WO2023120968A1 - Method for predicting fractional flow reserve on basis of machine learning - Google Patents

Method for predicting fractional flow reserve on basis of machine learning Download PDF

Info

Publication number
WO2023120968A1
WO2023120968A1 PCT/KR2022/017372 KR2022017372W WO2023120968A1 WO 2023120968 A1 WO2023120968 A1 WO 2023120968A1 KR 2022017372 W KR2022017372 W KR 2022017372W WO 2023120968 A1 WO2023120968 A1 WO 2023120968A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
blood flow
flow reserve
predicting
fractional blood
Prior art date
Application number
PCT/KR2022/017372
Other languages
French (fr)
Korean (ko)
Inventor
하진용
Original Assignee
주식회사 레이와트
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 레이와트 filed Critical 주식회사 레이와트
Publication of WO2023120968A1 publication Critical patent/WO2023120968A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7275Determining trends in physiological measurement data; Predicting development of a medical condition based on physiological measurements, e.g. determining a risk factor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0033Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0062Arrangements for scanning
    • A61B5/0066Optical coherence imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/02007Evaluating blood vessel condition, e.g. elasticity, compliance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • A61B5/0261Measuring blood flow using optical means, e.g. infrared light
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7264Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H30/00ICT specially adapted for the handling or processing of medical images
    • G16H30/40ICT specially adapted for the handling or processing of medical images for processing medical images, e.g. editing
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/50ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for simulation or modelling of medical disorders

Definitions

  • the present invention relates to a method for predicting fractional blood flow reserve based on machine learning, and more particularly, to a learning method for predicting fractional blood flow reserve of a coronary artery patient and fractionation of a coronary artery patient using a prediction model obtained through such learning. It relates to a method for predicting blood flow reserve.
  • Fractional Flow Reserve means the ratio of maximum blood flow in normal vessels distal to and proximal to coronary artery stenosis.
  • the proximal blood vessel means a blood vessel on the side of the coronary artery close to the heart
  • the proximal blood vessel means a blood vessel on the side far from the heart.
  • a fractional blood flow reserve value of 0.75 at the coronary artery stenosis area means that coronary blood flow is reduced by up to 25% compared to normal coronary arteries.
  • the fractional blood flow reserve value decreases at the coronary artery stenosis site, whether or not coronary artery stenosis, that is, the cardiovascular system, is stenosis can be determined through the fractional blood flow reserve value, and a stent insertion procedure can be determined.
  • This fractional blood flow reserve value is the ratio of the pressure between the distal and proximal parts of the lesion measured using a pressure wire after maximal hyperemia was induced by intracoronary bolus injection or continuous intravenous injection of adenosine. can be calculated as a ratio.
  • a fractional blood flow reserve value may be measured through flow analysis based on a 3-dimensional cardiovascular model.
  • Such an image-based method for measuring fractional blood flow reserve has a problem in that it is not easy to apply to an actual medical field due to a considerably long modeling and simulation time.
  • the present invention is to provide a faster and more accurate fractional blood flow reserve prediction method that can be used in the medical field.
  • the present invention is to provide a method for predicting fractional blood flow reserve capable of providing information necessary for a patient's stent operation.
  • FFR fractional flow reserve
  • a machine that includes at least one of area (PLA) value, minimum intravascular area (MLA) value, areal stenosis rate value, distal intravascular area (DLA) value, lesion length value, rupture presence/absence value, atherosclerotic plaque area value, and lipid value
  • PLA area
  • MLA minimum intravascular area
  • DLA distal intravascular area
  • lesion length value lesion length value
  • rupture presence/absence value atherosclerotic plaque area value
  • lipid value lipid value
  • a method for predicting fractional blood flow reserve based on machine learning including at least one of minimum intravascular area value, area stenosis rate value, distal intravascular area value, lesion length value, rupture presence/absence value, atherosclerotic plate area value, and lipid value is provided.
  • a more accurate fractional blood flow reserve prediction result can be provided using feature values obtained from OCT images.
  • a more accurate prediction result can be provided by predicting the fractional blood flow reserve in consideration of the cardiovascular class for which the feature value has been obtained.
  • FIG. 1 is a diagram for explaining a method for predicting fractional blood flow reserve based on machine learning according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing a predictive model according to an embodiment of the present invention.
  • FIG. 3 is a diagram showing a predictive model according to another embodiment of the present invention.
  • the present invention relates to a method for predicting the fractional blood flow reserve of a coronary artery patient using a pre-learned prediction model. According to the present invention, since the fractional blood flow reserve can be predicted more quickly and accurately through machine learning, can be applied
  • One embodiment of the present invention predicts the fractional blood flow reserve using feature values extracted from OCT images.
  • OCT Optical Coherence Tomography
  • OCT is a technology that can image microstructures inside biological tissues by combining the light interference phenomenon and the principle of confocal microscopy, and shows higher resolution performance than ultrasound, CT, or MRI. . Therefore, according to an embodiment of the present invention for predicting the fractional blood flow reserve using the feature values extracted from the OCT image, a more accurate fractional flow reserve prediction result can be obtained.
  • the method for predicting fractional blood flow reserve may be performed in a computing device including a processor.
  • FIG. 1 is a diagram for explaining a method for predicting fractional blood flow reserve based on machine learning according to an embodiment of the present invention.
  • the computing device receives a target cardiovascular class and characteristic values for the target cardiovascular system (S110).
  • the feature values are feature values extracted from the OCT image of the lumen of the target cardiovascular system, such as a proximal lumen area (PLA) value, a minimum lumen area (MLA) value, and a percent area stenosis ) value, distal lumen area (DLA) value, lesion length value, rupture presence/absence value, plaque area value, and lipid rich value.
  • PLA proximal lumen area
  • MMA minimum lumen area
  • DLA distal lumen area
  • the minimum intravascular area refers to the area of the vessel at the point where the width of the vessel lumen, that is, the width between the walls of the vessel, is minimum at the site of the narrowed lesion
  • the proximal intravascular area refers to the area of the vessel from the point where the width of the lumen is minimum to the heart. represents the area of the blood vessel at the point showing the largest width among the widths of the lumen of .
  • the distal intravascular area refers to the area of a blood vessel at a point where the width of the lumen is the largest in a direction away from the heart at a point where the width of the lumen is the smallest.
  • the lesion length represents the length of a blood vessel from a point relative to the proximal intravascular area to a point relative to the distal intravascular area
  • the area stenosis ratio represents the degree of stenosis of a blood vessel at the lesion site.
  • the rupture presence or absence value indicates whether there is a rupture at the lesion site
  • the atherosclerotic plate area value indicates the atherosclerotic plate area at the lesion site.
  • the lipid value represents the amount of lipid at the lesion site.
  • the feature values may be generated in a separate computing device for extracting feature values or may be determined by a specialist analyzing an OCT image. Feature values can be generated from OCT images.
  • the computing device predicts the fractional blood flow reserve value for the target cardiovascular system using at least one pre-learned predictive model, the target cardiovascular class, and feature values (S120).
  • the target cardiovascular from which the OCT image can be obtained may be different according to the patient's physical condition or condition. Therefore, the computing device uses the class of the target cardiovascular from which the OCT image was obtained to determine the fractional blood flow reserve value. predict
  • the computing device predicts one of values between 0 and 1 as the fractional blood flow reserve value, or outputs 0 when the predicted fractional blood flow reserve value is greater than or equal to a preset threshold value, for example, 0.6, and outputs 1 if the value is smaller than the threshold value.
  • a preset threshold value for example, 0.6
  • the fractional blood flow reserve force prediction model may be a prediction model based on various learning algorithms, or may be a prediction model based on a random forest algorithm or an artificial neural network.
  • FIG. 2 is a diagram showing a predictive model according to an embodiment of the present invention.
  • the computing device selects a prediction model corresponding to a target cardiovascular class from among prediction models for predicting fractional blood flow reserve values for cardiovascular classes of different classes, and selects the selected prediction model. Using this, the fractional blood flow reserve value can be predicted.
  • the cardiovascular class may be a left anterior descending artery (LAD), a left circumflex artery (LCX), or a right coronary artery (RCA).
  • the predictive model is a model learned using training feature values for cardiovascular diseases of different classes
  • the first prediction model 210 is a training feature value obtained from the left anterior descending limb and a fraction thereof. It is learned through the blood flow reserve value and predicts the fractional blood flow reserve value for the left anterior descending limb.
  • the second prediction model 220 is learned through the training feature values obtained from the left circumference coronary artery and the fractional blood flow reserve value therefor, and predicts the fractional blood flow reserve value for the left circumference coronary artery.
  • the third prediction model 230 is learned through training feature values obtained from the right coronary artery and the fractional blood flow reserve value therefor, and predicts the fractional blood flow reserve value for the right coronary artery.
  • the predictive models are learned through different groups of feature values for training.
  • the first predictive model 210 is learned through a group of training feature values including area stenosis ratio, minimum intravascular area, lesion length, and rupture value obtained from the OCT image of the left anterior descending limb
  • the second predictive model (220) is learned through a training feature group including area stenosis rate value, minimum intravascular area value, proximal intravascular area value, lesion length value, and atherosclerotic plaque area value obtained from the OCT image of the left circumferential coronary artery.
  • the third predictive model 230 is a training feature value group including the minimum intravascular area value, area stenosis rate value, distal intravascular area value, atherosclerotic plaque area value, and lipid value obtained from the OCT image of the right coronary artery. learned through
  • the computing device selects the first predictive model to predict the fractional blood flow reserve value, and when the target cardiovascular class is the left circumferential coronary artery, selects the second predictive model 220 Predict the value of fractional blood flow reserve. And, when the target cardiovascular class is the right coronary artery, the third predictive model 230 is selected to predict the fractional blood flow reserve value.
  • the computing device predicts the fractional blood flow reserve force value by using the feature value group corresponding to the training feature value of each predictive model. That is, the computing device predicts the fractional blood flow reserve value using different feature value groups according to the target cardiovascular class.
  • the target cardiovascular class is the left anterior descending limb
  • the computing device sets a feature value group including an area stenosis rate value, a minimum intravascular area value, a lesion length value, and a rupture value obtained from an OCT image of the left anterior descending limb to a first predictive model ( 210)
  • a feature value group including area stenosis rate value, minimum intravascular area value, proximal intravascular area value, lesion length value, and atheromatous plate area value is determined.
  • a feature value group including the minimum intravascular area value, area stenosis rate value, distal intravascular area value, atheromatous plate area value, and lipid value obtained from the OCT image of the right coronary artery is input to the third prediction model 230.
  • the computing device may predict the fractional blood flow reserve value by adding the characteristic value to a feature value group, and the threshold range is the value of the target cardiovascular system. It can be determined by class.
  • the computing device In general, it is known that when the fractional flow reserve value for the lesion site is lower than 0.75, there is stenosis causing myocardial ischemia, and when the fractional flow reserve value is higher than 0.8, the stenosis does not cause myocardial ischemia. It is known that when the reserve power value is between 0.75 and 0.8, the presence or absence of myocardial ischemia due to stenosis is unknown. Therefore, in order to more accurately predict the fractional blood flow reserve value, when the fractional blood flow reserve value through the pre-prediction is included in a preset threshold range, the computing device generates additional feature values other than the existing feature values included in the feature value group. By inputting into the predictive model, the fractional blood flow reserve value can be predicted again. The computing device may additionally input one of the aforementioned feature values into the predictive model, and the additionally input feature value may be set in advance.
  • the computing device may additionally use a feature value according to a threshold range adjusted according to the target cardiovascular class.
  • the width of the threshold range may be set in inverse proportion to the accuracy of the predictive model. For example, if the accuracy of the second prediction model 220 is the highest, the width of the threshold range is set to be the smallest, and if the accuracy of the third prediction model 230 is the lowest, the width of the threshold range is set to be the largest.
  • the fractional blood flow reserve value is obtained by using additional feature values.
  • FIG. 3 is a diagram showing a predictive model according to another embodiment of the present invention.
  • the computing device may predict the fractional blood flow reserve by inputting the target cardiovascular class and feature values to the predictive model.
  • the feature value may include an area stenosis rate value, a minimum intravascular area value, and a distal intravascular area value.
  • the predictive model 310 of FIG. 3 is not separated by cardiovascular class, and predicts the fractional blood flow reserve value regardless of the cardiovascular class.
  • Training data used for learning the predictive model of FIG. 3 includes not only training feature values and fractional blood flow reserve values therefor, but also cardiovascular classes from which training feature values were acquired.
  • the computing device predicts the fractional blood flow reserve value by inputting not only the feature values of the target cardiovascular system but also the class of the target cardiovascular system into the prediction model 310 .
  • feature values input to the predictive model may all be the same.
  • the technical contents described above may be implemented in the form of program instructions that can be executed through various computer means and recorded on a computer readable medium.
  • the computer readable medium may include program instructions, data files, data structures, etc. alone or in combination.
  • Program commands recorded on the medium may be specially designed and configured for the embodiments or may be known and usable to those skilled in computer software.
  • Examples of computer-readable recording media include magnetic media such as hard disks, floppy disks and magnetic tapes, optical media such as CD-ROMs and DVDs, and magnetic media such as floptical disks.
  • - includes hardware devices specially configured to store and execute program instructions, such as magneto-optical media, and ROM, RAM, flash memory, and the like.
  • Examples of program instructions include high-level language codes that can be executed by a computer using an interpreter, as well as machine language codes such as those produced by a compiler.
  • a hardware device may be configured to act as one or more software modules to perform the operations of the embodiments and vice versa.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Physiology (AREA)
  • Primary Health Care (AREA)
  • Epidemiology (AREA)
  • Data Mining & Analysis (AREA)
  • Artificial Intelligence (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Databases & Information Systems (AREA)
  • Cardiology (AREA)
  • Theoretical Computer Science (AREA)
  • Software Systems (AREA)
  • Evolutionary Computation (AREA)
  • Mathematical Physics (AREA)
  • Signal Processing (AREA)
  • Psychiatry (AREA)
  • Hematology (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Computing Systems (AREA)
  • Fuzzy Systems (AREA)
  • Vascular Medicine (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

A method for predicting fractional flow reserve on the basis of machine learning is disclosed. The disclosed method for predicting fractional flow reserve comprises the steps of: receiving a feature value for a target cardiac blood vessel, the feature value being extracted from an OCT image of a lumen of the target cardiac blood vessel and a class of the target cardiac blood vessel; and predicting a fractional flow reserve (FFR) value for the target cardiac blood vessel by using at least one pre-trained predictive model, the class of the target cardiac blood vessel, and the feature value, wherein the feature value includes at least one of a proximal lumea area (PLA) value, a minimal lumea area (MLA) value, a percent area stenosis value, a distal lumea area (DLA) value, a lesion length value, a rupture presence/absence value, an atheromatous plaque area value, and a lipid value.

Description

기계 학습 기반의 분획혈류예비력 예측 방법A method for predicting fractional blood flow reserve based on machine learning
본 발명은 기계 학습 기반의 분획혈류예비력 예측 방법에 관한 것으로서, 더욱 상세하게는 관상동맥 환자의 분획혈류예비력을 예측하기 위한 학습 방법과 이러한 학습을 통해 획득된 예측 모델을 이용하여 관상동맥 환자의 분획혈류예비력을 예측하는 방법에 관한 것이다.The present invention relates to a method for predicting fractional blood flow reserve based on machine learning, and more particularly, to a learning method for predicting fractional blood flow reserve of a coronary artery patient and fractionation of a coronary artery patient using a prediction model obtained through such learning. It relates to a method for predicting blood flow reserve.
분획혈류예비력(FFR, Fractional Flow Reserve)은 관상동맥협착부위의 원위부와 근위부 정상혈관의 최대 혈류량의 비율을 의미한다. 여기서, 원위부(Proximal) 혈관이란 관상 동맥에서 심장에 가까운 쪽의 혈관을 의미하며, 근위부(distal) 혈관이란 심장으로부터 먼쪽의 혈관을 의미한다.Fractional Flow Reserve (FFR) means the ratio of maximum blood flow in normal vessels distal to and proximal to coronary artery stenosis. Here, the proximal blood vessel means a blood vessel on the side of the coronary artery close to the heart, and the proximal blood vessel means a blood vessel on the side far from the heart.
관상동맥협착부위의 분획혈류예비력값이 0.75라는 것은 정상 관상동맥혈관과 비교하여 관상동맥혈류량이 최대 25% 감소한 상태라는 것을 의미한다.A fractional blood flow reserve value of 0.75 at the coronary artery stenosis area means that coronary blood flow is reduced by up to 25% compared to normal coronary arteries.
이와 같이, 관상동맥협착부위에서는 분획혈류예비력값이 작아지기 때문에, 분획혈류예비력값을 통해 관상동맥 즉 심혈관의 협착 여부가 판단될 수 있으며, 스탠트 삽입 시술이 결정될 수 있다.As such, since the fractional blood flow reserve value decreases at the coronary artery stenosis site, whether or not coronary artery stenosis, that is, the cardiovascular system, is stenosis can be determined through the fractional blood flow reserve value, and a stent insertion procedure can be determined.
이러한 분획혈류예비력값은, 아데노신을 관상동맥내 일시주사 또는 연속정맥주사하여 최대충혈상태(maximal hyperemia)를 유도한 후, 압력철선(pressure wire)을 이용해 측정된 병변의 원위부와 근위부 사이의 압력의 비로 계산될 수 있다. This fractional blood flow reserve value is the ratio of the pressure between the distal and proximal parts of the lesion measured using a pressure wire after maximal hyperemia was induced by intracoronary bolus injection or continuous intravenous injection of adenosine. can be calculated as a ratio.
또는 비침습적 방법으로서, 혈관 단면 영상에서 내강(lumen)을 추출한 후, 3차원 심혈관 모델 기반의 유동해석을 통해 분획혈류예비력값이 측정될 수도 있다. 이와 같은 영상 기반의 분획혈류예비력 측정 방법은, 상당히 긴 모델링 및 시뮬레이션 시간으로 인해, 실제 의료현장에 적용이 쉽지 않은 문제가 있다.Alternatively, as a non-invasive method, after extracting a lumen from a blood vessel cross-sectional image, a fractional blood flow reserve value may be measured through flow analysis based on a 3-dimensional cardiovascular model. Such an image-based method for measuring fractional blood flow reserve has a problem in that it is not easy to apply to an actual medical field due to a considerably long modeling and simulation time.
본 발명은 의료 현장에서 이용될 수 있는, 보다 빠르고 정확한 분획혈류예비력 예측 방법을 제공하기 위한 것이다.The present invention is to provide a faster and more accurate fractional blood flow reserve prediction method that can be used in the medical field.
또한 본 발명은 환자의 스탠트 시술에 필요한 정보를 제공할 수 있는 분획혈류예비력 예측 방법을 제공하기 위한 것이다. In addition, the present invention is to provide a method for predicting fractional blood flow reserve capable of providing information necessary for a patient's stent operation.
상기한 목적을 달성하기 위한 본 발명의 일 실시예에 따르면, 타겟 심혈관의 클래스 및 상기 타겟 심혈관의 내강에 대한 OCT 영상으로부터 추출된, 상기 타겟 심혈관에 대한 특징값을 입력받는 단계; 및 미리 학습된 적어도 하나의 예측 모델, 상기 타겟 심혈관의 클래스 및 상기 특징값을 이용하여, 상기 타겟 심혈관에 대한 분획혈류예비력(FFR)값을 예측하는 단계를 포함하며, 상기 특징값은 근위부 혈관내 면적(PLA)값, 최소 혈관내 면적(MLA)값, 면적 협착률값, 원위부 혈관내 면적(DLA)값, 병변 길이값, 파열 유무값, 죽상판 면적값, 지질값 중 적어도 하나를 포함하는 기계 학습 기반의 분획혈류예비력 예측 방법이 제공된다. According to one embodiment of the present invention for achieving the above object, the step of receiving feature values for the target cardiovascular class extracted from an OCT image of a class of the target cardiovascular and a lumen of the target cardiovascular; and predicting a fractional flow reserve (FFR) value for the target cardiovascular system using at least one pre-learned predictive model, the class of the target cardiovascular system, and the feature value, wherein the feature value is in the proximal blood vessel. A machine that includes at least one of area (PLA) value, minimum intravascular area (MLA) value, areal stenosis rate value, distal intravascular area (DLA) value, lesion length value, rupture presence/absence value, atherosclerotic plaque area value, and lipid value A learning-based method for predicting fractional blood flow reserve is provided.
또한 상기한 목적을 달성하기 위한 본 발명의 다른 실시예에 따르면, 타겟 심혈관의 내강에 대한 OCT 영상으로부터, 상기 타겟 심혈관에 대한 특징값을 생성하는 단계; 및 미리 학습된 적어도 하나의 예측 모델, 상기 타겟 심혈관의 클래스 및 상기 특징값을 이용하여, 상기 타겟 심혈관에 대한 분획혈류예비력값을 예측하는 단계를 포함하며, 상기 특징값은 근위부 혈관내 면적값, 최소 혈관내 면적값, 면적 협착률값, 원위부 혈관내 면적값, 병변 길이값, 파열 유무값, 죽상판 면적값, 지질값 중 적어도 하나를 포함하는 기계 학습 기반의 분획혈류예비력 예측 방법이 제공된다.In addition, according to another embodiment of the present invention for achieving the above object, generating a feature value for the target cardiovascular from an OCT image of the lumen of the target cardiovascular; and predicting a fractional blood flow reserve value for the target cardiovascular system using at least one pre-learned prediction model, the class of the target cardiovascular system, and the feature value, wherein the feature value includes a proximal intravascular area value, A method for predicting fractional blood flow reserve based on machine learning including at least one of minimum intravascular area value, area stenosis rate value, distal intravascular area value, lesion length value, rupture presence/absence value, atherosclerotic plate area value, and lipid value is provided.
본 발명의 일실시예에 따르면, OCT 영상으로부터 획득된 특징값을 이용하여, 보다 정확한 분획혈류예비력 예측 결과를 제공할 수 있다.According to one embodiment of the present invention, a more accurate fractional blood flow reserve prediction result can be provided using feature values obtained from OCT images.
또한 본 발명의 일실시예에 따르면, 특징값이 획득된 심혈관의 클래스를 고려하여 분획혈류예비력 예측함으로써, 보다 정확한 예측 결과를 제공할 수 있다.In addition, according to one embodiment of the present invention, a more accurate prediction result can be provided by predicting the fractional blood flow reserve in consideration of the cardiovascular class for which the feature value has been obtained.
도 1은 본 발명의 일실시예에 따른, 기계 학습 기반의 분획혈류예비력 예측 방법을 설명하기 위한 도면이다.1 is a diagram for explaining a method for predicting fractional blood flow reserve based on machine learning according to an embodiment of the present invention.
도 2는 본 발명의 일실시예에 따른 예측 모델을 나타내는 도면이다.2 is a diagram showing a predictive model according to an embodiment of the present invention.
도 3은 본 발명의 다른 실시예에 따른 예측 모델을 나타내는 도면이다.3 is a diagram showing a predictive model according to another embodiment of the present invention.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다. Since the present invention can make various changes and have various embodiments, specific embodiments will be illustrated in the drawings and described in detail in the detailed description. However, this is not intended to limit the present invention to specific embodiments, and should be understood to include all modifications, equivalents, and substitutes included in the spirit and scope of the present invention. Like reference numerals have been used for like elements throughout the description of each figure.
본 발명은 미리 학습된 예측 모델을 이용하여 관상동맥 환자의 분획혈류예비력을 예측하는 방법에 관한 것으로서, 본 발명에 따르면, 기계 학습을 통해 보다 빠르고 정확하게 분획혈류예비력을 예측할 수 있으므로, 실제 의료현장에 적용이 가능하다.The present invention relates to a method for predicting the fractional blood flow reserve of a coronary artery patient using a pre-learned prediction model. According to the present invention, since the fractional blood flow reserve can be predicted more quickly and accurately through machine learning, can be applied
본 발명의 일실시예는 OCT 영상으로부터 추출된 특징값을 이용하여 분획혈류예비력을 예측한다. 광간섭 단층 영상 기술(Optical Coherence Tomography, OCT)이란, 광의 간섭 현상과 공초첨 현미경 원리를 조합하여 생체조직 내부의 미세 구조를 영상화할 수 있는 기술로서, 초음파, CT나 MRI보다 높은 분해능 성능을 보여준다. 따라서, OCT 영상으로부터 추출된 특징값을 이용하여 분획혈류예비력을 예측하는 본 발명의 일실시예에 따르면, 보다 정확한 분획혈류예비력 예측 결과를 획득할 수 있다.One embodiment of the present invention predicts the fractional blood flow reserve using feature values extracted from OCT images. Optical Coherence Tomography (OCT) is a technology that can image microstructures inside biological tissues by combining the light interference phenomenon and the principle of confocal microscopy, and shows higher resolution performance than ultrasound, CT, or MRI. . Therefore, according to an embodiment of the present invention for predicting the fractional blood flow reserve using the feature values extracted from the OCT image, a more accurate fractional flow reserve prediction result can be obtained.
본 발명의 일실시예에 따른 분획혈류예비력 예측 방법은 프로세서를 포함하는 컴퓨팅 장치에서 수행될 수 있다. The method for predicting fractional blood flow reserve according to an embodiment of the present invention may be performed in a computing device including a processor.
이하에서, 본 발명에 따른 실시예들을 첨부된 도면을 참조하여 상세하게 설명한다.Hereinafter, embodiments according to the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명의 일실시예에 따른, 기계 학습 기반의 분획혈류예비력 예측 방법을 설명하기 위한 도면이다.1 is a diagram for explaining a method for predicting fractional blood flow reserve based on machine learning according to an embodiment of the present invention.
도 1을 참조하면 본 발명의 일실시예에 따른 컴퓨팅 장치는 타겟 심혈관의 클래스 및 타겟 심혈관에 대한 특징값을 입력받는다(S110). 특징값은 타겟 심혈관의 내강에 대한 OCT 영상으로부터 추출된 특징값으로서, 근위부 혈관내 면적(PLA, Proximal Lumen Area)값, 최소 혈관내 면적(MLA, Minimal Lumen Area)값, 면적 협착률(Percent Area stenosis)값, 원위부 혈관내 면적(DLA, Distal Lumen Area)값, 병변 길이값, 파열(Rupture) 유무값, 죽상판 면적(Plaque area)값, 지질(Lipid rich)값 중 적어도 하나를 포함할 수 있다. Referring to FIG. 1 , the computing device according to an embodiment of the present invention receives a target cardiovascular class and characteristic values for the target cardiovascular system (S110). The feature values are feature values extracted from the OCT image of the lumen of the target cardiovascular system, such as a proximal lumen area (PLA) value, a minimum lumen area (MLA) value, and a percent area stenosis ) value, distal lumen area (DLA) value, lesion length value, rupture presence/absence value, plaque area value, and lipid rich value. .
최소 혈관내 면적이란, 협착된 병변 부위에서 혈관 내강의 폭, 즉 혈관 벽면 사이의 폭이 최소인 지점에서의 혈관 면적을 나타내며, 근위부 혈관내 면적이란, 내강의 폭이 최소인 지점에서 심장 방향으로의 내강의 폭 중에서 최대인 폭을 나타내는 지점에서의 혈관 면적을 나타낸다. 원위부 혈관내 면적이란, 내강의 폭이 최소인 지점에서 심장 반대 방향으로의 내강의 폭 중에서 최대인 폭을 나타내는 지점에서의 혈관 면적을 나타낸다. 그리고 병변 길이란, 근위부 혈관내 면적에 대한 지점에서 원위부 혈관내 면적에 대한 지점까지의 혈관 길이를 나타내며, 면적 협착률이란 병변 부위에서의 혈관의 협착 정도를 나타낸다. 그리고 파열 유무값은 병변 부위에 파열이 존재하는지 여부를 나타내며, 죽상판 면적값은 병변 부위에서의 죽상판 면적을 나타낸다. 마지막으로 지질값은 병변 부위의 지질의 양을 나타낸다.The minimum intravascular area refers to the area of the vessel at the point where the width of the vessel lumen, that is, the width between the walls of the vessel, is minimum at the site of the narrowed lesion, and the proximal intravascular area refers to the area of the vessel from the point where the width of the lumen is minimum to the heart. represents the area of the blood vessel at the point showing the largest width among the widths of the lumen of . The distal intravascular area refers to the area of a blood vessel at a point where the width of the lumen is the largest in a direction away from the heart at a point where the width of the lumen is the smallest. The lesion length represents the length of a blood vessel from a point relative to the proximal intravascular area to a point relative to the distal intravascular area, and the area stenosis ratio represents the degree of stenosis of a blood vessel at the lesion site. In addition, the rupture presence or absence value indicates whether there is a rupture at the lesion site, and the atherosclerotic plate area value indicates the atherosclerotic plate area at the lesion site. Finally, the lipid value represents the amount of lipid at the lesion site.
특징값은, 특징값 추출을 위한 별도의 컴퓨팅 장치에서 생성되거나, 전문의가 OCT 영상을 분석함으로써, 결정될 수 있으며, 실시예에 따라서 본 발명의 일실시예에 따른 컴퓨팅 장치가 타겟 심혈관의 내강에 대한 OCT 영상으로부터 특징값을 생성할 수 있다. The feature values may be generated in a separate computing device for extracting feature values or may be determined by a specialist analyzing an OCT image. Feature values can be generated from OCT images.
본 발명의 일실시예에 따른 컴퓨팅 장치는 미리 학습된 적어도 하나의 예측 모델, 타겟 심혈관의 클래스 및 특징값을 이용하여, 타겟 심혈관에 대한 분획혈류예비력값을 예측(S120)한다. 여러 종류의 심혈관 중에서, 환자의 신체적 조건이나 상태에 따라서, OCT 영상이 획득될 수 있는 타겟 심혈관이 다를 수 있으므로, 컴퓨팅 장치는 OCT 영상이 획득된 타겟 심혈관의 클래스를 이용하여, 분획혈류예비력값을 예측한다.The computing device according to an embodiment of the present invention predicts the fractional blood flow reserve value for the target cardiovascular system using at least one pre-learned predictive model, the target cardiovascular class, and feature values (S120). Among several types of cardiovascular, the target cardiovascular from which the OCT image can be obtained may be different according to the patient's physical condition or condition. Therefore, the computing device uses the class of the target cardiovascular from which the OCT image was obtained to determine the fractional blood flow reserve value. predict
실시예에 따라서 컴퓨팅 장치는 0에서 1사이의 값 중 하나를 분획혈류예비력값으로 예측하거나 또는 예측된 분획혈류예비력값이 미리 설정된 임계값 예컨대 0.6이상인 경우 0, 임계값보다 작은 경우 1을 출력할 수 있다.Depending on the embodiment, the computing device predicts one of values between 0 and 1 as the fractional blood flow reserve value, or outputs 0 when the predicted fractional blood flow reserve value is greater than or equal to a preset threshold value, for example, 0.6, and outputs 1 if the value is smaller than the threshold value. can
분획혈류예비력값 예측 모델은 다양한 학습 알고리즘 기반의 예측 모델일 수 있으며, 랜덤 포레스트 알고리즘 또는 인공 신경망 기반의 예측 모델일 수 있다.The fractional blood flow reserve force prediction model may be a prediction model based on various learning algorithms, or may be a prediction model based on a random forest algorithm or an artificial neural network.
도 2는 본 발명의 일실시예에 따른 예측 모델을 나타내는 도면이다.2 is a diagram showing a predictive model according to an embodiment of the present invention.
본 발명의 일실시예에 따른 컴퓨팅 장치는 단계 S120에서, 서로 다른 클래스의 심혈관에 대한 분획혈류예비력값을 예측하는 예측 모델 중에서, 타겟 심혈관의 클래스에 대응되는 예측 모델을 선택하고, 선택된 예측 모델을 이용하여, 분획혈류예비력값을 예측할 수 있다. 여기서, 심혈관의 클래스는 좌전하행지(LAD, left anterior descending artery), 좌선회관상동맥(LCX, left circumflex artery) 또는 우관상동맥(RCA, right coronary artery)일 수 있다.In step S120, the computing device according to an embodiment of the present invention selects a prediction model corresponding to a target cardiovascular class from among prediction models for predicting fractional blood flow reserve values for cardiovascular classes of different classes, and selects the selected prediction model. Using this, the fractional blood flow reserve value can be predicted. Here, the cardiovascular class may be a left anterior descending artery (LAD), a left circumflex artery (LCX), or a right coronary artery (RCA).
도 2를 참조하면, 예측 모델은 서로 다른 클래스의 심혈관에 대한 훈련용 특징값을 이용하여 학습된 모델로서, 제1예측 모델(210)은 좌전하행지로부터 획득된 훈련용 특징값과 이에 대한 분획혈류예비력값을 통해 학습되며, 좌전하행지에 대한 분획혈류예비력값을 예측한다. 그리고 제2예측 모델(220)은 좌선회관상동맥으로부터 획득된 훈련용 특징값과 이에 대한 분획혈류예비력값을 통해 학습되며, 좌선회관상동맥에 대한 분획혈류예비력값을 예측한다. 제3예측 모델(230)은 우관상동맥으로부터 획득된 훈련용 특징값과 이에 대한 분획혈류예비력값을 통해 학습되며, 우관상동맥에 대한 분획혈류예비력값을 예측한다. Referring to FIG. 2, the predictive model is a model learned using training feature values for cardiovascular diseases of different classes, and the first prediction model 210 is a training feature value obtained from the left anterior descending limb and a fraction thereof. It is learned through the blood flow reserve value and predicts the fractional blood flow reserve value for the left anterior descending limb. The second prediction model 220 is learned through the training feature values obtained from the left circumference coronary artery and the fractional blood flow reserve value therefor, and predicts the fractional blood flow reserve value for the left circumference coronary artery. The third prediction model 230 is learned through training feature values obtained from the right coronary artery and the fractional blood flow reserve value therefor, and predicts the fractional blood flow reserve value for the right coronary artery.
이 때, 예측 모델들은 서로 다른 훈련용 특징값 그룹을 통해 학습된다. 제1예측 모델(210)은 좌전하행지의 OCT 영상으로부터 획득된 면적 협착률값, 최소 혈관내 면적값, 병변 길이값 및 파열 유무값을 포함하는 훈련용 특징값 그룹을 통해 학습되며, 제2예측 모델(220)은 좌선회관상동맥의 OCT 영상으로부터 획득된 면적 협착률값, 최소 혈관내 면적값, 근위부 혈관내 면적값, 병변 길이값 및 죽상판 면적값을 포함하는 훈련용 특징값 그룹을 통해 학습된다. 그리고 제3예측 모델(230)은 우관상동맥의 OCT 영상으로부터 획득된 최소 혈관내 면적값, 면적 협착률값, 원위부 혈관내 면적값, 죽상판 면적값 및 지질값을 포함하는 훈련용 특징값 그룹을 통해 학습된다.At this time, the predictive models are learned through different groups of feature values for training. The first predictive model 210 is learned through a group of training feature values including area stenosis ratio, minimum intravascular area, lesion length, and rupture value obtained from the OCT image of the left anterior descending limb, and the second predictive model (220) is learned through a training feature group including area stenosis rate value, minimum intravascular area value, proximal intravascular area value, lesion length value, and atherosclerotic plaque area value obtained from the OCT image of the left circumferential coronary artery. . And the third predictive model 230 is a training feature value group including the minimum intravascular area value, area stenosis rate value, distal intravascular area value, atherosclerotic plaque area value, and lipid value obtained from the OCT image of the right coronary artery. learned through
컴퓨팅 장치는 타겟 심혈관의 클래스가 좌전하행지인 경우, 제1예측 모델을 선택하여 분획혈류예비력값을 예측하며, 타겟 심혈관의 클래스가 좌선회관상동맥인 경우, 제2예측 모델(220)을 선택하여 분획혈류예비력값을 예측한다. 그리고 타겟 심혈관의 클래스가 우관상동맥인 경우, 제3예측 모델(230)을 선택하여 분획혈류예비력값을 예측한다. When the target cardiovascular class is the left anterior descending artery, the computing device selects the first predictive model to predict the fractional blood flow reserve value, and when the target cardiovascular class is the left circumferential coronary artery, selects the second predictive model 220 Predict the value of fractional blood flow reserve. And, when the target cardiovascular class is the right coronary artery, the third predictive model 230 is selected to predict the fractional blood flow reserve value.
그리고 컴퓨팅 장치는 각 예측 모델의 훈련용 특징값에 대응되는 특징값 그룹을 이용하여, 분획혈류예비력값을 예측한다. 즉 컴퓨팅 장치는 타겟 심혈관의 클래스에 따라, 서로 다른 특징값 그룹을 이용하여, 분획혈류예비력값을 예측한다. 컴퓨팅 장치는 타겟 심혈관의 클래스가 좌전하행지인 경우, 좌전하행지의 OCT 영상으로부터 획득된 면적 협착률값, 최소 혈관내 면적값, 병변 길이값 및 파열 유무값을 포함하는 특징값 그룹을 제1예측 모델(210)로 입력하며, 타겟 심혈관의 클래스가 좌선회관상동맥인 경우, 면적 협착률값, 최소 혈관내 면적값, 근위부 혈관내 면적값, 병변 길이값 및 죽상판 면적값을 포함하는 특징값 그룹을 제2예측 모델(220)로 입력한다. 그리고 타겟 심혈관의 클래스가 우관상동맥인 경우, 우관상동맥의 OCT 영상으로부터 획득된 최소 혈관내 면적값, 면적 협착률값, 원위부 혈관내 면적값, 죽상판 면적값 및 지질값을 포함하는 특징값 그룹을 제3예측 모델(230)로 입력한다.Further, the computing device predicts the fractional blood flow reserve force value by using the feature value group corresponding to the training feature value of each predictive model. That is, the computing device predicts the fractional blood flow reserve value using different feature value groups according to the target cardiovascular class. When the target cardiovascular class is the left anterior descending limb, the computing device sets a feature value group including an area stenosis rate value, a minimum intravascular area value, a lesion length value, and a rupture value obtained from an OCT image of the left anterior descending limb to a first predictive model ( 210), and if the class of the target cardiovascular system is left-circumferential coronary artery, a feature value group including area stenosis rate value, minimum intravascular area value, proximal intravascular area value, lesion length value, and atheromatous plate area value is determined. 2 Input to the predictive model (220). And, when the target cardiovascular class is the right coronary artery, a feature value group including the minimum intravascular area value, area stenosis rate value, distal intravascular area value, atheromatous plate area value, and lipid value obtained from the OCT image of the right coronary artery is input to the third prediction model 230.
한편, 본 발명의 일실시예에 따른 컴퓨팅 장치는 분획혈류예비력값이 설정된 임계 범위에 포함되는 경우, 특징값 그룹에 특징값을 추가하여 분획혈류예비력값을 예측할 수 있으며, 임계 범위는 타겟 심혈관의 클래스에 따라 결정될 수 있다.Meanwhile, when the fractional blood flow reserve value is included in the set threshold range, the computing device according to an embodiment of the present invention may predict the fractional blood flow reserve value by adding the characteristic value to a feature value group, and the threshold range is the value of the target cardiovascular system. It can be determined by class.
일반적으로 병변 부위에 대한 분획혈류예비력값이 0.75보다 낮은 경우에는 심근 허혈을 유발하는 협착이 존재하고, 분획혈류예비력값이 0.8보다 높은 경우에는 협착이 심근 허혈을 유발하지 않는 것으로 알려져 있으며, 분획혈류예비력값이 0.75에서 0.8 사이인 경우에는 협착에 의한 심근 허혈 유무가 불분명한 것으로 알려져 있다. 따라서, 컴퓨팅 장치는 보다 정확한 분획혈류예비력값을 예측하기 위해, 기 진행된 예측을 통한 분획혈류예비력값이 미리 설정된 임계 범위에 포함되는 경우에는, 특징값 그룹에 포함된 기존 특징값 이외 추가적인 특징값을 예측 모델로 입력하여 분획혈류예비력값을 다시 예측할 수 있다. 컴퓨팅 장치는 전술된 특징값 중 하나를, 추가로 예측 모델로 입력할 수 있으며, 추가로 입력되는 특징값은 미리 설정될 수 있다.In general, it is known that when the fractional flow reserve value for the lesion site is lower than 0.75, there is stenosis causing myocardial ischemia, and when the fractional flow reserve value is higher than 0.8, the stenosis does not cause myocardial ischemia. It is known that when the reserve power value is between 0.75 and 0.8, the presence or absence of myocardial ischemia due to stenosis is unknown. Therefore, in order to more accurately predict the fractional blood flow reserve value, when the fractional blood flow reserve value through the pre-prediction is included in a preset threshold range, the computing device generates additional feature values other than the existing feature values included in the feature value group. By inputting into the predictive model, the fractional blood flow reserve value can be predicted again. The computing device may additionally input one of the aforementioned feature values into the predictive model, and the additionally input feature value may be set in advance.
이 때, 예측 모델별로 정확도에 차이가 있을 수 있으므로, 컴퓨팅 장치는 타겟 심혈관의 클래스에 따라 조절된 임계 범위에 따라, 특징값을 추가로 이용할 수 있다. 그리고 임계 범위의 폭은 예측 모델의 정확도에 반비례하도록 설정될 수 있다. 예컨대 제2예측 모델(220)의 정확도가 가장 높다면, 임계 범위의 폭이 가장 작도록 설정되며, 제3예측 모델(230)의 정확도가 가장 낮다면, 임계 범위의 폭이 가장 크도록 설정될 수 있다.At this time, since there may be differences in accuracy for each predictive model, the computing device may additionally use a feature value according to a threshold range adjusted according to the target cardiovascular class. And, the width of the threshold range may be set in inverse proportion to the accuracy of the predictive model. For example, if the accuracy of the second prediction model 220 is the highest, the width of the threshold range is set to be the smallest, and if the accuracy of the third prediction model 230 is the lowest, the width of the threshold range is set to be the largest. can
생성되는 특징값의 개수가 증가할수록, 특징값 생성에 소요되는 시간과 비용이 증가하기 때문에, 본 발명의 일실시예는 예측 결과의 불확실성이 높은 경우에, 추가적인 특징값을 이용하여 분획혈류예비력값을 예측한다.As the number of generated feature values increases, the time and cost required to generate feature values increase. Therefore, in an embodiment of the present invention, when the uncertainty of the prediction result is high, the fractional blood flow reserve value is obtained by using additional feature values. predict
도 3은 본 발명의 다른 실시예에 따른 예측 모델을 나타내는 도면이다.3 is a diagram showing a predictive model according to another embodiment of the present invention.
단계 S120에서 컴퓨팅 장치는 타겟 심혈관의 클래스 및 특징값을 예측 모델에 입력하여, 분획혈류예비력값을 예측할 수 있다. 여기서 특징값은, 면적 협착률값, 최소 혈관내 면적값 및 원위부 혈관내 면적값을 포함할 수 있다.In step S120, the computing device may predict the fractional blood flow reserve by inputting the target cardiovascular class and feature values to the predictive model. Here, the feature value may include an area stenosis rate value, a minimum intravascular area value, and a distal intravascular area value.
도 2의 예측 모델과 달리, 도 3의 예측 모델(310)은 심혈관의 클래스 별로 분리된 형태가 아니며, 심혈관의 클래스와 무관하게 분획혈류예비력값을 예측한다. 도 3의 예측 모델의 학습에 이용되는 훈련 데이터는, 훈련용 특징값 및 이에 대한 분획혈류예비력값뿐만 아니라, 훈련용 특징값이 획득된 심혈관에 대한 클래스를 포함한다.Unlike the predictive model of FIG. 2 , the predictive model 310 of FIG. 3 is not separated by cardiovascular class, and predicts the fractional blood flow reserve value regardless of the cardiovascular class. Training data used for learning the predictive model of FIG. 3 includes not only training feature values and fractional blood flow reserve values therefor, but also cardiovascular classes from which training feature values were acquired.
이에 대응하여, 컴퓨팅 장치는 타겟 심혈관에 대한 특징값 뿐만 아니라, 타겟 심혈관에 대한 클래스를 예측 모델(310)에 입력하여, 분획혈류예비력값을 예측한다. 타겟 심혈관의 클래스 각각에 대해, 예측 모델로 입력되는 특징값은 모두 동일할 수 있다.Correspondingly, the computing device predicts the fractional blood flow reserve value by inputting not only the feature values of the target cardiovascular system but also the class of the target cardiovascular system into the prediction model 310 . For each target cardiovascular class, feature values input to the predictive model may all be the same.
앞서 설명한 기술적 내용들은 다양한 컴퓨터 수단을 통하여 수행될 수 있는 프로그램 명령 형태로 구현되어 컴퓨터 판독 가능 매체에 기록될 수 있다. 상기 컴퓨터 판독 가능 매체는 프로그램 명령, 데이터 파일, 데이터 구조 등을 단독으로 또는 조합하여 포함할 수 있다. 상기 매체에 기록되는 프로그램 명령은 실시예들을 위하여 특별히 설계되고 구성된 것들이거나 컴퓨터 소프트웨어 당업자에게 공지되어 사용 가능한 것일 수도 있다. 컴퓨터 판독 가능 기록 매체의 예에는 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체(magnetic media), CD-ROM, DVD와 같은 광기록 매체(optical media), 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체(magneto-optical media), 및 롬(ROM), 램(RAM), 플래시 메모리 등과 같은 프로그램 명령을 저장하고 수행하도록 특별히 구성된 하드웨어 장치가 포함된다. 프로그램 명령의 예에는 컴파일러에 의해 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터 등을 사용해서 컴퓨터에 의해서 실행될 수 있는 고급 언어 코드를 포함한다. 하드웨어 장치는 실시예들의 동작을 수행하기 위해 하나 이상의 소프트웨어 모듈로서 작동하도록 구성될 수 있으며, 그 역도 마찬가지이다.The technical contents described above may be implemented in the form of program instructions that can be executed through various computer means and recorded on a computer readable medium. The computer readable medium may include program instructions, data files, data structures, etc. alone or in combination. Program commands recorded on the medium may be specially designed and configured for the embodiments or may be known and usable to those skilled in computer software. Examples of computer-readable recording media include magnetic media such as hard disks, floppy disks and magnetic tapes, optical media such as CD-ROMs and DVDs, and magnetic media such as floptical disks. - includes hardware devices specially configured to store and execute program instructions, such as magneto-optical media, and ROM, RAM, flash memory, and the like. Examples of program instructions include high-level language codes that can be executed by a computer using an interpreter, as well as machine language codes such as those produced by a compiler. A hardware device may be configured to act as one or more software modules to perform the operations of the embodiments and vice versa.
이상과 같이 본 발명에서는 구체적인 구성 요소 등과 같은 특정 사항들과 한정된 실시예 및 도면에 의해 설명되었으나 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상적인 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다. 따라서, 본 발명의 사상은 설명된 실시예에 국한되어 정해져서는 아니되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등하거나 등가적 변형이 있는 모든 것들은 본 발명 사상의 범주에 속한다고 할 것이다.As described above, the present invention has been described by specific details such as specific components and limited embodiments and drawings, but these are provided to help a more general understanding of the present invention, and the present invention is not limited to the above embodiments. , Those skilled in the art in the field to which the present invention belongs can make various modifications and variations from these descriptions. Therefore, the spirit of the present invention should not be limited to the described embodiments, and it will be said that not only the claims to be described later, but also all modifications equivalent or equivalent to these claims belong to the scope of the present invention. .

Claims (16)

  1. 타겟 심혈관의 클래스 및 상기 타겟 심혈관의 내강에 대한 OCT 영상으로부터 추출된, 상기 타겟 심혈관에 대한 특징값을 입력받는 단계; 및receiving feature values of the target cardiovascular class extracted from OCT images of a class of the target cardiovascular and a lumen of the target cardiovascular; and
    미리 학습된 적어도 하나의 예측 모델, 상기 타겟 심혈관의 클래스 및 상기 특징값을 이용하여, 상기 타겟 심혈관에 대한 분획혈류예비력(FFR)값을 예측하는 단계를 포함하며,Predicting a fractional blood flow reserve (FFR) value for the target cardiovascular system using at least one pre-learned prediction model, the class of the target cardiovascular system, and the feature value,
    상기 특징값은 근위부 혈관내 면적(PLA)값, 최소 혈관내 면적(MLA)값, 면적 협착률값, 원위부 혈관내 면적(DLA)값, 병변 길이값, 파열 유무값, 죽상판 면적값, 지질값 중 적어도 하나를 포함하는The feature values include a proximal intravascular area (PLA) value, a minimum intravascular area (MLA) value, an area stenosis rate value, a distal intravascular area (DLA) value, a lesion length value, a rupture presence value, an atherosclerotic plaque area value, and a lipid value. containing at least one of
    기계 학습 기반의 분획혈류예비력 예측 방법.A method for predicting fractional blood flow reserve based on machine learning.
  2. 제 1항에 있어서,According to claim 1,
    상기 분획혈류예비력값을 예측하는 단계는The step of predicting the fractional blood flow reserve is
    서로 다른 클래스의 심혈관에 대한 분획혈류예비력값을 예측하는 예측 모델 중에서, 상기 타겟 심혈관의 클래스에 대응되는 예측 모델을 선택하는 단계; 및selecting a prediction model corresponding to the class of the target cardiovascular class from among prediction models for predicting fractional blood flow reserve values for cardiovascular classes of different classes; and
    상기 선택된 예측 모델을 이용하여, 상기 분획혈류예비력값을 예측하는 단계predicting the fractional blood flow reserve value using the selected prediction model;
    를 포함하는 기계 학습 기반의 분획혈류예비력 예측 방법.Machine learning-based fractional blood flow reserve prediction method comprising a.
  3. 제 2항에 있어서,According to claim 2,
    상기 분획혈류예비력값을 예측하는 단계는The step of predicting the fractional blood flow reserve is
    상기 타겟 심혈관의 클래스에 따라, 서로 다른 특징값 그룹을 이용하여, 상기 분획혈류예비력값을 예측하는Predicting the fractional blood flow reserve value using different feature value groups according to the class of the target cardiovascular
    기계 학습 기반의 분획혈류예비력 예측 방법.A method for predicting fractional blood flow reserve based on machine learning.
  4. 제 3항에 있어서,According to claim 3,
    상기 분획혈류예비력값을 예측하는 단계는The step of predicting the fractional blood flow reserve is
    상기 타겟 심혈관의 클래스가 좌전하행지(LAD)인 경우, 상기 면적 협착률값, 상기 최소 혈관내 면적값, 상기 병변 길이값 및 상기 파열 유무값을 포함하는 특징값 그룹을 이용하여, 상기 분획혈류예비력값을 예측하는When the target cardiovascular class is the left anterior descending artery (LAD), the fractional blood flow reserve is determined by using a feature value group including the area stenosis rate value, the minimum intravascular area value, the lesion length value, and the rupture presence/absence value. predicting the value
    기계 학습 기반의 분획혈류예비력 예측 방법.A method for predicting fractional blood flow reserve based on machine learning.
  5. 제 3항에 있어서,According to claim 3,
    상기 분획혈류예비력값을 예측하는 단계는The step of predicting the fractional blood flow reserve is
    상기 타겟 심혈관의 클래스가 좌선회관상동맥(LCX)인 경우, 상기 면적 협착률값, 상기 최소 혈관내 면적값, 상기 근위부 혈관내 면적값, 상기 병변 길이값 및 상기 죽상판 면적값을 포함하는 특징값 그룹을 이용하여, 상기 분획혈류예비력값을 예측하는When the class of the target cardiovascular is left circumferential coronary artery (LCX), feature values including the area stenosis ratio value, the minimum intravascular area value, the proximal intravascular area value, the lesion length value, and the atheromatous plaque area value Predicting the fractional blood flow reserve value using a group
    기계 학습 기반의 분획혈류예비력 예측 방법.A method for predicting fractional blood flow reserve based on machine learning.
  6. 제 3항에 있어서,According to claim 3,
    상기 분획혈류예비력값을 예측하는 단계는The step of predicting the fractional blood flow reserve is
    상기 타겟 심혈관의 클래스가 우관상동맥(RCA)인 경우, 상기 최소 혈관내 면적값, 상기 면적 협착률값, 상기 원위부 혈관내 면적값, 상기 죽상판 면적값 및 상기 지질값을 포함하는 특징값 그룹을 이용하여, 상기 분획혈류예비력값을 예측하는When the target cardiovascular class is right coronary artery (RCA), a feature value group including the minimum intravascular area value, the area stenosis rate value, the distal intravascular area value, the atheromatous plate area value, and the lipid value Using, predicting the fractional blood flow reserve value
    기계 학습 기반의 분획혈류예비력 예측 방법.A method for predicting fractional blood flow reserve based on machine learning.
  7. 제 3항에 있어서,According to claim 3,
    상기 분획혈류예비력값을 예측하는 단계는The step of predicting the fractional blood flow reserve is
    상기 분획혈류예비력값이 미리 설정된 임계 범위에 포함되는 경우, 상기 특징값 그룹에 상기 특징값을 추가하여 상기 분획혈류예비력값을 예측하며,When the fractional blood flow reserve value is within a preset threshold range, predicting the fractional blood flow reserve value by adding the characteristic value to the feature value group;
    상기 임계 범위는 상기 타겟 심혈관의 클래스에 따라 결정되는The threshold range is determined according to the class of the target cardiovascular
    기계 학습 기반의 분획혈류예비력 예측 방법.A method for predicting fractional blood flow reserve based on machine learning.
  8. 제 1항에 있어서,According to claim 1,
    상기 분획혈류예비력값을 예측하는 단계는The step of predicting the fractional blood flow reserve is
    상기 타겟 심혈관의 클래스, 상기 면적 협착률값, 상기 최소 혈관내 면적값 및 상기 원위부 혈관내 면적값을 상기 예측 모델에 입력하여, 상기 분획혈류예비력값을 예측하는 Predicting the fractional blood flow reserve value by inputting the target cardiovascular class, the area stenosis rate value, the minimum intravascular area value, and the distal intravascular area value into the prediction model
    기계 학습 기반의 분획혈류예비력 예측 방법.A method for predicting fractional blood flow reserve based on machine learning.
  9. 타겟 심혈관의 내강에 대한 OCT 영상으로부터, 상기 타겟 심혈관에 대한 특징값을 생성하는 단계; 및generating feature values for the target cardiovascular system from an OCT image of a lumen of the target cardiovascular system; and
    미리 학습된 적어도 하나의 예측 모델, 상기 타겟 심혈관의 클래스 및 상기 특징값을 이용하여, 상기 타겟 심혈관에 대한 분획혈류예비력값을 예측하는 단계를 포함하며,Predicting a fractional blood flow reserve value for the target cardiovascular system using at least one pre-learned predictive model, the class of the target cardiovascular system, and the feature value;
    상기 특징값은 근위부 혈관내 면적값, 최소 혈관내 면적값, 면적 협착률값, 원위부 혈관내 면적값, 병변 길이값, 파열 유무값, 죽상판 면적값, 지질값 중 적어도 하나를 포함하는The feature value includes at least one of a proximal intravascular area value, a minimum intravascular area value, an area stenosis rate value, a distal intravascular area value, a lesion length value, a rupture presence value, an atherosclerotic plaque area value, and a lipid value.
    기계 학습 기반의 분획혈류예비력 예측 방법.A method for predicting fractional blood flow reserve based on machine learning.
  10. 제 9항에 있어서,According to claim 9,
    상기 분획혈류예비력값을 예측하는 단계는The step of predicting the fractional blood flow reserve is
    서로 다른 클래스의 심혈관에 대한 분획혈류예비력값을 예측하는 예측 모델 중에서, 상기 타겟 심혈관의 클래스에 대응되는 예측 모델을 선택하는 단계; 및selecting a prediction model corresponding to the class of the target cardiovascular class from among prediction models for predicting fractional blood flow reserve values for cardiovascular classes of different classes; and
    상기 선택된 예측 모델을 이용하여, 상기 분획혈류예비력값을 예측하는 단계predicting the fractional blood flow reserve value using the selected prediction model;
    를 포함하는 기계 학습 기반의 분획혈류예비력 예측 방법.Machine learning-based fractional blood flow reserve prediction method comprising a.
  11. 제 10항에 있어서,According to claim 10,
    상기 분획혈류예비력값을 예측하는 단계는The step of predicting the fractional blood flow reserve is
    상기 타겟 심혈관의 클래스에 따라, 서로 다른 특징값 그룹을 이용하여, 상기 분획혈류예비력값을 예측하는Predicting the fractional blood flow reserve value using different feature value groups according to the class of the target cardiovascular
    기계 학습 기반의 분획혈류예비력 예측 방법.A method for predicting fractional blood flow reserve based on machine learning.
  12. 제 11항에 있어서,According to claim 11,
    상기 분획혈류예비력값을 예측하는 단계는The step of predicting the fractional blood flow reserve is
    상기 타겟 심혈관의 클래스가 좌전하행지인 경우, 상기 면적 협착률값, 상기 최소 혈관내 면적값, 상기 병변 길이값 및 상기 파열 유무값을 포함하는 특징값 그룹을 이용하여, 상기 분획혈류예비력값을 예측하는When the class of the target cardiovascular system is the left anterior descending artery, predicting the fractional blood flow reserve value using a feature value group including the area stenosis rate value, the minimum intravascular area value, the lesion length value, and the rupture presence/absence value
    기계 학습 기반의 분획혈류예비력 예측 방법.A method for predicting fractional blood flow reserve based on machine learning.
  13. 제 11항에 있어서,According to claim 11,
    상기 분획혈류예비력값을 예측하는 단계는The step of predicting the fractional blood flow reserve is
    상기 타겟 심혈관의 클래스가 좌선회관상동맥인 경우, 상기 면적 협착률값, 상기 최소 혈관내 면적값, 상기 근위부 혈관내 면적값, 상기 병변 길이값 및 상기 죽상판 면적값을 포함하는 특징값 그룹을 이용하여, 상기 분획혈류예비력값을 예측하는When the class of the target cardiovascular is a left-circumferential coronary artery, a feature value group including the area stenosis rate value, the minimum intravascular area value, the proximal intravascular area value, the lesion length value, and the atheromatous plate area value is used. So, to predict the fractional blood flow reserve
    기계 학습 기반의 분획혈류예비력 예측 방법.A method for predicting fractional blood flow reserve based on machine learning.
  14. 제 11항에 있어서,According to claim 11,
    상기 분획혈류예비력값을 예측하는 단계는The step of predicting the fractional blood flow reserve is
    상기 타겟 심혈관의 클래스가 우관상동맥인 경우, 상기 최소 혈관내 면적값, 상기 면적 협착률값, 상기 원위부 혈관내 면적값, 상기 죽상판 면적값 및 상기 지질값을 포함하는 특징값 그룹을 이용하여, 상기 분획혈류예비력값을 예측하는When the target cardiovascular class is the right coronary artery, using a feature value group including the minimum intravascular area value, the area stenosis rate value, the distal intravascular area value, the atherosclerotic plate area value, and the lipid value, Predicting the fractional blood flow reserve
    기계 학습 기반의 분획혈류예비력 예측 방법.A method for predicting fractional blood flow reserve based on machine learning.
  15. 제 11항에 있어서,According to claim 11,
    상기 분획혈류예비력값을 예측하는 단계는The step of predicting the fractional blood flow reserve is
    상기 분획혈류예비력값이 미리 설정된 임계 범위에 포함되는 경우, 상기 특징값 그룹에 상기 특징값을 추가하여 상기 분획혈류예비력값을 예측하며,When the fractional blood flow reserve value is within a preset threshold range, predicting the fractional blood flow reserve value by adding the characteristic value to the feature value group;
    상기 임계 범위는 상기 타겟 심혈관의 클래스에 따라 결정되는The threshold range is determined according to the class of the target cardiovascular
    기계 학습 기반의 분획혈류예비력 예측 방법.A method for predicting fractional blood flow reserve based on machine learning.
  16. 제 9항에 있어서,According to claim 9,
    상기 분획혈류예비력값을 예측하는 단계는The step of predicting the fractional blood flow reserve is
    상기 심혈관에 대한 클래스, 상기 면적 협착률값, 상기 최소 혈관내 면적값 및 상기 원위부 혈관내 면적값을 상기 예측 모델에 입력하여, 상기 분획혈류예비력값을 예측하는 Predicting the fractional blood flow reserve value by inputting the cardiovascular class, the area stenosis rate value, the minimum intravascular area value, and the distal intravascular area value into the prediction model
    기계 학습 기반의 분획혈류예비력 예측 방법.A method for predicting fractional blood flow reserve based on machine learning.
PCT/KR2022/017372 2021-12-21 2022-11-07 Method for predicting fractional flow reserve on basis of machine learning WO2023120968A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210183326A KR102656944B1 (en) 2021-12-21 2021-12-21 Mtehod for predicting fractional flow reserve based on machine learning
KR10-2021-0183326 2021-12-21

Publications (1)

Publication Number Publication Date
WO2023120968A1 true WO2023120968A1 (en) 2023-06-29

Family

ID=86902952

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/017372 WO2023120968A1 (en) 2021-12-21 2022-11-07 Method for predicting fractional flow reserve on basis of machine learning

Country Status (2)

Country Link
KR (1) KR102656944B1 (en)
WO (1) WO2023120968A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170090284A (en) * 2016-01-28 2017-08-07 연세대학교 산학협력단 Method for determining cardiovascular information using mathematical modeling of stenosed lesion
KR20170113515A (en) * 2017-09-21 2017-10-12 강원대학교산학협력단 Method for determining patient-specific blood vessel information
KR102190431B1 (en) * 2020-03-18 2020-12-11 연세대학교 산학협력단 Method and Apparatus for Diagnosing Vascular Disease
KR20210016862A (en) * 2019-08-05 2021-02-17 재단법인 아산사회복지재단 Diagnostic device, diagnostic method and recording medium for diagnosing coronary artery lesions through coronary angiography-based machine learning
KR20210092963A (en) * 2020-01-17 2021-07-27 세종대학교산학협력단 Mtehod for predicting fractional flow reserve based on machine learning

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170090284A (en) * 2016-01-28 2017-08-07 연세대학교 산학협력단 Method for determining cardiovascular information using mathematical modeling of stenosed lesion
KR20170113515A (en) * 2017-09-21 2017-10-12 강원대학교산학협력단 Method for determining patient-specific blood vessel information
KR20210016862A (en) * 2019-08-05 2021-02-17 재단법인 아산사회복지재단 Diagnostic device, diagnostic method and recording medium for diagnosing coronary artery lesions through coronary angiography-based machine learning
KR20210092963A (en) * 2020-01-17 2021-07-27 세종대학교산학협력단 Mtehod for predicting fractional flow reserve based on machine learning
KR102190431B1 (en) * 2020-03-18 2020-12-11 연세대학교 산학협력단 Method and Apparatus for Diagnosing Vascular Disease

Also Published As

Publication number Publication date
KR20230094295A (en) 2023-06-28
KR102656944B1 (en) 2024-04-16

Similar Documents

Publication Publication Date Title
Xu et al. Diagnostic accuracy of angiography-based quantitative flow ratio measurements for online assessment of coronary stenosis
Nørgaard et al. Clinical use of coronary CTA–derived FFR for decision-making in stable CAD
Petraco et al. Fractional flow reserve–guided revascularization: practical implications of a diagnostic gray zone and measurement variability on clinical decisions
Niemann et al. A knowledge based system for analysis of gated blood pool studies
Fujita et al. Automatic processing of cineventriculograms for analysis of regional myocardial function.
Ng et al. Virtual electrophysiological study in a 3-dimensional cardiac magnetic resonance imaging model of porcine myocardial infarction
JP7303260B2 (en) A method for determining flow and pressure gradients in arterial networks from contrast distributions based on patient-specific computed tomography algorithms.
WO2022119155A1 (en) Apparatus and method for diagnosing explainable multiple electrocardiogram arrhythmias
CN109524119B (en) GAN-based fractional flow reserve prediction method, device, equipment and medium
Kakouros et al. Coronary pressure-derived fractional flow reserve in the assessment of coronary artery stenoses
Li et al. Machine learning-aided risk stratification system for the prediction of coronary artery disease
US8045773B2 (en) Method for segmenting a myocardial wall and device for detecting a coronary artery with pathological changes
CN109410267B (en) Coronary artery segmentation evaluation method and system
Ogiela et al. Syntactic reasoning and pattern recognition for analysis of coronary artery images
Kawasaki et al. Evaluation of significant coronary artery disease based on CT fractional flow reserve and plaque characteristics using random forest analysis in machine learning
Xu et al. Noninvasive physiologic assessment of coronary stenoses using cardiac CT
WO2020101264A1 (en) Method and apparatus for calculating coronary artery calcium score
WO2022114522A1 (en) Blood vessel image extracting method and apparatus using plurality of prediction results
Osawa et al. Coronary lesion characteristics with mismatch between fractional flow reserve derived from CT and invasive catheterization in clinical practice
WO2023120968A1 (en) Method for predicting fractional flow reserve on basis of machine learning
Miller et al. Artificial intelligence for disease diagnosis and risk prediction in nuclear cardiology
CN109326354A (en) Based on ANN blood flow reserve Score on Prediction method, apparatus, equipment and medium
WO2014163334A1 (en) Method for modeling and analyzing computational fluid dynamics on basis of material properties
Munneke et al. A closed-loop modeling framework for cardiac-to-coronary coupling
Braunwald Progress in the noninvasive detection of high-risk coronary plaques

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22911606

Country of ref document: EP

Kind code of ref document: A1