WO2023120620A1 - Touch panel and method for manufacturing touch panel - Google Patents

Touch panel and method for manufacturing touch panel Download PDF

Info

Publication number
WO2023120620A1
WO2023120620A1 PCT/JP2022/047276 JP2022047276W WO2023120620A1 WO 2023120620 A1 WO2023120620 A1 WO 2023120620A1 JP 2022047276 W JP2022047276 W JP 2022047276W WO 2023120620 A1 WO2023120620 A1 WO 2023120620A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent conductive
film
touch panel
conductive pattern
pattern film
Prior art date
Application number
PCT/JP2022/047276
Other languages
French (fr)
Japanese (ja)
Inventor
惇 ▲桑▼原
正彦 鳥羽
周平 米田
繁 山木
Original Assignee
株式会社レゾナック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社レゾナック filed Critical 株式会社レゾナック
Publication of WO2023120620A1 publication Critical patent/WO2023120620A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means

Definitions

  • the present invention relates to a touch panel and a method for manufacturing a touch panel.
  • a touch panel is used as an input device.
  • ITO indium tin oxide
  • a touch panel that uses a conductive film made of metal mesh or the like and having an aperture ratio of 90% or more instead of ITO or the like (see Patent Document 1).
  • the amount of conductive inorganic nanowires used was reduced, surface resistance variations were suppressed in a wide range of surface resistance values, and conductive materials with excellent transparency were achieved.
  • the ratio of the area occupied by the conductive inorganic nanowires in the plane of the conductive layer is 5 to 30%, and the surface resistance value of the conductive layer is 1.0 ⁇ 10 2 to 1.0 ⁇ 10 6 . ⁇ / ⁇ has been proposed (see Patent Document 2).
  • a moiré pattern may appear on the panel.
  • the electrode is thin and disconnection is likely to occur.
  • the resistance increases and the electrode disconnection occurs, resulting in a touch panel. sometimes did not work.
  • a film-like substrate comprising at least two layers of a transparent conductive pattern film formed on at least one surface of the base material,
  • the transparent conductive pattern film contains conductive fibers, has an aperture ratio of 40% or more and 70% or less, and has an electrode array formed of a conductive region and a non-conductive region, and the transparent conductive pattern film including an input region formed by an electrode column of A touch panel, wherein at least a part of the electrode array is arranged in the curved surface region and includes a lead line connected to the electrode array.
  • ⁇ 2> The touch panel according to ⁇ 1>, wherein the conductive fibers include metal nanowires having an average diameter of 1 nm or more and 500 nm or less.
  • ⁇ 3> The touch panel according to ⁇ 1> or ⁇ 2>, wherein the conductive fibers have an average length of 1 ⁇ m or more and 100 ⁇ m or less, and an average aspect ratio of 5 or more.
  • ⁇ 4> The touch panel according to any one of ⁇ 1> to ⁇ 3>, wherein the conductive fibers contain one or more metals selected from the group consisting of gold, silver, copper and aluminum.
  • the touch panel according to ⁇ 1> wherein the substrate is made of a transparent thermoplastic resin film, and the transparent conductive pattern film contains a binder resin and metal nanowires.
  • the binder resin is a polymer or cellulose resin containing 70 mol% or more of N-vinylacetamide (NVA) as a monomer unit, has a protective film formed on the transparent conductive pattern film, and the protective
  • NVA N-vinylacetamide
  • the touch panel according to ⁇ 5> wherein the film contains a resin component, and 94% by mass or more of the resin component is derived from a thermoplastic resin.
  • the transparent thermoplastic resin film is a polycarbonate film.
  • ⁇ 8> The touch panel according to ⁇ 6> or ⁇ 7>, wherein the binder resin is poly-N-vinylacetamide.
  • the resin component constituting the protective film is derived from a thermoplastic resin containing carboxy group-containing polyurethane or ethyl cellulose.
  • the resin component constituting the protective film is derived from a polyurethane containing a carboxy group and an epoxy resin having two or more epoxy groups in one molecule, and has two or more epoxy groups in one molecule.
  • the content of the epoxy resin is more than 0% by mass and 6% by mass or less in the resin component, and the carboxyl group (COOH) of the carboxyl group-containing polyurethane has two or more epoxy groups in one molecule.
  • a first input area and a second input area exist as the input areas, and driving of the touch panel by operation in the first input area is also possible by operation in the second input area ⁇ 1>
  • ⁇ 13> The touch panel according to any one of ⁇ 1> to ⁇ 12>, wherein the curved surface region is a three-dimensional curved surface.
  • the transparent conductive pattern film two types of a first transparent conductive pattern film and a second transparent conductive pattern film are provided, and the first transparent conductive pattern film and the second transparent conductive pattern film are the The method for manufacturing a touch panel according to any one of ⁇ 1> to ⁇ 13>, including a step of forming the curved surface regions by heating the transparent conductive film laminates laminated on both main surfaces of the substrate.
  • the transparent conductive pattern film two types of a first transparent conductive pattern film and a second transparent conductive pattern film are provided, and the first transparent conductive pattern film is one of the main substrates of the first base material.
  • ⁇ 16> Forming a first transparent conductive pattern film having the electrode array and a second transparent conductive pattern film having the electrode array by laser etching a transparent conductive film containing metal nanowires ⁇ 14>> or the method for manufacturing a touch panel according to ⁇ 15>.
  • An input/output integrated display device comprising a display and the touch panel according to any one of ⁇ 1> to ⁇ 13> provided on the display.
  • An in-vehicle display comprising the input/output integrated display device according to ⁇ 17>.
  • ADVANTAGE OF THE INVENTION it is possible to provide a touch panel that does not generate a moire pattern and can be driven even though it has a curved surface area, a manufacturing method thereof, and an input/output integrated display device and an in-vehicle display equipped with this touch panel. .
  • FIG. 1 is an exploded perspective view schematically showing the layer structure of a curved region of a display (input/output integrated display device) 12 incorporating a touch panel of one embodiment.
  • FIG. FIG. 2 is a cross-sectional view showing an example of the layer structure of the touch panel of the present invention
  • FIG. 4 is a schematic diagram showing an example of a method of connecting electrode rows and lead wires in the present invention.
  • FIG. 4 is a cross-sectional view showing another layer configuration example of the touch panel of the present invention
  • FIG. 5 is a diagram showing an example of the shape of the curved area of the touch panel of the present invention
  • FIG. 5 is a diagram showing another shape example of the curved surface area of the touch panel of the present invention
  • FIG. 4 is a diagram showing an example of a shape in which the touch panel of the present invention is used for a curved area of a center console in a vehicle;
  • a touch panel has a curved region composed of at least two layers of a film-like base material and a transparent conductive pattern film formed on at least one surface of the base material.
  • the transparent conductive pattern film contains conductive fibers, has an aperture ratio of 40% or more and 70% or less, has an electrode array formed of a conductive region and a non-conductive region, and the transparent conductive pattern It includes an input area formed by an array of membrane electrodes.
  • the base material is in the form of a film (including a sheet), and forms a curved area by three-dimensional molding or the like as described later.
  • the curved surface refers to a non-planar state.
  • a three-dimensional curved surface means a curved surface that cannot be formed by deforming a plane.
  • the base material of the present disclosure has at least a portion thereof formed into a curved surface.
  • the substrate may be colored, it is preferable that the total light transmittance (transparency to visible light) is high, and a transparent substrate having a total light transmittance of 75% or more is preferable, particularly 80% or more. is preferred.
  • "transparent” means a total light transmittance of 75% or more.
  • the substrate that can be used is a thermoplastic resin film, and examples of the thermoplastic resin film include polyester (polyethylene terephthalate [PET], polyethylene naphthalate [PEN], etc.), polycarbonate, acrylic resin (polymethyl methacrylate [PMMA], etc.). ), and resin films such as cycloolefin polymers.
  • the resin film is preferably an amorphous thermoplastic resin film having good moldability for three-dimensional molding. Therefore, among the resin films, amorphous polycarbonate and cycloolefin polymer are preferable, and polycarbonate is more preferable.
  • Polycarbonates have --[O--R--OCO]--units (where R contains an aliphatic group, an aromatic group, or both an aliphatic and an aromatic group, as well as straight It is not particularly limited as long as it includes a chain structure or a branched structure).
  • Cycloolefin polymers include hydrogenated ring-opening metathesis polymerization type cycloolefin polymers of norbornene (ZEONOR (registered trademark, manufactured by Nippon Zeon Co., Ltd.), ZEONEX (registered trademark, manufactured by Nippon Zeon Co., Ltd.), ARTON (registered trademark, JSR stock company), etc.), or norbornene/ethylene addition copolymer type cycloolefin polymers (APEL (registered trademark, manufactured by Mitsui Chemicals, Inc.), TOPAS (registered trademark, manufactured by Polyplastics Co., Ltd.)) can be used.
  • ZEONOR registered trademark, manufactured by Nippon Zeon Co., Ltd.
  • ZEONEX registered trademark, manufactured by Nippon Zeon Co., Ltd.
  • ARTON registered trademark, JSR stock company
  • APEL registered trademark, manufactured by Mitsui Chemicals, Inc.
  • TOPAS registered trademark, manufactured by Polyplastics Co., Ltd.
  • the polycarbonate specifically, Iupilon (registered trademark, manufactured by Mitsubishi Gas Chemical Company, Inc.) or Panlite (registered trademark, manufactured by Teijin Limited) can be used.
  • Tg glass transition temperature
  • the thickness is preferably 10 ⁇ m or more and 500 ⁇ m or less, more preferably 25 ⁇ m or more and 250 ⁇ m or less, and even more preferably 40 ⁇ m or more and 150 ⁇ m or less.
  • the thickness is 40 ⁇ m or more, it is possible to suppress the penetration of pulsed laser light (hereinafter sometimes referred to as pulsed laser), which will be described later, even in a transparent resin film. Therefore, when transparent conductive films are formed on both sides of a transparent resin film and each transparent conductive film is processed using a pulse laser, it is preferable to use a substrate having a thickness of 40 ⁇ m or more.
  • the thicker the resin film the higher the effect of suppressing penetration of the pulsed laser beam. More preferably, the thickness of the resin film is 45 ⁇ m or more and 200 ⁇ m or less, more preferably 50 ⁇ m or more and 150 ⁇ m or less, and still more preferably 100 ⁇ m or more and 125 ⁇ m or less.
  • a transparent conductive film is formed on one side of a transparent conductive base material and a pair of transparent conductive film laminates processed using a pulse laser are laminated and used, the transparent conductive film is formed on the back side of the transparent conductive base material. Since the transparent conductive film on the back side is not damaged by penetration of the pulsed laser light, a transparent resin film having a thickness of less than 40 ⁇ m can be applied.
  • film an object having a thickness of 200 ⁇ m or less is often called a “film”, and an object having a thickness of more than 200 ⁇ m is often called a “sheet”.
  • film and “sheet” are not clearly distinguished, and “film” in the present specification includes “sheet”.
  • a transparent conductive pattern film is a film containing conductive fibers.
  • the transparent conductive pattern film has electrode rows formed from conductive regions and non-conductive regions, and has an aperture ratio of 40% or more and 70% or less.
  • Examples of the conductive fibers that can be used include metal nanowires, carbon fibers, and carbon nanotubes. Carbon nanotubes are highly extensible, and metal nanowires are flexible materials. Metal nanowires are preferable from the viewpoint of transparency. Also, when metal nanowires are used as conductive fibers, 15% strain can be achieved by using conductive ink combined with a specific binder resin (poly-N-vinylacetamide (PNVA (registered trademark)) described later).
  • PNVA poly-N-vinylacetamide
  • a metal nanowire is a metal whose diameter is on the order of nanometers, and is a conductive material having a wire-like shape.
  • metal nanotubes which are electrically conductive materials having porous or non-porous tubular shapes, may be used with (in admixture with) or in place of metal nanowires.
  • both “wire” and “tube” are linear, but the former means that the center is not hollow and the latter means that the center is hollow, and their properties are flexible and flexible. It may be flexible or rigid.
  • the former is referred to as “narrowly defined metal nanowire” and the latter is referred to as “narrowly defined metal nanotube”, and “metal nanowire” encompasses both narrowly defined metal nanowires and narrowly defined metal nanotubes.
  • a narrowly defined metal nanowire and a narrowly defined metal nanotube may be used alone or in combination.
  • the transparent conductive pattern film is conductive by being formed on the transparent substrate so that the conductive fibers have intersections, forming conductive regions. In addition, since there is a region through which light can pass through the opening where the conductive fiber is not present, the film has transparency.
  • the conductive fibers are metal nanowires
  • the metal nanowires preferably form a nanostructure network having intersections, and more preferably form a nanostructure network in which at least a portion of the intersections are fused. It can be confirmed by observing an electron beam diffraction pattern with a transmission electron microscope (TEM) that the intersections of the metal nanowires are fused.
  • TEM transmission electron microscope
  • the electron beam diffraction patterns of the metal nanowires that are sufficiently distant from the intersections of the metal nanowires and the intersections of the metal nanowires are analyzed, and the crystal structures of the two are different (solvent Recrystallization occurs due to heating for drying, etc., and the crystal structure changes).
  • a known manufacturing method can be used as a method for manufacturing metal nanowires.
  • silver nanowires can be synthesized by reducing silver nitrate in the presence of polyvinylpyrrolidone using the Poly-ol method (see Chem. Mater., 2002, 14, 4736).
  • Gold nanowires can also be synthesized by reducing chloroauric acid hydrate in the presence of polyvinylpyrrolidone (see J. Am. Chem. Soc., 2007, 129, 1733). Techniques for large-scale synthesis and purification of silver nanowires and gold nanowires are described in detail in WO2008/073143 and WO2008/046058.
  • a gold nanotube having a porous structure can be synthesized by reducing a chloroauric acid solution using a silver nanowire as a template.
  • the silver nanowires used as the template dissolve into the solution due to the redox reaction with chloroauric acid, resulting in the formation of gold nanotubes having a porous structure (J. Am. Chem. Soc., 2004, 126, 3892- 3901).
  • the average diameter of the metal nanowires is preferably 1-500 nm, more preferably 5-200 nm, even more preferably 5-100 nm, and particularly preferably 10-50 nm.
  • the average length of the long axis of the metal nanowires is preferably 1 to 100 ⁇ m, more preferably 1 to 80 ⁇ m, even more preferably 2 to 70 ⁇ m, and particularly preferably 5 to 50 ⁇ m.
  • the metal nanowires preferably have an average diameter and an average major axis length that satisfy the above ranges, and an average aspect ratio of more than 5, more preferably 10 or more, and more preferably 100 or more. It is preferably 200 or more, and particularly preferably 200 or more.
  • the aspect ratio is a value obtained by a/b, where b is the average diameter of the metal nanowires, and a is the average length of the long axis.
  • a and b are measured using a scanning electron microscope (SEM) and an optical microscope.
  • SEM scanning electron microscope
  • b (average diameter) is a measured value obtained by measuring the dimensions of 100 arbitrarily selected metal nanowires using a field emission scanning electron microscope JSM-7000F (manufactured by JEOL Ltd.).
  • arithmetic mean of a (average length of the long axis) is obtained by measuring the dimensions of 100 arbitrarily selected metal nanowires using a shape measuring laser microscope VK-X200 (manufactured by Keyence Corporation), and calculating the obtained measurement value. Determined as an average value.
  • Materials for metal nanowires include, for example, at least one selected from the group consisting of gold, silver, platinum, copper, nickel, iron, cobalt, zinc, ruthenium, rhodium, palladium, cadmium, osmium, and iridium, and these metals. and alloys in which The metal nanowires preferably contain at least one of gold, silver, copper and aluminum because a transparent conductive film having low sheet resistance and high total light transmittance can be obtained. Since these metals have high conductivity, it is possible to reduce the surface density of the metals in the transparent conductive film when obtaining a predetermined sheet resistance, so that a high total light transmittance can be achieved.
  • the metal nanowires more preferably contain at least one of gold and silver, and are most preferably silver nanowires.
  • a transparent conductive pattern film usually contains conductive fibers and a binder resin.
  • the binder resin generally, those having transparency and excellent workability can be used.
  • metal nanowires produced by the polyol method As conductive fibers, from the viewpoint of compatibility with the production solvent (polyol), it is soluble in alcohol, water, or a mixed solvent of alcohol and water.
  • the binder resin comprises at least one of poly-N-vinylacetamide (PNVA®), N-vinylacetamide copolymer, and cellulosic resin.
  • poly-N-vinylacetamide (PNVA (registered trademark)
  • N-vinylacetamide copolymer or cellulose resin
  • PNVA registered trademark
  • Cellulose-based resins may be used alone, but may be used in combination of multiple types.
  • PNVA registered trademark
  • Poly-N-vinylacetamide is a homopolymer of N-vinylacetamide (NVA).
  • NVA N-vinylacetamide
  • a copolymer containing 70 mol % or more of N-vinylacetamide (NVA) as a monomer unit can be used as the N-vinylacetamide copolymer.
  • Monomers copolymerizable with NVA include, for example, N-vinylformamide, N-vinylpyrrolidone, acrylic acid, methacrylic acid, sodium acrylate, sodium methacrylate, acrylamide, and acrylonitrile.
  • the monomer unit derived from N-vinylacetamide is preferably contained in the polymer at 70 mol% or more, more preferably 80 mol% or more, and 90 mol% or more. is more preferred.
  • the weight-average molecular weight based on the absolute molecular weight of poly-N-vinylacetamide and N-vinylacetamide copolymer is preferably 30,000 to 4,000,000, more preferably 100,000 to 3,000,000, and 300,000 to 1,500,000. 10,000 is more preferable.
  • the absolute molecular weights of poly-N-vinylacetamide and N-vinylacetamide copolymers are measured by the following method.
  • Cellulose-based resins are linear polymers consisting of six-membered ether rings covalently linked by so-called glycosidic bonds, including ether groups. Cellulose itself does not dissolve in water, alcohol, or mixed solvents of alcohol and water, but some modified cellulose derivatives dissolve in water, alcohol, or mixed solvents of alcohol and water.
  • the cellulose resin is not particularly limited as long as it is soluble in water, alcohol, or a mixed solvent of alcohol and water, but cellulose ether can be used.
  • Cellulose ethers include, for example, alkyl cellulose (e.g., C1-4 alkyl cellulose such as methyl cellulose and ethyl cellulose), hydroxyalkyl cellulose (e.g., hydroxy C1-4 alkyl cellulose such as hydroxymethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose), hydroxy Alkylalkylcelluloses (eg, hydroxyC2-4alkylC1-4alkylcelluloses such as hydroxypropylmethylcellulose), carboxyalkylcelluloses (eg, carboxymethylcellulose), and alkyl-carboxyalkylcelluloses (eg, methylcarboxymethylcellulose). These can be used individually or in combination of 2 or more types.
  • alkyl cellulose e.g., C1-4 alkyl cellulose such as methyl cellulose and ethyl cellulose
  • hydroxyalkyl cellulose e.g., hydroxy C1-4 alkyl cellulose such as hydroxymethyl cellulose, hydroxyeth
  • the weight average molecular weight of the cellulose resin is preferably 100,000 to 200,000.
  • the weight-average molecular weight of the cellulose resin is a polyethylene oxide-equivalent value measured by gel permeation chromatography (hereinafter referred to as GPC).
  • a transparent conductive film (entirely conductive region: so-called solid film) for producing a transparent conductive pattern film is printed on at least one main surface of a substrate with a conductive ink containing conductive fibers, a binder resin and a solvent. and the like, and the solvent can be removed by drying.
  • the solvent used for the conductive ink is not particularly limited as long as the conductive fiber is well dispersed and the solvent dissolves the binder resin but does not dissolve the substrate.
  • Alcohols are saturated monohydric alcohols (methanol, ethanol, normal propanol and isopropanol) having 1 to 3 carbon atoms represented by C n H 2n+1 OH (n is an integer of 1 to 3) [hereinafter simply “carbon atoms Saturated monohydric alcohol with a number of 1 to 3”. ], and more preferably contains at least 40% by mass of saturated monohydric alcohol having 1 to 3 carbon atoms in all alcohols.
  • the use of a saturated monohydric alcohol having 1 to 3 carbon atoms facilitates drying of the solvent, which is advantageous in terms of the process.
  • Alcohols other than saturated monohydric alcohols having 1 to 3 carbon atoms can be used in combination as alcohols.
  • Examples of alcohols other than saturated monohydric alcohols having 1 to 3 carbon atoms include ethylene glycol, propylene glycol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monomethyl ether, and propylene glycol monoethyl ether. be done.
  • the drying rate of the solvent can be adjusted.
  • the total alcohol content in the mixed solvent is preferably 5 to 90% by mass. If the content of alcohol in the mixed solvent is 5% by mass or more or 90% by mass or less, it is easy to suppress the occurrence of striped patterns (coating spots) when the conductive ink is coated.
  • the conductive ink can be produced by stirring and mixing the binder resin, conductive fibers and solvent with a rotation or revolution stirrer or the like.
  • the content of the binder resin contained in the conductive ink is preferably in the range of 0.01 to 1.0% by mass.
  • the content of the conductive fibers contained in the conductive ink is preferably in the range of 0.01 to 1.0% by mass.
  • the content of the solvent contained in the conductive ink is preferably in the range of 98.0 to 99.98% by mass.
  • the conductive ink can be printed by a bar coating method, a spin coating method, a spray coating method, a gravure method, a slit coating method, or the like.
  • the shape of the pattern of the transparent conductive pattern film formed by printing is not particularly limited, but the shape of the wiring or electrode pattern formed on the base material, or the film covering the entire surface or a part of the base material. (solid pattern).
  • the formed pattern becomes conductive by heating to dry the solvent.
  • the dry thickness of the transparent conductive pattern film is preferably 10 to 300 nm, more preferably 30 to 200 nm, although it varies depending on the diameter of the metal nanowires used, the desired sheet resistance value, and the like.
  • the dry thickness of the transparent conductive film is 10 nm or more, the number of intersections of the metal nanowires increases, so good conductivity can be obtained. If the dry thickness of the transparent conductive film is 300 nm or less, it is possible to obtain good optical properties because light is easily transmitted and reflection by the metal nanowires is suppressed. If necessary, the transparent conductive film may be irradiated with light.
  • a protective film it is preferable to form a protective film on the transparent conductive pattern film to mechanically protect the transparent conductive pattern film.
  • the protective film that protects the transparent conductive film is preferably formed from a cured film of a curable resin composition as the protective film from the viewpoint of mechanically protecting the transparent conductive film.
  • the cured film is slightly inferior in moldability, and it is preferable to use it as a protective film for three-dimensional molding.
  • a transparent conductive film laminate having a transparent conductive pattern film is usually used by laminating it to another member. protected form.
  • the transparent conductive pattern film itself does not require high mechanical strength. Therefore, it is preferable that the main component of the protective film constituting the transparent conductive film laminate of one embodiment is a thermoplastic resin having excellent moldability. In other words, it is preferable that 94% by mass or more of the resin component constituting the protective film is derived from the thermoplastic resin.
  • the protective film can be formed by applying a resin composition in which a resin is dissolved in a solvent onto the transparent conductive pattern film.
  • a resin composition in which a resin is dissolved in a solvent onto the transparent conductive pattern film.
  • it contains a solvent that does not attack the binder resin and the transparent base material of the transparent conductive pattern film and that can be applied well on the transparent conductive pattern film, so that a film can be formed on the transparent conductive pattern film.
  • a resin composition include, for example, resin compositions containing ethyl cellulose or polyurethane having carboxy groups.
  • the weight average molecular weight of the polyurethane containing a carboxy group is preferably 1,000 to 100,000, more preferably 3,000 to 85,000, and more preferably 5,000 to 70,000. More preferably, 10,000 to 65,000 is particularly preferable.
  • the weight average molecular weight of the carboxyl group-containing polyurethane is a polystyrene-equivalent value measured by GPC.
  • the weight-average molecular weight of the polyurethane containing a carboxyl group is 1,000 or more, appropriate elongation, flexibility, and strength of the coating film can be obtained. It is highly flexible and does not become too viscous when dissolved, so there are few restrictions on its use.
  • the GPC measurement conditions for the weight-average molecular weight of the carboxy group-containing polyurethane are as follows. Apparatus name: HPLC unit HSS-2000 manufactured by JASCO Corporation Column: Shodex (registered trademark) column LF-804 Mobile phase: Tetrahydrofuran Flow rate: 1.0 mL/min Detector: RI-2031Plus manufactured by JASCO Corporation Temperature: 40.0°C Sample volume: sample loop 100 ⁇ L Sample concentration: about 0.1% by mass
  • the acid value of the polyurethane containing carboxy groups is preferably 10-140 mg-KOH/g, more preferably 15-130 mg-KOH/g.
  • the acid value of the carboxy group-containing polyurethane is 10 mg-KOH/g or more, the solvent resistance of the protective film is good, and the curability of the resin composition when a small amount of the curing component is used together is also good.
  • the acid value of the polyurethane containing a carboxyl group is 140 mg-KOH/g or less, the solubility of the polyurethane in a solvent is good, and the viscosity of the resin composition can be easily adjusted to a desired viscosity.
  • Acid value (mg-KOH/g) [B x f x 5.611]/S B: Amount of 0.1N potassium hydroxide-ethanol solution used (mL) f: Factor S of 0.1N potassium hydroxide-ethanol solution: Amount of sample collected (g)
  • a polyurethane containing a carboxy group is more specifically a polyurethane synthesized using (a1) a polyisocyanate compound, (a2) a polyol compound, and (a3) a dihydroxy compound having a carboxy group as monomers. From the viewpoint of light resistance and weather resistance, each of (a1), (a2), and (a3) preferably does not contain a conjugated functional group such as an aromatic ring. Each monomer will be described in more detail below.
  • (a1) Polyisocyanate compound As the (a1) polyisocyanate compound, a diisocyanate having two isocyanato groups per molecule is usually used.
  • polyisocyanate compounds include aliphatic polyisocyanates and alicyclic polyisocyanates, and these can be used alone or in combination of two or more.
  • a small amount of polyisocyanate having 3 or more isocyanato groups can also be used as long as the carboxy group-containing polyurethane does not gel.
  • aliphatic polyisocyanates examples include 1,3-trimethylene diisocyanate, 1,4-tetramethylene diisocyanate, 1,6-hexamethylene diisocyanate, 1,9-nonamethylene diisocyanate, 1,10-decamethylene diisocyanate, 2 , 2,4-trimethylhexamethylene diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, lysine diisocyanate, 2,2′-diethyl ether diisocyanate, and dimer acid diisocyanate.
  • Alicyclic polyisocyanates include, for example, 1,4-cyclohexanediisocyanate, 1,3-bis(isocyanatomethyl)cyclohexane, 1,4-bis(isocyanatomethyl)cyclohexane, 3-isocyanatomethyl-3,5 ,5-trimethylcyclohexyl isocyanate (IPDI, isophorone diisocyanate), bis-(4-isocyanatocyclohexyl)methane (hydrogenated MDI), hydrogenated (1,3- or 1,4-)xylylene diisocyanate, and norbornane diisocyanate mentioned.
  • IPDI isophorone diisocyanate
  • hydrochloride bis-(4-isocyanatocyclohexyl)methane
  • hydrogenated (1,3- or 1,4-)xylylene diisocyanate and norbornane diisocyanate mentioned.
  • the content thereof is preferably 50 mol% or less with respect to the total amount (100 mol%) of the (a1) polyisocyanate compound, It is more preferably 30 mol % or less, still more preferably 10 mol % or less.
  • (a2) Polyol compound (a2) Polyol compound (however, (a2) polyol compound does not include (a3) a dihydroxy compound having a carboxyl group described later) usually has a number average molecular weight of 250 to 50,000. , preferably 400 to 10,000, more preferably 500 to 5,000.
  • the number average molecular weight of the polyol compound is a polystyrene-equivalent value measured by GPC under the conditions described above.
  • (a2) Polyol compounds include, for example, polycarbonate polyols, polyether polyols, polyester polyols, polylactone polyols, hydroxyl-terminated polysiloxanes, and C18 (18 carbon atoms) unsaturated fatty acids made from vegetable oils and fats, and A polyol compound having 18 to 72 carbon atoms obtained by hydrogenating a polyvalent carboxylic acid derived from the polymer and converting the carboxylic acid into a hydroxyl group is exemplified. From the viewpoint of the balance between the water resistance of the protective film, the insulation reliability, and the adhesion to the substrate, the (a2) polyol compound is preferably a polycarbonate polyol.
  • a polycarbonate polyol can be obtained by reacting a diol having 3 to 18 carbon atoms with a carbonate ester or phosgene, and is represented by the following structural formula (1), for example.
  • R 3 is a residue obtained by removing the hydroxyl group from the corresponding diol (HO--R 3 --OH) and is an alkanediyl group having 3 to 18 carbon atoms, n 3 is a positive integer, Preferably it is 2-50.
  • the polycarbonate polyol represented by formula (1) is 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 3-methyl-1 ,5-pentanediol, 1,8-octanediol, 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, 1,9-nonanediol, 2-methyl-1,8-octanediol, 1,10 -Decamethylene glycol or 1,2-tetradecanediol can be used as a starting material.
  • the polycarbonate polyol may be a polycarbonate polyol (copolymerized polycarbonate polyol) having multiple types of alkanediyl groups in its skeleton.
  • the use of copolymerized polycarbonate polyols is often advantageous from the standpoint of preventing crystallization of polyurethanes containing carboxy groups. Considering solubility in a solvent, it is preferable to use a polycarbonate polyol having a branched skeleton and a hydroxyl group at the end of the branched chain.
  • a diol having a molecular weight of 300 or less which is usually used as a diol component when synthesizing polyester or polycarbonate, can also be used as the (a2) polyol compound within a range that does not impair the effects of the present invention.
  • low molecular weight diols examples include ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 1 ,5-pentanediol, 1,6-hexanediol, 3-methyl-1,5-pentanediol, 1,8-octanediol, 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, 1,9 -nonanediol, 2-methyl-1,8-octanediol, 1,10-decamethylene glycol, 1,2-tetradecanediol, 2,4-diethyl-1,5-pentanediol, butylethylpropanediol, 1, 3-cyclohexanedimethanol, diethylene glycol, triethylene glycol
  • Dihydroxy compound containing a carboxy group (a3) Dihydroxy compound containing a carboxy group (a3)
  • the dihydroxy compound containing a carboxy group has a molecular weight having two selected from hydroxy groups and hydroxyalkyl groups having 1 or 2 carbon atoms
  • a carboxylic acid or aminocarboxylic acid having a is 200 or less is preferable in that the cross-linking point can be controlled.
  • Dihydroxy compounds containing a carboxy group include, for example, 2,2-dimethylolpropionic acid, 2,2-dimethylolbutanoic acid, N,N-bishydroxyethylglycine, and N,N-bishydroxyethyl Among these, 2,2-dimethylolpropionic acid and 2,2-dimethylolbutanoic acid are preferred because of their high solubility in solvents.
  • the dihydroxy compound containing a carboxy group can be used alone or in combination of two or more.
  • a polyurethane containing a carboxy group can be synthesized only from the above three components ((a1), (a2) and (a3)). Furthermore, it can be synthesized by reacting (a4) a monohydroxy compound and/or (a5) a monoisocyanate compound. From the viewpoint of light resistance, (a4) monohydroxy compound and (a5) monoisocyanate compound are preferably compounds that do not contain an aromatic ring or a carbon-carbon double bond in the molecule.
  • Polyurethanes containing carboxyl groups can be prepared by using a suitable organic solvent in the presence or absence of a known urethanization catalyst such as dibutyltin dilaurate, the above-mentioned (a1) polyisocyanate compound, (a2) polyol compound , and (a3) a dihydroxy compound having a carboxy group. It is advantageous to react the carboxy group-containing polyurethane without a catalyst because it is not necessary to consider the contamination of tin or the like in the end.
  • a known urethanization catalyst such as dibutyltin dilaurate, the above-mentioned (a1) polyisocyanate compound, (a2) polyol compound , and (a3) a dihydroxy compound having a carboxy group.
  • the organic solvent is not particularly limited as long as it has low reactivity with the isocyanate compound.
  • the organic solvent preferably does not contain a basic functional group such as amine and has a boiling point of 50° C. or higher, preferably 80° C. or higher, more preferably 100° C. or higher.
  • solvents include toluene, xylene, ethylbenzene, nitrobenzene, cyclohexane, isophorone, diethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol monomethyl ether acetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, and dipropylene.
  • Glycol monomethyl ether acetate diethylene glycol monoethyl ether acetate, methyl methoxypropionate, ethyl methoxypropionate, methyl ethoxypropionate, ethyl ethoxypropionate, ethyl acetate, n-butyl acetate, isoamyl acetate, ethyl lactate, acetone, methyl ethyl ketone, cyclohexanone , N,N-dimethylformamide, N,N-dimethylacetamide, N-methylpyrrolidone, ⁇ -butyrolactone, and dimethylsulfoxide.
  • the organic solvent includes propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, Dipropylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate, ⁇ -butyrolactone, or combinations thereof are preferred.
  • the order in which the raw materials are added is not particularly limited, but usually (a2) the polyol compound and (a3) the dihydroxy compound having a carboxyl group are first placed in a reaction vessel, dissolved or dispersed in a solvent, and then heated to 20 to 150°C. , more preferably at 60 to 120°C, (a1) the polyisocyanate compound is added dropwise, and then these are reacted at 30 to 160°C, more preferably 50 to 130°C.
  • the molar ratio of raw materials charged is adjusted according to the molecular weight and acid value of the desired polyurethane. Specifically, the molar ratio of (a1) the isocyanato group of the polyisocyanate compound to ((a2) the hydroxyl group of the polyol compound + (a3) the hydroxyl group of the dihydroxy compound having a carboxyl group) is preferably 0.5 to 1.5. :1, more preferably 0.8-1.2:1, more preferably 0.95-1.05:1.
  • the molar ratio of (a2) hydroxyl group of the polyol compound to (a3) hydroxyl group of the dihydroxy compound having a carboxyl group is preferably 1:0.1-30, more preferably 1:0.3-10.
  • 94% by mass or more of the resin component that constitutes the protective film is preferably derived from a thermoplastic resin. 6 mass % or less of the resin component constituting the protective film may be derived from the curable resin (compound). If the content of the curable resin (compound) of the resin component in the resin composition is in the range of 6% by mass or less, the function as a protective film can be achieved without significantly reducing workability during three-dimensional molding. It is preferable because it can be improved.
  • Suitable curable resins (compounds) that can be used in combination with thermoplastic resins include epoxy resins (compounds) having two or more epoxy groups in one molecule.
  • the thermoplastic resin and the thermosetting resin may react with each other.
  • the carboxy group of the polyurethane reacts with the epoxy group of the epoxy resin to form a polyurethane-epoxy resin composite. may be formed.
  • "94% by mass or more of the resin component constituting the protective film is derived from a thermoplastic resin” means that the thermoplastic resin used for forming the protective film, such as a polyurethane containing a carboxyl group, is used to form the protective film.
  • thermosetting resin means that it corresponds to 94% by mass or more of the resin component of the protective film, and "6% by mass or less of the resin component constituting the protective film is derived from the thermosetting resin" It means that a curable resin such as an epoxy resin accounts for 6% by mass or less of the resin component of the protective film.
  • Epoxy resins having two or more epoxy groups in one molecule include, for example, bisphenol A type epoxy compounds, hydrogenated bisphenol A type epoxy resins, bisphenol F type epoxy resins, novolac type epoxy resins, phenol novolac type Epoxy resins, cresol novolak type epoxy resins, N-glycidyl type epoxy resins, bisphenol A novolak type epoxy resins, chelate type epoxy resins, glyoxal type epoxy resins, amino group-containing epoxy resins, rubber-modified epoxy resins, dicyclopentadiene phenolic type Examples include epoxy resins, silicone-modified epoxy resins, ⁇ -caprolactone-modified epoxy resins, glycidyl group-containing aliphatic epoxy resins, and glycidyl group-containing alicyclic epoxy resins.
  • An epoxy compound having 3 or more epoxy groups in one molecule can be used more preferably.
  • examples of such epoxy compounds include EHPE (registered trademark) 3150 (manufactured by Daicel Corporation), jER (registered trademark) 604 (manufactured by Mitsubishi Chemical Corporation), and EPICLON (registered trademark) EXA-4700 (manufactured by DIC Corporation). ), EPICLON® HP-7200 (manufactured by DIC Corporation), pentaerythritol tetraglycidyl ether, pentaerythritol triglycidyl ether, and TEPIC®-S (manufactured by Nissan Chemical Industries, Ltd.).
  • the blending ratio of the epoxy resin (compound) and the carboxy group-containing polyurethane is the molar ratio (Ep/ COOH) is preferably 0.02 or less.
  • an epoxy compound having only one epoxy group in one molecule it is also possible to contain an epoxy compound having only one epoxy group in one molecule.
  • an epoxy compound having only one epoxy group in one molecule it does not form a crosslinked structure by reacting with the carboxy group of the carboxy group-containing polyurethane. You can control the remaining amount.
  • the blending ratio of the epoxy resin (compound) and the polyurethane containing the carboxy group is based on the carboxy group (COOH) of the polyurethane containing the carboxy group.
  • the molar ratio (Ep/COOH) of epoxy groups (Ep) in the epoxy resin (compound) is preferably 1.0 or less.
  • the carboxy group possessed by the polyurethane containing the carboxy group is preferably 1.0 or less.
  • a curing accelerator can be further added to the resin composition.
  • curing accelerators include phosphine compounds such as triphenylphosphine and tributylphosphine (manufactured by Hokko Chemical Industry Co., Ltd.), Curesol (registered trademark) (imidazole epoxy resin curing agent: manufactured by Shikoku Kasei Co., Ltd.), 2 -Phenyl-4-methyl-5-hydroxymethylimidazole, U-CAT (registered trademark) SA series (DBU salt: manufactured by San-Apro Co., Ltd.), and Irgacure (registered trademark) 184.
  • the amount of the curing accelerator used is preferably 20 to 80 parts by mass, more preferably 30 to 70 parts by mass, and still more preferably 40 to 60 parts by mass with respect to 100 parts by mass of the epoxy resin (compound).
  • the curing accelerator is included in the resin component other than the thermoplastic resin.
  • Curing aids include, for example, polyfunctional thiol compounds and oxetane compounds.
  • polyfunctional thiol compounds include pentaerythritol tetrakis(3-mercaptopropionate), tris-[(3-mercaptopropionyloxy)-ethyl]-isocyanurate, trimethylolpropane tris(3-mercaptopropionate).
  • Karenz registered trademark
  • MT series manufactured by Showa Denko KK.
  • oxetane compound examples include Aron Oxetane (registered trademark) series (manufactured by Toagosei Co., Ltd.), ETERNACOLL (registered trademark) OXBP and OXMA (both manufactured by Ube Industries, Ltd.).
  • the amount of the curing aid used is preferably 0 per 100 parts by mass of the epoxy resin (compound), since the effect of addition can be obtained and the handling property can be maintained by avoiding an excessive increase in the curing speed. .1 to 10 parts by mass, more preferably 0.5 to 6 parts by mass.
  • the curing aid is also included in the resin component other than the thermoplastic resin.
  • the resin composition preferably contains 95.0% by mass or more and 99.9% by mass or less of the solvent, more preferably 96% by mass or more and 99.7% by mass or less, and 97% by mass or more and 99.5% by mass or less. More preferably, it contains As the solvent, a solvent that does not attack the transparent conductive pattern film and the transparent base material can be used.
  • the solvent used for synthesizing the carboxy group-containing polyurethane can be used as it is, or other solvents can be used to adjust the solubility or printability of the binder resin. When another solvent is used, the solvent used for synthesizing the carboxy group-containing polyurethane may be distilled off before and after adding the new solvent to replace the solvent.
  • the boiling point of the solvent is preferably 80°C to 300°C, more preferably 80°C to 250°C. If the boiling point of the solvent is 80° C. or higher, it can be dried over a certain period of time during printing, and unevenness in the coating film is less likely to occur. If the boiling point of the solvent is 300° C. or lower, the drying and curing do not require heat treatment at a high temperature for a long period of time, and industrial production can be suitably carried out.
  • Solvents include propylene glycol monomethyl ether acetate (boiling point 146°C), ⁇ -butyrolactone (boiling point 204°C), diethylene glycol monoethyl ether acetate (boiling point 218°C), tripropylene glycol dimethyl ether (boiling point 243°C), etc.
  • ether solvents such as propylene glycol dimethyl ether (boiling point 97° C.) and diethylene glycol dimethyl ether (boiling point 162° C.); isopropyl alcohol (boiling point 82° C.), t-butyl alcohol (boiling point 82° C.), 1-hexanol (boiling point 157 ° C.), propylene glycol monomethyl ether (boiling point 120° C.), diethylene glycol monomethyl ether (boiling point 194° C.), diethylene glycol monoethyl ether (boiling point 196° C.), diethylene glycol monobutyl ether (boiling point 230° C.), triethylene glycol (boiling point 276° C.), A solvent containing a hydroxyl group such as ethyl lactate (boiling point 154°C); a ketone solvent such as methyl ethyl
  • solvents can be used alone or in combination of two or more.
  • the solubility of the polyurethane to be used, the epoxy resin, etc. should be taken into account, and a hydroxy group that does not cause aggregation and precipitation will be or a solvent with a boiling point of 100° C. or less from the viewpoint of the drying property of the ink.
  • Solvents that attack the transparent conductive film or the base material when used alone are preferably used as mixed solvents with other solvents so as to have a composition that does not attack the transparent conductive pattern film or the base material.
  • the resin composition is a mixture obtained by blending a polyurethane containing a carboxyl group with an epoxy compound, a curing accelerator, and a curing aid as necessary, and the content of the solvent in the resin composition is 95.0 mass. % or more and 99.9% by mass or less, and stirred so that these components become uniform.
  • the solid content concentration in the resin composition varies depending on the desired film thickness and printing method, it is preferably 0.1 to 10% by mass, more preferably 0.5% to 5% by mass.
  • the film thickness does not become excessively thick when the resin composition is applied on the transparent conductive film, and the electrical connection with the transparent conductive pattern film is maintained.
  • the protective film can be provided with weather resistance and light resistance.
  • the resin composition is applied on the transparent conductive pattern film by printing such as bar coat printing, gravure printing, inkjet method, slit coating method, etc., and the solvent is dried and removed.
  • a protective film is thus formed.
  • the thickness of the protective film is usually more than 100 nm and 1 ⁇ m or less.
  • the thickness of the protective film is preferably more than 100 nm and 500 nm or less, more preferably more than 100 nm and 200 nm or less, still more preferably more than 100 nm and 150 nm or less, and particularly preferably more than 100 nm and 120 nm or less. If the thickness of the protective film is 1 ⁇ m or less, it is preferable because electrical continuity between the wiring and the transparent conductive pattern film can be easily obtained in a post-process.
  • FIG. 1 is a schematic diagram showing the layer structure of a display (input/output integrated display device) 12 incorporating a touch panel according to one embodiment.
  • the touch panel built-in display 12 includes a display 13 and a touch panel 11 joined to the display 13 and having a curved area over the entire surface.
  • the display 13 is not particularly limited, an OLED (Organic Light Emitting Diode) and a micro LED are exemplified.
  • the display 13 and the touch panel 11 may be joined by, for example, an adhesive tape.
  • the touch panel 11 may have a flat portion in addition to the portion having the curved surface area.
  • the touch panel 11 is connected with the detection circuit 15 .
  • the touch panel 11 includes a cover film 16 and a transparent conductive film laminate 18, as shown in FIG.
  • the transparent conductive film laminate 18 includes a transparent base material 24, a first transparent conductive pattern film 26A and a second transparent conductive pattern film 26B provided on both main surfaces of the transparent base material 24, respectively, and a first transparent conductive pattern film. It has a first protective film 28A covering 26A and a second protective film 28B covering the second transparent conductive pattern film 26B.
  • the first transparent conductive pattern film 26A has a first transparent conductive pattern
  • the second transparent conductive pattern film 26B has a second transparent conductive pattern.
  • a first conductive region in which the metal nanowires intersect and are electrically connected and, for example, a plurality of crossing portions in which the metal nanowires intersect and are electrically connected remain locally. and a first non-conductive region finely divided to a level exhibiting non-conductivity.
  • the first conductive region has an electrode row in which a plurality of electrodes are arranged in a row in the first direction.
  • the second transparent conductive pattern film includes a second conductive region in which the metal nanowires intersect and are electrically connected to each other, and for example, a plurality of intersections in which the metal nanowires intersect and electrically connect to each other. and a second non-conductive region which remains substantially but is finely divided to a level exhibiting non-conductivity.
  • the second conductive region has an electrode row in which a plurality of electrodes are connected in a second direction perpendicular to the first direction.
  • a first transparent conductive pattern film 26A is formed on one main surface of the transparent substrate 24 .
  • a second transparent conductive pattern film 26B is formed on the other main surface of the transparent substrate 24 .
  • the electrode row ends of the first transparent conductive pattern film 26A and the electrode row ends of the second transparent conductive pattern film 26B on the first protective film 28A and the second protective film 28B of the transparent conductive film laminate 18 Electrode pads are provided at positions corresponding to the portions.
  • lead lines (none of which are shown) are provided so as to be connected to the electrode pads.
  • the electrode pads and lead wires can be integrally formed by applying a conductive paste by screen printing or the like, for example. The lead wire is connected to the proximal end of the terminal (not shown).
  • the tip of the terminal protrudes outward from the outer edge of the transparent base material 24 .
  • Wiring (not shown) is connected to the tip of the terminal.
  • the first transparent conductive pattern film 26A and the second transparent conductive pattern film 26B are electrically connected to the detection circuit 15 (FIG. 1) through wiring.
  • the detection circuit 15 detects the capacitance generated between the electrode pads of the first transparent conductive pattern film 26A and the second transparent conductive pattern film 26B when a finger touches the surface of the touch panel 11, that is, the surface of the cover film 16. It measures finger position by detecting changes in .
  • the step of forming the transparent conductive film laminate 18 includes a step of forming a solid transparent conductive film on a transparent substrate, a step of forming a protective film, and a step of forming a pattern on the transparent substrate. is preferred.
  • the first transparent conductive film forming the first transparent conductive pattern film 26A is formed on one main surface of the transparent base material 24, and the second transparent conductive film is formed on the other main surface of the transparent base material 24 to form the first transparent conductive pattern film 26A. 2.
  • a second transparent conductive film is formed as a base for the transparent conductive pattern film 26B.
  • the first transparent conductive film and the second transparent conductive film can be formed by coating conductive ink on the transparent substrate 24 and heating to dry the solvent.
  • the shape of the printed film is preferably a film (solid pattern) covering the entire surface of the transparent substrate 24 . Treatments such as heating and light irradiation are performed during and after drying.
  • a first protective film 28A is formed on the first transparent conductive film
  • a second protective film 28B is formed on the second transparent conductive film.
  • the method of forming the first protective film 28A and the second protective film 28B is the same as that for the first transparent conductive film and the second transparent conductive film. They are formed by printing, coating, and drying.
  • the first protective film 28A and the second protective film 28B need to be formed after forming the first transparent conductive film and the second protective film 28B after forming the second transparent conductive film, respectively. , there is no necessity of forming after forming the first transparent conductive film and the second transparent conductive film.
  • first transparent conductive film ⁇ second transparent conductive film ⁇ first protective film 28A ⁇ second protective film 28B or first transparent conductive film ⁇ first protective film 28A ⁇ second transparent film. It is also possible to form the conductive film and then the second protective film 28B in this order.
  • a pattern forming process is performed. Using a pulsed laser with a pulse width shorter than 1 nanosecond, only the first transparent conductive film is etched from the side of the first protective film 28A to form a first conductive pattern, thereby forming a first transparent conductive pattern film 26A. Eggplant. As described above, when a transparent resin film having a thickness of 40 ⁇ m or more is used as the base material, penetration of the pulsed laser beam can be suppressed even with a transparent resin film. Transparent conductive films have characteristic absorption peaks in the optical transmission spectrum due to their constituent nanostructured networks with the intersections of metal nanowires.
  • the wavelength is within the wavelength region of ⁇ 30 nm, the absorption peak maximum wavelength based on the nanostructure network in the light transmission spectrum, and the light transmittance of the resin film is 80% or more.
  • a pulse laser having a width shorter than 1 nanosecond is applied to the first transparent conductive film, the second transparent conductive film formed on the back side of the substrate is not etched, and only the first transparent conductive film is selectively etched. can do. Since the nanostructure network having the intersections of metal nanowires has an absorption peak due to this in the light transmission spectrum, it can be detected by a pulsed laser with a wavelength close to this absorption peak maximum wavelength (within the absorption peak maximum wavelength ⁇ 30 nm). Can be etched.
  • the pulse width of the pulsed laser is preferably less than 0.1 (100 picoseconds) nanoseconds, more preferably less than 0.01 nanoseconds (10 picoseconds), 0.001 nanoseconds (1 picosecond) ), i.e. femtosecond pulsed lasers are more preferably used.
  • the metal forming the nanostructure network having the intersections of the metal nanowires which is present in the area irradiated with the pulse laser and which constitutes the transparent conductive film, melts. As a result, it becomes impossible to maintain a sufficient network structure to exhibit conductivity, resulting in a non-conductive region.
  • the wire-like metal that formed the nanostructured network is broken and the non-conductive regions contain fragments of the nanostructured network.
  • the fragments include those of various shapes, for example, nanowires cut into granules (spherical, elliptical, columnar, etc.), and local network structures (including intersections of metal nanowires).
  • the remaining non-conductive regions as a whole include those that are finely divided to the level of non-conductivity (intersections of metal nanowires (cross-shaped fragments), etc.).
  • wavelengths for lasers are between 250 nm and 1400 nm.
  • the wavelength is more preferably 250 nm to 450 nm, which is the absorption wavelength of the short diameter (diameter of the metal nanowires). In particular, it is preferable from the viewpoint that excessive heating can be suppressed when forming a pattern with a pulse laser.
  • the shape of the pattern to be formed is arbitrary and can be selected from known ones.
  • a plurality of electrode rows are formed on each of the first transparent conductive film and the second transparent conductive film for use as a position recognition sensor of a touch panel.
  • the transparent conductive film becomes a transparent conductive pattern film (first transparent conductive pattern film 26A, second transparent conductive pattern film 26B) having conductive regions including a plurality of electrode rows and non-conductive regions.
  • the aperture ratio of the transparent conductive pattern film is 40% or more and 70% or less, preferably 45% or more and 69% or less, and more preferably 45% or more and 68% or less.
  • the transparent conductive film constituting the transparent conductive film laminate 18 preferably has a low sheet resistance, preferably 1 ⁇ / ⁇ or more and 300 ⁇ / ⁇ or less, more preferably 15 ⁇ / ⁇ or more and 200 ⁇ / ⁇ or less, and further. 20 ⁇ / ⁇ or more and 100 ⁇ / ⁇ or less is preferable. If the aperture ratio of the transparent conductive pattern film is less than 40%, the optical properties deteriorate, so it is not suitable as a transparent conductive film laminate.
  • a transparent conductive film having an aperture ratio of 40% or more and 70% or less before pattern formation from the viewpoint of easy pattern processing so that the aperture ratio is 40% or more and 70% or less after pattern formation.
  • a transparent conductive film having an aperture ratio of less than 40% can also be patterned so that the aperture ratio of the transparent conductive pattern film after pattern formation is 40% or more and 70% or less.
  • this aperture ratio is occupied by the conductive fibers (when the conductive fibers are metal nanowires, the metal nanowires and the nanostructure network fragments constituting the nanostructure network) in a plan view of the transparent conductive pattern film. It is the area ratio (%) of the area without the shavings, and is calculated by observing with a shape measuring laser microscope as described later.
  • FIG. 3 shows the transparent conductive pattern film 1 having the electrode array (the shape of the unit electrode is omitted) 2 as a plan view of the transparent conductive film laminate.
  • a lead wire 3 is formed at one end of the electrode row 2 for connection by screen printing of silver paste or the like.
  • FIG. 3(b) unnecessary portions of the transparent conductive pattern film 1 on the top, bottom and left sides of the figure are cut.
  • a flexible printed circuit board 3' is connected to the tip of the lead wire 3 as shown in FIG. 3(c).
  • the unnecessary portion on the right side of the transparent conductive pattern film 1 is cut to obtain a shape that can be used for manufacturing a touch panel.
  • a first transparent conductive pattern film 1 having electrode rows 2 and lead wires 3 formed on the surface is located on the back surface via a substrate, and a second transparent conductive pattern film similarly having electrode rows and lead wires formed on the surface. Together with the plane of the pattern film, it is molded into a curved surface to obtain a touch panel.
  • a first transparent conductive film laminate 18A and a second transparent conductive film laminate 18B can be provided.
  • the transparent conductive film laminate 18 provided with the transparent conductive pattern films 26A and 26B on both main surfaces of the transparent base material 24 has been described. is not limited to this.
  • description will be made with reference to FIG. 4 in which the same components as those in FIG. 2 are denoted by the same reference numerals.
  • a touch panel 41 shown in FIG. 4 includes a first transparent conductive film laminate 18A and a second transparent conductive film laminate 18B.
  • the 18 A of 1st transparent conductive film laminated bodies have 24 A of 1st transparent base materials, 26 A of 1st transparent conductive pattern films, and 28 A of 1st protective films in order.
  • the second transparent conductive film laminate 18B has a second transparent substrate 24B, a second transparent conductive pattern film 26B, and a second protective film 28B in this order.
  • the first transparent conductive film laminate 18A and the second transparent conductive film laminate 18B are integrated by bonding the first transparent substrate 24A and the second protective film 28B via an adhesive layer 30, which will be described later.
  • an adhesive layer 30 which will be described later.
  • two transparent conductive film laminates having a transparent conductive pattern film only on one main surface of a transparent substrate are used.
  • a transparent resin film having a thickness of less than 40 ⁇ m, preferably 10 ⁇ m or more can also be applied to the touch panel of the present embodiment.
  • the first and second transparent conductive films can be similarly formed on the first transparent substrate 24A and the second transparent substrate 24B by the method described above.
  • the electrode arrays, lead wires, and the like can be formed by commonly known methods, and specifically, the methods described above can be used.
  • ⁇ Display with built-in touch panel In the case of the touch panel layer configuration example shown in FIG. 2, in order to obtain the touch panel built-in display (also referred to as an input/output integrated display device) shown in FIG. After bonding to obtain the touch panel 11, the touch panel 11 and the display 13 are bonded to obtain the touch panel built-in display 12. ⁇ The touch panel 11 is obtained by bonding the first protective film 28A and the cover film 16 via the adhesive layer 30 . Next, the touch panel 11 is integrated with the display 13 by bonding the second protective film 28B and the display 13 together. As described above, a touch panel built-in display including the touch panel 11 is formed. In FIG.
  • the touch panel 11 and the display 13 are illustrated as if they are joined from a shape having a curved surface.
  • the display 13 may be bonded.
  • display 13 may be planar.
  • a touch panel built-in display can be obtained.
  • the order of bonding and integration via the adhesive layer 30 does not matter.
  • the three-dimensional molding may be performed after the touch panel 41 and the display 13 are bonded together, or the display 13 may be bonded after the touch panel 41 is molded to have a curved surface. In the latter case, display 13 may be planar.
  • a layer capable of adhering layers facing up and down is used.
  • a film having optical transparency and adhesiveness such as OCA (Optical Clear Adhesive) that can be adhered, or a liquid curable adhesive layer composition containing a polymerizable compound such as OCR (Optical Clear Resin) is formed. and a light transmissive film.
  • OCA Optical Clear Adhesive
  • OCR Optical Clear Resin
  • the film thickness of the adhesive layer is preferably 10 ⁇ m to 150 ⁇ m.
  • the cover film 16 is provided to protect the touch panel including the electrodes and the like.
  • the cover film 16 is not particularly limited as long as it can be molded into a shape having a curved surface area and can maintain the visibility of images, characters, etc. on the display.
  • resin films such as polycarbonate, polyester (polyethylene terephthalate [PET], polyethylene naphthalate [PEN], etc.), and acrylic resins (polymethyl methacrylate [PMMA], etc.) can be used.
  • a protective layer such as a hard coat layer on the upper side (observer side) of these resin films to improve strength, and to perform surface treatment to improve chemical resistance. Surface treatment may be performed after subsequent molding.
  • a transparent conductive film laminate obtained by sequentially forming a transparent conductive pattern film (for example, a layer containing silver nanowires) and a protective film on a substrate has excellent three-dimensional formability.
  • the three-dimensional molding method for the transparent conductive film laminate include various known methods such as vacuum molding, blow molding, free blow molding, air pressure molding, vacuum pressure molding, and heat press molding. In particular, heat forming, such as hot press and vacuum pressure forming, is preferred. Regardless of which method is used, stress is applied to the three-dimensionally processed transparent conductive film laminate and distortion occurs. The transparent conductive film laminate is stretched along with this strain.
  • a transparent conductive film laminate with low three-dimensional moldability breakage of the transparent conductive pattern film constituting the transparent conductive film laminate or significant increase in sheet resistance is usually observed at low stress (low draw ratio).
  • the transparent conductive pattern film does not break even under high stress (high draw ratio), or the increase in sheet resistance is small. Therefore, the three-dimensional moldability of the transparent conductive film laminate can be evaluated by performing a tensile test on the transparent conductive film laminate and measuring the change in the sheet resistance value.
  • the protective film By using a protective film in which 94% by mass or more of the resin component is a thermoplastic resin, cracks are less likely to occur in the protective film even when strain is applied, and cracks in the protective film propagate to the transparent conductive pattern film to reduce its conductivity. It is thought that this is because it is possible to avoid impairing the quality.
  • the protective film preferably does not contain a curing component (epoxy compound, curing accelerator, etc.).
  • the touch panel 11 of the present disclosure is provided with the transparent conductive film laminate 18, it is excellent in three-dimensional workability, so by providing it in a display having a curved surface area, the touch panel built-in display 12 having a curved surface can be formed. Even if the display 13 is flat, the display 12 with a built-in touch panel having a curved surface can be formed by providing the touch panel 11 having a curved surface. In the touch panel built-in display 12, the display of the display 13 is transmitted through the touch panel 11 when the display 13 is lit. Therefore, the user can visually recognize the display of the display 13 from the main surface of the touch panel 11 opposite to the main surface to which the display 13 is joined.
  • the detection circuit 15 measures the position of the finger.
  • the user can perform desired operations through the touch panel 11 .
  • the touch panel of this embodiment has a curved area, it is possible to match it with the shape of the touch panel when the shape of the place where the touch panel is applied is not flat. It is also possible to improve the visibility of
  • the touch panel 11 shown in FIG. 1 has a cylindrical shape with a concave cylindrical surface
  • the present invention is not limited to this.
  • the touch panel 32 may have a semi-cylindrical shape having a convex cylindrical surface.
  • the touch panel 32 has a convex cylindrical surface 33 and can be operated by a user touching the cylindrical surface 33 .
  • the touch panel 34 may be dome-shaped.
  • the touch panel 34 has a convex spherical surface 35 and can be operated by the user touching the spherical surface 35 .
  • an input/output integrated display device By arranging the obtained touch panel on at least a part of various displays, an input/output integrated display device can be obtained.
  • displays include organic EL, liquid crystal displays, and rear projection devices.
  • Applications of the touch panel of the present embodiment include an in-vehicle display. Specifically, it can be used in car center consoles, including car navigation systems, audio equipment, and room temperature control panels.
  • IT equipment input parts Store POS systems: Various medical equipment display, display at amusement facilities, and the like.
  • the present invention is not limited to the above embodiments, and other embodiments are possible within the spirit of the present invention.
  • the patterning of the electrodes is performed after applying the conductive ink and making it conductive, but it is also possible to perform the patterning when the conductive ink is printed.
  • FIG. 3 mainly shows an example in which electrode rows are provided on almost the entire surface of the touch panel, and almost the entire surface serves as an input area, the following form is also possible. 1) An input area is provided at one or more specific locations on a curved surface area. If there are multiple input areas, each input area may have a different shape. 2) Providing locations with different curvatures in one input area, or having multiple input areas with different curvatures.
  • FIG. 7 shows a schematic diagram of an example of a touch panel portion when the touch panel is applied to the center console of an automobile and is used as an input/output integrated type display device that satisfies the above 1) and 2).
  • the touch panel 36 has two input areas with different shapes, a first input area 37 having a substantially rectangular parallelepiped shape and a second input area 38 having a substantially truncated cone shape, on the curved surface area 39. It is integrally molded to match the shape of the console.
  • the first input area 37 has, for example, a substantially rectangular parallelepiped shape of 7 cm long, 5 cm wide, and 1 cm high, and is provided in front of the center console.
  • first input area 37 As an initial screen, icons indicating systems such as car navigation, air conditioning, lighting, telephone, and audio equipment are displayed (not shown). It is designed so that each system can be operated by touching it.
  • the second input area 38 allows the user to switch between the systems displayed in the first input area 37 and the second input area 38 by touching the second input area 38 one or more times, and , By swiping and touching the second input area 38, the numbers (temperature, distance, etc.) displayed on the system in the first input area 37 and the second input area 38 are changed according to the swiped distance. designed to be able to As described above, the first input area 37 is provided in front of the center console, and it is difficult for the driver to operate while viewing the icons displayed in the first input area 37 while driving. On the other hand, since the second input area 38 exists near the driver's seat, the driver can operate the second input area 38 without visually recognizing his hand while driving.
  • Operation of the system substantially displayed in the first input area 37 becomes possible. It is also preferable to provide one or a plurality of third input areas (not shown) dedicated to a single system such as illumination in places other than the first input area 37 and the second input area 38 on the touch panel 36 .
  • the silver nanowires had an average diameter of 26 nm and an average major axis length of 20 ⁇ m.
  • the average diameter of the silver nanowires is obtained by measuring the dimension (diameter) of 100 arbitrarily selected silver nanowires using a field emission scanning electron microscope JSM-7000F (manufactured by JEOL Ltd.). Calculated as an arithmetic mean.
  • the average length of the long axis of the silver nanowires was obtained by measuring the dimension (length) of 100 arbitrarily selected silver nanowires using a shape measuring laser microscope VK-X200 (manufactured by Keyence Corporation). It was obtained as an arithmetic mean value of the measured values.
  • Reagents manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd. were used as ethanol, ethylene glycol, AgNO 3 and FeCl 3 .
  • PGME propylene glycol monomethyl ether
  • PGME propylene glycol monomethyl ether
  • PGME propylene glycol monomethyl ether
  • ⁇ Printing of silver nanowire ink coating> Using the silver nanowire ink 1 prepared in Preparation Example 1 above, a polycarbonate (PC) film (Iupilon (registered trademark) FS-2000H manufactured by Mitsubishi Gas Chemical Company, Inc.) was printed with a bar coater (AFA-Standard manufactured by Kotec Co., Ltd.). , glass transition temperature: 130 ° C. (catalog value), 100 ⁇ m thickness) on the main surface, coated with a wet film thickness of 20 ⁇ m, and a transparent conductive film (silver nanowire ink coating film) was printed as an A4 size solid pattern. .
  • PC polycarbonate
  • AFA-Standard manufactured by Kotec Co., Ltd. bar coater
  • the sheet resistance of the transparent conductive film using the silver nanowire ink 1 was 20 ⁇ / ⁇ .
  • the thickness of the transparent conductive film was measured using a film thickness measurement system F20-UV (manufactured by Filmetrics Co., Ltd.) based on light interferometry, and found to be 80 nm.
  • a film thickness measurement system F20-UV manufactured by Filmetrics Co., Ltd.
  • a spectrum from 450 nm to 800 nm was used for analysis, and the average value obtained by measuring three points at different measurement points was used. According to this measurement system, it is possible to directly measure the film thickness (Tc) of the silver nanowire layer formed on the transparent substrate.
  • the temperature of the reaction solution is lowered to 70° C., and 23.5 g of Desmodur (registered trademark)-W (bis-(4-isocyanatocyclohexyl)methane, manufactured by Sumika Covestro Urethane Co., Ltd.) is added as a polyisocyanate using a dropping funnel. was added dropwise over 30 minutes. After completion of the dropwise addition, the temperature was raised to 100°C and the reaction was carried out at 100°C for 15 hours. After confirming by IR that the isocyanate had almost disappeared, 0.5 g of isobutanol was added and the reaction was further carried out at 100°C for 6 hours. gone.
  • the weight-average molecular weight of the resulting polyurethane containing carboxyl groups determined by GPC was 33,500, and the acid value of the resin solution was 39.4 mg-KOH/g.
  • the nonvolatile content (solid content) concentration (the amount of polyurethane containing a carboxyl group) of protective film ink 1 calculated from the mass before and after solvent drying was 3% by mass.
  • Protective film ink 2 0.002 g of pentaerythritol tetraglycidyl ether (manufactured by Showa Denko KK) as epoxy compound 1 was added to 1.8 g of the polyurethane solution containing a carboxyl group obtained in Synthesis Example 1 (solid content concentration: 42.4% by mass).
  • the molar ratio (Ep/COOH) of the epoxy group (Ep) of the epoxy resin to the carboxy group (COOH) of the carboxy group-containing polyurethane in the protective film ink 2 is 0.02.
  • Ethocel registered trademark
  • Example 1 Using the silver nanowire ink 1 obtained in the above preparation example 1, on the main surface of the transparent conductive film (silver nanowire ink coating film) printed on the main surface of the PC film, using the above-mentioned bar coater , the protective film ink 1 was applied to a wet film thickness of about 7 ⁇ m, and a transparent conductive film with a protective film (silver nanowire ink coating film with a protective film) was printed as a solid pattern of A4 size. Solvent drying was carried out at 80° C. for 1 minute using the aforementioned constant temperature vessel, and the transparent conductive film laminate of Example 1 was obtained. The sheet resistance of the obtained transparent conductive film laminate was measured.
  • the sheet resistance was obtained by dividing the transparent conductive film laminate (solid pattern) into areas of 3 cm square and measuring the vicinity of the center of each area using the non-contact resistance measuring instrument described above. is the arithmetic mean of The sheet resistance of the transparent conductive film laminate using protective film ink 1 was 20 ⁇ / ⁇ .
  • the thickness of the protective film was 90 nm as a result of measurement using a film thickness measurement system F20-UV (manufactured by Filmetrics Co., Ltd.) based on the optical interferometry as in the case of the thickness of the silver nanowire layer described above.
  • the spectrum from 450 nm to 800 nm was used for the analysis, and the measurement points were changed, and the average value of three measurements was taken as the film thickness.
  • the total film thickness (Tc+Tp) of the film thickness (Tc) of the silver nanowire layer formed on the transparent substrate and the film thickness (Tp) of the protective film formed thereon can be directly measured. Therefore, the film thickness (Tp) of the protective film is obtained by subtracting the previously measured film thickness (Tc) of the silver nanowire layer from this measured value.
  • Examples 2-5 and Comparative Example 1 In the same manner as in Example 1, silver nanowire ink coating films and protective films were formed in the combinations shown in Table 1 below to obtain transparent conductive film laminates of Examples 2 to 5 and Comparative Example 1.
  • Comparative example 2 A photosensitive dry film (manufactured by Asahi Kasei Corporation, trade name “Sunfort”) was laminated on a polyethylene terephthalate (PET) substrate with a copper foil. Exposure, development, and rinsing were performed through a photomask to provide patterning. After that, the copper in the portion where the dry film was removed was etched with a copper etchant, and the remaining dry film portion was removed with an organic solvent remover.
  • P PET polyethylene terephthalate
  • a two-layer (PET/copper metal mesh) configuration in which only a 5 mm-wide electrode row (space 50 ⁇ m) made of copper metal mesh with a line width of 5 ⁇ m and a pitch interval of 120 ⁇ m is provided on the PET substrate, and no protective film is formed. got a sheet.
  • a femtosecond pulse laser with a wavelength of 355 nm (pulse width of 500 fs, frequency of 1000 kHz, processing speed of 5000 mm/s, output of 0.2 W) was used to pattern from the protective layer side of the transparent conductive film laminates produced in Examples 1 to 5 and Comparative Example 1. Processing was performed to form an X-axis transparent conductive pattern film provided with an X-axis electrode row (5 mm width, 50 ⁇ m space) for detecting changes in capacitance in the X-axis direction.
  • a transparent conductive pattern film for the Y-axis was formed, provided with an axis electrode row (total width of 5 mm of 1 mm width and dummy pattern width of 4 mm, space 50 ⁇ m).
  • axis electrode row total width of 5 mm of 1 mm width and dummy pattern width of 4 mm, space 50 ⁇ m.
  • Silver paste (Toyobo Co., Ltd.) was applied to the protective layer of the two patterned transparent conductive film laminates (X-axis electrode and Y-axis electrode) obtained above and to the copper metal mesh laminate obtained in Comparative Example 2.
  • DW-520H (manufactured by the same company) was applied by a screen printer and heat-treated at 80° C. for 30 minutes to form wiring electrodes, thereby obtaining a transparent conductive film with a silver wiring-embedded pattern. Since the protective film is thin and some of the silver nanowires that make up the transparent conductive film are exposed on the protective film, the silver wiring pattern and the transparent conductive film provided on the protective film are processed with silver paste.
  • the obtained X-axis electrode and Y-axis electrode were electrically connected, and a transparent conductive film laminate with a pattern including silver wiring was obtained for each of the X-axis electrode and the Y-axis electrode.
  • ⁇ Lamination using optical double-sided pressure-sensitive adhesive sheet> Using an optical double-sided pressure-sensitive adhesive sheet, a laminate of a transparent conductive film laminate (X-axis electrode), a transparent conductive film laminate (Y-axis electrode), and a cover film was produced. First, the transparent conductive film laminate (X-axis electrode) and the transparent conductive film laminate (Y-axis electrode) obtained above were laminated to obtain a transparent conductive film laminate (XY-axis electrode).
  • a sheet piece is cut out from a double-sided adhesive sheet (manufactured by Sekisui Chemical Co., Ltd., HSV100, 100 ⁇ m thick), one separator is peeled off, and the exposed adhesive surface is used as a transparent conductive film laminate (Y-axis electrode ) using a hand roller (2 kg roller) under the condition of one reciprocation.
  • the other separator is peeled off, and the exposed adhesive surface is attached to the PC film surface of the transparent conductive film laminate (X-axis electrode) under the following conditions to form an X-axis sensor substrate/double-sided adhesive sheet/Y-axis sensor.
  • a transparent conductive film laminate (XY axis electrodes) having the structure of the substrate was produced.
  • a sheet piece is cut out from another double-sided adhesive sheet (manufactured by Sekisui Chemical Co., Ltd., HSV100, 100 ⁇ m thick), one separator is peeled off, and the exposed adhesive surface is used as a Y-axis sensor substrate (transparent conductive film laminated A hand roller (2 kg roller) was applied to the surface of the protective layer of the body (Y-axis electrode) under the condition of one reciprocation.
  • a projection touch panel test piece having a configuration of A4 size X-axis sensor substrate/double-sided adhesive sheet/Y-axis sensor substrate/double-sided adhesive sheet/cover film was produced. (Lamination conditions) Surface pressure: 0.4 MPa Degree of vacuum: 30 Pa Affixing time: 2 seconds Next, the test piece was placed in an autoclave and autoclaved for 15 minutes under conditions of a temperature of 50°C and a pressure of 0.5 MPa. No moire pattern was visually observed on any of the touch panel test pieces of Examples 1 to 5 and Comparative Example 1.
  • a press machine was used for the three-dimensional molding. After pre-drying the test piece at 100° C. for 2 minutes, it was inserted into a press set at 125° C. for a hemispherical upper die and 110° C. for a lower die having a radius of curvature of 100 mm. Then, it was pressed with a mold, and the mold clamping pressure was maintained at 2 tons for 3 minutes. It was confirmed that the X-axis sensor substrate/double-sided pressure-sensitive adhesive sheet/Y-axis sensor substrate/double-sided pressure-sensitive adhesive sheet/cover film projection type touch panel of Examples 1 to 5 all operated in a three-dimensionally molded state.
  • the touch panel was not driven after the three-dimensional molding.
  • a touch panel was produced by using an optical double-sided pressure-sensitive adhesive sheet and a cover film in the same manner as in Example 1 for the two-layer (PET/copper metal mesh) sheet of Comparative Example 2, and three-dimensional molding was performed.
  • the touch panel was not driven after three-dimensional molding.
  • Comparative Example 2 a moiré pattern was observed when visually observed before the three-dimensional molding.
  • ⁇ Aperture ratio> Using a shape measuring laser microscope VK-X200 (manufactured by KEYENCE CORPORATION), the surface of each transparent conductive film laminate is photographed at 5 points using a 150x objective lens from the direction perpendicular to the plane of the conductive layer. , saved as an image. The obtained image was subjected to image analysis using analysis application software VK-H1XA manufactured by Keyence Corporation, and the arithmetic mean value of the area occupied by the metal nanowires in the plane of the conductive layer at the five points was calculated. The calculated average value was converted to an aperture ratio.
  • ⁇ Tensile properties> For the tensile test, test pieces obtained by cutting each transparent conductive film laminate obtained in each of the above Examples and Comparative Examples into strips having a width of 30 mm and a length of 160 mm were used. Marked lines were drawn at intervals of 10 mm in portions corresponding to the gaps between the chucks in advance, the sample was divided into 10 portions, the sheet resistance value of each portion was measured, and the average value was taken as R0 . After that, the test piece was set in a precision universal tester (Autograph AG-X manufactured by Shimadzu Corporation). The chuck-to-chuck distance during setting was 100 mm, and was extended to 10% at a test speed of 50 mm/min and a test temperature of 155°C. After the test, the sheet resistance values at 10 points were measured again to obtain an average value, which was defined as R. R/R 0 was calculated from the resistance values R 0 and R before and after the tensile test, and the change in resistance at 10% tension was obtained.
  • thermoplastic resin-derived component (% by mass) of the protective film in Table 1 is the composition (nonvolatile content (solid content)) of each protective film ink used in each example and comparative example [polyurethane containing a carboxy group, epoxy It was calculated from the ratio (% by mass) of [polyurethane containing a carboxy group or Ethocel (registered trademark)] to the total amount of compound and curing accelerator].
  • the transparent conductive film laminate obtained in each of Examples 1 to 5 and the three-dimensionally molded projection type touch panel using each were produced, and it was confirmed that the touch panel operated without any problem. was done.
  • the metal mesh has a line width of 5 ⁇ m, a pitch interval of 120 ⁇ m, and an aperture ratio of 92.2%.
  • the metal mesh In order to prevent disconnection of the metal mesh and enable the touch panel to operate after three-dimensional molding, it is necessary to increase the strength of the metal mesh. In order to increase the strength, it is necessary to reduce the aperture ratio and set the line width of the mesh to about 10 to 15 ⁇ m.
  • Example 6 Using the same transparent conductive film laminate as in Example 2, ⁇ production of electrode rows by laser etching>, ⁇ production of wiring by silver paste printing> and ⁇ flexible printed wiring board and transparent conductive film laminate in the same manner as in Example 2 Joining> was performed. Subsequently, "CS9864UAS” (manufactured by Nitto Denko Corporation, 100 ⁇ m thick) was used as the two double-sided adhesive sheets, and "polycarbonate film: Iupilon (registered trademark) MRS58HRB manufactured by Mitsubishi Gas Chemical Company, Inc.” (2000 ⁇ m thick) was used as the cover film. A touch panel test piece was produced in the same manner as in ⁇ Lamination using optical double-sided pressure-sensitive adhesive sheet>.
  • the touch panel 36 for the in-vehicle center console shown in FIG.
  • a signal detected from the second input region 38 is transmitted between the first input region 37 and the second input region 38 so that the input operation to the first input region 37 can also be driven by the input operation to the second input region 38 .
  • the program was changed to output to area 38.
  • SYMBOLS 1 Transparent conductive pattern film, 2... Electrode row, 3... Lead line, 3'... Flexible printed circuit board, 11... Touch panel, 12... Touch panel built-in display (input/output integrated display), 13... Display, 15... Detection circuit , 16... cover film, 18... transparent conductive film laminate, 24... film-like substrate, 26A... first transparent conductive pattern film, 26B... second transparent conductive pattern film, 28A... first protective film, 28B... second 2 Protective film 30 Adhesive layer 32 Touch panel 33 Cylindrical surface 34 Touch panel 35 Spherical surface 36 Touch panel 37 First input area 38 Second input area 39 Curved surface area

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Non-Insulated Conductors (AREA)
  • Position Input By Displaying (AREA)

Abstract

A touch panel having a curved surface region and comprising at least two layers, which are a film-like base material and a transparent conductive pattern film that is formed on at least one surface of the base material, wherein the transparent conductive pattern film contains conductive fibers, the aperture ratio thereof is 40-70%, an electrode row formed from a conductive region and a non-conductive region is provided, an input region formed by the electrode row of the transparent conductive pattern film is included, at least part of the electrode row is disposed in the curved surface region, and a lead-out line connected to the electrode row is provided.

Description

タッチパネル及びタッチパネルの製造方法Touch panel and touch panel manufacturing method
 本発明は、タッチパネル及びタッチパネルの製造方法に関する。 The present invention relates to a touch panel and a method for manufacturing a touch panel.
 タッチパネルは入力装置として用いられる。タッチ位置を検出するための電極として、従来はITO(酸化インジウム錫)等が使用されてきたが、柔軟性に欠け、クラックが発生しやすい。そのため、ITO等に代えて、金属メッシュ等からなる開口率90%以上の導電膜を使用するタッチパネルが知られている(特許文献1参照)。
 また、タッチパネル向けの導電材料、電極材料の開発が行われた結果、導電性無機ナノワイヤ―の使用量を抑え、幅広い表面抵抗値領域で表面抵抗値のばらつきを抑制し、透明性に優れた導電性フィルムを提供するために、導電性無機ナノワイヤ―が導電層の平面内に占める面積の割合を5~30%、導電層の表面抵抗値を1.0×10~1.0×10Ω/□とすることが提案されている(特許文献2参照)。
A touch panel is used as an input device. Conventionally, ITO (indium tin oxide) or the like has been used as an electrode for detecting a touch position, but it lacks flexibility and is prone to cracks. Therefore, there is known a touch panel that uses a conductive film made of metal mesh or the like and having an aperture ratio of 90% or more instead of ITO or the like (see Patent Document 1).
In addition, as a result of the development of conductive materials and electrode materials for touch panels, the amount of conductive inorganic nanowires used was reduced, surface resistance variations were suppressed in a wide range of surface resistance values, and conductive materials with excellent transparency were achieved. In order to provide a conductive film, the ratio of the area occupied by the conductive inorganic nanowires in the plane of the conductive layer is 5 to 30%, and the surface resistance value of the conductive layer is 1.0×10 2 to 1.0×10 6 . Ω/□ has been proposed (see Patent Document 2).
国際公開第2016/075737号WO2016/075737 特開2013―924号公報JP-A-2013-924
 タッチパネルの検出電極として金属メッシュを使用する場合、パネルにモアレ模様が出る場合があった。また、開口率が高い導電膜の場合、電極が細いため断線が生じやすく、特に曲面領域を有するタッチパネルを得るために三次元成形を行うと、抵抗が高くなったり電極の断線が発生し、タッチパネルが駆動しない場合があった。
 本発明は、モアレ模様が発生せず、タッチパネルが曲面領域を有していても駆動可能なタッチパネル、その製造方法並びにこのタッチパネルを備える入出力一体型表示装置及び車載用ディスプレイを提供することを目的とする。
When using a metal mesh as a detection electrode of a touch panel, a moiré pattern may appear on the panel. In addition, in the case of a conductive film with a high aperture ratio, the electrode is thin and disconnection is likely to occur. In particular, when three-dimensional molding is performed to obtain a touch panel having a curved surface area, the resistance increases and the electrode disconnection occurs, resulting in a touch panel. sometimes did not work.
SUMMARY OF THE INVENTION It is an object of the present invention to provide a touch panel that does not generate a moire pattern and can be driven even if the touch panel has a curved surface area, a method for manufacturing the same, an input/output integrated display device and an in-vehicle display equipped with this touch panel. and
 かくして本発明の具体的態様は下記のとおりである。
<1>フィルム状の基材と、
 前記基材の少なくとも一方の面に形成された透明導電パターン膜との少なくとも2層からなる、曲面領域を有するタッチパネルであって、
 前記透明導電パターン膜は、導電性繊維を含み、その開口率が40%以上70%以下であり、導電性領域と非導電性領域とから形成された電極列を有し、当該透明導電パターン膜の電極列によって形成される入力領域を含み、
 前記電極列の少なくとも一部は前記曲面領域に配置され、前記電極列に接続された引出線を備えたタッチパネル。
<2>前記導電性繊維は、平均直径が1nm以上500nm以下の金属ナノワイヤを含む<1>記載のタッチパネル。
<3>前記導電性繊維の長軸の長さ平均は1μm以上100μm以下、アスペクト比の平均は5以上である<1>又は<2>記載のタッチパネル。
<4>前記導電性繊維は、金、銀、銅及びアルミニウムの群から選ばれた1種以上の金属を含む<1>から<3>のいずれか1に記載のタッチパネル。
Thus, specific embodiments of the invention are as follows.
<1> a film-like substrate;
A touch panel having a curved region, comprising at least two layers of a transparent conductive pattern film formed on at least one surface of the base material,
The transparent conductive pattern film contains conductive fibers, has an aperture ratio of 40% or more and 70% or less, and has an electrode array formed of a conductive region and a non-conductive region, and the transparent conductive pattern film including an input region formed by an electrode column of
A touch panel, wherein at least a part of the electrode array is arranged in the curved surface region and includes a lead line connected to the electrode array.
<2> The touch panel according to <1>, wherein the conductive fibers include metal nanowires having an average diameter of 1 nm or more and 500 nm or less.
<3> The touch panel according to <1> or <2>, wherein the conductive fibers have an average length of 1 μm or more and 100 μm or less, and an average aspect ratio of 5 or more.
<4> The touch panel according to any one of <1> to <3>, wherein the conductive fibers contain one or more metals selected from the group consisting of gold, silver, copper and aluminum.
<5>前記基材は透明な熱可塑性樹脂フィルムよりなり、前記透明導電パターン膜は、バインダー樹脂及び金属ナノワイヤを含んでいる<1>記載のタッチパネル。
<6>前記バインダー樹脂は、N-ビニルアセトアミド(NVA)をモノマー単位として70モル%以上含む重合体又はセルロース系樹脂であり、透明導電パターン膜上に形成された保護膜を有し、前記保護膜は、樹脂成分を含み、前記樹脂成分の94質量%以上が熱可塑性樹脂に由来する<5>に記載のタッチパネル。
<7>前記透明な熱可塑性樹脂フィルムがポリカーボネートフィルムである<5>記載のタッチパネル。
<8>前記バインダー樹脂がポリ-N-ビニルアセトアミドである<6>又は<7>記載のタッチパネル。
<9>保護膜を構成する樹脂成分がカルボキシ基を含有するポリウレタン又はエチルセルロースを含む熱可塑性樹脂に由来する<6>から<8>のいずれか1に記載のタッチパネル。
<10>前記保護膜を構成する樹脂成分がカルボキシ基を含有するポリウレタンと一分子中に2個以上のエポキシ基を有するエポキシ樹脂に由来し、前記一分子中に2個以上のエポキシ基を有するエポキシ樹脂の含有量が、前記樹脂成分中、0質量%超、6質量%以下であり、前記カルボキシ基を含有するポリウレタンが有するカルボキシ基(COOH)に対する前記一分子中に2個以上のエポキシ基を有するエポキシ樹脂が有するエポキシ基(Ep)のモル比(Ep/COOH)が0超、0.02以下である<9>記載のタッチパネル。
<11>前記透明導電パターン膜の電極列によって形成される入力領域が複数存在し、各入力領域が異なる形状を有する<1>から<10>のいずれか1に記載のタッチパネル。
<12>前記入力領域として第1の入力領域及び第2の入力領域が存在し、第1の入力領域における操作によるタッチパネルの駆動が、第2の入力領域における操作によっても可能である<1>から<11>のいずれか1に記載のタッチパネル。
<13>前記曲面領域が三次元曲面である<1>から<12>のいずれか1に記載のタッチパネル。
<5> The touch panel according to <1>, wherein the substrate is made of a transparent thermoplastic resin film, and the transparent conductive pattern film contains a binder resin and metal nanowires.
<6> The binder resin is a polymer or cellulose resin containing 70 mol% or more of N-vinylacetamide (NVA) as a monomer unit, has a protective film formed on the transparent conductive pattern film, and the protective The touch panel according to <5>, wherein the film contains a resin component, and 94% by mass or more of the resin component is derived from a thermoplastic resin.
<7> The touch panel according to <5>, wherein the transparent thermoplastic resin film is a polycarbonate film.
<8> The touch panel according to <6> or <7>, wherein the binder resin is poly-N-vinylacetamide.
<9> The touch panel according to any one of <6> to <8>, wherein the resin component constituting the protective film is derived from a thermoplastic resin containing carboxy group-containing polyurethane or ethyl cellulose.
<10> The resin component constituting the protective film is derived from a polyurethane containing a carboxy group and an epoxy resin having two or more epoxy groups in one molecule, and has two or more epoxy groups in one molecule. The content of the epoxy resin is more than 0% by mass and 6% by mass or less in the resin component, and the carboxyl group (COOH) of the carboxyl group-containing polyurethane has two or more epoxy groups in one molecule. The touch panel according to <9>, wherein the epoxy group (Ep) molar ratio (Ep/COOH) of the epoxy resin having is more than 0 and 0.02 or less.
<11> The touch panel according to any one of <1> to <10>, wherein there are a plurality of input areas formed by the electrode arrays of the transparent conductive pattern film, and each input area has a different shape.
<12> A first input area and a second input area exist as the input areas, and driving of the touch panel by operation in the first input area is also possible by operation in the second input area <1> The touch panel according to any one of <11>.
<13> The touch panel according to any one of <1> to <12>, wherein the curved surface region is a three-dimensional curved surface.
<14>前記透明導電パターン膜として、第1の透明導電パターン膜及び第2の透明導電パターン膜の2種を備え、前記第1の透明導電パターン膜及び前記第2の透明導電パターン膜が前記基材の両主面にそれぞれ積層された透明導電フィルム積層体を、加熱フォーミングにより前記曲面領域とする工程を含む<1>から<13>のいずれか1に記載のタッチパネルの製造方法。
<15>前記透明導電パターン膜として、第1の透明導電パターン膜及び第2の透明導電パターン膜の2種を備え、前記第1の透明導電パターン膜が第1の前記基材の一方の主面のみに形成された第1の透明導電フィルム積層体と、前記第2の透明導電パターン膜が第2の前記基材の一方の主面のみに形成された第2の透明導電フィルム積層体と、を接着層を介して接合一体化した後、加熱フォーミングにより前記曲面領域とする工程を含む<1>から<13>のいずれか1に記載のタッチパネルの製造方法。
<16>金属ナノワイヤを含む透明導電膜をレーザーエッチングすることにより前記電極列を有する第1の透明導電パターン膜及び前記電極列を有する第2の透明導電パターン膜、を形成する工程を含む<14>又は<15>に記載のタッチパネルの製造方法。
<17>ディスプレイと、前記ディスプレイ上に配設される<1>から<13>のいずれか1に記載のタッチパネルとを備える入出力一体型表示装置。
<18><17>に記載の入出力一体型表示装置を備える車載用ディスプレイ。
<14> As the transparent conductive pattern film, two types of a first transparent conductive pattern film and a second transparent conductive pattern film are provided, and the first transparent conductive pattern film and the second transparent conductive pattern film are the The method for manufacturing a touch panel according to any one of <1> to <13>, including a step of forming the curved surface regions by heating the transparent conductive film laminates laminated on both main surfaces of the substrate.
<15> As the transparent conductive pattern film, two types of a first transparent conductive pattern film and a second transparent conductive pattern film are provided, and the first transparent conductive pattern film is one of the main substrates of the first base material. A first transparent conductive film laminate formed only on one surface, and a second transparent conductive film laminate formed on only one main surface of the second base material with the second transparent conductive pattern film. The method for manufacturing a touch panel according to any one of <1> to <13>, including a step of forming the curved surface region by heat forming after joining and integrating , through an adhesive layer.
<16> Forming a first transparent conductive pattern film having the electrode array and a second transparent conductive pattern film having the electrode array by laser etching a transparent conductive film containing metal nanowires <14>> or the method for manufacturing a touch panel according to <15>.
<17> An input/output integrated display device comprising a display and the touch panel according to any one of <1> to <13> provided on the display.
<18> An in-vehicle display comprising the input/output integrated display device according to <17>.
 本発明によれば、モアレ模様が発生せず、曲面領域を有しながらも駆動が可能なタッチパネル、その製造方法並びにこのタッチパネルを備える入出力一体型表示装置及び車載用ディスプレイを提供することができる。 ADVANTAGE OF THE INVENTION According to the present invention, it is possible to provide a touch panel that does not generate a moire pattern and can be driven even though it has a curved surface area, a manufacturing method thereof, and an input/output integrated display device and an in-vehicle display equipped with this touch panel. .
一実施態様のタッチパネルを内蔵したディスプレイ(入出力一体型表示装置)12の曲面領域の層構成を模式的に示す分解斜視図である。1 is an exploded perspective view schematically showing the layer structure of a curved region of a display (input/output integrated display device) 12 incorporating a touch panel of one embodiment. FIG. 本発明のタッチパネルの層構成例を示す断面図である。FIG. 2 is a cross-sectional view showing an example of the layer structure of the touch panel of the present invention; 本発明における電極列と引出線の接続方法の例を示す模式図である。FIG. 4 is a schematic diagram showing an example of a method of connecting electrode rows and lead wires in the present invention. 本発明のタッチパネルの他の層構成例を示す断面図である。FIG. 4 is a cross-sectional view showing another layer configuration example of the touch panel of the present invention; 本発明のタッチパネルの曲面領域についての形状例を示す図である。FIG. 5 is a diagram showing an example of the shape of the curved area of the touch panel of the present invention; 本発明のタッチパネルの曲面領域について他の形状例を示す図である。FIG. 5 is a diagram showing another shape example of the curved surface area of the touch panel of the present invention; 本発明のタッチパネルを車内のセンターコンソールの曲面領域について使用した形状例を示す図である。FIG. 4 is a diagram showing an example of a shape in which the touch panel of the present invention is used for a curved area of a center console in a vehicle;
 以下、本発明を実施するための形態(以下、実施形態という)について説明する。
 なお、本開示において、数値範囲を表す「〇〇以上〇〇以下」や「〇〇~〇〇」の記載は、特に断りのない限り、記載された上限及び下限を含む数値範囲を意味する。
 実施形態にかかるタッチパネルは、フィルム状の基材と、前記基材の少なくとも一方の面に形成された透明導電パターン膜との少なくとも2層からなる、曲面領域を有する。前記透明導電パターン膜は、導電性繊維を含み、その開口率が40%以上70%以下であり、導電性領域と、非導電性領域とから形成された電極列を有し、該透明導電パターン膜の電極列によって形成される入力領域を含む。前記電極列の少なくとも一部は前記曲面領域に配置され、前記電極列に接続された引出線を備える。
《基材》
 基材は、フィルム状(シートを含む)であり、後述のように三次元成形等により曲面領域を形成する。ここで曲面とは、平面状ではない状態を指す。本開示では、平面状のフィルムを単に湾曲させたものだけでなく、三次元曲面にも好適に使用される。三次元曲面とは平面を変形させることによって成立させることの出来ない曲面を意味する。本開示の基材は、少なくとも一部に曲面に形成された領域を有する。
 当該基材は着色していてもよいが、全光線透過率(可視光に対する透明性)は高い方が好ましく、全光線透過率が75%以上の透明基材が好ましく、特に80%以上であることが好ましい。本出願において「透明」とは、全光線透過率75%以上をいう。
 使用できる基材は熱可塑性樹脂フィルムであり、熱可塑性樹脂フィルムとしては、例えば、ポリエステル(ポリエチレンテレフタレート[PET]、ポリエチレンナフタレート[PEN]等)、ポリカーボネート、アクリル樹脂(ポリメチルメタクリレート[PMMA]等)、シクロオレフィンポリマー等の樹脂フィルムが挙げられる。樹脂フィルムは、三次元成形する上では良好な成形性を有する非晶性の熱可塑性樹脂フィルムであることが好ましい。そのため、前記樹脂フィルムの中でも非晶性であるポリカーボネート、及びシクロオレフィンポリマーが好ましく、ポリカーボネートがより好ましい。ポリカーボネートは、分子主鎖中に炭酸エステル結合を含む-[O-R-OCO]-単位(Rが脂肪族基、芳香族基、又は脂肪族基と芳香族基の双方を含むもの、さらに直鎖構造あるいは分岐構造を持つもの)を含むものであれば、特に限定されない。シクロオレフィンポリマーとしては、ノルボルネンの水素化開環メタセシス重合型シクロオレフィンポリマー(ZEONOR(登録商標、日本ゼオン株式会社製)、ZEONEX(登録商標、日本ゼオン株式会社製)、ARTON(登録商標、JSR株式会社製)等)、又はノルボルネン/エチレン付加共重合型シクロオレフィンポリマー(APEL(登録商標、三井化学株式会社製)、TOPAS(登録商標、ポリプラスチックス株式会社製))を用いることができる。ポリカーボネートとしては、具体的には、ユーピロン(登録商標、三菱ガス化学株式会社製)、又はパンライト(登録商標、帝人株式会社製)を用いることができる。これらの中でもガラス転移温度(Tg)が90℃以上170℃以下のものが配線の製造工程における加熱に耐えうるため好ましく、125℃以上160℃以下のものがより好ましい。厚みは10μm以上500μm以下であることが好ましく、25μm以上250μm以下であることがより好ましく、40μm以上150μm以下が更に好ましい。厚みが40μm以上であることにより、透明な樹脂フィルムであっても後述するパルス状レーザー光(以後、パルスレーザーということがある)の貫通を抑制することができる。そのため、透明な樹脂フィルムの両面に透明導電膜を形成し、それぞれの透明導電膜をパルスレーザーを用いて加工する場合は、厚みが40μm以上である基材を使用することが好ましい。樹脂フィルムの厚みは厚いほどパルス状レーザー光の貫通を抑制する効果は高い。更に好ましい樹脂フィルムの厚みは45μm以上200μm以下であり、より好ましい厚みは50μm以上150μm以下であり、さらに好ましくは100μm以上125μm以下である。なお、透明導電基材の片面に透明導電膜を形成し、パルスレーザーを用いて加工した一対の透明導電フィルム積層体を積層して使用する場合には、透明導電基材の裏面に透明導電膜を有していないため、パルスレーザー光の貫通による裏面の透明導電膜のダメージが生じることはないので、厚みが40μm未満の透明な樹脂フィルムを適用することができる。
 なお、「フィルム」と「シート」との区別について、厚さ200μm以下の物を「フィルム」、200μm超の厚さの物を「シート」と称することが多い。ただし、「フィルム」と「シート」とは明確に区別されるものではなく、本願明細書における「フィルム」は「シート」を含むものである。
Hereinafter, modes for carrying out the present invention (hereinafter referred to as embodiments) will be described.
In this disclosure, unless otherwise specified, the descriptions of "00 to 00" and "00 to 00" that represent numerical ranges mean numerical ranges that include the stated upper and lower limits.
A touch panel according to an embodiment has a curved region composed of at least two layers of a film-like base material and a transparent conductive pattern film formed on at least one surface of the base material. The transparent conductive pattern film contains conductive fibers, has an aperture ratio of 40% or more and 70% or less, has an electrode array formed of a conductive region and a non-conductive region, and the transparent conductive pattern It includes an input area formed by an array of membrane electrodes. At least a part of the electrode row is arranged in the curved surface region and includes a lead wire connected to the electrode row.
"Base material"
The base material is in the form of a film (including a sheet), and forms a curved area by three-dimensional molding or the like as described later. Here, the curved surface refers to a non-planar state. In the present disclosure, not only a flat film that is simply curved but also a three-dimensional curved surface can be suitably used. A three-dimensional curved surface means a curved surface that cannot be formed by deforming a plane. The base material of the present disclosure has at least a portion thereof formed into a curved surface.
Although the substrate may be colored, it is preferable that the total light transmittance (transparency to visible light) is high, and a transparent substrate having a total light transmittance of 75% or more is preferable, particularly 80% or more. is preferred. In the present application, "transparent" means a total light transmittance of 75% or more.
The substrate that can be used is a thermoplastic resin film, and examples of the thermoplastic resin film include polyester (polyethylene terephthalate [PET], polyethylene naphthalate [PEN], etc.), polycarbonate, acrylic resin (polymethyl methacrylate [PMMA], etc.). ), and resin films such as cycloolefin polymers. The resin film is preferably an amorphous thermoplastic resin film having good moldability for three-dimensional molding. Therefore, among the resin films, amorphous polycarbonate and cycloolefin polymer are preferable, and polycarbonate is more preferable. Polycarbonates have --[O--R--OCO]--units (where R contains an aliphatic group, an aromatic group, or both an aliphatic and an aromatic group, as well as straight It is not particularly limited as long as it includes a chain structure or a branched structure). Cycloolefin polymers include hydrogenated ring-opening metathesis polymerization type cycloolefin polymers of norbornene (ZEONOR (registered trademark, manufactured by Nippon Zeon Co., Ltd.), ZEONEX (registered trademark, manufactured by Nippon Zeon Co., Ltd.), ARTON (registered trademark, JSR stock company), etc.), or norbornene/ethylene addition copolymer type cycloolefin polymers (APEL (registered trademark, manufactured by Mitsui Chemicals, Inc.), TOPAS (registered trademark, manufactured by Polyplastics Co., Ltd.)) can be used. As the polycarbonate, specifically, Iupilon (registered trademark, manufactured by Mitsubishi Gas Chemical Company, Inc.) or Panlite (registered trademark, manufactured by Teijin Limited) can be used. Among these, those having a glass transition temperature (Tg) of 90° C. or higher and 170° C. or lower are preferable because they can withstand heating in the wiring manufacturing process, and those having a glass transition temperature (Tg) of 125° C. or higher and 160° C. or lower are more preferable. The thickness is preferably 10 μm or more and 500 μm or less, more preferably 25 μm or more and 250 μm or less, and even more preferably 40 μm or more and 150 μm or less. When the thickness is 40 μm or more, it is possible to suppress the penetration of pulsed laser light (hereinafter sometimes referred to as pulsed laser), which will be described later, even in a transparent resin film. Therefore, when transparent conductive films are formed on both sides of a transparent resin film and each transparent conductive film is processed using a pulse laser, it is preferable to use a substrate having a thickness of 40 μm or more. The thicker the resin film, the higher the effect of suppressing penetration of the pulsed laser beam. More preferably, the thickness of the resin film is 45 μm or more and 200 μm or less, more preferably 50 μm or more and 150 μm or less, and still more preferably 100 μm or more and 125 μm or less. When a transparent conductive film is formed on one side of a transparent conductive base material and a pair of transparent conductive film laminates processed using a pulse laser are laminated and used, the transparent conductive film is formed on the back side of the transparent conductive base material. Since the transparent conductive film on the back side is not damaged by penetration of the pulsed laser light, a transparent resin film having a thickness of less than 40 μm can be applied.
Regarding the distinction between "film" and "sheet", an object having a thickness of 200 μm or less is often called a “film”, and an object having a thickness of more than 200 μm is often called a “sheet”. However, "film" and "sheet" are not clearly distinguished, and "film" in the present specification includes "sheet".
《透明導電パターン膜》
 透明導電パターン膜は、導電性繊維を含む膜である。透明導電パターン膜は、導電性領域と、非導電性領域とから形成された電極列を有しており、開口率が40%以上70%以下である。
 使用できる上記導電性繊維としては、金属ナノワイヤ、カーボン繊維、カーボンナノチューブなどが挙げられる。カーボンナノチューブは伸び性が高く、金属ナノワイヤは柔軟性を有する材料という特徴がある。透明性の観点では金属ナノワイヤが好ましい。
 また、導電性繊維として金属ナノワイヤを用いた場合は、特定のバインダー樹脂(後述するポリ-N-ビニルアセトアミド(PNVA(登録商標)))と組み合わせた導電性インクを用いれば、15%の歪みを加えても断線等の不具合が発生しない配線形成が可能であることを事前に確認している。また、ポリ-N-ビニルアセトアミド(PNVA(登録商標))には吸湿性があるため、その表面を覆う保護膜を設けることが好ましい。金属ナノワイヤは、径がナノメートルオーダーのサイズである金属であり、ワイヤ状の形状を有する導電性材料である。一実施形態では、金属ナノワイヤとともに(混合して)、又は金属ナノワイヤに代えて、ポーラス又はノンポーラスのチューブ状の形状を有する導電性材料である金属ナノチューブを使用してもよい。本開示において、「ワイヤ」と「チューブ」はいずれも線状であるが、前者は中央が中空ではないもの、後者は中央が中空であるものを意味し、それらの性状は、柔軟であってもよく、剛直であってもよい。本開示において、前者を「狭義の金属ナノワイヤ」、後者を「狭義の金属ナノチューブ」と呼び、「金属ナノワイヤ」は狭義の金属ナノワイヤと狭義の金属ナノチューブの両方を包含する。狭義の金属ナノワイヤ及び狭義の金属ナノチューブは、それぞれ単独で用いてもよく、混合して用いてもよい。
《Transparent conductive pattern film》
A transparent conductive pattern film is a film containing conductive fibers. The transparent conductive pattern film has electrode rows formed from conductive regions and non-conductive regions, and has an aperture ratio of 40% or more and 70% or less.
Examples of the conductive fibers that can be used include metal nanowires, carbon fibers, and carbon nanotubes. Carbon nanotubes are highly extensible, and metal nanowires are flexible materials. Metal nanowires are preferable from the viewpoint of transparency.
Also, when metal nanowires are used as conductive fibers, 15% strain can be achieved by using conductive ink combined with a specific binder resin (poly-N-vinylacetamide (PNVA (registered trademark)) described later). It has been confirmed in advance that it is possible to form wiring that does not cause problems such as disconnection even if it is added. Moreover, since poly-N-vinylacetamide (PNVA (registered trademark)) has hygroscopicity, it is preferable to provide a protective film covering the surface thereof. A metal nanowire is a metal whose diameter is on the order of nanometers, and is a conductive material having a wire-like shape. In one embodiment, metal nanotubes, which are electrically conductive materials having porous or non-porous tubular shapes, may be used with (in admixture with) or in place of metal nanowires. In the present disclosure, both "wire" and "tube" are linear, but the former means that the center is not hollow and the latter means that the center is hollow, and their properties are flexible and flexible. It may be flexible or rigid. In the present disclosure, the former is referred to as "narrowly defined metal nanowire" and the latter is referred to as "narrowly defined metal nanotube", and "metal nanowire" encompasses both narrowly defined metal nanowires and narrowly defined metal nanotubes. A narrowly defined metal nanowire and a narrowly defined metal nanotube may be used alone or in combination.
 透明導電パターン膜は、導電性繊維が交差部を有するように透明基材上に形成されることで導通し、導電性領域が形成されている。また、導電性繊維が存在していない開口部を光が透過できる領域が存在することで透明性を有する。導電性繊維が金属ナノワイヤである場合、金属ナノワイヤが交差部を有するナノ構造ネットワークを構成することが好ましく、交差部の少なくとも一部が融着したナノ構造ネットワークを形成することがより好ましい。金属ナノワイヤの交差部が融着していることは、透過型電子顕微鏡(TEM)の電子線回折パターンの観察により、確認できる。具体的には、金属ナノワイヤ同士が交差している箇所と交差している箇所から十分離れた金属ナノワイヤの電子線回折パターンを解析し、両者の結晶構造が異なる(後述する導電インク印刷後の溶媒を乾燥するための加熱等により再結晶が発生し、結晶構造が変化すること)から確認することができる。 The transparent conductive pattern film is conductive by being formed on the transparent substrate so that the conductive fibers have intersections, forming conductive regions. In addition, since there is a region through which light can pass through the opening where the conductive fiber is not present, the film has transparency. When the conductive fibers are metal nanowires, the metal nanowires preferably form a nanostructure network having intersections, and more preferably form a nanostructure network in which at least a portion of the intersections are fused. It can be confirmed by observing an electron beam diffraction pattern with a transmission electron microscope (TEM) that the intersections of the metal nanowires are fused. Specifically, the electron beam diffraction patterns of the metal nanowires that are sufficiently distant from the intersections of the metal nanowires and the intersections of the metal nanowires are analyzed, and the crystal structures of the two are different (solvent Recrystallization occurs due to heating for drying, etc., and the crystal structure changes).
 金属ナノワイヤの製造方法としては、公知の製造方法を用いることができる。例えば、銀ナノワイヤは、ポリオール(Poly-ol)法を用いて、ポリビニルピロリドン存在下で硝酸銀を還元することによって合成することができる(Chem.Mater.,2002,14,4736参照)。金ナノワイヤも同様に、ポリビニルピロリドン存在下で塩化金酸水和物を還元することによって合成することができる(J.Am.Chem.Soc.,2007,129,1733参照)。銀ナノワイヤ及び金ナノワイヤの大規模な合成及び精製の技術に関しては国際公開第2008/073143号と国際公開第2008/046058号に詳細に記載されている。ポーラス構造を有する金ナノチューブは、銀ナノワイヤを鋳型にして、塩化金酸溶液を還元することにより合成することができる。鋳型に用いた銀ナノワイヤは塩化金酸との酸化還元反応により溶液中に溶け出し、結果としてポーラス構造を有する金ナノチューブが形成される(J.Am.Chem.Soc.,2004,126,3892-3901参照)。 A known manufacturing method can be used as a method for manufacturing metal nanowires. For example, silver nanowires can be synthesized by reducing silver nitrate in the presence of polyvinylpyrrolidone using the Poly-ol method (see Chem. Mater., 2002, 14, 4736). Gold nanowires can also be synthesized by reducing chloroauric acid hydrate in the presence of polyvinylpyrrolidone (see J. Am. Chem. Soc., 2007, 129, 1733). Techniques for large-scale synthesis and purification of silver nanowires and gold nanowires are described in detail in WO2008/073143 and WO2008/046058. A gold nanotube having a porous structure can be synthesized by reducing a chloroauric acid solution using a silver nanowire as a template. The silver nanowires used as the template dissolve into the solution due to the redox reaction with chloroauric acid, resulting in the formation of gold nanotubes having a porous structure (J. Am. Chem. Soc., 2004, 126, 3892- 3901).
 金属ナノワイヤの平均直径は、1~500nmが好ましく、5~200nmがより好ましく、5~100nmが更に好ましく、10~50nmが特に好ましい。金属ナノワイヤの長軸の長さの平均は、1~100μmが好ましく、1~80μmがより好ましく、2~70μmが更に好ましく、5~50μmが特に好ましい。金属ナノワイヤは、径の平均及び長軸の長さの平均が上記範囲を満たすとともに、アスペクト比の平均が5より大きいことが好ましく、10以上であることがより好ましく、100以上であることが更に好ましく、200以上であることが特に好ましい。本開示において、アスペクト比は、金属ナノワイヤの平均直径をb、長軸の平均長さをaと近似した場合、a/bで求められる値である。a及びbは、走査型電子顕微鏡(SEM)及び光学顕微鏡を用いて測定される。具体的には、b(平均直径)は電界放出形走査電子顕微鏡JSM-7000F(日本電子株式会社製)を用い、任意に選択した100本の金属ナノワイヤの寸法を測定し、得られた測定値の算術平均値として決定される。a(長軸の平均長さ)は、形状測定レーザマイクロスコープVK-X200(株式会社キーエンス製)を用い、任意に選択した100本の金属ナノワイヤの寸法を測定し、得られた測定値の算術平均値として決定される。 The average diameter of the metal nanowires is preferably 1-500 nm, more preferably 5-200 nm, even more preferably 5-100 nm, and particularly preferably 10-50 nm. The average length of the long axis of the metal nanowires is preferably 1 to 100 μm, more preferably 1 to 80 μm, even more preferably 2 to 70 μm, and particularly preferably 5 to 50 μm. The metal nanowires preferably have an average diameter and an average major axis length that satisfy the above ranges, and an average aspect ratio of more than 5, more preferably 10 or more, and more preferably 100 or more. It is preferably 200 or more, and particularly preferably 200 or more. In the present disclosure, the aspect ratio is a value obtained by a/b, where b is the average diameter of the metal nanowires, and a is the average length of the long axis. a and b are measured using a scanning electron microscope (SEM) and an optical microscope. Specifically, b (average diameter) is a measured value obtained by measuring the dimensions of 100 arbitrarily selected metal nanowires using a field emission scanning electron microscope JSM-7000F (manufactured by JEOL Ltd.). is determined as the arithmetic mean of a (average length of the long axis) is obtained by measuring the dimensions of 100 arbitrarily selected metal nanowires using a shape measuring laser microscope VK-X200 (manufactured by Keyence Corporation), and calculating the obtained measurement value. Determined as an average value.
 金属ナノワイヤの材料としては、例えば、金、銀、白金、銅、ニッケル、鉄、コバルト、亜鉛、ルテニウム、ロジウム、パラジウム、カドミウム、オスミウム、及びイリジウムからなる群から選ばれる少なくとも1種並びにこれらの金属を組み合わせた合金が挙げられる。低いシート抵抗かつ高い全光線透過率を有する透明導電膜が得られることから、金属ナノワイヤは、金、銀、銅及びアルミニウムの少なくとも1種を含むことが好ましい。これらの金属は導電性が高いことから、所定のシート抵抗を得る際に、透明導電膜における金属の面密度を減らすことができるため、高い全光線透過率を実現することができる。金属ナノワイヤは、金及び銀の少なくとも1種を含むことがより好ましく、銀ナノワイヤであることが最も好ましい。 Materials for metal nanowires include, for example, at least one selected from the group consisting of gold, silver, platinum, copper, nickel, iron, cobalt, zinc, ruthenium, rhodium, palladium, cadmium, osmium, and iridium, and these metals. and alloys in which The metal nanowires preferably contain at least one of gold, silver, copper and aluminum because a transparent conductive film having low sheet resistance and high total light transmittance can be obtained. Since these metals have high conductivity, it is possible to reduce the surface density of the metals in the transparent conductive film when obtaining a predetermined sheet resistance, so that a high total light transmittance can be achieved. The metal nanowires more preferably contain at least one of gold and silver, and are most preferably silver nanowires.
 透明導電パターン膜は、通常、導電性繊維とバインダー樹脂を含む。バインダー樹脂としては、一般に、透明性を有し、加工性に優れるものを使用することができる。導電性繊維としてポリオール法を用いて製造された金属ナノワイヤを使用する場合は、その製造用溶媒(ポリオール)との相溶性の観点から、アルコール、水、又はアルコールと水との混合溶媒に可溶なバインダー樹脂を使用することが好ましい。一実施態様では、バインダー樹脂は、ポリ-N-ビニルアセトアミド(PNVA(登録商標))、N-ビニルアセトアミド共重合体、及びセルロース系樹脂の少なくとも1種を含む。バインダー樹脂としては、ポリ-N-ビニルアセトアミド(PNVA(登録商標))、N-ビニルアセトアミド共重合体、又はセルロース系樹脂のいずれかのみを用いてもよいし、これらの複数種を併用してもよい。セルロース系樹脂は、後述する1種のみを用いることもできるが、複数種を併用してもよい。
 後加工の観点からは耐熱性が高いバインダー樹脂を使用することが好ましいことを考慮すると、ポリ-N-ビニルアセトアミド(PNVA(登録商標))がより好ましい。
A transparent conductive pattern film usually contains conductive fibers and a binder resin. As the binder resin, generally, those having transparency and excellent workability can be used. When using metal nanowires produced by the polyol method as conductive fibers, from the viewpoint of compatibility with the production solvent (polyol), it is soluble in alcohol, water, or a mixed solvent of alcohol and water. It is preferable to use a binder resin having a In one embodiment, the binder resin comprises at least one of poly-N-vinylacetamide (PNVA®), N-vinylacetamide copolymer, and cellulosic resin. As the binder resin, poly-N-vinylacetamide (PNVA (registered trademark)), N-vinylacetamide copolymer, or cellulose resin may be used alone, or a plurality of these may be used in combination. good too. Cellulose-based resins may be used alone, but may be used in combination of multiple types.
Considering that it is preferable to use a binder resin with high heat resistance from the viewpoint of post-processing, poly-N-vinylacetamide (PNVA (registered trademark)) is more preferable.
 ポリ-N-ビニルアセトアミドは、N-ビニルアセトアミド(NVA)のホモポリマーである。N-ビニルアセトアミド共重合体として、N-ビニルアセトアミド(NVA)をモノマー単位として70モル%以上含む共重合体を使用することができる。NVAと共重合可能なモノマーとしては、例えば、N-ビニルホルムアミド、N-ビニルピロリドン、アクリル酸、メタクリル酸、アクリル酸ナトリウム、メタクリル酸ナトリウム、アクリルアミド、及びアクリロニトリルが挙げられる。共重合成分の含有量が多くなると、得られる透明導電膜のシート抵抗が高くなり、金属ナノワイヤとの混和性、又は基板との密着性が低下する傾向があり、耐熱性(熱分解開始温度)も低下する傾向があるため、N-ビニルアセトアミド由来のモノマー単位は、重合体中に70モル%以上含まれることが好ましく、80モル%以上含まれることがより好ましく、90モル%以上含まれることが更に好ましい。ポリ-N-ビニルアセトアミド及びN-ビニルアセトアミド共重合体の絶対分子量基準の重量平均分子量は3万~400万であることが好ましく、10万~300万であることがより好ましく、30万~150万であることが更に好ましい。ポリ-N-ビニルアセトアミド及びN-ビニルアセトアミド共重合体の絶対分子量は以下の方法により測定される。 Poly-N-vinylacetamide is a homopolymer of N-vinylacetamide (NVA). A copolymer containing 70 mol % or more of N-vinylacetamide (NVA) as a monomer unit can be used as the N-vinylacetamide copolymer. Monomers copolymerizable with NVA include, for example, N-vinylformamide, N-vinylpyrrolidone, acrylic acid, methacrylic acid, sodium acrylate, sodium methacrylate, acrylamide, and acrylonitrile. When the content of the copolymerization component increases, the sheet resistance of the resulting transparent conductive film tends to increase, the miscibility with the metal nanowires or the adhesion to the substrate tends to decrease, and the heat resistance (thermal decomposition initiation temperature) Therefore, the monomer unit derived from N-vinylacetamide is preferably contained in the polymer at 70 mol% or more, more preferably 80 mol% or more, and 90 mol% or more. is more preferred. The weight-average molecular weight based on the absolute molecular weight of poly-N-vinylacetamide and N-vinylacetamide copolymer is preferably 30,000 to 4,000,000, more preferably 100,000 to 3,000,000, and 300,000 to 1,500,000. 10,000 is more preferable. The absolute molecular weights of poly-N-vinylacetamide and N-vinylacetamide copolymers are measured by the following method.
《絶対分子量測定》
 下記溶離液にバインダー樹脂を溶解させ、20時間静置する。この溶液におけるバインダー樹脂の濃度は0.05質量%である。
 溶液を0.45μmメンブレンフィルターにて濾過し、濾液をGPC-MALSにて分子量の測定を実施し、下記条件にて絶対分子量基準の重量平均分子量を算出する。
GPC:昭和電工株式会社製Shodex(登録商標)SYSTEM21
カラム:東ソー株式会社製TSKgel(登録商標)G6000PW
カラム温度:40℃
溶離液:0.1mol/L NaHPO水溶液+0.1mol/L NaHPO水溶液
流速 :0.64mL/min
試料注入量:100μL
MALS検出器:ワイアットテクノロジーコーポレーション、DAWN(登録商標) DSP
レーザー波長:633nm
多角度フィット法:Berry法
《Absolute molecular weight measurement》
The binder resin is dissolved in the following eluent and left to stand for 20 hours. The concentration of the binder resin in this solution is 0.05 mass %.
The solution is filtered through a 0.45 μm membrane filter, the molecular weight of the filtrate is measured by GPC-MALS, and the weight average molecular weight is calculated based on the absolute molecular weight under the following conditions.
GPC: Shodex (registered trademark) SYSTEM21 manufactured by Showa Denko K.K.
Column: TSKgel (registered trademark) G6000PW manufactured by Tosoh Corporation
Column temperature: 40°C
Eluent: 0.1 mol /L NaH2PO4 aqueous solution +0.1 mol/L Na2HPO4 aqueous solution Flow rate: 0.64 mL/min
Sample injection volume: 100 μL
MALS detector: Wyatt Technology Corporation, DAWN® DSP
Laser wavelength: 633nm
Multi-angle fitting method: Berry method
 セルロース系樹脂は、エーテル基を含む、いわゆるグリコシド結合によって共有結合された6員エーテル環からなる線状ポリマーである。セルロース自体は水、アルコール、又はアルコールと水との混合溶媒に溶解しないが、変性したセルロース誘導体の中には水、アルコール、又はアルコールと水との混合溶媒に溶解するものがある。セルロース系樹脂としては、水、アルコール、又はアルコールと水との混合溶媒のいずれかに溶解するものであれば特に制限されないが、セルロースエーテルを使用することができる。セルロースエーテルとしては、例えば、アルキルセルロース(例えば、メチルセルロース、エチルセルロースなどのC1-4アルキルセルロース)、ヒドロキシアルキルセルロース(例えば、ヒドロキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロースなどのヒドロキシC1-4アルキルセルロース)、ヒドロキシアルキルアルキルセルロース(例えば、ヒドロキシプロピルメチルセルロースなどのヒドロキシC2-4アルキルC1-4アルキルセルロース)、カルボキシアルキルセルロース(例えば、カルボキシメチルセルロース)、及びアルキル-カルボキシアルキルセルロース(例えば、メチルカルボキシメチルセルロース)が挙げられる。これらを単独で又は二種以上組み合わせて使用できる。これらの中でも上記溶媒への溶解性、耐環境性(耐湿性)の観点からメチルセルロース、又はエチルセルロースを用いることが好ましい。セルロース系樹脂の重量平均分子量は、10万~20万であることが好ましい。本開示において、セルロース系樹脂の重量平均分子量は、ゲルパーミエーションクロマトグラフィー(以下、GPCと表記する)で測定したポリエチレンオキシド換算の値である。 Cellulose-based resins are linear polymers consisting of six-membered ether rings covalently linked by so-called glycosidic bonds, including ether groups. Cellulose itself does not dissolve in water, alcohol, or mixed solvents of alcohol and water, but some modified cellulose derivatives dissolve in water, alcohol, or mixed solvents of alcohol and water. The cellulose resin is not particularly limited as long as it is soluble in water, alcohol, or a mixed solvent of alcohol and water, but cellulose ether can be used. Cellulose ethers include, for example, alkyl cellulose (e.g., C1-4 alkyl cellulose such as methyl cellulose and ethyl cellulose), hydroxyalkyl cellulose (e.g., hydroxy C1-4 alkyl cellulose such as hydroxymethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose), hydroxy Alkylalkylcelluloses (eg, hydroxyC2-4alkylC1-4alkylcelluloses such as hydroxypropylmethylcellulose), carboxyalkylcelluloses (eg, carboxymethylcellulose), and alkyl-carboxyalkylcelluloses (eg, methylcarboxymethylcellulose). These can be used individually or in combination of 2 or more types. Among these, it is preferable to use methyl cellulose or ethyl cellulose from the viewpoint of solubility in the above solvent and environmental resistance (moisture resistance). The weight average molecular weight of the cellulose resin is preferably 100,000 to 200,000. In the present disclosure, the weight-average molecular weight of the cellulose resin is a polyethylene oxide-equivalent value measured by gel permeation chromatography (hereinafter referred to as GPC).
 透明導電パターン膜を作製するための透明導電膜(全面が導電性領域:いわゆるベタ膜)は、導電性繊維、バインダー樹脂及び溶媒を含む導電性インクを基材の少なくとも一方の主面上に印刷等により塗布し、溶媒を乾燥除去することによって形成することができる。
 導電性インクに使用する溶媒は、導電性繊維が良好に分散し、かつバインダー樹脂を溶解するが基材を溶解しない溶媒であれば特に限定されない。ポリオール法を用いて製造された金属ナノワイヤを使用する場合は、その製造用溶媒(ポリオール)との相溶性の観点から、アルコール、水、又はアルコールと水との混合溶媒を使用することが好ましい。バインダー樹脂の乾燥速度を容易に制御できることから、アルコールと水との混合溶媒を使用することがより好ましい。アルコールは、C2n+1OH(nは1~3の整数)で表される炭素原子数が1~3の飽和一価アルコール(メタノール、エタノール、ノルマルプロパノール及びイソプロパノール)[以下、単に「炭素原子数が1~3の飽和一価アルコール」と表記する。]を少なくとも1種含むことが好ましく、炭素原子数が1~3の飽和一価アルコールを全アルコール中40質量%以上含むことがより好ましい。炭素原子数が1~3の飽和一価アルコールを用いると、溶媒の乾燥が容易となるため工程上有利である。アルコールとして、炭素原子数が1~3の飽和一価アルコール以外のアルコールを併用することができる。炭素原子数が1~3の飽和一価アルコール以外のアルコールとしては、例えば、エチレングリコール、プロピレングリコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、及びプロピレングリコールモノエチルエーテルが挙げられる。これらのアルコールを炭素原子数が1~3の飽和一価アルコールと併用することにより、溶媒の乾燥速度を調整することができる。混合溶媒における全アルコールの含有率は、5~90質量%であることが好適である。混合溶媒におけるアルコールの含有率が5質量%以上、又は90質量%以下であれば、導電性インクをコーティングした際に縞模様(塗布斑)の発生を抑制しやすい。
A transparent conductive film (entirely conductive region: so-called solid film) for producing a transparent conductive pattern film is printed on at least one main surface of a substrate with a conductive ink containing conductive fibers, a binder resin and a solvent. and the like, and the solvent can be removed by drying.
The solvent used for the conductive ink is not particularly limited as long as the conductive fiber is well dispersed and the solvent dissolves the binder resin but does not dissolve the substrate. When using metal nanowires produced using the polyol method, it is preferable to use alcohol, water, or a mixed solvent of alcohol and water from the viewpoint of compatibility with the production solvent (polyol). It is more preferable to use a mixed solvent of alcohol and water because the drying speed of the binder resin can be easily controlled. Alcohols are saturated monohydric alcohols (methanol, ethanol, normal propanol and isopropanol) having 1 to 3 carbon atoms represented by C n H 2n+1 OH (n is an integer of 1 to 3) [hereinafter simply “carbon atoms Saturated monohydric alcohol with a number of 1 to 3”. ], and more preferably contains at least 40% by mass of saturated monohydric alcohol having 1 to 3 carbon atoms in all alcohols. The use of a saturated monohydric alcohol having 1 to 3 carbon atoms facilitates drying of the solvent, which is advantageous in terms of the process. Alcohols other than saturated monohydric alcohols having 1 to 3 carbon atoms can be used in combination as alcohols. Examples of alcohols other than saturated monohydric alcohols having 1 to 3 carbon atoms include ethylene glycol, propylene glycol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monomethyl ether, and propylene glycol monoethyl ether. be done. By using these alcohols together with a saturated monohydric alcohol having 1 to 3 carbon atoms, the drying rate of the solvent can be adjusted. The total alcohol content in the mixed solvent is preferably 5 to 90% by mass. If the content of alcohol in the mixed solvent is 5% by mass or more or 90% by mass or less, it is easy to suppress the occurrence of striped patterns (coating spots) when the conductive ink is coated.
 導電性インクは、バインダー樹脂、導電性繊維及び溶媒を自転公転撹拌機等で撹拌し混合することにより製造することができる。導電性インク中に含有されるバインダー樹脂の含有量は0.01~1.0質量%の範囲であることが好ましい。導電性インク中に含有される導電性繊維の含有量は0.01~1.0質量%の範囲であることが好ましい。導電性インク中に含有される溶媒の含有量は98.0~99.98質量%の範囲であることが好ましい。 The conductive ink can be produced by stirring and mixing the binder resin, conductive fibers and solvent with a rotation or revolution stirrer or the like. The content of the binder resin contained in the conductive ink is preferably in the range of 0.01 to 1.0% by mass. The content of the conductive fibers contained in the conductive ink is preferably in the range of 0.01 to 1.0% by mass. The content of the solvent contained in the conductive ink is preferably in the range of 98.0 to 99.98% by mass.
 導電性インクの印刷は、バーコート法、スピンコート法、スプレーコート法、グラビア法、スリットコート法等により行うことができる。印刷により形成される透明導電パターン膜のパターンの形状については特に限定はないが、基材上に形成される配線又は電極のパターンの形状、あるいは基材の全面又は一部の面を被覆する膜(ベタパターン)の形状が挙げられる。形成したパターンは、加熱して溶媒を乾燥させることにより導電性を有する。
 透明導電パターン膜の乾燥厚みは、使用する金属ナノワイヤの径、所望するシート抵抗値等により異なるが、好ましくは10~300nmであり、より好ましくは30~200nmである。透明導電膜の乾燥厚みが10nm以上であれば金属ナノワイヤの交点の数が増えるため良好な導電性を得ることができる。透明導電膜の乾燥厚みが300nm以下であれば、光が透過しやすくなり金属ナノワイヤによる反射が抑制されるため良好な光学特性を得ることができる。必要に応じて透明導電膜に光照射を行ってもよい。
〈保護膜〉
 透明導電パターン膜上に保護膜を形成し、透明導電パターン膜を機械的に保護することが好ましい。
 一般的に、透明導電膜を保護する保護膜は、透明導電膜を機械的に保護する観点から、硬化性樹脂組成物の硬化膜を保護膜として形成することが好ましい。しかし、硬化膜は成形加工性にやや劣り、三次元成形に用いられる保護膜としては工夫して用いることが好ましい。本実施形態のように、タッチパネルに適用する場合には、透明導電パターン膜を有する透明導電フィルム積層体は通常他の部材と貼り合わせて使用される、すなわち他の部材により透明導電パターン膜が機械的に保護された形態となる。その場合、透明導電パターン膜自体には高い機械的強度は必要とされない。そのため、一実施形態の透明導電フィルム積層体を構成する保護膜は、成形加工性に優れる熱可塑性樹脂を主成分とするのが好ましい。換言すると、保護膜を構成する樹脂成分の94質量%以上が熱可塑性樹脂に由来することが好ましい。後述するように、保護膜は樹脂を溶媒に溶解した樹脂組成物を透明導電パターン膜の上に塗布することにより形成することができる。この場合、透明導電パターン膜のバインダー樹脂及び透明基材を侵すことがなく、かつ透明導電パターン膜上に良好に塗布することが可能な溶媒を含み、透明導電パターン膜上に膜形成が可能な樹脂組成物を用いるのが好ましい。適用できる樹脂組成物としては、例えば、エチルセルロース又はカルボキシ基を有するポリウレタンを含む樹脂組成物が挙げられる。エチルセルロースを含む樹脂組成物としては、例えばエトセル(登録商標)STD-100(ダウ・ケミカル社製エチルセルロース、重量平均分子量:180,000、分子量分布(Mw/Mn)=3.0[カタログ値])が挙げられる。カルボキシ基を含有するポリウレタンの重量平均分子量は、1,000~100,000であることが好ましく、3,000~85,000であることがより好ましく、5,000~70,000であることが更に好ましく、10,000~65,000が特に好ましい。本開示において、カルボキシ基を含有するポリウレタンの重量平均分子量は、GPCで測定したポリスチレン換算の値である。カルボキシ基を含有するポリウレタンの重量平均分子量が1,000以上であると、適切な塗膜の伸度、可撓性、及び強度が得られ、100,000以下であれば溶媒へのポリウレタンの溶解性が高く、また溶解しても粘度が高くなりすぎないために、使用面で制約が少ない。
The conductive ink can be printed by a bar coating method, a spin coating method, a spray coating method, a gravure method, a slit coating method, or the like. The shape of the pattern of the transparent conductive pattern film formed by printing is not particularly limited, but the shape of the wiring or electrode pattern formed on the base material, or the film covering the entire surface or a part of the base material. (solid pattern). The formed pattern becomes conductive by heating to dry the solvent.
The dry thickness of the transparent conductive pattern film is preferably 10 to 300 nm, more preferably 30 to 200 nm, although it varies depending on the diameter of the metal nanowires used, the desired sheet resistance value, and the like. If the dry thickness of the transparent conductive film is 10 nm or more, the number of intersections of the metal nanowires increases, so good conductivity can be obtained. If the dry thickness of the transparent conductive film is 300 nm or less, it is possible to obtain good optical properties because light is easily transmitted and reflection by the metal nanowires is suppressed. If necessary, the transparent conductive film may be irradiated with light.
<Protective film>
It is preferable to form a protective film on the transparent conductive pattern film to mechanically protect the transparent conductive pattern film.
In general, the protective film that protects the transparent conductive film is preferably formed from a cured film of a curable resin composition as the protective film from the viewpoint of mechanically protecting the transparent conductive film. However, the cured film is slightly inferior in moldability, and it is preferable to use it as a protective film for three-dimensional molding. As in the present embodiment, when applied to a touch panel, a transparent conductive film laminate having a transparent conductive pattern film is usually used by laminating it to another member. protected form. In that case, the transparent conductive pattern film itself does not require high mechanical strength. Therefore, it is preferable that the main component of the protective film constituting the transparent conductive film laminate of one embodiment is a thermoplastic resin having excellent moldability. In other words, it is preferable that 94% by mass or more of the resin component constituting the protective film is derived from the thermoplastic resin. As will be described later, the protective film can be formed by applying a resin composition in which a resin is dissolved in a solvent onto the transparent conductive pattern film. In this case, it contains a solvent that does not attack the binder resin and the transparent base material of the transparent conductive pattern film and that can be applied well on the transparent conductive pattern film, so that a film can be formed on the transparent conductive pattern film. It is preferred to use a resin composition. Applicable resin compositions include, for example, resin compositions containing ethyl cellulose or polyurethane having carboxy groups. Examples of the resin composition containing ethyl cellulose include Ethocel (registered trademark) STD-100 (ethyl cellulose manufactured by Dow Chemical Company, weight average molecular weight: 180,000, molecular weight distribution (Mw/Mn) = 3.0 [catalog value]). is mentioned. The weight average molecular weight of the polyurethane containing a carboxy group is preferably 1,000 to 100,000, more preferably 3,000 to 85,000, and more preferably 5,000 to 70,000. More preferably, 10,000 to 65,000 is particularly preferable. In the present disclosure, the weight average molecular weight of the carboxyl group-containing polyurethane is a polystyrene-equivalent value measured by GPC. When the weight-average molecular weight of the polyurethane containing a carboxyl group is 1,000 or more, appropriate elongation, flexibility, and strength of the coating film can be obtained. It is highly flexible and does not become too viscous when dissolved, so there are few restrictions on its use.
 本開示において、特に断りのない限り、カルボキシ基を含有するポリウレタンの重量平均分子量に関するGPCの測定条件は以下のとおりである。
装置名:日本分光株式会社製HPLCユニット HSS-2000
カラム:Shodex(登録商標)カラムLF-804
移動相:テトラヒドロフラン
流速 :1.0mL/min
検出器:日本分光株式会社製 RI-2031Plus
温度 :40.0℃
試料量:サンプルループ 100μL
試料濃度:約0.1質量%
In the present disclosure, unless otherwise specified, the GPC measurement conditions for the weight-average molecular weight of the carboxy group-containing polyurethane are as follows.
Apparatus name: HPLC unit HSS-2000 manufactured by JASCO Corporation
Column: Shodex (registered trademark) column LF-804
Mobile phase: Tetrahydrofuran Flow rate: 1.0 mL/min
Detector: RI-2031Plus manufactured by JASCO Corporation
Temperature: 40.0°C
Sample volume: sample loop 100 μL
Sample concentration: about 0.1% by mass
 カルボキシ基を含有するポリウレタンの酸価は10~140mg-KOH/gであることが好ましく、15~130mg-KOH/gであることがより好ましい。カルボキシ基を含有するポリウレタンの酸価が10mg-KOH/g以上であると、保護膜の耐溶剤性は良好であり、硬化成分を微量併用した際の樹脂組成物の硬化性も良好である。カルボキシ基を含有するポリウレタンの酸価が140mg-KOH/g以下であると、ポリウレタンの溶媒への溶解性が良好であり、樹脂組成物の粘度を所望の粘度に調整し易い。 The acid value of the polyurethane containing carboxy groups is preferably 10-140 mg-KOH/g, more preferably 15-130 mg-KOH/g. When the acid value of the carboxy group-containing polyurethane is 10 mg-KOH/g or more, the solvent resistance of the protective film is good, and the curability of the resin composition when a small amount of the curing component is used together is also good. When the acid value of the polyurethane containing a carboxyl group is 140 mg-KOH/g or less, the solubility of the polyurethane in a solvent is good, and the viscosity of the resin composition can be easily adjusted to a desired viscosity.
 本開示において、カルボキシ基を含有するポリウレタンの酸価は以下の方法により測定した値である。
 100mL三角フラスコに試料約0.2gを精密天秤にて精秤し、これにエタノール/トルエン=1/2(質量比)の混合溶媒10mLを加えて溶解する。更に、この容器に指示薬としてフェノールフタレインエタノール溶液を1~3滴添加し、試料が均一になるまで十分に撹拌する。得られた混合物を、0.1N水酸化カリウム-エタノール溶液で滴定し、指示薬の微紅色が30秒間続いたときを中和の終点とする。
In the present disclosure, the acid value of polyurethane containing carboxy groups is a value measured by the following method.
About 0.2 g of a sample is accurately weighed in a 100 mL Erlenmeyer flask using a precision balance, and 10 mL of a mixed solvent of ethanol/toluene=1/2 (mass ratio) is added and dissolved. Furthermore, 1 to 3 drops of phenolphthalein ethanol solution is added as an indicator to this container, and the sample is sufficiently stirred until it becomes homogeneous. The resulting mixture is titrated with 0.1N potassium hydroxide-ethanol solution, and the end point of neutralization is when the indicator remains slightly red for 30 seconds.
 下記の計算式を用いて得た値をカルボキシ基を含有するポリウレタンの酸価とする。
酸価(mg-KOH/g)=〔B×f×5.611〕/S
B:0.1N水酸化カリウム-エタノール溶液の使用量(mL)
f:0.1N水酸化カリウム-エタノール溶液のファクター
S:試料の採取量(g)
The value obtained using the following formula is taken as the acid value of the polyurethane containing carboxyl groups.
Acid value (mg-KOH/g) = [B x f x 5.611]/S
B: Amount of 0.1N potassium hydroxide-ethanol solution used (mL)
f: Factor S of 0.1N potassium hydroxide-ethanol solution: Amount of sample collected (g)
 カルボキシ基を含有するポリウレタンは、より具体的には、(a1)ポリイソシアネート化合物、(a2)ポリオール化合物、及び(a3)カルボキシ基を有するジヒドロキシ化合物をモノマーとして用いて合成されるポリウレタンである。耐光性及び耐候性の観点からは、(a1)、(a2)、及び(a3)はそれぞれ芳香環などの共役性を有する官能基を含まないことが望ましい。以下、各モノマーについてより詳細に説明する。 A polyurethane containing a carboxy group is more specifically a polyurethane synthesized using (a1) a polyisocyanate compound, (a2) a polyol compound, and (a3) a dihydroxy compound having a carboxy group as monomers. From the viewpoint of light resistance and weather resistance, each of (a1), (a2), and (a3) preferably does not contain a conjugated functional group such as an aromatic ring. Each monomer will be described in more detail below.
(a1)ポリイソシアネート化合物
 (a1)ポリイソシアネート化合物としては、通常、1分子当たりのイソシアナト基が2個であるジイソシアネートが用いられる。ポリイソシアネート化合物としては、例えば、脂肪族ポリイソシアネート、及び脂環式ポリイソシアネートが挙げられ、これらを単独で又は2種以上を組み合わせて用いることができる。カルボキシ基を含有するポリウレタンがゲル化をしない範囲で、イソシアナト基を3個以上有するポリイソシアネートも少量使用することができる。
(a1) Polyisocyanate compound As the (a1) polyisocyanate compound, a diisocyanate having two isocyanato groups per molecule is usually used. Examples of polyisocyanate compounds include aliphatic polyisocyanates and alicyclic polyisocyanates, and these can be used alone or in combination of two or more. A small amount of polyisocyanate having 3 or more isocyanato groups can also be used as long as the carboxy group-containing polyurethane does not gel.
 脂肪族ポリイソシアネートとしては、例えば、1,3-トリメチレンジイソシアネート、1,4-テトラメチレンジイソシアネート、1,6-ヘキサメチレンジイソシアネート、1,9-ノナメチレンジイソシアネート、1,10-デカメチレンジイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート、リジンジイソシアネート、2,2’-ジエチルエーテルジイソシアネート、及びダイマー酸ジイソシアネートが挙げられる。 Examples of aliphatic polyisocyanates include 1,3-trimethylene diisocyanate, 1,4-tetramethylene diisocyanate, 1,6-hexamethylene diisocyanate, 1,9-nonamethylene diisocyanate, 1,10-decamethylene diisocyanate, 2 , 2,4-trimethylhexamethylene diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, lysine diisocyanate, 2,2′-diethyl ether diisocyanate, and dimer acid diisocyanate.
 脂環式ポリイソシアネートとしては、例えば、1,4-シクロヘキサンジイソシアネート、1,3-ビス(イソシアナトメチル)シクロヘキサン、1,4-ビス(イソシアナトメチル)シクロヘキサン、3-イソシアナトメチル-3,5,5-トリメチルシクロヘキシルイソシアネート(IPDI、イソホロンジイソシアネート)、ビス-(4-イソシアナトシクロヘキシル)メタン(水添MDI)、水素化(1,3-又は1,4-)キシリレンジイソシアネート、及びノルボルナンジイソシアネートが挙げられる。 Alicyclic polyisocyanates include, for example, 1,4-cyclohexanediisocyanate, 1,3-bis(isocyanatomethyl)cyclohexane, 1,4-bis(isocyanatomethyl)cyclohexane, 3-isocyanatomethyl-3,5 ,5-trimethylcyclohexyl isocyanate (IPDI, isophorone diisocyanate), bis-(4-isocyanatocyclohexyl)methane (hydrogenated MDI), hydrogenated (1,3- or 1,4-)xylylene diisocyanate, and norbornane diisocyanate mentioned.
 (a1)ポリイソシアネート化合物として、イソシアナト基(-NCO基)中の炭素原子以外の炭素原子の数が6~30である脂環式化合物を用いることにより、高温高湿時の信頼性が高く、曲面領域を有するタッチパネルの部材に適した保護膜を得ることができる。上記例示した脂環式ポリイソシアネートの中でも、1,4-シクロヘキサンジイソシアネート、イソホロンジイソシアネート、ビス-(4-イソシアナトシクロヘキシル)メタン、1,3-ビス(イソシアナトメチル)シクロヘキサン、及び1,4-ビス(イソシアナトメチル)シクロヘキサンが好ましい。 (a1) By using an alicyclic compound having 6 to 30 carbon atoms other than the carbon atoms in the isocyanato group (-NCO group) as the polyisocyanate compound, the reliability at high temperature and high humidity is high, A protective film suitable for a member of a touch panel having a curved surface area can be obtained. Among the alicyclic polyisocyanates exemplified above, 1,4-cyclohexane diisocyanate, isophorone diisocyanate, bis-(4-isocyanatocyclohexyl)methane, 1,3-bis(isocyanatomethyl)cyclohexane, and 1,4-bis (Isocyanatomethyl)cyclohexane is preferred.
 上述のとおり耐候性及び耐光性の観点からは、(a1)ポリイソシアネート化合物としては芳香環を有さない化合物を用いることが好ましい。そのため、必要に応じて芳香族ポリイソシアネート、又は芳香脂肪族ポリイソシアネートを用いる場合は、これらの含有量は、(a1)ポリイソシアネート化合物の総量(100mol%)に対して、好ましくは50mol%以下、より好ましくは30mol%以下、更に好ましくは10mol%以下である。 As described above, from the viewpoint of weather resistance and light resistance, it is preferable to use a compound that does not have an aromatic ring as the (a1) polyisocyanate compound. Therefore, when an aromatic polyisocyanate or an araliphatic polyisocyanate is used as necessary, the content thereof is preferably 50 mol% or less with respect to the total amount (100 mol%) of the (a1) polyisocyanate compound, It is more preferably 30 mol % or less, still more preferably 10 mol % or less.
(a2)ポリオール化合物
 (a2)ポリオール化合物(但し(a2)ポリオール化合物には、後述する(a3)カルボキシ基を有するジヒドロキシ化合物は含まれない。)の数平均分子量は通常250~50,000であり、好ましくは400~10,000、より好ましくは500~5,000である。ポリオール化合物の数平均分子量は前述した条件でGPCにより測定したポリスチレン換算の値である。
(a2) Polyol compound (a2) Polyol compound (however, (a2) polyol compound does not include (a3) a dihydroxy compound having a carboxyl group described later) usually has a number average molecular weight of 250 to 50,000. , preferably 400 to 10,000, more preferably 500 to 5,000. The number average molecular weight of the polyol compound is a polystyrene-equivalent value measured by GPC under the conditions described above.
 (a2)ポリオール化合物としては、例えば、ポリカーボネートポリオール、ポリエーテルポリオール、ポリエステルポリオール、ポリラクトンポリオール、両末端水酸基化ポリシロキサン、並びに植物系油脂を原料とするC18(炭素原子数18)不飽和脂肪酸及びその重合物由来の多価カルボン酸を水素添加しカルボン酸を水酸基に変換して得られる炭素原子数が18~72のポリオール化合物が挙げられる。保護膜の耐水性、絶縁信頼性、及び基材との密着性のバランスの観点からは、(a2)ポリオール化合物はポリカーボネートポリオールであることが好ましい。 (a2) Polyol compounds include, for example, polycarbonate polyols, polyether polyols, polyester polyols, polylactone polyols, hydroxyl-terminated polysiloxanes, and C18 (18 carbon atoms) unsaturated fatty acids made from vegetable oils and fats, and A polyol compound having 18 to 72 carbon atoms obtained by hydrogenating a polyvalent carboxylic acid derived from the polymer and converting the carboxylic acid into a hydroxyl group is exemplified. From the viewpoint of the balance between the water resistance of the protective film, the insulation reliability, and the adhesion to the substrate, the (a2) polyol compound is preferably a polycarbonate polyol.
 ポリカーボネートポリオールは、炭素原子数3~18のジオールを、炭酸エステル又はホスゲンと反応させることにより得ることができ、例えば、以下の構造式(1)で表される。 A polycarbonate polyol can be obtained by reacting a diol having 3 to 18 carbon atoms with a carbonate ester or phosgene, and is represented by the following structural formula (1), for example.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 式(1)において、Rは対応するジオール(HO-R-OH)から水酸基を除いた残基であって炭素原子数3~18のアルカンジイル基であり、nは正の整数、好ましくは2~50である。 In formula (1), R 3 is a residue obtained by removing the hydroxyl group from the corresponding diol (HO--R 3 --OH) and is an alkanediyl group having 3 to 18 carbon atoms, n 3 is a positive integer, Preferably it is 2-50.
 式(1)で表されるポリカーボネートポリオールは、具体的には、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、3-メチル-1,5-ペンタンジオール、1,8-オクタンジオール、1,3-シクロヘキサンジメタノール、1,4-シクロヘキサンジメタノール、1,9-ノナンジオール、2-メチル-1,8-オクタンジオール、1,10-デカメチレングリコール又は1,2-テトラデカンジオールなどを原料として用いることにより製造することができる。 Specifically, the polycarbonate polyol represented by formula (1) is 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 3-methyl-1 ,5-pentanediol, 1,8-octanediol, 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, 1,9-nonanediol, 2-methyl-1,8-octanediol, 1,10 -Decamethylene glycol or 1,2-tetradecanediol can be used as a starting material.
 ポリカーボネートポリオールは、その骨格中に複数種のアルカンジイル基を有するポリカーボネートポリオール(共重合ポリカーボネートポリオール)であってもよい。共重合ポリカーボネートポリオールの使用は、カルボキシ基を含有するポリウレタンの結晶化防止の観点から有利な場合が多い。溶媒への溶解性を考慮すると、分岐骨格を有し、分岐鎖の末端に水酸基を有するポリカーボネートポリオールを併用することが好ましい。 The polycarbonate polyol may be a polycarbonate polyol (copolymerized polycarbonate polyol) having multiple types of alkanediyl groups in its skeleton. The use of copolymerized polycarbonate polyols is often advantageous from the standpoint of preventing crystallization of polyurethanes containing carboxy groups. Considering solubility in a solvent, it is preferable to use a polycarbonate polyol having a branched skeleton and a hydroxyl group at the end of the branched chain.
 本発明の効果を損なわない範囲で、(a2)ポリオール化合物として、ポリエステル又はポリカーボネートを合成する際のジオール成分として通常用いられる、分子量300以下のジオールを用いることもできる。このような低分子量ジオールとしては、例えば、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、3-メチル-1,5-ペンタンジオール、1,8-オクタンジオール、1,3-シクロヘキサンジメタノール、1,4-シクロヘキサンジメタノール、1,9-ノナンジオール、2-メチル-1,8-オクタンジオール、1,10-デカメチレングリコール、1,2-テトラデカンジオール、2,4-ジエチル-1,5-ペンタンジオール、ブチルエチルプロパンジオール、1,3-シクロヘキサンジメタノール、ジエチレングリコール、トリエチレングリコール、及びジプロピレングリコールが挙げられる。 A diol having a molecular weight of 300 or less, which is usually used as a diol component when synthesizing polyester or polycarbonate, can also be used as the (a2) polyol compound within a range that does not impair the effects of the present invention. Examples of such low molecular weight diols include ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 1 ,5-pentanediol, 1,6-hexanediol, 3-methyl-1,5-pentanediol, 1,8-octanediol, 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, 1,9 -nonanediol, 2-methyl-1,8-octanediol, 1,10-decamethylene glycol, 1,2-tetradecanediol, 2,4-diethyl-1,5-pentanediol, butylethylpropanediol, 1, 3-cyclohexanedimethanol, diethylene glycol, triethylene glycol, and dipropylene glycol.
(a3)カルボキシ基を含有するジヒドロキシ化合物
 (a3)カルボキシ基を含有するジヒドロキシ化合物としては、ヒドロキシ基、又は炭素原子数が1若しくは2のヒドロキシアルキル基から選択されるいずれかを2つ有する、分子量が200以下のカルボン酸又はアミノカルボン酸であることが架橋点を制御できる点で好ましい。(a3)カルボキシ基を含有するジヒドロキシ化合物としては、例えば、2,2-ジメチロールプロピオン酸、2,2-ジメチロールブタン酸、N,N-ビスヒドロキシエチルグリシン、及びN,N-ビスヒドロキシエチルアラニンが挙げられ、これらの中でも、溶媒への溶解性が高いことから、2,2-ジメチロールプロピオン酸、及び2,2-ジメチロールブタン酸が好ましい。(a3)カルボキシ基を含有するジヒドロキシ化合物は、単独で又は2種以上を組み合わせて用いることができる。
(a3) Dihydroxy compound containing a carboxy group (a3) The dihydroxy compound containing a carboxy group has a molecular weight having two selected from hydroxy groups and hydroxyalkyl groups having 1 or 2 carbon atoms A carboxylic acid or aminocarboxylic acid having a is 200 or less is preferable in that the cross-linking point can be controlled. (a3) Dihydroxy compounds containing a carboxy group include, for example, 2,2-dimethylolpropionic acid, 2,2-dimethylolbutanoic acid, N,N-bishydroxyethylglycine, and N,N-bishydroxyethyl Among these, 2,2-dimethylolpropionic acid and 2,2-dimethylolbutanoic acid are preferred because of their high solubility in solvents. (a3) The dihydroxy compound containing a carboxy group can be used alone or in combination of two or more.
 カルボキシ基を含有するポリウレタンは、上記の3成分((a1)、(a2)及び(a3))のみから合成が可能である。更に(a4)モノヒドロキシ化合物及び/又は(a5)モノイソシアネート化合物を反応させて合成することもできる。耐光性の観点からは、(a4)モノヒドロキシ化合物及び(a5)モノイソシアネート化合物は、分子内に芳香環又は炭素-炭素二重結合を含まない化合物であることが好ましい。 A polyurethane containing a carboxy group can be synthesized only from the above three components ((a1), (a2) and (a3)). Furthermore, it can be synthesized by reacting (a4) a monohydroxy compound and/or (a5) a monoisocyanate compound. From the viewpoint of light resistance, (a4) monohydroxy compound and (a5) monoisocyanate compound are preferably compounds that do not contain an aromatic ring or a carbon-carbon double bond in the molecule.
 カルボキシ基を含有するポリウレタンは、ジブチル錫ジラウレートのような公知のウレタン化触媒の存在下又は非存在下で、適切な有機溶媒を用いて、上記した(a1)ポリイソシアネート化合物、(a2)ポリオール化合物、及び(a3)カルボキシ基を有するジヒドロキシ化合物を反応させることにより合成することができる。カルボキシ基を含有するポリウレタンを無触媒で反応させることが、最終的に錫等の混入を考慮する必要がないため有利である。 Polyurethanes containing carboxyl groups can be prepared by using a suitable organic solvent in the presence or absence of a known urethanization catalyst such as dibutyltin dilaurate, the above-mentioned (a1) polyisocyanate compound, (a2) polyol compound , and (a3) a dihydroxy compound having a carboxy group. It is advantageous to react the carboxy group-containing polyurethane without a catalyst because it is not necessary to consider the contamination of tin or the like in the end.
 前記有機溶媒は、イソシアネート化合物と反応性が低いものであれば特に限定されない。有機溶媒は、アミン等の塩基性官能基を含まず、沸点が50℃以上、好ましくは80℃以上、より好ましくは100℃以上である溶媒が好ましい。このような溶媒としては、例えば、トルエン、キシレン、エチルベンゼン、ニトロベンゼン、シクロヘキサン、イソホロン、ジエチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、ジプロピレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、メトキシプロピオン酸メチル、メトキシプロピオン酸エチル、エトキシプロピオン酸メチル、エトキシプロピオン酸エチル、酢酸エチル、酢酸n-ブチル、酢酸イソアミル、乳酸エチル、アセトン、メチルエチルケトン、シクロヘキサノン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン、γ-ブチロラクトン、及びジメチルスルホキシドが挙げられる。 The organic solvent is not particularly limited as long as it has low reactivity with the isocyanate compound. The organic solvent preferably does not contain a basic functional group such as amine and has a boiling point of 50° C. or higher, preferably 80° C. or higher, more preferably 100° C. or higher. Examples of such solvents include toluene, xylene, ethylbenzene, nitrobenzene, cyclohexane, isophorone, diethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol monomethyl ether acetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, and dipropylene. Glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate, methyl methoxypropionate, ethyl methoxypropionate, methyl ethoxypropionate, ethyl ethoxypropionate, ethyl acetate, n-butyl acetate, isoamyl acetate, ethyl lactate, acetone, methyl ethyl ketone, cyclohexanone , N,N-dimethylformamide, N,N-dimethylacetamide, N-methylpyrrolidone, γ-butyrolactone, and dimethylsulfoxide.
 生成するポリウレタンの溶解性が低い有機溶媒は好ましくないこと、及びタッチパネル用途においてポリウレタンを保護膜の原料にすることを考慮すると、前記有機溶媒は、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、ジプロピレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、γ-ブチロラクトン、又はそれらの組合せであることが好ましい。 Considering that an organic solvent in which the resulting polyurethane has low solubility is not preferable, and that polyurethane is used as a raw material for a protective film in touch panel applications, the organic solvent includes propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, Dipropylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate, γ-butyrolactone, or combinations thereof are preferred.
 原料の投入順序については特に制約はないが、通常は(a2)ポリオール化合物及び(a3)カルボキシ基を有するジヒドロキシ化合物を先に反応容器に入れ、溶媒に溶解又は分散させた後、20~150℃、より好ましくは60~120℃で、(a1)ポリイソシアネート化合物を滴下しながら加え、その後、30~160℃、より好ましくは50~130℃でこれらを反応させる。 The order in which the raw materials are added is not particularly limited, but usually (a2) the polyol compound and (a3) the dihydroxy compound having a carboxyl group are first placed in a reaction vessel, dissolved or dispersed in a solvent, and then heated to 20 to 150°C. , more preferably at 60 to 120°C, (a1) the polyisocyanate compound is added dropwise, and then these are reacted at 30 to 160°C, more preferably 50 to 130°C.
 原料の仕込みモル比は、目的とするポリウレタンの分子量及び酸価に応じて調節される。具体的には、(a1)ポリイソシアネート化合物のイソシアナト基:((a2)ポリオール化合物の水酸基+(a3)カルボキシ基を有するジヒドロキシ化合物の水酸基)のモル比は、好ましくは0.5~1.5:1、より好ましくは0.8~1.2:1、更に好ましくは0.95~1.05:1である。(a2)ポリオール化合物の水酸基:(a3)カルボキシ基を有するジヒドロキシ化合物の水酸基のモル比は、好ましくは1:0.1~30、より好ましくは1:0.3~10である。 The molar ratio of raw materials charged is adjusted according to the molecular weight and acid value of the desired polyurethane. Specifically, the molar ratio of (a1) the isocyanato group of the polyisocyanate compound to ((a2) the hydroxyl group of the polyol compound + (a3) the hydroxyl group of the dihydroxy compound having a carboxyl group) is preferably 0.5 to 1.5. :1, more preferably 0.8-1.2:1, more preferably 0.95-1.05:1. The molar ratio of (a2) hydroxyl group of the polyol compound to (a3) hydroxyl group of the dihydroxy compound having a carboxyl group is preferably 1:0.1-30, more preferably 1:0.3-10.
 前述したとおり、保護膜を構成する樹脂成分の94質量%以上は熱可塑性樹脂に由来することが好ましい。保護膜を構成する樹脂成分の6質量%以下が硬化性樹脂(化合物)に由来してもよい。樹脂組成物中の樹脂成分の硬化性樹脂(化合物)の含有量が6質量%以下の範囲であれば、三次元成形時の加工性の顕著な低下を招くことなく、保護膜としての機能を向上させることができるため好ましい。熱可塑性樹脂と併用することができる好適な硬化性樹脂(化合物)としては一分子中に2個以上のエポキシ基を有するエポキシ樹脂(化合物)が挙げられる。 As described above, 94% by mass or more of the resin component that constitutes the protective film is preferably derived from a thermoplastic resin. 6 mass % or less of the resin component constituting the protective film may be derived from the curable resin (compound). If the content of the curable resin (compound) of the resin component in the resin composition is in the range of 6% by mass or less, the function as a protective film can be achieved without significantly reducing workability during three-dimensional molding. It is preferable because it can be improved. Suitable curable resins (compounds) that can be used in combination with thermoplastic resins include epoxy resins (compounds) having two or more epoxy groups in one molecule.
 保護膜を形成する際に、熱可塑性樹脂と熱硬化性樹脂とが互いに反応しうる場合がある。例えば、熱可塑性樹脂としてカルボキシ基を含有するポリウレタンを使用し、熱硬化性樹脂としてエポキシ樹脂を使用する場合、ポリウレタンのカルボキシ基とエポキシ樹脂のエポキシ基とが反応し、ポリウレタン-エポキシ樹脂複合体が形成される場合がある。本開示において、「保護膜を構成する樹脂成分の94質量%以上が熱可塑性樹脂に由来する」とは、保護膜の形成に使用した熱可塑性樹脂、例えばカルボキシ基を含有するポリウレタンが、保護膜の樹脂成分の94質量%以上に相当することを意味し、「保護膜を構成する樹脂成分の6質量%以下が熱硬化性樹脂に由来する」とは、保護膜の形成に使用した熱硬化性樹脂、例えばエポキシ樹脂が、保護膜の樹脂成分の6質量%以下に相当することを意味する。 When forming the protective film, the thermoplastic resin and the thermosetting resin may react with each other. For example, when a polyurethane containing a carboxy group is used as the thermoplastic resin and an epoxy resin is used as the thermosetting resin, the carboxy group of the polyurethane reacts with the epoxy group of the epoxy resin to form a polyurethane-epoxy resin composite. may be formed. In the present disclosure, "94% by mass or more of the resin component constituting the protective film is derived from a thermoplastic resin" means that the thermoplastic resin used for forming the protective film, such as a polyurethane containing a carboxyl group, is used to form the protective film. means that it corresponds to 94% by mass or more of the resin component of the protective film, and "6% by mass or less of the resin component constituting the protective film is derived from the thermosetting resin" It means that a curable resin such as an epoxy resin accounts for 6% by mass or less of the resin component of the protective film.
 一分子中に2個以上のエポキシ基を有するエポキシ樹脂(化合物)としては、例えば、ビスフェノールA型エポキシ化合物、水添ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、N-グリシジル型エポキシ樹脂、ビスフェノールAのノボラック型エポキシ樹脂、キレート型エポキシ樹脂、グリオキザール型エポキシ樹脂、アミノ基含有エポキシ樹脂、ゴム変性エポキシ樹脂、ジシクロペンタジエンフェノリック型エポキシ樹脂、シリコーン変性エポキシ樹脂、ε-カプロラクトン変性エポキシ樹脂、グリシジル基を含有する脂肪族エポキシ樹脂、グリシジル基を含有する脂環式エポキシ樹脂などを挙げることができる。 Epoxy resins (compounds) having two or more epoxy groups in one molecule include, for example, bisphenol A type epoxy compounds, hydrogenated bisphenol A type epoxy resins, bisphenol F type epoxy resins, novolac type epoxy resins, phenol novolac type Epoxy resins, cresol novolak type epoxy resins, N-glycidyl type epoxy resins, bisphenol A novolak type epoxy resins, chelate type epoxy resins, glyoxal type epoxy resins, amino group-containing epoxy resins, rubber-modified epoxy resins, dicyclopentadiene phenolic type Examples include epoxy resins, silicone-modified epoxy resins, ε-caprolactone-modified epoxy resins, glycidyl group-containing aliphatic epoxy resins, and glycidyl group-containing alicyclic epoxy resins.
 一分子中に3個以上のエポキシ基を有するエポキシ化合物をより好適に使用することができる。このようなエポキシ化合物としては、例えば、EHPE(登録商標)3150(株式会社ダイセル製)、jER(登録商標)604(三菱ケミカル株式会社製)、EPICLON(登録商標)EXA-4700(DIC株式会社製)、EPICLON(登録商標)HP-7200(DIC株式会社製)、ペンタエリスリトールテトラグリシジルエーテル、ペンタエリスリトールトリグリシジルエーテル、及びTEPIC(登録商標)-S(日産化学株式会社製)が挙げられる。 An epoxy compound having 3 or more epoxy groups in one molecule can be used more preferably. Examples of such epoxy compounds include EHPE (registered trademark) 3150 (manufactured by Daicel Corporation), jER (registered trademark) 604 (manufactured by Mitsubishi Chemical Corporation), and EPICLON (registered trademark) EXA-4700 (manufactured by DIC Corporation). ), EPICLON® HP-7200 (manufactured by DIC Corporation), pentaerythritol tetraglycidyl ether, pentaerythritol triglycidyl ether, and TEPIC®-S (manufactured by Nissan Chemical Industries, Ltd.).
 エポキシ樹脂(化合物)とカルボキシ基を含有するポリウレタンとの配合割合は、カルボキシ基を含有するポリウレタンが有するカルボキシ基(COOH)に対するエポキシ樹脂(化合物)が有するエポキシ基(Ep)のモル比(Ep/COOH)が0.02以下であることが好ましい。 The blending ratio of the epoxy resin (compound) and the carboxy group-containing polyurethane is the molar ratio (Ep/ COOH) is preferably 0.02 or less.
 なお、一分子中に1個のみエポキシ基を有するエポキシ化合物を含有することもできる。一分子中に1個のみエポキシ基を有するエポキシ化合物を使用する場合、カルボキシ基を含有するポリウレタンのカルボキシ基と反応することによる架橋構造を形成しないため、カルボキシ基を含有するポリウレタン中のカルボキシ基の残量をコントロールすることができる。一分子中に1個のみエポキシ基を有するエポキシ化合物を使用する場合のエポキシ樹脂(化合物)とカルボキシ基を含有するポリウレタンとの配合割合は、カルボキシ基を含有するポリウレタンが有するカルボキシ基(COOH)に対するエポキシ樹脂(化合物)が有するエポキシ基(Ep)のモル比(Ep/COOH)は1.0以下であることが好ましい。一分子中に2個以上のエポキシ基を有するエポキシ樹脂(化合物)と一分子中に1個のみエポキシ基を有するエポキシ樹脂(化合物)を併用する場合は、カルボキシ基を含有するポリウレタンが有するカルボキシ基(COOH)に対する、両者のエポキシ樹脂(化合物)が有するエポキシ基(Ep)の総モルとの比(Ep/COOH)は1.0以下であることが好ましい。 It is also possible to contain an epoxy compound having only one epoxy group in one molecule. When using an epoxy compound having only one epoxy group in one molecule, it does not form a crosslinked structure by reacting with the carboxy group of the carboxy group-containing polyurethane. You can control the remaining amount. When using an epoxy compound having only one epoxy group in one molecule, the blending ratio of the epoxy resin (compound) and the polyurethane containing the carboxy group is based on the carboxy group (COOH) of the polyurethane containing the carboxy group. The molar ratio (Ep/COOH) of epoxy groups (Ep) in the epoxy resin (compound) is preferably 1.0 or less. When an epoxy resin (compound) having two or more epoxy groups in one molecule and an epoxy resin (compound) having only one epoxy group in one molecule are used together, the carboxy group possessed by the polyurethane containing the carboxy group The ratio (Ep/COOH) of the total moles of epoxy groups (Ep) possessed by both epoxy resins (compounds) to (COOH) is preferably 1.0 or less.
 エポキシ樹脂(化合物)とカルボキシ基を含有するポリウレタンとを併用する場合、樹脂組成物中に硬化促進剤を更に配合することができる。硬化促進剤の具体例としては、トリフェニルホスフィン、トリブチルホスフィン等のホスフィン系化合物(北興化学工業株式会社製)、キュアゾール(登録商標)(イミダゾール系エポキシ樹脂硬化剤:四国化成株式会社製)、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール、U-CAT(登録商標)SAシリーズ(DBU塩:サンアプロ株式会社製)、及びIrgacure(登録商標)184が挙げられる。硬化促進剤の使用量は、エポキシ樹脂(化合物)100質量部に対して、好ましくは20~80質量部、より好ましくは30~70質量部、更に好ましくは40~60質量部である。上記硬化促進剤は、熱可塑性樹脂ではない樹脂成分に含まれるものとする。 When an epoxy resin (compound) and a polyurethane containing a carboxyl group are used together, a curing accelerator can be further added to the resin composition. Specific examples of curing accelerators include phosphine compounds such as triphenylphosphine and tributylphosphine (manufactured by Hokko Chemical Industry Co., Ltd.), Curesol (registered trademark) (imidazole epoxy resin curing agent: manufactured by Shikoku Kasei Co., Ltd.), 2 -Phenyl-4-methyl-5-hydroxymethylimidazole, U-CAT (registered trademark) SA series (DBU salt: manufactured by San-Apro Co., Ltd.), and Irgacure (registered trademark) 184. The amount of the curing accelerator used is preferably 20 to 80 parts by mass, more preferably 30 to 70 parts by mass, and still more preferably 40 to 60 parts by mass with respect to 100 parts by mass of the epoxy resin (compound). The curing accelerator is included in the resin component other than the thermoplastic resin.
 硬化助剤を併用してもよい。硬化助剤としては、例えば、多官能チオール化合物及びオキセタン化合物が挙げられる。多官能チオール化合物としては、例えば、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、トリス-[(3-メルカプトプロピオニルオキシ)-エチル]-イソシアヌレート、トリメチロールプロパントリス(3-メルカプトプロピオネート)、及びカレンズ(登録商標)MTシリーズ(昭和電工株式会社製)が挙げられる。オキセタン化合物としては、例えば、アロンオキセタン(登録商標)シリーズ(東亜合成株式会社製)、ETERNACOLL(登録商標)OXBP及びOXMA(いずれも宇部興産株式会社製)が挙げられる。硬化助剤の使用量は、添加した効果が得られ、かつ硬化速度の過度の上昇を回避しハンドリング性を維持することができるため、エポキシ樹脂(化合物)100質量部に対して、好ましくは0.1~10質量部、より好ましくは0.5~6質量部である。上記硬化助剤も、熱可塑性樹脂ではない樹脂成分に含まれるものとする。 A curing aid may be used together. Curing aids include, for example, polyfunctional thiol compounds and oxetane compounds. Examples of polyfunctional thiol compounds include pentaerythritol tetrakis(3-mercaptopropionate), tris-[(3-mercaptopropionyloxy)-ethyl]-isocyanurate, trimethylolpropane tris(3-mercaptopropionate). , and Karenz (registered trademark) MT series (manufactured by Showa Denko KK). Examples of the oxetane compound include Aron Oxetane (registered trademark) series (manufactured by Toagosei Co., Ltd.), ETERNACOLL (registered trademark) OXBP and OXMA (both manufactured by Ube Industries, Ltd.). The amount of the curing aid used is preferably 0 per 100 parts by mass of the epoxy resin (compound), since the effect of addition can be obtained and the handling property can be maintained by avoiding an excessive increase in the curing speed. .1 to 10 parts by mass, more preferably 0.5 to 6 parts by mass. The curing aid is also included in the resin component other than the thermoplastic resin.
 樹脂組成物は、溶媒を95.0質量%以上99.9質量%以下含むことが好ましく、96質量%以上99.7質量%以下含むことがより好ましく、97質量%以上99.5質量%以下含むことが更に好ましい。溶媒としては、透明導電パターン膜及び透明基材を侵さないものを使用することができる。カルボキシ基を含有するポリウレタンの合成に用いた溶媒をそのまま使用することもできるし、バインダー樹脂の溶解性又は印刷性を調整するために他の溶媒を用いることもできる。他の溶媒を用いる場合には、新たな溶媒を添加する前後にカルボキシ基を含有するポリウレタンの合成に用いた溶媒を留去し、溶媒を置換してもよい。操作の煩雑性及びエネルギーコストを考慮すると、カルボキシ基を含有するポリウレタンの合成に用いた溶媒の少なくとも一部をそのまま用いることが好ましい。樹脂組成物の安定性を考慮すると、溶媒の沸点は、80℃~300℃であることが好ましく、80℃~250℃であることがより好ましい。溶媒の沸点が80℃以上であれば、印刷時に一定の時間をかけて乾燥させることができ、塗膜のムラができにくい。溶媒の沸点が300℃以下であれば、乾燥及び硬化時に高温で長時間の加熱処理を必要とせず、工業的な生産を好適に行うことができる。 The resin composition preferably contains 95.0% by mass or more and 99.9% by mass or less of the solvent, more preferably 96% by mass or more and 99.7% by mass or less, and 97% by mass or more and 99.5% by mass or less. More preferably, it contains As the solvent, a solvent that does not attack the transparent conductive pattern film and the transparent base material can be used. The solvent used for synthesizing the carboxy group-containing polyurethane can be used as it is, or other solvents can be used to adjust the solubility or printability of the binder resin. When another solvent is used, the solvent used for synthesizing the carboxy group-containing polyurethane may be distilled off before and after adding the new solvent to replace the solvent. Considering the complexity of the operation and the energy cost, it is preferable to use at least part of the solvent used for synthesizing the carboxy group-containing polyurethane as it is. Considering the stability of the resin composition, the boiling point of the solvent is preferably 80°C to 300°C, more preferably 80°C to 250°C. If the boiling point of the solvent is 80° C. or higher, it can be dried over a certain period of time during printing, and unevenness in the coating film is less likely to occur. If the boiling point of the solvent is 300° C. or lower, the drying and curing do not require heat treatment at a high temperature for a long period of time, and industrial production can be suitably carried out.
 溶媒としては、プロピレングリコールモノメチルエーテルアセテート(沸点146℃)、γ-ブチロラクトン(沸点204℃)、ジエチレングリコールモノエチルエーテルアセテート(沸点218℃)、トリプロピレングリコールジメチルエーテル(沸点243℃)等のポリウレタンの合成に用いる溶媒;プロピレングリコールジメチルエーテル(沸点97℃)、ジエチレングリコールジメチルエーテル(沸点162℃)などのエーテル系の溶媒;イソプロピルアルコール(沸点82℃)、t-ブチルアルコール(沸点82℃)、1-ヘキサノール(沸点157℃)、プロピレングリコールモノメチルエーテル(沸点120℃)、ジエチレングリコールモノメチルエーテル(沸点194℃)、ジエチレングリコールモノエチルエーテル(沸点196℃)、ジエチレングリコールモノブチルエーテル(沸点230℃)、トリエチレングリコール(沸点276℃)、乳酸エチル(沸点154℃)等の水酸基を含む溶媒;メチルエチルケトン(沸点80℃)等のケトン系の溶媒;又は酢酸エチル(沸点77℃)等のエステル系の溶媒を用いることができる。これらの溶媒は、単独で又は2種以上を混合して用いることができる。2種以上を混合する場合には、カルボキシ基を含有するポリウレタンの合成に用いた溶媒に加えて、使用するポリウレタン、エポキシ樹脂などの溶解性を考慮して、凝集及び沈殿が生じない、ヒドロキシ基を有する沸点が100℃超である溶媒、又はインクの乾燥性の観点から沸点が100℃以下の溶媒を併用することが好ましい。溶媒単独では透明導電膜又は基材を侵す溶媒も、他の溶媒との混合溶媒として透明導電パターン膜又は基材を侵さない組成にして使用することが好ましい。 Solvents include propylene glycol monomethyl ether acetate (boiling point 146°C), γ-butyrolactone (boiling point 204°C), diethylene glycol monoethyl ether acetate (boiling point 218°C), tripropylene glycol dimethyl ether (boiling point 243°C), etc. Solvents to be used; ether solvents such as propylene glycol dimethyl ether (boiling point 97° C.) and diethylene glycol dimethyl ether (boiling point 162° C.); isopropyl alcohol (boiling point 82° C.), t-butyl alcohol (boiling point 82° C.), 1-hexanol (boiling point 157 ° C.), propylene glycol monomethyl ether (boiling point 120° C.), diethylene glycol monomethyl ether (boiling point 194° C.), diethylene glycol monoethyl ether (boiling point 196° C.), diethylene glycol monobutyl ether (boiling point 230° C.), triethylene glycol (boiling point 276° C.), A solvent containing a hydroxyl group such as ethyl lactate (boiling point 154°C); a ketone solvent such as methyl ethyl ketone (boiling point 80°C); or an ester solvent such as ethyl acetate (boiling point 77°C) can be used. These solvents can be used alone or in combination of two or more. When two or more types are mixed, in addition to the solvent used for synthesizing the polyurethane containing a carboxyl group, the solubility of the polyurethane to be used, the epoxy resin, etc. should be taken into account, and a hydroxy group that does not cause aggregation and precipitation will be or a solvent with a boiling point of 100° C. or less from the viewpoint of the drying property of the ink. Solvents that attack the transparent conductive film or the base material when used alone are preferably used as mixed solvents with other solvents so as to have a composition that does not attack the transparent conductive pattern film or the base material.
 樹脂組成物は、カルボキシ基を含有するポリウレタンに、必要に応じてエポキシ化合物と、硬化促進剤と、硬化助剤とを配合した混合物に、樹脂組成物中の溶媒の含有率が95.0質量%以上99.9質量%以下となるように溶媒を配合し、これらの成分が均一になるように撹拌して製造することができる。 The resin composition is a mixture obtained by blending a polyurethane containing a carboxyl group with an epoxy compound, a curing accelerator, and a curing aid as necessary, and the content of the solvent in the resin composition is 95.0 mass. % or more and 99.9% by mass or less, and stirred so that these components become uniform.
 樹脂組成物中の固形分濃度は所望する膜厚及び印刷方法によっても異なるが、0.1~10質量%であることが好ましく、0.5質量%~5質量%であることがより好ましい。固形分濃度が0.1~10質量%の範囲であると、樹脂組成物を透明導電膜上に塗布したときに、膜厚が過度に厚くなることがなく、透明導電パターン膜との電気的なコンタクトを取れる状態を保持することができ、かつ保護膜に耐候性及び耐光性を付与することができる。 Although the solid content concentration in the resin composition varies depending on the desired film thickness and printing method, it is preferably 0.1 to 10% by mass, more preferably 0.5% to 5% by mass. When the solid content concentration is in the range of 0.1 to 10% by mass, the film thickness does not become excessively thick when the resin composition is applied on the transparent conductive film, and the electrical connection with the transparent conductive pattern film is maintained. In addition, the protective film can be provided with weather resistance and light resistance.
 以上に述べた樹脂組成物を使用し、バーコート印刷法、グラビア印刷法、インクジェット法、スリットコート法等の印刷により、透明導電パターン膜上に樹脂組成物を塗布し、溶媒を乾燥及び除去することにより保護膜が形成される。保護膜の厚みは通常100nm超1μm以下である。保護膜の厚みは、100nm超500nm以下であることが好ましく、100nm超200nm以下であることがより好ましく、100nm超150nm以下であることが更に好ましく、100nm超120nm以下であることが特に好ましい。保護膜の厚みが1μm以下であれば、後工程で配線と透明導電パターン膜との導通が得られやすく、好ましい。 Using the resin composition described above, the resin composition is applied on the transparent conductive pattern film by printing such as bar coat printing, gravure printing, inkjet method, slit coating method, etc., and the solvent is dried and removed. A protective film is thus formed. The thickness of the protective film is usually more than 100 nm and 1 μm or less. The thickness of the protective film is preferably more than 100 nm and 500 nm or less, more preferably more than 100 nm and 200 nm or less, still more preferably more than 100 nm and 150 nm or less, and particularly preferably more than 100 nm and 120 nm or less. If the thickness of the protective film is 1 μm or less, it is preferable because electrical continuity between the wiring and the transparent conductive pattern film can be easily obtained in a post-process.
《タッチパネル》
 上述のとおり基材上に透明導電パターン膜(例えば銀ナノワイヤを含む層)及び保護膜を順次形成することにより得られる透明導電フィルム積層体を用いて、本開示の一実施例のタッチパネルが得られる。
 タッチパネルの構成、製造法について、図1及び図2を参照して、説明する。
 図1は一実施態様のタッチパネルを内蔵したディスプレイ(入出力一体型表示装置)12の層構成を示す模式図である。タッチパネル内蔵ディスプレイ12は、ディスプレイ13と、ディスプレイ13に接合された全面にわたって曲面領域を有するタッチパネル11とを備える。ディスプレイ13は、特に限定されないが、OLED(Organic Light Emitting Diode)及びマイクロLEDが例示される。ディスプレイ13とタッチパネル11は、例えば、粘着テープによって接合してもよい。模式図では示していないが、タッチパネル11は曲面領域を有する部分のほか、平坦な部分を有していてもよい。
《Touch panel》
A touch panel according to an embodiment of the present disclosure is obtained using a transparent conductive film laminate obtained by sequentially forming a transparent conductive pattern film (for example, a layer containing silver nanowires) and a protective film on a substrate as described above. .
The configuration and manufacturing method of the touch panel will be described with reference to FIGS. 1 and 2. FIG.
FIG. 1 is a schematic diagram showing the layer structure of a display (input/output integrated display device) 12 incorporating a touch panel according to one embodiment. The touch panel built-in display 12 includes a display 13 and a touch panel 11 joined to the display 13 and having a curved area over the entire surface. Although the display 13 is not particularly limited, an OLED (Organic Light Emitting Diode) and a micro LED are exemplified. The display 13 and the touch panel 11 may be joined by, for example, an adhesive tape. Although not shown in the schematic diagram, the touch panel 11 may have a flat portion in addition to the portion having the curved surface area.
 タッチパネル11は、検出回路15と接続されている。当該タッチパネル11は、図2に示すように、カバーフィルム16と、透明導電フィルム積層体18とを備える。透明導電フィルム積層体18は、透明基材24と、透明基材24両方の主面にそれぞれ設けられた第1透明導電パターン膜26A及び第2透明導電パターン膜26Bと、第1透明導電パターン膜26Aを覆う第1保護膜28Aと、第2透明導電パターン膜26Bを覆う第2保護膜28Bとを有する。
 第1透明導電パターン膜26Aは、第1透明導電パターンを有し、第2透明導電パターン膜26Bは、第2透明導電パターンを有する。第1透明導電パターン膜は、金属ナノワイヤ同士が交差して電気的に接続した第1導電性領域と、例えば、金属ナノワイヤ同士が交差して電気的に接続した複数の交差部が局所的に残存するものの、非導電性を示すレベルまで細かく分断された第1非導電性領域とを含む。第1導電性領域は、複数の電極が第1方向に連なった電極列を有する。同様に、第2透明導電パターン膜は、金属ナノワイヤ同士が交差して電気的に接続した第2導電性領域と、例えば、金属ナノワイヤ同士が交差して電気的に接続した複数の交差部が局所的に残存するものの、非導電性を示すレベルまで細かく分断された第2非導電性領域とを含む。第2導電性領域は、第1方向と直交する第2方向に複数の電極が連なった電極列を有する。
The touch panel 11 is connected with the detection circuit 15 . The touch panel 11 includes a cover film 16 and a transparent conductive film laminate 18, as shown in FIG. The transparent conductive film laminate 18 includes a transparent base material 24, a first transparent conductive pattern film 26A and a second transparent conductive pattern film 26B provided on both main surfaces of the transparent base material 24, respectively, and a first transparent conductive pattern film. It has a first protective film 28A covering 26A and a second protective film 28B covering the second transparent conductive pattern film 26B.
The first transparent conductive pattern film 26A has a first transparent conductive pattern, and the second transparent conductive pattern film 26B has a second transparent conductive pattern. In the first transparent conductive pattern film, a first conductive region in which the metal nanowires intersect and are electrically connected, and, for example, a plurality of crossing portions in which the metal nanowires intersect and are electrically connected remain locally. and a first non-conductive region finely divided to a level exhibiting non-conductivity. The first conductive region has an electrode row in which a plurality of electrodes are arranged in a row in the first direction. Similarly, the second transparent conductive pattern film includes a second conductive region in which the metal nanowires intersect and are electrically connected to each other, and for example, a plurality of intersections in which the metal nanowires intersect and electrically connect to each other. and a second non-conductive region which remains substantially but is finely divided to a level exhibiting non-conductivity. The second conductive region has an electrode row in which a plurality of electrodes are connected in a second direction perpendicular to the first direction.
 第1透明導電パターン膜26Aは、透明基材24の一方の主面上に形成されている。第2透明導電パターン膜26Bは、透明基材24の他方の主面上に形成されている。図示しないが、透明導電フィルム積層体18の第1保護膜28A及び第2保護膜28Bの上の、第1透明導電パターン膜26Aの電極列端部及び第2透明導電パターン膜26Bの電極列端部に対応する位置にそれぞれ、電極パッドが設けられている。また、電極パッドに接続されるように引出線(いずれも図示しない)が設けられている。電極パッド及び引出線は、例えば、導電ペーストをスクリーン印刷等によって塗布して一体に形成することができる。引出線は、端子(図示しない)の基端に接続される。端子の先端は、透明基材24の外縁から外側に突出している。端子の先端には、図示しない配線が接続される。第1透明導電パターン膜26A及び第2透明導電パターン膜26Bは、配線を通じてそれぞれ検出回路15(図1)に電気的に接続されている。検出回路15は、タッチパネル11表面、すなわちカバーフィルム16の表面に指が触れると、第1透明導電パターン膜26Aの電極パッドと第2透明導電パターン膜26Bの電極パッド同士の間に生じる静電容量の変化を検出することによって、指の位置を測定する。
 透明導電フィルム積層体18を形成する工程は、透明基材上にベタ状の透明導電膜を形成する工程と、保護膜を形成する工程と、透明基材上にパターン形成する工程とを有することが好ましい。
 透明導電膜を形成する工程では、透明基材24の一方の主面上に第1透明導電パターン膜26Aのもととなる第1透明導電膜、透明基材24の他方の主面上に第2透明導電パターン膜26Bのもととなる第2透明導電膜をそれぞれ形成する。第1透明導電膜及び第2透明導電膜の形成方法は、導電性インクを透明基材24上に塗布、加熱して溶媒を乾燥することにより形成することができる。印刷膜の形状は、透明基材24の全面を被覆する膜(ベタパターン)であることが好ましい。乾燥中及び乾燥後に加熱や光照射などの処理を行う。
A first transparent conductive pattern film 26A is formed on one main surface of the transparent substrate 24 . A second transparent conductive pattern film 26B is formed on the other main surface of the transparent substrate 24 . Although not shown, the electrode row ends of the first transparent conductive pattern film 26A and the electrode row ends of the second transparent conductive pattern film 26B on the first protective film 28A and the second protective film 28B of the transparent conductive film laminate 18 Electrode pads are provided at positions corresponding to the portions. In addition, lead lines (none of which are shown) are provided so as to be connected to the electrode pads. The electrode pads and lead wires can be integrally formed by applying a conductive paste by screen printing or the like, for example. The lead wire is connected to the proximal end of the terminal (not shown). The tip of the terminal protrudes outward from the outer edge of the transparent base material 24 . Wiring (not shown) is connected to the tip of the terminal. The first transparent conductive pattern film 26A and the second transparent conductive pattern film 26B are electrically connected to the detection circuit 15 (FIG. 1) through wiring. The detection circuit 15 detects the capacitance generated between the electrode pads of the first transparent conductive pattern film 26A and the second transparent conductive pattern film 26B when a finger touches the surface of the touch panel 11, that is, the surface of the cover film 16. It measures finger position by detecting changes in .
The step of forming the transparent conductive film laminate 18 includes a step of forming a solid transparent conductive film on a transparent substrate, a step of forming a protective film, and a step of forming a pattern on the transparent substrate. is preferred.
In the step of forming the transparent conductive film, the first transparent conductive film forming the first transparent conductive pattern film 26A is formed on one main surface of the transparent base material 24, and the second transparent conductive film is formed on the other main surface of the transparent base material 24 to form the first transparent conductive pattern film 26A. 2. A second transparent conductive film is formed as a base for the transparent conductive pattern film 26B. The first transparent conductive film and the second transparent conductive film can be formed by coating conductive ink on the transparent substrate 24 and heating to dry the solvent. The shape of the printed film is preferably a film (solid pattern) covering the entire surface of the transparent substrate 24 . Treatments such as heating and light irradiation are performed during and after drying.
 保護膜を形成する工程では、上記第1透明導電膜上に第1保護膜28A、上記第2透明導電膜上に第2保護膜28B、をそれぞれ形成する。第1保護膜28A及び第2保護膜28Bの形成方法は上記第1透明導電膜及び第2透明導電膜と同様であり、樹脂組成物を第1透明導電膜上及び第2透明導電膜上にそれぞれ印刷、塗布し、乾燥させて形成する。なお、第1保護膜28Aは第1透明導電膜形成後に、第2保護膜28Bは第2透明導電膜形成後に、それぞれ形成する必要があるが、第1保護膜28A及び第2保護膜28Bは、第1透明導電膜及び第2透明導電膜形成後に形成する必然性はない。すなわち、第1透明導電膜→第2透明導電膜→第1保護膜28A→第2保護膜28Bの順で形成することもできるし、第1透明導電膜→第1保護膜28A→第2透明導電膜→第2保護膜28Bの順で形成することもできる。 In the step of forming protective films, a first protective film 28A is formed on the first transparent conductive film, and a second protective film 28B is formed on the second transparent conductive film. The method of forming the first protective film 28A and the second protective film 28B is the same as that for the first transparent conductive film and the second transparent conductive film. They are formed by printing, coating, and drying. The first protective film 28A and the second protective film 28B need to be formed after forming the first transparent conductive film and the second protective film 28B after forming the second transparent conductive film, respectively. , there is no necessity of forming after forming the first transparent conductive film and the second transparent conductive film. That is, it is also possible to form in the order of first transparent conductive film→second transparent conductive film→first protective film 28A→second protective film 28B, or first transparent conductive film→first protective film 28A→second transparent film. It is also possible to form the conductive film and then the second protective film 28B in this order.
 続いて、パターン形成工程を行う。パルス幅が1ナノ秒より短いパルスレーザーを用いて、上記第1保護膜28A側から上記第1透明導電膜にのみエッチング加工し第1導電パターンを形成して、第1透明導電パターン膜26Aとなす。前述した通り基材として厚みが40μm以上である透明樹脂フィルムを使用すると、透明な樹脂フィルムであってもパルス状レーザー光の貫通を抑制することができる。透明導電膜は、光透過スペクトルにおいて、これを構成する金属ナノワイヤの交差部を有するナノ構造ネットワークに基づく特徴的な吸収ピークを有する。そのため、第1保護膜28A側から、光透過スペクトルにおけるナノ構造ネットワークに基づく吸収ピーク極大波長±30nmの波長領域内であり、かつ樹脂フィルムの光線透過率が80%以上である波長であり、パルス幅が1ナノ秒より短いパルスレーザーを第1透明導電膜に当てると、基材の裏面側に形成された第2透明導電膜はエッチング加工されず、第1透明導電膜のみ選択的にエッチング加工することができる。金属ナノワイヤの交差部を有するナノ構造ネットワークは、光透過スペクトルにおいて、これに基因する吸収ピークを有するため、この吸収ピーク極大波長に近い波長(吸収ピーク極大波長±30nmの範囲内)のパルスレーザーによりエッチング加工ができる。上記第1保護膜28A側からの第1透明導電膜への選択的エッチング加工後、同様に第2保護膜28B側から第2透明導電膜への選択的エッチング加工が可能である。すなわち、第2透明導電膜に対して第1透明導電膜に形成される第1導電性領域及び第1非導電性領域を有する第1透明導電パターン膜26Aとは異なる第2導電性領域及び第2非導電性領域を有する第2透明導電パターン膜26Bを形成できる。パルスレーザーのパルス幅は0.1(100ピコ秒)ナノ秒未満であることが好ましく、0.01ナノ秒(10ピコ秒)未満であることがより好ましく、0.001ナノ秒(1ピコ秒)未満、すなわちフェムト秒パルスレーザーを使用することがさらに好ましい。 Next, a pattern forming process is performed. Using a pulsed laser with a pulse width shorter than 1 nanosecond, only the first transparent conductive film is etched from the side of the first protective film 28A to form a first conductive pattern, thereby forming a first transparent conductive pattern film 26A. Eggplant. As described above, when a transparent resin film having a thickness of 40 μm or more is used as the base material, penetration of the pulsed laser beam can be suppressed even with a transparent resin film. Transparent conductive films have characteristic absorption peaks in the optical transmission spectrum due to their constituent nanostructured networks with the intersections of metal nanowires. Therefore, from the first protective film 28A side, the wavelength is within the wavelength region of ±30 nm, the absorption peak maximum wavelength based on the nanostructure network in the light transmission spectrum, and the light transmittance of the resin film is 80% or more. When a pulse laser having a width shorter than 1 nanosecond is applied to the first transparent conductive film, the second transparent conductive film formed on the back side of the substrate is not etched, and only the first transparent conductive film is selectively etched. can do. Since the nanostructure network having the intersections of metal nanowires has an absorption peak due to this in the light transmission spectrum, it can be detected by a pulsed laser with a wavelength close to this absorption peak maximum wavelength (within the absorption peak maximum wavelength ± 30 nm). Can be etched. After selective etching of the first transparent conductive film from the first protective film 28A side, selective etching of the second transparent conductive film from the second protective film 28B side is similarly possible. That is, the second conductive region and the second conductive region different from the first transparent conductive pattern film 26A having the first conductive region and the first non-conductive region formed in the first transparent conductive film with respect to the second transparent conductive film 26A. A second transparent conductive pattern film 26B having two non-conductive regions can be formed. The pulse width of the pulsed laser is preferably less than 0.1 (100 picoseconds) nanoseconds, more preferably less than 0.01 nanoseconds (10 picoseconds), 0.001 nanoseconds (1 picosecond) ), i.e. femtosecond pulsed lasers are more preferably used.
 上記パルスレーザーにより透明導電膜をエッチング加工すると、パルスレーザーが照射された範囲に存在していた、透明導電膜を構成する、金属ナノワイヤの交差部を有するナノ構造ネットワークを形成している金属が溶融し、導電性を発現するに十分なネットワーク構造を維持できなくなり、非導電性領域となる。ナノ構造ネットワークを形成していたワイヤ状の金属は破断され、非導電性領域は、ナノ構造ネットワークの断片を含む。この断片には、種々の形状のものが含まれ、例えばナノワイヤが分断され粒状(球状、楕円状、柱状等)となったものや、局所的にネットワーク構造(金属ナノワイヤの交差部を含む)が残存するものの非導電性領域全体としては非導電性を示すレベルまで細かく分断されたもの(金属ナノワイヤの交差部(十字状断片)等)が挙げられる。 When the transparent conductive film is etched by the pulse laser, the metal forming the nanostructure network having the intersections of the metal nanowires, which is present in the area irradiated with the pulse laser and which constitutes the transparent conductive film, melts. As a result, it becomes impossible to maintain a sufficient network structure to exhibit conductivity, resulting in a non-conductive region. The wire-like metal that formed the nanostructured network is broken and the non-conductive regions contain fragments of the nanostructured network. The fragments include those of various shapes, for example, nanowires cut into granules (spherical, elliptical, columnar, etc.), and local network structures (including intersections of metal nanowires). The remaining non-conductive regions as a whole include those that are finely divided to the level of non-conductivity (intersections of metal nanowires (cross-shaped fragments), etc.).
 パターン形成をレーザー光により行うと、照射された透明導電膜の領域に含まれる導電性を発現するのに十分なネットワーク構造が維持できなくなり当該領域が非導電性となるため、薬液の使用が不要であり、廃液が出ず、かつ小ロットや任意の形状への対応が容易である。レーザーの好ましい波長は250nm~1400nmである。導電性繊維として金属ナノワイヤを用いる場合は、短径(金属ナノワイヤの直径)の吸収である波長である250nm~450nmであるとより好ましい。特にパルスレーザーによりパターン形成する際に、過剰な加熱を抑制できるという観点から好ましい。
 形成するパターンの形状は任意で、公知の物から選択できる。タッチパネルの位置認識センサーに使用するため、第1透明導電膜と第2透明導電膜それぞれに、複数の電極列を形成する。その結果、透明導電膜は、複数の電極列を含む導電性領域と、非導電領域、とを有する透明導電パターン膜(第1透明導電パターン膜26A、第2透明導電パターン膜26B)となる。透明導電パターン膜の開口率は40%以上70%以下であり、45%以上69%以下であることが好ましく、45%以上68%以下であることがより好ましい。透明導電パターン膜の開口率が70%を超えると透明導電膜のシート抵抗が大きくなりすぎ、タッチパネルとしての感度が低くなり、好ましくない。この観点から透明導電フィルム積層体18を構成する透明導電膜は低シート抵抗であることが好ましく、1Ω/□以上300Ω/□以下が好ましく、15Ω/□以上200Ω/□以下がより好ましく、さらには20Ω/□以上100Ω/□以下が好ましい。透明導電パターン膜の開口率が40%より小さい場合、光学特性が悪化するので、透明導電フィルム積層体として適さない。パターン形成後に開口率が40%以上70%以下となるようにパターン加工し易い観点からパターン形成前の透明導電膜自体の開口率も40%以上70%以下であるものを用いることが好ましいが、開口率が40%未満の開口率である透明導電膜をパターン形成後の透明導電パターン膜の開口率が40%以上70%以下となるようにパターン加工することもできる。なお、透明導電パターン膜を構成する導電性領域の開口率を、40%以上70%以下とすることが、骨見えを抑制する上で好ましい。
 なお、この開口率は、透明導電パターン膜の平面視において、導電性繊維(導電性繊維が金属ナノワイヤである場合は、ナノ構造ネットワークを構成する金属ナノワイヤ及びナノ構造ネットワークの断片)が占有していない領域の面積比率(%)であり、後述する通り形状測定レーザマイクロスコープで観察して算出する。
When patterning is performed by laser light, the network structure contained in the irradiated area of the transparent conductive film cannot be maintained sufficiently to exhibit conductivity, and the area becomes non-conductive, eliminating the need to use chemicals. Therefore, no waste liquid is generated, and it is easy to deal with small lots and arbitrary shapes. Preferred wavelengths for lasers are between 250 nm and 1400 nm. When metal nanowires are used as the conductive fibers, the wavelength is more preferably 250 nm to 450 nm, which is the absorption wavelength of the short diameter (diameter of the metal nanowires). In particular, it is preferable from the viewpoint that excessive heating can be suppressed when forming a pattern with a pulse laser.
The shape of the pattern to be formed is arbitrary and can be selected from known ones. A plurality of electrode rows are formed on each of the first transparent conductive film and the second transparent conductive film for use as a position recognition sensor of a touch panel. As a result, the transparent conductive film becomes a transparent conductive pattern film (first transparent conductive pattern film 26A, second transparent conductive pattern film 26B) having conductive regions including a plurality of electrode rows and non-conductive regions. The aperture ratio of the transparent conductive pattern film is 40% or more and 70% or less, preferably 45% or more and 69% or less, and more preferably 45% or more and 68% or less. If the aperture ratio of the transparent conductive pattern film exceeds 70%, the sheet resistance of the transparent conductive film becomes too large, and the sensitivity as a touch panel becomes low, which is not preferable. From this viewpoint, the transparent conductive film constituting the transparent conductive film laminate 18 preferably has a low sheet resistance, preferably 1 Ω/□ or more and 300 Ω/□ or less, more preferably 15 Ω/□ or more and 200 Ω/□ or less, and further. 20Ω/□ or more and 100Ω/□ or less is preferable. If the aperture ratio of the transparent conductive pattern film is less than 40%, the optical properties deteriorate, so it is not suitable as a transparent conductive film laminate. It is preferable to use a transparent conductive film having an aperture ratio of 40% or more and 70% or less before pattern formation from the viewpoint of easy pattern processing so that the aperture ratio is 40% or more and 70% or less after pattern formation. A transparent conductive film having an aperture ratio of less than 40% can also be patterned so that the aperture ratio of the transparent conductive pattern film after pattern formation is 40% or more and 70% or less. In order to suppress visible bones, it is preferable to set the aperture ratio of the conductive region constituting the transparent conductive pattern film to 40% or more and 70% or less.
In addition, this aperture ratio is occupied by the conductive fibers (when the conductive fibers are metal nanowires, the metal nanowires and the nanostructure network fragments constituting the nanostructure network) in a plan view of the transparent conductive pattern film. It is the area ratio (%) of the area without the shavings, and is calculated by observing with a shape measuring laser microscope as described later.
《引出線接続方法》
 基材上に形成された透明導電パターン膜の電極列からの引出線接続方法の実施形態を図3に基づいて説明する。なお、説明を簡略化するため、図3では透明導電フィルム積層体を平面視した状態として、電極列(単位電極の形状は省略)2を有する透明導電パターン膜1を示している。
 図3の(a)に示すように、電極列2の一方の末端に、例えば、銀ペースト等のスクリーン印刷により接続する引出線3を形成する。次いで図3(b)に示すように透明導電パターン膜1のうち図の上下及び左側の不要部分を裁断する。更に、図3(c)に示すように引出線3の先にフレキシブルプリント回路基板3′を接続する。最後に、図3(d)に示すように透明導電パターン膜1右側の不要部分を裁断し、タッチパネルの製造に使用できる形状となる。
 電極列2と引出線3が表面に形成された第1の透明導電パターン膜1は、基材を介して裏面にあり、同様に電極列と引出線が表面に形成された第2の透明導電パターン膜平面と共に、曲面状に成形されてタッチパネルが得られる。
《Leader wire connection method》
An embodiment of a method for connecting lead wires from electrode rows of a transparent conductive pattern film formed on a substrate will be described with reference to FIG. In order to simplify the explanation, FIG. 3 shows the transparent conductive pattern film 1 having the electrode array (the shape of the unit electrode is omitted) 2 as a plan view of the transparent conductive film laminate.
As shown in FIG. 3(a), a lead wire 3 is formed at one end of the electrode row 2 for connection by screen printing of silver paste or the like. Next, as shown in FIG. 3(b), unnecessary portions of the transparent conductive pattern film 1 on the top, bottom and left sides of the figure are cut. Further, a flexible printed circuit board 3' is connected to the tip of the lead wire 3 as shown in FIG. 3(c). Finally, as shown in FIG. 3(d), the unnecessary portion on the right side of the transparent conductive pattern film 1 is cut to obtain a shape that can be used for manufacturing a touch panel.
A first transparent conductive pattern film 1 having electrode rows 2 and lead wires 3 formed on the surface is located on the back surface via a substrate, and a second transparent conductive pattern film similarly having electrode rows and lead wires formed on the surface. Together with the plane of the pattern film, it is molded into a curved surface to obtain a touch panel.
 他の透明導電フィルム積層体の実施形態として、第1透明導電フィルム積層体18Aと第2透明導電フィルム積層体18Bとを備えることもできる。図2に示した透明導電フィルム積層体の実施形態では、透明基材24の両方の主面上にそれぞれ透明導電パターン膜26A,26Bを備えた透明導電フィルム積層体18を説明したが、本発明はこれに限らない。例えば、図2と同じ構成について同じ符号を付した図4を参照して説明する。図4に示すタッチパネル41は、第1透明導電フィルム積層体18Aと第2透明導電フィルム積層体18Bとを備える。第1透明導電フィルム積層体18Aは、第1透明基材24A、第1透明導電パターン膜26A、第1保護膜28Aを順に有する。第2透明導電フィルム積層体18Bは、第2透明基材24B、第2透明導電パターン膜26B、第2保護膜28Bを順に有する。第1透明基材24Aと第2保護膜28Bが後述する接着層30を介して接合されることによって、第1透明導電フィルム積層体18Aと第2透明導電フィルム積層体18Bとが一体化されている。本実施形態では、透明基材の一方の主表面にのみ透明導電パターン膜を有する透明導電フィルム積層体を2つ用いる、換言すると、他方の主表面には透明導電膜を有していない透明導電フィルム積層体を2つ用いるため、一方の主表面の透明導電膜を加工するパルスレーザー光が透明基材を貫通して他の透明導電膜にダメージを与えるおそれがない。したがって、本実施形態のタッチパネルには、厚みが40μm未満、好ましくは10μm以上の透明な樹脂フィルムも適用することができる。
 また第1及び第2の透明導電膜は、上述した方法で同様に第1透明基材24A及び第2透明基材24B上に形成することができる。電極列や引出線等の形成も同様に、一般に知られている方法で形成でき、具体的には上述した方法を用いることができる。
As another embodiment of the transparent conductive film laminate, a first transparent conductive film laminate 18A and a second transparent conductive film laminate 18B can be provided. In the embodiment of the transparent conductive film laminate shown in FIG. 2, the transparent conductive film laminate 18 provided with the transparent conductive pattern films 26A and 26B on both main surfaces of the transparent base material 24 has been described. is not limited to this. For example, description will be made with reference to FIG. 4 in which the same components as those in FIG. 2 are denoted by the same reference numerals. A touch panel 41 shown in FIG. 4 includes a first transparent conductive film laminate 18A and a second transparent conductive film laminate 18B. 18 A of 1st transparent conductive film laminated bodies have 24 A of 1st transparent base materials, 26 A of 1st transparent conductive pattern films, and 28 A of 1st protective films in order. The second transparent conductive film laminate 18B has a second transparent substrate 24B, a second transparent conductive pattern film 26B, and a second protective film 28B in this order. The first transparent conductive film laminate 18A and the second transparent conductive film laminate 18B are integrated by bonding the first transparent substrate 24A and the second protective film 28B via an adhesive layer 30, which will be described later. there is In this embodiment, two transparent conductive film laminates having a transparent conductive pattern film only on one main surface of a transparent substrate are used. Since two film laminates are used, there is no risk that the pulsed laser beam for processing the transparent conductive film on one main surface will penetrate the transparent substrate and damage the other transparent conductive film. Therefore, a transparent resin film having a thickness of less than 40 μm, preferably 10 μm or more can also be applied to the touch panel of the present embodiment.
Also, the first and second transparent conductive films can be similarly formed on the first transparent substrate 24A and the second transparent substrate 24B by the method described above. Similarly, the electrode arrays, lead wires, and the like can be formed by commonly known methods, and specifically, the methods described above can be used.
《タッチパネル内蔵ディスプレイ》
 図2記載のタッチパネル層構成例の場合に、図1記載のタッチパネル内蔵ディスプレイ(入出力一体型表示装置とも称する)を得るためには、接合工程で、カバーフィルム16と透明導電フィルム積層体18を接合してタッチパネル11を得た後、タッチパネル11とディスプレイ13を接合してタッチパネル内蔵ディスプレイ12を得る。接着層30を介して第1保護膜28Aとカバーフィルム16を接合してタッチパネル11を得る。次いで、タッチパネル11は、第2保護膜28Bと、ディスプレイ13とが接合されることによって、ディスプレイ13と一体化される。上記のようにして、タッチパネル11を備えた、タッチパネル内蔵ディスプレイが形成される。図1では、タッチパネル11とディスプレイ13がそれぞれ曲面を有する形状から接合しているように図示しているが、両者を接合した後に三次元成形を行ってもよいし、タッチパネル11を曲面を有するように成形を行った後、ディスプレイ13を接合してもよい。後者の場合、ディスプレイ13は、平面形状であってもよい。図4記載のタッチパネル層構成例の場合には、カバーフィルム16と、第1透明導電フィルム積層体18Aと、第2透明導電フィルム積層体18Bと、をこの配列で接着層30を介して接合一体化してタッチパネル41を得た後、タッチパネル41の第2透明基材24Bとディスプレイ13を接合してタッチパネル内蔵ディスプレイを得ることができる。接着層30を介して接合一体化する順序は問わない。タッチパネル41とディスプレイ13を接合した後に三次元成形を行ってもよいし、タッチパネル41を曲面を有するように成形を行った後、ディスプレイ13を接合してもよい。後者の場合、ディスプレイ13は、平面形状であってもよい。
 接着層30には上下に面している層を接着できるものを用いる。例えば、接着可能なOCA(Optical Clear Adhesive)のような光透過性で接着性を有するフィルム、OCR(Optical Clear Resin)のような重合性化合物を含む液状の硬化性接着層用組成物から形成された光透過性フィルム等が挙げられる。ディスプレイ13が平面形状の場合、OCRを用いることが好ましい。接着層の膜厚は10μm~150μmが好ましい。
《Display with built-in touch panel》
In the case of the touch panel layer configuration example shown in FIG. 2, in order to obtain the touch panel built-in display (also referred to as an input/output integrated display device) shown in FIG. After bonding to obtain the touch panel 11, the touch panel 11 and the display 13 are bonded to obtain the touch panel built-in display 12.例文帳に追加The touch panel 11 is obtained by bonding the first protective film 28A and the cover film 16 via the adhesive layer 30 . Next, the touch panel 11 is integrated with the display 13 by bonding the second protective film 28B and the display 13 together. As described above, a touch panel built-in display including the touch panel 11 is formed. In FIG. 1 , the touch panel 11 and the display 13 are illustrated as if they are joined from a shape having a curved surface. After molding, the display 13 may be bonded. In the latter case, display 13 may be planar. In the case of the touch panel layer configuration example shown in FIG. After the second transparent substrate 24B of the touch panel 41 and the display 13 are joined together, a touch panel built-in display can be obtained. The order of bonding and integration via the adhesive layer 30 does not matter. The three-dimensional molding may be performed after the touch panel 41 and the display 13 are bonded together, or the display 13 may be bonded after the touch panel 41 is molded to have a curved surface. In the latter case, display 13 may be planar.
As the adhesive layer 30, a layer capable of adhering layers facing up and down is used. For example, a film having optical transparency and adhesiveness such as OCA (Optical Clear Adhesive) that can be adhered, or a liquid curable adhesive layer composition containing a polymerizable compound such as OCR (Optical Clear Resin) is formed. and a light transmissive film. If the display 13 has a planar shape, it is preferable to use OCR. The film thickness of the adhesive layer is preferably 10 μm to 150 μm.
 なお、上記カバーフィルム16は、電極等を含むタッチパネルの保護のために設けられる。曲面領域を有する形状への成形が可能であり、ディスプレイ上の画像・文字等の視認性が維持できる材質であれば、カバーフィルム16は特に限定されない。例えば、ポリカーボネート、ポリエステル(ポリエチレンテレフタレート[PET]、ポリエチレンナフタレート[PEN]等)、アクリル樹脂(ポリメチルメタクリレート[PMMA]等)等の樹脂フィルムを使用することができる。更に、これらの樹脂フィルムの上側(観察者側)に強度向上のためのハードコート層等の保護層を設けること、対薬品性向上のための表面処理を行うことなども可能である。表面処理は、次の成形後に実施する場合もある。 The cover film 16 is provided to protect the touch panel including the electrodes and the like. The cover film 16 is not particularly limited as long as it can be molded into a shape having a curved surface area and can maintain the visibility of images, characters, etc. on the display. For example, resin films such as polycarbonate, polyester (polyethylene terephthalate [PET], polyethylene naphthalate [PEN], etc.), and acrylic resins (polymethyl methacrylate [PMMA], etc.) can be used. Furthermore, it is possible to provide a protective layer such as a hard coat layer on the upper side (observer side) of these resin films to improve strength, and to perform surface treatment to improve chemical resistance. Surface treatment may be performed after subsequent molding.
《三次元成形》
 基材上に透明導電パターン膜(例えば銀ナノワイヤを含む層)及び保護膜を順次形成することにより得られる透明導電フィルム積層体は、三次元成形性に優れる。透明導電フィルム積層体の三次元成形方法としては、真空成形、ブロー成形、フリーブロー成形、圧空成形、真空圧空成形、熱プレス成形等、種々の公知の方法が挙げられる。特に、熱プレス、真空圧空成形等の加熱しながら成形を行う加熱フォーミングが好ましい。
 いずれの方法を用いても、三次元加工した透明導電フィルム積層体には応力がかかり歪みが発生する。この歪みに伴い透明導電フィルム積層体は延伸される。三次元成形性が低い透明導電フィルム積層体では、低応力(低延伸倍率)で、透明導電フィルム積層体を構成する透明導電パターン膜の破断又はシート抵抗値の顕著な増大が通常認められる。一方、三次元成形性が良好な透明導電フィルム積層体では、高応力(高延伸倍率)まで透明導電パターン膜の破断が発生しないか、あるいはシート抵抗値の上昇が小さい。従って、透明導電フィルム積層体を引張試験してシート抵抗値の変化を測定することにより、透明導電フィルム積層体の三次元成形性を評価することができる。樹脂成分の94質量%以上が熱可塑性樹脂である保護膜を使用することにより、歪みを加えても保護膜にクラックが発生し難く、保護膜のクラックが透明導電パターン膜に伝搬してその導電性を損なうことを回避できるためと考えられる。三次元成形性の観点からは、保護膜は硬化成分(エポキシ化合物、硬化促進剤等)を含まないことが好ましい。
《Three-dimensional molding》
A transparent conductive film laminate obtained by sequentially forming a transparent conductive pattern film (for example, a layer containing silver nanowires) and a protective film on a substrate has excellent three-dimensional formability. Examples of the three-dimensional molding method for the transparent conductive film laminate include various known methods such as vacuum molding, blow molding, free blow molding, air pressure molding, vacuum pressure molding, and heat press molding. In particular, heat forming, such as hot press and vacuum pressure forming, is preferred.
Regardless of which method is used, stress is applied to the three-dimensionally processed transparent conductive film laminate and distortion occurs. The transparent conductive film laminate is stretched along with this strain. In a transparent conductive film laminate with low three-dimensional moldability, breakage of the transparent conductive pattern film constituting the transparent conductive film laminate or significant increase in sheet resistance is usually observed at low stress (low draw ratio). On the other hand, in a transparent conductive film laminate with good three-dimensional moldability, the transparent conductive pattern film does not break even under high stress (high draw ratio), or the increase in sheet resistance is small. Therefore, the three-dimensional moldability of the transparent conductive film laminate can be evaluated by performing a tensile test on the transparent conductive film laminate and measuring the change in the sheet resistance value. By using a protective film in which 94% by mass or more of the resin component is a thermoplastic resin, cracks are less likely to occur in the protective film even when strain is applied, and cracks in the protective film propagate to the transparent conductive pattern film to reduce its conductivity. It is thought that this is because it is possible to avoid impairing the quality. From the viewpoint of three-dimensional moldability, the protective film preferably does not contain a curing component (epoxy compound, curing accelerator, etc.).
 本開示のタッチパネル11は、透明導電フィルム積層体18を備えることにより、三次元加工性に優れるので、曲面領域を有するディスプレイに設けることによって、曲面を有するタッチパネル内蔵ディスプレイ12を形成することができる。ディスプレイ13が平面であっても曲面を有するタッチパネル11を設けることで曲面を有するタッチパネル内蔵ディスプレイ12を形成できる。タッチパネル内蔵ディスプレイ12は、ディスプレイ13の点灯時、ディスプレイ13の表示がタッチパネル11を透過する。したがってユーザーは、タッチパネル11のディスプレイ13が接合された主面と反対側の主面からディスプレイ13の表示を視認できる。ユーザーが、タッチパネル内蔵ディスプレイ12の表面であるカバーフィルム16の主面を指で触れると、検出回路15が指の位置を測定する。このようにしてユーザーは、タッチパネル11を通じて所望の操作を行うことができる。本開示のタッチパネル41でも同様である。 Since the touch panel 11 of the present disclosure is provided with the transparent conductive film laminate 18, it is excellent in three-dimensional workability, so by providing it in a display having a curved surface area, the touch panel built-in display 12 having a curved surface can be formed. Even if the display 13 is flat, the display 12 with a built-in touch panel having a curved surface can be formed by providing the touch panel 11 having a curved surface. In the touch panel built-in display 12, the display of the display 13 is transmitted through the touch panel 11 when the display 13 is lit. Therefore, the user can visually recognize the display of the display 13 from the main surface of the touch panel 11 opposite to the main surface to which the display 13 is joined. When the user touches the main surface of the cover film 16, which is the surface of the display with built-in touch panel 12, with a finger, the detection circuit 15 measures the position of the finger. Thus, the user can perform desired operations through the touch panel 11 . The same applies to the touch panel 41 of the present disclosure.
 本実施態様のタッチパネルは曲面領域を有するため、タッチパネルの適用場所の形状が平面でない場合にその形状と合わせることも可能となり、また、スイッチ等の入力領域を曲面に形成して、他の領域からの視認性を高めることも可能となる。 Since the touch panel of this embodiment has a curved area, it is possible to match it with the shape of the touch panel when the shape of the place where the touch panel is applied is not flat. It is also possible to improve the visibility of
 図1に示したタッチパネル11は、凹状の円筒面を有する円筒面形状である場合について例示したが、本発明はこれに限らない。例えば変形例である図5に示すようにタッチパネル32は、凸状の円筒面を有する半円筒形状でもよい。タッチパネル32は、凸状の円筒面33を有し、ユーザーが円筒面33に触れることで操作することができる。別の変形例である図6に示すように、タッチパネル34は、ドーム形状でもよい。タッチパネル34は、凸状の球面35を有し、ユーザーが球面35に触れることで操作することができる。 Although the touch panel 11 shown in FIG. 1 has a cylindrical shape with a concave cylindrical surface, the present invention is not limited to this. For example, as shown in FIG. 5, which is a modified example, the touch panel 32 may have a semi-cylindrical shape having a convex cylindrical surface. The touch panel 32 has a convex cylindrical surface 33 and can be operated by a user touching the cylindrical surface 33 . As shown in another variation, FIG. 6, the touch panel 34 may be dome-shaped. The touch panel 34 has a convex spherical surface 35 and can be operated by the user touching the spherical surface 35 .
《適用例》
 得られたタッチパネルは各種ディスプレイの少なくとも一部の上に配設することにより、入出力一体型表示装置とすることができる。ディスプレイの例としては、有機EL,液晶ディスプレイ、リアプロジェクション装置等が挙げられる。
 本実施態様のタッチパネルの用途として、車載用ディスプレイが挙げられる。具体的にはカーナビゲーション、オーディオ機器、室温調整パネルなどを含む車内のセンターコンソールに使用可能である。その他、銀行ATM、券売機、金融機関の受付、公共施設等の検索型の観光案内機器:工場の機器操作部:パソコン、複合機などIT機器の入力部分:店舗のPOSシステム:医療における各種機器の表示、アミューズメント施設での表示等が挙げられる。
<<Application example>>
By arranging the obtained touch panel on at least a part of various displays, an input/output integrated display device can be obtained. Examples of displays include organic EL, liquid crystal displays, and rear projection devices.
Applications of the touch panel of the present embodiment include an in-vehicle display. Specifically, it can be used in car center consoles, including car navigation systems, audio equipment, and room temperature control panels. In addition, bank ATMs, ticket vending machines, reception desks at financial institutions, search-type tourist information equipment for public facilities, etc.: Factory equipment operation units: PCs, multi-function devices, etc. IT equipment input parts: Store POS systems: Various medical equipment display, display at amusement facilities, and the like.
 本発明は、以上の実施態様に限らず、本発明の思想内であれば、他の実施態様も可能である。
 例えば、上記実施形態では、電極のパターニングを導電性インク塗布、導電化後に実施したが、導電性インクの印刷時にパターニングすることも可能である。
 また、図3では主にタッチパネルのほぼ全面に電極列を設け、ほぼ全面が入力領域となる例を示したが、次のような形式も可能である。
 1)入力領域を、曲面領域上の1又は複数の特定個所に設ける。複数の入力領域を有する場合は、各入力領域が異なる形状を有してもよい。
 2)1つの入力領域内で曲率が異なる個所を設ける、又は、複数の入力領域がそれぞれ異なる曲率を有すること。この場合、曲率を変えることで、入力領域の境界の視認性を高めることが可能となる。
 3)曲面への成形として、タッチパネルの端部以外は全体を盛り上げること。
 4)入力領域とする特定個所のみ曲面領域を形成すること。
 5)曲面領域以外の個所にも入力領域を設けること。
The present invention is not limited to the above embodiments, and other embodiments are possible within the spirit of the present invention.
For example, in the above embodiments, the patterning of the electrodes is performed after applying the conductive ink and making it conductive, but it is also possible to perform the patterning when the conductive ink is printed.
Further, although FIG. 3 mainly shows an example in which electrode rows are provided on almost the entire surface of the touch panel, and almost the entire surface serves as an input area, the following form is also possible.
1) An input area is provided at one or more specific locations on a curved surface area. If there are multiple input areas, each input area may have a different shape.
2) Providing locations with different curvatures in one input area, or having multiple input areas with different curvatures. In this case, it is possible to improve the visibility of the boundary of the input area by changing the curvature.
3) For molding into a curved surface, the entire touch panel must be raised except for the edges.
4) Forming a curved surface area only at a specific portion as an input area.
5) Provide an input area in a place other than the curved surface area.
 上記1)2)を満たす、タッチパネルを自動車内のセンターコンソールに適用した入出力一体型表示装置とした場合の、タッチパネル部分の一例の模式図を図7に示す。本例においてタッチパネル36は、略直方体形状の第1入力領域37、及び、略円錐台形状の第2入力領域38の2つの形状が異なる入力領域を、曲面領域39上に有し、全体はセンターコンソールの形状と合わせて一体成形されている。第1入力領域37は、例えば縦7cm、横5cm、高さ1cmの略直方体形状であり、センターコンソールの前方に設けられており、第2入力領域38は、第1入力領域37より小さく、例えば底面直径約3cm、上面直径約2cm、高さ約1cmの円錐台形状であり、センターコンソールの運転手席近くに設けられる。
 第1入力領域37には、初期画面として、カーナビゲーション、空調、照明、電話、オーディオ機器等のシステムを示すアイコン類が表示され(図省略)、ユーザーは所望のアイコンを視認しながら選択して触れることにより、各システムの操作が可能となるように設計されている。更に、第2入力領域38は、ユーザーが第2入力領域38に一回又は複数回触れることにより、第1入力領域37及び第2入力領域38に表示されるシステムを切り変えることができ、また、第2入力領域38をスワイプして触ることにより、そのスワイプした距離に応じて、第1入力領域37及び第2入力領域38のシステムに表示される数字(温度、距離等)等を変更することができるように設計されている。
 第1入力領域37は上記したようにセンターコンソールの前方に設けられており、自動車運転中に運転手が、第1入力領域37に表示されるアイコンを視認しながら操作することは困難である。一方、第2入力領域38は運転手席近くに存在するため、運転手は、運転中に手元を視認せずに、当該第2入力領域38を操作することが可能であり、結果として、運転中に実質第1入力領域37に表示されるシステムの操作が可能となる。
 タッチパネル36において、第1入力領域37及び第2入力領域38以外の箇所に、照明等単独のシステム専用の第3入力領域(図示せず)を1個又は複数個設けることも好ましい態様である。
FIG. 7 shows a schematic diagram of an example of a touch panel portion when the touch panel is applied to the center console of an automobile and is used as an input/output integrated type display device that satisfies the above 1) and 2). In this example, the touch panel 36 has two input areas with different shapes, a first input area 37 having a substantially rectangular parallelepiped shape and a second input area 38 having a substantially truncated cone shape, on the curved surface area 39. It is integrally molded to match the shape of the console. The first input area 37 has, for example, a substantially rectangular parallelepiped shape of 7 cm long, 5 cm wide, and 1 cm high, and is provided in front of the center console. It has a truncated cone shape with a bottom diameter of about 3 cm, a top diameter of about 2 cm, and a height of about 1 cm, and is installed near the driver's seat on the center console.
In the first input area 37, as an initial screen, icons indicating systems such as car navigation, air conditioning, lighting, telephone, and audio equipment are displayed (not shown). It is designed so that each system can be operated by touching it. Further, the second input area 38 allows the user to switch between the systems displayed in the first input area 37 and the second input area 38 by touching the second input area 38 one or more times, and , By swiping and touching the second input area 38, the numbers (temperature, distance, etc.) displayed on the system in the first input area 37 and the second input area 38 are changed according to the swiped distance. designed to be able to
As described above, the first input area 37 is provided in front of the center console, and it is difficult for the driver to operate while viewing the icons displayed in the first input area 37 while driving. On the other hand, since the second input area 38 exists near the driver's seat, the driver can operate the second input area 38 without visually recognizing his hand while driving. Operation of the system substantially displayed in the first input area 37 becomes possible.
It is also preferable to provide one or a plurality of third input areas (not shown) dedicated to a single system such as illumination in places other than the first input area 37 and the second input area 38 on the touch panel 36 .
 以下、実施例により本発明の実施形態を詳細に説明するが、発明の実施形態は、これら実施例に何ら限定されるものではない。 The embodiments of the present invention will be described in detail below with reference to examples, but the embodiments of the present invention are not limited to these examples.
<銀ナノワイヤの作製>
 ポリビニルピロリドンK-90(株式会社日本触媒製、0.98g)、AgNO(1.04g)及びFeCl(0.8mg)を、エチレングリコール(250mL)に溶解し、150℃で1時間加熱して反応させた。得られた銀ナノワイヤ粗分散液を水/エタノール=20/80[質量比]混合溶媒2000mLに分散させ、卓上小型試験機(日本ガイシ株式会社製、セラミック膜フィルター セフィルト使用、膜面積0.24m、孔径2.0μm、寸法Φ30mm×250mm、ろ過差圧0.01MPa)に流し入れ、循環流速12L/min、分散液温度25℃にてクロスフロー濾過を実施することにより不純物を除去し、銀ナノワイヤを得た。
 銀ナノワイヤの平均直径は26nm、長軸の平均長さは20μmであった。銀ナノワイヤの平均直径は、電界放出形走査電子顕微鏡JSM-7000F(日本電子株式会社製)を用い、任意に選択した100本の銀ナノワイヤの寸法(径)を測定し、得られた測定値の算術平均値として求めた。銀ナノワイヤの長軸の平均長さは、形状測定レーザマイクロスコープVK-X200(キーエンス株式会社製)を用い、任意に選択した100本の銀ナノワイヤの寸法(長さ)を測定し、得られた測定値の算術平均値として求めた。
 エタノール、エチレングリコール、AgNO、及びFeClとしては、富士フイルム和光純薬株式会社製の試薬を用いた。
<Production of silver nanowires>
Polyvinylpyrrolidone K-90 (manufactured by Nippon Shokubai Co., Ltd., 0.98 g), AgNO 3 (1.04 g) and FeCl 3 (0.8 mg) were dissolved in ethylene glycol (250 mL) and heated at 150° C. for 1 hour. reacted with The obtained silver nanowire coarse dispersion is dispersed in 2000 mL of a mixed solvent of water / ethanol = 20/80 [mass ratio], and a desktop small tester (manufactured by NGK INSULATORS, LTD., using a ceramic membrane filter Sefilt, membrane area 0.24 m 2 , pore diameter 2.0 μm, size Φ 30 mm × 250 mm, filtration differential pressure 0.01 MPa), circulation flow rate 12 L / min, dispersion temperature 25 ° C. Remove impurities by performing cross flow filtration, and silver nanowires. Obtained.
The silver nanowires had an average diameter of 26 nm and an average major axis length of 20 μm. The average diameter of the silver nanowires is obtained by measuring the dimension (diameter) of 100 arbitrarily selected silver nanowires using a field emission scanning electron microscope JSM-7000F (manufactured by JEOL Ltd.). Calculated as an arithmetic mean. The average length of the long axis of the silver nanowires was obtained by measuring the dimension (length) of 100 arbitrarily selected silver nanowires using a shape measuring laser microscope VK-X200 (manufactured by Keyence Corporation). It was obtained as an arithmetic mean value of the measured values.
Reagents manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd. were used as ethanol, ethylene glycol, AgNO 3 and FeCl 3 .
<導電性インク(銀ナノワイヤインク)の作製>
調製例1(銀ナノワイヤインク1)
 上記ポリオール法で合成した銀ナノワイヤの水/エタノール混合溶媒の分散液11g(銀ナノワイヤ濃度1.30質量%、水/エタノール=20/80[質量比])、水1.1g、メタノール6.0g(富士フイルム和光純薬株式会社製)、エタノール7.2g(富士フイルム和光純薬株式会社製)、プロピレングリコールモノメチルエーテル(PGME、富士フイルム和光純薬株式会社製)12.8g、プロピレングリコール1.2g(PG、旭硝子株式会社製)、ポリ-N-ビニルアセトアミド(PNVA(登録商標))水溶液(昭和電工株式会社製、グレード:GE191-103,固形分濃度10質量%、絶対分子量90万)0.65gを混合し、ミックスローターVMR-5R(アズワン株式会社製)で1時間、室温、大気雰囲気下で撹拌(回転速度100rpm)して銀ナノワイヤインク1を40.0g作製した。
<Preparation of conductive ink (silver nanowire ink)>
Preparation Example 1 (silver nanowire ink 1)
11 g of a water/ethanol mixed solvent dispersion of silver nanowires synthesized by the polyol method (silver nanowire concentration 1.30% by mass, water/ethanol = 20/80 [mass ratio]), 1.1 g of water, 6.0 g of methanol (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.), 7.2 g of ethanol (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.), 12.8 g of propylene glycol monomethyl ether (PGME, manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.), propylene glycol1. 2 g (PG, manufactured by Asahi Glass Co., Ltd.), poly-N-vinylacetamide (PNVA (registered trademark)) aqueous solution (manufactured by Showa Denko Co., Ltd., grade: GE191-103, solid content concentration 10% by mass, absolute molecular weight 900,000) 0 0.65 g was mixed and stirred for 1 hour at room temperature in an air atmosphere (rotation speed 100 rpm) with a mix rotor VMR-5R (manufactured by AS ONE Corporation) to prepare 40.0 g of silver nanowire ink 1.
調製例2(銀ナノワイヤインク2)
 上記ポリオール法で合成した銀ナノワイヤの水/エタノール混合溶媒の分散液11gとして、銀ナノワイヤ濃度0.60質量%、水/エタノール=20/80[質量比]のものを使用する以外、調製例1と同様にして、銀ナノワイヤインク2を40.0g作製した。
Preparation Example 2 (silver nanowire ink 2)
As 11 g of the water/ethanol mixed solvent dispersion of the silver nanowires synthesized by the polyol method, Preparation Example 1 was used except that the silver nanowire concentration was 0.60% by mass and water/ethanol = 20/80 [mass ratio]. 40.0 g of silver nanowire ink 2 was prepared in the same manner as.
調製例3(銀ナノワイヤインク3)
 上記ポリオール法で合成した銀ナノワイヤの水/エタノール混合溶媒の分散液11g(銀ナノワイヤ濃度0.60質量%、水/エタノール=20/80[質量比])、水1.75g、メタノール6.0g(富士フイルム和光純薬株式会社製)、エタノール6.55g(富士フイルム和光純薬株式会社製)、プロピレングリコールモノメチルエーテル(PGME、富士フイルム和光純薬株式会社製)12.8g、プロピレングリコール1.2g(PG、旭硝子株式会社製)、エトセル(登録商標)STD100cps(ダウ・ケミカル(米)製エチルセルロース)溶液(固形分濃度10質量%エタノール溶液)0.65gを混合し、ミックスローターVMR-5R(アズワン株式会社製)で1時間、室温、大気雰囲気下で撹拌(回転速度100rpm)して銀ナノワイヤインク3を40.0g作製した。
Preparation Example 3 (silver nanowire ink 3)
11 g of a water/ethanol mixed solvent dispersion of silver nanowires synthesized by the above polyol method (silver nanowire concentration 0.60% by mass, water/ethanol = 20/80 [mass ratio]), 1.75 g of water, 6.0 g of methanol (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.), 6.55 g of ethanol (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.), 12.8 g of propylene glycol monomethyl ether (PGME, manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.), propylene glycol1. 2 g (PG, manufactured by Asahi Glass Co., Ltd.), Ethocel (registered trademark) STD 100 cps (ethyl cellulose manufactured by Dow Chemical (US)) solution (10% by mass solid concentration ethanol solution) 0.65 g were mixed, and mixed with a mix rotor VMR-5R ( manufactured by AS ONE Co., Ltd.) for 1 hour at room temperature in an air atmosphere (rotational speed: 100 rpm) to prepare 40.0 g of silver nanowire ink 3.
調製例4(銀ナノワイヤインク4)
 上記ポリオール法で合成した銀ナノワイヤの水/エタノール混合溶媒の分散液11g(銀ナノワイヤ濃度0.15質量%、水/エタノール=20/80[質量比])、水1.1g、メタノール6.0g(富士フイルム和光純薬株式会社製)、エタノール7.2g(富士フイルム和光純薬株式会社製)、プロピレングリコールモノメチルエーテル(PGME、富士フイルム和光純薬株式会社製)12.8g、プロピレングリコール1.2g(PG、旭硝子株式会社製)、PNVA(登録商標)水溶液(昭和電工株式会社製、グレード:GE191-103,固形分濃度10質量%、絶対分子量90万)0.65gを混合し、ミックスローターVMR-5R(アズワン株式会社製)で1時間、室温、大気雰囲気下で撹拌(回転速度100rpm)して銀ナノワイヤインク4を40.0g作製した。
Preparation Example 4 (silver nanowire ink 4)
11 g of a water/ethanol mixed solvent dispersion of silver nanowires synthesized by the polyol method (silver nanowire concentration 0.15% by mass, water/ethanol = 20/80 [mass ratio]), 1.1 g of water, and 6.0 g of methanol (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.), 7.2 g of ethanol (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.), 12.8 g of propylene glycol monomethyl ether (PGME, manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.), propylene glycol1. 2 g (PG, manufactured by Asahi Glass Co., Ltd.), PNVA (registered trademark) aqueous solution (manufactured by Showa Denko Co., Ltd., grade: GE191-103, solid content concentration 10% by mass, absolute molecular weight 900,000) 0.65 g is mixed and mixed with a mix rotor. 40.0 g of silver nanowire ink 4 was prepared by stirring with VMR-5R (manufactured by AS ONE Corporation) for 1 hour at room temperature in an air atmosphere (rotational speed: 100 rpm).
<銀ナノワイヤインク塗膜の印刷>
 上記調製例1で調製した銀ナノワイヤインク1を用いて、バーコート印刷機(コーテック株式会社製AFA-Standard)により、ポリカーボネート(PC)フィルム(三菱ガス化学株式会社製ユーピロン(登録商標)FS-2000H、ガラス転移温度:130℃(カタログ値)、100μm厚)の主面上に、ウェット膜厚20μmにて塗工し、A4サイズのベタパターンとして透明導電膜(銀ナノワイヤインク塗膜)を印刷した。
 楠本化成株式会社製恒温器ETAC HS350を用い、80℃、1分の条件で溶媒乾燥を行った後、得られた透明導電膜のシート抵抗を測定した。シート抵抗は、透明導電膜(ベタパターン)を3cm角毎のエリアに区切り、各々のエリアの中央付近を非接触式抵抗測定器(ナプソン株式会社製EC-80P)を用いて測定した30点のシート抵抗の算術平均値である。銀ナノワイヤインク1を用いた透明導電膜のシート抵抗は、いずれも20Ω/□であった。
 透明導電膜の厚みを、光干渉法に基づく膜厚測定システムF20-UV(フィルメトリクス株式会社製)を用いて測定した結果、80nmであった。なお、透明導電膜の厚みは、解析に450nmから800nmのスペクトルを用い、測定箇所を変え、3点測定した平均値を用いた。この測定システムによると、透明基材上に形成された銀ナノワイヤ層の膜厚(Tc)を直接測定することができる。
<Printing of silver nanowire ink coating>
Using the silver nanowire ink 1 prepared in Preparation Example 1 above, a polycarbonate (PC) film (Iupilon (registered trademark) FS-2000H manufactured by Mitsubishi Gas Chemical Company, Inc.) was printed with a bar coater (AFA-Standard manufactured by Kotec Co., Ltd.). , glass transition temperature: 130 ° C. (catalog value), 100 μm thickness) on the main surface, coated with a wet film thickness of 20 μm, and a transparent conductive film (silver nanowire ink coating film) was printed as an A4 size solid pattern. .
Using a thermostat ETAC HS350 manufactured by Kusumoto Kasei Co., Ltd., the solvent was dried at 80° C. for 1 minute, and then the sheet resistance of the obtained transparent conductive film was measured. The sheet resistance was obtained by dividing the transparent conductive film (solid pattern) into areas of 3 cm square, and measuring the vicinity of the center of each area using a non-contact resistance measuring device (EC-80P manufactured by Napson Co., Ltd.). Arithmetic mean value of sheet resistance. The sheet resistance of the transparent conductive film using the silver nanowire ink 1 was 20Ω/□.
The thickness of the transparent conductive film was measured using a film thickness measurement system F20-UV (manufactured by Filmetrics Co., Ltd.) based on light interferometry, and found to be 80 nm. For the thickness of the transparent conductive film, a spectrum from 450 nm to 800 nm was used for analysis, and the average value obtained by measuring three points at different measurement points was used. According to this measurement system, it is possible to directly measure the film thickness (Tc) of the silver nanowire layer formed on the transparent substrate.
<保護膜インク(樹脂組成物)の作製>
カルボキシ基を含有するポリウレタンの合成例
合成例1
 撹拌装置、温度計、及びコンデンサー(還流冷却器)を備えた2L三口フラスコに、ポリオール化合物としてC-1015N(株式会社クラレ製、ポリカーボネートジオール、原料ジオールのモル比:1,9-ノナンジオール:2-メチル-1,8-オクタンジオール=15:85、分子量964)16.7g、カルボキシ基を含有するジヒドロキシ化合物として2,2-ジメチロールブタン酸(湖州長盛化工有限公司社製)10.8g、及び溶媒としてプロピレングリコールモノメチルエーテルアセテート(富士フイルム和光純薬株式会社製)62.6gを仕込み、90℃で前記2,2-ジメチロールブタン酸を溶解させた。
 反応液の温度を70℃まで下げ、滴下漏斗を用いて、ポリイソシアネートとしてデスモジュール(登録商標)-W(ビス-(4-イソシアネートシクロヘキシル)メタン、住化コベストロウレタン株式会社製)23.5gを30分かけて滴下した。滴下終了後、100℃に昇温し、100℃で15時間反応を行い、ほぼイソシアネートが消失したことをIRによって確認した後、イソブタノールを0.5g加え、更に100℃にて6時間反応を行った。得られたカルボキシ基を含有するポリウレタンのGPCにより求められた重量平均分子量は33,500、その樹脂溶液の酸価は39.4mg-KOH/gであった。
<Production of protective film ink (resin composition)>
Synthesis Example of Polyurethane Containing Carboxy Group Synthesis Example 1
A 2 L three-necked flask equipped with a stirrer, a thermometer, and a condenser (reflux condenser) was charged with C-1015N (manufactured by Kuraray Co., Ltd., polycarbonate diol, raw material diol molar ratio: 1,9-nonanediol: 2) as a polyol compound. -Methyl-1,8-octanediol = 15:85, molecular weight 964) 16.7 g, 2,2-dimethylolbutanoic acid (manufactured by Huzhou Changsheng Chemical Co., Ltd.) as a dihydroxy compound containing a carboxy group 10.8 g , and 62.6 g of propylene glycol monomethyl ether acetate (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) as a solvent were charged, and the 2,2-dimethylolbutanoic acid was dissolved at 90°C.
The temperature of the reaction solution is lowered to 70° C., and 23.5 g of Desmodur (registered trademark)-W (bis-(4-isocyanatocyclohexyl)methane, manufactured by Sumika Covestro Urethane Co., Ltd.) is added as a polyisocyanate using a dropping funnel. was added dropwise over 30 minutes. After completion of the dropwise addition, the temperature was raised to 100°C and the reaction was carried out at 100°C for 15 hours. After confirming by IR that the isocyanate had almost disappeared, 0.5 g of isobutanol was added and the reaction was further carried out at 100°C for 6 hours. gone. The weight-average molecular weight of the resulting polyurethane containing carboxyl groups determined by GPC was 33,500, and the acid value of the resin solution was 39.4 mg-KOH/g.
保護膜インク1
 上記合成例1で得られたカルボキシ基を含有するポリウレタン溶液(固形分濃度42.4質量%)7.1gに、溶媒として1-ヘキサノール(C6OH)と酢酸エチル(EA)の混合物(C6OH:EA=50:50(質量比))92.9gを加え、均一になるように株式会社シンキー製の自転・公転真空ミキサーあわとり練太郎(登録商標)ARV-310を用いて、1200rpmで20分間撹拌し、保護膜インク1を得た。溶媒乾燥前後の質量より算出した保護膜インク1の不揮発分(固形分)濃度(カルボキシ基を含有するポリウレタンの量)は3質量%であった。
Protective film ink 1
A mixture of 1-hexanol (COH) and ethyl acetate (EA) (COH:EA) was added as a solvent to 7.1 g of the polyurethane solution containing a carboxyl group obtained in Synthesis Example 1 (solid concentration: 42.4% by mass). = 50:50 (mass ratio)) 92.9 g, and stirred at 1200 rpm for 20 minutes using a spin/revolution vacuum mixer Awatori Mixer (registered trademark) ARV-310 manufactured by Thinky Co., Ltd. Then, protective film ink 1 was obtained. The nonvolatile content (solid content) concentration (the amount of polyurethane containing a carboxyl group) of protective film ink 1 calculated from the mass before and after solvent drying was 3% by mass.
保護膜インク2
 上記合成例1で得られたカルボキシ基を含有するポリウレタン溶液(固形分濃度42.4質量%)1.8gに、エポキシ化合物1としてペンタエリスリトールテトラグリシジルエーテル(昭和電工株式会社製)0.002g、硬化促進剤としてU-CAT5003(第4級ホスホニウムブロマイド、サンアプロ株式会社製)0.05g、溶媒として1-ヘキサノール(C6OH)と酢酸エチル(EA)の混合物(C6OH:EA=50:50(質量比))28.0gを加え、均一になるように株式会社シンキー製の自転・公転真空ミキサーあわとり練太郎(登録商標)ARV-310を用いて、1200rpmで20分間撹拌し、保護膜インク2を得た。
 溶媒乾燥前後の質量より算出した保護膜インク2の不揮発分(固形分)濃度(カルボキシ基を含有するポリウレタン、エポキシ化合物、硬化促進剤の総量)は3質量%であった。保護膜インク2中のカルボキシ基を含有するポリウレタンが有するカルボキシ基(COOH)に対するエポキシ樹脂が有するエポキシ基(Ep)のモル比(Ep/COOH)は0.02である。
Protective film ink 2
0.002 g of pentaerythritol tetraglycidyl ether (manufactured by Showa Denko KK) as epoxy compound 1 was added to 1.8 g of the polyurethane solution containing a carboxyl group obtained in Synthesis Example 1 (solid content concentration: 42.4% by mass). U-CAT5003 (quaternary phosphonium bromide, manufactured by San-Apro Co., Ltd.) 0.05 g as a curing accelerator, a mixture of 1-hexanol (COH) and ethyl acetate (EA) as a solvent (COH: EA = 50: 50 (mass ratio )) is added, and the mixture is stirred for 20 minutes at 1200 rpm using a rotation/revolution vacuum mixer, Thinky Co., Ltd. (registered trademark) ARV-310, and the protective film ink 2 is added. Obtained.
The nonvolatile content (solid content) concentration (the total amount of polyurethane containing a carboxyl group, epoxy compound, and curing accelerator) of protective film ink 2 calculated from the mass before and after solvent drying was 3% by mass. The molar ratio (Ep/COOH) of the epoxy group (Ep) of the epoxy resin to the carboxy group (COOH) of the carboxy group-containing polyurethane in the protective film ink 2 is 0.02.
保護膜インク3
 保護膜インク1において、配合したカルボキシ基を含有するポリウレタン溶液をエトセル(登録商標)STD100cps(ダウ・ケミカル(米)製エチルセルロース)溶液(固形分濃度10質量%エタノール溶液)30.0gに変更し、溶媒として1-ヘキサノール(C6OH)と酢酸エチル(EA)の混合物(C6OH:EA=50:50(質量比))70.0gを加えた以外は保護膜インク1と同様に調製し、保護膜インク3を得た。溶媒乾燥前後の質量より算出した保護膜インク3の不揮発分(固形分)濃度(エトセル(登録商標)の量)は3質量%であった。
Protective film ink 3
In the protective film ink 1, the polyurethane solution containing a carboxyl group was changed to 30.0 g of Ethocel (registered trademark) STD 100 cps (ethyl cellulose manufactured by Dow Chemical (US)) solution (ethanol solution with a solid concentration of 10% by mass), Protective film ink 1 was prepared in the same manner as protective film ink 1, except that 70.0 g of a mixture of 1-hexanol (C6OH) and ethyl acetate (EA) (C6OH: EA = 50:50 (mass ratio)) was added as a solvent. got 3. The nonvolatile content (solid content) concentration (the amount of Ethocel (registered trademark)) of the protective film ink 3 calculated from the mass before and after drying the solvent was 3% by mass.
<保護膜の印刷>
実施例1
 上記調製例1により得られた銀ナノワイヤインク1を用いて、PCフィルムの主面上に印刷した透明導電膜(銀ナノワイヤインク塗膜)の主面上に、前述のバーコート印刷機を用いて、ウェット膜厚約7μmにて保護膜インク1を塗工し、A4サイズのベタパターンとして保護膜つき透明導電膜(保護膜つき銀ナノワイヤインク塗膜)を印刷した。前述の恒温器を用い、80℃、1分間の条件で溶媒乾燥を行って、実施例1の透明導電フィルム積層体を得た。
 得られた透明導電フィルム積層体のシート抵抗を測定した。この場合のシート抵抗は、透明導電フィルム積層体(ベタパターン)を3cm角毎のエリアに区切り、各々のエリアの中央付近を前述の非接触式抵抗測定器を用いて測定した30点のシート抵抗の算術平均値である。保護膜インク1を用いた透明導電フィルム積層体のシート抵抗は、20Ω/□であった。
 保護膜の厚みは、前述の銀ナノワイヤ層の膜厚同様光干渉法に基づく膜厚測定システムF20-UV(フィルメトリクス株式会社製)を用いて測定した結果、90nmであった。この場合、解析に450nmから800nmのスペクトルを用い、測定箇所を変え、3点測定した平均値を膜厚とした。この測定システムによると、透明基材上に形成された銀ナノワイヤ層の膜厚(Tc)とその上に形成された保護膜の膜厚(Tp)との総膜厚(Tc+Tp)が直接測定できるので、この測定値から先に測定した銀ナノワイヤ層の膜厚(Tc)を差し引くことにより保護膜の膜厚(Tp)が得られる。
<Printing of protective film>
Example 1
Using the silver nanowire ink 1 obtained in the above preparation example 1, on the main surface of the transparent conductive film (silver nanowire ink coating film) printed on the main surface of the PC film, using the above-mentioned bar coater , the protective film ink 1 was applied to a wet film thickness of about 7 μm, and a transparent conductive film with a protective film (silver nanowire ink coating film with a protective film) was printed as a solid pattern of A4 size. Solvent drying was carried out at 80° C. for 1 minute using the aforementioned constant temperature vessel, and the transparent conductive film laminate of Example 1 was obtained.
The sheet resistance of the obtained transparent conductive film laminate was measured. In this case, the sheet resistance was obtained by dividing the transparent conductive film laminate (solid pattern) into areas of 3 cm square and measuring the vicinity of the center of each area using the non-contact resistance measuring instrument described above. is the arithmetic mean of The sheet resistance of the transparent conductive film laminate using protective film ink 1 was 20Ω/□.
The thickness of the protective film was 90 nm as a result of measurement using a film thickness measurement system F20-UV (manufactured by Filmetrics Co., Ltd.) based on the optical interferometry as in the case of the thickness of the silver nanowire layer described above. In this case, the spectrum from 450 nm to 800 nm was used for the analysis, and the measurement points were changed, and the average value of three measurements was taken as the film thickness. According to this measurement system, the total film thickness (Tc+Tp) of the film thickness (Tc) of the silver nanowire layer formed on the transparent substrate and the film thickness (Tp) of the protective film formed thereon can be directly measured. Therefore, the film thickness (Tp) of the protective film is obtained by subtracting the previously measured film thickness (Tc) of the silver nanowire layer from this measured value.
実施例2~5及び比較例1
 実施例1と同様にして、後述の表1に示す組合せで、銀ナノワイヤインク塗膜及び保護膜を製膜して、実施例2~5及び比較例1の透明導電フィルム積層体を得た。
Examples 2-5 and Comparative Example 1
In the same manner as in Example 1, silver nanowire ink coating films and protective films were formed in the combinations shown in Table 1 below to obtain transparent conductive film laminates of Examples 2 to 5 and Comparative Example 1.
比較例2
 銅箔のついたポリエチレンテレフタレート(PET)基材に感光性ドライフィルム(旭化成株式会社製、商品名「サンフォート」)を積層した。フォトマスクを介して露光、現像、及びリンスを行いパターニングを設けた。その後、銅のエッチング液でドライフィルムを除去した部分の銅をエッチングし、残ったドライフィルム部分は有機溶剤であるリムーバーで除去した。PET基材上に線幅5μm、ピッチ間隔120μmの銅メタルメッシュからなる5mm幅の電極列(スペース50μm)のみを設け、保護膜を製膜していない2層(PET/銅メタルメッシュ)構成のシートを得た。
Comparative example 2
A photosensitive dry film (manufactured by Asahi Kasei Corporation, trade name “Sunfort”) was laminated on a polyethylene terephthalate (PET) substrate with a copper foil. Exposure, development, and rinsing were performed through a photomask to provide patterning. After that, the copper in the portion where the dry film was removed was etched with a copper etchant, and the remaining dry film portion was removed with an organic solvent remover. A two-layer (PET/copper metal mesh) configuration in which only a 5 mm-wide electrode row (space 50 μm) made of copper metal mesh with a line width of 5 μm and a pitch interval of 120 μm is provided on the PET substrate, and no protective film is formed. got a sheet.
<レーザーエッチングによる電極列作製>
 実施例1~5及び比較例1で作製した透明導電フィルム積層体の保護層側から波長355nmのフェムト秒パルスレーザー(パルス幅500fs、周波数1000kHz、加工速度5000mm/s、出力0.2W)でパターン加工を施し、X軸方向の静電容量の変化を検知するX軸電極列(5mm幅、スペース50μm)を備えたX軸用透明導電パターン膜を形成した。続いて実施例1~5及び比較例1で作製した別の透明導電フィルム積層体を用意し、その保護膜側から、上記と同条件で、Y軸方向の静電容量の変化を検知するY軸電極列(1mm幅とダミーパターン4mm幅の合計5mm幅、スペース50μm)を備えたY軸用透明導電パターン膜を形成した。
 このようにして、X軸電極及びY軸電極に相当する、2種のパターン付き透明導電フィルム積層体を得た。
<Electrode array fabrication by laser etching>
A femtosecond pulse laser with a wavelength of 355 nm (pulse width of 500 fs, frequency of 1000 kHz, processing speed of 5000 mm/s, output of 0.2 W) was used to pattern from the protective layer side of the transparent conductive film laminates produced in Examples 1 to 5 and Comparative Example 1. Processing was performed to form an X-axis transparent conductive pattern film provided with an X-axis electrode row (5 mm width, 50 μm space) for detecting changes in capacitance in the X-axis direction. Subsequently, another transparent conductive film laminate prepared in Examples 1 to 5 and Comparative Example 1 was prepared, and from the protective film side, under the same conditions as above, the change in capacitance in the Y-axis direction was detected. A transparent conductive pattern film for the Y-axis was formed, provided with an axis electrode row (total width of 5 mm of 1 mm width and dummy pattern width of 4 mm, space 50 μm).
Thus, two kinds of patterned transparent conductive film laminates corresponding to the X-axis electrode and the Y-axis electrode were obtained.
<銀ペースト印刷による配線の作製>
 上記で得られた2種のパターン付き透明導電フィルム積層体(X軸電極、Y軸電極)の保護層の上、及び比較例2で得られた銅メタルメッシュの積層体に銀ペースト(東洋紡株式会社製DW-520H)をスクリーン印刷機で塗布し、80℃、30分間加熱処理することにより配線電極を設け、銀配線込みパターン付き透明導電フィルムを得た。保護膜が薄く、透明導電膜を構成する銀ナノワイヤの一部が保護膜上に露出している箇所があるため、銀ペーストにより保護膜上に設けた銀配線パターンと透明導電膜を加工して得られたX軸電極、Y軸電極とは電気的に接続され、X軸電極とY軸電極それぞれについて銀配線込みパターン付き透明導電フィルム積層体が得られた。
<Production of Wiring by Silver Paste Printing>
Silver paste (Toyobo Co., Ltd.) was applied to the protective layer of the two patterned transparent conductive film laminates (X-axis electrode and Y-axis electrode) obtained above and to the copper metal mesh laminate obtained in Comparative Example 2. DW-520H (manufactured by the same company) was applied by a screen printer and heat-treated at 80° C. for 30 minutes to form wiring electrodes, thereby obtaining a transparent conductive film with a silver wiring-embedded pattern. Since the protective film is thin and some of the silver nanowires that make up the transparent conductive film are exposed on the protective film, the silver wiring pattern and the transparent conductive film provided on the protective film are processed with silver paste. The obtained X-axis electrode and Y-axis electrode were electrically connected, and a transparent conductive film laminate with a pattern including silver wiring was obtained for each of the X-axis electrode and the Y-axis electrode.
<フレキシブルプリント配線板と透明導電フィルム積層体の接合>
 上記で得られた銀配線込みパターン付き透明導電フィルム積層体(X軸電極、Y軸電極)の銀配線部分とフレキシブルプリント配線板(山下マテリアル株式会社製YFC0-SHW-CN80P-200mm,YFC0-SHW-CN56P-200mm)とを異方性導電膜(昭和電工マテリアルズ株式会社製MF-347SHP、2mm幅)を用いて圧着接合した。
(圧着条件)
 圧力:3.0MPa
 圧着温度:130℃
 圧着時間:13秒
<Bonding of Flexible Printed Wiring Board and Transparent Conductive Film Laminate>
The silver wiring portion of the transparent conductive film laminate with a pattern including silver wiring obtained above (X-axis electrode, Y-axis electrode) and the flexible printed wiring board (YFC0-SHW-CN80P-200mm, YFC0-SHW manufactured by Yamashita Materials Co., Ltd.) -CN56P-200 mm) were pressure-bonded using an anisotropic conductive film (MF-347SHP manufactured by Showa Denko Materials Co., Ltd., 2 mm width).
(crimping conditions)
Pressure: 3.0MPa
Crimp temperature: 130°C
Crimping time: 13 seconds
<光学用両面粘着シートを用いた貼合>
 光学用両面粘着シートを用いて透明導電フィルム積層体(X軸電極)と透明導電フィルム積層体(Y軸電極)とカバーフィルムの貼合品を作製した。
 初めに、上記で得られた透明導電フィルム積層体(X軸電極)と透明導電フィルム積層体(Y軸電極)とを貼り合せて透明導電フィルム積層体(X-Y軸電極)を得た。具体的には、両面粘着シート(積水化学株式会社製、HSV100、100μm厚)から、シート片を切り出し、一方のセパレータを剥離して、露出した粘着面を、透明導電フィルム積層体(Y軸電極)の保護層の表面に、ハンドローラー(2kgローラー)を用いて、1往復の条件で貼り付けた。次に、他方のセパレータを剥離して、露出した粘着面を透明導電フィルム積層体(X軸電極)のPCフィルム面に下記条件で貼り付けて、X軸センサー基板/両面粘着シート/Y軸センサー基板の構成を有する透明導電フィルム積層体(X-Y軸電極)を作製した。
 次に、別の両面粘着シート(積水化学株式会社製、HSV100、100μm厚)から、シート片を切り出し、一方のセパレータを剥離して、露出した粘着面を、Y軸センサー基板(透明導電フィルム積層体(Y軸電極))の保護層の表面に、ハンドローラー(2kgローラー)を用いて、1往復の条件で貼り付けた。次に、他方のセパレータを剥離して、露出した他方の粘着面をカバーフィルム(ポリカーボネートフィルム:三菱ガス化学株式会社製ユーピロン(登録商標)FS-2000H、100μm厚)の面に下記条件で貼り付けて、A4サイズのX軸センサー基板/両面粘着シート/Y軸センサー基板/両面粘着シート/カバーフィルムの構成を有する投影型タッチパネル試験片を作製した。
(貼り合わせ条件)
 面圧:0.4MPa
 真空度:30Pa
 貼り付け時間:2秒
 次に、上記試験片をオートクレーブに投入し、温度50℃、圧力0.5MPaの条件で15分間、オートクレーブ処理した。
 タッチパネル試験片は実施例1~5,及び比較例1のいずれも目視によるモアレ模様は観察されなかった。
<Lamination using optical double-sided pressure-sensitive adhesive sheet>
Using an optical double-sided pressure-sensitive adhesive sheet, a laminate of a transparent conductive film laminate (X-axis electrode), a transparent conductive film laminate (Y-axis electrode), and a cover film was produced.
First, the transparent conductive film laminate (X-axis electrode) and the transparent conductive film laminate (Y-axis electrode) obtained above were laminated to obtain a transparent conductive film laminate (XY-axis electrode). Specifically, a sheet piece is cut out from a double-sided adhesive sheet (manufactured by Sekisui Chemical Co., Ltd., HSV100, 100 μm thick), one separator is peeled off, and the exposed adhesive surface is used as a transparent conductive film laminate (Y-axis electrode ) using a hand roller (2 kg roller) under the condition of one reciprocation. Next, the other separator is peeled off, and the exposed adhesive surface is attached to the PC film surface of the transparent conductive film laminate (X-axis electrode) under the following conditions to form an X-axis sensor substrate/double-sided adhesive sheet/Y-axis sensor. A transparent conductive film laminate (XY axis electrodes) having the structure of the substrate was produced.
Next, a sheet piece is cut out from another double-sided adhesive sheet (manufactured by Sekisui Chemical Co., Ltd., HSV100, 100 μm thick), one separator is peeled off, and the exposed adhesive surface is used as a Y-axis sensor substrate (transparent conductive film laminated A hand roller (2 kg roller) was applied to the surface of the protective layer of the body (Y-axis electrode) under the condition of one reciprocation. Next, peel off the other separator and attach the other exposed adhesive surface to the surface of the cover film (polycarbonate film: Iupilon (registered trademark) FS-2000H manufactured by Mitsubishi Gas Chemical Co., Ltd., 100 μm thick) under the following conditions. A projection touch panel test piece having a configuration of A4 size X-axis sensor substrate/double-sided adhesive sheet/Y-axis sensor substrate/double-sided adhesive sheet/cover film was produced.
(Lamination conditions)
Surface pressure: 0.4 MPa
Degree of vacuum: 30 Pa
Affixing time: 2 seconds Next, the test piece was placed in an autoclave and autoclaved for 15 minutes under conditions of a temperature of 50°C and a pressure of 0.5 MPa.
No moire pattern was visually observed on any of the touch panel test pieces of Examples 1 to 5 and Comparative Example 1.
<三次元成形>
 三次元成形にはプレス機を用いて行った。上記試験片をあらかじめ100℃、2分間予備乾燥した後、曲率半径が100mmとなるような半球状上型125℃、下型110℃にセットしたプレス機に挿入した。その後、金型でプレスし、型締め圧は2トンで3分間維持した。
 上記X軸センサー基板/両面粘着シート/Y軸センサー基板/両面粘着シート/カバーフィルムの投影型タッチパネルは、実施例1~5はいずれも三次元成形した状態で動作することを確認した。一方、比較例1の透明導電フィルム積層体を用いた試験では、三次元成形後にタッチパネルは駆動しなかった。
 また、比較例2の2層(PET/銅メタルメッシュ)構成のシートに対して、実施例1と同様に光学用両面粘着シートとカバーフィルムを用いてタッチパネルを作製し、三次元成形を行ったところ、三次元成形後にタッチパネルは駆動しなかった。なお、比較例2において、三次元成形前に目視により観察したところ、モアレ模様が観察された。
<Three-dimensional molding>
A press machine was used for the three-dimensional molding. After pre-drying the test piece at 100° C. for 2 minutes, it was inserted into a press set at 125° C. for a hemispherical upper die and 110° C. for a lower die having a radius of curvature of 100 mm. Then, it was pressed with a mold, and the mold clamping pressure was maintained at 2 tons for 3 minutes.
It was confirmed that the X-axis sensor substrate/double-sided pressure-sensitive adhesive sheet/Y-axis sensor substrate/double-sided pressure-sensitive adhesive sheet/cover film projection type touch panel of Examples 1 to 5 all operated in a three-dimensionally molded state. On the other hand, in the test using the transparent conductive film laminate of Comparative Example 1, the touch panel was not driven after the three-dimensional molding.
Further, a touch panel was produced by using an optical double-sided pressure-sensitive adhesive sheet and a cover film in the same manner as in Example 1 for the two-layer (PET/copper metal mesh) sheet of Comparative Example 2, and three-dimensional molding was performed. However, the touch panel was not driven after three-dimensional molding. In addition, in Comparative Example 2, a moiré pattern was observed when visually observed before the three-dimensional molding.
透明導電膜の評価
 各透明導電フィルム積層体に対して次の評価を行った。結果を表1に示す。
<シート抵抗値>
 非接触式抵抗測定器(ナプソン株式会社製EC-80P、プローブタイプHigh:10~1000Ω/□、S-High:1000~3000Ω/□)を用いて上記各実施例及び比較例で得られた各透明導電フィルム積層体のシート抵抗値を測定した。
Evaluation of Transparent Conductive Film Each transparent conductive film laminate was evaluated as follows. Table 1 shows the results.
<Sheet resistance value>
Each obtained in each of the above examples and comparative examples using a non-contact resistance measuring device (EC-80P manufactured by Napson Co., Ltd., probe type High: 10 to 1000 Ω / □, S-High: 1000 to 3000 Ω / □) A sheet resistance value of the transparent conductive film laminate was measured.
<開口率>
 各透明導電フィルム積層体の表面を形状測定レーザマイクロスコープVK-X200(キーエンス株式会社製)にて、導電層平面に対して垂直方向から対物レンズ150倍を用いて、その形態を5点撮影し、画像として保存した。得られた画像を、株式会社キーエンス製解析アプリケーションソフトVK-H1XAを用いて画像解析を行い、その5点における導電層の平面内において金属ナノワイヤが占める面積の相加平均値を算出した。求めた平均値から開口率へ変換した。
 比較例2のメタルメッシュの場合は、金属部分の線幅(5μm)とそのピッチ間(120μm)から算出した(開口率:92.2%)。
<光学特性>
 上記各実施例及び比較例で得られた各透明導電フィルム積層体をHaze meter NDH 2000(日本電色工業株式会社製)で測定した。
<Aperture ratio>
Using a shape measuring laser microscope VK-X200 (manufactured by KEYENCE CORPORATION), the surface of each transparent conductive film laminate is photographed at 5 points using a 150x objective lens from the direction perpendicular to the plane of the conductive layer. , saved as an image. The obtained image was subjected to image analysis using analysis application software VK-H1XA manufactured by Keyence Corporation, and the arithmetic mean value of the area occupied by the metal nanowires in the plane of the conductive layer at the five points was calculated. The calculated average value was converted to an aperture ratio.
In the case of the metal mesh of Comparative Example 2, it was calculated from the line width (5 μm) of the metal portion and the pitch (120 μm) (aperture ratio: 92.2%).
<Optical properties>
Each transparent conductive film laminate obtained in each of the above Examples and Comparative Examples was measured with a Haze meter NDH 2000 (manufactured by Nippon Denshoku Industries Co., Ltd.).
<引張特性>
 引張試験には、上記各実施例及び比較例で得られた各透明導電フィルム積層体を幅30mm、長さ160mmの短冊状に裁断した試験片を用いた。事前にチャック間に相当する部位に10mm間隔で標線を付け、10か所に区切り、それぞれのシート抵抗値を測定し、この平均値をRとした。その後、上記試験片を精密万能試験器(株式会社島津製作所製オートグラフAG-X)にセットした。セット時のチャック間距離は100mmであり、試験速度50mm/min、試験温度155℃で10%まで伸ばした。試験後に10か所のシート抵抗値を再度測定して平均値を求め、これをRとした。
 引張試験前後の抵抗値R及びRからR/Rを算出し、10%引張時の抵抗変化を得た。
<Tensile properties>
For the tensile test, test pieces obtained by cutting each transparent conductive film laminate obtained in each of the above Examples and Comparative Examples into strips having a width of 30 mm and a length of 160 mm were used. Marked lines were drawn at intervals of 10 mm in portions corresponding to the gaps between the chucks in advance, the sample was divided into 10 portions, the sheet resistance value of each portion was measured, and the average value was taken as R0 . After that, the test piece was set in a precision universal tester (Autograph AG-X manufactured by Shimadzu Corporation). The chuck-to-chuck distance during setting was 100 mm, and was extended to 10% at a test speed of 50 mm/min and a test temperature of 155°C. After the test, the sheet resistance values at 10 points were measured again to obtain an average value, which was defined as R.
R/R 0 was calculated from the resistance values R 0 and R before and after the tensile test, and the change in resistance at 10% tension was obtained.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1中の保護膜の熱可塑性樹脂由来成分(質量%)は、各実施例及び比較例に用いた各保護膜インク組成(不揮発分(固形分)である[カルボキシ基を含有するポリウレタン、エポキシ化合物、硬化促進剤の総量]に対する[カルボキシ基を含有するポリウレタン又はエトセル(登録商標)]の割合(質量%))から算出した。 The thermoplastic resin-derived component (% by mass) of the protective film in Table 1 is the composition (nonvolatile content (solid content)) of each protective film ink used in each example and comparative example [polyurethane containing a carboxy group, epoxy It was calculated from the ratio (% by mass) of [polyurethane containing a carboxy group or Ethocel (registered trademark)] to the total amount of compound and curing accelerator].
 以上のように、実施例1~5のそれぞれで得た透明導電フィルム積層体、及びそれぞれを用いた三次元成形した投影型タッチパネルを作製したところ、いずれも当該タッチパネルが問題なく動作することが確認された。一方、比較例1及び2より得た三次元成形した投影型タッチパネルはいずれも動作ができなかった。
 特に比較例2は、メタルメッシュが線幅5μm、ピッチ間隔120μmであり、開口率92.2%であるが、この段階でメッシュが目視で観察されてタッチパネルとして実用に適さない。メタルメッシュが断線せず、三次元成形後にタッチパネルが動作可能とするためには、メタルメッシュの強度を上げる必要がある。強度上昇のためには、開口率を下げ、メッシュの線幅を10~15μm程度とする必要があるが、よりメタルメッシュが目視で明瞭に観察され、タッチパネルとして適さなくなると考えられる。
As described above, the transparent conductive film laminate obtained in each of Examples 1 to 5 and the three-dimensionally molded projection type touch panel using each were produced, and it was confirmed that the touch panel operated without any problem. was done. On the other hand, none of the three-dimensionally molded projection touch panels obtained from Comparative Examples 1 and 2 could operate.
Especially in Comparative Example 2, the metal mesh has a line width of 5 μm, a pitch interval of 120 μm, and an aperture ratio of 92.2%. In order to prevent disconnection of the metal mesh and enable the touch panel to operate after three-dimensional molding, it is necessary to increase the strength of the metal mesh. In order to increase the strength, it is necessary to reduce the aperture ratio and set the line width of the mesh to about 10 to 15 μm.
実施例6
 実施例2と同じ透明導電フィルム積層体を用いて、実施例2と同様に<レーザーエッチングによる電極列作製>、<銀ペースト印刷による配線の作製>及び<フレキシブルプリント配線板と透明導電フィルム積層体の接合>を実施した。
 続いて、2つの両面粘着シートとして「CS9864UAS」(日東電工株式会社製、100μm厚)、カバーフィルムとして「ポリカーボネートフィルム:三菱ガス化学株式会社製ユーピロン(登録商標)MRS58HRB」(2000μm厚)を用いる以外は前記<光学用両面粘着シートを用いた貼合>と同様にして、タッチパネル試験片を作製した。
 得られたタッチパネル試験片に対して、金型を代えて、図7に示した車内センターコンソール用のタッチパネル36、当該タッチパネル36の曲面領域39上の第1入力領域37(縦7cm、横5cm、高さ1cmの略直方体形状)、第2入力領域38(底面直径約3cm、上面直径約2cm、高さ約1cmの円錐台形状)を有する曲面の三次元成形とする以外は前記<三次元成形>と同様に成形して、タッチパネル36を成形した。但し、第1入力領域37へ入力する操作を、第2入力領域38へ入力する操作によっても駆動可能なように、第2入力領域38から検出されるシグナルを第1入力領域37及び第2入力領域38に出力するようなプログラムに変更した。
 得られたタッチパネルに対して駆動確認を行ったところ、第1入力領域37への操作により、第1入力領域37内のディスプレイ駆動が確認され、第2入力領域38への操作により、所望の第1入力領域37内のディスプレイ及び第2入力領域38内のディスプレイ双方が駆動することが確認された。
Example 6
Using the same transparent conductive film laminate as in Example 2, <production of electrode rows by laser etching>, <production of wiring by silver paste printing> and <flexible printed wiring board and transparent conductive film laminate in the same manner as in Example 2 Joining> was performed.
Subsequently, "CS9864UAS" (manufactured by Nitto Denko Corporation, 100 µm thick) was used as the two double-sided adhesive sheets, and "polycarbonate film: Iupilon (registered trademark) MRS58HRB manufactured by Mitsubishi Gas Chemical Company, Inc." (2000 µm thick) was used as the cover film. A touch panel test piece was produced in the same manner as in <Lamination using optical double-sided pressure-sensitive adhesive sheet>.
For the obtained touch panel test piece, instead of the mold, the touch panel 36 for the in-vehicle center console shown in FIG. Approximately rectangular parallelepiped with a height of 1 cm), and a curved surface having a second input area 38 (a bottom diameter of about 3 cm, an upper surface diameter of about 2 cm, and a truncated cone shape with a height of about 1 cm). >, and the touch panel 36 was formed. However, a signal detected from the second input region 38 is transmitted between the first input region 37 and the second input region 38 so that the input operation to the first input region 37 can also be driven by the input operation to the second input region 38 . The program was changed to output to area 38.
When driving confirmation was performed on the obtained touch panel, it was confirmed that the display driving in the first input area 37 was driven by the operation to the first input area 37, and the desired display was driven by the operation to the second input area 38. It was confirmed that both the display in the 1st input area 37 and the display in the 2nd input area 38 were driven.
1…透明導電パターン膜、2…電極列、3…引出線、3′…フレキシブルプリント回路基板、11…タッチパネル、12…タッチパネル内蔵ディスプレイ(入出力一体型ディスプレイ)、13…ディスプレイ、15…検出回路、16…カバーフィルム、18…透明導電フィルム積層体、24…フィルム状の基材、26A…第1透明導電パターン膜、26B…第2透明導電パターン膜、28A…第1保護膜、28B…第2保護膜、30…接着層、32…タッチパネル、33…円筒面、34…タッチパネル、35…球面、36…タッチパネル、37…第1入力領域、38…第2入力領域、39…曲面領域 DESCRIPTION OF SYMBOLS 1... Transparent conductive pattern film, 2... Electrode row, 3... Lead line, 3'... Flexible printed circuit board, 11... Touch panel, 12... Touch panel built-in display (input/output integrated display), 13... Display, 15... Detection circuit , 16... cover film, 18... transparent conductive film laminate, 24... film-like substrate, 26A... first transparent conductive pattern film, 26B... second transparent conductive pattern film, 28A... first protective film, 28B... second 2 Protective film 30 Adhesive layer 32 Touch panel 33 Cylindrical surface 34 Touch panel 35 Spherical surface 36 Touch panel 37 First input area 38 Second input area 39 Curved surface area

Claims (18)

  1.  フィルム状の基材と、
     前記基材の少なくとも一方の面に形成された透明導電パターン膜との少なくとも2層からなる、曲面領域を有するタッチパネルであって、
     前記透明導電パターン膜は、導電性繊維を含み、その開口率が40%以上70%以下であり、導電性領域と、非導電性領域とから形成された電極列を有し、当該透明導電パターン膜の電極列によって形成される入力領域を含み、
     前記電極列の少なくとも一部は前記曲面領域に配置され、前記電極列に接続された引出線を備えたタッチパネル。
    a film-like substrate;
    A touch panel having a curved region, comprising at least two layers of a transparent conductive pattern film formed on at least one surface of the base material,
    The transparent conductive pattern film contains conductive fibers, has an aperture ratio of 40% or more and 70% or less, has an electrode array formed of a conductive region and a non-conductive region, and the transparent conductive pattern including an input area formed by an array of membrane electrodes;
    A touch panel, wherein at least a part of the electrode array is arranged in the curved surface region and includes a lead line connected to the electrode array.
  2.  前記導電性繊維は、平均直径が1nm以上500nm以下の金属ナノワイヤを含む請求項1に記載のタッチパネル。 The touch panel according to claim 1, wherein the conductive fibers include metal nanowires with an average diameter of 1 nm or more and 500 nm or less.
  3.  前記導電性繊維の長軸の長さ平均は1μm以上100μm以下、アスペクト比の平均は5以上である請求項1又は2に記載のタッチパネル。 The touch panel according to claim 1 or 2, wherein the conductive fibers have an average length of 1 μm or more and 100 μm or less, and an average aspect ratio of 5 or more.
  4.  前記導電性繊維は、金、銀、銅及びアルミニウムの群から選ばれた1種以上の金属を含む
    請求項1又は2に記載のタッチパネル。
    The touch panel according to claim 1 or 2, wherein the conductive fibers contain one or more metals selected from the group of gold, silver, copper and aluminum.
  5.  前記基材は透明な熱可塑性樹脂フィルムよりなり、
     前記透明導電パターン膜は、バインダー樹脂及び金属ナノワイヤを含んでいる
    請求項1に記載のタッチパネル。
    The substrate is made of a transparent thermoplastic resin film,
    The touch panel according to claim 1, wherein the transparent conductive pattern film contains a binder resin and metal nanowires.
  6.  前記バインダー樹脂は、N-ビニルアセトアミド(NVA)をモノマー単位として70モル%以上含む重合体又はセルロース系樹脂であり、
     前記透明導電パターン膜上に形成された保護膜を有し、
     前記保護膜は、樹脂成分を含み、前記樹脂成分の94質量%以上が熱可塑性樹脂に由来する
    請求項5に記載のタッチパネル。
    The binder resin is a polymer or cellulose resin containing 70 mol% or more of N-vinylacetamide (NVA) as a monomer unit,
    Having a protective film formed on the transparent conductive pattern film,
    The touch panel according to claim 5, wherein the protective film contains a resin component, and 94% by mass or more of the resin component is derived from a thermoplastic resin.
  7.  前記透明な熱可塑性樹脂フィルムがポリカーボネートフィルムである請求項5に記載のタッチパネル。 The touch panel according to claim 5, wherein the transparent thermoplastic resin film is a polycarbonate film.
  8.  前記バインダー樹脂がポリ-N-ビニルアセトアミドである請求項6又は7に記載のタッチパネル。 The touch panel according to claim 6 or 7, wherein the binder resin is poly-N-vinylacetamide.
  9.  保護膜を構成する樹脂成分がカルボキシ基を含有するポリウレタン又はエチルセルロースを含む熱可塑性樹脂に由来する請求項6又は7に記載のタッチパネル。 The touch panel according to claim 6 or 7, wherein the resin component constituting the protective film is derived from a thermoplastic resin containing polyurethane or ethyl cellulose containing a carboxy group.
  10.  前記保護膜を構成する樹脂成分がカルボキシ基を含有するポリウレタンと一分子中に2個以上のエポキシ基を有するエポキシ樹脂に由来し、
     前記一分子中に2個以上のエポキシ基を有するエポキシ樹脂の含有量が、前記樹脂成分中、0質量%超、6質量%以下であり、前記カルボキシ基を含有するポリウレタンが有するカルボキシ基(COOH)に対する前記一分子中に2個以上のエポキシ基を有するエポキシ樹脂が有するエポキシ基(Ep)のモル比(Ep/COOH)が0超、0.02以下である、
    請求項9に記載のタッチパネル。
    The resin component constituting the protective film is derived from a polyurethane containing a carboxy group and an epoxy resin having two or more epoxy groups in one molecule,
    The content of the epoxy resin having two or more epoxy groups in one molecule is more than 0% by mass and 6% by mass or less in the resin component, and the carboxy group (COOH ) of the epoxy group (Ep) possessed by the epoxy resin having two or more epoxy groups in one molecule (Ep/COOH) is greater than 0 and 0.02 or less,
    The touch panel according to claim 9.
  11.  前記透明導電パターン膜の電極列によって形成される入力領域が複数存在し、各入力領域が異なる形状を有する請求項1又は2に記載のタッチパネル。 The touch panel according to claim 1 or 2, wherein there are a plurality of input areas formed by the electrode rows of the transparent conductive pattern film, and each input area has a different shape.
  12.  前記入力領域として第1の入力領域及び第2の入力領域が存在し、第1の入力領域における操作によるタッチパネルの駆動が、第2の入力領域における操作によっても可能である請求項1又は2に記載のタッチパネル。 3. The input area includes a first input area and a second input area, and the touch panel can be driven by an operation in the first input area also by an operation in the second input area. Described touch panel.
  13.  前記曲面領域が三次元曲面である請求項1又は2に記載のタッチパネル。 The touch panel according to claim 1 or 2, wherein the curved surface area is a three-dimensional curved surface.
  14.  前記透明導電パターン膜として、第1の透明導電パターン膜及び第2の透明導電パターン膜の2種を備え、
     前記第1の透明導電パターン膜及び前記第2の透明導電パターン膜が前記基材の両主面にそれぞれ積層された透明導電フィルム積層体を、加熱フォーミングにより前記曲面領域とする工程を含む
    請求項1に記載のタッチパネルの製造方法。
    As the transparent conductive pattern film, two types of a first transparent conductive pattern film and a second transparent conductive pattern film are provided,
    3. A step of forming a transparent conductive film laminate in which said first transparent conductive pattern film and said second transparent conductive pattern film are respectively laminated on both main surfaces of said base material into said curved surface region by heat forming. 2. The method for manufacturing the touch panel according to 1.
  15.  前記透明導電パターン膜として、第1の透明導電パターン膜及び第2の透明導電パターン膜の2種を備え、
     前記第1の透明導電パターン膜が第1の前記基材の一方の主面のみに形成された第1の透明導電フィルム積層体と、前記第2の透明導電パターン膜が第2の前記基材の一方の主面のみに形成された第2の透明導電フィルム積層体と、を接着層を介して接合一体化した後、加熱フォーミングにより前記曲面領域とする工程を含む
    請求項1に記載のタッチパネルの製造方法。
    As the transparent conductive pattern film, two types of a first transparent conductive pattern film and a second transparent conductive pattern film are provided,
    A first transparent conductive film laminate in which the first transparent conductive pattern film is formed only on one main surface of the first substrate; and a second transparent conductive pattern film is formed on the second substrate. A second transparent conductive film laminate formed only on one main surface of the touch panel according to claim 1, comprising a step of joining and integrating through an adhesive layer, and then forming the curved surface region by heating forming. manufacturing method.
  16.  金属ナノワイヤを含む透明導電膜をレーザーエッチングすることにより電極列を有する第1の透明導電パターン膜及び前記電極列を有する第2の透明導電パターン膜、を形成する工程を含む請求項14又は15に記載のタッチパネルの製造方法。 16. The method according to claim 14 or 15, comprising the step of forming a first transparent conductive pattern film having an electrode row and a second transparent conductive pattern film having the electrode row by laser etching a transparent conductive film containing metal nanowires. A method of manufacturing the described touch panel.
  17.  ディスプレイと、
     前記ディスプレイ上に配設される請求項1又は2に記載のタッチパネルと
    を備える入出力一体型表示装置。
    a display;
    3. An input/output integrated display device comprising the touch panel according to claim 1 or 2 arranged on the display.
  18.  請求項17に記載の入出力一体型表示装置を備える車載用ディスプレイ。 An in-vehicle display comprising the input/output integrated display device according to claim 17.
PCT/JP2022/047276 2021-12-24 2022-12-22 Touch panel and method for manufacturing touch panel WO2023120620A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-211724 2021-12-24
JP2021211724 2021-12-24
JP2022-104758 2022-06-29
JP2022104758 2022-06-29

Publications (1)

Publication Number Publication Date
WO2023120620A1 true WO2023120620A1 (en) 2023-06-29

Family

ID=86902704

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/047276 WO2023120620A1 (en) 2021-12-24 2022-12-22 Touch panel and method for manufacturing touch panel

Country Status (2)

Country Link
TW (1) TW202333030A (en)
WO (1) WO2023120620A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009223426A (en) * 2008-03-13 2009-10-01 Sharp Corp Information display device and method
JP2011209899A (en) * 2010-03-29 2011-10-20 Nec Corp Information processing device, input control method, program and recording medium
JP2016110613A (en) * 2014-05-30 2016-06-20 株式会社半導体エネルギー研究所 Touch panel
WO2020171022A1 (en) * 2019-02-18 2020-08-27 昭和電工株式会社 Transparent electroconductive substrate, and touch panel including same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009223426A (en) * 2008-03-13 2009-10-01 Sharp Corp Information display device and method
JP2011209899A (en) * 2010-03-29 2011-10-20 Nec Corp Information processing device, input control method, program and recording medium
JP2016110613A (en) * 2014-05-30 2016-06-20 株式会社半導体エネルギー研究所 Touch panel
WO2020171022A1 (en) * 2019-02-18 2020-08-27 昭和電工株式会社 Transparent electroconductive substrate, and touch panel including same

Also Published As

Publication number Publication date
TW202333030A (en) 2023-08-16

Similar Documents

Publication Publication Date Title
KR102265033B1 (en) Transparent conductive film laminate and its processing method
WO2021075424A1 (en) Transparent electroconductive film laminate and method for processing same
US20220139591A1 (en) Transparent conductive film, and touch panel including same
WO2023120620A1 (en) Touch panel and method for manufacturing touch panel
JP2023095412A (en) Decorative touch panel and touch panel built-in display
WO2020241842A1 (en) Method for manufacturing transparent conductive film
JP7435831B2 (en) Transparent conductive film laminate
WO2022210585A1 (en) Transparent conductive film and transparent conductive pattern forming method
WO2022210586A1 (en) Transparent conductive film and method for forming transparent conductive pattern
TWI775458B (en) Transparent conductive substrate
JP2023095223A (en) Touch sensor and device provided with touch sensor
JP2023095255A (en) heater
US20240188220A1 (en) Transparent conducting film and method for forming transparent conducting pattern
US11538603B2 (en) Method for producing transparent conducting film
WO2023286602A1 (en) Transparent conductive film laminate and method for manufacturing same
JP2024067269A (en) Transparent conductive film laminate, its manufacturing method, and moldable transparent conductive film laminate
WO2021131099A1 (en) Method for manufacturing transparent conductive film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22911322

Country of ref document: EP

Kind code of ref document: A1