WO2023122837A1 - Electronic equipment for estimating the length of hospitalisation for patients diagnosed with respiratory disease - Google Patents

Electronic equipment for estimating the length of hospitalisation for patients diagnosed with respiratory disease Download PDF

Info

Publication number
WO2023122837A1
WO2023122837A1 PCT/CL2021/050127 CL2021050127W WO2023122837A1 WO 2023122837 A1 WO2023122837 A1 WO 2023122837A1 CL 2021050127 W CL2021050127 W CL 2021050127W WO 2023122837 A1 WO2023122837 A1 WO 2023122837A1
Authority
WO
WIPO (PCT)
Prior art keywords
patient
equipment
data
electronic equipment
processing
Prior art date
Application number
PCT/CL2021/050127
Other languages
Spanish (es)
French (fr)
Inventor
Rodrigo Andre DEL RIO TRONCOSO
David Cristobal ANDRADE ANDRADE
Carlos Arturo RAYMUNDO IBAÑEZ
Guillermo Leopoldo KEMPER VÁSQUEZ
Carlos Silvestre HERRERA TRUJILLO
Jorge Heyul CHAVEZ ARIAS
Gianpierre Guillermo ZAPATA RAMIREZ
Cesar Raul Alan CRUZ GUTIERREZ
Sergio Salas Arriaran
Original Assignee
Universidad Peruana De Ciencias Aplicadas
Pontificia Universidad Catolica De Chile
Universidad De Antofagasta
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad Peruana De Ciencias Aplicadas, Pontificia Universidad Catolica De Chile, Universidad De Antofagasta filed Critical Universidad Peruana De Ciencias Aplicadas
Priority to PCT/CL2021/050127 priority Critical patent/WO2023122837A1/en
Publication of WO2023122837A1 publication Critical patent/WO2023122837A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/087Measuring breath flow
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/30ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment

Definitions

  • the present invention refers to the estimation of the hospitalization time of patients by means of artificial intelligence techniques.
  • the invention comprises electronic equipment for estimating hospitalization time for patients, which provides a quick estimate of said hospitalization time, information that is especially useful in outpatient or emergency care environments.
  • the proposed equipment is capable of receiving data, such as manually entered physiological parameters, and is also capable of detecting data, through sensor devices connected to the equipment.
  • the entered and detected data are processed to predict the length of hospitalization, as well as the severity and, in some cases, the mortality of a patient diagnosed with a respiratory disease, such as COVID-19.
  • This estimation is performed using a prediction module comprising estimation algorithms based on artificial intelligence, wherein said prediction module is executed by a processing and control unit of the equipment.
  • Document W02013006044A1 entitled “Mobile patient computing system and method for predicting exacerbations", by LUCAS PETRUS JOHANNES FRANCISCUS, and published on January 10, 2013, discloses a mobile patient computing system and a method for predicting exacerbations in a disease-related state of a patient.
  • the method comprises collecting sensor data from the patient using sensors and running a local prediction model.
  • the local prediction model comprises a Bayesian network to obtain a probability of exacerbation of a patient's condition.
  • the Bayesian network receives data patient input, patient sensor data and provides probability data, and the local prediction model provides guidance data based on the probability data.
  • the local prediction model is implemented both in a portable device, such as a smartphone, and in a centralized patient data processing system.
  • Document W02013006044A1 entitled “Monitor of physiological signals and medical-hospital equipment", by TAKAOKA KENT ARO, and published on November 28, 2006, discloses a monitor of physiological signals capable of storing and retrieving from a portable memory medium a set of of parameters predetermined by a user, the monitor being associated with a medical-hospital device, such as an anesthesia machine, an oximeter, a device to measure blood pressure, among others.
  • a medical-hospital device capable of monitoring physiological signals, storing and retrieving in a portable memory medium a set of parameters predetermined by a user.
  • Both the monitor and the device disclosed in W02013006044A1 are capable of detecting data obtained by the medical-hospital device during a medical-hospital procedure and storing said data in a portable memory medium.
  • the monitor and the subject equipment allow the user to monitor the physiological signals of a patient in a fast, versatile, personalized and safe way.
  • the disclosed solution allows rapid monitoring and recording of a patient's physiological signals, the recorded information is not used to predict and deliver useful information for care, much less to estimate a patient's hospitalization time.
  • the processing of the detected data does not occur in real time and, therefore, it is not useful in ambulatory or urgent care settings.
  • the solution proposed in said document does not make it possible to predict the hospitalization time of a patient. Consequently, a simple solution is required, capable of being used by personnel without specialization, in an ambulatory or emergency setting, which makes it possible to predict the hospitalization time of a patient quickly and accurately.
  • the present invention refers, in general, to electronic equipment that has the capacity to estimate the hospitalization time in patients diagnosed with a respiratory disease, for example, different types of pneumonia, among others. which is the COVID-19.
  • the equipment has the capacity to estimate other relevant parameters in patients diagnosed with said respiratory disease, such as severity and mortality.
  • the equipment can be presented as a stationary equipment or as a portable equipment.
  • it can include a battery that gives it some autonomy and/or a power cable to the electrical network, elements that give it the advantage of being both portable and stationary equipment, depending on the needs of the health teams.
  • the present invention proposes estimating the hospitalization time, the level of severity and the mortality of patients admitted to the emergency service or outpatient care of any care center (such as hospitals and clinics). ). Said estimation is made based on a non-invasive, standard procedure in emergency and ambulatory care systems, such as the one described below in relation to the equipment of the invention.
  • patient parameters such as: age, weight, height, blood pressure, oxygen saturation level, heart rate, gender, among others.
  • These parameters constitute essential data for the care and diagnosis of a patient, which are commonly obtained and/or measured in the emergency services of health centers (both hospitals and private clinics).
  • parameters such as age, weight, height, blood pressure and/or gender are manually entered into the equipment, through a keyboard or other interface, by a health professional trained in the use of the equipment, and who knows the procedures for this taking of physiological-clinical parameters in an emergency unit or outpatient care.
  • the equipment has at least one sensor device that, correctly arranged in relation to the patient, allows health personnel to measure and acquire data such as oxygen saturation level and heart rate.
  • the manually entered parameters, or entered data, and the data measured by the at least one sensor device, or detected data, are the main input for estimating the patient's hospitalization time. It is important to mention that all the parameters entered are the same ones that are normally measured and recorded in the emergency services and ambulatory care, therefore, the equipment does not require additional dedication time by the staff and, in this context, it will not affect primary care times.
  • the equipment provides information that is useful for verifying the number and percentage of critical beds in the health facility (total, in use, and unoccupied), helping each person in charge of emergency services to make medical decisions. -clinics in a more informed way.
  • the equipment can form part of a care center management system, which uses the hospitalization time forecast for each patient in the management of beds and center capacity.
  • the portable kit is designed for use in an outpatient emergency medical environment, such as a clinic, hospital, or the like.
  • the equipment is prepared to be able to move from one environment to another, configuring itself as a portable equipment.
  • the equipment can be provided with a handle or handle arranged in its upper part; likewise, the portable equipment can be coupled to a support structure, where said support structure can be provided with wheels to facilitate the movement of the equipment by sliding;
  • the equipment can be equipped with a bank of rechargeable batteries that provides autonomy for continuous operation, according to the capacity of the batteries that make up the bank and the use that has been given to the equipment.
  • the battery bank can be recharged when the equipment is connected to the electrical network through an electrical outlet, either during a recharging session or during the operation of the equipment itself, when it is used connected to said network.
  • the equipment contains electronic hardware components, designed in accordance with the technological requirements required for its operation, in particular, the execution of the estimation algorithms.
  • the estimate(s), predictions or forecasts delivered by the equipment come from the processing of the entered and detected data, which are processed as input variables by means of a prediction module, where said prediction module comprises one or more algorithms. based on artificial intelligence.
  • Said prediction module can be configured as a computer program stored in a memory of the equipment, or entered into it through an external memory.
  • the prediction module is fed by essential and basic parameters that are acquired in all emergency services and ambulatory care, which gives it an advantage in terms of the time needed to enter and process the input variables required to deliver the forecast.
  • the equipment in addition to needing few input variables, also generates the analysis and predictions almost instantaneously, after activating the prediction procedure by the user.
  • the speed and simplicity of the equipment substantially favor the organization of different units of healthcare centers, integrating optimally into current procedures and delivering highly useful information not only for patient care, but also for the organization.
  • the structural design of the equipment is in accordance with the requirements of a hospital environment, being able to be used easily and without requiring exhaustive training.
  • the short processing time for each case or patient processed using the equipment of the invention implies energy savings and greater autonomy of the equipment. Indeed, the highest energy consumption of the equipment occurs during the execution of the prediction module, which is executed almost instantaneously. Likewise, the short processing time does not generate additional patient care time, with the longest operating time of the equipment being related to the entry of patient data and the measurement of the required variables, actions that, regardless of the use of the equipment, they are always carried out in the emergency rooms of health centers.
  • the electronic equipment comprises a closed cabinet for the installation inside of the electronic components.
  • said cabinet is provided with a handle to facilitate the movement of the equipment from one place to another in its portable version.
  • the cabinet can be coupled to a support structure to facilitate its location and movement in different areas of the same floor level of the place where it is used, which gives it an advantage in terms of the versatility that the equipment can have, passing from portable to stationary equipment and vice versa, depending on the needs of the healthcare center.
  • the cabinet contains the electronic components of the equipment and, in one embodiment, may have a hinged door for internal inspection and maintenance of such components.
  • the equipment cabinet contains the main hardware, and it is configured to interconnect said main hardware with different peripheral devices, as shown in Fig. 1.
  • the electronic equipment for estimating the hospitalization time of patients diagnosed with respiratory diseases, such as COVID-19, is described in more detail below.
  • a preferred modality of the portable electronic equipment comprises a processing and control unit, capable of controlling peripheral devices and processing one or more estimation algorithms based on artificial intelligence, mainly configured to estimate the hospitalization time of a patient.
  • Said processing and control unit can be, for example, a microcomputer or single board computer, with an operating system stored in at least one memory.
  • Peripheral devices correspond to equipment components such as sensor devices, user interface devices, display devices, indicators, etc., which are connected to the processing and control unit.
  • the artificial intelligence algorithm or algorithms, which are presented in a prediction module can be part of a computer program.
  • Said program which can also comprise a unit operation module for the control and management of the entered and displayed data, can be previously stored in a unit memory or can be entered into it via external memory, being executed by the processing unit. And control.
  • the preferred embodiment of the equipment also comprises a user interface device, such as a keyboard or a touch screen, connected to the processing and control unit as part of the peripheral devices.
  • a user interface device such as a keyboard or a touch screen
  • the data of a patient and the physiological parameters associated with it are entered, which are entered manually by trained personnel.
  • Said patient data and parameters are received by the equipment and, preferably, recorded and stored in a database, called input data.
  • input data essential to the invention are respiratory rate, blood pressure, age, and gender of the patient.
  • the preferred modality of the equipment also comprises a display device, such as a screen, connected to the processing and control unit as another of the peripheral devices, for the purpose of displaying a graphic interface where the results of the prediction module are displayed.
  • Said screen may have touch functionality, which would allow the actions of a user interface device to be replaced either in relation to the manipulation and visualization of the prediction results, or in relation to the input of the data and physiological parameters of the patient.
  • a keyboard can be dispensed with.
  • an additional user interface device can be used for manipulation of the results, such as a mouse, or the same user interface device used by the computer to receive input data.
  • the display of data in the visualization device, as well as the management of these by the equipment, is carried out by the operation module that executes the processing and control unit.
  • the preferred modality of the equipment also comprises at least one sensor device, which is connected to the processing and control unit for the measurement and recording of patient variables.
  • Said at least one sensor device measures blood oxygen saturation and heart rate of the patient, information which is called sensed data.
  • the at least one sensor device is a pulse oximeter, an instrument that has the advantage of delivering blood oxygen saturation and heart rate measurements very quickly and with sufficient precision for the purpose of the invention.
  • the entered data and the detected data form the input variables of the equipment, that is, the input variables with which the estimation algorithm(s) are fed.
  • alternative modalities of the equipment may comprise a switch or switch that allows the equipment to be turned on and off, which may include a visual indicator of equipment power-on, for example, an indicator LED located on the top of the cabinet, so that that is visible from the outside.
  • an alternate mode of the equipment may comprise a visual indicator of the operating status of the equipment.
  • Said indicator which can be an indicator LED, can also be located on the top of the cabinet, so that it is visible from the outside.
  • the equipment can also comprise a communications module for connection to a data network, either wireless (WIFI) and/or wired (LAN).
  • Said connection module can be integrated into the processing and control unit to transfer part or all of the data (entered data, detected data and/or predictions) to a local network and/or internet, which can allow the equipment to be integrated into a health center management system.
  • the equipment could be connected to different units of the care center, and could contribute to improving the distribution and management of critical beds in clinics and hospitals, among others.
  • the equipment can also include a visual indicator of the connectivity status of the equipment that, like the other visual indicators, can be an indicator LED located in the upper part of the cabinet, so that it is visible from the abroad.
  • the visual indicators can be integrated into the display device, showing up as an icon, symbol or marker in the same graphical interface of the equipment.
  • connection module the team is able to receive updates to the operation and/or prediction modules, as required.
  • the preferred modality of the equipment includes a power supply, which can be configured as a bank of rechargeable batteries, to grant autonomy of use to the equipment, and/or as a conventional outlet, for power from the electrical network.
  • a power supply which can be configured as a bank of rechargeable batteries, to grant autonomy of use to the equipment, and/or as a conventional outlet, for power from the electrical network.
  • an electronic power system made up of power adapters that supply voltage and current to the equipment and to the internal battery bank.
  • the adapters receive power through an external cable connected to a conventional outlet. When power is removed from the outlet, the system automatically draws power from the battery bank so equipment continues to run without interruption
  • a user interacts with the equipment for its operation, entering patient data, manipulating/activating the sensor device(s) for data detection, and activating the prediction process of the device(s).
  • estimation algorithms based on artificial intelligence techniques.
  • Said interaction which is materialized through the user interface and visualization devices, can be managed or controlled by an operation module that is part of a computer program designed for data management and user interface.
  • Said computer program may also contain the prediction module that includes the estimation algorithm(s), appearing as a single computer program contained in the equipment. As shown in Fig.
  • the processing and control unit implements a computational architecture that comprises: 1) database, for managing and storing input variables in at least one memory; backend, where the prediction module algorithm(s) reside; and frontend, where the results and data are displayed and manipulated through visualization devices and associated user interface, through the operation module.
  • a computational architecture that comprises: 1) database, for managing and storing input variables in at least one memory; backend, where the prediction module algorithm(s) reside; and frontend, where the results and data are displayed and manipulated through visualization devices and associated user interface, through the operation module.
  • Each of the three components of the proposed architecture can present a language dedicated to its respective purpose, as exemplified in Fig. 2.
  • the prediction module (see Fig. 3) is fed with outpatient data from patients, which are normally measured in emergency services and outpatient care.
  • the prediction module is comprised of three predictive models, which are presented in the form of estimation algorithms based on artificial intelligence, preferably on neural networks.
  • Each predictive model requires the same essential input variables that are measured in all patients in any emergency or ambulatory care system, and delivers representative numerical values of the predictions associated with each model. Said numerical values, obtained in each one of the outputs of the prediction module, pass in turn through their respective transformation function dedicated to reinterpreting the numerical values in the required predictions. In the preferred embodiment shown in Fig. 3, it is necessary;
  • R1 indicates the length of stay of a patient, or length of hospitalization, in days
  • R2 indicates whether the patient has a stay or hospitalization due to severity, using a binary value such as 0 (non-serious or low-severity patient) or 1 (severe-severe or high-severity patient), and
  • R3 represents the probability of dying during the hospitalization time, using a binary value such as 0 (patient with a low probability of dying) and 1 (patient with a high probability of dying).
  • Fig. 1 shows a diagram of the equipment of the invention, according to a preferred modality, where the connection relationships of the equipment with different peripherals are shown.
  • Fig. 2 a diagram is shown that represents the computational architecture implemented, according to a preferred embodiment of the invention.
  • Fig. 3 shows a diagram that represents the operation of the prediction module, according to a preferred embodiment of the invention.
  • Fig. 4 the complete portable electronic equipment is shown, according to an alternative embodiment of the invention.
  • Fig. 5 shows a representation of the cabinet with a breakdown of its components, according to an alternative embodiment of the invention.
  • the equipment comprises a processing and control unit as its main component, which is supplied with energy from an energy source that can be a battery and/or the mains.
  • Said processing and control unit can be a microcomputer, containing a memory where the prediction module is stored.
  • said processing and control unit interacts with different components, such as a keyboard, which represents the user interface device through which the equipment receives the entered data, and a screen, which represents the device. display through which the staff or users view both the input variables and the results delivered by the prediction module.
  • Fig. 1 also shows the interaction between an oximeter and the processing and control unit, where said oximeter represents the sensor device that measures patient data, generating the detected data.
  • Fig. 1 also shows that there is interaction between the processing and control unit and alternative or secondary elements, such as the power switch, indicator LEDs and an internet and/or local network, through a communications module integrated into the equipment.
  • Fig. 1 shows forms of connection or communication between equipment components, they should only be interpreted as design alternatives, and it is possible to use different means of connection and communication known in the art.
  • Fig. 2 shows the computational architecture applied to the equipment, which involves an operating system capable of managing information in three different layers.
  • the first layer corresponds to the management of data in a database, configured to receive and store the entered and detected data (input variables) for further processing.
  • the second layer corresponds to the processing core, which includes the prediction module and is responsible for taking the input variables and processing them to obtain one or more predictions associated with the patient's hospitalization time.
  • a third layer corresponds to the display of the information through the display device, where the input variables and the prediction results are shown, in a friendly and clear way for the user.
  • examples of the technologies involved in the proposed structure or architecture are proposed, which should be considered as design alternatives. However, it is important It should be noted that the separation into the three layers allows considering different technologies in each one, seeking to optimize the objectives of each layer based on existing technologies.
  • Fig. 3 shows a block diagram that represents the operation of the prediction module, which in the represented modality incorporates three estimation algorithms based on artificial intelligence (neural networks).
  • the input data or input variables of the patient are received by the prediction module, which may be stored in a memory of the processing and control unit, so that said prediction module takes the input variables and processes them to deliver at least one numerical value associated with each prediction.
  • Said numerical value is processed by means of a conversion function that interprets the preceding numerical value in relation to the expected result of each algorithm.
  • a first estimation algorithm receives the input variables and delivers a first estimation numerical value, which, taken by a first conversion function to deliver a first result, in this case, the estimated hospitalization time ( rl).
  • complementary estimation algorithms can receive input variables to deliver, after the applicable conversion function, results related to patient severity and mortality (R2, R3).
  • Rl is already a desirable and useful indicator in the emergency and ambulatory care setting
  • the R2 and R3 indicators are a complement that help determine the evolution of the disease in each patient.
  • the equipment according to Fig. 4 which represents an alternative embodiment of the invention, comprises a casing or cabinet (1) which, at its base, is attached to a support structure (2). Said union can be made by means of screws arranged between the upper end of the support structure (2) and the cabinet (1).
  • the support structure (2) includes a lower end where a set of wheels (11) is arranged, aimed at moving the equipment on flat surfaces.
  • the support structure (2) has two main characteristics, it can adjust its height by means of an adjustment mechanism, for example, telescopic, and, additionally, it has a bar (8), substantially horizontal, that serves to move the module and/or hang cables from a sensor device or device external to the equipment.
  • Fig. 5 shows a detail of the cabinet (1), according to an alternative embodiment of the invention.
  • the cabinet (1) includes a handle or handle (9) in the upper part, which facilitates the transport of the equipment.
  • the cabinet (1) can include a hatch (10), represented by an opening that allows access to the internal components of the equipment, for example, for maintenance operations on the internal parts of the equipment.
  • the block inside the cabinet (1) corresponds to a box that contains the processing and control unit (3) inside, together with the electronics. associate.
  • the block inside the cabinet (1) corresponds to a box that contains the processing and control unit (3) inside, together with the electronics. associate.
  • the outside of the cabinet (1) there is the location of visual indicators (4) or indicator LEDs, which serve as equipment status indicators (power-on, operation and connectivity, for example).
  • the on/off button (5) is represented, which is arranged towards the front of the equipment, a user interface device (6), such as a keyboard, and a display device (7), such as a screen.
  • the characteristics of the equipment are defined below according to a modality of the invention, corresponding to the development of a prototype of the equipment that has been used to validate the inventive concept.
  • the electronic equipment is a portable equipment comprising a closed cabinet (1) for the installation of electronic components inside.
  • Said cabinet (1) is provided with a handle or handle (9), useful for moving it from one place to another, likewise, the cabinet can be coupled to a support structure (2) provided with wheels (11), to move with more easily in different areas of the same floor level of the place where it is used.
  • the cabinet (1) contains practically all the peripherals and electronic equipment, and has a door (10) with hinges, to carry out inspection and internal maintenance of the equipment components.
  • the cabinet (1) of the laptop contains the main hardware, which is interconnected with different peripheral devices as shown in Fig. 1.
  • the portable equipment comprises: a processing and control unit (3) which, in practice, can be materialized by means of a microcomputer or single board computer.
  • Said processing and control unit comprises an operating system, configured to control peripheral devices and process the estimation algorithm or algorithms, included in an estimation module.
  • a switch or switch (5) to turn the equipment on or off coupled to a visual indicator (4) of equipment power located on the top of the cabinet, which is visible from the outside.
  • a visual indicator (4) of the wired or wireless connectivity status of the equipment which is located in the upper part of the cabinet, which is visible from the outside.
  • a visual indicator (4) of the equipment status located in the upper part of the cabinet and which is visible from the outside.
  • a user interface device (6) such as a keyboard, through which the data of a patient and the physiological parameters associated with it are entered, which are entered manually by a duly trained health professional forming the entered data.
  • a display device (7) such as a screen, to display the graphical interface, which would replace the actions of a mouse in case of presenting the tactile functionality.
  • a sensor device in the form of a pulse oximeter which is connected via some applicable communication protocol, eg bluetooth, to the processing and control unit. This device measures the oxygen in the blood and the patient's heart rate.
  • a communications module integrated into the processing and control unit, to transfer data to a local network and/or internet.
  • a rechargeable battery for autonomy of use of the equipment.
  • an electronic power system made up of power adapters that supply voltage and current to the equipment and the internal battery bank. The adapters receive power through an external cable connected to an electrical outlet.
  • the equipment has at least one operation module and one prediction module for its operation, which are previously stored in a memory of the processing and control unit or are entered into the equipment through an external device, such as a memory. external, which is connected to the processing and control unit.
  • the operation and prediction modules can be integrated into a software contained in an internal memory of the equipment or entered through an external memory.
  • the equipment works based on, on the one hand, the operation module, for data management and user interface, and, on the other hand, the prediction module, which includes estimation algorithms based on artificial intelligence.
  • each structure has a language dedicated to its respective purpose, seeking to optimize the operations performed by the operation and prediction modules.
  • the medical data of each patient are used as input variables to each of three predictive models (neural network algorithms), whose values obtained in each of its outputs in turn go through a transformation function, which is aimed at reinterpreting the numerical values in the required predictions such as: hospitalization time (Rl), severity (R2) and mortality ( R3) from a patient, as shown in Fig. 3.
  • Rl hospitalization time
  • R2 severity
  • R3 mortality
  • a main graphical interface is displayed through the display device (7).
  • the graphical interface displayed thanks to the operation module that is executed by the equipment, initially guides the user on the essential parameters that must be entered by the personnel or user through the user interface device (6), where said essential parameters They are: patient's respiratory rate, blood pressure, age and gender. Alternatively, the name and identity document number can be included as parameters. Additionally, the interface allows the optional addition of relevant information for the management of beds, such as the degree of occupancy of the critical and non-critical facilities of the establishment.
  • the parameters entered into the equipment by the staff or user are called input data.
  • the graphic interface guides the user to obtain the patient's oxygen saturation and heart rate, through the sensor device provided for said purposes and connected to the equipment.
  • these measurements are performed through a pulse oximeter that the proposed equipment has, which can be connected to the equipment by cable or wirelessly.
  • the oxygen saturation and heart rate values are automatically read from the sensor device (pulse oximeter in the preferred mode) and displayed on the equipment screen through the graphic interface.
  • the data measured by the sensor device and recorded by the equipment is called detected data.
  • the team estimates the physiological state of the patient and the probable days of hospitalization.
  • the system will update the occupancy rate relative to the type of bed that the patient will use during hospitalization.
  • said estimation is carried out by means of the prediction module, which receives the input variables and processes them through estimation algorithms, delivering referent numerical values of the estimation, which are converted to the desired indicators (estimated days of hospitalization, severity and patient mortality).
  • the prediction module is executed by the equipment, particularly by the processing and control unit, when it is previously stored in a memory of said unit or when it is entered through external memory.
  • the results of the processing are displayed on the screen or display device, through the graphical interface in a practically instantaneous manner.
  • the exam data or input variables and the results or predictions can be stored in the equipment's database and, if applicable, also transferred to a private WEB server for further analysis and evaluation.
  • the battery bank installed in the equipment, which provides autonomy.
  • the battery bank can be recharged when the equipment is connected to external power from a conventional outlet.
  • the support structure (2) of the equipment has wheels (11) that allow it to be mobile within a flat environment. Additionally, this support has horizontal bars (8), which allow you to manipulate the location of the equipment and/or hang a medical device.
  • the cabinet In case the equipment needs to be transported outside the medical center or some isolated environment, the cabinet has a handle (9) at the top to facilitate its transportation. In case of transporting the equipment without a support structure, it is necessary to first remove the fixing screws to the support structure.

Abstract

In general, the present invention relates to the estimation of the length of patient hospitalisation by means of an estimation algorithm. In particular, the invention comprises electronic equipment for estimating the length of patient hospitalisation, which provides a quick estimation of said length of hospitalisation, information that is especially useful in outpatient or emergency care.

Description

EQUIPO ELECTRÓNICO PARA LA ESTIMACIÓN DEL TIEMPO DE HOSPITALIZACIÓN DE PACIENTES DIAGNOSTICADOS CON ENFERMEDAD RESPIRATORIA ELECTRONIC EQUIPMENT FOR THE ESTIMATION OF HOSPITALIZATION TIME OF PATIENTS DIAGNOSED WITH RESPIRATORY DISEASE
MEMORIA DESCRIPTIVA DESCRIPTIVE MEMORY
CAMPO TÉCNICO TECHNICAL FIELD
En sus aspectos generales, la presente invención se refiere a la estimación del tiempo de hospitalización de pacientes mediante técnicas de inteligencia artificial. Particularmente, la invención comprende un equipo electrónico para la estimación del tiempo de hospitalización de pacientes, que proporciona una rápida estimación de dicho tiempo de hospitalización, información especialmente útil en ambientes de atención ambulatoria o de urgencia. In its general aspects, the present invention refers to the estimation of the hospitalization time of patients by means of artificial intelligence techniques. In particular, the invention comprises electronic equipment for estimating hospitalization time for patients, which provides a quick estimate of said hospitalization time, information that is especially useful in outpatient or emergency care environments.
El equipo propuesto es capaz de recibir datos, como parámetros fisiológicos ingresados manualmente, y también es capaz de detectar datos, mediante dispositivos sensores conectados al equipo. Los datos ingresados y detectados son procesados para predecir el tiempo de hospitalización, así como también la gravedad y, en algunos casos, la mortalidad de un paciente diagnosticado con alguna enfermedad respiratoria, como el COVID-19. Esta estimación se realiza utilizando un módulo de predicción que comprende algoritmos de estimación basados en inteligencia artificial, en donde dicho módulo de predicción es ejecutado por una unidad de procesamiento y control del equipo. The proposed equipment is capable of receiving data, such as manually entered physiological parameters, and is also capable of detecting data, through sensor devices connected to the equipment. The entered and detected data are processed to predict the length of hospitalization, as well as the severity and, in some cases, the mortality of a patient diagnosed with a respiratory disease, such as COVID-19. This estimation is performed using a prediction module comprising estimation algorithms based on artificial intelligence, wherein said prediction module is executed by a processing and control unit of the equipment.
ANTECEDENTES DE LA INVENCIÓN BACKGROUND OF THE INVENTION
Actualmente, existen múltiples técnicas de estimación del nivel de gravedad de uno o varios pacientes, muchas de estas técnicas requieren procedimientos médicos avanzados, como tomografías, radiografías, entre otros. Currently, there are multiple techniques for estimating the level of severity of one or several patients, many of these techniques require advanced medical procedures, such as tomography, x-rays, among others.
Entre los antecedentes más cercanos al campo de aplicación de la presente invención se encuentran los siguientes: Among the antecedents closest to the field of application of the present invention are the following:
El documento W02013006044A1, titulado “Sistema informático móvil para pacientes y método para la predicción de exacerbaciones”, de LUCAS PETRUS JOHANNES FRANCISCUS, y publicado el 10 de enero de 2013, divulga un sistema informático móvil para pacientes y un método para predecir exacerbaciones en un estado relacionado con la enfermedad de un paciente. El método comprende recopilar datos de sensores del paciente utilizando sensores y ejecutar un modelo de predicción local. El modelo de predicción local comprende una red bayesiana para obtener una probabilidad de exacerbación del estado de un paciente. La red bayesiana recibe datos de entrada del paciente, datos del sensor del paciente y proporciona datos de probabilidad, y el modelo de predicción local proporciona datos de orientación basados en los datos de probabilidad. El modelo de predicción local se implementa tanto en un dispositivo portátil, como un teléfono inteligente, como en un sistema centralizado de procesamiento de datos de pacientes. Si bien dicho documento propone predecir la evolución de un paciente en base a datos ingresados y datos detectados, no es útil en ambientes de atención ambulatoria o de urgencia, ya que requiere de varias mediciones temporales que, en la práctica, no son posibles de obtener en dichos ambientes de atención. Además, no permite predecir el tiempo de hospitalización del paciente, ya que no comprende un ingreso y/o detección de datos específicos que resulten en dicha predicción. Por lo tanto, es necesario contar con un equipo que entregue una predicción del tiempo de hospitalización de un paciente de forma prácticamente instantánea, al momento de la atención ambulatoria o de urgencia. Document W02013006044A1, entitled "Mobile patient computing system and method for predicting exacerbations", by LUCAS PETRUS JOHANNES FRANCISCUS, and published on January 10, 2013, discloses a mobile patient computing system and a method for predicting exacerbations in a disease-related state of a patient. The method comprises collecting sensor data from the patient using sensors and running a local prediction model. The local prediction model comprises a Bayesian network to obtain a probability of exacerbation of a patient's condition. The Bayesian network receives data patient input, patient sensor data and provides probability data, and the local prediction model provides guidance data based on the probability data. The local prediction model is implemented both in a portable device, such as a smartphone, and in a centralized patient data processing system. Although said document proposes to predict the evolution of a patient based on data entered and data detected, it is not useful in outpatient or emergency care settings, since it requires several temporary measurements that, in practice, are not possible to obtain. in these care settings. In addition, it does not make it possible to predict the hospitalization time of the patient, since it does not include an admission and/or detection of specific data that results in said prediction. Therefore, it is necessary to have a team that delivers a prediction of a patient's hospitalization time practically instantaneously, at the time of outpatient or emergency care.
El documento W02013006044A1, titulado “Monitor de señales fisiológicas y equipamiento médico-hospitalario”, de TAKAOKA KENT ARO, y publicado el 28 de noviembre de 2006, divulga un monitor de señales fisiológicas capaz de almacenar y recuperar de un medio de memoria portátil un conjunto de parámetros predeterminados por un usuario, estando asociado el monitor a un dispositivo médico-hospitalario, tales como una máquina de anestesia, un oxímetro, un dispositivo para medir la presión arterial, entre otros. Dicho documento también se refiere a un dispositivo médico-hospitalario capaz de monitorizar las señales fisiológicas, almacenar y recuperar en un medio de memoria portátil un conjunto de parámetros predeterminados por un usuario. Tanto el monitor como el dispositivo divulgados en W02013006044A1 son capaces de detectar datos obtenidos por el dispositivo médico-hospitalario durante un procedimiento médico-hospitalario y almacenar dichos datos en un medio de memoria portátil. El monitor y el equipo objeto permiten al usuario monitorizar las señales fisiológicas de un paciente de forma rápida, versátil, personalizada y segura. Si bien la solución divulgada permite un monitoreo y registro rápido de señales fisiológicas de un paciente, la información registrada no es utilizada para predecir y entregar información útil para la atención, mucho menos para estimar un tiempo de hospitalización de un paciente. Además, el procesamiento de los datos detectados no ocurre en tiempo real y, por lo tanto, no son útiles en ambientes de atención ambulatoria o de urgencia. Document W02013006044A1, entitled "Monitor of physiological signals and medical-hospital equipment", by TAKAOKA KENT ARO, and published on November 28, 2006, discloses a monitor of physiological signals capable of storing and retrieving from a portable memory medium a set of of parameters predetermined by a user, the monitor being associated with a medical-hospital device, such as an anesthesia machine, an oximeter, a device to measure blood pressure, among others. Said document also refers to a medical-hospital device capable of monitoring physiological signals, storing and retrieving in a portable memory medium a set of parameters predetermined by a user. Both the monitor and the device disclosed in W02013006044A1 are capable of detecting data obtained by the medical-hospital device during a medical-hospital procedure and storing said data in a portable memory medium. The monitor and the subject equipment allow the user to monitor the physiological signals of a patient in a fast, versatile, personalized and safe way. Although the disclosed solution allows rapid monitoring and recording of a patient's physiological signals, the recorded information is not used to predict and deliver useful information for care, much less to estimate a patient's hospitalization time. In addition, the processing of the detected data does not occur in real time and, therefore, it is not useful in ambulatory or urgent care settings.
El documento US2006010090A1, titulado “Sistema experto para el análisis de la información médica del paciente”, de BROCKWAY MARINA et al., y publicado el 12 de enero de 2006, divulga un sistema experto para el análisis de la información médica del paciente. Dicho sistema experto utiliza una pluralidad de sensores crónicos para facilitar el diagnóstico y la toma de decisiones médicas respecto de un paciente individual. Además, el sistema experto evalúa los datos de los sensores, combina los datos medidos con datos de probabilidad almacenados, y proporciona una señal de salida para notificación o intervención médica. La solución propuesta en US2006010090A1 es compleja, requiriendo una pluralidad de medios sensores para capturar una pluralidad de información que se utiliza en la predicción. Dicho esquema no solo encarece la solución, sino que también requiere de altas capacidades de procesamiento y entrenamiento especializado del personal o usuarios del sistema. Además, la solución propuesta en dicho documento no permite predecir el tiempo de hospitalización de un paciente. En consecuencia, se requiere de una solución simple capaz de ser utilizada por personal sin especialización, en un ambiente ambulatorio o de urgencia, que permita predecir el tiempo de hospitalización de un paciente de manera rápida y precisa. Document US2006010090A1, entitled "Expert System for Analysis of Patient Medical Information", by BROCKWAY MARINA et al., and published on January 12, 2006, discloses an expert system for analysis of patient medical information. Said expert system uses a plurality of chronic sensors to facilitate diagnosis and medical decision making with respect to an individual patient. In addition, the expert system evaluates the sensor data, combines the measured data with stored probability data, and provides an output signal for notification or medical intervention. The solution proposed in US2006010090A1 is complex, requiring a plurality of sensor means to capture a plurality of information that is used in the prediction. Said scheme not only makes the solution more expensive, but also requires high processing capacities and specialized training of the personnel or users of the system. In addition, the solution proposed in said document does not make it possible to predict the hospitalization time of a patient. Consequently, a simple solution is required, capable of being used by personnel without specialization, in an ambulatory or emergency setting, which makes it possible to predict the hospitalization time of a patient quickly and accurately.
Por lo tanto, es necesario contar con una solución tecnológica que entregue información valiosa al personal médico en atención ambulatoria o de urgencia, especialmente, se hace necesario contar con un equipo que permita predecir el tiempo de hospitalización de un paciente que tiene una enfermedad respiratoria, por ejemplo, COVID-19, información que es especialmente útil cuando se gestiona la admisión de varios pacientes a la vez, como ocurriría en un posible escenario de pandemia. Therefore, it is necessary to have a technological solution that provides valuable information to medical personnel in ambulatory or emergency care, especially, it is necessary to have a team that allows predicting the hospitalization time of a patient who has a respiratory disease, for example, COVID-19, information that is especially useful when managing the admission of several patients at the same time, as would occur in a possible pandemic scenario.
DESCRIPCIÓN DE LA INVENCIÓN DESCRIPTION OF THE INVENTION
Como solución a los problemas antes mencionados se desarrolló el presente invento que se refiere, en general, a un equipo electrónico que tiene la capacidad de estimar el tiempo de hospitalización en pacientes diagnosticados con una enfermedad respiratoria, por ejemplo, diferentes tipos de neumonía, entre las cuales se encuentra el COVID-19. Además, de acuerdo con una modalidad preferente, el equipo tiene la capacidad de estimar otros parámetros relevantes en pacientes diagnosticados con dicha enfermedad respiratoria, como por ejemplo la gravedad y la mortalidad. As a solution to the aforementioned problems, the present invention was developed, which refers, in general, to electronic equipment that has the capacity to estimate the hospitalization time in patients diagnosed with a respiratory disease, for example, different types of pneumonia, among others. which is the COVID-19. In addition, according to a preferred modality, the equipment has the capacity to estimate other relevant parameters in patients diagnosed with said respiratory disease, such as severity and mortality.
De acuerdo con una modalidad de la invención, el equipo se puede presentar como un equipo estacionario o como un equipo portátil. Además, puede comprender una batería que le otorga cierta autonomía y/o un cable de alimentación a la red eléctrica, elementos que le dan la ventaja de ser tanto un equipo portable como estacionario, en función de la necesidad de los equipos de salud. According to one embodiment of the invention, the equipment can be presented as a stationary equipment or as a portable equipment. In addition, it can include a battery that gives it some autonomy and/or a power cable to the electrical network, elements that give it the advantage of being both portable and stationary equipment, depending on the needs of the health teams.
En su modalidad preferente, la presente invención propone realizar una estimación del tiempo de hospitalización, el nivel de gravedad y de la mortalidad de los pacientes ingresados al servicio de urgencia o de atención ambulatoria de cualquier centro asistencial (como, por ejemplo, hospitales y clínicas). Dicha estimación se realiza en base a un procedimiento no invasivo, estándar en los sistemas de urgencia y de atención ambulatoria, como el que se describe a continuación con relación al equipo de la invención. In its preferred modality, the present invention proposes estimating the hospitalization time, the level of severity and the mortality of patients admitted to the emergency service or outpatient care of any care center (such as hospitals and clinics). ). Said estimation is made based on a non-invasive, standard procedure in emergency and ambulatory care systems, such as the one described below in relation to the equipment of the invention.
Usualmente, al iniciar una atención de urgencia o ambulatoria, se registran parámetros del paciente tales como: edad, peso, estatura, presión arterial, nivel de saturación de oxígeno, frecuencia cardíaca, género, entre otros. Dichos parámetros constituyen datos esenciales para la atención y diagnóstico de un paciente, que son obtenidos y/o medidos comúnmente en los servicios de urgencia de los centros de salud (tanto hospitales como clínicas privadas). En el contexto de la invención, los parámetros como edad, peso, estatura, presión arterial y/o género son ingresados manualmente al equipo, mediante un teclado u otra interfaz, por un profesional de la salud capacitado en el uso del equipo, y que conoce los procedimientos para esta toma de parámetros fisiológicos-clínicos en una unidad de urgencias o de atención ambulatoria. Usually, when initiating emergency or ambulatory care, patient parameters such as: age, weight, height, blood pressure, oxygen saturation level, heart rate, gender, among others, are recorded. These parameters constitute essential data for the care and diagnosis of a patient, which are commonly obtained and/or measured in the emergency services of health centers (both hospitals and private clinics). In the context of the invention, parameters such as age, weight, height, blood pressure and/or gender are manually entered into the equipment, through a keyboard or other interface, by a health professional trained in the use of the equipment, and who knows the procedures for this taking of physiological-clinical parameters in an emergency unit or outpatient care.
Adicionalmente, el equipo cuenta con al menos un dispositivo sensor que, correctamente dispuesto en relación con el paciente, permite medir y adquirir datos tales como nivel de saturación de oxígeno y frecuencia cardiaca por parte del personal de salud. Los parámetros ingresados manualmente, o datos ingresados, y los datos medidos por el al menos un dispositivo sensor, o datos detectados, son el insumo principal para la estimación del tiempo de hospitalización del paciente. Es importante mencionar que todos los parámetros ingresados son los mismos que normalmente se miden y registran en los servicios de urgencia y atención ambulatoria, por lo tanto, el equipo no requiere tiempo de dedicación adicional por parte del personal y, en ese contexto, no afectará los tiempos de atención primaria. Additionally, the equipment has at least one sensor device that, correctly arranged in relation to the patient, allows health personnel to measure and acquire data such as oxygen saturation level and heart rate. The manually entered parameters, or entered data, and the data measured by the at least one sensor device, or detected data, are the main input for estimating the patient's hospitalization time. It is important to mention that all the parameters entered are the same ones that are normally measured and recorded in the emergency services and ambulatory care, therefore, the equipment does not require additional dedication time by the staff and, in this context, it will not affect primary care times.
Además de las ventajas anteriormente mencionadas, el equipo entrega información que es de utilidad para verificar el número y porcentaje de camas críticas del establecimiento de salud (totales, en uso y desocupadas), contribuyendo a que cada encargado de servicios de urgencia pueda tomar decisiones médico-clínicas de una manera más informada. En este ejemplo de aplicación, y de acuerdo con una modalidad preferente, el equipo puede formar parte de un sistema de gestión del centro asistencial, que utiliza el pronóstico de tiempo de hospitalización de cada paciente en la gestión de camas y capacidad del centro. In addition to the advantages mentioned above, the equipment provides information that is useful for verifying the number and percentage of critical beds in the health facility (total, in use, and unoccupied), helping each person in charge of emergency services to make medical decisions. -clinics in a more informed way. In this example of application, and according to a preferred modality, the equipment can form part of a care center management system, which uses the hospitalization time forecast for each patient in the management of beds and center capacity.
De acuerdo con una modalidad de la invención, el equipo portátil está diseñado para su uso en un ambiente médico de urgencia ambulatorio, tal como una clínica, un hospital u otro similar. En este contexto, el equipo está preparado para poder movilizarse de un ambiente a otro, configurándose como un equipo portátil. Para ello, el equipo puede estar provisto de un asa o mango dispuesto en su parte superior; asimismo, el equipo portátil puede acoplarse a una estructura de soporte, en donde dicha estructura de soporte puede estar provista de ruedas para facilitar el desplazamiento del equipo mediante deslizamiento; además, el equipo puede estar provisto de un banco de baterías recargables que le proporciona una autonomía de funcionamiento continuo, según la capacidad las baterías que conforman el banco y el uso que se le ha dado al equipo. El banco de baterías puede ser recargado cuando el equipo está conectado a la red eléctrica mediante un tomacorriente, ya sea durante una sesión de recarga o durante la misma operación del equipo, cuando se utiliza conectado a dicha red. In accordance with one embodiment of the invention, the portable kit is designed for use in an outpatient emergency medical environment, such as a clinic, hospital, or the like. In this context, the equipment is prepared to be able to move from one environment to another, configuring itself as a portable equipment. For this, the equipment can be provided with a handle or handle arranged in its upper part; likewise, the portable equipment can be coupled to a support structure, where said support structure can be provided with wheels to facilitate the movement of the equipment by sliding; In addition, the equipment can be equipped with a bank of rechargeable batteries that provides autonomy for continuous operation, according to the capacity of the batteries that make up the bank and the use that has been given to the equipment. The battery bank can be recharged when the equipment is connected to the electrical network through an electrical outlet, either during a recharging session or during the operation of the equipment itself, when it is used connected to said network.
Por otra parte, el equipo contiene componentes de hardware electrónico, diseñados de acuerdo con los requerimientos tecnológicos que requiere su operación, en particular, la ejecución de los algoritmos de estimación. En este contexto, la o las estimaciones, predicciones o pronósticos entregados por el equipo provienen del procesamiento de los datos ingresados y detectados, que son procesados como variables de entrada mediante un módulo de predicción, en donde dicho módulo de predicción comprende uno o más algoritmos basados en inteligencia artificial. Dicho módulo de predicción puede configurarse como un programa computacional almacenado en una memoria del equipo, o ingresado al mismo mediante una memoria externa. On the other hand, the equipment contains electronic hardware components, designed in accordance with the technological requirements required for its operation, in particular, the execution of the estimation algorithms. In this context, the estimate(s), predictions or forecasts delivered by the equipment come from the processing of the entered and detected data, which are processed as input variables by means of a prediction module, where said prediction module comprises one or more algorithms. based on artificial intelligence. Said prediction module can be configured as a computer program stored in a memory of the equipment, or entered into it through an external memory.
Como se ha señalado, el módulo de predicción se alimenta de parámetros esenciales y básicos que son adquiridos en todos los servicios de urgencia y atención ambulatoria, lo cual le da una ventaja en cuanto al tiempo necesario para ingresar y procesar las variables de entrada requeridas para entregar el pronóstico. Por otro lado, es importante destacar que el equipo, además de necesitar pocas variables de entrada, también genera el análisis y las predicciones de manera casi instantánea, después de activar el procedimiento de predicción por parte del usuario. La rapidez y simplicidad del equipo favorecen sustancialmente la organización de diferentes unidades de los centros asistenciales, integrándose de manera óptima a los procedimientos actuales y entregando información de gran utilidad no solo para la atención del paciente, sino que también para la organización. Además, el diseño estructural del equipo está de acuerdo con los requerimientos de un ambiente hospitalario, pudiendo usarse con facilidad y sin requerir un entrenamiento exhaustivo. As has been pointed out, the prediction module is fed by essential and basic parameters that are acquired in all emergency services and ambulatory care, which gives it an advantage in terms of the time needed to enter and process the input variables required to deliver the forecast. On the other hand, it is important to highlight that the equipment, in addition to needing few input variables, also generates the analysis and predictions almost instantaneously, after activating the prediction procedure by the user. The speed and simplicity of the equipment substantially favor the organization of different units of healthcare centers, integrating optimally into current procedures and delivering highly useful information not only for patient care, but also for the organization. In addition, the structural design of the equipment is in accordance with the requirements of a hospital environment, being able to be used easily and without requiring exhaustive training.
En relación con lo anterior es importante resaltar que, el corto tiempo de procesamiento por cada caso o paciente procesado mediante el equipo de la invención, implica un ahorro de energía y mayor autonomía del equipo. En efecto, el mayor consumo de energía del equipo ocurre durante la ejecución del módulo de predicción, que se ejecuta de manera casi instantánea. Asimismo, el corto tiempo de procesamiento no genera tiempo de atención adicional al paciente, siendo el mayor tiempo de operación del equipo el relacionado al ingreso de los datos del paciente y a la medición de las variables requeridas, acciones que, independiente del uso del equipo, siempre se ejecutan en las salas de urgencia de los centros de salud. In relation to the above, it is important to highlight that the short processing time for each case or patient processed using the equipment of the invention implies energy savings and greater autonomy of the equipment. Indeed, the highest energy consumption of the equipment occurs during the execution of the prediction module, which is executed almost instantaneously. Likewise, the short processing time does not generate additional patient care time, with the longest operating time of the equipment being related to the entry of patient data and the measurement of the required variables, actions that, regardless of the use of the equipment, they are always carried out in the emergency rooms of health centers.
En sus aspectos estructurales, y de acuerdo con una modalidad de la invención, el equipo electrónico comprende un gabinete cerrado para la instalación en su interior de los componentes electrónicos. De acuerdo con una modalidad de la invención, dicho gabinete está provisto de un asa para facilitar el desplazamiento del equipo de un lugar a otro en su versión portátil. Asimismo, el gabinete se puede acoplar a una estructura de soporte para facilitar su ubicación y desplazamiento en diferentes áreas del mismo nivel de piso del lugar donde se utiliza, lo cual le da una ventaja en cuanto a la versatilidad que puede tener el equipamiento, pasando de un equipo portátil a estacionario y viceversa, en función de las necesidades del centro asistencial. El gabinete contiene los componentes electrónicos del equipo y, en una modalidad, puede tener una compuerta con bisagras para realizar inspección y mantenimiento interno de dichos componentes. En este contexto, el gabinete del equipo contiene el hardware principal, y está configurado para interconectar dicho hardware principal con distintos dispositivos periféricos, como se muestra en la Fig. 1. In its structural aspects, and according to one embodiment of the invention, the electronic equipment comprises a closed cabinet for the installation inside of the electronic components. According to one embodiment of the invention, said cabinet is provided with a handle to facilitate the movement of the equipment from one place to another in its portable version. Likewise, the cabinet can be coupled to a support structure to facilitate its location and movement in different areas of the same floor level of the place where it is used, which gives it an advantage in terms of the versatility that the equipment can have, passing from portable to stationary equipment and vice versa, depending on the needs of the healthcare center. The cabinet contains the electronic components of the equipment and, in one embodiment, may have a hinged door for internal inspection and maintenance of such components. In this context, the equipment cabinet contains the main hardware, and it is configured to interconnect said main hardware with different peripheral devices, as shown in Fig. 1.
A continuación, se describe con mayor detalle el equipo electrónico para la estimación del tiempo de hospitalización de pacientes diagnosticados con enfermedades respiratorias, tales como COVID-19. The electronic equipment for estimating the hospitalization time of patients diagnosed with respiratory diseases, such as COVID-19, is described in more detail below.
Una modalidad preferente del equipo electrónico portátil comprende una unidad de procesamiento y control, capaz de controlar dispositivos periféricos y procesar uno o más algoritmos de estimación basados en inteligencia artificial, principalmente configurados para estimar el tiempo de hospitalización de un paciente. Dicha unidad de procesamiento y control puede ser, por ejemplo, un microcomputador o computador de placa reducida, con un sistema operativo almacenado en al menos una memoria. Los dispositivos periféricos corresponden a componentes del equipo como dispositivos sensores, dispositivos de interfaz usuario, dispositivo de visualización, indicadores, etc., que se conectan a la unidad de procesamiento y control. El o los algoritmos de inteligencia artificial, que se presentan en un módulo de predicción, pueden ser parte de un programa computad onal. Dicho programa, que además puede comprender un módulo de operación del equipo para el control y gestión de los datos ingresados y desplegados, puede encontrarse previamente almacenado en una memoria del equipo o ser ingresado al mismo mediante memoria externa, siendo ejecutado por la unidad de procesamiento y control. A preferred modality of the portable electronic equipment comprises a processing and control unit, capable of controlling peripheral devices and processing one or more estimation algorithms based on artificial intelligence, mainly configured to estimate the hospitalization time of a patient. Said processing and control unit can be, for example, a microcomputer or single board computer, with an operating system stored in at least one memory. Peripheral devices correspond to equipment components such as sensor devices, user interface devices, display devices, indicators, etc., which are connected to the processing and control unit. The artificial intelligence algorithm or algorithms, which are presented in a prediction module, can be part of a computer program. Said program, which can also comprise a unit operation module for the control and management of the entered and displayed data, can be previously stored in a unit memory or can be entered into it via external memory, being executed by the processing unit. And control.
Además, la modalidad preferente del equipo también comprende un dispositivo de interfaz usuario, como un teclado o una pantalla táctil, conectado a la unidad de procesamiento y control como parte de los dispositivos periféricos. Mediante dicho dispositivo de interfaz usuario se ingresan los datos de un paciente y los parámetros fisiológicos asociados a él, los cuales son introducidos manualmente por un personal capacitado. Dichos datos y parámetros de paciente son recibidos por el equipo y, preferentemente, registrados y almacenados en una base de datos, denominándose datos ingresados. Entre los datos ingresados esenciales para la invención se encuentran frecuencia respiratoria, presión arterial, edad y género del paciente. La modalidad preferente del equipo también comprende un dispositivo de visualización, como una pantalla, conectado a la unidad de procesamiento y control como otro de los dispositivos periféricos, para efectos de visualizar una interfaz gráfica donde se despliegan los resultados del módulo de predicción. Dicha pantalla puede tener funcionalidad táctil, lo que permitiría reemplazar las acciones de un dispositivo de interfaz usuario ya sea en relación con la manipulación y visualización de los resultados de predicción, como en relación con el ingreso de los datos y parámetros fisiológicos del paciente. Es decir, si la pantalla es táctil puede prescindirse de un teclado. Si la pantalla no es táctil, puede usarse un dispositivo de interfaz usuario adicional para la manipulación de los resultados, como un mouse, o el mismo dispositivo de interfaz usuario utilizado por el equipo para recibir los datos ingresados. El despliegue de datos en el dispositivo de visualización, así como el manejo de estos por parte del equipo, es realizada por el módulo de operación que ejecuta la unidad de procesamiento y control. In addition, the preferred embodiment of the equipment also comprises a user interface device, such as a keyboard or a touch screen, connected to the processing and control unit as part of the peripheral devices. Through said user interface device, the data of a patient and the physiological parameters associated with it are entered, which are entered manually by trained personnel. Said patient data and parameters are received by the equipment and, preferably, recorded and stored in a database, called input data. Among the input data essential to the invention are respiratory rate, blood pressure, age, and gender of the patient. The preferred modality of the equipment also comprises a display device, such as a screen, connected to the processing and control unit as another of the peripheral devices, for the purpose of displaying a graphic interface where the results of the prediction module are displayed. Said screen may have touch functionality, which would allow the actions of a user interface device to be replaced either in relation to the manipulation and visualization of the prediction results, or in relation to the input of the data and physiological parameters of the patient. In other words, if the screen is touch screen, a keyboard can be dispensed with. If the screen is not touch screen, an additional user interface device can be used for manipulation of the results, such as a mouse, or the same user interface device used by the computer to receive input data. The display of data in the visualization device, as well as the management of these by the equipment, is carried out by the operation module that executes the processing and control unit.
La modalidad preferente del equipo también comprende al menos un dispositivo sensor, el cual se conecta a la unidad de procesamiento y control para la medición y registro de variables del paciente. Dicho al menos un dispositivo sensor mide saturación de oxígeno en la sangre y frecuencia cardíaca del paciente, información que se denomina datos detectados. Preferentemente, el al menos un dispositivo sensor es un oxímetro de pulso, instrumento que tiene la ventaja de entregar mediciones de saturación de oxígeno en sangre y frecuencia cardíaca con gran rapidez y precisión suficiente para el objeto de la invención. The preferred modality of the equipment also comprises at least one sensor device, which is connected to the processing and control unit for the measurement and recording of patient variables. Said at least one sensor device measures blood oxygen saturation and heart rate of the patient, information which is called sensed data. Preferably, the at least one sensor device is a pulse oximeter, an instrument that has the advantage of delivering blood oxygen saturation and heart rate measurements very quickly and with sufficient precision for the purpose of the invention.
En este contexto, los datos ingresados y los datos detectados forman las variables de entrada del equipo, es decir, las variables de entradas con las que se alimentan el o los algoritmos de estimación. In this context, the entered data and the detected data form the input variables of the equipment, that is, the input variables with which the estimation algorithm(s) are fed.
Además, modalidades alternativas del equipo pueden comprender un interruptor o switch que permite el encendido y el apagado del equipo, el cual puede incluir un indicador visual de encendido del equipo, por ejemplo, un LED indicador ubicado en la parte superior del gabinete, de manera que sea visible desde el exterior. In addition, alternative modalities of the equipment may comprise a switch or switch that allows the equipment to be turned on and off, which may include a visual indicator of equipment power-on, for example, an indicator LED located on the top of the cabinet, so that that is visible from the outside.
Además del indicador visual de encendido, una modalidad alternativa del equipo puede comprender un indicador visual del estado de operación del equipo. Dicho indicador, que puede ser un LED indicador, también puede estar ubicado en la parte superior del gabinete, de manera que sea visible desde el exterior. In addition to the visual power indicator, an alternate mode of the equipment may comprise a visual indicator of the operating status of the equipment. Said indicator, which can be an indicator LED, can also be located on the top of the cabinet, so that it is visible from the outside.
Por otra parte, el equipo también puede comprender un módulo de comunicaciones para conexión a una red de datos, ya sea inalámbrica (WIFI) y/o cableada (LAN). Dicho módulo de conexión puede estar integrado a la unidad de procesamiento y control para transferir parte o todos los datos (datos ingresados, datos detectados y/o predicciones) a una red local y/o internet, lo cual puede permitir integrar al equipo en un sistema de gestión del centro asistencial. Por ejemplo, el equipo podría conectarse a diferentes unidades del centro asistencial, pudiendo contribuir a mejorar la distribución y gestión de las camas críticas de clínicas y hospitales, entre otros. De acuerdo con esta modalidad, el equipo también puede incluir un indicador visual del estado de conectividad del equipo que, al igual que los otros indicadores visuales, puede ser un LED indicador ubicado en la parte superior del gabinete, de manera que sea visible desde el exterior. Alternativamente, los indicadores visuales pueden estar integrados al dispositivo de visualización, mostrándose como un icono, símbolo o marcador en la misma interfaz gráfica del equipo. On the other hand, the equipment can also comprise a communications module for connection to a data network, either wireless (WIFI) and/or wired (LAN). Said connection module can be integrated into the processing and control unit to transfer part or all of the data (entered data, detected data and/or predictions) to a local network and/or internet, which can allow the equipment to be integrated into a health center management system. For example, him The equipment could be connected to different units of the care center, and could contribute to improving the distribution and management of critical beds in clinics and hospitals, among others. According to this modality, the equipment can also include a visual indicator of the connectivity status of the equipment that, like the other visual indicators, can be an indicator LED located in the upper part of the cabinet, so that it is visible from the abroad. Alternatively, the visual indicators can be integrated into the display device, showing up as an icon, symbol or marker in the same graphical interface of the equipment.
Además, al contar con un modulo de conexión, el equipo está capacitado para recibir actualizaciones de los módulos de operación y/o de predicción, según sea requerido. In addition, by having a connection module, the team is able to receive updates to the operation and/or prediction modules, as required.
Por otra parte, la modalidad preferente del equipo comprende una fuente de alimentación de energía, que puede configurarse como un banco de baterías recargables, para otorgar autonomía de uso al equipo, y/o como un tomacorriente convencional, para alimentación desde la red eléctrica. En este contexto, se puede disponer de un sistema electrónico de energía conformado por adaptadores de corriente que suministran voltaje y corriente al equipo y al banco de baterías interno. Los adaptadores reciben la energía a través de un cable externo conectado a un tomacorriente convencional. Cuando se desconecta la energía del tomacorriente, el sistema automáticamente toma energía del banco de baterías para que el equipo continúe funcionando sin interrupción On the other hand, the preferred modality of the equipment includes a power supply, which can be configured as a bank of rechargeable batteries, to grant autonomy of use to the equipment, and/or as a conventional outlet, for power from the electrical network. In this context, it is possible to have an electronic power system made up of power adapters that supply voltage and current to the equipment and to the internal battery bank. The adapters receive power through an external cable connected to a conventional outlet. When power is removed from the outlet, the system automatically draws power from the battery bank so equipment continues to run without interruption
Como se ha señalado, en el contexto de la invención un usuario interactúa con el equipo para su operación, ingresando datos de un paciente, manipulando/activando el o los dispositivos sensores para la detección de datos, y activando el proceso de predicción de el o los algoritmos de estimación, basados en técnicas de inteligencia artificial. Dicha interacción, que se materializa a través de los dispositivos de interfaz usuario y de visualización, puede estar gestionada o controlada por un módulo de operación parte de un programa computacional diseñado para la administración de los datos e interfaz de usuario. Dicho programa computacional puede contener también al módulo de predicción que comprende a el o los algoritmos de estimación, presentándose como un único programa computacional contenido en el equipo. Como se muestra en la Fig. 2, la unidad de procesamiento y control implementa una arquitectura computacional que comprende: 1) base de datos, para el manejo y almacenamiento de las variables de entrada en al menos una memoria; backend, donde residen el o los algoritmos del módulo de predicción; y frontend, donde se despliegan y manipulan los resultados y datos mediante dispositivos de visualización e interfaz usuario asociados, mediante el módulo de operación. Cada uno de los tres componentes de la arquitectura propuesta puede presentar un lenguaje dedicado a su respectivo propósito, como se ejemplifica en la Fig. 2. Por su parte, el módulo de predicción (ver Fig. 3), se alimenta de datos ambulatorios de pacientes, que normalmente se miden en los servicios de urgencia y de atención ambulatoria. De acuerdo con una modalidad preferente, el módulo de predicción está comprendido por tres modelos predictivos, que se presentan en la forma de algoritmos de estimación basados en inteligencia artificial, preferentemente en redes neuronales. Cada modelo predictivo requiere las mismas variables de entrada esenciales que se miden en todos los pacientes en cualquier sistema de urgencia o de atención ambulatoria, y entrega valores numéricos representativos de las predicciones asociadas a cada modelo. Dichos valores numéricos, obtenidos en cada una de las salidas del módulo de predicción, pasan a su vez por su respectiva función de transformación dedicada a reinterpretar los valores numéricos en las predicciones requeridas. En la modalidad preferente mostrada en la Fig. 3 se tiene que; As has been indicated, in the context of the invention, a user interacts with the equipment for its operation, entering patient data, manipulating/activating the sensor device(s) for data detection, and activating the prediction process of the device(s). estimation algorithms, based on artificial intelligence techniques. Said interaction, which is materialized through the user interface and visualization devices, can be managed or controlled by an operation module that is part of a computer program designed for data management and user interface. Said computer program may also contain the prediction module that includes the estimation algorithm(s), appearing as a single computer program contained in the equipment. As shown in Fig. 2, the processing and control unit implements a computational architecture that comprises: 1) database, for managing and storing input variables in at least one memory; backend, where the prediction module algorithm(s) reside; and frontend, where the results and data are displayed and manipulated through visualization devices and associated user interface, through the operation module. Each of the three components of the proposed architecture can present a language dedicated to its respective purpose, as exemplified in Fig. 2. For its part, the prediction module (see Fig. 3) is fed with outpatient data from patients, which are normally measured in emergency services and outpatient care. According to a preferred modality, the prediction module is comprised of three predictive models, which are presented in the form of estimation algorithms based on artificial intelligence, preferably on neural networks. Each predictive model requires the same essential input variables that are measured in all patients in any emergency or ambulatory care system, and delivers representative numerical values of the predictions associated with each model. Said numerical values, obtained in each one of the outputs of the prediction module, pass in turn through their respective transformation function dedicated to reinterpreting the numerical values in the required predictions. In the preferred embodiment shown in Fig. 3, it is necessary;
• R1 señala el tiempo de estancia de un paciente, o tiempo de hospitalización, en días,• R1 indicates the length of stay of a patient, or length of hospitalization, in days,
• R2 indica si el paciente tiene estancia u hospitalización por gravedad, utilizando un valor binario como un 0 (paciente no grave o de gravedad baja) o 1 (paciente grave, o de gravedad alta), y • R2 indicates whether the patient has a stay or hospitalization due to severity, using a binary value such as 0 (non-serious or low-severity patient) or 1 (severe-severe or high-severity patient), and
• R3 representa la probabilidad de fallecer durante el tiempo de hospitalización, utilizando un valor binario como 0 (paciente con baja probabilidad de fallecer) y 1 (paciente con alta probabilidad de fallecer). • R3 represents the probability of dying during the hospitalization time, using a binary value such as 0 (patient with a low probability of dying) and 1 (patient with a high probability of dying).
Es importante destacar que los tres modelos predictivos contemplados en el módulo de predicción de la modalidad preferente requieren tiempos mínimos, prácticamente instantáneos, para generar las predicciones anteriormente descritas. It is important to highlight that the three predictive models contemplated in the prediction module of the preferred modality require minimum times, practically instantaneous, to generate the previously described predictions.
BREVE DESCRIPCIÓN DE LAS FIGURAS BRIEF DESCRIPTION OF THE FIGURES
Como parte de la presente invención se presentan las siguientes figuras representativas de la misma, las que enseñan modalidades preferentes de la invención y, por lo tanto, no deben considerarse como limitantes a la definición de la materia reivindicada As part of the present invention, the following representative figures of the same are presented, which show preferred embodiments of the invention and, therefore, should not be considered as limiting the definition of the claimed subject matter.
En la Fig. 1 se muestra un esquema del equipo de la invención, de acuerdo con una modalidad preferente, en donde se muestran las relaciones de conexión del equipo con distintos periféricos. Fig. 1 shows a diagram of the equipment of the invention, according to a preferred modality, where the connection relationships of the equipment with different peripherals are shown.
En la Fig. 2 se muestra un esquema que representa la arquitectura computacional implementada, de acuerdo con una modalidad preferente de la invención. In Fig. 2 a diagram is shown that represents the computational architecture implemented, according to a preferred embodiment of the invention.
En la Fig. 3 se muestra un esquema que representa el funcionamiento del módulo de predicción, de acuerdo con una modalidad preferente de la invención. En la Fig. 4 se muestra el equipo electrónico portátil completo, de acuerdo con una modalidad alternativa de la invención. En la Fig. 5 se presenta una representación del gabinete con descomposición de sus componentes, de acuerdo con una modalidad alternativa de la invención. Fig. 3 shows a diagram that represents the operation of the prediction module, according to a preferred embodiment of the invention. In Fig. 4 the complete portable electronic equipment is shown, according to an alternative embodiment of the invention. Fig. 5 shows a representation of the cabinet with a breakdown of its components, according to an alternative embodiment of the invention.
REALIZACIÓN PREFERENTE DE LA INVENCIÓN PREFERRED EMBODIMENT OF THE INVENTION
El esquema del equipo según la Fig. 1, que representa una modalidad preferente de la invención, permite visualizar que el equipó comprende como componente principal a una unidad de procesamiento y control, que se alimenta de energía a partir de una fuente de energía que puede ser una batería y/o la red eléctrica. Dicha unidad de procesamiento y control puede ser un microcomputador, conteniendo una memoria donde se almacena el módulo de predicción. Además, en la Fig. 1 se aprecia que dicha unidad de procesamiento y control interactúa con distintos componentes, como un teclado, que representa al dispositivo de interfaz usuario mediante el cual el equipo recibe los datos ingresados, y una pantalla, que representa al dispositivo de visualización mediante el cual el personal o usuarios visualizan tanto las variables de entrada como los resultados entregados por el módulo de predicción. Por otra parte, la Fig. 1 también muestra la interacción entre un oxímetro y la unidad de procesamiento y control, en donde dicho oxímetro representa al dispositivo sensor que mide datos del paciente, generando los datos detectados. The diagram of the equipment according to Fig. 1, which represents a preferred embodiment of the invention, makes it possible to visualize that the equipment comprises a processing and control unit as its main component, which is supplied with energy from an energy source that can be a battery and/or the mains. Said processing and control unit can be a microcomputer, containing a memory where the prediction module is stored. In addition, in Fig. 1 it can be seen that said processing and control unit interacts with different components, such as a keyboard, which represents the user interface device through which the equipment receives the entered data, and a screen, which represents the device. display through which the staff or users view both the input variables and the results delivered by the prediction module. On the other hand, Fig. 1 also shows the interaction between an oximeter and the processing and control unit, where said oximeter represents the sensor device that measures patient data, generating the detected data.
La Fig. 1 también muestra que existe interacción entre la unidad de procesamiento y control y elementos alternativos o secundarios, como el interruptor de encendido, LEDs indicadores y una red de internet y/o local, mediante un módulo de comunicaciones integrado en el equipo. Al respecto, si bien la Fig. 1 muestra formas de conexión o comunicación entre componentes del equipo, las mismas solo deben interpretarse como alternativas de diseño, siendo posible emplear distintos medios de conexión y comunicación conocidos en la técnica. Fig. 1 also shows that there is interaction between the processing and control unit and alternative or secondary elements, such as the power switch, indicator LEDs and an internet and/or local network, through a communications module integrated into the equipment. In this regard, although Fig. 1 shows forms of connection or communication between equipment components, they should only be interpreted as design alternatives, and it is possible to use different means of connection and communication known in the art.
En la Fig. 2 se muestra la arquitectura computacional aplicada en el equipo, que involucra un sistema operativo capaz de gestionar información en tres capas diferentes. Lina primera capa corresponde al manejo de los datos en una base de datos, configurada para recibir y almacenar los datos ingresados y detectados (variables de entrada) para su posterior procesamiento. Lina segunda capa corresponde al núcleo de procesamiento, que comprende al módulo de predicción y se encarga de tomar las variables de entrada y procesarlas para obtener una o más predicciones asociadas al tiempo de hospitalización del paciente. Finalmente, una tercera capa corresponde al despliegue de la información mediante el dispositivo de visualización, en donde se muestran las variables de ingreso y los resultados de la predicción, de forma amigable y clara para el usuario. En la Fig. 2 se proponen ejemplos de las tecnologías involucradas en la estructura o arquitectura propuesta, los que deben ser considerados como alternativas de diseño. Sin embargo, es importante destacar que la separación en las tres capas permite considerar tecnologías diferentes en cada una, buscando optimizar los objetivos de cada capa en función de las tecnologías existentes. Fig. 2 shows the computational architecture applied to the equipment, which involves an operating system capable of managing information in three different layers. The first layer corresponds to the management of data in a database, configured to receive and store the entered and detected data (input variables) for further processing. The second layer corresponds to the processing core, which includes the prediction module and is responsible for taking the input variables and processing them to obtain one or more predictions associated with the patient's hospitalization time. Finally, a third layer corresponds to the display of the information through the display device, where the input variables and the prediction results are shown, in a friendly and clear way for the user. In Fig. 2 examples of the technologies involved in the proposed structure or architecture are proposed, which should be considered as design alternatives. However, it is important It should be noted that the separation into the three layers allows considering different technologies in each one, seeking to optimize the objectives of each layer based on existing technologies.
La Fig. 3 muestra un esquema de bloques que representa el funcionamiento del módulo de predicción, que en la modalidad representada incorpora tres algoritmos de estimación basados en inteligencia artificial (redes neuronales). De acuerdo con la Fig. 3, los datos de entrada o variables de entrada del paciente son recibidos por el módulo de predicción, que puede estar almacenado en una memoria de la unidad de procesamiento y control, de manera que dicho módulo de predicción toma las variables de entrada y las procesa para entregar al menos un valor numérico asociado a cada predicción. Dicho valor numérico es procesado mediante una función de conversión que interpreta el valor numérico precedido en relación con el resultado esperado de cada algoritmo. A modo de ejemplo, un primer algoritmo de estimación recibe las variables de entrada y entrega un primer valor numérico de estimación, el que, tomado por una primera función de conversión para entregar un primer resultado, en este caso, el tiempo estimado de hospitalización (Rl). De la misma forma, algoritmos de estimación complementarios pueden recibir variables de entrada para entregar, posterior a la función de conversión aplicable, resultados relacionados con la gravedad y mortalidad del paciente (R2, R3). Si bien Rl ya es un indicador deseado y útil en ambiente de atención de urgencia y ambulatoria, los indicadores R2 y R3 son un complemento que ayuda a determinar la evolución de la enfermedad en cada paciente. Fig. 3 shows a block diagram that represents the operation of the prediction module, which in the represented modality incorporates three estimation algorithms based on artificial intelligence (neural networks). According to Fig. 3, the input data or input variables of the patient are received by the prediction module, which may be stored in a memory of the processing and control unit, so that said prediction module takes the input variables and processes them to deliver at least one numerical value associated with each prediction. Said numerical value is processed by means of a conversion function that interprets the preceding numerical value in relation to the expected result of each algorithm. By way of example, a first estimation algorithm receives the input variables and delivers a first estimation numerical value, which, taken by a first conversion function to deliver a first result, in this case, the estimated hospitalization time ( rl). In the same way, complementary estimation algorithms can receive input variables to deliver, after the applicable conversion function, results related to patient severity and mortality (R2, R3). Although Rl is already a desirable and useful indicator in the emergency and ambulatory care setting, the R2 and R3 indicators are a complement that help determine the evolution of the disease in each patient.
El equipo según la Fig. 4, que representa una modalidad alternativa de la invención, comprende una carcasa o gabinete (1) que, en su base, se une a una estructura de soporte (2). Dicha unión puede realizarse mediante tornillos dispuestos entre el extremo superior de la estructura de soporte (2) y el gabinete (1). Además, de acuerdo con la Fig. 4, la estructura de soporte (2) comprende un extremo inferior donde se dispone un conjunto de ruedas (11), dirigidas a movilizar el equipo en superficies planas. De acuerdo con la modalidad preferente, la estructura de soporte (2) tiene dos características principales, puede ajustar su altura mediante un mecanismo de ajuste, por ejemplo, telescópico, y, adicionalmente, tiene una barra (8), sustancialmente horizontal, que sirve para trasladar el módulo y/o colgar cables de algún dispositivo sensor o dispositivo externo al equipo. The equipment according to Fig. 4, which represents an alternative embodiment of the invention, comprises a casing or cabinet (1) which, at its base, is attached to a support structure (2). Said union can be made by means of screws arranged between the upper end of the support structure (2) and the cabinet (1). In addition, according to Fig. 4, the support structure (2) includes a lower end where a set of wheels (11) is arranged, aimed at moving the equipment on flat surfaces. According to the preferred modality, the support structure (2) has two main characteristics, it can adjust its height by means of an adjustment mechanism, for example, telescopic, and, additionally, it has a bar (8), substantially horizontal, that serves to move the module and/or hang cables from a sensor device or device external to the equipment.
Por otra parte, la Fig. 5 muestra un detalle del gabinete (1), de acuerdo con una modalidad alternativa de la invención. En dicha modalidad, el gabinete (1) comprende un asa o mango (9) en la parte superior, que facilita el transporte del equipo. Además, se aprecia que el gabinete (1) puede comprender una compuerta (10), representada mediante una apertura que permite el acceso a los componentes internos del equipo, por ejemplo, para operaciones de mantenimiento de las piezas internas del equipo. En esta representación, el bloque al interior del gabinete (1) corresponde a una caja que contiene en su interior a la unidad de procesamiento y control (3), junto con la electrónica asociada. Por otra parte, en la parte externa del gabinete (1) se presenta la ubicación de indicadores visuales (4) o LEDs indicadores, que sirven como indicadores del estado del equipo (encendido, funcionamiento y conectividad, por ejemplo). Además, se representa el botón de encendido/ap agado (5), que se dispone hacia la parte frontal del equipo, un dispositivo de interfaz de usuario (6), como un teclado, y un dispositivo de visualización (7), como una pantalla. On the other hand, Fig. 5 shows a detail of the cabinet (1), according to an alternative embodiment of the invention. In said modality, the cabinet (1) includes a handle or handle (9) in the upper part, which facilitates the transport of the equipment. In addition, it can be seen that the cabinet (1) can include a hatch (10), represented by an opening that allows access to the internal components of the equipment, for example, for maintenance operations on the internal parts of the equipment. In this representation, the block inside the cabinet (1) corresponds to a box that contains the processing and control unit (3) inside, together with the electronics. associate. On the other hand, on the outside of the cabinet (1) there is the location of visual indicators (4) or indicator LEDs, which serve as equipment status indicators (power-on, operation and connectivity, for example). In addition, the on/off button (5) is represented, which is arranged towards the front of the equipment, a user interface device (6), such as a keyboard, and a display device (7), such as a screen.
Dicho lo anterior, a continuación, se definen las características del equipo de acuerdo con una modalidad de la invención, correspondiente al desarrollo de un prototipo del equipo que se ha utilizado para validar el concepto inventivo. Having said the above, the characteristics of the equipment are defined below according to a modality of the invention, corresponding to the development of a prototype of the equipment that has been used to validate the inventive concept.
El equipo electrónico, como mostrado en las Figs. 4 y 5, es un equipo portátil que comprende de un gabinete (1) cerrado, para la instalación en su interior de componentes electrónicos. Dicho gabinete (1) está provisto de un asa o mango (9), útil para desplazarlo de un lugar a otro, asimismo, el gabinete se puede acoplar a una estructura de soporte (2) provista de ruedas (11), para desplazarse con mayor facilidad en diferentes áreas del mismo nivel de piso del lugar donde se utiliza. El gabinete (1) contiene prácticamente todos los periféricos y equipos electrónicos, y tiene una compuerta (10) con bisagras, para realizar inspección y mantenimiento interno de los componentes del equipo. El gabinete (1) del equipo portátil contiene el hardware principal, el cual está interconectado con distintos dispositivos periféricos como se muestra en la Fig. 1. The electronic equipment, as shown in Figs. 4 and 5, is a portable equipment comprising a closed cabinet (1) for the installation of electronic components inside. Said cabinet (1) is provided with a handle or handle (9), useful for moving it from one place to another, likewise, the cabinet can be coupled to a support structure (2) provided with wheels (11), to move with more easily in different areas of the same floor level of the place where it is used. The cabinet (1) contains practically all the peripherals and electronic equipment, and has a door (10) with hinges, to carry out inspection and internal maintenance of the equipment components. The cabinet (1) of the laptop contains the main hardware, which is interconnected with different peripheral devices as shown in Fig. 1.
De acuerdo con la modalidad mostrada en las Figs. 1, 4 y 5, el equipo portátil comprende: una unidad de procesamiento y control (3) que, en la práctica, puede materializarse mediante un microcomputador o computador de placa reducida. Dicha unidad de procesamiento y control comprende un sistema operativo, configurado para controlar dispositivos periféricos y procesar el o los algoritmos de estimación, comprendidos en un módulo de estimación. un interruptor o switch (5) para encender o apagar el equipo, acoplado a un indicador visual (4) de encendido del equipo ubicado en la parte superior del gabinete, el cual es visible desde el exterior. Por razones de claridad, en la Fig. 5 todos los indicadores visuales se han numerado con el número (4). un indicador visual (4) del estado de conectividad cableada o inalámbrica del equipo, que está ubicado en la parte superior del gabinete, el cual es visible desde el exterior. un indicador visual (4) del estado del equipo ubicado en la parte superior del gabinete y el cual es visible desde el exterior. un dispositivo de interfaz usuario (6), como un teclado, mediante el cual se ingresan los datos de un paciente y los parámetros fisiológicos asociados a él, los cuales son introducidos manualmente por un profesional de la salud debidamente capacitado formando los datos ingresados. un dispositivo de visualización (7), como una pantalla, para visualizar la interfaz gráfica, la cual reemplazaría las acciones de un mouse en caso presente la funcionalidad táctil. un dispositivo sensor en la forma de un oxímetro de pulso, el cual está conectado vía algún protocolo de comunicación aplicable, por ejemplo, bluetooth, a la unidad de procesamiento y control. Mediante este dispositivo se realiza la medición del oxígeno en la sangre y pulso cardíaco del paciente. un módulo de comunicaciones integrado a la unidad de procesamiento y control, para transferir datos a una red local y/o internet. una batería recargable para autonomía de uso del equipo. un sistema electrónico de energía conformado por adaptadores de corriente que suministran voltaje y corriente al equipo y al banco de baterías interno. Los adaptadores reciben la energía a través de un cable externo conectado a un tomacorriente. According to the embodiment shown in Figs. 1, 4 and 5, the portable equipment comprises: a processing and control unit (3) which, in practice, can be materialized by means of a microcomputer or single board computer. Said processing and control unit comprises an operating system, configured to control peripheral devices and process the estimation algorithm or algorithms, included in an estimation module. a switch or switch (5) to turn the equipment on or off, coupled to a visual indicator (4) of equipment power located on the top of the cabinet, which is visible from the outside. For reasons of clarity, in Fig. 5 all the visual indicators have been numbered with the number (4). a visual indicator (4) of the wired or wireless connectivity status of the equipment, which is located in the upper part of the cabinet, which is visible from the outside. a visual indicator (4) of the equipment status located in the upper part of the cabinet and which is visible from the outside. a user interface device (6), such as a keyboard, through which the data of a patient and the physiological parameters associated with it are entered, which are entered manually by a duly trained health professional forming the entered data. a display device (7), such as a screen, to display the graphical interface, which would replace the actions of a mouse in case of presenting the tactile functionality. a sensor device in the form of a pulse oximeter, which is connected via some applicable communication protocol, eg bluetooth, to the processing and control unit. This device measures the oxygen in the blood and the patient's heart rate. a communications module integrated into the processing and control unit, to transfer data to a local network and/or internet. a rechargeable battery for autonomy of use of the equipment. an electronic power system made up of power adapters that supply voltage and current to the equipment and the internal battery bank. The adapters receive power through an external cable connected to an electrical outlet.
Asimismo, el equipo cuenta con al menos un módulo de operación y un módulo de predicción para su funcionamiento, los cuales se encuentran previamente almacenados en una memoria de la unidad de procesamiento y control o se ingresan al equipo mediante un dispositivo externo, como una memoria externa, que se conecta a la unidad de procesamiento y control. Los módulos de operación y predicción pueden estar integrados en un software contenido en una memoria interna del equipo o ingresado mediante una memoria externa. Likewise, the equipment has at least one operation module and one prediction module for its operation, which are previously stored in a memory of the processing and control unit or are entered into the equipment through an external device, such as a memory. external, which is connected to the processing and control unit. The operation and prediction modules can be integrated into a software contained in an internal memory of the equipment or entered through an external memory.
En este contexto, el equipo funciona en base a, por una parte, el módulo de operación, para la administración de los datos e interfaz de usuario y, por otra parte, el módulo de predicción, que comprende algoritmos de estimación basados en técnicas de inteligencia artificial. In this context, the equipment works based on, on the one hand, the operation module, for data management and user interface, and, on the other hand, the prediction module, which includes estimation algorithms based on artificial intelligence.
Como se muestra en la Fig. 2, la funcionalidad del equipo está soportada mediante un sistema operativo sobre el cual se implemento la estructura de tecnologías: base de datos, backend y frontend, como detalladas anteriormente. Preferentemente, cada estructura tiene un lenguaje dedicado a su respectivo propósito, buscando optimizar las operaciones realizadas por los módulos de operación y predicción. Por su parte, mediante el módulo de predicción, y de acuerdo con una modalidad preferente, se utilizan los datos médicos de cada paciente (datos ingresados y detectados) como variables de entrada a cada uno de tres modelos predictivos (algoritmos de red neuronal), cuyos valores obtenidos en cada una de sus salidas a su vez pasan por una función de transformación, que se dirige a reinterpretar los valores numéricos en las predicciones requeridas como: el tiempo de hospitalización (Rl), la gravedad (R2) y la mortalidad (R3) de un paciente, tal como se muestra en la Fig. 3. FUNCIONAMIENTO DE LA MODALIDAD PREFERENTE As shown in Fig. 2, the equipment's functionality is supported by an operating system on which the technology structure was implemented: database, backend and frontend, as previously detailed. Preferably, each structure has a language dedicated to its respective purpose, seeking to optimize the operations performed by the operation and prediction modules. For its part, through the prediction module, and according to a preferred modality, the medical data of each patient (entered and detected data) are used as input variables to each of three predictive models (neural network algorithms), whose values obtained in each of its outputs in turn go through a transformation function, which is aimed at reinterpreting the numerical values in the required predictions such as: hospitalization time (Rl), severity (R2) and mortality ( R3) from a patient, as shown in Fig. 3. OPERATION OF THE PREFERRED MODE
Inicialmente al encender el equipo, se muestra una interfaz gráfica principal a través del dispositivo de visualización (7). La interfaz gráfica, desplegada gracias al módulo de operación que es ejecutado por el equipo, orienta inicialmente al usuario sobre los parámetros esenciales que deben ser ingresados por el personal o usuario mediante el dispositivo de interfaz de usuario (6), en donde dichos parámetros esenciales son: frecuencia respiratoria del paciente, presión arterial, edad y género. Alternativamente, pueden incluirse como parámetros el nombre y número de documento de identidad. Adicionalmente, la interfaz permite agregar de manera opcional información relevante para la administración de camas, como el grado de ocupación de las instalaciones críticas y no críticas del establecimiento. Los parámetros ingresados al equipo por el personal o usuario se denominan datos ingresados. Initially when turning on the equipment, a main graphical interface is displayed through the display device (7). The graphical interface, displayed thanks to the operation module that is executed by the equipment, initially guides the user on the essential parameters that must be entered by the personnel or user through the user interface device (6), where said essential parameters They are: patient's respiratory rate, blood pressure, age and gender. Alternatively, the name and identity document number can be included as parameters. Additionally, the interface allows the optional addition of relevant information for the management of beds, such as the degree of occupancy of the critical and non-critical facilities of the establishment. The parameters entered into the equipment by the staff or user are called input data.
Luego, una vez ingresados los parámetros anteriores, la interfaz gráfica orienta al usuario para la obtención de la saturación de oxígeno y la frecuencia cardiaca del paciente, mediante el dispositivo sensor dispuesto para dichos efectos y conectado al equipo. Preferentemente, estas mediciones también esenciales para la predicción son realizadas a través de un oxímetro de pulso con el que cuenta el equipo propuesto, que puede estar conectado al equipo por cable o inalámbricamente. Los valores de saturación de oxígeno y de frecuencia cardiaca son leídos automáticamente desde el dispositivo sensor (oxímetro de pulso en la modalidad preferente) y mostrados en la pantalla del equipo a través de la interfaz gráfica. Los datos medidos por el dispositivo sensor y registrados por el equipo se denominan datos detectados. Then, once the above parameters have been entered, the graphic interface guides the user to obtain the patient's oxygen saturation and heart rate, through the sensor device provided for said purposes and connected to the equipment. Preferably, these measurements, also essential for prediction, are performed through a pulse oximeter that the proposed equipment has, which can be connected to the equipment by cable or wirelessly. The oxygen saturation and heart rate values are automatically read from the sensor device (pulse oximeter in the preferred mode) and displayed on the equipment screen through the graphic interface. The data measured by the sensor device and recorded by the equipment is called detected data.
Finalmente, una vez completado el ingreso y adquisición de los datos ingresados y detectados, que se refieren como las variables de entrada, el equipo hace la estimación del estado fisiológico del paciente y de los días probables de hospitalización. Además, si fue ingresada la información opcional, el sistema actualizará el grado de ocupación relativo al tipo de cama que el paciente utilizará durante la hospitalización. Como se señaló anteriormente, dicha estimación se realiza mediante el módulo de predicción, que recibe las variables de entrada y las procesa mediante algoritmos de estimación, entregando valores numéricos referentes de la estimación, que son convertidos a los indicadores deseados (días estimados de hospitalización, gravedad y mortalidad del paciente). El módulo de predicción es ejecutado por el equipo, particularmente, por la unidad de procesamiento y control, al encontrarse previamente almacenado en una memoria de dicha unidad o al ser ingresado mediante memoria externa. Los resultados del procesamiento son mostrados en pantalla o dispositivo de visualización, a través de la interfaz gráfica de manera prácticamente instantánea. Los datos del examen o variables de entrada y los resultados o predicciones puede ser almacenados en la base de datos del equipo y, si es aplicable, también transferidos a un servidor WEB privado para posteriores análisis y evaluaciones. Finally, once the entry and acquisition of the entered and detected data, which are referred to as the input variables, has been completed, the team estimates the physiological state of the patient and the probable days of hospitalization. In addition, if the optional information was entered, the system will update the occupancy rate relative to the type of bed that the patient will use during hospitalization. As previously indicated, said estimation is carried out by means of the prediction module, which receives the input variables and processes them through estimation algorithms, delivering referent numerical values of the estimation, which are converted to the desired indicators (estimated days of hospitalization, severity and patient mortality). The prediction module is executed by the equipment, particularly by the processing and control unit, when it is previously stored in a memory of said unit or when it is entered through external memory. The results of the processing are displayed on the screen or display device, through the graphical interface in a practically instantaneous manner. The exam data or input variables and the results or predictions can be stored in the equipment's database and, if applicable, also transferred to a private WEB server for further analysis and evaluation.
Por otro lado, para escenarios en los que no se disponga de una fuente de energía alterna, se cuenta con un banco de baterías instalado en el equipo, el cual le brinda autonomía. El banco de baterías puede ser recargado cuando el equipo está conectado a la energía externa de un tomacorriente convencional. On the other hand, for scenarios in which an alternate power source is not available, there is a battery bank installed in the equipment, which provides autonomy. The battery bank can be recharged when the equipment is connected to external power from a conventional outlet.
De acuerdo con la presente modalidad, la estructura de soporte (2) del equipo tiene ruedas (11) que permiten darle movilidad dentro de un ambiente plano. Adicionalmente este soporte posee barras (8) horizontales, que permiten manipular la ubicación del equipo y/o colgar algún dispositivo médico. According to the present modality, the support structure (2) of the equipment has wheels (11) that allow it to be mobile within a flat environment. Additionally, this support has horizontal bars (8), which allow you to manipulate the location of the equipment and/or hang a medical device.
En caso el equipo requiera ser transportado fuera del centro médico o algún ambiente aislado, el gabinete posee un mango (9) en la parte superior para facilitar su transportación. En caso de transportar el equipo sin estructura de soporte, es necesario retirar primero los tornillos de fijación a la estructura de soporte. In case the equipment needs to be transported outside the medical center or some isolated environment, the cabinet has a handle (9) at the top to facilitate its transportation. In case of transporting the equipment without a support structure, it is necessary to first remove the fixing screws to the support structure.

Claims

REIVINDICACIONES
1. Un equipo electrónico para la estimación del tiempo de hospitalización de pacientes diagnosticados con enfermedades respiratorias, caracterizado porque comprende: a) una unidad de procesamiento y control (3), que controla dispositivos periféricos mediante un módulo de operación y procesa al menos un algoritmo de estimación comprendido en un módulo de predicción; b) un dispositivo de interfaz usuario (6), mediante el cual un usuario ingresa datos y/o parámetros fisiológicos asociados a un paciente, en donde dichos datos y/o parámetros corresponden a una frecuencia respiratoria del paciente, presión arterial, edad y género, información que se denomina datos ingresados; c) un dispositivo de visualización (7), para visualizar una interfaz gráfica que es desplegada por la unidad de procesamiento y control (3); y d) al menos un dispositivo sensor, el cual está conectado a la unidad de procesamiento y control (3) y está configurado para medir el oxígeno en la sangre y la frecuencia cardíaca del paciente, información que se denomina datos detectados; en donde el módulo de predicción, que comprende el al menos un algoritmo de estimación, recibe los datos ingresados y detectados, que se denominan variables de entrada, y alimenta al menos un modelo predictivo basado en dicho al menos un algoritmo de estimación con dichas variables de entrada, de manera que, al ser ejecutado por la unidad de procesamiento y control del equipo, el modelo de predicción entrega un valor numérico indicativo del tiempo estimado de hospitalización del paciente, que se denomina resultado de predicción. 1. Electronic equipment for estimating the hospitalization time of patients diagnosed with respiratory diseases, characterized in that it comprises: a) a processing and control unit (3), which controls peripheral devices through an operation module and processes at least one algorithm estimation included in a prediction module; b) a user interface device (6), through which a user enters data and/or physiological parameters associated with a patient, wherein said data and/or parameters correspond to a patient's respiratory rate, blood pressure, age and gender , information called input data; c) a display device (7) to display a graphic interface that is displayed by the processing and control unit (3); and d) at least one sensor device, which is connected to the processing and control unit (3) and is configured to measure the oxygen in the blood and the heart rate of the patient, information called sensed data; wherein the prediction module, which comprises the at least one estimation algorithm, receives the entered and detected data, which are called input variables, and feeds at least one predictive model based on said at least one estimation algorithm with said variables. input, so that, when executed by the computer's processing and control unit, the prediction model delivers a numerical value indicative of the estimated hospitalization time of the patient, which is called the prediction result.
2. El equipo electrónico de acuerdo con la reivindicación 1, caracterizado porque el módulo de predicción comprende tres modelos predictivos, cada uno de dichos modelos predictivos estando basado en un algoritmo de estimación, en donde: o un primer algoritmo de estimación está configurado para entregar un primer valor numérico indicativo del tiempo estimado de hospitalización del paciente; o un segundo algoritmo de estimación está configurado para entregar un segundo valor numérico indicativo de la gravedad del paciente; y o un tercer algoritmo de estimación está configurado para entregar un tercer valor numérico indicativo de la gravedad del paciente; en donde cada valor numérico es procesado por una función de conversión correspondiente, para entregar como resultados de predicción: o el tiempo estimado de hospitalización del paciente; o un valor binario asociado a si el paciente se considera o no grave; y o un valor binario asociado a si el paciente se considera o no con riesgo de muerte. El equipo electrónico de acuerdo con una cualquiera de las reivindicaciones 1-2, caracterizado porque el módulo de operación y el módulo de predicción son gestionados por un sistema operativo que opera en tres capas, una primera capa asociada a la base de datos, una segunda capa de backend asociada al procesamiento de datos y una tercera capa de frontend asociada al despliegue y manipulación de datos. El equipo electrónico de acuerdo con una cualquiera de las reivindicaciones 1-3, caracterizado porque el al menos un dispositivo sensor es un oxímetro de pulso. El equipo electrónico de acuerdo con una cualquiera de las reivindicaciones 1-4, caracterizado porque el dispositivo de interfaz usuario es un teclado y porque el dispositivo de visualización es una pantalla. El equipo electrónico de acuerdo con una cualquiera de las reivindicaciones 1-5, caracterizado porque además comprende una fuente de alimentación de energía, que se selecciona del grupo que consiste en: o una conexión a la red eléctrica, o una batería recargable; o o una combinación de las anteriores. El equipo electrónico de acuerdo con una cualquiera de las reivindicaciones 1-6, caracterizado porque además comprende un módulo de comunicaciones, configurado para comunicar o transferir los datos ingresados, los datos detectados y/o los resultados de predicción a una red local y/o internet. El equipo electrónico de acuerdo con la reivindicación 7, caracterizado porque el módulo de comunicaciones es inalámbrico o cableado, encontrándose integrado a la unidad de procesamiento de control y en comunicación de datos con la red local y/o internet. El equipo electrónico de acuerdo con una cualquiera de las reivindicaciones 7-8, caracterizado porque además comprende indicadores visuales que dan a conocer el estado del equipo (encendido/apagado), su funcionamiento y la conectividad. El equipo electrónico de acuerdo con cualquiera de las reivindicaciones 1-6, caracterizado porque la unidad de procesamiento y control (3), el dispositivo de interfaz usuario (6) y el dispositivo de visualización (7) se albergan en un gabinete (1) cerrado, en donde dicho gabinete (1) comprende una compuerta (10) para el acceso a componentes internos, en donde dicho gabinete (1) está configurado para acoplarse, en su base, a una estructura de soporte (2), y en donde dicho gabinete (1) comprende indicadores visuales (4), para indicar el estado del equipo. Un sistema de gestión de un centro asistencial, caracterizado porque comprende al menos un equipo electrónico de acuerdo con cualquiera de las reivindicaciones 1-9, en donde los resultados de predicción entregados por al menos un equipo electrónico son utilizados para la gestión del número de camas y capacidad del centro asistencial. 2. The electronic equipment according to claim 1, characterized in that the prediction module comprises three predictive models, each of said predictive models being based on an estimation algorithm, wherein: o a first estimation algorithm is configured to deliver a first numerical value indicative of the estimated hospitalization time of the patient; or a second estimation algorithm is configured to deliver a second numerical value indicative of the severity of the patient; I a third estimation algorithm is configured to deliver a third numerical value indicative of the severity of the patient; where each numerical value is processed by a corresponding conversion function, to deliver as prediction results: o the estimated hospitalization time of the patient; or a binary value associated with whether or not the patient is considered serious; I a binary value associated with whether or not the patient is considered at risk of death. The electronic equipment according to any one of claims 1-2, characterized in that the operation module and the prediction module are managed by an operating system that operates in three layers, a first layer associated with the database, a second backend layer associated with data processing and a third frontend layer associated with data display and manipulation. The electronic equipment according to any one of claims 1-3, characterized in that the at least one sensor device is a pulse oximeter. Electronic equipment according to any one of claims 1-4, characterized in that the user interface device is a keyboard and that the display device is a screen. The electronic equipment according to any one of claims 1-5, characterized in that it further comprises a power supply source, which is selected from the group consisting of: o a connection to the electrical network, o a rechargeable battery; or or a combination of the above. The electronic equipment according to any one of claims 1-6, characterized in that it also comprises a communications module, configured to communicate or transfer the entered data, the detected data and/or the prediction results to a local network and/or Internet. The electronic equipment according to claim 7, characterized in that the communications module is wireless or wired, being integrated into the control processing unit and in data communication with the local network and/or internet. The electronic equipment according to any one of claims 7-8, characterized in that it further comprises visual indicators that reveal the status of the equipment (on/off), its operation and connectivity. The electronic equipment according to any of the claims 1-6, characterized in that the processing and control unit (3), the user interface device (6) and the display device (7) are housed in a cabinet (1) closed, where said cabinet (1) comprises a hatch (10) for access to internal components, where said cabinet (1) is configured to be coupled, at its base, to a support structure (2), and where said cabinet (1) includes visual indicators (4) to indicate the status of the equipment. A care center management system, characterized in that it comprises at least one electronic device according to any of claims 1-9, wherein the prediction results delivered by at least one electronic device are used to manage the number of beds and capacity of the care center.
PCT/CL2021/050127 2021-12-28 2021-12-28 Electronic equipment for estimating the length of hospitalisation for patients diagnosed with respiratory disease WO2023122837A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CL2021/050127 WO2023122837A1 (en) 2021-12-28 2021-12-28 Electronic equipment for estimating the length of hospitalisation for patients diagnosed with respiratory disease

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CL2021/050127 WO2023122837A1 (en) 2021-12-28 2021-12-28 Electronic equipment for estimating the length of hospitalisation for patients diagnosed with respiratory disease

Publications (1)

Publication Number Publication Date
WO2023122837A1 true WO2023122837A1 (en) 2023-07-06

Family

ID=86996781

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CL2021/050127 WO2023122837A1 (en) 2021-12-28 2021-12-28 Electronic equipment for estimating the length of hospitalisation for patients diagnosed with respiratory disease

Country Status (1)

Country Link
WO (1) WO2023122837A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080214904A1 (en) * 2005-06-22 2008-09-04 Koninklijke Philips Electronics N. V. Apparatus To Measure The Instantaneous Patients' Acuity Value
US20130232103A1 (en) * 2010-11-08 2013-09-05 Koninklijke Philips Electronics N.V. Method of continuous prediction of patient severity of illness, mortality, and length of stay
US20160188832A1 (en) * 2014-12-30 2016-06-30 Cerner Innovation, Inc. Physiologic Severity of Illness Score for Acute Care Patients
WO2021148967A1 (en) * 2020-01-23 2021-07-29 Novartis Ag A computer-implemented system and method for outputting a prediction of a probability of a hospitalization of patients with chronic obstructive pulmonary disorder
US11311230B2 (en) * 2014-11-14 2022-04-26 Zoll Medical Corporation Medical premonitory event estimation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080214904A1 (en) * 2005-06-22 2008-09-04 Koninklijke Philips Electronics N. V. Apparatus To Measure The Instantaneous Patients' Acuity Value
US20130232103A1 (en) * 2010-11-08 2013-09-05 Koninklijke Philips Electronics N.V. Method of continuous prediction of patient severity of illness, mortality, and length of stay
US11311230B2 (en) * 2014-11-14 2022-04-26 Zoll Medical Corporation Medical premonitory event estimation
US20160188832A1 (en) * 2014-12-30 2016-06-30 Cerner Innovation, Inc. Physiologic Severity of Illness Score for Acute Care Patients
WO2021148967A1 (en) * 2020-01-23 2021-07-29 Novartis Ag A computer-implemented system and method for outputting a prediction of a probability of a hospitalization of patients with chronic obstructive pulmonary disorder

Similar Documents

Publication Publication Date Title
US11109934B2 (en) System, method, and apparatus for remote patient care
CN102460446B (en) There is the most again the patient-monitoring of the display segments of size regulation
CN101238469B (en) Measure and the method and apparatus communicated for medical treatment
KR102166022B1 (en) Method, apparatus and coumputer-readable medium of provide a training model for dementia care
CN111460276B (en) Car distribution service system, car distribution service method, nonvolatile storage medium storing program, and mobile body
CN106491286A (en) A kind of intelligent medical bed
Linkous et al. Health monitoring in smart homes utilizing internet of things
CN108125748A (en) A kind of first-aid apparatus
Hubbard et al. Does frailty lie in the eyes of the beholder?
Balladini et al. Big data analytics in intensive care units: challenges and applicability in an Argentinian hospital
WO2023122837A1 (en) Electronic equipment for estimating the length of hospitalisation for patients diagnosed with respiratory disease
US11545259B2 (en) Apparatus, system, method, and computer-readable recording medium for displaying transport indicators on a physiological monitoring device
US20220104779A1 (en) Systems, Monitor Mounts and Monitors
KR20120072464A (en) Mobile based system and method for managing asthma for patient and medical team
Oguine et al. AI in telemedicine: an appraisal on deep learning-based approaches to virtual diagnostic solutions (VDS)
JP6255167B2 (en) Hospital in system
Zhi-Hao et al. Wireless network home health care system of social welfare institution
Talha et al. Paving the way to cardiovascular health monitoring using Internet of Medical Things and Edge-AI
Veeramanikandasamy et al. Smart Vital Signs Monitoring System for Covid-19 Patients in Quarantine
Kolbasi et al. Cloxy-An Economical and Scalable SPO2 Tracking System
Selmani et al. Design of patient monitoring data node on the way of implementing Medical 4.0
ES2943486B2 (en) Triage method and system to care for victims affected by an emergency or catastrophe
CN203733122U (en) Household health consultation and intelligent monitoring system
CN212037741U (en) Medicine administration management device for clinical doctors in respiratory department
Balaji et al. Experimental investigations of IoT connected Oximeter for Covid-19 infections

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21969231

Country of ref document: EP

Kind code of ref document: A1