WO2023121127A1 - Heater for vertical sintering furnace - Google Patents

Heater for vertical sintering furnace Download PDF

Info

Publication number
WO2023121127A1
WO2023121127A1 PCT/KR2022/020329 KR2022020329W WO2023121127A1 WO 2023121127 A1 WO2023121127 A1 WO 2023121127A1 KR 2022020329 W KR2022020329 W KR 2022020329W WO 2023121127 A1 WO2023121127 A1 WO 2023121127A1
Authority
WO
WIPO (PCT)
Prior art keywords
heater
connection part
sintering furnace
width direction
upper connection
Prior art date
Application number
PCT/KR2022/020329
Other languages
French (fr)
Korean (ko)
Inventor
한무호
나상권
Original Assignee
포스코홀딩스 주식회사
재단법인 포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 포스코홀딩스 주식회사, 재단법인 포항산업과학연구원 filed Critical 포스코홀딩스 주식회사
Publication of WO2023121127A1 publication Critical patent/WO2023121127A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/30Details, accessories, or equipment peculiar to furnaces of these types
    • F27B9/36Arrangements of heating devices
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/205Preparation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/14Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatment; characterised by the means by which the charge is moved during treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/14Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatment; characterised by the means by which the charge is moved during treatment
    • F27B9/142Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatment; characterised by the means by which the charge is moved during treatment the charge moving along a vertical axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/30Details, accessories, or equipment peculiar to furnaces of these types
    • F27B9/36Arrangements of heating devices
    • F27B2009/3607Heaters located above the track of the charge

Definitions

  • the present invention relates to a heater for a sintering furnace, and more particularly, to a heater for a vertical sintering furnace.
  • artificial graphite is manufactured by heating an artificial graphite firing furnace to a very high temperature, for example, 2900° C. to 3000° C., using a heater, and retaining calcined coke, a raw material for graphitization, inside the heater for a certain period of time.
  • a heater made of graphite is used as a heating means for heating the graphitization raw material.
  • the artificial graphite firing furnace is mainly used in a vertical type for continuous graphite production.
  • the heater of this vertical artificial graphite firing furnace is installed vertically in the center of the furnace surrounded by an insulating material.
  • the present invention is to provide a vertical sintering furnace heater capable of minimizing heat generated around the electrodes installed on and below the heater of the vertical graphite sintering furnace and generating the optimum temperature required for firing graphitized raw materials in the center of the heater. .
  • a heater of a vertical sintering furnace is a heater of a vertical sintering furnace installed in a vertical direction on the ground or an installation surface, and includes a heater unit for generating a temperature capable of sintering a graphitized raw material; It may include an upper connection part connected to an upper part of the heater part, at least a part of which protrudes to the outside of the heater, and an upper electrode for conducting electricity.
  • the heater may include a lower connection part connected to a lower part of the heater part, at least a part of which protrudes to the outside of the heater, and in which a lower electrode for conducting electricity is installed.
  • the upper connection part and the lower connection part may be made of the same material as the heater part or made of a different material.
  • the heater may have a square tube shape or a circular tube shape.
  • passages having a square cross-section having the same size may be disposed on inner walls of the heater unit, the upper connection part, and the lower connection part.
  • a first upper expansion part extending in a width direction of the upper connection part from a straight line formed by an outer surface of the heater part may be provided on an outer surface of the upper connection part.
  • a length in the width direction of the outer surface of the first upper expansion unit may be set to be 1.5 to 5 times greater than the length of the outer surface of the heater unit in the width direction.
  • a first lower expansion part may be provided on an outer surface of the lower connection part extending in a width direction of the lower connection part from a straight line formed by an outer surface of the heater part.
  • a length in the width direction of the outer surface of the first lower expansion part may be set to be 1.5 to 5 times greater than the length of the outer surface of the heater part in the width direction.
  • passages having a circular cross-section having the same size may be disposed on inner circumferential surfaces of the heater unit, the upper connection part, and the lower connection part.
  • a second upper expansion part may be provided on an outer surface of the upper connection part extending in a radial direction of the upper connection part from a straight line formed by an outer surface of the heater part.
  • the size of the outer diameter of the second upper expansion unit may be set to be 1.5 to 5 times larger than the size of the outer diameter of the heater unit.
  • a second lower expansion part may be provided on an outer surface of the lower connection part extending in a radial direction of the lower connection part from a straight line formed by an outer surface of the heater part.
  • the outer diameter of the second lower expansion part may be set to be 1.5 to 5 times larger than the outer diameter of the heater part.
  • the heater when the heater is energized, high efficiency can be achieved by appropriately designing and manufacturing the resistance values of the upper connection part and the lower connection part of the heater in the form of a square tube or a circular tube according to the situation of the vertical sintering furnace.
  • FIG. 1 is a schematic configuration diagram showing a mounting state of a heater of a vertical sintering furnace according to an embodiment of the present invention.
  • FIG. 2 is a schematic front view of a first embodiment of a heater for a vertical sintering furnace according to an embodiment of the present invention.
  • FIG 3 is a schematic perspective view of a first embodiment of a heater for a vertical sintering furnace according to an embodiment of the present invention.
  • FIG. 4 is a schematic front view of a second embodiment of a heater for a vertical sintering furnace according to an embodiment of the present invention.
  • FIG. 5 is a schematic perspective view of a second embodiment of a heater for a vertical sintering furnace according to an embodiment of the present invention.
  • FIG. 6 shows a heater equivalent resistance structure and an electric current circuit diagram of a vertical sintering furnace according to the present invention.
  • FIG. 1 is a schematic configuration diagram showing a mounting state of a heater of a vertical firing furnace according to an embodiment of the present invention
  • FIG. 2 is a first heater of a vertical firing furnace (not shown) according to an embodiment of the present invention. It is a schematic configuration diagram of the embodiment.
  • the heater 100 of the vertical firing furnace is installed in a vertical direction (Y direction in FIG. 1 ) on the ground or installation surface.
  • the heater 100 may include a heater unit 110 , an upper connection unit 120 , and a lower connection unit 140 .
  • the heater unit 110 is disposed at the central portion of the heater 100 in a vertical direction, and may generate a temperature capable of plasticizing the graphitization raw material.
  • the upper connection part 120 is connected to the upper part of the heater part 110, at least a part of it protrudes out of the heater 100, and the upper electrode 130 for conducting electricity may be installed on the upper part.
  • the lower connection part 140 is connected to the lower part of the heater part 110, at least a part of it protrudes out of the heater 100, and a lower electrode 150 for conducting electricity may be installed at the lower part.
  • An insulator 200 may be installed outside the heater 100 to insulate the heater 100 .
  • the upper connection part 120 and the lower connection part 140 may be made of the same material as the heater part 110 or made of a different material.
  • connection part 120 and the lower connection part 140 have a specific resistance smaller than that of the material of the heater part 110 so that the amount of heat generated is smaller than that of the heater part 110 when electricity is applied to the heater 100. material can be made.
  • the heater part 110, the upper connection part 120, and the lower connection part 140 may be formed in a square tube shape or a circular tube shape.
  • Inner walls of the heater unit 110, the upper connection unit 120, and the lower connection unit 140 may be provided with passages 101 having a rectangular cross section of the same size so that the graphitization raw material can be charged and heated.
  • a first upper part extending in a set length in the width direction (X direction in FIG. 2) of the upper connection part 120 from a straight line (X1-X1 line) formed by the outer surface of the heater part 110.
  • the expansion part 121 may be integrally provided.
  • the length W12 in the width direction of the outer surface of the first upper extension part 121 is the width of the outer surface of the heater part 110 so that the resistance compared to the heater part 110 decreases by a set ratio when electricity is applied to the heater 100. It may be set in a range of 1.5 to 5 times the length W11 in the width direction (X direction in FIG. 2).
  • the length (W12) in the width direction of the outer surface of the first upper extension portion 121 is the distance between the two opposing sides of the square tube of the first upper extension portion 121, particularly in the case of a rectangular tube shape. It can indicate the distance between the short sides.
  • a set length extends from a straight line (X1-X1 line) formed by the outer surface of the heater part 110 in the width direction (X direction in FIG. 2) of the lower connection part 140.
  • 1 lower extension part 141 may be integrally provided.
  • the length W13 in the width direction of the outer surface of the first lower extension part 141 is the length of the outer surface of the heater part 110 so that the resistance compared to the heater part 110 is reduced by a set ratio when electricity is applied to the heater 100. It may be set in a range of 1.5 to 5 times the length W11 in the width direction (X direction in FIG. 2).
  • the length (W13) in the width direction of the outer surface of the first lower extension portion 141 is the distance between the two opposing sides of the square tube of the first lower extension portion 141, particularly in the case of a rectangular tube shape, It can indicate the distance between the short sides.
  • the first embodiment of the heater 100 will be described as an example, but it can be applied to the second embodiment of the heater 100 as well.
  • the heater 100 is divided into three sections, that is, the upper connection part 120, the heater part 110, and the lower connection part 140, and the entire heater 100 is manufactured by connecting them.
  • the heat generated from the upper electrode 130 and the lower electrode 150 installed at the upper connection part 120 and the lower connection part 140 is minimized, and the heater part, which is the middle part of the heater 100 ( 110) can generate a sufficient temperature required for firing.
  • connection part 120 and the lower connection part 140 protrude outside the heater 100, they can be easily cooled at the part protruding outside the heater 100.
  • a carbon material having a lower specific resistance compared to the heater part 110 located in the middle of the heater 100 is selected, and at the same time, the physical size is selected at the center of the heater 100. It is made larger than the heater unit 110.
  • the lengths W12 and W13 in the width direction of the outer surfaces of the first upper extension part 121 and the first lower extension part 141 are defined as the width direction of the outer surface of the heater unit 110 (X direction in FIG. 2). ) is set in the range of 1.5 to 5 times the length (W11).
  • the equivalent resistance of the first upper extension part 121 and the first lower extension part 141 has a value smaller than that of the heater part 110 by a set ratio, and thus the amount of heat generated Since it is reduced by that much, heat loss due to cooling of the upper electrode 130 and the lower electrode 150 can be greatly reduced.
  • the heater 100 when the heater 100 is composed of three parts, the upper connection part 120, the heater part 110, and the lower connection part 140, during maintenance of the heater 100, only the damaged part is replaced to optimize the heater 100 ) can be managed.
  • the heater 100 can be viewed as a series connection structure of three resistors. 6 shows a heater equivalent resistance structure and an electric current circuit diagram of a vertical firing furnace according to the present invention.
  • the heater 100 equivalent resistance structure is composed of the upper connection part 120 resistance, the heater part 110 resistance, and the lower connection part 140 resistance.
  • Phase control is performed using an SCR power element for controlling power supplied to the heater 100 .
  • the resistance of the graphite heater 100 is usually very low, on the order of several milliohms, power is supplied to the heater 100 after being converted into a low voltage and high current using a large current conversion transformer.
  • the power dissipated in a resistor is the square of the current through the resistor multiplied by the value of the resistor. Therefore, the power consumed by each resistor in the heater equivalent resistance structure can be expressed by the following equations (1-1), (1-2), and (1-3).
  • Heater power consumption (load current) 2 ⁇ heater resistance --- (1-2)
  • the resistance of the upper connection part 120 and the lower connection part 140 should be minimized compared to that of the heater part 110 .
  • the resistance of the graphite heater can be obtained by Equation 2 below.
  • ⁇ (resistance) means the specific resistance of the graphite heater material. Unit is ⁇ m.
  • Resistance is proportional to resistivity and length, and inversely proportional to cross-sectional area. Therefore, when the specific resistance of the heater 100 is small or the cross-sectional area is large, the resistance is reduced.
  • the graphite material of the upper connection part 120 and the lower connection part 140 of the heater 100 is selected as a material with low resistivity and the length in the width direction is extended as shown in FIGS. 2 and 3, the heater 100 Compared to the heater part 110 in the central part, the resistance is reduced.
  • the heater unit 110A, the upper connection unit 120A, and the lower connection unit 140A of the heater 100 have a circular tube shape. A case will be described as an example.
  • A is added to the reference numeral of the square tube shape to distinguish it from the case where the heater part 110, the upper connection part 120, and the lower connection part 140 are in the form of a square tube.
  • a flow path 103 having a circular cross section having the same diameter is disposed so that the graphitization raw material can be charged and heated. It can be.
  • a set length extends outward in the radial direction (X direction in FIG. 4) of the upper connection part 120A from the straight line (X2-X2 line) formed by the outer surface of the heater part 110A.
  • the second upper expansion part 121A may be integrally provided.
  • the size of the outer diameter (D12) of the second upper expansion part (121A) is the size (D11) of the outer diameter of the heater part (110A) so that the resistance to the heater part (110A) is reduced by a set ratio when the heater 100 is energized. It may be set in the range of 1.5 times to 5 times the contrast.
  • a set length extends from a straight line (X2-X2 line) formed by the outer surface of the heater part 110A to the outside in the radial direction (X direction in FIG. 4) of the lower connection part 140A.
  • the second lower extension part 141A may be integrally provided.
  • the size of the outer diameter D13 of the second lower extension part 141A is the size of the outer diameter D11 of the heater part 110A so that the resistance to the heater part 110A decreases by a set ratio when the heater 100 is energized. It may be set in the range of 1.5 times to 5 times the contrast.
  • the outer diameter of the second upper extension 121A (D12) is set to be 1.5 to 5 times larger than the outer diameter of the heater 110A (D11), and the second lower extension 141A ) is set to be 1.5 times to 5 times larger than the size D11 of the outer diameter of the heater unit 110A.
  • the equivalent resistance of the second upper extension portion 121A and the second lower extension portion 141A has a value smaller than that of the heater portion 110A by a set ratio, and thus the amount of heat generated Since it is reduced by that much, heat loss due to cooling of the upper electrode 130 and the lower electrode 150 can be greatly reduced.

Abstract

A heater for a vertical sintering furnace is provided. The heater according to the present invention comprises: a heater unit for generating a temperature at which graphitization raw materials are sinterable; an upper connection part which is connected to an upper part of the heater unit and to which an upper electrode for applying an electric current is installed; and a lower connection part which is connected to a lower part of the heater unit and to which a lower electrode for applying an electric current is installed.

Description

수직형 소성로의 히터Heaters for vertical kilns
본 발명은 소성로의 히터에 관한 것으로서 보다 상세하게는 수직형 소성로의 히터에 관한 것이다.The present invention relates to a heater for a sintering furnace, and more particularly, to a heater for a vertical sintering furnace.
일반적으로, 인조 흑연 소성로는 히터를 이용하여 예컨대, 2900℃~3000℃ 초고온으로 가열하고, 히터 내부로 흑연화 원료인 하소 코크스를 일정 시간 체류시켜 인조 흑연을 제조한다. In general, artificial graphite is manufactured by heating an artificial graphite firing furnace to a very high temperature, for example, 2900° C. to 3000° C., using a heater, and retaining calcined coke, a raw material for graphitization, inside the heater for a certain period of time.
이때, 흑연화 원료를 가열하기 위한 가열 수단으로 흑연 소재의 히터를 사용한다. 또한, 인조 흑연 소성로는 연속적인 흑연 제조를 위하여 수직형 타입을 주로 사용하고 있다. At this time, a heater made of graphite is used as a heating means for heating the graphitization raw material. In addition, the artificial graphite firing furnace is mainly used in a vertical type for continuous graphite production.
이러한 수직형 인조 흑연 소성로의 히터는 단열재로 둘러싸인 로 중심부에 수직으로 설치된다. The heater of this vertical artificial graphite firing furnace is installed vertically in the center of the furnace surrounded by an insulating material.
동일한 재질 및 동일한 크기의 일체형 히터를 소성로에 설치하고 통전을 실시하면, 전체 히터에 동일한 온도로 발열된다. When an integrated heater of the same material and size is installed in a firing furnace and energized, all heaters generate heat at the same temperature.
이때, 발생되는 열을 강제 냉각시키기 위해서는 막대한 양의 에너지 손실이 발생된다.At this time, a huge amount of energy loss occurs in order to forcibly cool the generated heat.
본 발명은 수직형 흑연 소성로의 히터 상, 하부에 설치된 전극부 주위에서 발생되는 열을 최소화하고 히터 중앙부에서 흑연화 원료의 소성에 필요한 최적 온도를 발생할 수 있도록 한 수직형 소성로의 히터를 제공하고자 한다.The present invention is to provide a vertical sintering furnace heater capable of minimizing heat generated around the electrodes installed on and below the heater of the vertical graphite sintering furnace and generating the optimum temperature required for firing graphitized raw materials in the center of the heater. .
본 발명의 일 구현예에 따른 수직형 소성로의 히터는, 지면 또는 설치면에 수직 방향으로 설치되는 수직형 소성로의 히터로서, 흑연화 원료를 소성화시킬 수 있는 온도를 발생하기 위한 히터부와, 히터부의 상부에 접속되고 적어도 일부가 히터의 외부로 돌출되며 전기 통전을 위한 상부 전극이 설치되는 상부 접속부를 포함할 수 있다. 또한, 히터는 히터부의 하부에 접속되고 적어도 일부가 히터의 외부로 돌출되며 전기 통전을 위한 하부 전극이 설치되는 하부 접속부를 포함할 수 있다. A heater of a vertical sintering furnace according to an embodiment of the present invention is a heater of a vertical sintering furnace installed in a vertical direction on the ground or an installation surface, and includes a heater unit for generating a temperature capable of sintering a graphitized raw material; It may include an upper connection part connected to an upper part of the heater part, at least a part of which protrudes to the outside of the heater, and an upper electrode for conducting electricity. In addition, the heater may include a lower connection part connected to a lower part of the heater part, at least a part of which protrudes to the outside of the heater, and in which a lower electrode for conducting electricity is installed.
상부 접속부 및 하부 접속부는 히터부와 동일한 재질로 이루어지거나, 다른 재질로 이루어질 수 있다. The upper connection part and the lower connection part may be made of the same material as the heater part or made of a different material.
히터는 사각관 형태 또는 원형관 형태로 이루어질 수 있다. The heater may have a square tube shape or a circular tube shape.
히터가 사각관 형태로 이루어지는 경우, 히터부, 상부 접속부, 및 하부 접속부의 내부 벽면에는 모두 동일한 크기의 사각 단면을 가진 유로가 배치될 수 있다. When the heater is formed in the form of a square tube, passages having a square cross-section having the same size may be disposed on inner walls of the heater unit, the upper connection part, and the lower connection part.
상부 접속부의 외측면에는 히터부의 외측면이 이루는 직선으로부터 상기 상부 접속부의 폭 방향으로 확장되는 제1 상부 확장부가 구비될 수 있다. A first upper expansion part extending in a width direction of the upper connection part from a straight line formed by an outer surface of the heater part may be provided on an outer surface of the upper connection part.
제1 상부 확장부의 외측면 폭 방향의 길이는, 히터부의 외측면의 폭 방향의 길이 대비 1,5배 내지 5배 범위로 설정될 수 있다. A length in the width direction of the outer surface of the first upper expansion unit may be set to be 1.5 to 5 times greater than the length of the outer surface of the heater unit in the width direction.
하부 접속부의 외측면에는 히터부의 외측면이 이루는 직선으로부터 하부 접속부의 폭 방향으로 확장되는 제1 하부 확장부가 구비될 수 있다. A first lower expansion part may be provided on an outer surface of the lower connection part extending in a width direction of the lower connection part from a straight line formed by an outer surface of the heater part.
제1 하부 확장부의 외측면 폭 방향의 길이는, 히터부의 외측면의 폭 방향의 길이 대비 1,5배 내지 5배 범위로 설정될 수 있다. A length in the width direction of the outer surface of the first lower expansion part may be set to be 1.5 to 5 times greater than the length of the outer surface of the heater part in the width direction.
히터가 원형관 형태로 이루어지는 경우, 히터부, 상부 접속부, 및 하부 접속부의 내주면에는 모두 동일한 크기의 원형 단면을 가진 유로가 배치될 수 있다. When the heater is formed in a circular tube shape, passages having a circular cross-section having the same size may be disposed on inner circumferential surfaces of the heater unit, the upper connection part, and the lower connection part.
상부 접속부의 외측면에는 히터부의 외측면이 이루는 직선으로부터 상부 접속부의 직경 방향으로 확장되는 제2 상부 확장부가 구비될 수 있다. A second upper expansion part may be provided on an outer surface of the upper connection part extending in a radial direction of the upper connection part from a straight line formed by an outer surface of the heater part.
제2 상부 확장부의 외경의 크기는, 히터부의 외경의 크기 대비 1,5배 내지 5배 범위로 설정될 수 있다. The size of the outer diameter of the second upper expansion unit may be set to be 1.5 to 5 times larger than the size of the outer diameter of the heater unit.
하부 접속부의 외측면에는 히터부의 외측면이 이루는 직선으로부터 하부 접속부의 직경 방향으로 확장되는 제2 하부 확장부가 구비될 수 있다. A second lower expansion part may be provided on an outer surface of the lower connection part extending in a radial direction of the lower connection part from a straight line formed by an outer surface of the heater part.
제2 하부 확장부의 외경의 크기는, 히터부의 외경의 크기 대비 1,5배 내지 5배 범위로 설정될 수 있다.The outer diameter of the second lower expansion part may be set to be 1.5 to 5 times larger than the outer diameter of the heater part.
본 발명의 구현예에 따르면, 수직형 흑연 소성로의 히터 상, 하부에 설치된 전극부 주위에서 발생되는 열을 최소화하고 히터 중앙부에서 흑연화 원료의 소성에 필요한 최적 온도를 발생할 수 있다. According to the embodiment of the present invention, it is possible to minimize the heat generated around the electrode units installed on and below the heater of the vertical graphite sintering furnace and generate the optimum temperature required for sintering the graphitization raw material in the central portion of the heater.
이에 따라, 히터의 전기 통전 시 사각관 형태 및 원형관 형태의 히터의 상부 접속부 및 하부 접속부의 저항 값을 수직형 소성로 상황에 맞게 적절히 설계 및 제작하여 고효율화를 달성할 수 있다.Accordingly, when the heater is energized, high efficiency can be achieved by appropriately designing and manufacturing the resistance values of the upper connection part and the lower connection part of the heater in the form of a square tube or a circular tube according to the situation of the vertical sintering furnace.
도 1은 본 발명의 일 실시예에 따른 수직형 소성로의 히터의 장착 상태를 나타낸 개략적인 구성도이다.1 is a schematic configuration diagram showing a mounting state of a heater of a vertical sintering furnace according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 수직형 소성로의 히터의 제1 실시예의 개략적인 정면도이다.2 is a schematic front view of a first embodiment of a heater for a vertical sintering furnace according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 수직형 소성로의 히터의 제1 실시예의 개략적인 사시도이다.3 is a schematic perspective view of a first embodiment of a heater for a vertical sintering furnace according to an embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따른 수직형 소성로의 히터의 제2 실시예의 개략적인 정면도이다.4 is a schematic front view of a second embodiment of a heater for a vertical sintering furnace according to an embodiment of the present invention.
도 5는 본 발명의 일 실시예에 따른 수직형 소성로의 히터의 제2 실시예의 개략적인 사시도이다.5 is a schematic perspective view of a second embodiment of a heater for a vertical sintering furnace according to an embodiment of the present invention.
도 6은 본 발명에 따른 수직형 소성로의 히터 등가 저항 구조 및 전기 통전 회로도를 도시한다. 6 shows a heater equivalent resistance structure and an electric current circuit diagram of a vertical sintering furnace according to the present invention.
이하, 첨부한 도면을 참조하여, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예를 설명한다. 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 이해할 수 있는 바와 같이, 후술하는 실시예는 본 발명의 개념과 범위를 벗어나지 않는 한도 내에서 다양한 형태로 변형될 수 있다. 가능한 한 동일하거나 유사한 부분은 도면에서 동일한 도면부호를 사용하여 나타낸다.Hereinafter, with reference to the accompanying drawings, embodiments of the present invention will be described so that those skilled in the art can easily practice it. As can be easily understood by those skilled in the art to which the present invention pertains, the embodiments described below may be modified in various forms without departing from the concept and scope of the present invention. Where possible, identical or similar parts are indicated using the same reference numerals in the drawings.
이하에서 사용되는 전문용어는 단지 특정 실시예를 언급하기 위한 것이며, 본 발명을 한정하는 것을 의도하지 않는다. 여기서 사용되는 단수 형태들은 문구들이 이와 명백히 반대의 의미를 나타내지 않는 한 복수 형태들도 포함한다. 명세서에서 사용되는 "포함하는"의 의미는 특정 특성, 영역, 정수, 단계, 동작, 요소 및/또는 성분을 구체화하며, 다른 특정 특성, 영역, 정수, 단계, 동작, 요소, 성분 및/또는 군의 존재나 부가를 제외시키는 것은 아니다.The terminology used below is only for referring to specific embodiments and is not intended to limit the present invention. As used herein, the singular forms also include the plural forms unless the phrases clearly indicate the opposite. As used herein, the meaning of "comprising" specifies specific characteristics, regions, integers, steps, operations, elements, and/or components, and other specific characteristics, regions, integers, steps, operations, elements, elements, and/or groups. does not exclude the presence or addition of
이하에서 사용되는 기술용어 및 과학용어를 포함하는 모든 용어들은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 일반적으로 이해하는 의미와 동일한 의미를 가진다. 사전에 정의된 용어들은 관련기술문헌과 현재 개시된 내용에 부합하는 의미를 가지는 것으로 추가 해석되고, 정의되지 않는 한 이상적이거나 매우 공식적인 의미로 해석되지 않는다.All terms including technical terms and scientific terms used below have the same meaning as commonly understood by those of ordinary skill in the art to which the present invention belongs. The terms defined in the dictionary are additionally interpreted as having a meaning consistent with the related technical literature and the currently disclosed content, and are not interpreted in an ideal or very formal meaning unless defined.
도 1은 본 발명의 일 실시예에 따른 수직형 소성로의 히터의 장착 상태를 나타낸 개략적인 구성도이고, 도 2는 본 발명의 일 실시예에 따른 수직형 소성로(미도시)의 히터의 제1 실시예의 개략적인 구성도이다. 1 is a schematic configuration diagram showing a mounting state of a heater of a vertical firing furnace according to an embodiment of the present invention, and FIG. 2 is a first heater of a vertical firing furnace (not shown) according to an embodiment of the present invention. It is a schematic configuration diagram of the embodiment.
도 1 내지 도 3을 참고하면, 본 발명의 일 실시예에 따른 수직형 소성로의 히터(100)는 지면 또는 설치면 등에 수직 방향(도 1의 Y 방향)으로 설치된다.Referring to FIGS. 1 to 3 , the heater 100 of the vertical firing furnace according to an embodiment of the present invention is installed in a vertical direction (Y direction in FIG. 1 ) on the ground or installation surface.
이러한 히터(100)는, 히터부(110), 상부 접속부(120), 및 하부 접속부(140)를 포함할 수 있다. The heater 100 may include a heater unit 110 , an upper connection unit 120 , and a lower connection unit 140 .
히터부(110)는 히터(100)의 수직 방향 중앙부에 배치되고, 흑연화 원료를 소성화시킬 수 있는 온도를 발생할 수 있다. The heater unit 110 is disposed at the central portion of the heater 100 in a vertical direction, and may generate a temperature capable of plasticizing the graphitization raw material.
또한, 상부 접속부(120)는 히터부(110)의 상부에 접속되고, 적어도 일부가 히터(100)의 외부로 돌출되며, 그 상단부에 전기 통전을 위한 상부 전극(130)이 설치될 수 있다. In addition, the upper connection part 120 is connected to the upper part of the heater part 110, at least a part of it protrudes out of the heater 100, and the upper electrode 130 for conducting electricity may be installed on the upper part.
하부 접속부(140)는 히터부(110)의 하부에 접속되고, 적어도 일부가 히터(100)의 외부로 돌출되며, 그 하단부에 전기 통전을 위한 하부 전극(150)이 설치될 수 있다.The lower connection part 140 is connected to the lower part of the heater part 110, at least a part of it protrudes out of the heater 100, and a lower electrode 150 for conducting electricity may be installed at the lower part.
히터(100)의 외측에는 히터(100)를 단열하기 위한 단열재(200)가 설치될 수 있다. An insulator 200 may be installed outside the heater 100 to insulate the heater 100 .
상부 접속부(120) 및 하부 접속부(140)는 히터부(110)와 동일한 재질로 이루어지거나, 다른 재질로 이루어질 수 있다. The upper connection part 120 and the lower connection part 140 may be made of the same material as the heater part 110 or made of a different material.
또한, 상부 접속부(120) 및 하부 접속부(140)는, 히터(100)에 전기 통전 시 히터부(110)에 비해 발열량이 적도록 히터부(110)의 재질이 갖는 비저항보다 더 작은 비저항을 갖는 재질로 이루어질 수 있다.In addition, the upper connection part 120 and the lower connection part 140 have a specific resistance smaller than that of the material of the heater part 110 so that the amount of heat generated is smaller than that of the heater part 110 when electricity is applied to the heater 100. material can be made.
히터부(110), 상부 접속부(120), 및 하부 접속부(140)는 사각관 형태 또는 원형관 형태 등으로 이루어질 수 있다. The heater part 110, the upper connection part 120, and the lower connection part 140 may be formed in a square tube shape or a circular tube shape.
먼저, 히터(100)의 제1 실시예로서, 히터(100)의 히터부(110), 상부 접속부(120), 및 하부 접속부(140)가 사각관 형태인 경우를 예로 들어 설명하기로 한다. First, as a first embodiment of the heater 100, a case in which the heater unit 110, the upper connection unit 120, and the lower connection unit 140 of the heater 100 have a square tube shape will be described as an example.
히터부(110), 상부 접속부(120), 및 하부 접속부(140)의 내부 벽면은 흑연화 원료가 장입 및 가열될 수 있도록 모두 동일한 크기의 사각 단면을 가진 유로(101)가 배치될 수 있다.Inner walls of the heater unit 110, the upper connection unit 120, and the lower connection unit 140 may be provided with passages 101 having a rectangular cross section of the same size so that the graphitization raw material can be charged and heated.
상부 접속부(120)의 외측면에는 히터부(110)의 외측면이 이루는 직선(X1-X1 선)으로부터 상부 접속부(120)의 폭 방향(도 2에서 X 방향)으로 설정 길이 확장되는 제1 상부 확장부(121)가 일체로 구비될 수 있다. On the outer surface of the upper connection part 120, a first upper part extending in a set length in the width direction (X direction in FIG. 2) of the upper connection part 120 from a straight line (X1-X1 line) formed by the outer surface of the heater part 110. The expansion part 121 may be integrally provided.
제1 상부 확장부(121)의 외측면 폭 방향의 길이(W12)는, 히터(100)에 전기 통정 시 히터부(110) 대비 저항이 설정 비율만큼 작아지도록 히터부(110)의 외측면의 폭 방향(도 2에서 X 방향)의 길이(W11) 대비 1,5배 내지 5배 범위로 설정될 수 있다. The length W12 in the width direction of the outer surface of the first upper extension part 121 is the width of the outer surface of the heater part 110 so that the resistance compared to the heater part 110 decreases by a set ratio when electricity is applied to the heater 100. It may be set in a range of 1.5 to 5 times the length W11 in the width direction (X direction in FIG. 2).
여기서, 제1 상부 확장부(121)의 외측면 폭 방향 길이(W12)라 함은, 제1 상부 확장부(121)의 사각관의 대향하는 두변 사이의 거리, 특히 직사각관 형태일 경우에는 대향하는 단변 사이의 거리를 가리킬 수 있다. Here, the length (W12) in the width direction of the outer surface of the first upper extension portion 121 is the distance between the two opposing sides of the square tube of the first upper extension portion 121, particularly in the case of a rectangular tube shape. It can indicate the distance between the short sides.
또한, 하부 접속부(140)의 외측면에는 히터부(110)의 외측면이 이루는 직선(X1-X1 선)으로부터 하부 접속부(140)의 폭 방향(도 2에서 X 방향)으로 설정 길이 확장되는 제1 하부 확장부(141)가 일체로 구비될 수 있다. In addition, on the outer surface of the lower connection part 140, a set length extends from a straight line (X1-X1 line) formed by the outer surface of the heater part 110 in the width direction (X direction in FIG. 2) of the lower connection part 140. 1 lower extension part 141 may be integrally provided.
제1 하부 확장부(141)의 외측면 폭 방향의 길이(W13)는, 히터(100)에 전기 통정 시 히터부(110) 대비 저항이 설정 비율만큼 작아지도록 히터부(110)의 외측면의 폭 방향(도 2에서 X 방향)의 길이(W11) 대비 1,5배 내지 5배 범위로 설정될 수 있다. The length W13 in the width direction of the outer surface of the first lower extension part 141 is the length of the outer surface of the heater part 110 so that the resistance compared to the heater part 110 is reduced by a set ratio when electricity is applied to the heater 100. It may be set in a range of 1.5 to 5 times the length W11 in the width direction (X direction in FIG. 2).
여기서, 제1 하부 확장부(141)의 외측면 폭 방향 길이(W13)라 함은, 제1 하부 확장부(141)의 사각관의 대향하는 두변 사이의 거리, 특히 직사각관 형태일 경우에는 대향하는 단변 사이의 거리를 가리킬 수 있다.Here, the length (W13) in the width direction of the outer surface of the first lower extension portion 141 is the distance between the two opposing sides of the square tube of the first lower extension portion 141, particularly in the case of a rectangular tube shape, It can indicate the distance between the short sides.
이하에서, 도 1 내지 도 3을 참조하여, 본 발명의 일 실시예에 따른 수직형 소성로의 히터의 제1 실시예의 작동에 대해서 설명한다.Hereinafter, with reference to FIGS. 1 to 3 , the operation of the first embodiment of the vertical sintering furnace heater according to an embodiment of the present invention will be described.
하기에서는 히터(100)의 제1 실시예로 예로 들어 설명하지만 히터(100)의 제2 실시예에도 마찬가지로 적용될 수 있다. In the following, the first embodiment of the heater 100 will be described as an example, but it can be applied to the second embodiment of the heater 100 as well.
히터(100)를 3구간 즉, 상부 접속부(120), 히터부(110), 하부 접속부(140)로 구분 제작하고 이를 연결하여 전체 히터(100)를 제작한다. The heater 100 is divided into three sections, that is, the upper connection part 120, the heater part 110, and the lower connection part 140, and the entire heater 100 is manufactured by connecting them.
이에 따라, 상부 접속부(120) 및 하부 접속부(140)에 설치된 상부 전극(130)과 하부 전극(150) 부위에서 발생하는 열을 최소화하고 소성로 중앙부 즉, 히터(100)의 중간 부위인 히터부(110)에서는 소성에 필요한 충분한 온도를 발생시킬 수 있다. Accordingly, the heat generated from the upper electrode 130 and the lower electrode 150 installed at the upper connection part 120 and the lower connection part 140 is minimized, and the heater part, which is the middle part of the heater 100 ( 110) can generate a sufficient temperature required for firing.
또한, 상부 접속부(120) 및 하부 접속부(140)는 적어도 일부가 히터(100)의 외부로 돌출되어 있으므로, 히터(100)의 외부로 돌출된 부분에서 용이하게 냉각될 수 있다. In addition, since at least some of the upper connection part 120 and the lower connection part 140 protrude outside the heater 100, they can be easily cooled at the part protruding outside the heater 100.
이때, 상부 접속부(120)와 하부 접속부(140)의 재질을 히터(100)의 중간부에 위치한 히터부(110) 대비 비저항이 작은 탄소 재질을 선정하고 동시에 물리적인 크기를 히터(100) 중앙부의 히터부(110) 대비 크게 제작한다. At this time, as the material of the upper connection part 120 and the lower connection part 140, a carbon material having a lower specific resistance compared to the heater part 110 located in the middle of the heater 100 is selected, and at the same time, the physical size is selected at the center of the heater 100. It is made larger than the heater unit 110.
즉, 제1 상부 확장부(121) 및 제1 하부 확장부(141)의 외측면 폭 방향의 길이(W12, W13)를, 히터부(110)의 외측면의 폭 방향(도 2에서 X 방향)의 길이(W11) 대비 1,5배 내지 5배 범위로 설정한다. That is, the lengths W12 and W13 in the width direction of the outer surfaces of the first upper extension part 121 and the first lower extension part 141 are defined as the width direction of the outer surface of the heater unit 110 (X direction in FIG. 2). ) is set in the range of 1.5 to 5 times the length (W11).
이에 따라, 히터(100)에 전기 통정 시 제1 상부 확장부(121) 및 제1 하부 확장부(141)의 등가저항은 히터부(110) 대비 설정 비율만큼 작은 값을 갖게 되며, 따라서 발열량도 그 만큼 작아지게 되므로, 상부 전극(130)과 하부 전극(150)의 냉각에 의한 열손실을 크게 줄일 수 있다.Accordingly, when electricity is applied to the heater 100, the equivalent resistance of the first upper extension part 121 and the first lower extension part 141 has a value smaller than that of the heater part 110 by a set ratio, and thus the amount of heat generated Since it is reduced by that much, heat loss due to cooling of the upper electrode 130 and the lower electrode 150 can be greatly reduced.
또한, 히터(100)가 상부 접속부(120), 히터부(110), 하부 접속부(140)의 3개 부품으로 구성 시, 히터(100)의 유지보수 시 손상 부분만 교체하여 최적으로 히터(100)를 관리할 수 있다.In addition, when the heater 100 is composed of three parts, the upper connection part 120, the heater part 110, and the lower connection part 140, during maintenance of the heater 100, only the damaged part is replaced to optimize the heater 100 ) can be managed.
이와 같이 히터(100)를 구성하는 이유를 전기적인 관점에서 살펴보면 다음과 같이 설명될 수 있다. The reason why the heater 100 is configured in this way can be explained from an electrical point of view as follows.
전기적인 관점에서 보면 히터(100)는 3개 저항의 직렬 연결 구조로 볼 수 있다. 도 6에 본 발명에 따른 수직형 소성로의 히터 등가 저항 구조 및 전기 통전 회로도를 도시하였다. From an electrical point of view, the heater 100 can be viewed as a series connection structure of three resistors. 6 shows a heater equivalent resistance structure and an electric current circuit diagram of a vertical firing furnace according to the present invention.
즉, 히터(100) 등가 저항 구조는 상부 접속부(120) 저항, 히터부(110) 저항 및 하부 접속부(140) 저항으로 구성되어 있다. That is, the heater 100 equivalent resistance structure is composed of the upper connection part 120 resistance, the heater part 110 resistance, and the lower connection part 140 resistance.
히터(100)에 공급되는 전력을 제어하기 위한 SCR 전력 소자를 이용하여 위상제어한다. Phase control is performed using an SCR power element for controlling power supplied to the heater 100 .
흑연 히터(100)의 저항은 통상 수 미리옴 정도의 아주 낮은 저항을 가지므로, 대전류 변환 변압기를 이용하여 저전압 대전류로 변환 후, 히터(100)에 전력을 공급한다. Since the resistance of the graphite heater 100 is usually very low, on the order of several milliohms, power is supplied to the heater 100 after being converted into a low voltage and high current using a large current conversion transformer.
저항에서 소모하는 전력은 저항을 통과하는 전류의 제곱에 저항 값을 곱한 값이다. 따라서, 히터 등가 저항구조에서 각 저항에서 소모하는 전력은 아래 식 (1-1), (1-2), (1-3)으로 나타낼 수 있다. The power dissipated in a resistor is the square of the current through the resistor multiplied by the value of the resistor. Therefore, the power consumed by each resistor in the heater equivalent resistance structure can be expressed by the following equations (1-1), (1-2), and (1-3).
상부 접속부 소모전력 = (부하 전류)2 × 상부 접속부 저항 --- (1-1)Upper connection power consumption = (load current) 2 × upper connection resistance --- (1-1)
히터부 소모전력 = (부하 전류)2 × 히터부 저항 --- (1-2)Heater power consumption = (load current) 2 × heater resistance --- (1-2)
하부 접속부 소모전력 = (부하 전류)2 × 하부 접속부 저항 --- (1-3)Lower connection power consumption = (load current) 2 × lower connection resistance --- (1-3)
히터(100)의 각 부위에서 소모하는 전력은 직렬 연결이므로, 부하 전류는 동일하다. 실제 각 부위별 소모 전력을 좌우하는 값은 부위별 저항 값이다. Since power consumed in each part of the heater 100 is connected in series, the load current is the same. The value that actually influences the power consumption of each part is the resistance value of each part.
따라서, 소성로 전력 효율을 향상시키기 위해서는 상부 접속부(120) 및 하부 접속부(140)의 저항을 히터부(110) 대비하여 최소화하여야 한다.Therefore, in order to improve the power efficiency of the sintering furnace, the resistance of the upper connection part 120 and the lower connection part 140 should be minimized compared to that of the heater part 110 .
또한, 흑연 히터의 저항은 아래 식2 로 구할 수 있다.In addition, the resistance of the graphite heater can be obtained by Equation 2 below.
R(저항)=ρ(비저항)×L(길이)/S(단면적) --- (2)R(Resistance)=ρ(Resistivity)×L(Length)/S(Cross Area) --- (2)
ρ(비저항)은 흑연 히터 재질의 비저항을 의미한다. 단위는 Ωm이다.ρ (resistance) means the specific resistance of the graphite heater material. Unit is Ωm.
저항은 비저항과 길이에 비례하고, 단면적에 반비례한다. 따라서, 히터(100)의 비저항이 작거나 단면적이 커지면 저항은 작아지게 된다. Resistance is proportional to resistivity and length, and inversely proportional to cross-sectional area. Therefore, when the specific resistance of the heater 100 is small or the cross-sectional area is large, the resistance is reduced.
따라서, 히터(100)의 상부 접속부(120) 및 하부 접속부(140)의 흑연 재질을 비저항이 작은 재질로 선정하고 도 2 및 도 3에 나타난 것과 같이 폭 방향 길이를 확장하게 되면, 히터(100) 중앙부의 히터부(110) 대비하여 저항이 작아지게 된다.Therefore, when the graphite material of the upper connection part 120 and the lower connection part 140 of the heater 100 is selected as a material with low resistivity and the length in the width direction is extended as shown in FIGS. 2 and 3, the heater 100 Compared to the heater part 110 in the central part, the resistance is reduced.
이하에서는, 도 4 및 도 5를 참고하여 히터(100)의 제2 실시예로서, 히터(100)의 히터부(110A), 상부 접속부(120A), 및 하부 접속부(140A)가 원형관 형태인 경우를 예로 들어 설명하기로 한다. Hereinafter, as a second embodiment of the heater 100 with reference to FIGS. 4 and 5, the heater unit 110A, the upper connection unit 120A, and the lower connection unit 140A of the heater 100 have a circular tube shape. A case will be described as an example.
여기에서는, 히터부(110), 상부 접속부(120), 및 하부 접속부(140)가 사각관 형태인 경우와 구분하기 위하여 사각관 형태의 도면부호에 A를 부가하였다.Here, A is added to the reference numeral of the square tube shape to distinguish it from the case where the heater part 110, the upper connection part 120, and the lower connection part 140 are in the form of a square tube.
히터(100)의 히터부(110A), 상부 접속부(120A), 및 하부 접속부(140A)의 내주면에는 흑연화 원료가 장입 및 가열될 수 있도록 모두 동일한 직경의 원형 단면을 가진 유로(103)가 배치될 수 있다.On the inner circumferential surfaces of the heater part 110A, the upper connection part 120A, and the lower connection part 140A of the heater 100, a flow path 103 having a circular cross section having the same diameter is disposed so that the graphitization raw material can be charged and heated. It can be.
또한, 상부 접속부(120A)의 외측면에는 히터부(110A)의 외측면이 이루는 직선(X2-X2 선)으로부터 상부 접속부(120A)의 직경 방향(도 4에서 X 방향) 외측으로 설정 길이 확장되는 제2 상부 확장부(121A)가 일체로 구비될 수 있다. In addition, on the outer surface of the upper connection part 120A, a set length extends outward in the radial direction (X direction in FIG. 4) of the upper connection part 120A from the straight line (X2-X2 line) formed by the outer surface of the heater part 110A. The second upper expansion part 121A may be integrally provided.
제2 상부 확장부(121A)의 외경의 크기(D12)는, 히터(100)에 전기 통전 시 히터부(110A) 대비 저항이 설정 비율만큼 작아지도록 히터부(110A)의 외경의 크기(D11) 대비 1,5배 내지 5배 범위로 설정될 수 있다. The size of the outer diameter (D12) of the second upper expansion part (121A) is the size (D11) of the outer diameter of the heater part (110A) so that the resistance to the heater part (110A) is reduced by a set ratio when the heater 100 is energized. It may be set in the range of 1.5 times to 5 times the contrast.
또한, 하부 접속부(140A)의 외측면에는 히터부(110A)의 외측면이 이루는 직선(X2-X2 선)으로부터 하부 접속부(140A)의 직경 방향(도 4에서 X 방향) 외측으로 설정 길이 확장되는 제2 하부 확장부(141A)가 일체로 구비될 수 있다.In addition, on the outer surface of the lower connection part 140A, a set length extends from a straight line (X2-X2 line) formed by the outer surface of the heater part 110A to the outside in the radial direction (X direction in FIG. 4) of the lower connection part 140A. The second lower extension part 141A may be integrally provided.
제2 하부 확장부(141A)의 외경의 크기(D13)는, 히터(100)에 전기 통전 시 히터부(110A) 대비 저항이 설정 비율만큼 작아지도록 히터부(110A)의 외경의 크기(D11) 대비 1,5배 내지 5배 범위로 설정될 수 있다. The size of the outer diameter D13 of the second lower extension part 141A is the size of the outer diameter D11 of the heater part 110A so that the resistance to the heater part 110A decreases by a set ratio when the heater 100 is energized. It may be set in the range of 1.5 times to 5 times the contrast.
이하에서, 도 4 및 도 5를 참조하여, 본 발명의 일 실시예에 따른 수직형 소성로의 히터의 제2 실시예의 작동에 대해서 설명한다.Hereinafter, with reference to FIGS. 4 and 5 , the operation of the second embodiment of the vertical sintering furnace heater according to an embodiment of the present invention will be described.
제2 상부 확장부(121A)의 외경의 크기(D12)를, 히터부(110A)의 외경의 크기(D11) 대비 1,5배 내지 5배 범위로 설정하며, 또한 제2 하부 확장부(141A)의 외경의 크기(D13)를 히터부(110A)의 외경의 크기(D11) 대비 1,5배 내지 5배 범위로 설정한다. The outer diameter of the second upper extension 121A (D12) is set to be 1.5 to 5 times larger than the outer diameter of the heater 110A (D11), and the second lower extension 141A ) is set to be 1.5 times to 5 times larger than the size D11 of the outer diameter of the heater unit 110A.
이에 따라, 히터(100)에 전기 통전 시 제2 상부 확장부(121A) 및 제2 하부 확장부(141A)의 등가저항은 히터부(110A) 대비 설정 비율만큼 작은 값을 갖게 되며, 따라서 발열량도 그 만큼 작아지게 되므로, 상부 전극(130)과 하부 전극(150)의 냉각에 의한 열손실을 크게 줄일 수 있다.Accordingly, when electricity is applied to the heater 100, the equivalent resistance of the second upper extension portion 121A and the second lower extension portion 141A has a value smaller than that of the heater portion 110A by a set ratio, and thus the amount of heat generated Since it is reduced by that much, heat loss due to cooling of the upper electrode 130 and the lower electrode 150 can be greatly reduced.
본 개시를 앞서 기재한 바에 따라 바람직한 실시예를 통해 설명하였지만, 본 발명은 이에 한정되지 않으며 다음에 기재하는 특허청구범위의 범위를 벗어나지 않는 한, 다양한 수정 및 변형이 가능하다는 것을 본 발명이 속하는 기술 분야에 종사하는 자들은 쉽게 이해할 것이다.Although the present disclosure has been described through preferred embodiments as described above, the present invention is not limited thereto and various modifications and variations are possible without departing from the scope of the claims described below. Those in the field will easily understand.
[부호의 설명][Description of code]
100: 히터100: heater
110: 히터부110: heater part
120: 상부 접속부120: upper connection
121: 제1 상부 확장부121: first upper extension
121A: 제2 상부 확장부121A: second upper extension
130: 하부 접속부130: lower connection
131: 제1 하부 확장부131: first lower extension
131A: 제2 하부 확장부131A: second lower extension

Claims (13)

  1. 지면 또는 설치면에 수직 방향으로 설치되는 수직형 소성로의 히터로서, As a heater of a vertical firing furnace installed in a vertical direction on the ground or installation surface,
    흑연화 원료를 소성화시킬 수 있는 온도를 발생하기 위한 히터부, A heater unit for generating a temperature capable of plasticizing the graphitization raw material;
    상기 히터부의 상부에 접속되고, 적어도 일부가 상기 히터의 외부로 돌출되며 전기 통전을 위한 상부 전극이 설치되는 상부 접속부, 및 An upper connection part connected to an upper part of the heater part, at least a part of which protrudes to the outside of the heater, and having an upper electrode for conducting electricity, and
    상기 히터부의 하부에 접속되고, 적어도 일부가 상기 히터의 외부로 돌출되며 전기 통전을 위한 하부 전극이 설치되는 하부 접속부A lower connection part connected to the lower part of the heater part, at least a part of which protrudes to the outside of the heater, and having a lower electrode for conducting electricity.
    를 포함하는 수직형 소성로의 히터.A heater of a vertical sintering furnace comprising a.
  2. 제1항에 있어서,According to claim 1,
    상기 상부 접속부 및 상기 하부 접속부는 상기 히터부와 동일한 재질로 이루어지거나, 다른 재질로 이루어지는, 수직형 소성로의 히터.The upper connection part and the lower connection part are made of the same material as the heater part or made of a different material.
  3. 제1항에 있어서,According to claim 1,
    상기 히터는 사각관 형태 또는 원형관 형태로 이루어지는, 수직형 소성로의 히터.The heater is a heater of a vertical sintering furnace made of a square tube shape or a circular tube shape.
  4. 제3항에 있어서,According to claim 3,
    상기 히터가 사각관 형태로 이루어지는 경우, 상기 히터부, 상기 상부 접속부, 및 상기 하부 접속부의 내부 벽면에는 모두 동일한 크기의 사각 단면을 가진 유로가 배치되는, 수직형 소성로의 히터.When the heater is formed in a square tube shape, a flow path having a square cross section having the same size is disposed on inner walls of the heater part, the upper connection part, and the lower connection part.
  5. 제4항에 있어서,According to claim 4,
    상기 상부 접속부의 외측면에는 상기 히터부의 외측면이 이루는 직선으로부터 상기 상부 접속부의 폭 방향으로 확장되는 제1 상부 확장부가 구비되는, 수직형 소성로의 히터.A heater of a vertical sintering furnace, wherein a first upper expansion portion extending in a width direction of the upper connection portion from a straight line formed by an outer surface of the heater portion is provided on an outer surface of the upper connection portion.
  6. 제5항에 있어서,According to claim 5,
    상기 제1 상부 확장부의 외측면 폭 방향의 길이는, 상기 히터부의 외측면의 폭 방향의 길이 대비 1,5배 내지 5배 범위로 설정되는, 수직형 소성로의 히터.The length in the width direction of the outer surface of the first upper extension part is set to be in the range of 1.5 to 5 times the length of the outer surface of the heater part in the width direction.
  7. 제6항에 있어서,According to claim 6,
    상기 하부 접속부의 외측면에는 상기 히터부의 외측면이 이루는 직선으로부터 상기 하부 접속부의 폭 방향으로 확장되는 제1 하부 확장부가 구비되는, 수직형 소성로의 히터.A heater of a vertical sintering furnace, wherein a first lower expansion part extending in a width direction of the lower connection part from a straight line formed by an outer surface of the heater part is provided on an outer surface of the lower connection part.
  8. 제7항에 있어서,According to claim 7,
    상기 제1 하부 확장부의 외측면 폭 방향의 길이는, 상기 히터부의 외측면의 폭 방향의 길이 대비 1,5배 내지 5배 범위로 설정되는, 수직형 소성로의 히터.The length in the width direction of the outer surface of the first lower expansion part is set to be 1.5 to 5 times the length of the outer surface of the heater part in the width direction.
  9. 제3항에 있어서,According to claim 3,
    상기 히터가 원형관 형태로 이루어지는 경우, 상기 히터부, 상기 상부 접속부, 및 상기 하부 접속부의 내주면에는 모두 동일한 크기의 원형 단면을 가진 유로가 배치되는, 수직형 소성로의 히터.When the heater is formed in a circular tube shape, a flow path having a circular cross section having the same size is disposed on inner circumferential surfaces of the heater part, the upper connection part, and the lower connection part.
  10. 제9항에 있어서,According to claim 9,
    상기 상부 접속부의 외측면에는 상기 히터부의 외측면이 이루는 직선으로부터 상기 상부 접속부의 직경 방향으로 확장되는 제2 상부 확장부가 구비되는, 수직형 소성로의 히터.A heater of a vertical sintering furnace, wherein a second upper expansion part extending in a radial direction of the upper connection part from a straight line formed by an outer surface of the heater part is provided on an outer surface of the upper connection part.
  11. 제10항에 있어서,According to claim 10,
    상기 제2 상부 확장부의 외경의 크기는, 상기 히터부의 외경의 크기 대비 1,5배 내지 5배 범위로 설정되는, 수직형 소성로의 히터.The size of the outer diameter of the second upper extension part is set to a range of 1.5 to 5 times the size of the outer diameter of the heater part.
  12. 제11항에 있어서,According to claim 11,
    상기 하부 접속부의 외측면에는 상기 히터부의 외측면이 이루는 직선으로부터 상기 하부 접속부의 직경 방향으로 확장되는 제2 하부 확장부가 구비되는, 수직형 소성로의 히터.A heater of a vertical sintering furnace, wherein a second lower extension part extending in a radial direction of the lower connection part from a straight line formed by an outer surface of the heater part is provided on an outer surface of the lower connection part.
  13. 제12항에 있어서,According to claim 12,
    상기 제2 하부 확장부의 외경의 크기는, 상기 히터부의 외경의 크기 대비 1,5배 내지 5배 범위로 설정되는, 수직형 소성로의 히터.The size of the outer diameter of the second lower expansion part is set to a range of 1.5 to 5 times the size of the outer diameter of the heater part.
PCT/KR2022/020329 2021-12-21 2022-12-14 Heater for vertical sintering furnace WO2023121127A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0184136 2021-12-21
KR1020210184136A KR20230094749A (en) 2021-12-21 2021-12-21 Heater for verticl sintering furnace

Publications (1)

Publication Number Publication Date
WO2023121127A1 true WO2023121127A1 (en) 2023-06-29

Family

ID=86903327

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/020329 WO2023121127A1 (en) 2021-12-21 2022-12-14 Heater for vertical sintering furnace

Country Status (2)

Country Link
KR (1) KR20230094749A (en)
WO (1) WO2023121127A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005147419A (en) * 2003-11-11 2005-06-09 Ishikawajima Harima Heavy Ind Co Ltd Continuous current-carrying heating and burning furnace
JP2008308360A (en) * 2007-06-14 2008-12-25 Mitsubishi Gas Chem Co Inc Manufacturing method of carbon material for electric double layer capacitor electrode
JP2015214463A (en) * 2014-05-12 2015-12-03 株式会社Ihi Graphitization furnace
CN109654888A (en) * 2019-01-15 2019-04-19 太原理工大学 A kind of high-frequency impulse discharge sintering system
CN110054183A (en) * 2019-02-21 2019-07-26 辽宁万鑫科技材料有限公司 The graphitizing furnace of high-efficient energy-saving environment friendly continuous production lithium cell cathode material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005147419A (en) * 2003-11-11 2005-06-09 Ishikawajima Harima Heavy Ind Co Ltd Continuous current-carrying heating and burning furnace
JP2008308360A (en) * 2007-06-14 2008-12-25 Mitsubishi Gas Chem Co Inc Manufacturing method of carbon material for electric double layer capacitor electrode
JP2015214463A (en) * 2014-05-12 2015-12-03 株式会社Ihi Graphitization furnace
CN109654888A (en) * 2019-01-15 2019-04-19 太原理工大学 A kind of high-frequency impulse discharge sintering system
CN110054183A (en) * 2019-02-21 2019-07-26 辽宁万鑫科技材料有限公司 The graphitizing furnace of high-efficient energy-saving environment friendly continuous production lithium cell cathode material

Also Published As

Publication number Publication date
KR20230094749A (en) 2023-06-28

Similar Documents

Publication Publication Date Title
WO2017014449A1 (en) Battery module having structure wherein terminal plates and bms are directly connected
WO2013009144A2 (en) Battery temperature control system and method for driving same
WO2023121127A1 (en) Heater for vertical sintering furnace
DE3880203D1 (en) FLAT HEATING CABLE WITH CONSTANT PERFORMANCE.
WO2016126032A1 (en) End cell heater for fuel cell, and fuel cell including same
EP3836809A1 (en) Cleaning device and aerosol-generating system including the same
WO2018012721A1 (en) Battery module
WO2021015589A1 (en) Heater for secondary battery sealing process
WO2020175750A1 (en) Connector for bus bar
WO2022092819A1 (en) Dc converter for hydrogen fuel cell vehicle
CN216250972U (en) Cylindrical battery module
WO2018190482A1 (en) Distribution board having bus bar cooling device
WO2024034905A1 (en) Heat exchanger and water heating apparatus having same
CN114388993A (en) High-safety power battery module
CN207834018U (en) A kind of Teflon cable extruder die head
CN106058094B (en) A kind of battery pack
WO2022255831A1 (en) Busbar for increasing allowance current and reducing heating value, and production method thereof
CN207340206U (en) The electric heating tube and its mounting structure of paddy electricity regenerative apparatus
WO2013169019A1 (en) Electrode-connecting structure for ceramic heater
WO2018226032A1 (en) Non-magnetic electric heating system
CN219776377U (en) sintering furnace
CN217957631U (en) Novel low-voltage switch electric appliance with cooling system
WO2024039133A1 (en) Inter-module busbar including fire-extinguishing liquid
CN217691668U (en) Quick-connection conductive bus device
WO2020162682A1 (en) Transformer and dc-dc converter including same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22911760

Country of ref document: EP

Kind code of ref document: A1