WO2023121101A1 - Automated device for diagnosis and diagnosis method using same - Google Patents

Automated device for diagnosis and diagnosis method using same Download PDF

Info

Publication number
WO2023121101A1
WO2023121101A1 PCT/KR2022/020157 KR2022020157W WO2023121101A1 WO 2023121101 A1 WO2023121101 A1 WO 2023121101A1 KR 2022020157 W KR2022020157 W KR 2022020157W WO 2023121101 A1 WO2023121101 A1 WO 2023121101A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
sample
module
sensor
diagnosis
Prior art date
Application number
PCT/KR2022/020157
Other languages
French (fr)
Korean (ko)
Inventor
이문근
이태재
이은영
노동기
박유민
이경균
배남호
이석재
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220048155A external-priority patent/KR20230097964A/en
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Publication of WO2023121101A1 publication Critical patent/WO2023121101A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices

Definitions

  • the present invention relates to an automated device for diagnosis that reacts and senses a sample for diagnosis and a diagnosis method using the same.
  • the sample reaction is roughly performed by disrupting the sample (lysis), mixing the target material (protein, nucleic acid, etc.) with magnetic particles and a labeling material, and washing to discharge the residue. Crushing, mixing, and reaction processes should be performed sequentially in an appropriate sequence.
  • the target material can be detected by sensing the reaction-treated sample through a sensor.
  • the sample injection, sensing, washing, and channel cleaning processes must be sequentially performed in an appropriate order.
  • Patent Document 1 KR 10-2019-0179960 A
  • the present invention has been proposed to solve these problems, and reacts and senses a sample for diagnosis, controls the flow of fluid flowing on a flow path by repeatedly applying positive and negative pressure in the chamber, and automates the diagnosis process. It is an object of the present invention to provide an automated device for diagnosis that can increase diagnostic accuracy and sample processing speed, and a diagnosis method using the same.
  • An automated device for diagnosis according to the present invention for achieving the above object includes a sample module provided with at least one sample; a reaction module receiving a sample from the sample module, mixing the supplied sample with a reaction solution to form a mixed solution, and performing a reaction of the mixed solution; a sensor module having a sensor, receiving a reaction-treated sample from the reaction module, and allowing the supplied sample to be incubated on the sensor; an analysis module for detecting a target material fixed on a sensor of the sensor module; and a control unit controlling the sample module, the reaction module, the sensor module, and the analysis module.
  • control unit controls an operation of the robot arm to pick up a sample from the sample module and supply the sample to the reaction module or the reaction module.
  • a sample reacted by the module may be picked up and supplied to the sensor module.
  • the controller provides the sensor module to the analysis module by controlling an operation of the robot arm, and the sensor module detects a target material. It can be loaded or unloaded on the analysis module.
  • the control unit allows a plurality of samples to be loaded or unloaded from the sample module, and when the samples are loaded, sample information may be collected by reading barcodes of the samples.
  • the reaction module includes a storage unit provided with a plurality of accommodating chambers in which the reaction solution is accommodated; a connection unit provided below the storage unit, having a plurality of connection channels connected to the plurality of accommodating chambers, and distributing any one of the reaction solutions accommodated in the plurality of accommodation chambers through the plurality of connection channels; and a reaction channel provided below the connection part, into which a sample is injected, connected to the plurality of connection channels, and a plurality of reaction chambers connected to the reaction channel, wherein the sample and the plurality of connection channels are circulated in the reaction channel. and a reaction unit in which the reaction solution formed forms a mixed solution, and a reaction of the mixed solution is performed by repeatedly applying positive or negative pressure to the plurality of reaction chambers.
  • the control unit may allow the mixed solution to flow back and forth between the plurality of reaction chambers and the reaction channel by repeatedly applying a positive pressure or a negative pressure in the plurality of reaction chambers.
  • a magnetic material is provided below the reaction channel, and the control unit may provide magnetic force to the reaction channel by raising the magnetic material when the reaction of the mixed solution is performed.
  • the reaction module further includes a recovery unit provided below the reaction unit and connected to the reaction channel and provided with a waste liquid chamber, wherein the control unit changes the pressure in the plurality of reaction chambers to react in the plurality of reaction chambers.
  • the waste solution in the plurality of reaction chambers or the reaction channel may be discharged to the waste chamber by controlling or changing the pressure in the waste chamber.
  • the sensor module includes an upper plate having an inlet through which a sample, a buffer solution, or water is injected, and a sensor for sensing a target material is provided in the inlet; a middle plate provided at a lower end of the upper plate, having a distribution channel connected to the inlet, and circulating the sample, the buffer solution, or the water injected through the inlet through the distribution channel; and a lower plate portion provided at a lower end of the middle plate portion and provided with a discharge chamber connected to the distribution channel.
  • the control unit may allow the sample, the buffer solution, or the water injected through the inlet to flow by applying a positive pressure or a negative pressure in the discharge chamber connected to the distribution channel.
  • the control unit allows the target material present in the sample or the buffer solution to be placed on the sensor, and the target material fixed on the surface of the sensor can be detected through the analysis module.
  • a diagnosis method using an automated device for diagnosis includes the step of providing at least one sample; A reaction step of supplying a prepared sample, mixing the supplied sample with a reaction solution to form a mixed solution, and performing a reaction of the mixed solution; A stationary step of supplying a reaction-treated sample and incubating the supplied sample on a sensor; and an analysis step of detecting a target material immobilized on the sensor.
  • sample information may be collected by reading the barcode of the sample.
  • the reaction step may include distributing any one of the reaction solutions accommodated in the plurality of accommodating chambers through a plurality of connecting channels; injecting a sample into a reaction channel connected to the plurality of connection channels, and forming a mixed solution with the sample and the reaction solution distributed from the plurality of connection channels; and performing a reaction of the mixed solution by repeatedly applying positive pressure or negative pressure to a plurality of reaction chambers connected to the reaction channel.
  • the mixed solution flows back and forth between the plurality of reaction chambers and the reaction channel, and magnetic force may be provided to the reaction channel through a magnetic material provided below the reaction channel.
  • the stationary step may include injecting a sample or a buffer solution or water through an inlet; Placing the sample or the target material in the buffer solution on the sensor provided in the inlet; washing the sensor by distributing the sample, the buffer solution, or the water through a distribution channel connected to the inlet; and discharging the sample, the buffer solution, or the water into a discharge chamber connected to the distribution channel.
  • the sample, the buffer solution, or the water may flow back and forth between the sensor and the distribution channel by applying a positive pressure or a negative pressure to the discharge chamber.
  • a fixed target material may be detected by exchanging signals with the sensor in an optical, electrical, or electrochemical manner.
  • a sample is reacted and sensed for diagnosis, and the flow of fluid flowing on a flow path is controlled by repeatedly applying positive pressure and negative pressure in the chamber, and the diagnosis process By automating the diagnosis accuracy and sample processing speed can be increased.
  • FIG. 1 is a diagram schematically showing an automated device for diagnosis according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing the overall form of a reaction module in an automated device for diagnosis according to an embodiment of the present invention.
  • FIG 3 is a perspective view showing a storage unit of a reaction module in an automated device for diagnosis according to an embodiment of the present invention.
  • FIG. 4 is a plan view showing a storage unit of a reaction module in an automated device for diagnosis according to an embodiment of the present invention.
  • FIG. 5 is a bottom view showing a storage unit of a reaction module in an automated device for diagnosis according to an embodiment of the present invention.
  • FIG. 6 is a perspective view showing a connection part of a reaction module in an automated device for diagnosis according to an embodiment of the present invention.
  • FIG. 7 is a plan view showing a connection part of a reaction module in an automated device for diagnosis according to an embodiment of the present invention.
  • FIG. 8 is a bottom view showing a connection part of a reaction module in an automated device for diagnosis according to an embodiment of the present invention.
  • FIG. 9 is a bottom view showing a state in which an upper valve is removed from a connection part of a reaction module in an automated device for diagnosis according to an embodiment of the present invention.
  • FIG. 10 is a view showing a coupled state of a storage unit, a connection unit, and a fixing pin of a reaction module in an automated device for diagnosis according to an embodiment of the present invention.
  • FIG. 11 is a perspective view showing a reaction part of a reaction module in an automated device for diagnosis according to an embodiment of the present invention.
  • FIG. 12 is a plan view showing a reaction part of a reaction module in an automated device for diagnosis according to an embodiment of the present invention.
  • FIG. 13 is a bottom view showing a reaction part of a reaction module in an automated device for diagnosis according to an embodiment of the present invention.
  • FIG. 14 is a bottom view showing a state in which a lower valve is removed from a reaction part of a reaction module in an automated device for diagnosis according to an embodiment of the present invention.
  • 15 is a cross-sectional view showing a reaction chamber and a reaction channel in a reaction unit of a reaction module in an automated device for diagnosis according to an embodiment of the present invention.
  • 16 is a view showing a state in which a connection part and a reaction part of a reaction module are coupled in an automated device for diagnosis according to an embodiment of the present invention.
  • 17 is a view showing an upper valve or a lower valve in a reaction module in an automated device for diagnosis according to an embodiment of the present invention.
  • FIG. 18 is a perspective view illustrating a recovery unit of a reaction module in an automated device for diagnosis according to an embodiment of the present invention.
  • 19 is a plan view illustrating a recovery unit of a reaction module in an automated device for diagnosis according to an embodiment of the present invention.
  • 20 is a bottom view illustrating a recovery unit of a reaction module in an automated device for diagnosis according to an embodiment of the present invention.
  • 21 is a perspective view showing a cover part of a reaction module in an automated device for diagnosis according to an embodiment of the present invention.
  • FIG. 22 is a bottom perspective view showing a cover of a reaction module in an automated device for diagnosis according to an embodiment of the present invention.
  • FIG. 23 is a perspective view showing a case of a reaction module in an automated device for diagnosis according to an embodiment of the present invention.
  • 24 is a cross-sectional view showing a case of a reaction module in an automated device for diagnosis according to an embodiment of the present invention.
  • 25 is an enlarged view showing a coupling groove formed on an inner circumferential surface of a case of a reaction module in an automated device for diagnosis according to an embodiment of the present invention.
  • 26 is an enlarged view showing coupling protrusions formed on an outer circumferential surface of a storage unit of a reaction module in an automated device for diagnosis according to an embodiment of the present invention.
  • FIG. 27 is a view showing the inside of a case of a reaction module in an automated device for diagnosis according to an embodiment of the present invention.
  • FIG. 28 is a view showing the outside of a case of a reaction module in an automated device for diagnosis according to an embodiment of the present invention.
  • 29 is a diagram showing the overall shape of a sensor module in an automated device for diagnosis according to an embodiment of the present invention.
  • FIG. 30 is a perspective view showing an upper plate of a sensor module in an automated device for diagnosis according to an embodiment of the present invention.
  • 31 is a plan view showing an upper plate of a sensor module in an automated device for diagnosis according to an embodiment of the present invention.
  • 32 is a bottom view showing an upper plate of a sensor module in an automated device for diagnosis according to an embodiment of the present invention.
  • FIG 33 is a perspective view showing a middle plate of a sensor module in an automated device for diagnosis according to an embodiment of the present invention.
  • 34 is a plan view illustrating a middle plate of a sensor module in an automated device for diagnosis according to an embodiment of the present invention.
  • 35 is a bottom view showing a middle plate of a sensor module in an automated device for diagnosis according to an embodiment of the present invention.
  • 36 is a cross-sectional view of a state in which an upper plate part and a middle plate part of a sensor module are coupled in an automated device for diagnosis according to an embodiment of the present invention.
  • FIG. 37 is a perspective view showing a lower plate of a sensor module in an automated device for diagnosis according to an embodiment of the present invention.
  • 38 is a plan view illustrating a lower plate of a sensor module in an automated device for diagnosis according to an embodiment of the present invention.
  • 39 is a bottom view showing a lower plate of a sensor module in an automated device for diagnosis according to an embodiment of the present invention.
  • FIG. 40 is a flowchart of a diagnosis method using an automated device for diagnosis according to an embodiment of the present invention.
  • 41 is a flow chart showing reaction steps in detail in a diagnosis method using an automated device for diagnosis according to an embodiment of the present invention.
  • a “module” or “unit” for a component used in this specification performs at least one function or operation.
  • a “module” or “unit” may perform a function or operation by hardware, software, or a combination of hardware and software.
  • a plurality of “modules” or “units” other than “modules” or “units” to be executed in specific hardware or to be executed in at least one processor may be integrated into at least one module. Singular expressions include plural expressions unless the context clearly dictates otherwise.
  • 1 is a diagram schematically showing an automated device for diagnosis according to an embodiment of the present invention.
  • 2 is a diagram showing the overall form of a reaction module in an automated device for diagnosis according to an embodiment of the present invention.
  • 3 is a perspective view showing a storage unit of a reaction module in an automated device for diagnosis according to an embodiment of the present invention.
  • 4 is a plan view showing a storage unit of a reaction module in an automated device for diagnosis according to an embodiment of the present invention.
  • 5 is a bottom view showing a storage unit of a reaction module in an automated device for diagnosis according to an embodiment of the present invention.
  • 6 is a perspective view showing a connection part of a reaction module in an automated device for diagnosis according to an embodiment of the present invention.
  • FIG. 7 is a plan view showing a connection part of a reaction module in an automated device for diagnosis according to an embodiment of the present invention.
  • 8 is a bottom view showing a connection part of a reaction module in an automated device for diagnosis according to an embodiment of the present invention.
  • 9 is a bottom view showing a state in which an upper valve is removed from a connection part of a reaction module in an automated device for diagnosis according to an embodiment of the present invention.
  • 10 is a view showing a coupled state of a storage unit, a connection unit, and a fixing pin of a reaction module in an automated device for diagnosis according to an embodiment of the present invention.
  • 11 is a perspective view showing a reaction part of a reaction module in an automated device for diagnosis according to an embodiment of the present invention.
  • 12 is a plan view showing a reaction part of a reaction module in an automated device for diagnosis according to an embodiment of the present invention.
  • 13 is a bottom view showing a reaction part of a reaction module in an automated device for diagnosis according to an embodiment of the present invention.
  • 14 is a bottom view showing a state in which a lower valve is removed from a reaction part of a reaction module in an automated device for diagnosis according to an embodiment of the present invention.
  • 15 is a cross-sectional view showing a reaction chamber and a reaction channel in a reaction unit of a reaction module in an automated device for diagnosis according to an embodiment of the present invention.
  • 16 is a view showing a state in which a connection part and a reaction part of a reaction module are coupled in an automated device for diagnosis according to an embodiment of the present invention.
  • 17 is a view showing an upper valve or a lower valve in a reaction module in an automated device for diagnosis according to an embodiment of the present invention.
  • 18 is a perspective view illustrating a recovery unit of a reaction module in an automated device for diagnosis according to an embodiment of the present invention.
  • 19 is a plan view illustrating a recovery unit of a reaction module in an automated device for diagnosis according to an embodiment of the present invention.
  • 20 is a bottom view illustrating a recovery unit of a reaction module in an automated device for diagnosis according to an embodiment of the present invention.
  • 21 is a perspective view showing a cover part of a reaction module in an automated device for diagnosis according to an embodiment of the present invention.
  • 22 is a bottom perspective view showing a cover of a reaction module in an automated device for diagnosis according to an embodiment of the present invention.
  • 23 is a perspective view showing a case of a reaction module in an automated device for diagnosis according to an embodiment of the present invention.
  • 24 is a cross-sectional view showing a case of a reaction module in an automated device for diagnosis according to an embodiment of the present invention.
  • 25 is an enlarged view showing a coupling groove formed on an inner circumferential surface of a case of a reaction module in an automated device for diagnosis according to an embodiment of the present invention.
  • 26 is an enlarged view showing coupling protrusions formed on an outer circumferential surface of a storage unit of a reaction module in an automated device for diagnosis according to an embodiment of the present invention.
  • 27 is a view showing the inside of a case of a reaction module in an automated device for diagnosis according to an embodiment of the present invention.
  • 28 is a view showing the outside of a case of a reaction module in an automated device for diagnosis according to an embodiment of the present invention.
  • 29 is a diagram showing the overall shape of a sensor module in an automated device for diagnosis according to an embodiment of the present invention.
  • 30 is a perspective view showing an upper plate of a sensor module in an automated device for diagnosis according to an embodiment of the present invention.
  • 31 is a plan view showing an upper plate of a sensor module in an automated device for diagnosis according to an embodiment of the present invention.
  • 32 is a bottom view showing an upper plate of a sensor module in an automated device for diagnosis according to an embodiment of the present invention.
  • 33 is a perspective view showing a middle plate of a sensor module in an automated device for diagnosis according to an embodiment of the present invention.
  • 34 is a plan view illustrating a middle plate of a sensor module in an automated device for diagnosis according to an embodiment of the present invention.
  • 35 is a bottom view showing a middle plate of a sensor module in an automated device for diagnosis according to an embodiment of the present invention.
  • 36 is a cross-sectional view of a state in which an upper plate part and a middle plate part of a sensor module are coupled in an automated device for diagnosis according to an embodiment of the present invention.
  • 37 is a perspective view showing a lower plate of a sensor module in an automated device for diagnosis according to an embodiment of the present invention.
  • 38 is a plan view illustrating a lower plate of a sensor module in an automated device for diagnosis according to an embodiment of the present invention.
  • 39 is a bottom view showing a lower plate of a sensor module in an automated device for diagnosis according to an embodiment of the present invention.
  • 40 is a flowchart of a diagnosis method using an automated device for diagnosis according to an embodiment of the present invention.
  • 41 is a flow chart showing reaction steps in detail in a diagnosis method using an automated device for diagnosis according to an embodiment of the present invention.
  • 42 is a flowchart showing in detail the stationary step in the diagnosis method using an automated device for diagnosis according to an embodiment of the present invention.
  • An automated device 1 for diagnosis includes a sample module 10 provided with at least one sample; a reaction module 20 receiving a sample from the sample module 10, mixing the supplied sample with a reaction solution to form a mixed solution, and performing a reaction of the mixed solution; A sensor module 30 having a sensor, receiving a reaction-processed sample from the reaction module 20, and incubating the supplied sample on the sensor; Analysis module 40 for detecting the target material fixed on the sensor of the sensor module 30; and a controller 50 controlling the sample module 10, the reaction module 20, the sensor module 30, and the analysis module 40.
  • control unit 50 is connected to each of the modules by wire or wireless, through which control signals are transmitted and received.
  • control unit 50 is shown inside the automation device 1 for convenience in FIG. 1, it may exist outside and control each module wirelessly.
  • each module may be composed of one automated device 1 for diagnosis as shown in FIG. 1, and thus, the automated device 1 for diagnosis may be designed to have a more compact configuration. And, through the optimized arrangement, the efficiency of diagnosis can be increased.
  • the automated device 1 for diagnosis further includes at least one robot arm (not shown) that picks up a sample and supplies the picked-up sample, and in the control unit 50 By controlling the operation of the robot arm, a sample can be picked up from the sample module 10 and supplied to the reaction module 20 or a sample reacted in the reaction module 20 can be picked up and supplied to the sensor module 30 .
  • the control unit 50 allows a plurality of samples to be loaded or unloaded in the sample module 10, and when the samples are loaded, the sample information can be collected by reading the barcodes of the samples.
  • a sample rack equipped with 13 samples is loaded in the sample module 10, and a GUI for displaying a sample loading position is implemented on the screen. Then, the control unit 50 picks up the tube where the sample is located through the robot arm and transfers it to the rotation module, and the control unit 50 collects and stores sample information by rotating the rotation module and reading the barcode of the sample. will do Upon completion of barcode reading, the control unit 50 picks up the tube of the rotation module through the robot arm and transfers it to the sample rack again.
  • the reaction module 20 includes a storage unit 100 provided with a plurality of accommodating chambers 110 in which reaction solutions are accommodated; It is provided on the lower side of the storage unit 100 and is provided with a plurality of connection channels 210 connected to the plurality of accommodation chambers 110, and accommodated in the plurality of accommodation chambers 110 through the plurality of connection channels 210. Distributing any one of the reaction solution, connecting portion 200; and a reaction channel 310 connected to a plurality of connection channels 210 and a plurality of reaction chambers 320 connected to the reaction channels 310, provided on the lower side of the connection unit 200, into which samples are injected, and connected to the reaction channels 210. In 310, the reaction solution flowing from the sample and the plurality of connection channels 210 forms a mixed solution, and the reaction of the mixed solution is performed by repeatedly applying positive or negative pressure to the plurality of reaction chambers 320.
  • Part 300 may include.
  • the reaction module 20 is for reacting a sample in order to detect a target substance, and schematically crushes the sample, magnetic particles and a labeling substance It is for washing the residue after reaction with.
  • the target material is a separated protein or nucleic acid
  • molecular diagnosis or immunodiagnosis is performed by detecting the separated protein or nucleic acid using a sensor using an optical, electrical, or electrochemical method.
  • control unit 50 repeatedly applies positive pressure or negative pressure in the plurality of reaction chambers 320, thereby ,
  • the mixed solution may flow back and forth between the plurality of reaction chambers 320 and the reaction channel 310.
  • a separate negative pressure hole 305 formed penetrating the reaction unit 300 and the recovery unit 400 is provided in one of the plurality of reaction chambers 320, and the negative pressure hole 305
  • the pressure in the reaction chamber 320 may be directly applied as a positive pressure or a negative pressure by inflow or outflow of gas through the.
  • the negative pressure hole 305 is connected to the negative pressure control hole 405 provided on the side of the recovery unit 400, and the control unit 50 controls the pressure of any one of the plurality of reaction chambers 320 through the negative pressure control hole 405. is to be applied as a positive or negative pressure.
  • the sample can be mixed with the reaction solution (magnetic particle and label solution, washing buffer, illusion buffer, etc.), as follows. It is possible to fix the target material to which the magnetic particles are coupled by using the magnetic force during flow. That is, as positive or negative pressure is repeatedly applied to the plurality of reaction chambers 320, mixing, fixing, washing, etc. of the mixed solution can be performed.
  • the reaction solution magnetic particle and label solution, washing buffer, illusion buffer, etc.
  • the reaction unit 300 has a magnetic body 330 provided below the reaction channel 310, and the control unit 50 has a magnetic body when the reaction of the mixed solution is performed. It is possible to provide magnetic force to the reaction channel 310 by raising the.
  • the magnetic body 330 may be composed of a magnet shaft that ascends or descends, and the control unit 50 controls the magnetic body when the mixed solution moves back and forth between the reaction chamber 320 and the reaction channel 310 or when the movement is completed. 330 is raised, and the magnetic body 330 serves to fix the target material to which the magnetic particles are bound in the reaction channel 310 through magnetic force. When the target material is unfixed, the control unit 50 descends the magnetic material 330 to remove the magnetic force provided to the reaction channel 310, and at this time, the reacted sample is recovered through a robot arm equipped with a pipette or the like. It can be.
  • an upper valve 220 to which all of the plurality of connection channels 210 are connected is provided in the connection part 200 of the reaction module 20, The upper valve 220 may selectively connect one of the plurality of connection channels 210 to the reaction channel through shaft rotation.
  • one side of the plurality of connection channels 210 is connected to the plurality of outlet holes 120 of the plurality of accommodating chambers 100, respectively, and the other side is connected to the upper valve 220.
  • the upper valve 220 is configured such that the central portion is rotatable, and a groove is formed on the upper surface of the central portion from the center toward the outside.
  • the other side of the plurality of connection channels 210 is disposed along the circumferential direction based on the center of the upper valve 220, and thus the groove formed in the center of the upper valve 220 is rotated and the plurality of connection channels 210 ) is to selectively connect one of them.
  • reaction solution of any one connection channel 210 connected through the above process is raised from the inside of the connection part 200 through the hole in the center of the upper valve 220 of the connection part 200. Then, it descends again, rises and falls again inside the connection part 200, and flows into the reaction channel 310.
  • connection part 200 grooves are formed on the upper and lower surfaces of the connection part 200, and the grooves are closed by attaching a laminating film to the upper and lower surfaces of the connection part 200, through which Connection channels 210 are formed.
  • reaction solutions flow into the reaction channel 310 by repeating the rise and fall as described above, the reverse flow of the reaction solutions is prevented, and when a negative pressure is formed in the reaction chamber 320, the fluid in the connection channel 210 This is to prevent temporary escape (siphon phenomenon) due to negative pressure.
  • the flow of fluid can be more precisely controlled at a desired flow rate.
  • a lower valve 340 connected to the reaction channel 310 is provided in the reaction unit 300 of the reaction module 20, and the lower valve 340 may selectively open and close the discharge hole 350 formed in the reaction channel 310 through shaft rotation.
  • the upper valve 220 and the lower valve 340 are the same, and consist of a rotatable central portion and a hole formed on the upper surface of the central portion.
  • the hole has a shape extending outward from the center of the central portion, and allows the fluid introduced from the outside to flow to the center and raises it again from the center by hydraulic pressure.
  • the upper valve 220 and the lower valve 340 have mounting protrusions formed on the outer circumferential surface of the upper end, and the upper valve 220 and the lower valve 340 are mounted on the connection part 200 and the reaction part 300 at the positions A mounting groove is formed into which the mounting protrusion enters, and the upper valve 220 and the lower valve 340 have a luer lock structure in which the mounting protrusion is inserted into the mounting groove and then rotated and fixed to the connection part 200 and the reaction part 300. it will be installed
  • the reaction module 20 is provided on the lower side of the reaction unit 300 and is connected to the reaction channel 310, and the waste chamber 410 It further includes a recovery unit 400 provided; and the control unit 50 controls the reaction in the plurality of reaction chambers 320 by changing the pressure in the plurality of reaction chambers 320 or the pressure in the waste liquid chamber 410. By changing the waste solution in the plurality of reaction chambers 320 or reaction channels 310 can be discharged to the waste chamber (410).
  • the waste solution in the plurality of reaction chambers 320 or reaction channels 310 is discharged to the waste liquid chamber 410 through the discharge hole 350, and the waste liquid chamber 410 is in the chamber.
  • a pressure applying hole 415 for pressure change is provided separately, and the control unit 50 can change the pressure in the waste liquid chamber 410 by introducing or discharging gas into the pressure applying hole 415 .
  • the control unit 50 opens the lower valve 340 and applies a negative pressure to the inside of the waste chamber 410. Accordingly, the reaction chamber 320 or the remaining waste solution remaining in the reaction channel 310 is discharged to the waste chamber 410 through the discharge hole 350 by negative pressure.
  • the plurality of accommodating chambers 110 of the reaction module 20 are disposed along the circumferential direction of the storage unit 100, and the plurality of accommodating chambers Outlet holes 120 through which the received reaction solution is discharged may be formed in each of the (110).
  • a laminating film is attached to the upper surface of the storage unit 100 so that the plurality of accommodating chambers 110 are maintained in a sealed state before the reaction module 20 is used, and the plurality of accommodating chambers 110 contain magnetic Particle solution, washing buffer, etc. can be accommodated by 1 ml to several ml, and an illusion buffer (0.05 to 1 ml) with relatively small particles can be accommodated in one small receiving chamber as seen in FIG. 2 .
  • connection part 200 of the reaction module 20 is provided with a protrusion part 230 at the inlet side of each of the plurality of connection channels 210,
  • the protrusions 230 can communicate with the plurality of accommodating chambers 110 and the plurality of connection channels 210 by being inserted through the outlet holes 120 .
  • an O-ring 240 is provided at the lower end of the protrusion 230, and the O-ring 240 is the protrusion 230 When is inserted through the outflow hole 120, the connection portion 200 where the outflow hole 120 and the connection channel 210 are connected may be sealed.
  • the storage unit 100 is coupled to the coupling groove
  • the fixing pin 600 which is fixed so as not to move up and down along the 810, is removed through a robot arm, etc., and the cover part 700 coupled to the lower end of the case 800 is removed from the upper end of the case 800.
  • the protrusion 230 penetrates the film covering the outlet hole 120 and enters the outlet hole 120 and the connection channel. 210 are connected, and the effect of simplifying the manufacturing process of the storage unit 100 and the connection unit 200 through the laminating process and reducing the manufacturing cost is also derived.
  • the top of the storage unit 100 is pushed downward on the upper side of the storage unit 100, and the storage unit 100 ) And a cover portion 700 for closely contacting the connection portion 200 is provided, a plurality of punchers 710 are formed in positions corresponding to the plurality of accommodating chambers 110 in the cover portion 700, and a plurality of punchers ( 710) can communicate with the outside by penetrating the plurality of accommodating chambers 110. This is to promote the flow of the reaction solution in the channel by providing atmospheric pressure to the plurality of accommodating chambers 110 when the reaction module 20 is used in the automated device 1 for diagnosis according to an embodiment of the present invention. .
  • the reaction module 20 includes a storage unit 100, a connection unit 200, and a reaction unit 300, and a plurality of couplings are provided on the inner circumferential surface.
  • the coupling protrusion 130 is formed to have a shorter length than the coupling groove 810, which means that the coupling protrusion 130 is in a state where the fixing pin 600 below is inserted. This is because it is in close contact with the upper surface of the coupling groove 810.
  • an inclined fitting protrusion is formed at the bottom of the coupling groove 810, and the fitting protrusion is fitted into the fitting groove formed at the bottom of the coupling protrusion 130.
  • the fitting protrusion serves to guide the engaging protrusion 130 when the storage unit 100 slides downward when the fixing pin 600 is removed, and the engaging protrusion slides down gently through the inclined surface of the fitting protrusion. .
  • the fitting protrusion prevents the fluid from leaking by pushing the storage part 100 back to the top by the elastic force of the O-ring 240 provided in the connection part 200, and prevents the fluid from flowing out. ) is to maintain close contact with the connecting portion 200.
  • the reaction module 20 may inject or collect a reacted sample using a robot arm equipped with a pipette. That is, when the pipette injects or collects a sample through the robot arm equipped with the pipette, the control unit 50 passes through the storage unit 100 and the connection unit 200 and approaches the reaction channel 310 so that the reaction chamber 320 ) or injecting a sample into the reaction channel 310, or controlling the reaction chamber 320 or reaction channel 310 to collect a sample after completion of the reaction.
  • the reaction module 20 is provided between the storage unit 100 and the connection unit 200 to connect the storage unit 100 and the connection unit 200. It further includes a fixing pin 600 spaced apart, and the storage part 100 and the connection part 200 are in close contact when the fixing pin 600 is removed, so that the receiving chamber 110 and the connection channel 210 can be connected. .
  • connection part 200 and the storage part 100 are spaced apart through the fixing pin 600, and the storage part 100 is accommodated.
  • the outflow holes 120 of the chambers 110 are maintained in a sealed state to prevent inflow of foreign substances and deterioration of the reaction solution, and the reaction of the sample is performed by removing the fixing pin 600 from the controller 50 only when in use. It will be.
  • the sensor module 30 is provided with an inlet 1110 through which a sample or a buffer solution or water is injected, and the inlet 1110 senses a target material.
  • a distribution channel 1220 is provided at the bottom of the upper plate 1100 and connected to the inlet 1110, and a sample or buffer solution or water injected through the inlet 1110 is distributed through the distribution channel 1220.
  • control unit 50 causes the target material present in the sample or buffer solution to be placed on the sensor 1115, and through the analysis module 40 A target material fixed on the surface of the sensor can be detected.
  • the sensor module 30 is injected with a sample that has been pretreated in the reaction module 20, and the target material is magnetic particles and a labeling material. It exists in a combined state, and the target material is detected through the sensor 1115.
  • the target material is a separated protein or nucleic acid, which is detected by the sensor 1115, and molecular diagnosis, immunodiagnosis, etc. are performed by the analysis module 40.
  • control unit 50 causes the pressure in the discharge chamber 1315 connected to the distribution channel 1220 to be applied as a positive pressure or a negative pressure so that the inlet 1110 Through the injected sample or buffer solution or water can be made to flow.
  • the inlet 1110 is formed in a recessed shape on the upper surface of the upper plate portion 1100, so that the injected fluid gathers at the top of the sensor in the center and guides it to incubate, and the inlet ( 1110), the distribution channel 1220, and the discharge chamber 1315 are all connected, so that the fluid flow is controlled by controlling the pressure of the discharge chamber 1315, and through this, the sensor 1115 and the like are cleaned.
  • the inlet 1110 when negative pressure is applied to a sample (pretreated sample through the reaction module 20) or a buffer solution (PBS) or water (ultrapure water) injected through the inlet 1110 to the discharge chamber 1315, the inlet ( 1110 will flow toward the discharge chamber 1315 through the distribution channel 1220, and when positive pressure is applied to the discharge chamber 1315, the discharge chamber 1315 side passes through the distribution channel 1220 to the inlet ( 1110) will flow towards.
  • PBS buffer solution
  • water ultrapure water
  • the senor 1115 is located at the inlet 1110 provided in the upper plate 1100, and the inlet 1110 A cross-shaped support structure supporting the sensor 1115 is formed, and the sensor 1115 (6 x 6 x 0.7 mm) is seated on the support structure to sense a target material in the sample.
  • an injection channel 1210 connected to the injection hole 1110 is provided at the top of the middle plate 1200, and injection The channel 1210 may be configured as a groove formed along an upper surface of the middle plate portion 1200 .
  • the upper plate 1100 is provided with a connection channel 1120 at a point spaced apart from the inlet 1110, and connects Both ends of the channel 1120 are coupled to the injection channel 1210 and the distribution channel 1220, respectively, so that the injection channel 1210 and the distribution channel 1220 may be connected.
  • connection channel 1120 is a groove formed along the upper surface of the upper plate portion 1100, and both ends penetrate the lower side of the upper plate portion 1100 to penetrate the injection channel 1210 of the middle plate portion 1200. ) and the distribution channel 1220.
  • a laminating film is attached to the upper surface of the upper plate portion 1100, a groove formed along the upper surface of the upper plate portion 1100 is closed by the laminating film to form a connection channel 1120. That is, by forming grooves in the upper plate portion 1100 and the middle plate portion 1200 and then forming channels through laminating, the manufacturing process can be simplified and the manufacturing cost can be reduced.
  • the sensor module 30 of the automation device 1 for diagnosis when a sample or a buffer solution or water flows into the distribution channel 1220, it is injected through the inlet 1110.
  • the sample, buffer solution, or water may pass through the injection channel 1210, ascend, pass through the connection channel 1120, descend, and flow into the distribution channel 1220.
  • the structure configured so that the fluid repeatedly rises and falls through the connection channel 1120 and the discharge channel 1130 of the upper plate portion 1100, as negative pressure is applied to the discharge chamber 1315, the fluid flows from the inlet 1110 to the channel. This is to prevent the siphon effect in which all of my fluid is temporarily exhausted by negative pressure. After all, through this structure, the flow of fluid can be more precisely controlled at a desired flow rate.
  • O-rings are provided on the lower surface of the upper plate portion 1100 at the inlet and outlet portions of the inlet 1110, the connection channel 1120, and the discharge channel 1130, so that each portion connected to the middle plate portion 1200 Fluid leakage can be prevented.
  • the distribution channel 1220 is provided at the lower end of the middle plate 1200 and covers the lower surface of the middle plate 1200. It may be composed of a groove formed to repeat extension and bending along the.
  • the middle plate portion 1200 can simplify the manufacturing process and reduce manufacturing costs, similarly to the upper plate portion 1100 .
  • the sample, buffer solution or water distributed in the distribution channel 1220 moves through the middle plate 1200 along the groove.
  • the sensor 1115 may be cleaned by flowing back and forth between one side and the other side.
  • control unit 50 allows the sample or buffer solution or water to flow back and forth between the sensor and the distribution channel, thereby washing away impurities remaining on the sensor 1115 and substances that have non-specific reactions.
  • the distribution channel 1220 is formed as a flow path having a wide cross-sectional area along the surface of the middle plate portion 1200, when a sample is filled in the distribution channel 1220, the sensor 1115 provided in the upper plate portion 1100 It can be filled with a buffer solution or water to wash the
  • the upper plate 1100 is provided with a discharge channel 1130 at a point spaced apart from the inlet 1110, and the discharge channel 1130 may connect the distribution channel 1220 and the discharge chamber 1315 by coupling both ends to discharge holes 1310 formed in the distribution channel 1220 and the discharge chamber 1315, respectively.
  • the discharge chamber 1315 in the sensor module 30 of the automation device 1 for diagnosis according to an embodiment of the present invention.
  • a sample or buffer solution or water is introduced into the discharge chamber ( 1315).
  • a plurality of first coupling grooves 1140 spaced apart along the edge are formed in the upper plate 1100 of the sensor module 30, and the lower plate
  • a plurality of coupling protrusions 1320 are formed at positions corresponding to the plurality of first coupling grooves 1140 in the portion 1300, and the plurality of coupling protrusions 1320 are inserted into the plurality of first coupling grooves 1140, thereby The upper plate part 1100 and the lower plate part 1300 may be coupled.
  • a plurality of second coupling grooves 1230 spaced apart along the edge are formed in the middle plate 1200, A plurality of coupling protrusions 1320 are formed on the lower plate 1300 at positions corresponding to the plurality of second coupling grooves 1230, and the plurality of coupling protrusions 1320 are inserted into the plurality of second coupling grooves 1230.
  • the middle plate portion 1200 and the lower plate portion 1300 may be coupled.
  • a total of eight coupling protrusions 1320 are formed along the rim of the lower plate 1300, and the plurality of coupling protrusions 1320 are second coupling grooves 1230 and first coupling grooves. (1140) is inserted and coupled.
  • the plurality of coupling protrusions 1320 are formed in an 'L' shape at the top, and are engaged with the chin of the first coupling groove 1140, thereby forming the upper plate portion 1100, the middle plate portion 1200, and the lower plate portion 1300. ) can be maintained firmly.
  • the automation device 1 for diagnosis further includes at least one robot arm for picking up and moving the sensor module 30, and the control unit 50 controls the operation of the robot arm.
  • the control unit 50 controls the operation of the robot arm.
  • the sensor module 30 is provided to the analysis module 40, and the sensor module 30 can be loaded or unloaded on the analysis module 40 to detect a target substance.
  • control unit 50 picks up the sensor module 30 through the robot arm, places it on the analysis module 40, clamps the located sensor module 30, and performs nitrogen blowing and QR check operations.
  • the control unit 50 loads the sensor module 30 to the analysis stage loading position for analysis, and detects the fixed target material by exchanging signals with the sensor 1115 in an optical, electrical, or electrochemical manner. do.
  • the control unit 50 reports the analysis result and unloads the sensor module 30 again.
  • a diagnosis method using the automated device 1 for diagnosis includes the step of providing at least one sample (S10); A reaction step (S20) of supplying a provided sample, mixing the supplied sample with a reaction solution to form a mixed solution, and performing a reaction of the mixed solution; A stationary step (S30) of supplying the reaction-treated sample and incubating the supplied sample on the sensor 1115; and an analysis step (S40) of detecting a target material fixed on the sensor 1115.
  • sample information may be collected by reading the barcode of the sample.
  • reaction step (S20) the step of distributing any one of the reaction solution accommodated in the plurality of receiving chambers 110 through a plurality of connection channels 210 (S100); Injecting a sample into the reaction channel 310 connected to the plurality of connection channels 210, and forming a mixed solution with the sample and the reaction solution distributed from the plurality of connection channels 210 (S110); and performing a reaction of the mixed solution by repeatedly applying positive or negative pressure to the plurality of reaction chambers 320 connected to the reaction channel 310 (S120).
  • the mixed solution flows back and forth between the plurality of reaction chambers 320 and the reaction channel 310, and the magnetic body 330 provided below the reaction channel 310 Magnetic force may be provided to the reaction channel 310 through.
  • the sample eg, serum, 200ul
  • the reaction solution magnetic particle solution, washing buffer, etc., 1000ul
  • the reaction chamber 320 is supplied to the reaction chamber 320 from any one of the plurality of accommodating chambers 110 through axial rotation (60 degrees) of the upper valve 220.
  • the reaction solution and the reaction channel 310 flow back and forth (1 hour, room temperature), and the sample is Capture antibody and biomarker binding treatment, Thereafter, positive and negative pressures are repeatedly applied to one of the reaction chambers 320, and at the same time, the magnetic material 330 is raised close to the reaction channel 310 to fix the sample component combined with the magnetic material (4 minutes and 50 seconds). ) make After the operation is finished, the lower valve 340 is axially rotated (180 degrees) to open, and negative pressure is applied to the waste chamber 410 so that the remaining solution is discharged to the waste chamber 410 after the reaction is completed.
  • the sample is reacted in the order of reaction of the target material, washing 1, washing 2, washing 3, and concentrated sample preparation, and each reaction process is performed by adjusting the pressure of the reaction chamber 320 and the waste chamber 410 and the upper valve ( 220) by sequentially supplying the reaction solution of the plurality of accommodating chambers 110 to the reaction chamber 320 according to the shaft rotation.
  • the diagnosis method using the reaction module 20 in the automation device 1 for diagnosis is the pressure control of the reaction chamber 320 and the waste chamber 410 and the upper valve 220 and There is an effect that the reaction of the sample can be performed simply and quickly by controlling only two valves of the lower valve 340.
  • the stationary step (S30) is a step of injecting a sample or buffer solution or water through the inlet 1110 (S200); Placing a target material in a sample or buffer solution on the sensor 1115 provided in the inlet 1110 (S210); washing the sensor 1115 by distributing the sample or buffer solution or water through the distribution channel 1220 connected to the inlet 1110 (S220); and discharging the sample or buffer solution or water into the discharge chamber 1315 connected to the distribution channel 1220 (S230).
  • the reaction of the sample (50 ul) injected by the robot arm equipped with the pipette and the surface of the sensor 1115 at a specific temperature for about 1 hour in the controller 50 After that, the sample is discharged for about 20 seconds by forming the discharge chamber 1315 under negative pressure.
  • washing buffer PBS, 200ul
  • DI water DI water, 200ul
  • PBS washing buffer
  • DI water ultrapure water
  • the inlet 1110, the connection channel 1120, the discharge channel 1130, and the distribution channel 1220 are washed (25 minutes), and when the washing is completed, negative pressure is applied to the discharge chamber 1315 to remove the washing buffer and ultrapure water. It is discharged (10 seconds) to the discharge chamber 1315.
  • the fixed target material may be detected by exchanging signals with the sensor 1115 in an optical, electrical, or electrochemical manner.
  • the automated device 1 for diagnosis and the diagnosis method using the same include a sample module 10, a reaction module 20, a sensor module 30 and analysis in the control unit 50
  • a sample module 10 By controlling the module 40, various samples can be diagnosed in various ways, and when diagnosing samples, more accurate and rapid diagnosis can be performed, thereby improving sample processing speed for diagnosis.

Abstract

The present invention provides an automated device for diagnosis and a diagnosis method using same, wherein a sample is made to react and is sensed for the sake of diagnosis. The automated device for diagnosis comprises: a sample module including at least one sample; a reaction module which receives a sample from the sample module and mixes the supplied sample with a reaction solution to form a mixed solution, and in which a reaction of the mixed solution is performed; a sensor module including a sensor, receiving a sample which has undergone a reaction treatment from the reaction module, and allowing the supplied sample to be incubated on the sensor; an analysis module for detecting a target material immobilized on the sensor of the sensor module; and a control unit for controlling the sample module, the reaction module, the sensor module, and the analysis module.

Description

진단을 위한 자동화 장치 및 이를 이용한 진단방법Automated device for diagnosis and diagnosis method using the same
본 발명은 진단을 위해 시료를 반응시키고 센싱하는 진단을 위한 자동화 장치 및 이를 이용한 진단방법에 관한 것이다.The present invention relates to an automated device for diagnosis that reacts and senses a sample for diagnosis and a diagnosis method using the same.
진단을 위한 프로세스에서, 시료 반응은 개략적으로 시료를 파쇄(라이시스)하고 타겟물질(단백질, 핵산 등)에 자성입자 및 표지물질을 혼합하고 워싱하여 잔여물을 배출시킴으로써 수행되며, 이와 같은 시료의 파쇄, 혼합 및 반응 과정은 적절한 순서에 따라 순차적으로 수행되어야 한다.In the process for diagnosis, the sample reaction is roughly performed by disrupting the sample (lysis), mixing the target material (protein, nucleic acid, etc.) with magnetic particles and a labeling material, and washing to discharge the residue. Crushing, mixing, and reaction processes should be performed sequentially in an appropriate sequence.
또한, 반응 처리된 시료에 대해서는 센서를 통해 센싱함으로써 타겟물질이 검출될 수 있는데, 이 과정에서도 역시 시료의 주입부터 센싱, 워싱 및 채널 세척 과정이 적절한 순서에 따라 순차적으로 수행되어야 한다.In addition, the target material can be detected by sensing the reaction-treated sample through a sensor. In this process, also, the sample injection, sensing, washing, and channel cleaning processes must be sequentially performed in an appropriate order.
따라서, 상기 과정들을 수행하기 위한 각각의 자동화된 모듈들과 각각의 모듈들을 제어하는 제어기가 구비되어야 한다.Therefore, each of the automated modules for performing the above processes and a controller for controlling each of the modules should be provided.
즉, 상기 과정들을 효율적으로 수행하여 진단 정확도 및 시료 처리속도를 높일 수 있는 진단을 위한 자동화 장치의 개발이 요구된다.That is, it is required to develop an automated device for diagnosis capable of efficiently performing the above processes to increase diagnosis accuracy and sample processing speed.
상기의 배경기술로서 설명된 사항들은 본 발명의 배경에 대한 이해 증진을 위한 것일 뿐, 이 기술분야에서 통상의 지식을 가진 자에게 이미 알려진 종래기술에 해당함을 인정하는 것으로 받아들여져서는 안 될 것이다.The matters described as the background art above are only for improving understanding of the background of the present invention, and should not be taken as an admission that they correspond to prior art already known to those skilled in the art.
(특허문헌 1) KR 10-2019-0179960 A (Patent Document 1) KR 10-2019-0179960 A
본 발명은 이러한 문제점을 해결하기 위하여 제안된 것으로, 진단을 위해 시료를 반응시키고 센싱하되, 챔버 내의 압력을 양압 및 음압으로 반복 인가함으로서 유로상에서 유동되는 유체의 유동을 제어하며, 진단 프로세스를 자동화 함으로써 진단 정확도와 시료 처리속도를 높일 수 있는 진단을 위한 자동화 장치 및 이를 이용한 진단방법을 제공하고자 함이다.The present invention has been proposed to solve these problems, and reacts and senses a sample for diagnosis, controls the flow of fluid flowing on a flow path by repeatedly applying positive and negative pressure in the chamber, and automates the diagnosis process. It is an object of the present invention to provide an automated device for diagnosis that can increase diagnostic accuracy and sample processing speed, and a diagnosis method using the same.
상기의 목적을 달성하기 위한 본 발명에 따른 진단을 위한 자동화 장치는 적어도 하나 이상의 시료가 구비되는 시료모듈; 상기 시료모듈로부터 시료를 공급받고, 공급된 시료를 반응용액과 혼합하여 혼합용액을 형성하며, 상기 혼합용액의 반응이 수행되는 반응모듈; 센서가 구비되며, 상기 반응모듈로부터 반응 처리된 시료를 공급받고, 공급된 시료가 상기 센서 상에 정치(Incubation)되도록 하는 센서모듈; 상기 센서모듈의 센서상에 고정된 타겟물질을 검출하는 분석모듈; 및 상기 시료모듈, 상기 반응모듈, 상기 센서모듈 및 상기 분석모듈을 제어하는 제어부;를 포함한다.An automated device for diagnosis according to the present invention for achieving the above object includes a sample module provided with at least one sample; a reaction module receiving a sample from the sample module, mixing the supplied sample with a reaction solution to form a mixed solution, and performing a reaction of the mixed solution; a sensor module having a sensor, receiving a reaction-treated sample from the reaction module, and allowing the supplied sample to be incubated on the sensor; an analysis module for detecting a target material fixed on a sensor of the sensor module; and a control unit controlling the sample module, the reaction module, the sensor module, and the analysis module.
시료를 픽업하고, 픽업된 시료를 공급하는 적어도 하나의 로봇암;을 더 포함하고, 상기 제어부에서는 상기 로봇암의 동작을 제어함으로써 상기 시료모듈에서 시료를 픽업하여 상기 반응모듈에 공급하거나, 상기 반응모듈에서 반응 처리된 시료를 픽업하여 상기 센서모듈에 공급할 수 있다.and at least one robot arm that picks up a sample and supplies the picked-up sample, wherein the control unit controls an operation of the robot arm to pick up a sample from the sample module and supply the sample to the reaction module or the reaction module. A sample reacted by the module may be picked up and supplied to the sensor module.
상기 센서모듈을 픽업하고 이동시키는 적어도 하나의 로봇암;을 더 포함하고, 상기 제어부에서는 상기 로봇암의 동작을 제어함으로써 상기 센서모듈을 상기 분석모듈에 제공하며, 타켓물질 검출을 위해 상기 센서모듈이 상기 분석모듈상에서 로딩 또는 언로딩 되도록 할 수 있다.and at least one robot arm that picks up and moves the sensor module, wherein the controller provides the sensor module to the analysis module by controlling an operation of the robot arm, and the sensor module detects a target material. It can be loaded or unloaded on the analysis module.
상기 제어부는 상기 시료모듈에서 복수의 시료가 로딩 또는 언로딩 되도록 하며, 시료가 로딩되는 경우 시료의 바코드가 리딩되도록 함으로써 시료 정보를 수집할 수 있다.The control unit allows a plurality of samples to be loaded or unloaded from the sample module, and when the samples are loaded, sample information may be collected by reading barcodes of the samples.
상기 반응모듈은, 반응용액이 수용된 복수의 수용챔버가 구비되는 저장부; 상기 저장부의 하측에 마련되고, 상기 복수의 수용챔버에 연결되는 복수의 연결채널이 구비되며, 상기 복수의 연결채널을 통해 상기 복수의 수용챔버에 수용된 반응용액 중 어느 하나를 유통시키는 연결부; 및 상기 연결부의 하측에 마련되고, 시료가 주입되며 상기 복수의 연결채널과 연결된 반응채널 및 상기 반응채널과 연결된 복수의 반응챔버가 구비되며, 상기 반응채널에서는 상기 시료와 상기 복수의 연결채널로부터 유통된 상기 반응용액이 혼합용액을 형성하며, 상기 복수의 반응챔버에 양압 또는 음압이 반복적으로 인가됨으로써 상기 혼합용액의 반응이 수행되는 반응부;를 포함할 수 있다.The reaction module includes a storage unit provided with a plurality of accommodating chambers in which the reaction solution is accommodated; a connection unit provided below the storage unit, having a plurality of connection channels connected to the plurality of accommodating chambers, and distributing any one of the reaction solutions accommodated in the plurality of accommodation chambers through the plurality of connection channels; and a reaction channel provided below the connection part, into which a sample is injected, connected to the plurality of connection channels, and a plurality of reaction chambers connected to the reaction channel, wherein the sample and the plurality of connection channels are circulated in the reaction channel. and a reaction unit in which the reaction solution formed forms a mixed solution, and a reaction of the mixed solution is performed by repeatedly applying positive or negative pressure to the plurality of reaction chambers.
상기 제어부는 상기 복수의 반응챔버 내의 압력이 양압 또는 음압으로 반복하여 인가되도록 함으로써, 상기 혼합용액이 상기 복수의 반응챔버와 상기 반응채널을 왕복하여 유동되도록 할 수 있다.The control unit may allow the mixed solution to flow back and forth between the plurality of reaction chambers and the reaction channel by repeatedly applying a positive pressure or a negative pressure in the plurality of reaction chambers.
상기 반응부에는 상기 반응채널 하측에 자성체가 마련되며, 상기 제어부는 상기 혼합용액의 반응 수행 시 상기 자성체를 상승시킴으로써 상기 반응채널에 자기력을 제공할 수 있다.In the reaction unit, a magnetic material is provided below the reaction channel, and the control unit may provide magnetic force to the reaction channel by raising the magnetic material when the reaction of the mixed solution is performed.
상기 반응모듈은, 상기 반응부의 하측에 마련되어 상기 반응채널과 연결되고, 폐액챔버가 마련된 회수부;를 더 포함하며, 상기 제어부는 상기 복수의 반응챔버 내의 압력을 변화시킴으로써 상기 복수의 반응챔버 내의 반응을 제어하거나, 상기 폐액챔버 내의 압력을 변화시킴으로써 상기 복수의 반응챔버 또는 상기 반응채널 내 폐기용액을 상기 폐액챔버로 배출할 수 있다.The reaction module further includes a recovery unit provided below the reaction unit and connected to the reaction channel and provided with a waste liquid chamber, wherein the control unit changes the pressure in the plurality of reaction chambers to react in the plurality of reaction chambers. The waste solution in the plurality of reaction chambers or the reaction channel may be discharged to the waste chamber by controlling or changing the pressure in the waste chamber.
상기 센서모듈은, 시료 또는 버퍼용액 또는 물이 주입되는 주입구가 구비되고, 상기 주입구에는 타겟물질을 센싱하는 센서가 마련되는, 상판부; 상기 상판부의 하단에 마련되고, 상기 주입구와 연결되는 유통채널이 구비되며, 상기 유통채널을 통해 상기 주입구를 통해 주입된 상기 시료 또는 상기 버퍼용액 또는 상기 물이 유통되는, 중판부; 및 상기 중판부의 하단에 마련되고, 상기 유통채널과 연결된 배출챔버가 구비되는, 하판부;를 포함할 수 있다.The sensor module includes an upper plate having an inlet through which a sample, a buffer solution, or water is injected, and a sensor for sensing a target material is provided in the inlet; a middle plate provided at a lower end of the upper plate, having a distribution channel connected to the inlet, and circulating the sample, the buffer solution, or the water injected through the inlet through the distribution channel; and a lower plate portion provided at a lower end of the middle plate portion and provided with a discharge chamber connected to the distribution channel.
상기 제어부는 상기 유통채널과 연결된 상기 배출챔버 내의 압력이 양압 또는 음압으로 인가되도록 함으로써 상기 주입구를 통해 주입된 상기 시료 또는 상기 버퍼용액 또는 상기 물이 유동되도록 할 수 있다.The control unit may allow the sample, the buffer solution, or the water injected through the inlet to flow by applying a positive pressure or a negative pressure in the discharge chamber connected to the distribution channel.
상기 제어부는 상기 시료 또는 상기 버퍼용액 내 존재하는 타겟물질을 상기 센서에 정치되도록 하며, 상기 분석모듈을 통해 상기 센서의 표면상에 고정된 상기 타겟물질을 검출할 수 있다.The control unit allows the target material present in the sample or the buffer solution to be placed on the sensor, and the target material fixed on the surface of the sensor can be detected through the analysis module.
상기의 목적을 달성하기 위한 본 발명에 따른 진단을 위한 자동화 장치를 이용한 진단방법은 적어도 하나 이상의 시료를 구비하는 구비단계; 구비된 시료를 공급하고, 공급된 시료를 반응용액과 혼합하여 혼합용액을 형성하며, 상기 혼합용액의 반응이 수행하는 반응단계; 반응 처리된 시료를 공급하고, 공급된 시료를 센서 상에 정치(Incubation)하는 정치단계; 및 상기 센서상에 고정된 타겟물질을 검출하는 분석단계;를 포함한다.To achieve the above object, a diagnosis method using an automated device for diagnosis according to the present invention includes the step of providing at least one sample; A reaction step of supplying a prepared sample, mixing the supplied sample with a reaction solution to form a mixed solution, and performing a reaction of the mixed solution; A stationary step of supplying a reaction-treated sample and incubating the supplied sample on a sensor; and an analysis step of detecting a target material immobilized on the sensor.
상기 구비단계에서는 시료가 로딩 또는 언로딩 되도록 하며, 시료가 로딩되는 경우 시료의 바코드를 리딩 함으로써 시료 정보를 수집할 수 있다.In the preparation step, the sample is loaded or unloaded, and when the sample is loaded, sample information may be collected by reading the barcode of the sample.
상기 반응단계는, 복수의 연결채널을 통해 복수의 수용챔버에 수용된 반응용액 중 어느 하나를 유통시키는 단계; 상기 복수의 연결채널과 연결된 반응채널에 시료를 주입하고, 상기 시료와 상기 복수의 연결채널로부터 유통된 상기 반응용액으로 혼합용액을 형성하는 단계; 및 상기 반응채널에 연결된 복수의 반응챔버에 양압 또는 음압을 반복하여 인가함으로써 상기 혼합용액의 반응을 수행하는 단계;를 포함할 수 있다.The reaction step may include distributing any one of the reaction solutions accommodated in the plurality of accommodating chambers through a plurality of connecting channels; injecting a sample into a reaction channel connected to the plurality of connection channels, and forming a mixed solution with the sample and the reaction solution distributed from the plurality of connection channels; and performing a reaction of the mixed solution by repeatedly applying positive pressure or negative pressure to a plurality of reaction chambers connected to the reaction channel.
상기 혼합용액의 반응을 수행하는 단계에서는, 상기 혼합용액이 상기 복수의 반응챔버와 상기 반응채널을 왕복하여 유동되며, 상기 반응채널 하측에 마련되는 자성체를 통해 상기 반응채널에 자기력이 제공될 수 있다.In the step of performing the reaction of the mixed solution, the mixed solution flows back and forth between the plurality of reaction chambers and the reaction channel, and magnetic force may be provided to the reaction channel through a magnetic material provided below the reaction channel. .
상기 정치단계는, 주입구를 통해 시료 또는 버퍼용액 또는 물을 주입하는 단계; 상기 주입구에 구비된 상기 센서 상에 상기 시료 또는 상기 버퍼용액 내 타겟물질을 정치하는 단계; 상기 주입구와 연결된 유통채널에 상기 시료 또는 상기 버퍼용액 또는 상기 물을 유통함으로써 상기 센서를 세척하는 단계; 및 상기 유통채널과 연결된 배출챔버에 상기 시료 또는 상기 버퍼용액 또는 상기 물을 배출하는 단계;를 포함할 수 있다.The stationary step may include injecting a sample or a buffer solution or water through an inlet; Placing the sample or the target material in the buffer solution on the sensor provided in the inlet; washing the sensor by distributing the sample, the buffer solution, or the water through a distribution channel connected to the inlet; and discharging the sample, the buffer solution, or the water into a discharge chamber connected to the distribution channel.
상기 센서를 세척하는 단계에서는, 상기 배출챔버에 양압 또는 음압을 인가함으로써 상기 시료 또는 상기 버퍼용액 또는 상기 물이 상기 센서 및 상기 유통채널을 왕복하여 유동되도록 할 수 있다.In the step of washing the sensor, the sample, the buffer solution, or the water may flow back and forth between the sensor and the distribution channel by applying a positive pressure or a negative pressure to the discharge chamber.
상기 분석단계에서는 상기 센서와 광학 또는 전기 또는 전기화학 방식의 신호를 주고받음으로써 고정된 타겟물질을 검출할 수 있다.In the analysis step, a fixed target material may be detected by exchanging signals with the sensor in an optical, electrical, or electrochemical manner.
본 발명의 진단을 위한 자동화 장치 및 이를 이용한 진단방법에 따르면, 진단을 위해 시료를 반응시키고 센싱하되, 챔버 내의 압력을 양압 및 음압으로 반복 인가함으로서 유로상에서 유동되는 유체의 유동을 제어하며, 진단 프로세스를 자동화 함으로써 진단 정확도와 시료 처리속도를 높일 수 있다.According to the automated device for diagnosis and the diagnosis method using the same of the present invention, a sample is reacted and sensed for diagnosis, and the flow of fluid flowing on a flow path is controlled by repeatedly applying positive pressure and negative pressure in the chamber, and the diagnosis process By automating the diagnosis accuracy and sample processing speed can be increased.
도 1은 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치를 개략적으로 나타낸 도면이다.1 is a diagram schematically showing an automated device for diagnosis according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치에서 반응모듈의 전체적인 형태를 나타낸 도면이다.2 is a diagram showing the overall form of a reaction module in an automated device for diagnosis according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치에서 반응모듈의 저장부를 나타낸 사시도이다.3 is a perspective view showing a storage unit of a reaction module in an automated device for diagnosis according to an embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치에서 반응모듈의 저장부를 나타낸 평면도이다.4 is a plan view showing a storage unit of a reaction module in an automated device for diagnosis according to an embodiment of the present invention.
도 5는 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치에서 반응모듈의 저장부를 나타낸 저면도이다.5 is a bottom view showing a storage unit of a reaction module in an automated device for diagnosis according to an embodiment of the present invention.
도 6은 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치에서 반응모듈의 연결부를 나타낸 사시도이다.6 is a perspective view showing a connection part of a reaction module in an automated device for diagnosis according to an embodiment of the present invention.
도 7은 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치에서 반응모듈의 연결부를 나타낸 평면도이다.7 is a plan view showing a connection part of a reaction module in an automated device for diagnosis according to an embodiment of the present invention.
도 8은 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치에서 반응모듈의 연결부를 나타낸 저면도이다.8 is a bottom view showing a connection part of a reaction module in an automated device for diagnosis according to an embodiment of the present invention.
도 9는 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치에서 반응모듈의 연결부에서 상부밸브가 제거된 상태를 나타낸 저면도이다.9 is a bottom view showing a state in which an upper valve is removed from a connection part of a reaction module in an automated device for diagnosis according to an embodiment of the present invention.
도 10은 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치에서 반응모듈의 저장부, 연결부 및 고정핀이 결합된 상태를 나타낸 도면이다.10 is a view showing a coupled state of a storage unit, a connection unit, and a fixing pin of a reaction module in an automated device for diagnosis according to an embodiment of the present invention.
도 11은 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치에서 반응모듈의 반응부를 나타낸 사시도이다.11 is a perspective view showing a reaction part of a reaction module in an automated device for diagnosis according to an embodiment of the present invention.
도 12는 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치에서 반응모듈의 반응부를 나타낸 평면도이다.12 is a plan view showing a reaction part of a reaction module in an automated device for diagnosis according to an embodiment of the present invention.
도 13은 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치에서 반응모듈의 반응부를 나타낸 저면도이다.13 is a bottom view showing a reaction part of a reaction module in an automated device for diagnosis according to an embodiment of the present invention.
도 14는 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치에서 반응모듈의 반응부에서 하부밸브가 제거된 상태를 나타낸 저면도이다.14 is a bottom view showing a state in which a lower valve is removed from a reaction part of a reaction module in an automated device for diagnosis according to an embodiment of the present invention.
도 15는 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치에서 반응모듈의 반응부 내 반응챔버와 반응채널을 나타낸 단면도이다.15 is a cross-sectional view showing a reaction chamber and a reaction channel in a reaction unit of a reaction module in an automated device for diagnosis according to an embodiment of the present invention.
도 16은 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치에서 반응모듈의 연결부와 반응부가 결합된 상태를 나타낸 도면이다.16 is a view showing a state in which a connection part and a reaction part of a reaction module are coupled in an automated device for diagnosis according to an embodiment of the present invention.
도 17은 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치에서 반응모듈에서 상부밸브 또는 하부밸브를 나타낸 도면이다.17 is a view showing an upper valve or a lower valve in a reaction module in an automated device for diagnosis according to an embodiment of the present invention.
도 18은 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치에서 반응모듈의 회수부를 나타낸 사시도이다.18 is a perspective view illustrating a recovery unit of a reaction module in an automated device for diagnosis according to an embodiment of the present invention.
도 19는 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치에서 반응모듈의 회수부를 나타낸 평면도이다.19 is a plan view illustrating a recovery unit of a reaction module in an automated device for diagnosis according to an embodiment of the present invention.
도 20은 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치에서 반응모듈의 회수부를 나타낸 저면도이다.20 is a bottom view illustrating a recovery unit of a reaction module in an automated device for diagnosis according to an embodiment of the present invention.
도 21은 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치에서 반응모듈의 커버부를 나타낸 사시도이다.21 is a perspective view showing a cover part of a reaction module in an automated device for diagnosis according to an embodiment of the present invention.
도 22는 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치에서 반응모듈의 커버부를 나타낸 저면사시도이다.22 is a bottom perspective view showing a cover of a reaction module in an automated device for diagnosis according to an embodiment of the present invention.
도 23은 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치에서 반응모듈의 케이스를 나타낸 사시도이다.23 is a perspective view showing a case of a reaction module in an automated device for diagnosis according to an embodiment of the present invention.
도 24는 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치에서 반응모듈의 케이스를 나타낸 단면도이다.24 is a cross-sectional view showing a case of a reaction module in an automated device for diagnosis according to an embodiment of the present invention.
도 25는 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치에서 반응모듈의 케이스에서 내주면에 형성된 결합홈을 나타낸 확대도이다.25 is an enlarged view showing a coupling groove formed on an inner circumferential surface of a case of a reaction module in an automated device for diagnosis according to an embodiment of the present invention.
도 26은 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치에서 반응모듈의 저장부에서 외주면에 형성된 결합돌기를 나타낸 확대도이다.26 is an enlarged view showing coupling protrusions formed on an outer circumferential surface of a storage unit of a reaction module in an automated device for diagnosis according to an embodiment of the present invention.
도 27은 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치에서 반응모듈의 케이스 내부를 나타낸 도면이다.27 is a view showing the inside of a case of a reaction module in an automated device for diagnosis according to an embodiment of the present invention.
도 28은 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치에서 반응모듈의 케이스 외부를 나타낸 도면이다.28 is a view showing the outside of a case of a reaction module in an automated device for diagnosis according to an embodiment of the present invention.
도 29는 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치에서 센서모듈을 전체적인 형태를 나타낸 도면이다.29 is a diagram showing the overall shape of a sensor module in an automated device for diagnosis according to an embodiment of the present invention.
도 30은 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치에서 센서모듈의 상판부를 나타낸 사시도이다.30 is a perspective view showing an upper plate of a sensor module in an automated device for diagnosis according to an embodiment of the present invention.
도 31은 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치에서 센서모듈의 상판부를 나타낸 평면도이다.31 is a plan view showing an upper plate of a sensor module in an automated device for diagnosis according to an embodiment of the present invention.
도 32는 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치에서 센서모듈의 상판부를 나타낸 저면도이다.32 is a bottom view showing an upper plate of a sensor module in an automated device for diagnosis according to an embodiment of the present invention.
도 33은 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치에서 센서모듈의 중판부를 나타낸 사시도이다.33 is a perspective view showing a middle plate of a sensor module in an automated device for diagnosis according to an embodiment of the present invention.
도 34는 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치에서 센서모듈의 중판부를 나타낸 평면도이다.34 is a plan view illustrating a middle plate of a sensor module in an automated device for diagnosis according to an embodiment of the present invention.
도 35는 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치에서 센서모듈의 중판부를 나타낸 저면도이다.35 is a bottom view showing a middle plate of a sensor module in an automated device for diagnosis according to an embodiment of the present invention.
도 36은 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치에서 센서모듈의 상판부와 중판부가 결합된 상태의 단면도이다.36 is a cross-sectional view of a state in which an upper plate part and a middle plate part of a sensor module are coupled in an automated device for diagnosis according to an embodiment of the present invention.
도 37은 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치에서 센서모듈의 하판부를 나타낸 사시도이다.37 is a perspective view showing a lower plate of a sensor module in an automated device for diagnosis according to an embodiment of the present invention.
도 38은 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치에서 센서모듈의 하판부를 나타낸 평면도이다.38 is a plan view illustrating a lower plate of a sensor module in an automated device for diagnosis according to an embodiment of the present invention.
도 39는 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치에서 센서모듈의 하판부를 나타낸 저면도이다.39 is a bottom view showing a lower plate of a sensor module in an automated device for diagnosis according to an embodiment of the present invention.
도 40은 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치를 이용한 진단방법의 순서도이다.40 is a flowchart of a diagnosis method using an automated device for diagnosis according to an embodiment of the present invention.
도 41은 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치를 이용한 진단방법에서 반응단계를 세부적으로 나타낸 순서도이다.41 is a flow chart showing reaction steps in detail in a diagnosis method using an automated device for diagnosis according to an embodiment of the present invention.
도 42는 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치를 이용한 진단방법에서 정치단계를 세부적으로 나타낸 순서도이다.42 is a flowchart showing in detail the stationary step in the diagnosis method using an automated device for diagnosis according to an embodiment of the present invention.
본 명세서에 기재된 실시예는 다양하게 변형될 수 있다. 특정한 실시예가 도면에서 묘사되고 상세한 설명에서 자세하게 설명될 수 있다. 그러나, 첨부된 도면에 개시된 특정한 실시 예는 다양한 실시 예를 쉽게 이해하도록 하기 위한 것일 뿐이다. 따라서, 첨부된 도면에 개시된 특정 실시 예에 의해 기술적 사상이 제한되는 것은 아니며, 발명의 사상 및 기술 범위에 포함되는 모든 균등물 또는 대체물을 포함하는 것으로 이해되어야 한다.The embodiments described in this specification may be modified in various ways. Certain embodiments may be depicted in the drawings and described in detail in the detailed description. However, specific embodiments disclosed in the accompanying drawings are only intended to facilitate understanding of various embodiments. Therefore, the technical idea is not limited by the specific embodiments disclosed in the accompanying drawings, and it should be understood to include all equivalents or substitutes included in the spirit and technical scope of the invention.
제1, 제2 등과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 이러한 구성요소들은 상술한 용어에 의해 한정되지는 않는다. 상술한 용어는 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.Terms including ordinal numbers, such as first and second, may be used to describe various components, but these components are not limited by the above terms. The terminology described above is only used for the purpose of distinguishing one component from another.
본 명세서에서, "포함한다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다. 어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.In this specification, terms such as "comprise" or "having" are intended to indicate that there is a feature, number, step, operation, component, part, or combination thereof described in the specification, but one or more other features It should be understood that the presence or addition of numbers, steps, operations, components, parts, or combinations thereof is not precluded. It is understood that when an element is referred to as being "connected" or "connected" to another element, it may be directly connected or connected to the other element, but other elements may exist in the middle. It should be. On the other hand, when an element is referred to as “directly connected” or “directly connected” to another element, it should be understood that no other element exists in the middle.
한편, 본 명세서에서 사용되는 구성요소에 대한 "모듈" 또는 "부"는 적어도 하나의 기능 또는 동작을 수행한다. 그리고, "모듈" 또는 "부"는 하드웨어, 소프트웨어 또는 하드웨어와 소프트웨어의 조합에 의해 기능 또는 동작을 수행할 수 있다. 또한, 특정 하드웨어에서 수행되어야 하거나 적어도 하나의 프로세서에서 수행되는 "모듈" 또는 "부"를 제외한 복수의 "모듈들" 또는 복수의 "부들"은 적어도 하나의 모듈로 통합될 수도 있다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.Meanwhile, a “module” or “unit” for a component used in this specification performs at least one function or operation. Also, a “module” or “unit” may perform a function or operation by hardware, software, or a combination of hardware and software. In addition, a plurality of “modules” or “units” other than “modules” or “units” to be executed in specific hardware or to be executed in at least one processor may be integrated into at least one module. Singular expressions include plural expressions unless the context clearly dictates otherwise.
그 밖에도, 본 발명을 설명함에 있어서, 관련된 공지 기능 혹은 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우, 그에 대한 상세한 설명은 축약하거나 생략한다.In addition, in describing the present invention, if it is determined that a detailed description of a related known function or configuration may unnecessarily obscure the subject matter of the present invention, the detailed description thereof will be abbreviated or omitted.
이하에서는 첨부된 도면을 참조하여 다양한 실시 예를 보다 상세하게 설명한다.Hereinafter, various embodiments will be described in more detail with reference to the accompanying drawings.
도 1은 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치를 개략적으로 나타낸 도면이다. 도 2는 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치에서 반응모듈의 전체적인 형태를 나타낸 도면이다. 도 3은 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치에서 반응모듈의 저장부를 나타낸 사시도이다. 도 4는 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치에서 반응모듈의 저장부를 나타낸 평면도이다. 도 5는 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치에서 반응모듈의 저장부를 나타낸 저면도이다. 도 6은 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치에서 반응모듈의 연결부를 나타낸 사시도이다. 도 7은 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치에서 반응모듈의 연결부를 나타낸 평면도이다. 도 8은 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치에서 반응모듈의 연결부를 나타낸 저면도이다. 도 9는 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치에서 반응모듈의 연결부에서 상부밸브가 제거된 상태를 나타낸 저면도이다. 도 10은 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치에서 반응모듈의 저장부, 연결부 및 고정핀이 결합된 상태를 나타낸 도면이다. 도 11은 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치에서 반응모듈의 반응부를 나타낸 사시도이다. 도 12는 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치에서 반응모듈의 반응부를 나타낸 평면도이다. 도 13은 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치에서 반응모듈의 반응부를 나타낸 저면도이다. 도 14는 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치에서 반응모듈의 반응부에서 하부밸브가 제거된 상태를 나타낸 저면도이다. 도 15는 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치에서 반응모듈의 반응부 내 반응챔버와 반응채널을 나타낸 단면도이다. 도 16은 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치에서 반응모듈의 연결부와 반응부가 결합된 상태를 나타낸 도면이다. 도 17은 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치에서 반응모듈에서 상부밸브 또는 하부밸브를 나타낸 도면이다. 도 18은 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치에서 반응모듈의 회수부를 나타낸 사시도이다. 도 19는 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치에서 반응모듈의 회수부를 나타낸 평면도이다. 도 20은 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치에서 반응모듈의 회수부를 나타낸 저면도이다. 도 21은 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치에서 반응모듈의 커버부를 나타낸 사시도이다. 도 22는 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치에서 반응모듈의 커버부를 나타낸 저면사시도이다. 도 23은 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치에서 반응모듈의 케이스를 나타낸 사시도이다. 도 24는 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치에서 반응모듈의 케이스를 나타낸 단면도이다. 도 25는 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치에서 반응모듈의 케이스에서 내주면에 형성된 결합홈을 나타낸 확대도이다. 도 26은 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치에서 반응모듈의 저장부에서 외주면에 형성된 결합돌기를 나타낸 확대도이다. 도 27은 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치에서 반응모듈의 케이스 내부를 나타낸 도면이다. 도 28은 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치에서 반응모듈의 케이스 외부를 나타낸 도면이다. 도 29는 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치에서 센서모듈을 전체적인 형태를 나타낸 도면이다. 도 30은 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치에서 센서모듈의 상판부를 나타낸 사시도이다. 도 31은 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치에서 센서모듈의 상판부를 나타낸 평면도이다. 도 32는 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치에서 센서모듈의 상판부를 나타낸 저면도이다. 도 33은 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치에서 센서모듈의 중판부를 나타낸 사시도이다. 도 34는 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치에서 센서모듈의 중판부를 나타낸 평면도이다. 도 35는 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치에서 센서모듈의 중판부를 나타낸 저면도이다. 도 36은 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치에서 센서모듈의 상판부와 중판부가 결합된 상태의 단면도이다. 도 37은 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치에서 센서모듈의 하판부를 나타낸 사시도이다. 도 38은 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치에서 센서모듈의 하판부를 나타낸 평면도이다. 도 39는 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치에서 센서모듈의 하판부를 나타낸 저면도이다. 도 40은 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치를 이용한 진단방법의 순서도이다. 도 41은 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치를 이용한 진단방법에서 반응단계를 세부적으로 나타낸 순서도이다. 도 42는 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치를 이용한 진단방법에서 정치단계를 세부적으로 나타낸 순서도이다.1 is a diagram schematically showing an automated device for diagnosis according to an embodiment of the present invention. 2 is a diagram showing the overall form of a reaction module in an automated device for diagnosis according to an embodiment of the present invention. 3 is a perspective view showing a storage unit of a reaction module in an automated device for diagnosis according to an embodiment of the present invention. 4 is a plan view showing a storage unit of a reaction module in an automated device for diagnosis according to an embodiment of the present invention. 5 is a bottom view showing a storage unit of a reaction module in an automated device for diagnosis according to an embodiment of the present invention. 6 is a perspective view showing a connection part of a reaction module in an automated device for diagnosis according to an embodiment of the present invention. 7 is a plan view showing a connection part of a reaction module in an automated device for diagnosis according to an embodiment of the present invention. 8 is a bottom view showing a connection part of a reaction module in an automated device for diagnosis according to an embodiment of the present invention. 9 is a bottom view showing a state in which an upper valve is removed from a connection part of a reaction module in an automated device for diagnosis according to an embodiment of the present invention. 10 is a view showing a coupled state of a storage unit, a connection unit, and a fixing pin of a reaction module in an automated device for diagnosis according to an embodiment of the present invention. 11 is a perspective view showing a reaction part of a reaction module in an automated device for diagnosis according to an embodiment of the present invention. 12 is a plan view showing a reaction part of a reaction module in an automated device for diagnosis according to an embodiment of the present invention. 13 is a bottom view showing a reaction part of a reaction module in an automated device for diagnosis according to an embodiment of the present invention. 14 is a bottom view showing a state in which a lower valve is removed from a reaction part of a reaction module in an automated device for diagnosis according to an embodiment of the present invention. 15 is a cross-sectional view showing a reaction chamber and a reaction channel in a reaction unit of a reaction module in an automated device for diagnosis according to an embodiment of the present invention. 16 is a view showing a state in which a connection part and a reaction part of a reaction module are coupled in an automated device for diagnosis according to an embodiment of the present invention. 17 is a view showing an upper valve or a lower valve in a reaction module in an automated device for diagnosis according to an embodiment of the present invention. 18 is a perspective view illustrating a recovery unit of a reaction module in an automated device for diagnosis according to an embodiment of the present invention. 19 is a plan view illustrating a recovery unit of a reaction module in an automated device for diagnosis according to an embodiment of the present invention. 20 is a bottom view illustrating a recovery unit of a reaction module in an automated device for diagnosis according to an embodiment of the present invention. 21 is a perspective view showing a cover part of a reaction module in an automated device for diagnosis according to an embodiment of the present invention. 22 is a bottom perspective view showing a cover of a reaction module in an automated device for diagnosis according to an embodiment of the present invention. 23 is a perspective view showing a case of a reaction module in an automated device for diagnosis according to an embodiment of the present invention. 24 is a cross-sectional view showing a case of a reaction module in an automated device for diagnosis according to an embodiment of the present invention. 25 is an enlarged view showing a coupling groove formed on an inner circumferential surface of a case of a reaction module in an automated device for diagnosis according to an embodiment of the present invention. 26 is an enlarged view showing coupling protrusions formed on an outer circumferential surface of a storage unit of a reaction module in an automated device for diagnosis according to an embodiment of the present invention. 27 is a view showing the inside of a case of a reaction module in an automated device for diagnosis according to an embodiment of the present invention. 28 is a view showing the outside of a case of a reaction module in an automated device for diagnosis according to an embodiment of the present invention. 29 is a diagram showing the overall shape of a sensor module in an automated device for diagnosis according to an embodiment of the present invention. 30 is a perspective view showing an upper plate of a sensor module in an automated device for diagnosis according to an embodiment of the present invention. 31 is a plan view showing an upper plate of a sensor module in an automated device for diagnosis according to an embodiment of the present invention. 32 is a bottom view showing an upper plate of a sensor module in an automated device for diagnosis according to an embodiment of the present invention. 33 is a perspective view showing a middle plate of a sensor module in an automated device for diagnosis according to an embodiment of the present invention. 34 is a plan view illustrating a middle plate of a sensor module in an automated device for diagnosis according to an embodiment of the present invention. 35 is a bottom view showing a middle plate of a sensor module in an automated device for diagnosis according to an embodiment of the present invention. 36 is a cross-sectional view of a state in which an upper plate part and a middle plate part of a sensor module are coupled in an automated device for diagnosis according to an embodiment of the present invention. 37 is a perspective view showing a lower plate of a sensor module in an automated device for diagnosis according to an embodiment of the present invention. 38 is a plan view illustrating a lower plate of a sensor module in an automated device for diagnosis according to an embodiment of the present invention. 39 is a bottom view showing a lower plate of a sensor module in an automated device for diagnosis according to an embodiment of the present invention. 40 is a flowchart of a diagnosis method using an automated device for diagnosis according to an embodiment of the present invention. 41 is a flow chart showing reaction steps in detail in a diagnosis method using an automated device for diagnosis according to an embodiment of the present invention. 42 is a flowchart showing in detail the stationary step in the diagnosis method using an automated device for diagnosis according to an embodiment of the present invention.
본 발명의 일 실시예에 따른 진단을 위한 자동화 장치(1)는 적어도 하나 이상의 시료가 구비되는 시료모듈(10); 시료모듈(10)로부터 시료를 공급받고, 공급된 시료를 반응용액과 혼합하여 혼합용액을 형성하며, 혼합용액의 반응이 수행되는 반응모듈(20); 센서가 구비되며, 반응모듈(20)로부터 반응 처리된 시료를 공급받고, 공급된 시료가 센서 상에 정치(Incubation)되도록 하는 센서모듈(30); 센서모듈(30)의 센서상에 고정된 타겟물질을 검출하는 분석모듈(40); 및 시료모듈(10), 반응모듈(20), 센서모듈(30) 및 분석모듈(40)을 제어하는 제어부(50);를 포함한다.An automated device 1 for diagnosis according to an embodiment of the present invention includes a sample module 10 provided with at least one sample; a reaction module 20 receiving a sample from the sample module 10, mixing the supplied sample with a reaction solution to form a mixed solution, and performing a reaction of the mixed solution; A sensor module 30 having a sensor, receiving a reaction-processed sample from the reaction module 20, and incubating the supplied sample on the sensor; Analysis module 40 for detecting the target material fixed on the sensor of the sensor module 30; and a controller 50 controlling the sample module 10, the reaction module 20, the sensor module 30, and the analysis module 40.
도 1을 참고하면, 제어부(50)는 각각의 모듈들과 유선 또는 무선으로 연결되어 있으며, 이를 통해 제어신호를 송수신한다. 제어부(50)는 도 1에 편의상 진단을 위한 자동화 장치(1)의 내부에 도시되어 있지만, 외부에 존재하여 무선으로 각각의 모듈들을 제어할 수도 있다.Referring to Figure 1, the control unit 50 is connected to each of the modules by wire or wireless, through which control signals are transmitted and received. Although the control unit 50 is shown inside the automation device 1 for convenience in FIG. 1, it may exist outside and control each module wirelessly.
또한, 각각의 모듈들은 도 1에 도시된 바와 같이 하나의 진단을 위한 자동화 장치(1)로 구성될 수 있으며, 따라서, 진단을 위한 자동화 장치(1)는 보다 컴팩트한 구성을 가지도록 설계될 수 있고, 최적화된 배치를 통해 진단의 효율을 상승시킬 수 있는 것이다.In addition, each module may be composed of one automated device 1 for diagnosis as shown in FIG. 1, and thus, the automated device 1 for diagnosis may be designed to have a more compact configuration. And, through the optimized arrangement, the efficiency of diagnosis can be increased.
한편, 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치(1)는 시료를 픽업하고, 픽업된 시료를 공급하는 적어도 하나의 로봇암(미도시);을 더 포함하고, 제어부(50)에서는 로봇암의 동작을 제어함으로써 시료모듈(10)에서 시료를 픽업하여 반응모듈(20)에 공급하거나, 반응모듈(20)에서 반응 처리된 시료를 픽업하여 센서모듈(30)에 공급할 수 있다.On the other hand, the automated device 1 for diagnosis according to an embodiment of the present invention further includes at least one robot arm (not shown) that picks up a sample and supplies the picked-up sample, and in the control unit 50 By controlling the operation of the robot arm, a sample can be picked up from the sample module 10 and supplied to the reaction module 20 or a sample reacted in the reaction module 20 can be picked up and supplied to the sensor module 30 .
제어부(50)는 시료모듈(10)에서 복수의 시료가 로딩 또는 언로딩 되도록 하며, 시료가 로딩되는 경우 시료의 바코드가 리딩되도록 함으로써 시료 정보를 수집할 수 있다.The control unit 50 allows a plurality of samples to be loaded or unloaded in the sample module 10, and when the samples are loaded, the sample information can be collected by reading the barcodes of the samples.
예를 들어, 시료모듈(10)에는 13개의 시료가 구비된 시료 랙이 로딩되고, 시료 로딩 위치 표시를 위한 GUI를 스크린에 구현한다. 이후 제어부(50)는 상기 로봇암을 통해 시료가 위치된 튜브를 픽업하고 이를 회전 모듈로 이송하게 되며, 제어부(50)는 상기 회전 모듈을 회전시키며 시료의 바코드를 리딩함으로써 시료 정보를 수집 및 저장하게 된다. 바코드 리딩 완료 시, 제어부(50)는 상기 로봇암을 통해 회전 모듈의 튜브를 픽업한 후 이를 다시 시료 랙으로 이송하게 된다.For example, a sample rack equipped with 13 samples is loaded in the sample module 10, and a GUI for displaying a sample loading position is implemented on the screen. Then, the control unit 50 picks up the tube where the sample is located through the robot arm and transfers it to the rotation module, and the control unit 50 collects and stores sample information by rotating the rotation module and reading the barcode of the sample. will do Upon completion of barcode reading, the control unit 50 picks up the tube of the rotation module through the robot arm and transfers it to the sample rack again.
본 발명의 일 실시예에 따른 진단을 위한 자동화 장치(1)에서 반응모듈(20)은 반응용액이 수용된 복수의 수용챔버(110)가 구비되는, 저장부(100); 저장부(100)의 하측에 마련되고, 복수의 수용챔버(110)에 연결되는 복수의 연결채널(210)이 구비되며, 복수의 연결채널(210)을 통해 복수의 수용챔버(110)에 수용된 반응용액 중 어느 하나를 유통시키는, 연결부(200); 및 연결부(200)의 하측에 마련되고, 시료가 주입되며 복수의 연결채널(210)과 연결된 반응채널(310) 및 반응채널(310)과 연결된 복수의 반응챔버(320)가 구비되며, 반응채널(310)에서는 시료와 복수의 연결채널(210)로부터 유통된 반응용액이 혼합용액을 형성하며, 복수의 반응챔버(320)에 양압 또는 음압이 반복적으로 인가됨으로써 혼합용액의 반응이 수행되는, 반응부(300);를 포함할 수 있다.In the automated apparatus 1 for diagnosis according to an embodiment of the present invention, the reaction module 20 includes a storage unit 100 provided with a plurality of accommodating chambers 110 in which reaction solutions are accommodated; It is provided on the lower side of the storage unit 100 and is provided with a plurality of connection channels 210 connected to the plurality of accommodation chambers 110, and accommodated in the plurality of accommodation chambers 110 through the plurality of connection channels 210. Distributing any one of the reaction solution, connecting portion 200; and a reaction channel 310 connected to a plurality of connection channels 210 and a plurality of reaction chambers 320 connected to the reaction channels 310, provided on the lower side of the connection unit 200, into which samples are injected, and connected to the reaction channels 210. In 310, the reaction solution flowing from the sample and the plurality of connection channels 210 forms a mixed solution, and the reaction of the mixed solution is performed by repeatedly applying positive or negative pressure to the plurality of reaction chambers 320. Part 300; may include.
본 발명의 일 실시예에 따른 진단을 위한 자동화 장치(1)에서 반응모듈(20)은 타겟물질을 검출하기 위해, 시료를 반응시키기 위한 것으로써, 개략적으로는 시료를 파쇄하고 자성입자 및 표지물질과 반응시킨 후 잔류물을 세척하기 위한 것이다. 여기서 타겟물질은 분리된 단백질이나 핵산으로써 광학, 전기, 전기화학 등의 방식에 의한 센서를 이용해 이를 검출하여, 분자진단 또는 면역진단 등이 수행되는 것이다.In the automated device 1 for diagnosis according to an embodiment of the present invention, the reaction module 20 is for reacting a sample in order to detect a target substance, and schematically crushes the sample, magnetic particles and a labeling substance It is for washing the residue after reaction with. Here, the target material is a separated protein or nucleic acid, and molecular diagnosis or immunodiagnosis is performed by detecting the separated protein or nucleic acid using a sensor using an optical, electrical, or electrochemical method.
구체적으로, 도 15를 참고하면, 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치(1)에서 제어부(50)는 복수의 반응챔버(320) 내의 압력이 양압 또는 음압으로 반복하여 인가되도록 함으로써, 혼합용액이 복수의 반응챔버(320)와 반응채널(310)을 왕복하여 유동될 수 있다.Specifically, referring to FIG. 15, in the automated apparatus 1 for diagnosis according to an embodiment of the present invention, the control unit 50 repeatedly applies positive pressure or negative pressure in the plurality of reaction chambers 320, thereby , The mixed solution may flow back and forth between the plurality of reaction chambers 320 and the reaction channel 310.
한편, 도 19를 참고하면, 복수의 반응챔버(320) 중 어느 하나에는 반응부(300) 및 회수부(400)를 관통하며 형성된 별도의 음압홀(305)이 마련되며, 음압홀(305)을 통해 기체를 유입 또는 유출시킴으로써 직접적으로 반응챔버(320) 내의 압력이 양압 또는 음압으로 인가될 수 있다. 음압홀(305)은 회수부(400)측에 마련되는 음압제어홀(405)과 연결되고, 제어부(50)는 음압제어홀(405)을 통해 복수의 반응챔버(320) 중 어느 하나의 압력을 양압 또는 음압으로 인가되도록 하는 것이다.On the other hand, referring to FIG. 19, a separate negative pressure hole 305 formed penetrating the reaction unit 300 and the recovery unit 400 is provided in one of the plurality of reaction chambers 320, and the negative pressure hole 305 The pressure in the reaction chamber 320 may be directly applied as a positive pressure or a negative pressure by inflow or outflow of gas through the. The negative pressure hole 305 is connected to the negative pressure control hole 405 provided on the side of the recovery unit 400, and the control unit 50 controls the pressure of any one of the plurality of reaction chambers 320 through the negative pressure control hole 405. is to be applied as a positive or negative pressure.
이 때, 혼합용액이 반응챔버(320)와 반응채널(310)을 왕복하여 유동됨으로써, 시료가 반응용액(자성입자 및 표지물질 솔루션, 워싱버퍼, 일루션버퍼 등)과 혼합될 수 있고, 아래와 같이 유동 중 자기력을 이용하여 자성입자가 결합된 타겟물질을 고정시킬 수 있다. 즉, 복수의 반응챔버(320)에 양압 또는 음압이 반복적으로 인가됨에 따라 혼합용액의 혼합, 고정, 세척 등이 수행될 수 있는 것이다. At this time, as the mixed solution flows back and forth between the reaction chamber 320 and the reaction channel 310, the sample can be mixed with the reaction solution (magnetic particle and label solution, washing buffer, illusion buffer, etc.), as follows. It is possible to fix the target material to which the magnetic particles are coupled by using the magnetic force during flow. That is, as positive or negative pressure is repeatedly applied to the plurality of reaction chambers 320, mixing, fixing, washing, etc. of the mixed solution can be performed.
본 발명의 일 실시예에 따른 진단을 위한 자동화 장치(1)에서 반응부(300)에는 반응채널(310) 하측에 자성체(330)가 마련되며, 제어부(50)는 혼합용액의 반응 수행 시 자성체를 상승시킴으로써 반응채널(310)에 자기력을 제공할 수 있다.In the automated device 1 for diagnosis according to an embodiment of the present invention, the reaction unit 300 has a magnetic body 330 provided below the reaction channel 310, and the control unit 50 has a magnetic body when the reaction of the mixed solution is performed. It is possible to provide magnetic force to the reaction channel 310 by raising the.
구체적으로, 자성체(330)는 상승 또는 하강되는 자석축으로 구성될 수 있으며, 제어부(50)는 혼합용액이 반응챔버(320)와 반응채널(310)을 왕복하여 움직일 때 또는 움직임이 완료된 때 자성체(330)를 상승시키고, 자성체(330)는 자성입자가 결합된 타겟물질을 자기력을 통해 반응채널(310) 내에 고정시키는 역할을 수행한다. 제어부(50)는 타겟물질의 고정을 해제하는 경우에 자성체(330)를 하강시켜 반응채널(310)에 제공되는 자기력이 제거되며, 이 때 피펫 등이 구비된 로봇암을 통해 반응된 시료가 회수될 수 있다.Specifically, the magnetic body 330 may be composed of a magnet shaft that ascends or descends, and the control unit 50 controls the magnetic body when the mixed solution moves back and forth between the reaction chamber 320 and the reaction channel 310 or when the movement is completed. 330 is raised, and the magnetic body 330 serves to fix the target material to which the magnetic particles are bound in the reaction channel 310 through magnetic force. When the target material is unfixed, the control unit 50 descends the magnetic material 330 to remove the magnetic force provided to the reaction channel 310, and at this time, the reacted sample is recovered through a robot arm equipped with a pipette or the like. It can be.
한편, 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치(1)에서 반응모듈(20)의 연결부(200)에는 복수의 연결채널(210)이 모두 연결되는 상부밸브(220)가 마련되며, 상부밸브(220)는 축회전을 통해 복수의 연결채널(210) 중 어느 하나를 반응 채널과 선택적으로 연결할 수 있다.On the other hand, in the automation device 1 for diagnosis according to an embodiment of the present invention, an upper valve 220 to which all of the plurality of connection channels 210 are connected is provided in the connection part 200 of the reaction module 20, The upper valve 220 may selectively connect one of the plurality of connection channels 210 to the reaction channel through shaft rotation.
구체적으로, 복수의 연결채널(210)의 일측은 각각 복수의 수용챔버(100)의 복수의 유출홀(120)에 연결되며, 다른 일측은 모두 상부밸브(220)에 연결된다. 도 17을 참고하면, 상부밸브(220)에는 중심부가 축회전 가능하도록 구성되고, 중심부의 상면에 중앙으로부터 외측으로 홈이 형성된다. 이 때 복수의 연결채널(210)의 다른 일측이 상부밸브(220)의 중심부를 기준으로 원주방향을 따라 배치되며, 이에 상부밸브(220)의 중심부에 형성된 홈이 회전되며 복수의 연결채널(210) 중 하나를 선택적으로 연결하는 것이다.Specifically, one side of the plurality of connection channels 210 is connected to the plurality of outlet holes 120 of the plurality of accommodating chambers 100, respectively, and the other side is connected to the upper valve 220. Referring to FIG. 17 , the upper valve 220 is configured such that the central portion is rotatable, and a groove is formed on the upper surface of the central portion from the center toward the outside. At this time, the other side of the plurality of connection channels 210 is disposed along the circumferential direction based on the center of the upper valve 220, and thus the groove formed in the center of the upper valve 220 is rotated and the plurality of connection channels 210 ) is to selectively connect one of them.
또한, 도 8을 참고하면 상기의 과정을 통해 연결된 어느 하나의 연결채널(210)의 반응용액은 연결부(200)의 상부밸브(220)의 중심부의 홀을 통해 연결부(200)의 내부에서 상승된 후 다시 하강되어 다시 연결부(200)의 내부에서 상승 및 하강하여 반응채널(310)로 유입된다.In addition, referring to FIG. 8, the reaction solution of any one connection channel 210 connected through the above process is raised from the inside of the connection part 200 through the hole in the center of the upper valve 220 of the connection part 200. Then, it descends again, rises and falls again inside the connection part 200, and flows into the reaction channel 310.
보다 구체적으로, 도 7 내지 도 8을 참고하면 연결부(200)의 상면과 하면에는 홈이 형성된 것을 확인할 수 있는데, 연결부(200)의 상면과 하면에는 라미네이팅 필름이 부착됨으로써 홈들이 폐쇄되고, 이를 통해 연결채널(210)들이 형성되는 것이다.More specifically, referring to FIGS. 7 and 8 , it can be seen that grooves are formed on the upper and lower surfaces of the connection part 200, and the grooves are closed by attaching a laminating film to the upper and lower surfaces of the connection part 200, through which Connection channels 210 are formed.
또한, 위와 같이 반응용액들이 상승과 하강을 반복하여 반응채널(310)로 유입됨으로써, 반응용액들의 역류를 방지하고, 반응챔버(320)에 음압이 형성될 시에 연결채널(210) 내 유체가 음압에 의해 일시적으로 모두 빠져나가는 것(사이펀 현상)을 방지하기 위함이다. 결국, 이러한 구조를 통해 유체의 유동을 더욱 정밀하게 원하는 유속으로 제어할 수 있는 것이다.In addition, as the reaction solutions flow into the reaction channel 310 by repeating the rise and fall as described above, the reverse flow of the reaction solutions is prevented, and when a negative pressure is formed in the reaction chamber 320, the fluid in the connection channel 210 This is to prevent temporary escape (siphon phenomenon) due to negative pressure. After all, through this structure, the flow of fluid can be more precisely controlled at a desired flow rate.
한편, 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치(1)에서 반응모듈(20)의 반응부(300)에는 반응채널(310)에 연결되는 하부밸브(340)가 마련되며, 하부밸브(340)는 축회전을 통해 반응채널(310)에 형성된 배출홀(350)을 선택적으로 개폐할 수 있다.Meanwhile, in the automation device 1 for diagnosis according to an embodiment of the present invention, a lower valve 340 connected to the reaction channel 310 is provided in the reaction unit 300 of the reaction module 20, and the lower valve 340 may selectively open and close the discharge hole 350 formed in the reaction channel 310 through shaft rotation.
구체적으로, 도 17을 참고하면, 상부밸브(220)와 하부밸브(340)는 동일한 것으로써, 회전가능한 중앙부와 중앙부의 상면에 형성된 홀로 구성된다. 이때 홀은 중앙부의 중심에서 외측으로 연장된 형상으로써, 외측에서 유입되는 유체를 중심으로 흐르도록 하고 중심에서 다시 유압에 의해 상승시키게 된다.Specifically, referring to FIG. 17, the upper valve 220 and the lower valve 340 are the same, and consist of a rotatable central portion and a hole formed on the upper surface of the central portion. At this time, the hole has a shape extending outward from the center of the central portion, and allows the fluid introduced from the outside to flow to the center and raises it again from the center by hydraulic pressure.
또한, 상부밸브(220)와 하부밸브(340)는 상단 외주면에 장착돌기가 형성되고, 연결부(200) 및 반응부(300)에 상부밸브(220)와 하부밸브(340)가 장착되는 위치에는 장착돌기가 들어가는 장착홈이 형성되며, 상부밸브(220)와 하부밸브(340)는 장착돌기가 장착홈에 삽입된 후 회전되어 고정되는 루어락 구조로 연결부(200) 및 반응부(300)에 장착되는 것이다.In addition, the upper valve 220 and the lower valve 340 have mounting protrusions formed on the outer circumferential surface of the upper end, and the upper valve 220 and the lower valve 340 are mounted on the connection part 200 and the reaction part 300 at the positions A mounting groove is formed into which the mounting protrusion enters, and the upper valve 220 and the lower valve 340 have a luer lock structure in which the mounting protrusion is inserted into the mounting groove and then rotated and fixed to the connection part 200 and the reaction part 300. it will be installed
한편, 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치(1)에서 반응모듈(20)은, 반응부(300)의 하측에 마련되어 반응채널(310)과 연결되고, 폐액챔버(410)가 마련된 회수부(400);를 더 포함하며, 제어부(50)는 복수의 반응챔버(320) 내의 압력을 변화시킴으로써 복수의 반응챔버(320) 내의 반응을 제어하거나, 폐액챔버(410) 내의 압력을 변화시킴으로써 복수의 반응챔버(320) 또는 반응채널(310) 내 폐기용액을 폐액챔버(410)로 배출할 수 있다.On the other hand, in the automation device 1 for diagnosis according to an embodiment of the present invention, the reaction module 20 is provided on the lower side of the reaction unit 300 and is connected to the reaction channel 310, and the waste chamber 410 It further includes a recovery unit 400 provided; and the control unit 50 controls the reaction in the plurality of reaction chambers 320 by changing the pressure in the plurality of reaction chambers 320 or the pressure in the waste liquid chamber 410. By changing the waste solution in the plurality of reaction chambers 320 or reaction channels 310 can be discharged to the waste chamber (410).
또한, 도 19를 참고하면, 복수의 반응챔버(320) 또는 반응채널(310) 내 폐기용액은 배출홀(350)을 통해 폐액챔버(410)로 배출되는 것이며, 폐액챔버(410)에는 챔버 내 압력 변화를 위한 압력인가홀(415)이 별도로 구비되고, 제어부(50)는 압력인가홀(415)에 기체를 유입시키거나 유출시킴으로써 폐액챔버(410) 내의 압력을 변화시킬 수 있는 것이다. 19, the waste solution in the plurality of reaction chambers 320 or reaction channels 310 is discharged to the waste liquid chamber 410 through the discharge hole 350, and the waste liquid chamber 410 is in the chamber. A pressure applying hole 415 for pressure change is provided separately, and the control unit 50 can change the pressure in the waste liquid chamber 410 by introducing or discharging gas into the pressure applying hole 415 .
한편, 반층채널(310)에서 혼합용액의 반응이 종료된 후, 제어부(50)는 하부밸브(340)를 개방한 후 폐액챔버(410) 내 압력을 음압으로 인가하게 되고, 이에 따라, 반응챔버(320) 또는 반응채널(310)에 남아있는 잔여 폐기용액이 음압에 의해 배출홀(350)을 지나 폐액챔버(410)로 배출되는 것이다.On the other hand, after the reaction of the mixed solution in the half-layer channel 310 is finished, the control unit 50 opens the lower valve 340 and applies a negative pressure to the inside of the waste chamber 410. Accordingly, the reaction chamber 320 or the remaining waste solution remaining in the reaction channel 310 is discharged to the waste chamber 410 through the discharge hole 350 by negative pressure.
또한, 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치(1)에서 반응모듈(20)의 복수의 수용챔버(110)는 저장부(100)의 원주방향을 따라 배치되며, 복수의 수용챔버(110) 각각에는 수용된 반응용액을 유출시키는 유출홀(120)이 형성될 수 있다. In addition, in the automated device 1 for diagnosis according to an embodiment of the present invention, the plurality of accommodating chambers 110 of the reaction module 20 are disposed along the circumferential direction of the storage unit 100, and the plurality of accommodating chambers Outlet holes 120 through which the received reaction solution is discharged may be formed in each of the (110).
이 때, 저장부(100)는 상면에 라미네이팅 필름이 부착되어, 반응모듈(20)의 사용 전에는 복수의 수용챔버(110)이 밀봉된 상태로 유지되는 것이며, 복수의 수용챔버(110)에는 자성입자 용액, 워싱버퍼 등이 1ml ~ 수 ml씩 수용될 수 있고, 도 2에서 확인되는 하나의 작은 수용챔버에는 상대적으로 입자가 작은 일루션 버퍼(0.05 ~ 1ml)가 수용될 수 있다.At this time, a laminating film is attached to the upper surface of the storage unit 100 so that the plurality of accommodating chambers 110 are maintained in a sealed state before the reaction module 20 is used, and the plurality of accommodating chambers 110 contain magnetic Particle solution, washing buffer, etc. can be accommodated by 1 ml to several ml, and an illusion buffer (0.05 to 1 ml) with relatively small particles can be accommodated in one small receiving chamber as seen in FIG. 2 .
한편, 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치(1)에서 반응모듈(20)의 연결부(200)에는 복수의 연결채널(210)의 입구측에 각각 돌출부(230)가 마련되며, 돌출부(230)들은 유출홀(120)들에 관통삽입됨으로써 복수의 수용챔버(110)와 복수의 연결채널(210)을 연통시킬 수 있다.On the other hand, in the automation device 1 for diagnosis according to an embodiment of the present invention, the connection part 200 of the reaction module 20 is provided with a protrusion part 230 at the inlet side of each of the plurality of connection channels 210, The protrusions 230 can communicate with the plurality of accommodating chambers 110 and the plurality of connection channels 210 by being inserted through the outlet holes 120 .
또한, 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치(1)의 반응모듈(20)에서, 돌출부(230)의 하단에는 오링(240)이 마련되며, 오링(240)은 돌출부(230)가 유출홀(120)에 관통삽입되는 경우 유출홀(120)과 연결채널(210)이 연결되는 연결부(200)분을 실링할 수 있다.In addition, in the reaction module 20 of the automation device 1 for diagnosis according to an embodiment of the present invention, an O-ring 240 is provided at the lower end of the protrusion 230, and the O-ring 240 is the protrusion 230 When is inserted through the outflow hole 120, the connection portion 200 where the outflow hole 120 and the connection channel 210 are connected may be sealed.
즉, 저장부(100)의 하면 역시 라미네이팅 필름이 부착됨으로써, 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치(1)에서 반응모듈(20)의 사용시에, 저장부(100)가 결합홈(810)을 따라 상하로 움직이지 못하도록 고정하고 있는 고정핀(600)이 로봇암 등을 통해 제거되고, 케이스(800)의 하단에 결합하고 있는 커버부(700)를 케이스(800)의 상단의 홈에 맞춰 옮겨 결합하면서 저장부(100)가 결합홈(810)을 따라 아래로 이동하게 되면, 돌출부(230)가 유출홀(120)을 덮고 있는 필름을 뚫고 들어가 유출홀(120)과 연결채널(210)들을 연통시키는 것이며, 라미네이팅 처리를 통해 저장부(100)와 연결부(200)의 제조공정을 단순화하고 제조원가를 절감할 수 있는 효과도 도출되는 것이다.That is, since the laminating film is also attached to the lower surface of the storage unit 100, when the reaction module 20 is used in the automation device 1 for diagnosis according to an embodiment of the present invention, the storage unit 100 is coupled to the coupling groove The fixing pin 600, which is fixed so as not to move up and down along the 810, is removed through a robot arm, etc., and the cover part 700 coupled to the lower end of the case 800 is removed from the upper end of the case 800. When the storage unit 100 moves downward along the coupling groove 810 while being moved and coupled according to the groove, the protrusion 230 penetrates the film covering the outlet hole 120 and enters the outlet hole 120 and the connection channel. 210 are connected, and the effect of simplifying the manufacturing process of the storage unit 100 and the connection unit 200 through the laminating process and reducing the manufacturing cost is also derived.
한편, 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치(1)의 반응모듈(20)에서, 저장부(100)의 상측에는 저장부(100)의 상단을 하측으로 밀어내며 저장부(100)와 연결부(200)를 밀착시키는 커버부(700)가 마련되며, 커버부(700)에는 복수의 수용챔버(110)에 대응되는 위치에 복수의 펀쳐(710)가 형성되고, 복수의 펀쳐(710)는 복수의 수용챔버(110)를 관통하여 외부와 연통시킬 수 있다. 이는 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치(1)에서 반응모듈(20)의 사용시, 복수의 수용챔버(110)에 대기압을 제공함으로써, 채널 내에서 반응용액의 유동을 촉진하는 것이다.On the other hand, in the reaction module 20 of the automation device 1 for diagnosis according to an embodiment of the present invention, the top of the storage unit 100 is pushed downward on the upper side of the storage unit 100, and the storage unit 100 ) And a cover portion 700 for closely contacting the connection portion 200 is provided, a plurality of punchers 710 are formed in positions corresponding to the plurality of accommodating chambers 110 in the cover portion 700, and a plurality of punchers ( 710) can communicate with the outside by penetrating the plurality of accommodating chambers 110. This is to promote the flow of the reaction solution in the channel by providing atmospheric pressure to the plurality of accommodating chambers 110 when the reaction module 20 is used in the automated device 1 for diagnosis according to an embodiment of the present invention. .
또한, 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치(1)에서 반응모듈(20)은 저장부(100), 연결부(200) 및 반응부(300)가 내장되고, 내주면에 복수의 결합홈(810)이 형성된 케이스(800);를 더 포함하며, 저장부(100)의 외주면에는 복수의 결합돌기(130)가 형성되고, 저장부(100)는 복수의 결합돌기(130)는 복수의 결합홈(810)에 삽입된 상태에서 케이스(800)에 내장될 수 있다.In addition, in the automation device 1 for diagnosis according to an embodiment of the present invention, the reaction module 20 includes a storage unit 100, a connection unit 200, and a reaction unit 300, and a plurality of couplings are provided on the inner circumferential surface. The case 800 in which the groove 810 is formed; further includes, a plurality of coupling protrusions 130 are formed on the outer circumferential surface of the storage unit 100, and the storage unit 100 has a plurality of coupling protrusions 130. It can be built into the case 800 while being inserted into the coupling groove 810 of the.
구체적으로, 도 25 내지 도 26을 참고하면, 결합돌기(130)는 결합홈(810)보다 길이가 더 짧도록 형성되며, 이는 아래의 고정핀(600)이 끼워진 상태에서 결합돌기(130)가 결합홈(810)의 상면에 밀착되기 때문이다. 또한, 결합홈(810)의 하단에는 경사진 끼움돌기가 형성되며, 끼움돌기는 결합돌기(130) 하단에 형성된 끼움홈에 끼워지게 된다. 끼움돌기는 고정핀(600)이 제거되어 저장부(100)가 하단으로 슬라이딩될 시, 결합돌기(130)를 가이드하는 역할을 수행하고, 끼움돌기의 경사면을 통해 결합돌기가 아래로 부드럽게 슬라이딩된다. 또한 경사면으로 인해 하단이 상단보다 돌출된 끼움돌기는, 연결부(200)에 구비되는 오링(240)의 탄성력에 의해 저장부(100)가 다시 상단으로 밀려 유체가 유출되는 것을 방지하고 저장부(100)가 연결부(200)에 밀착을 유지할 수 있도록 하는 것이다.Specifically, referring to FIGS. 25 to 26, the coupling protrusion 130 is formed to have a shorter length than the coupling groove 810, which means that the coupling protrusion 130 is in a state where the fixing pin 600 below is inserted. This is because it is in close contact with the upper surface of the coupling groove 810. In addition, an inclined fitting protrusion is formed at the bottom of the coupling groove 810, and the fitting protrusion is fitted into the fitting groove formed at the bottom of the coupling protrusion 130. The fitting protrusion serves to guide the engaging protrusion 130 when the storage unit 100 slides downward when the fixing pin 600 is removed, and the engaging protrusion slides down gently through the inclined surface of the fitting protrusion. . In addition, the fitting protrusion, the lower end of which protrudes from the upper end due to the inclined surface, prevents the fluid from leaking by pushing the storage part 100 back to the top by the elastic force of the O-ring 240 provided in the connection part 200, and prevents the fluid from flowing out. ) is to maintain close contact with the connecting portion 200.
한편, 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치(1)에서 반응모듈(20)은 피펫이 구비된 로봇암 등을 이용하여 반응된 시료가 주입되거나 회수될 수 있다. 즉, 제어부(50)는 피펫이 구비된 로봇암을 통해 피펫이 시료 주입 또는 회수 시에, 단부가 저장부(100)와 연결부(200)를 지나 반응채널(310)에 근접여 반응챔버(320) 또는 반응채널(310) 내에 시료를 주입하거나 반응챔버(320) 또는 반응채널(310) 내 반응이 완료된 시료를 회수하도록 제어할 수 있는 것이다.Meanwhile, in the automated apparatus 1 for diagnosis according to an embodiment of the present invention, the reaction module 20 may inject or collect a reacted sample using a robot arm equipped with a pipette. That is, when the pipette injects or collects a sample through the robot arm equipped with the pipette, the control unit 50 passes through the storage unit 100 and the connection unit 200 and approaches the reaction channel 310 so that the reaction chamber 320 ) or injecting a sample into the reaction channel 310, or controlling the reaction chamber 320 or reaction channel 310 to collect a sample after completion of the reaction.
또한, 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치(1)에서 반응모듈(20)은 저장부(100)와 연결부(200)의 사이에 마련되어 저장부(100)와 연결부(200)를 이격시키는 고정핀(600);을 더 포함하고, 저장부(100)와 연결부(200)는 고정핀(600)이 제거되는 경우 밀착되어 수용챔버(110)와 연결채널(210)이 연결될 수 있다.In addition, in the automation device 1 for diagnosis according to an embodiment of the present invention, the reaction module 20 is provided between the storage unit 100 and the connection unit 200 to connect the storage unit 100 and the connection unit 200. It further includes a fixing pin 600 spaced apart, and the storage part 100 and the connection part 200 are in close contact when the fixing pin 600 is removed, so that the receiving chamber 110 and the connection channel 210 can be connected. .
즉, 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치(1)에서 반응모듈(20)은 미사용 시, 고정핀(600)을 통해 연결부(200)와 저장부(100)가 이격되고, 수용챔버(110)들의 유출홀(120)들이 밀봉된 상태로 유지되어 이물질의 유입과 반응용액의 변질을 방지하고, 사용시에만 제어부(50)에서 고정핀(600)을 제거하여 시료의 반응을 수행하게 되는 것이다.That is, in the automated device 1 for diagnosis according to an embodiment of the present invention, when the reaction module 20 is not in use, the connection part 200 and the storage part 100 are spaced apart through the fixing pin 600, and the storage part 100 is accommodated. The outflow holes 120 of the chambers 110 are maintained in a sealed state to prevent inflow of foreign substances and deterioration of the reaction solution, and the reaction of the sample is performed by removing the fixing pin 600 from the controller 50 only when in use. It will be.
본 발명의 일 실시예에 따른 진단을 위한 자동화 장치(1)에서 센서모듈(30)은 시료 또는 버퍼용액 또는 물이 주입되는 주입구(1110)가 구비되고, 주입구(1110)에는 타겟물질을 센싱하는 센서(1115)가 마련되는, 상판부(1100); 상판부(1100)의 하단에 마련되고, 주입구(1110)와 연결되는 유통채널(1220)이 구비되며, 유통채널(1220)을 통해 주입구(1110)를 통해 주입된 시료 또는 버퍼용액 또는 물이 유통되는, 중판부(1200); 및 중판부(1200)의 하단에 마련되고, 유통채널(1220)과 연결된 배출챔버(1315)가 구비되는, 하판부(1300);를 포함할 수 있다.In the automated device 1 for diagnosis according to an embodiment of the present invention, the sensor module 30 is provided with an inlet 1110 through which a sample or a buffer solution or water is injected, and the inlet 1110 senses a target material. an upper plate portion 1100 on which a sensor 1115 is provided; A distribution channel 1220 is provided at the bottom of the upper plate 1100 and connected to the inlet 1110, and a sample or buffer solution or water injected through the inlet 1110 is distributed through the distribution channel 1220. , middle plate portion 1200; and a lower plate portion 1300 provided at a lower end of the middle plate portion 1200 and provided with a discharge chamber 1315 connected to the distribution channel 1220 .
또한, 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치(1)에서 제어부(50)는 시료 또는 버퍼용액 내 존재하는 타겟물질을 센서(1115)에 정치되도록 하며, 분석모듈(40)을 통해 센서의 표면상에 고정된 타겟물질을 검출할 수 있다.In addition, in the automated device 1 for diagnosis according to an embodiment of the present invention, the control unit 50 causes the target material present in the sample or buffer solution to be placed on the sensor 1115, and through the analysis module 40 A target material fixed on the surface of the sensor can be detected.
구체적으로, 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치(1)에서 센서모듈(30)은 반응모듈(20)에서 전처리가 완료된 시료가 주입되며, 시료는 타겟물질이 자성입자 및 표지물질과 결합된 상태로 존재하게 되며, 센서(1115)를 통해 타겟물질을 검출하게 된다. 여기서 타겟물질은 분리된 단백질이나 핵산으로써 센서(1115)에서 이를 검출하여, 분석모듈(40)에 의해 분자진단, 면역진단 등이 수행되는 것이다.Specifically, in the automated device 1 for diagnosis according to an embodiment of the present invention, the sensor module 30 is injected with a sample that has been pretreated in the reaction module 20, and the target material is magnetic particles and a labeling material. It exists in a combined state, and the target material is detected through the sensor 1115. Here, the target material is a separated protein or nucleic acid, which is detected by the sensor 1115, and molecular diagnosis, immunodiagnosis, etc. are performed by the analysis module 40.
한편, 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치(1)에서 제어부(50)는 유통채널(1220)과 연결된 배출챔버(1315) 내의 압력이 양압 또는 음압으로 인가되도록 함으로써 주입구(1110)를 통해 주입된 시료 또는 버퍼용액 또는 물이 유동되도록 할 수 있다.On the other hand, in the automated device 1 for diagnosis according to an embodiment of the present invention, the control unit 50 causes the pressure in the discharge chamber 1315 connected to the distribution channel 1220 to be applied as a positive pressure or a negative pressure so that the inlet 1110 Through the injected sample or buffer solution or water can be made to flow.
구체적으로, 도 30을 참고하면, 주입구(1110)는 상판부(1100)의 상면에서 함몰된 형상으로 형성됨으로써, 주입되는 유체가 중앙의 센서 상부에 모여서 정치(Incubating)할 수 있도록 가이드하며, 주입구(1110), 유통채널(1220) 및 배출챔버(1315)가 모두 연결됨에 따라 배출챔버(1315)의 압력을 제어함으로써 유체유동을 제어하고 이를 통해 센서(1115) 등의 세척을 수행하는 것이다.Specifically, referring to FIG. 30, the inlet 1110 is formed in a recessed shape on the upper surface of the upper plate portion 1100, so that the injected fluid gathers at the top of the sensor in the center and guides it to incubate, and the inlet ( 1110), the distribution channel 1220, and the discharge chamber 1315 are all connected, so that the fluid flow is controlled by controlling the pressure of the discharge chamber 1315, and through this, the sensor 1115 and the like are cleaned.
예를 들어, 주입구(1110)를 통해 주입된 시료(반응모듈(20) 통해 전처리된 시료) 또는 버퍼용액(PBS) 또는 물(초순수)은 배출챔버에(1315) 음압이 인가되는 경우, 주입구(1110)측에서 유통채널(1220)을 지나 배출챔버(1315)를 향해 유동될 것이고, 배출챔버(1315)에 양압이 인가되는 경우, 배출챔버(1315)측에서 유통채널(1220)을 지나 주입구(1110)를 향해 유동될 것이다.For example, when negative pressure is applied to a sample (pretreated sample through the reaction module 20) or a buffer solution (PBS) or water (ultrapure water) injected through the inlet 1110 to the discharge chamber 1315, the inlet ( 1110 will flow toward the discharge chamber 1315 through the distribution channel 1220, and when positive pressure is applied to the discharge chamber 1315, the discharge chamber 1315 side passes through the distribution channel 1220 to the inlet ( 1110) will flow towards.
또한, 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치(1)의 센서모듈(30)에서 센서(1115)는 상판부(1100)에 구비된 주입구(1110)에 위치되는데, 주입구(1110)에는 센서(1115)를 지지하는 십자가 형상의 지지구조가 형성되고, 센서(1115)(6 x 6 x 0.7 mm)는 지지구조상에 안착되어 시료 내의 타겟물질을 센싱하는 것이다.In addition, in the sensor module 30 of the automation device 1 for diagnosis according to an embodiment of the present invention, the sensor 1115 is located at the inlet 1110 provided in the upper plate 1100, and the inlet 1110 A cross-shaped support structure supporting the sensor 1115 is formed, and the sensor 1115 (6 x 6 x 0.7 mm) is seated on the support structure to sense a target material in the sample.
한편, 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치(1)의 센서모듈(30)에서, 중판부(1200)의 상단에는 주입구(1110)와 연결된 주입채널(1210)이 구비되며, 주입채널(1210)은 중판부(1200)의 상면을 따라 형성된 홈으로 구성될 수 있다.Meanwhile, in the sensor module 30 of the automation device 1 for diagnosis according to an embodiment of the present invention, an injection channel 1210 connected to the injection hole 1110 is provided at the top of the middle plate 1200, and injection The channel 1210 may be configured as a groove formed along an upper surface of the middle plate portion 1200 .
또한, 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치(1)의 센서모듈(30)에서, 상판부(1100)에는 주입구(1110)와 이격된 지점에 연결채널(1120)이 구비되며, 연결채널(1120)은 양 단부가 각각 주입채널(1210) 및 유통채널(1220)에 결합됨으로써 주입채널(1210)과 유통채널(1220)을 연결할 수 있다.In addition, in the sensor module 30 of the automation device 1 for diagnosis according to an embodiment of the present invention, the upper plate 1100 is provided with a connection channel 1120 at a point spaced apart from the inlet 1110, and connects Both ends of the channel 1120 are coupled to the injection channel 1210 and the distribution channel 1220, respectively, so that the injection channel 1210 and the distribution channel 1220 may be connected.
구체적으로, 연결채널(1120)은, 도 30을 참고하면, 상판부(1100)의 상면을 따라 형성된 홈으로써, 양 단부는 상판부(1100)의 하측으로 관통되어 중판부(1200)의 주입채널(1210) 및 유통채널(1220)과 연결된다. 그리고, 상판부(1100)의 상면은 라미네이팅 필름이 부착됨으로써 라미네이팅 필름에 의해 상판부(1100)의 상면을 따라 형성된 홈이 폐쇄되어 연결채널(1120)이 형성되는 것이다. 즉, 상판부(1100), 중판부(1200)에 홈을 형성한 후, 라미네이팅 처리를 통해 채널을 형성함으로써 제조공정을 단순화시키고 제조원가를 절감할 수 있는 것이다.Specifically, referring to FIG. 30 , the connection channel 1120 is a groove formed along the upper surface of the upper plate portion 1100, and both ends penetrate the lower side of the upper plate portion 1100 to penetrate the injection channel 1210 of the middle plate portion 1200. ) and the distribution channel 1220. In addition, since a laminating film is attached to the upper surface of the upper plate portion 1100, a groove formed along the upper surface of the upper plate portion 1100 is closed by the laminating film to form a connection channel 1120. That is, by forming grooves in the upper plate portion 1100 and the middle plate portion 1200 and then forming channels through laminating, the manufacturing process can be simplified and the manufacturing cost can be reduced.
따라서, 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치(1)의 센서모듈(30)에서, 유통채널(1220)에 시료 또는 버퍼용액 또는 물이 유입되는 경우, 주입구(1110)를 통해 주입된 시료 또는 버퍼용액 또는 물은 주입채널(1210)을 지나 상승되고, 연결채널(1120)을 지나 하강되며, 유통채널(1220)로 유입될 수 있다.Therefore, in the sensor module 30 of the automation device 1 for diagnosis according to an embodiment of the present invention, when a sample or a buffer solution or water flows into the distribution channel 1220, it is injected through the inlet 1110. The sample, buffer solution, or water may pass through the injection channel 1210, ascend, pass through the connection channel 1120, descend, and flow into the distribution channel 1220.
이와 같이 상판부(1100)의 연결채널(1120)과 배출채널(1130)을 통해 유체가 상승과 하강을 반복하도록 구성되는 구조는, 배출챔버(1315)에 음압이 인가됨에 따라 주입구(1110)부터 채널 내 유체가 음압에 의해 일시적으로 모두 빠져나가는 사이펀(Siphon) 효과를 방지하기 위함이다. 결국, 이러한 구조를 통해 유체의 유동을 더욱 정밀하게 원하는 유속으로 제어할 수 있는 것이다.In this way, the structure configured so that the fluid repeatedly rises and falls through the connection channel 1120 and the discharge channel 1130 of the upper plate portion 1100, as negative pressure is applied to the discharge chamber 1315, the fluid flows from the inlet 1110 to the channel. This is to prevent the siphon effect in which all of my fluid is temporarily exhausted by negative pressure. After all, through this structure, the flow of fluid can be more precisely controlled at a desired flow rate.
또한, 도 32를 참고하면, 상판부(1100)의 하면에는 주입구(1110)와 연결채널(1120) 및 배출채널(1130)의 입출구 부분에는 오링을 구비하여 중판부(1200)와 연결되는 각 부분에서 유체가 유출되는 것을 방지할 수 있다.In addition, referring to FIG. 32, O-rings are provided on the lower surface of the upper plate portion 1100 at the inlet and outlet portions of the inlet 1110, the connection channel 1120, and the discharge channel 1130, so that each portion connected to the middle plate portion 1200 Fluid leakage can be prevented.
한편, 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치(1)의 센서모듈(30)에서 유통채널(1220)은 중판부(1200)의 하단에 구비되며, 중판부(1200)의 하면을 따라 연장 및 절곡을 반복하도록 형성된 홈으로 구성될 수 있다.Meanwhile, in the sensor module 30 of the automation device 1 for diagnosis according to an embodiment of the present invention, the distribution channel 1220 is provided at the lower end of the middle plate 1200 and covers the lower surface of the middle plate 1200. It may be composed of a groove formed to repeat extension and bending along the.
이 경우에도 마찬가지로 중판부(1200)의 하면은 라미네이팅 필름이 부착되며, 라미네이팅 필름이 중판부(1200)의 하면에 형성된 홈을 폐쇄함으로써 유통채널(1220)이 형성되는 것이다. 이로써, 중판부(1200)도 상판부(1100)와 마찬가지로 제조공정을 단순화하고 제조원가를 절감할 수 있다.Similarly in this case, a laminating film is attached to the lower surface of the middle plate part 1200, and the distribution channel 1220 is formed by closing the groove formed on the lower surface of the middle plate part 1200 with the laminating film. Thus, the middle plate portion 1200 can simplify the manufacturing process and reduce manufacturing costs, similarly to the upper plate portion 1100 .
한편, 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치(1)의 센서모듈(30)에서, 유통채널(1220)에 유통되는 시료 또는 버퍼용액 또는 물은 홈을 따라서 중판부(1200)의 일측과 타측을 왕복하며 유동됨으로써 센서(1115)를 세척할 수 있다.On the other hand, in the sensor module 30 of the automated device 1 for diagnosis according to an embodiment of the present invention, the sample, buffer solution or water distributed in the distribution channel 1220 moves through the middle plate 1200 along the groove. The sensor 1115 may be cleaned by flowing back and forth between one side and the other side.
즉, 제어부(50)는 시료 또는 버퍼용액 또는 물이 센서 및 유통채널을 왕복하여 유동되도록 함으로써, 센서(1115) 위에 잔존하는 불순물과 비특이반응을 한 물질을 세척하는 것이다.That is, the control unit 50 allows the sample or buffer solution or water to flow back and forth between the sensor and the distribution channel, thereby washing away impurities remaining on the sensor 1115 and substances that have non-specific reactions.
또한, 유통채널(1220)이 중판부(1200)의 면을 따라 넓은 단면적을 가진 유로로 형성됨에 따라, 유통채널(1220) 내에 시료가 채워지는 경우, 상판부(1100)에 마련되는 센서(1115)를 세척하는 버퍼용액 또는 물을 충분히 채울 수 있는 것이다.In addition, as the distribution channel 1220 is formed as a flow path having a wide cross-sectional area along the surface of the middle plate portion 1200, when a sample is filled in the distribution channel 1220, the sensor 1115 provided in the upper plate portion 1100 It can be filled with a buffer solution or water to wash the
한편, 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치(1)의 센서모듈(30)에서 상판부(1100)에는 주입구(1110)와 이격된 지점에 배출채널(1130)이 구비되며, 배출채널(1130)은 양 단부가 각각 유통채널(1220) 및 배출챔버(1315)에 형성된 배출홀(1310)에 결합됨으로써, 유통채널(1220)과 배출챔버(1315)를 연결할 수 있다.On the other hand, in the sensor module 30 of the automation device 1 for diagnosis according to an embodiment of the present invention, the upper plate 1100 is provided with a discharge channel 1130 at a point spaced apart from the inlet 1110, and the discharge channel 1130 may connect the distribution channel 1220 and the discharge chamber 1315 by coupling both ends to discharge holes 1310 formed in the distribution channel 1220 and the discharge chamber 1315, respectively.
배출채널(1130)의 경우에도, 연결채널(1120)과 유사한 원리와 효과를 가지기 때문에, 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치(1)의 센서모듈(30)에서 배출챔버(1315)에 시료 또는 버퍼용액 또는 물이 유입되는 경우, 시료 또는 버퍼용액 또는 물은 유통채널(1220)을 지나 상승되고, 배출채널(1130)을 지나 하강되며, 배출홀(1310)을 통해 배출챔버(1315)로 유입될 수 있다.Even in the case of the discharge channel 1130, since it has similar principles and effects to the connection channel 1120, the discharge chamber 1315 in the sensor module 30 of the automation device 1 for diagnosis according to an embodiment of the present invention. ) When a sample or buffer solution or water is introduced into the discharge chamber ( 1315).
한편, 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치(1)에서 센서모듈(30)에서 상판부(1100)에는 테두리를 따라 이격 배치된 복수의 제1결합홈(1140)이 형성되고, 하판부(1300)에는 복수의 제1결합홈(1140)과 대응되는 위치에 복수의 결합돌기(1320)가 형성되며, 복수의 결합돌기(1320)는 복수의 제1결합홈(1140)에 삽입됨으로써 상판부(1100)와 하판부(1300)를 결합시킬 수 있다.On the other hand, in the automation device 1 for diagnosis according to an embodiment of the present invention, a plurality of first coupling grooves 1140 spaced apart along the edge are formed in the upper plate 1100 of the sensor module 30, and the lower plate A plurality of coupling protrusions 1320 are formed at positions corresponding to the plurality of first coupling grooves 1140 in the portion 1300, and the plurality of coupling protrusions 1320 are inserted into the plurality of first coupling grooves 1140, thereby The upper plate part 1100 and the lower plate part 1300 may be coupled.
또한, 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치(1)의 센서모듈(30)에서 중판부(1200)에는 테두리를 따라 이격 배치된 복수의 제2결합홈(1230)이 형성되고, 하판부(1300)에는 복수의 제2결합홈(1230)과 대응되는 위치에 복수의 결합돌기(1320)가 형성되며, 복수의 결합돌기(1320)는 복수의 제2결합홈(1230)에 삽입됨으로써 중판부(1200)와 하판부(1300)를 결합시킬 수 있다.In addition, in the sensor module 30 of the automation device 1 for diagnosis according to an embodiment of the present invention, a plurality of second coupling grooves 1230 spaced apart along the edge are formed in the middle plate 1200, A plurality of coupling protrusions 1320 are formed on the lower plate 1300 at positions corresponding to the plurality of second coupling grooves 1230, and the plurality of coupling protrusions 1320 are inserted into the plurality of second coupling grooves 1230. As a result, the middle plate portion 1200 and the lower plate portion 1300 may be coupled.
구체적으로, 도 37을 참고하면, 하판부(1300)에는 테두리를 따라 총 8개의 결합돌기(1320)가 형성되며, 복수의 결합돌기(1320)는 제2결합홈(1230) 및 제1결합홈(1140)에 삽입결합된다. 또한, 복수의 결합돌기(1320)는 상단이 'ㄱ'자 형상으로 형성되고, 제1결합홈(1140)의 턱에 걸림결합됨으로써, 상판부(1100), 중판부(1200) 및 하판부(1300)의 결합상태를 견고하게 유지할 수 있는 것이다.Specifically, referring to FIG. 37 , a total of eight coupling protrusions 1320 are formed along the rim of the lower plate 1300, and the plurality of coupling protrusions 1320 are second coupling grooves 1230 and first coupling grooves. (1140) is inserted and coupled. In addition, the plurality of coupling protrusions 1320 are formed in an 'L' shape at the top, and are engaged with the chin of the first coupling groove 1140, thereby forming the upper plate portion 1100, the middle plate portion 1200, and the lower plate portion 1300. ) can be maintained firmly.
또한, 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치(1)는 센서모듈(30)을 픽업하고 이동시키는 적어도 하나의 로봇암;을 더 포함하고, 제어부(50)에서는 로봇암의 동작을 제어함으로써 센서모듈(30)을 분석모듈(40)에 제공하며, 타켓물질 검출을 위해 센서모듈(30)이 분석모듈(40)상에서 로딩 또는 언로딩 되도록 할 수 있다.In addition, the automation device 1 for diagnosis according to an embodiment of the present invention further includes at least one robot arm for picking up and moving the sensor module 30, and the control unit 50 controls the operation of the robot arm. By controlling, the sensor module 30 is provided to the analysis module 40, and the sensor module 30 can be loaded or unloaded on the analysis module 40 to detect a target substance.
예를 들어, 제어부(50)는 상기 로봇암을 통해 센서모듈(30)을 픽업하여 분석모듈(40) 상에 위치시키게 되고, 위치된 센서모듈(30)를 클램핑하고 질소 Blowing 및 QR 체크 작업을 수행하게 된다. 다음으로, 제어부(50)는 분석을 위해 센서모듈(30)을 분석 Stage 로딩 위치로 로딩하고, 센서(1115)와 광학 또는 전기 또는 전기화학 방식의 신호를 주고받음으로써 고정된 타겟물질을 검출하게 된다. 이후 제어부(50)는 분석 결과를 보고하고, 센서모듈(30)을 다시 언로딩 시키게 된다.For example, the control unit 50 picks up the sensor module 30 through the robot arm, places it on the analysis module 40, clamps the located sensor module 30, and performs nitrogen blowing and QR check operations. will perform Next, the control unit 50 loads the sensor module 30 to the analysis stage loading position for analysis, and detects the fixed target material by exchanging signals with the sensor 1115 in an optical, electrical, or electrochemical manner. do. Then, the control unit 50 reports the analysis result and unloads the sensor module 30 again.
본 발명의 일 실시예에 따른 진단을 위한 자동화 장치(1)를 이용한 진단방법은 적어도 하나 이상의 시료를 구비하는 구비단계(S10); 구비된 시료를 공급하고, 공급된 시료를 반응용액과 혼합하여 혼합용액을 형성하며, 혼합용액의 반응이 수행하는 반응단계(S20); 반응 처리된 시료를 공급하고, 공급된 시료를 센서(1115) 상에 정치(Incubation)하는 정치단계(S30); 및 센서(1115)상에 고정된 타겟물질을 검출하는 분석단계(S40);를 포함한다.A diagnosis method using the automated device 1 for diagnosis according to an embodiment of the present invention includes the step of providing at least one sample (S10); A reaction step (S20) of supplying a provided sample, mixing the supplied sample with a reaction solution to form a mixed solution, and performing a reaction of the mixed solution; A stationary step (S30) of supplying the reaction-treated sample and incubating the supplied sample on the sensor 1115; and an analysis step (S40) of detecting a target material fixed on the sensor 1115.
또한, 구비단계(S10)에서는 시료가 로딩 또는 언로딩 되도록 하며, 시료가 로딩되는 경우 시료의 바코드를 리딩 함으로써 시료 정보를 수집할 수 있다.In addition, in the preparing step (S10), the sample is loaded or unloaded, and when the sample is loaded, sample information may be collected by reading the barcode of the sample.
한편, 반응단계(S20)는, 복수의 연결채널(210)을 통해 복수의 수용챔버(110)에 수용된 반응용액 중 어느 하나를 유통시키는 단계(S100); 복수의 연결채널(210)과 연결된 반응채널(310)에 시료를 주입하고, 시료와 복수의 연결채널(210)로부터 유통된 반응용액으로 혼합용액을 형성하는 단계(S110); 및 반응채널(310)에 연결된 복수의 반응챔버(320)에 양압 또는 음압을 반복하여 인가함으로써 혼합용액의 반응을 수행하는 단계(S120);를 포함할 수 있다.On the other hand, the reaction step (S20), the step of distributing any one of the reaction solution accommodated in the plurality of receiving chambers 110 through a plurality of connection channels 210 (S100); Injecting a sample into the reaction channel 310 connected to the plurality of connection channels 210, and forming a mixed solution with the sample and the reaction solution distributed from the plurality of connection channels 210 (S110); and performing a reaction of the mixed solution by repeatedly applying positive or negative pressure to the plurality of reaction chambers 320 connected to the reaction channel 310 (S120).
또한, 혼합용액의 반응을 수행하는 단계(S120)에서는, 혼합용액이 복수의 반응챔버(320)와 반응채널(310)을 왕복하여 유동되며, 반응채널(310) 하측에 마련되는 자성체(330)를 통해 반응채널(310)에 자기력이 제공될 수 있다.In addition, in the step of performing the reaction of the mixed solution (S120), the mixed solution flows back and forth between the plurality of reaction chambers 320 and the reaction channel 310, and the magnetic body 330 provided below the reaction channel 310 Magnetic force may be provided to the reaction channel 310 through.
구체적으로, 시료(예를 들어, 혈청, 200ul)는 피펫을 통해 수용챔버(110)에 주입되어 수용챔버 안의 용액과 함께 반응챔버(320)에 주입되거나 또는 반응챔버(320)에 직접 주입되며, 이후 상부밸브(220)의 축회전(60도) 통해 복수의 수용챔버(110) 중 어느 하나에서 반응용액(자성입자 용액, 워싱버퍼 등, 1000ul)이 반응챔버(320)로 공급되는 것이다. 이후 반응챔버(320) 중 어느 하나에 양압과 음압이 반복적으로 인가됨으로써, 반응용액과 반응채널(310)을 왕복하여 유동(1시간, 상온)되고, 시료는 Capture 항체 및 바이오마커 결합 처리되며, 이후, 다시 반응챔버(320) 중 어느 하나에 양압과 음압이 반복적으로 인가됨과 동시에 자성체(330)가 반응채널(310)에 근접하도록 상승되어 자성물질과 결합된 시료성분을 고정(4분 50초)시킨다. 작업이 종료된 후에는 하부밸브(340)가 축회전(180도)되어 오픈되고 폐액챔버(410)에 음압이 인가되어 반응 종료 후 잔여용액이 폐액챔버(410)로 배출된다.Specifically, the sample (eg, serum, 200ul) is injected into the receiving chamber 110 through a pipette and injected into the reaction chamber 320 together with the solution in the receiving chamber or directly injected into the reaction chamber 320, Thereafter, the reaction solution (magnetic particle solution, washing buffer, etc., 1000ul) is supplied to the reaction chamber 320 from any one of the plurality of accommodating chambers 110 through axial rotation (60 degrees) of the upper valve 220. Thereafter, by repeatedly applying positive and negative pressure to any one of the reaction chambers 320, the reaction solution and the reaction channel 310 flow back and forth (1 hour, room temperature), and the sample is Capture antibody and biomarker binding treatment, Thereafter, positive and negative pressures are repeatedly applied to one of the reaction chambers 320, and at the same time, the magnetic material 330 is raised close to the reaction channel 310 to fix the sample component combined with the magnetic material (4 minutes and 50 seconds). ) make After the operation is finished, the lower valve 340 is axially rotated (180 degrees) to open, and negative pressure is applied to the waste chamber 410 so that the remaining solution is discharged to the waste chamber 410 after the reaction is completed.
시료는 타겟물질의 반응, 세척1, 세척2, 세척3, 농축된 시료 준비의 순서대로 반응이 수행되며, 각 반응 과정은 반응챔버(320) 및 폐액챔버(410)의 압력조절과 상부밸브(220)의 축회전에 따라 복수의 수용챔버(110)의 반응용액을 반응챔버(320)에 순차적으로 공급함으로써 이루어진다.The sample is reacted in the order of reaction of the target material, washing 1, washing 2, washing 3, and concentrated sample preparation, and each reaction process is performed by adjusting the pressure of the reaction chamber 320 and the waste chamber 410 and the upper valve ( 220) by sequentially supplying the reaction solution of the plurality of accommodating chambers 110 to the reaction chamber 320 according to the shaft rotation.
즉, 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치(1)에서 반응모듈(20)을 이용한 진단방법은 반응챔버(320) 및 폐액챔버(410)의 압력제어와 상부밸브(220) 및 하부밸브(340) 두개의 밸브제어 만으로 시료의 반응을 간편하고 신속하게 수행할 수 있는 효과가 있다.That is, the diagnosis method using the reaction module 20 in the automation device 1 for diagnosis according to an embodiment of the present invention is the pressure control of the reaction chamber 320 and the waste chamber 410 and the upper valve 220 and There is an effect that the reaction of the sample can be performed simply and quickly by controlling only two valves of the lower valve 340.
한편, 정치단계(S30)는, 주입구(1110)를 통해 시료 또는 버퍼용액 또는 물을 주입하는 단계(S200); 주입구(1110)에 구비된 센서(1115) 상에 시료 또는 버퍼용액 내 타겟물질을 정치하는 단계(S210); 주입구(1110)와 연결된 유통채널(1220)에 시료 또는 버퍼용액 또는 물을 유통함으로써 센서(1115)를 세척하는 단계(S220); 및 유통채널(1220)과 연결된 배출챔버(1315)에 시료 또는 버퍼용액 또는 물을 배출하는 단계(S230);를 포함할 수 있다.On the other hand, the stationary step (S30) is a step of injecting a sample or buffer solution or water through the inlet 1110 (S200); Placing a target material in a sample or buffer solution on the sensor 1115 provided in the inlet 1110 (S210); washing the sensor 1115 by distributing the sample or buffer solution or water through the distribution channel 1220 connected to the inlet 1110 (S220); and discharging the sample or buffer solution or water into the discharge chamber 1315 connected to the distribution channel 1220 (S230).
또한, 센서(1115)를 세척하는 단계(S220)에서는, 배출챔버(1315)에 양압 또는 음압을 인가함으로써 시료 또는 버퍼용액 또는 물이 센서(1115) 및 유통채널(1220)을 왕복하여 유동되도록 할 수 있다.In addition, in the step of cleaning the sensor 1115 (S220), positive or negative pressure is applied to the discharge chamber 1315 so that the sample or buffer solution or water flows back and forth through the sensor 1115 and the distribution channel 1220. can
구체적으로, 타겟물질을 정치하는 단계(S210)에서는 제어부(50)에서 약 1시간동안 특정 온도로 센서(1115)의 표면과 피펫이 구비된 로봇암에 의해 주입된 시료(50 ul)의 반응이 진행 되도록 하고, 이후 배출챔버(1315)를 음압으로 형성하여 약 20초 동안 시료를 배출한다. Specifically, in the step of setting the target material (S210), the reaction of the sample (50 ul) injected by the robot arm equipped with the pipette and the surface of the sensor 1115 at a specific temperature for about 1 hour in the controller 50 After that, the sample is discharged for about 20 seconds by forming the discharge chamber 1315 under negative pressure.
이후 로봇암의 피펫 팁을 교체하고, 교체된 팁을 가진 피펫으로 세척 작업을 진행한다. 세척 작업 시에는 피펫으로 버퍼모듈에서 워싱버퍼(PBS, 200ul) 또는 초순수(DI water, 200ul)를 주입구(1110)에 주입(20초)하고, 배출챔버(1315)를 양압 및 음압으로 반복 인가하여, 주입구(1110), 연결채널(1120), 배출채널(1130), 유통채널(1220)을 세척(25분)하고, 세척이 완료된 경우 배출챔버(1315)를 음압으로 인가하여 워싱버퍼 및 초순수를 배출챔버(1315)로 배출(10초)하게 된다.Afterwards, the pipette tip of the robot arm is replaced, and cleaning is performed with the pipette with the replaced tip. During the cleaning operation, washing buffer (PBS, 200ul) or ultrapure water (DI water, 200ul) is injected (20 seconds) from the buffer module into the inlet 1110 with a pipette, and positive and negative pressures are repeatedly applied to the discharge chamber 1315 to , The inlet 1110, the connection channel 1120, the discharge channel 1130, and the distribution channel 1220 are washed (25 minutes), and when the washing is completed, negative pressure is applied to the discharge chamber 1315 to remove the washing buffer and ultrapure water. It is discharged (10 seconds) to the discharge chamber 1315.
분석단계(S40)에서는 센서(1115)와 광학 또는 전기 또는 전기화학 방식의 신호를 주고받음으로써 고정된 타겟물질을 검출할 수 있다.In the analysis step (S40), the fixed target material may be detected by exchanging signals with the sensor 1115 in an optical, electrical, or electrochemical manner.
이와 같이, 본 발명의 일 실시예에 따른 진단을 위한 자동화 장치(1) 및 이를 이용한 진단방법은, 제어부(50)에서 시료모듈(10), 반응모듈(20), 센서모듈(30) 및 분석모듈(40)을 제어함으로써 여러 시료를 다양한 방법으로 진단할 수 있으며, 시료 진단 시 보다 정확하고 신속한 진단을 수행하게 됨으로써 진단의 시료 처리속도를 향상시킬 수 있는 것이다.As described above, the automated device 1 for diagnosis and the diagnosis method using the same according to an embodiment of the present invention include a sample module 10, a reaction module 20, a sensor module 30 and analysis in the control unit 50 By controlling the module 40, various samples can be diagnosed in various ways, and when diagnosing samples, more accurate and rapid diagnosis can be performed, thereby improving sample processing speed for diagnosis.
이상 첨부된 도면을 참조하여 본 발명의 실시예들을 더욱 상세하게 설명하였으나, 본 발명은 반드시 이러한 실시예로 국한되는 것은 아니고, 본 발명의 기술사상을 벗어나지 않는 범위 내에서 다양하게 변형 실시될 수 있다. 따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 제한하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 제한되는 것은 아니다. 그러므로, 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 제한적이 아닌 것으로 이해해야만 한다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.Although the embodiments of the present invention have been described in more detail with reference to the accompanying drawings, the present invention is not necessarily limited to these embodiments, and may be variously modified and implemented without departing from the technical spirit of the present invention. . Therefore, the embodiments disclosed in the present invention are not intended to limit the technical idea of the present invention, but to explain, and the scope of the technical idea of the present invention is not limited by these embodiments. Therefore, it should be understood that the embodiments described above are illustrative in all respects and not restrictive. The protection scope of the present invention should be construed according to the claims below, and all technical ideas within the equivalent range should be construed as being included in the scope of the present invention.
[이 발명을 지원한 국가연구개발사업][National research and development project supporting this invention]
[과제고유번호] 1711137573 [Assignment identification number] 1711137573
[과제번호] 2021M3H4A4080275 [Task number] 2021M3H4A4080275
[부처명] 과학기술정보통신부 [Name of Department] Ministry of Science and ICT
[과제관리(전문)기관명] 한국연구재단 [Name of project management (professional) institution] National Research Foundation of Korea
[연구사업명] 나노·소재기술개발(R&D) [Research project name] Nano material technology development (R&D)
[연구과제명] 고속 시료전처리 및 나노분석 자동화기술 개발 [Research project name] Development of high-speed sample pre-processing and nano-analysis automation technology
[기여율] 1/1 [Contribution rate] 1/1
[과제수행기관명] 나노종합기술원 [Name of project performing organization] Institute of Advanced Nanotechnology
[연구기간] 2021.05.10 ~ 2022.01.31 [Research period] 2021.05.10 ~ 2022.01.31

Claims (18)

  1. 적어도 하나 이상의 시료가 구비되는 시료모듈;a sample module equipped with at least one sample;
    상기 시료모듈로부터 시료를 공급받고, 공급된 시료를 반응용액과 혼합하여 혼합용액을 형성하며, 상기 혼합용액의 반응이 수행되는 반응모듈;a reaction module receiving a sample from the sample module, mixing the supplied sample with a reaction solution to form a mixed solution, and performing a reaction of the mixed solution;
    센서가 구비되며, 상기 반응모듈로부터 반응 처리된 시료를 공급받고, 공급된 시료가 상기 센서 상에 정치(Incubation)되도록 하는 센서모듈;a sensor module having a sensor, receiving a reaction-treated sample from the reaction module, and allowing the supplied sample to be incubated on the sensor;
    상기 센서모듈의 센서상에 고정된 타겟물질을 검출하는 분석모듈; 및an analysis module for detecting a target material fixed on a sensor of the sensor module; and
    상기 시료모듈, 상기 반응모듈, 상기 센서모듈 및 상기 분석모듈을 제어하는 제어부;를 포함하는 진단을 위한 자동화 장치.An automated device for diagnosis comprising a control unit controlling the sample module, the reaction module, the sensor module, and the analysis module.
  2. 청구항 1에 있어서,The method of claim 1,
    시료를 픽업하고, 픽업된 시료를 공급하는 적어도 하나의 로봇암;을 더 포함하고, 상기 제어부에서는 상기 로봇암의 동작을 제어함으로써 상기 시료모듈에서 시료를 픽업하여 상기 반응모듈에 공급하거나, 상기 반응모듈에서 반응 처리된 시료를 픽업하여 상기 센서모듈에 공급하는 것을 특징으로 하는 진단을 위한 자동화 장치.and at least one robot arm that picks up a sample and supplies the picked-up sample, wherein the control unit controls an operation of the robot arm to pick up a sample from the sample module and supply the sample to the reaction module or the reaction module. An automated device for diagnosis, characterized in that for picking up the reaction-processed sample from the module and supplying it to the sensor module.
  3. 청구항 1에 있어서,The method of claim 1,
    상기 센서모듈을 픽업하고 이동시키는 적어도 하나의 로봇암;을 더 포함하고, 상기 제어부에서는 상기 로봇암의 동작을 제어함으로써 상기 센서모듈을 상기 분석모듈에 제공하며, 타켓물질 검출을 위해 상기 센서모듈이 상기 분석모듈상에서 로딩 또는 언로딩 되도록 하는 것을 특징으로 하는 진단을 위한 자동화 장치.and at least one robot arm that picks up and moves the sensor module, wherein the controller provides the sensor module to the analysis module by controlling an operation of the robot arm, and the sensor module detects a target material. Automated device for diagnosis, characterized in that to be loaded or unloaded on the analysis module.
  4. 청구항 1에 있어서,The method of claim 1,
    상기 제어부는 상기 시료모듈에서 복수의 시료가 로딩 또는 언로딩 되도록 하며, 시료가 로딩되는 경우 시료의 바코드가 리딩되도록 함으로써 시료 정보를 수집하는 것을 특징으로 하는 진단을 위한 자동화 장치.The automated device for diagnosis, characterized in that the control unit collects sample information by allowing a plurality of samples to be loaded or unloaded from the sample module, and reading the barcode of the sample when the sample is loaded.
  5. 청구항 1에 있어서,The method of claim 1,
    상기 반응모듈은,The reaction module,
    반응용액이 수용된 복수의 수용챔버가 구비되는 저장부;a storage unit provided with a plurality of accommodating chambers in which the reaction solution is accommodated;
    상기 저장부의 하측에 마련되고, 상기 복수의 수용챔버에 연결되는 복수의 연결채널이 구비되며, 상기 복수의 연결채널을 통해 상기 복수의 수용챔버에 수용된 반응용액 중 어느 하나를 유통시키는 연결부; 및a connection unit provided below the storage unit, having a plurality of connection channels connected to the plurality of accommodating chambers, and distributing any one of the reaction solutions accommodated in the plurality of accommodation chambers through the plurality of connection channels; and
    상기 연결부의 하측에 마련되고, 시료가 주입되며 상기 복수의 연결채널과 연결된 반응채널 및 상기 반응채널과 연결된 복수의 반응챔버가 구비되며, 상기 반응채널에서는 상기 시료와 상기 복수의 연결채널로부터 유통된 상기 반응용액이 혼합용액을 형성하며, 상기 복수의 반응챔버에 양압 또는 음압이 반복적으로 인가됨으로써 상기 혼합용액의 반응이 수행되는 반응부;를 포함하는 것을 특징으로 하는 진단을 위한 자동화 장치.It is provided on the lower side of the connection part, a sample is injected, a reaction channel connected to the plurality of connection channels, and a plurality of reaction chambers connected to the reaction channel are provided. and a reaction unit in which the reaction solution forms a mixed solution and a reaction of the mixed solution is performed by repeatedly applying positive or negative pressure to the plurality of reaction chambers.
  6. 청구항 5에 있어서,The method of claim 5,
    상기 제어부는 상기 복수의 반응챔버 내의 압력이 양압 또는 음압으로 반복하여 인가되도록 함으로써, 상기 혼합용액이 상기 복수의 반응챔버와 상기 반응채널을 왕복하여 유동되도록 하는 것을 특징으로 하는 진단을 위한 자동화 장치.The control unit causes the mixed solution to flow back and forth between the plurality of reaction chambers and the reaction channel by repeatedly applying positive or negative pressure in the plurality of reaction chambers.
  7. 청구항 5에 있어서,The method of claim 5,
    상기 반응부에는 상기 반응채널 하측에 자성체가 마련되며, 상기 제어부는 상기 혼합용액의 반응 수행 시 상기 자성체를 상승시킴으로써 상기 반응채널에 자기력을 제공하는 것을 특징으로 하는 진단을 위한 자동화 장치.The reaction unit is provided with a magnetic material below the reaction channel, and the control unit provides a magnetic force to the reaction channel by raising the magnetic material when the reaction of the mixed solution is performed.
  8. 청구항 5에 있어서,The method of claim 5,
    상기 반응모듈은, 상기 반응부의 하측에 마련되어 상기 반응채널과 연결되고, 폐액챔버가 마련된 회수부;를 더 포함하며, The reaction module further includes a recovery unit provided below the reaction unit, connected to the reaction channel, and provided with a waste liquid chamber,
    상기 제어부는 상기 복수의 반응챔버 내의 압력을 변화시킴으로써 상기 반응챔버 내의 반응을 제어하거나, 상기 폐액챔버 내의 압력을 변화시킴으로써 상기 복수의 반응챔버 또는 상기 반응채널 내 폐기용액을 상기 폐액챔버로 배출하는 것을 특징으로 하는 진단을 위한 자동화 장치.The control unit controls the reaction in the reaction chamber by changing the pressure in the plurality of reaction chambers, or discharges the waste solution in the plurality of reaction chambers or the reaction channel to the waste liquid chamber by changing the pressure in the waste liquid chamber. Automated device for diagnosis characterized.
  9. 청구항 1에 있어서,The method of claim 1,
    상기 센서모듈은,The sensor module,
    시료 또는 버퍼용액 또는 물이 주입되는 주입구가 구비되고, 상기 주입구에는 타겟물질을 센싱하는 센서가 마련되는, 상판부;An upper plate having an inlet through which a sample or a buffer solution or water is injected, and a sensor for sensing a target material is provided in the inlet;
    상기 상판부의 하단에 마련되고, 상기 주입구와 연결되는 유통채널이 구비되며, 상기 유통채널을 통해 상기 주입구를 통해 주입된 상기 시료 또는 상기 버퍼용액 또는 상기 물이 유통되는, 중판부; 및a middle plate provided at a lower end of the upper plate, having a distribution channel connected to the inlet, and circulating the sample, the buffer solution, or the water injected through the inlet through the distribution channel; and
    상기 중판부의 하단에 마련되고, 상기 유통채널과 연결된 배출챔버가 구비되는, 하판부;를 포함하는 것을 특징으로 하는 진단을 위한 자동화 장치.An automated apparatus for diagnosis comprising a; lower plate portion provided at a lower end of the middle plate portion and provided with a discharge chamber connected to the distribution channel.
  10. 청구항 9에 있어서, The method of claim 9,
    상기 제어부는 상기 유통채널과 연결된 상기 배출챔버 내의 압력이 양압 또는 음압으로 인가되도록 함으로써 상기 주입구를 통해 주입된 상기 시료 또는 상기 버퍼용액 또는 상기 물이 유동되도록 하는 것을 특징으로 하는 진단을 위한 자동화 장치.The control unit causes the sample, the buffer solution, or the water injected through the inlet to flow by applying a positive pressure or a negative pressure in the discharge chamber connected to the distribution channel. Automated device for diagnosis.
  11. 청구항 9에 있어서,The method of claim 9,
    상기 제어부는 상기 시료 또는 상기 버퍼용액 내 존재하는 타겟물질을 상기 센서에 정치되도록 하며, 상기 분석모듈을 통해 상기 센서의 표면상에 고정된 상기 타겟물질을 검출하는 것을 특징으로 하는 진단을 위한 자동화 장치.The control unit allows the target material present in the sample or the buffer solution to be placed on the sensor, and detects the target material fixed on the surface of the sensor through the analysis module. .
  12. 적어도 하나 이상의 시료를 구비하는 구비단계;A providing step of providing at least one or more samples;
    구비된 시료를 공급하고, 공급된 시료를 반응용액과 혼합하여 혼합용액을 형성하며, 상기 혼합용액의 반응이 수행하는 반응단계;A reaction step of supplying a prepared sample, mixing the supplied sample with a reaction solution to form a mixed solution, and performing a reaction of the mixed solution;
    반응 처리된 시료를 공급하고, 공급된 시료를 센서 상에 정치(Incubation)하는 정치단계; 및A stationary step of supplying a reaction-treated sample and incubating the supplied sample on a sensor; and
    상기 센서상에 고정된 타겟물질을 검출하는 분석단계;를 포함하는 진단을 위한 자동화 장치를 이용한 진단방법.A diagnostic method using an automated device for diagnosis, comprising: an analysis step of detecting a target material fixed on the sensor.
  13. 청구항 12에 있어서,The method of claim 12,
    상기 구비단계에서는 시료가 로딩 또는 언로딩 되도록 하며, 시료가 로딩되는 경우 시료의 바코드를 리딩 함으로써 시료 정보를 수집하는 것을 특징으로 하는 진단을 위한 자동화 장치를 이용한 진단방법.In the preparing step, the sample is loaded or unloaded, and when the sample is loaded, the sample information is collected by reading the barcode of the sample.
  14. 청구항 12에 있어서,The method of claim 12,
    상기 반응단계는,The reaction step is
    복수의 연결채널을 통해 복수의 수용챔버에 수용된 반응용액 중 어느 하나를 유통시키는 단계;distributing any one of the reaction solutions accommodated in the plurality of accommodating chambers through a plurality of connecting channels;
    상기 복수의 연결채널과 연결된 반응채널에 시료를 주입하고, 상기 시료와 상기 복수의 연결채널로부터 유통된 상기 반응용액으로 혼합용액을 형성하는 단계; 및injecting a sample into a reaction channel connected to the plurality of connection channels, and forming a mixed solution with the sample and the reaction solution distributed from the plurality of connection channels; and
    상기 반응채널에 연결된 복수의 반응챔버에 양압 또는 음압을 반복하여 인가함으로써 상기 혼합용액의 반응을 수행하는 단계;를 포함하는 것을 특징으로 하는 진단을 위한 자동화 장치를 이용한 진단방법.Performing a reaction of the mixed solution by repeatedly applying positive pressure or negative pressure to a plurality of reaction chambers connected to the reaction channel; Diagnosis method using an automated device for diagnosis, characterized in that it comprises a.
  15. 청구항 14에 있어서,The method of claim 14,
    상기 혼합용액의 반응을 수행하는 단계에서는, 상기 혼합용액이 상기 복수의 반응챔버와 상기 반응채널을 왕복하여 유동되며, 상기 반응채널 하측에 마련되는 자성체를 통해 상기 반응채널에 자기력이 제공되는 것을 특징으로 하는 진단을 위한 자동화 장치를 이용한 진단방법.In the step of performing the reaction of the mixed solution, the mixed solution flows back and forth between the plurality of reaction chambers and the reaction channel, and magnetic force is provided to the reaction channel through a magnetic material provided below the reaction channel. Diagnosis method using an automated device for diagnosis.
  16. 청구항 12에 있어서,The method of claim 12,
    상기 정치단계는,The political stage is
    주입구를 통해 시료 또는 버퍼용액 또는 물을 주입하는 단계;Injecting a sample or a buffer solution or water through an inlet;
    상기 주입구에 구비된 상기 센서 상에 상기 시료 또는 상기 버퍼용액 내 타겟물질을 정치하는 단계;Placing the sample or the target material in the buffer solution on the sensor provided in the inlet;
    상기 주입구와 연결된 유통채널에 상기 시료 또는 상기 버퍼용액 또는 상기 물을 유통함으로써 상기 센서를 세척하는 단계; 및washing the sensor by distributing the sample, the buffer solution, or the water through a distribution channel connected to the inlet; and
    상기 유통채널과 연결된 배출챔버에 상기 시료 또는 상기 버퍼용액 또는 상기 물을 배출하는 단계;를 포함하는 것을 특징으로 하는 진단을 위한 자동화 장치를 이용한 진단방법.and discharging the sample, the buffer solution, or the water into a discharge chamber connected to the distribution channel.
  17. 청구항 16에 있어서,The method of claim 16
    상기 센서를 세척하는 단계에서는, 상기 배출챔버에 양압 또는 음압을 인가함으로써 상기 시료 또는 상기 버퍼용액 또는 상기 물이 상기 센서 및 상기 유통채널을 왕복하여 유동되도록 하는 것을 특징으로 하는 진단을 위한 자동화 장치를 이용한 진단방법.In the step of cleaning the sensor, a positive pressure or a negative pressure is applied to the discharge chamber so that the sample, the buffer solution, or the water flows back and forth between the sensor and the distribution channel. diagnostic method used.
  18. 청구항 12에 있어서,The method of claim 12,
    상기 분석단계에서는 상기 센서와 광학 또는 전기 또는 전기화학 방식의 신호를 주고받음으로써 고정된 타겟물질을 검출하는 것을 특징으로 하는 진단을 위한 자동화 장치를 이용한 진단방법.In the analysis step, a diagnosis method using an automated device for diagnosis, characterized in that for detecting a fixed target material by exchanging an optical, electrical or electrochemical signal with the sensor.
PCT/KR2022/020157 2021-12-24 2022-12-12 Automated device for diagnosis and diagnosis method using same WO2023121101A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20210187746 2021-12-24
KR10-2021-0187746 2021-12-24
KR1020220048155A KR20230097964A (en) 2021-12-24 2022-04-19 Apparatus for diagnostics and diagnostic method using the same
KR10-2022-0048155 2022-04-19

Publications (1)

Publication Number Publication Date
WO2023121101A1 true WO2023121101A1 (en) 2023-06-29

Family

ID=86903291

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/020157 WO2023121101A1 (en) 2021-12-24 2022-12-12 Automated device for diagnosis and diagnosis method using same

Country Status (1)

Country Link
WO (1) WO2023121101A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110090394A (en) * 2010-02-03 2011-08-10 삼성전자주식회사 Microarray reaction device and method for using the same
KR20130083305A (en) * 2012-01-12 2013-07-22 강릉원주대학교산학협력단 Apparatus for pretreating analytes using magnetic particles, apparatus and method for detecting analytes using the same
KR101868824B1 (en) * 2017-04-17 2018-06-21 티엔에스(주) Immune reaction diagonostic automating system
KR20190041282A (en) * 2017-10-12 2019-04-22 한국과학기술원 Automatic pcr device with fluid control technology using hydrophobic filter
JP2020073941A (en) * 2007-10-02 2020-05-14 セラノス アイピー カンパニー エルエルシー Modular point-of-care devices and uses thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020073941A (en) * 2007-10-02 2020-05-14 セラノス アイピー カンパニー エルエルシー Modular point-of-care devices and uses thereof
KR20110090394A (en) * 2010-02-03 2011-08-10 삼성전자주식회사 Microarray reaction device and method for using the same
KR20130083305A (en) * 2012-01-12 2013-07-22 강릉원주대학교산학협력단 Apparatus for pretreating analytes using magnetic particles, apparatus and method for detecting analytes using the same
KR101868824B1 (en) * 2017-04-17 2018-06-21 티엔에스(주) Immune reaction diagonostic automating system
KR20190041282A (en) * 2017-10-12 2019-04-22 한국과학기술원 Automatic pcr device with fluid control technology using hydrophobic filter

Similar Documents

Publication Publication Date Title
WO2018143680A1 (en) Automated liquid-phase immunoassay apparatus
WO2021177548A1 (en) Fully automatic lateral flow immunoassay kit and measuring device for measuring multiple biomarkers of saliva
WO2015083858A1 (en) Display panel inspection device for inspecting amoled panel, and method therefor
WO2020209638A1 (en) Polymerase chain reaction system
WO2016088992A1 (en) Test apparatus and control method thereof
WO2016182382A1 (en) Station, used for test apparatus, having integrated reaction and detection means
US6130543A (en) Inspection method and apparatus for semiconductor integrated circuit, and vacuum contactor mechanism
WO2023121101A1 (en) Automated device for diagnosis and diagnosis method using same
US20220349939A1 (en) Injection device, semiconductor testing system and its testing method
WO2015083965A1 (en) Biomaterial test apparatus and method of controlling the same
WO2022250490A1 (en) Micro-particle separation device and micro-particle separation method using same
WO2018084337A1 (en) Measurement method for glycated hemoglobin ratio
JP3648699B2 (en) Wafer batch inspection apparatus and wafer batch inspection method
WO2023074947A1 (en) Cartridge locking apparatus for multi-prober
WO2019208847A1 (en) Blood analysis device
WO2017204512A1 (en) Pcr module
WO2022124753A1 (en) Adapter for mounting conductive pipette, sample tube opening/closing device, and automatic sample analysis system
WO2023121099A1 (en) Diagnostic cartridge and diagnosis method using same
WO2020197193A1 (en) Immunoassay device and immunoassay method
WO2023121100A1 (en) Sensor cartridge for diagnosis and diagnosis method using same
WO2015072757A1 (en) Station used for test device provided with integrated reaction and detection means
WO2014168367A1 (en) Single cell electrophoretic measurement chip, chip holding unit, and single cell electrophoresis processing apparatus
WO2022075503A1 (en) Blocking agent, method for detecting analyte by using same, and kit for detecting analyte, comprising same
WO2019066256A1 (en) Substrate testing cartridge and method for manufacturing same
KR20230097964A (en) Apparatus for diagnostics and diagnostic method using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22911734

Country of ref document: EP

Kind code of ref document: A1