风阻的模拟装置及方法
CN114294144B (zh) 气动式波浪能发电装置透平综合性能测试系统
CN201583398U (zh) 一种开路开口式多功能风力机试验风洞
CN213544762U (zh) 一种具有模拟不同环境的涡轮电机仿真测试设备
CN203163959U (zh) 一种调速空气层流流动测试模型风阻的模拟装置
CN209145780U (zh) 一种测量垂直轴风机间干扰效应的可变距风洞实验测试架
CN206161272U (zh) 一种往复式叶片尾迹发生器
CN106441782B (zh) 一种往复式叶片尾迹发生器
CN113670556A (zh) 一种龙卷风与下击暴流一体化物理模拟装置
JP2022162952A (ja) 膜構造の風雨負荷作用下での動力応答試験方法
CN114323610A (zh) 一种大型海上风电叶片多点双自由度疲劳测试装置及控制方法
Deng et al. Research and development of a simple straight-flow wind tunnel test equipment for vertical axis wind turbines
CN206440738U (zh) 一种用于抗风试验测风速的皮托管固定装置
CN107202676B (zh) 一种用于结构风工程试验的紊流场模拟装置
CN207145384U (zh) 一种风洞流场启停减震装置
CN218725167U (zh) 一种变距螺旋桨模拟试验装置
CN110006622A (zh) 波浪与移动式龙卷风耦合的物理模拟方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21969240

Country of ref document: EP

Kind code of ref document: A1