WO2023120596A1 - Masterbatch, preform, blow-molded bottle, beverage product, film, method for producing preform, and method for producing blow-molded bottle - Google Patents

Masterbatch, preform, blow-molded bottle, beverage product, film, method for producing preform, and method for producing blow-molded bottle Download PDF

Info

Publication number
WO2023120596A1
WO2023120596A1 PCT/JP2022/047191 JP2022047191W WO2023120596A1 WO 2023120596 A1 WO2023120596 A1 WO 2023120596A1 JP 2022047191 W JP2022047191 W JP 2022047191W WO 2023120596 A1 WO2023120596 A1 WO 2023120596A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyester resin
content
structural unit
derived
bottle
Prior art date
Application number
PCT/JP2022/047191
Other languages
French (fr)
Japanese (ja)
Inventor
陽平 山口
正樹 中谷
辰則 大久保
崇 佐藤
理恵 白浜
聡 加藤
Original Assignee
キリンホールディングス株式会社
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キリンホールディングス株式会社, 三菱ケミカル株式会社 filed Critical キリンホールディングス株式会社
Publication of WO2023120596A1 publication Critical patent/WO2023120596A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D1/00Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/02Wrappers or flexible covers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds

Definitions

  • PET has excellent transparency, mechanical properties, and gas barrier properties, and has been widely used as a film for beverage containers such as carbonated drinks, fruit juices, and water, display members, food packaging members, and construction materials. ing. Furthermore, PEF is expected as a substitute polyester for PET.
  • a PEF-containing preform for manufacturing a plastic container by stretch blow molding has been disclosed (see, for example, Patent Document 1).
  • a container having high mechanical strength and high barrier properties can be obtained by producing a preform having a viscosity of 0.75 dl/g to 0.9 dl/g and a water content of less than 50 ppm. is described.
  • a biaxially stretched film using PEF has been disclosed (see Patent Document 2).
  • PEF has higher heat resistance and gas barrier properties than PET. It is expected that a container that can be filled with contents such as various beverages sold hot can be obtained.
  • the masterbatch and the printer realize that the molding is stabilized without prolonging the molding time, and the quality of the resulting molded product is improved. It is an object of the present invention to provide a method for manufacturing reformed, blow-molded bottles, films, beverage products, preforms, and methods for manufacturing blow-molded bottles and films.
  • PET which is the main material
  • PEF as an additive in the main material
  • a blended polyester molded product can be obtained that is capable of compatibilization and kneading at a high temperature and that is excellent in molding quality and production suitability, and completed the present invention.
  • the masterbatch according to the present invention comprises a polyester resin (A) having a terephthalic acid-derived structural unit (A-1) and an aliphatic diol-derived structural unit (A-2), and a 2,5-flange A polyester containing a structural unit (B-1) derived from a carboxylic acid and a polyester resin (B) having a structural unit (B-2) derived from 1,2-ethanediol, and obtained by (Equation 1)
  • the content of the resin (B) is 45% by mass to 90% by weight, and the intrinsic viscosity (IV value) measured according to (Condition 1) is 0.50 dl/g to 1.20 dl/g. .
  • the masterbatch according to the present invention includes forms for molding pressure-resistant bottles, bottles for heated sales, or heat-resistant bottles.
  • the method for producing a molded article according to the present invention includes a polyester resin (A) having a terephthalic acid-derived structural unit (A-1) and an aliphatic diol-derived structural unit (A-2), and a 2,5- It contains a structural unit (B-1) derived from furandicarboxylic acid and a polyester resin (B) having a structural unit (B-2) derived from 1,2-ethanediol, and is obtained by (Equation 1)
  • the masterbatch is a masterbatch in which the content of the polyester resin (B) determined by (Equation 1) is 45% by mass to 90% by weight, and the molded body is
  • the step of molding includes a step of blending the masterbatch and the polyester resin (A) to mold a preform for a bottle.
  • the method for manufacturing a blow-molded bottle according to the present invention is characterized by having a step of molding a bottle by blow-molding the preform obtained by the method for manufacturing a molded body according to the present invention.
  • the preform according to the present invention comprises a polyester resin (A) having a terephthalic acid-derived structural unit (A-1) and an aliphatic diol-derived structural unit (A-2), A polyester resin (B) having a structural unit (B-1) derived from 2,5-furandicarboxylic acid and a structural unit (B-2) derived from 1,2-ethanediol, A bottle preform made of a resin composition having a polyester resin (B) content of 5 to 25% by mass as determined by (Equation 1), Except that the intrinsic viscosity (IV value) measured under (Condition 2) is 0.65 dl / g or more and 1.00 dl / g or less, and the luminous flux is narrowed to 7.0 mm square, JIS K 7136: 2000 "Plastic- It is characterized by having a haze value of 0.1 to 8% as measured according to "Method for Determining Haze of Transparent Materials".
  • the blow-molded bottle according to the present invention comprises a polyester resin (A) having a structural unit (A-1) derived from terephthalic acid and a structural unit (A-2) derived from an aliphatic diol, and 2,5-furandicarboxylic A polyester resin containing a structural unit (B-1) derived from an acid and a polyester resin (B) having a structural unit (B-2) derived from 1,2-ethanediol, and obtained by (Equation 1)
  • a blow-molded bottle made of a resin composition in which the content of (B) is 5 to 25% by mass, wherein the intrinsic viscosity (IV value) measured according to (Condition 3) is 0.65 dl/g or more and 1.00 dl/ g or less, and the haze value measured according to JIS K 7136: 2000 "Plastics - Determination of haze of transparent materials" is 0.1 to 20%, except that the luminous flux is narrowed to 7.0 mm square.
  • the blow-molded bottle according to the present invention is preferably a pressure-resistant bottle for filling with a carbonate-containing liquid.
  • INDUSTRIAL APPLICABILITY The blow-molded bottle according to the present invention is excellent in pressure resistance and heat resistance, and is suitable for filling with a carbonate-containing liquid. Moreover, it is suitable also regarding recyclability.
  • the blow-molded bottle according to the present invention is preferably a bottle for filling hot sales bottles or a heat-resistant bottle for filling at high temperature.
  • the blow-molded bottle according to the present invention has excellent heat resistance and high gas barrier properties, and can be used as a container when sold as a hot beverage at 60°C, for example, or when filled at a liquid temperature of 90°C, for example. Deformation is suppressed, and as a result, the degree of freedom in container design is high, and reduction in container weight and reduction in CO 2 emissions can be realized. Moreover, it is suitable also regarding recyclability.
  • the beverage product according to the present invention is characterized by filling the molded bottle according to the present invention with a beverage.
  • the method for producing a molded article according to the present invention includes a form in which the molded article is a film.
  • the film according to the present invention includes a polyester resin (A) having a terephthalic acid-derived structural unit (A-1) and an aliphatic diol-derived structural unit (A-2), and a 2,5-furandicarboxylic acid-derived and a polyester resin (B) having a structural unit (B-1) and a structural unit (B-2) derived from 1,2-ethanediol, and the polyester resin (B ) content is 1 to 90% by mass, and the intrinsic viscosity (IV value) measured according to (Condition 4) is 0.50 dl / g or more and 1.00 dl / g or less ,
  • the haze value measured according to JIS K 7136: 2000 "Plastics - Determination of haze of transparent materials" is 0.01 to 6.0%, except that the luminous flux is narrowed to 7.0 mm square.
  • a masterbatch that realizes stable molding without prolonging the molding time and further improving the quality of the resulting molded product
  • Preforms, blow-molded bottles, films, beverage products, methods of making preforms, methods of making blow-molded bottles, and methods of making films can be provided.
  • the resulting molded product has high molding quality and high productivity.
  • structural unit derived from " refers to a structural unit derived from the monomer (monomer) and incorporated into the polymer polyester.
  • structural unit derived from " is simply referred to as “unit” or “structural unit”, for example, “structural unit derived from diol” is “diol unit” or “diol structural unit”, “ “Structural unit” is “terephthalic acid unit” or “terephthalic acid structural unit”, “structural unit derived from 2,5-furandicarboxylic acid” is “2,5-furandicarboxylic acid unit” or “2,5-furandicarboxylic acid "structural unit” and “structural unit derived from 1,2-ethanediol” are sometimes referred to as “1,2-ethanediol unit” or "1,2-ethanediol structural unit”, respectively.
  • main structural unit refers to a structural unit that accounts for the largest proportion of the "structural unit”, and is usually 50 mol% or more, preferably 70 mol% of the structural unit. Above, the structural unit accounts for more preferably 80 mol % or more, still more preferably 90 to 100 mol %.
  • polyester resin A polyester resin has a dicarboxylic acid unit and a diol unit, and the polyester resin (A) has a terephthalic acid unit as the main structural unit of all the dicarboxylic acid units that constitute the polyester, and an aliphatic diol unit that constitutes the polyester. It is preferably the main structural unit of all diol units. It is more preferable to use ethylene glycol units as main structural units of all diol units constituting the polyester.
  • 2,5-furandicarboxylic acid units are the main structural units of all dicarboxylic acid units constituting the polyester, and 1,2-ethanediol units are the main structural units of all diol units constituting the polyester. It is preferably used as the main structural unit.
  • the polyester resin (A) includes a form that is a PET resin. Moreover, the polyester resin (B) includes a form that is a PEF resin. Next, the polyester resin (A) and polyester resin (B) will be described in more detail.
  • the polyester resin (A) contains a structural unit (A-1) derived from terephthalic acid as a dicarboxylic acid structural unit.
  • the polyester resin (A) preferably has a structural unit (A-1) derived from terephthalic acid as a main dicarboxylic acid unit.
  • the structural unit (A-1) derived from terephthalic acid is usually 50 mol% or more, preferably 70 mol% or more, more preferably 80 mol% or more, still more preferably 100 mol% of all dicarboxylic acid structural units. It is preferably contained in an amount of 90 to 100 mol %.
  • a dicarboxylic acid unit other than a terephthalic acid unit may be included as a dicarboxylic acid unit.
  • Dicarboxylic acids other than terephthalic acid include aliphatic dicarboxylic acids and aromatic dicarboxylic acids other than terephthalic acid.
  • Aliphatic dicarboxylic acids include chain aliphatic dicarboxylic acids such as oxalic acid, succinic acid, glutaric acid, adipic acid, sebacic acid, dimer acid and dodecanedioic acid; cycloaliphatic dicarboxylic acids such as 1,6-cyclohexanedicarboxylic acid; acid.
  • Aromatic dicarboxylic acids other than terephthalic acid include isophthalic acid, naphthalenedicarboxylic acid, diphenyldicarboxylic acid and the like.
  • the dicarboxylic acid structural unit other than terephthalic acid contained may be of only one type or two or more types in any combination and ratio. good.
  • the polyester resin (A) contains a dicarboxylic acid structural unit other than terephthalic acid
  • the content is preferably small in order to sufficiently obtain the above effects due to the inclusion of the terephthalic acid structural unit.
  • a large number is preferable.
  • the content thereof is usually 10 mol% or more, preferably 20 mol% or more, more preferably 30 mol% or more, based on 100 mol% of all dicarboxylic acid structural units. and its upper limit is usually 50 mol %.
  • a structural unit (A-2) derived from an aliphatic diol is included as a diol structural unit. Including the structural unit (A-2) derived from the aliphatic diol improves the heat resistance and gas barrier properties of the bottle produced using the polyester.
  • a diol other than an aliphatic diol hereinafter also referred to as "a diol other than an aliphatic diol” may be included as a structural unit. mentioned.
  • Aliphatic diols include 2,2′-oxydiethanol, 2,2′-(ethylenedioxy)diethanol, 1,3-propanediol, 1,2-propanediol, 1,4-butanediol, 1,5 -Pentanediol, 1,6-hexanediol, 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol, ethylene glycol, diethylene glycol, triethylene glycol, isosorbide and the like.
  • aromatic diols examples include xylylene glycol, 4,4'-dihydroxybiphenyl, 2,2-bis(4'-hydroxyphenyl)propane, 2,2-bis(4'- ⁇ -hydroxyethoxyphenyl ) propane, bis(4-hydroxyphenyl)sulfone, bis(4- ⁇ -hydroxyethoxyphenyl)sulfone and the like.
  • the polyester resin (A) contains diol structural units of aliphatic diols, the diols other than the aliphatic diols may be contained alone or in any combination and ratio.
  • the polyester resin (A) preferably has ethylene glycol-derived structural units (A-2) as main diol structural units. That is, the ethylene glycol structural unit is usually 50 mol% or more, preferably 70 mol% or more, more preferably 80 mol% or more, still more preferably 100 mol% of all diol structural units contained in the polyester resin (A). From the viewpoint of improving heat resistance and gas barrier properties, it is preferable to contain 90 mol % or more, particularly preferably 100 mol %.
  • the polyester resin (B) contains a structural unit (B-1) derived from 2,5-furandicarboxylic acid as a dicarboxylic acid structural unit.
  • the polyester resin (B) preferably has a structural unit (B-1) derived from 2,5-furandicarboxylic acid as a main dicarboxylic acid unit.
  • the structural unit derived from 2,5-furandicarboxylic acid is usually 50 mol% or more, preferably 70 mol% or more, more preferably 80 mol% or more, still more preferably 100 mol% of all dicarboxylic acid structural units. It is preferably contained in an amount of 90 to 100 mol %.
  • dicarboxylic acid units other than 2,5-furandicarboxylic acid units (also referred to as "dicarboxylic acids other than 2,5-furandicarboxylic acid”) structural units may be included.
  • Dicarboxylic acids other than 2,5-furandicarboxylic acid include aliphatic dicarboxylic acids and aromatic dicarboxylic acids.
  • Aliphatic dicarboxylic acids include chain aliphatic dicarboxylic acids such as oxalic acid, succinic acid, glutaric acid, adipic acid, sebacic acid, dimer acid and dodecanedioic acid; cycloaliphatic dicarboxylic acids such as 1,6-cyclohexanedicarboxylic acid; acid.
  • aromatic dicarboxylic acids include terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid, and diphenyldicarboxylic acid. Among these dicarboxylic acids, aliphatic dicarboxylic acids are preferable, and chain aliphatic dicarboxylic acids are more preferable, because they are excellent in flexibility.
  • the dicarboxylic acid structural unit other than 2,5-furandicarboxylic acid may be one type or two types. The above may be included in any combination and ratio.
  • the polyester resin (B) contains a dicarboxylic acid structural unit other than 2,5-furandicarboxylic acid
  • the content of the dicarboxylic acid structural unit is such that it is easy to sufficiently obtain the above effects due to the inclusion of the 2,5-furandicarboxylic acid structural unit. less is preferable.
  • a large number is preferable.
  • the content thereof is usually 10 mol% or more, preferably 20 mol% or more, more preferably 20 mol% or more, based on 100 mol% of all dicarboxylic acid structural units. is preferably 30 mol % or more, and its upper limit is usually 50 mol %.
  • a structural unit (B-2) derived from 1,2-ethanediol is included as a diol structural unit.
  • the structural unit (B-2) derived from 1,2-ethanediol the heat resistance and gas barrier properties of bottles produced using polyester are improved.
  • a diol structural unit a diol other than 1,2-ethanediol (hereinafter also referred to as "a diol other than 1,2-ethanediol”) may be included as a structural unit.
  • Diols include aliphatic diols and aromatic diols excluding 1,2-ethanediol.
  • Aliphatic diols other than 1,2-ethanediol include 2,2′-oxydiethanol, 2,2′-(ethylenedioxy)diethanol, 1,3-propanediol, 1,2-propanediol, 1,2-propanediol, 4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol, ethylene glycol, diethylene glycol, triethylene glycol, isosorbide and the like.
  • aromatic diols examples include xylylene glycol, 4,4'-dihydroxybiphenyl, 2,2-bis(4'-hydroxyphenyl)propane, 2,2-bis(4'- ⁇ -hydroxyethoxyphenyl ) propane, bis(4-hydroxyphenyl)sulfone, bis(4- ⁇ -hydroxyethoxyphenyl)sulfone and the like.
  • the polyester resin (B) contains a diol structural unit other than 1,2-ethanediol
  • the diol other than 1,2-ethanediol may be used alone or in any combination and ratio. may
  • the polyester resin (B) preferably has a structural unit (B-2) derived from 1,2-ethanediol as a main diol structural unit. That is, the 1,2-ethanediol structural unit is usually 50 mol% or more, preferably 70 mol% or more, more preferably 80 mol% or more in 100 mol% of all diol structural units contained in the polyester resin (B). , more preferably 90 mol % or more, and particularly preferably 100 mol %, from the viewpoint of improving heat resistance and gas barrier properties.
  • polyester resin (A) and the polyester resin (B) may contain structural units derived from copolymerization components other than dicarboxylic acid and diol.
  • Other copolymerization components include compounds containing trifunctional or higher functional groups.
  • Examples of compounds having trifunctional or higher functional groups include trifunctional or higher polyhydric alcohols, trifunctional or higher polycarboxylic acids (or their anhydrides, acid chlorides, or lower alkyl esters), trifunctional or higher hydroxycarboxylic acids. Acids (or their anhydrides, acid chlorides, or lower alkyl esters), tri- or higher functional amines, and the like.
  • trifunctional or higher polyhydric alcohols examples include glycerin, trimethylolpropane, and pentaerythritol. One of these may be used alone, or two or more may be used in any combination and ratio.
  • Tri- or more functional polycarboxylic acids or anhydrides thereof include trimesic acid, propanetricarboxylic acid, trimellitic anhydride, pyromellitic anhydride, benzophenonetetracarboxylic anhydride, cyclopentatetracarboxylic anhydride and the like. . One of these may be used alone, or two or more may be used in any combination and ratio.
  • trifunctional or higher hydroxycarboxylic acids include malic acid, hydroxyglutaric acid, hydroxymethylglutaric acid, tartaric acid, citric acid, hydroxyisophthalic acid, and hydroxyterephthalic acid. One of these may be used alone, or two or more may be used in any combination and ratio.
  • the polyester resin (A) or polyester resin (B) contains a structural unit derived from a compound having a trifunctional or higher functional group
  • the content is preferably large in terms of easily improving the strain hardening property, but on the other hand , the polyester of the present embodiment is appropriately crosslinked, the strand is easily pulled out stably, and the moldability, mechanical properties, etc. are likely to be good, so the amount is preferably small. Therefore, the content thereof is usually 5 mol% or less, particularly preferably 4 mol% or less, particularly preferably 3 mol% or less, relative to the total 100 mol% of all structural units constituting the polyester. Binary polyesters with no components are most preferred.
  • a chain extender such as a carbonate compound, a diisocyanate compound, a dioxazoline, or a silicate ester may be used in the production of the polyester resin (A) or the polyester resin (B).
  • polyester carbonate can be obtained by using a carbonate compound such as diphenyl carbonate in an amount of preferably 20 mol% or less, more preferably 10 mol% or less, relative to 100 mol% of the total structural units of the polyester. can.
  • carbonate compounds include diphenyl carbonate, ditolyl carbonate, bis(chlorophenyl) carbonate, m-cresyl carbonate, dinaphthyl carbonate, dimethyl carbonate, diethyl carbonate, dibutyl carbonate, ethylene carbonate, and diamyl carbonate. carbonate, dicyclohexyl carbonate and the like.
  • carbonate compounds composed of the same or different hydroxy compounds derived from hydroxy compounds such as phenols and alcohols can also be used.
  • diisocyanate compounds include 2,4-tolylene diisocyanate, a mixture of 2,4-tolylene diisocyanate and 2,6-tolylene diisocyanate, diphenylmethane diisocyanate, and 1,5-naphthylene diisocyanate. , xylylene diisocyanate, hydrogenated xylylene diisocyanate, hexamethylene diisocyanate, and isophorone diisocyanate.
  • silicate esters include tetramethoxysilane, dimethoxydiphenylsilane, dimethoxydimethylsilane, and diphenyldihydroxysilane. Any one of these may be used alone, or two or more thereof may be used in any combination and ratio.
  • the terminal groups of the polyester may be blocked with carbodiimide, epoxy compound, monofunctional alcohol, carboxylic acid, or the like.
  • the content thereof is preferably 20 mol % or less, more preferably 10 mol % or less, relative to 100 mol % of the total structural units of the polyester.
  • examples of the carbodiimide compound as the terminal blocking agent include compounds having one or more carbodiimide groups in the molecule (including polycarbodiimide compounds).
  • the monocarbodiimide compounds include dicyclohexylcarbodiimide, diisopropylcarbodiimide, dimethylcarbodiimide, diisobutylcarbodiimide, dioctylcarbodiimide, t-butylisopropylcarbodiimide, diphenylcarbodiimide, di-t-butylcarbodiimide, di- ⁇ -naphthylcarbodiimide, N, and N'-di-2,6-diisopropylphenylcarbodiimide.
  • any one of these may be used alone, or two or more thereof may be used in any combination and ratio.
  • various additives such as heat stabilizers, antioxidants, hydrolysis agents, as long as the properties are not impaired.
  • An inhibitor, a crystal nucleating agent, a flame retardant, an antistatic agent, a release agent, an ultraviolet absorber, and the like may be used.
  • Raw materials used for producing the polyester resin (A) and the polyester resin (B) may be petroleum-derived raw materials or biomass-derived raw materials. From the viewpoint of environmental protection, it is preferable to use a biomass-derived raw material, and it is more preferable to use a biomass-derived raw material as the main structural unit.
  • Raw materials derived from biomass include dicarboxylic acid components such as 2,5-furandicarboxylic acid, succinic acid, glutaric acid, adipic acid, and sebacic acid, 1,3-propanediol, 1,4-butanediol, 1,2- Examples include diol components such as ethanediol.
  • the polyester resin (A) particularly preferably has an intrinsic viscosity of 0.70 dl/g or more, particularly preferably 0.75 dl/g or more, most preferably 0.80 dl/g or more. Also, it is preferably 1.50 dl/g or less, more preferably 1.30 dl/g or less. That is, the intrinsic viscosity of the polyester resin (A) is preferably 0.70 dl/g or more and 1.50 dl/g or less. By setting the intrinsic viscosity within such a range, it is suitable for bottle and film molding.
  • the glass transition temperature of the polyester resin (A) is preferably 50°C or higher and 150°C or lower. More preferably, the glass transition temperature is 60° C. or higher. On the other hand, it is more preferable that the temperature is 130° C. or lower. Since the glass transition temperature of polyester is within the range described above, even if the content of the bottle is a foaming substance such as carbonated water, deformation due to the pressure difference between the inside and outside of the bottle is unlikely to occur, and the bottle can be stored in a high temperature environment. Even if you save it with , it will be difficult to deform.
  • the glass transition temperature can be measured by the method of JIS K7121-1987 using a differential scanning calorimeter.
  • the polyester is heated from 25°C to the melting point +30 to 60°C, then lowered to 25°C, and then raised again to the melting point +30 to 60°C.
  • the rate of temperature increase and the rate of temperature decrease are set to 10° C./min.
  • the midpoint glass transition temperature in this second temperature rise is taken as the glass transition temperature.
  • the polyester resin (B) preferably has an intrinsic viscosity of 0.70 dl/g or more and 1.50 dl/g or less. Moreover, it is preferable that the glass transition temperature is 50° C. or higher and 150° C. or lower.
  • the polyester resin (B) particularly preferably has an intrinsic viscosity of 0.70 dl/g or more, particularly preferably 0.80 dl/g or more, and most preferably 1.00 dl/g or more. Also, it is preferably 1.50 dl/g or less, more preferably 1.30 dl/g or less. That is, the intrinsic viscosity of the polyester resin (B) is preferably 0.70 dl/g or more and 1.50 dl/g or less. By setting the intrinsic viscosity within such a range, a polyester having both excellent stretchability and creep resistance can be obtained.
  • the use of the polyester resin (B) makes it possible to reduce the weight of the bottle by using the polyester resin (B), which reduces unevenness in thickness and enables a uniform thin film, thereby reducing the burden on the environment. Furthermore, it is easy to extrude without applying high pressure during molding.
  • strain hardening property of polyester is likely to occur due to its high intrinsic viscosity.
  • Strain hardening is a phenomenon in which the viscosity of a resin increases more than the linear viscosity depending on the drawing speed. Normally, in the stretching process, stress is concentrated on a thin portion of the film, causing deformation to progress, and thickness unevenness tends to increase. However, even if the polymer having strain hardening property is stretched, the viscosity becomes high at the thinned portion, so the thickness tends to be uniform, and it is suitable for the stretch molding process.
  • the glass transition temperature of the polyester resin (B) is preferably 50°C or higher and 150°C or lower. More preferably, the glass transition temperature is 60° C. or higher. On the other hand, it is more preferable that the temperature is 130° C. or lower. Since the glass transition temperature of polyester is within the range described above, even if the content of the bottle is a foaming substance such as carbonated water, deformation due to the pressure difference between the inside and outside of the bottle is unlikely to occur, and the bottle can be stored in a high temperature environment. Even if you save it with , it will be difficult to deform.
  • the method for producing the polyester of the present embodiment a known method for producing a polyester resin can be employed.
  • the reaction conditions at this time are not particularly limited, and any suitable conditions that have been conventionally employed can be set.
  • a dicarboxylic acid component containing 2,5-furandicarboxylic acid as an essential component, an aliphatic diol component preferably containing 1,2-ethanediol, other copolymer components used as necessary, etc. can be produced by carrying out an esterification reaction or a transesterification reaction step using and subsequently carrying out a polycondensation reaction step.
  • the esterification reaction or transesterification reaction step and the polycondensation reaction step are also referred to as a polyester production step.
  • the aforementioned chain extender or terminal blocking agent may be used.
  • the content of the polyester resin (B) determined by (Equation 1) is 90% by mass or less. It is also conceivable to carry out blend molding of the polyester resin (A) and the polyester resin (B) without using a masterbatch to adjust the content of the polyester resin (B) in the blend molded product to a desired content. However, when molding 100% PET resin as the polyester resin (A) into a preform, the polyester resin (A ) and the polyester resin (B) are blend-molded, the compatibilization of the polyester resin (A) and the polyester resin (B) becomes insufficient, and the appearance of the preform becomes white.
  • the masterbatch and the polyester resin (A) are blend-molded to adjust the content of the polyester resin (B) in the blend-molded product to a desired content.
  • the content of the polyester resin (B) obtained by (Equation 1) exceeds 90% by mass, whitening is observed in the appearance of the preform blend-molded at the reference cycle time. and sufficient transparency cannot be obtained.
  • the cycle time can be shortened by setting the content of the polyester resin (B) determined by (Equation 1) to 90% by mass or less.
  • the amount to 70% by mass or less it is possible to obtain a molded product in which the polyester resin (A) and the polyester resin (B) are sufficiently compatible under the molding conditions and cycle time of 100% PET resin.
  • the content of the polyester resin (B) determined by (Equation 1) is 45% by mass or more. It is possible to achieve both high productivity and high quality of molded products.
  • the content of the polyester resin (B) obtained by (Equation 1) is less than 45% by mass, the polyester resin (A) and the polyester resin (B) are mixed at the same cycle time as the molding conditions of 100% PET resin.
  • a sufficiently compatible molded product can be obtained, when the masterbatch and the polyester resin (A) are blend-molded, it is necessary to reduce the blending ratio of the polyester resin (A) and increase the blending ratio of the masterbatch. Therefore, many masterbatches must be prepared, and the burden of inventory management increases. As a result, the preform production efficiency may decrease.
  • the use of a masterbatch promotes compatibility between the polyester resin (A) and the polyester resin (B) and suppresses whitening of the film.
  • the content of the polyester resin (B) in the masterbatch is preferably 45-90% by weight, more preferably 45-80% by weight, and even more preferably 45-70% by weight.
  • the masterbatch according to the present embodiment preferably has an intrinsic viscosity (IV value) measured according to (Condition 1) of 0.50 dl/g or more and 1.20 dl/g or less.
  • the Huggins constant is 0.32. If the intrinsic viscosity (IV value) measured according to (Condition 1) is less than 0.50 dl/g, the mechanical properties of the molded product may be insufficient. On the other hand, when the intrinsic viscosity (IV value) exceeds 1.20 dl/g, molding may become difficult.
  • the masterbatch according to this embodiment includes being for molding pressure-resistant bottles, bottles for heated sales, or heat-resistant bottles.
  • a container obtained by blending a PET resin with a PEF resin is expected to have high mechanical strength and barrier properties, and is suitable for a pressure-resistant bottle, a heated bottle, or a heat-resistant bottle. However, if the compatibility is insufficient, the appearance will whiten. Therefore, it is preferable that the whitening is suppressed for a container for which transparency is preferred.
  • a container obtained by blending PET resin with PEF resin using the masterbatch according to the present embodiment can obtain transparency in the same molding time as PET resin.
  • the masterbatch according to the present embodiment satisfies that the content of the polyester resin (B) obtained by (Equation 1) is 90% by mass or less, and the polyester resin (A) and the A thermoplastic resin other than the polyester resin (B) can be contained.
  • the total mass of the polyester resin (A) and the polyester resin (B) is preferably 50% or more with respect to the total mass of the masterbatch. is 80% or more, more preferably 100%.
  • thermoplastic resin other than polyester resin (A) and polyester resin (B) contained in masterbatch Thermoplastic resins other than polyester resin (A) and polyester resin (B) (hereinafter also referred to as other thermoplastic resin 1) to be contained in the masterbatch include polyester resin (A) and polyester resin (B) other than Examples thereof include polyester (hereinafter also referred to as other polyester 1), crosslinkable thermoplastic resin, acryl, polycarbonate, and the like. Among these, at least one of the other polyester 1 and the crosslinkable thermoplastic resin is preferable in terms of excellent strain hardening property. Other thermoplastic resins 1 may be used alone, or two or more of them may be used in any combination and ratio.
  • polyester 1 is a polyester having a diol-derived structural unit and a dicarboxylic acid-derived structural unit, and is a polyester other than the polyester resin (A) and the polyester resin (B).
  • dicarboxylic acids constituting dicarboxylic acid units of other polyesters include o-phthalic acid, isophthalic acid, succinic acid, adipic acid, sebacic acid, azelaic acid, octylsuccinic acid, cyclohexanedicarboxylic acid, naphthalenedicarboxylic acid, fumaric acid, maleic acid, itaconic acid, decamethylenecarboxylic acid, their anhydrides and lower alkyl esters.
  • examples of the diol constituting the diol unit possessed by the other polyester 1 include 1,3-propanediol, 1,4-butanediol, diethylene glycol, 1,5-pentanediol, 1,6-hexanediol, di propylene glycol, triethylene glycol, tetraethylene glycol, 1,2-propanediol, 1,3-butanediol, 2,3-butanediol, neopentyl glycol (2,2-dimethylpropane-1,3-diol), 1,2-hexanediol, 2,5-hexanediol, 2-methyl-2,4-pentanediol, 3-methyl-1,3-pentanediol, 2-ethyl-1,3-hexanediol, polytetramethylene Chain diols such as glycol; alkylene oxides of 1,4-cyclohex
  • the strain hardening property can also be improved by jointly using a crosslinkable thermoplastic resin having a functional group capable of reacting with the carboxyl group or hydroxyl group contained in the masterbatch.
  • functional groups capable of reacting with carboxyl groups and hydroxyl groups include epoxy groups, oxazoline groups, carboxyl groups, and carbodiimide groups. These functional groups are preferably on the side chains of the thermoplastic resin. When these functional groups are present in the side chains, a branched structure is formed, which delays the relaxation of molecular extension during stretch molding, thereby improving the strain hardening property.
  • Thermoplastic resins other than the polyester resin (A) and the polyester resin (B) contained in the masterbatch are not included in the masterbatch, and the masterbatch and the polyester resin (A) are blended to form a preform. They may be added at the same time and blended together.
  • additives to be included in the masterbatch In the production of the masterbatch, various additives such as heat stabilizers, antioxidants, hydrolysis inhibitors, crystal nucleating agents, flame retardants, antistatic agents, release agents, An ultraviolet absorber or the like may be used.
  • additives may be added to the reactor before the polyester polymerization reaction, may be added to the conveying device or the like from the start of the polymerization reaction to before the end of the polymerization reaction, or may be added to the product after the end of the polymerization reaction. may be added before extraction. Alternatively, it may be added to the product after extraction.
  • an impact resistance modifier in addition to the various additives described above, an impact resistance modifier, a crystal nucleating agent, a reinforcing agent, an extender, a bluing agent, etc. may be added and molded.
  • an additive or the like one type may be used alone, or two or more types may be used in any combination and ratio.
  • Additives, impact modifiers, crystal nucleating agents, reinforcing agents, extenders, bluing agents, etc. are not included in the masterbatch, and the masterbatch and the polyester resin (A) are blended to form a preform. may be added during molding and blended together.
  • the masterbatch may contain impact modifiers for later molding into preforms.
  • the impact modifier By containing the impact modifier, the mechanical properties of the preform can be improved.
  • the content thereof is preferably 0.01% by weight or more and 10% by weight or less based on the mass of the preform.
  • impact modifiers include butadiene-based rubbers, acrylic-based rubbers, silicone-acrylic composite rubbers, and the like.
  • core-shell type impact modifiers such as Metabrene (manufactured by Mitsubishi Chemical Corporation) and Kaneace (manufactured by Kaneka Corporation) are preferably used.
  • a filler may be used in the production of the masterbatch.
  • the filler may be inorganic or organic.
  • the content of the filler may be selected within a range in which the effect of addition of the filler is sufficiently obtained and the tensile elongation and impact resistance of the preform are maintained, based on the preform.
  • Inorganic fillers include anhydrous silica, mica, talc, titanium oxide, calcium carbonate, diatomaceous earth, allophane, bentonite, potassium titanate, zeolite, sepiolite, smectite, kaolin, kaolinite, glass, limestone, carbon, and wollastonite.
  • calcined perlite calcium silicate, silicates such as sodium silicate, hydroxides such as aluminum oxide, magnesium carbonate, calcium hydroxide, salts such as ferric carbonate, zinc oxide, iron oxide, aluminum phosphate, barium sulfate, etc. is mentioned.
  • the content in the preform is usually 1% by weight or more, preferably 3% by weight or more, and more preferably 5% by weight or more. Also, it is usually 80% by weight or less, preferably 70% by weight or less, and more preferably 60% by weight or less.
  • Organic fillers include raw starch, modified starch, pulp, chitin/chitosan, coconut shell powder, bamboo powder, bark powder, kenaf and straw powder, and the like. Also, nanofiber cellulose obtained by defibrating fibers such as pulp to a nano level can be used.
  • the content in the preform is usually 0.1% by weight or more, preferably 1% by weight or more. Moreover, it is usually 70% by weight or less, preferably 50% by weight or less.
  • Crystal nucleating agents include glass fiber, carbon fiber, titanium whisker, mica, talc, boron nitride, CaCO 3 , TiO 2 , silica, layered silicate, polyethylene wax, polypropylene wax, etc.
  • Talc, boron nitride, Silica, layered silicate, polyethylene wax and polypropylene wax are preferred, and talc is particularly preferred.
  • crystal nucleating agent refers to particles that are solid at room temperature and contribute to the promotion of crystallization.
  • the particle size of the crystal nucleating agent is preferably small.
  • the grain size of the crystal nucleating agent is preferably 5 ⁇ m or less, more preferably 3 ⁇ m or less, still more preferably 1 ⁇ m or less, and most preferably 0.5 ⁇ m or less.
  • the lower limit of the grain size of the crystal nucleating agent is usually 0.1 ⁇ m.
  • a crystal nucleating agent When a crystal nucleating agent is used in the production of the preform, its amount is preferably 0.001% by weight or more, more preferably 0.01% by weight or more, and still more preferably 0.1% by weight, based on the mass of the preform. % or more.
  • the upper limit of the amount of the crystal nucleating agent is preferably 30% by weight, more preferably 10% by weight, still more preferably 5% by weight, particularly preferably 1% by weight, based on the mass of the preform.
  • the masterbatch may further contain a bluing agent.
  • a bluing agent By adding a bluing agent, it is easy to control b* to 2 or less when a bottle is molded.
  • a known method can be employed for the production of the masterbatch of the present embodiment.
  • it can be produced by melt-kneading each raw material using a single-screw or twin-screw extruder, Banbury mixer, or the like, and pelletizing.
  • composition of the masterbatch can be confirmed by a conventionally known method. For example, after separating the composition into constituent components by HPLC (high performance liquid chromatography), each component is analyzed by NMR (nuclear magnetic resonance spectroscopy), or after methanol decomposition, GC/MS (gas chromatography mass spectrometry) or the like. It can be confirmed by analyzing by
  • the preform according to the present embodiment comprises a polyester resin (A) having a structural unit (A-1) derived from terephthalic acid and a structural unit (A-2) derived from an aliphatic diol, and 2,5-furandicarboxylic
  • a polyester resin containing a structural unit (B-1) derived from an acid and a polyester resin (B) having a structural unit (B-2) derived from 1,2-ethanediol, and obtained by (Equation 1) 1.
  • a bottle preform made of a resin composition containing 5 to 25% by mass of (B) and having an intrinsic viscosity (IV value) of 0.65 dl/g or more as measured according to (Condition 2).
  • the content of the polyester resin (B) determined by (Equation 1) is preferably 5 to 15% by mass, more preferably 5 to 10% by mass.
  • the intrinsic viscosity (IV value) measured according to (Condition 2) is preferably 0.65 dl/g or more and 0.95 dl/g or less, more preferably 0.70 dl/g or more and 0.90 dl/g or less.
  • the haze value is preferably 0.1-6.0%, more preferably 0.1-3.0%.
  • the masterbatch is a masterbatch in which the content of the polyester resin (B) obtained by (Equation 1) is 45% by weight to 90% by weight, and A mode in which the step of molding a molded article is a step of molding a preform for a bottle by blending the masterbatch and the polyester resin (A) is included.
  • the masterbatch according to the present embodiment the polyester resin (A), and other additives used as necessary are directly melt-kneaded during injection molding, and then injected into the mold in a molten state, cooled, and taken out. to form a preform.
  • a twin screw is provided in order to use pellets obtained by blending the polyester resin (A) and the polyester resin (B) and pellets of the polyester resin (A) as raw materials for molding. Even if the polyester resin (A) and the polyester resin (B) in the preform are sufficiently compatible with each other, even if the preform is formed by direct melt-kneading during injection molding using an injection molding machine or the like.
  • the resin temperature in this extrusion step is not particularly limited, it is usually in the range of 210 to 290° C., preferably 230 to 270° C., from the standpoint of moldability and suppression of thermal deterioration.
  • the melt-kneading time is 120 seconds or more and 300 seconds or less, which corresponds to the passage time between the twin screws when molding the preform.
  • the blow-molded bottle comprises a polyester resin (A) having a structural unit (A-1) derived from terephthalic acid and a structural unit (A-2) derived from an aliphatic diol, and a 2,5-flange A polyester containing a structural unit (B-1) derived from a carboxylic acid and a polyester resin (B) having a structural unit (B-2) derived from 1,2-ethanediol, and obtained by (Equation 1)
  • a blow-molded bottle made of a resin composition having a resin (B) content of 5 to 25% by mass, and having an intrinsic viscosity (IV value) measured according to (Condition 3) of 0.65 dl/g or more and 1.00 dl.
  • the content of the polyester resin (B) determined by (Equation 1) is preferably 5 to 15% by mass, more preferably 5 to 10% by mass.
  • the intrinsic viscosity (IV value) measured according to (Condition 3) is preferably 0.65 dl/g or more and 0.95 dl/g or less, more preferably 0.70 dl/g or more and 0.90 dl/g or less.
  • the haze value is preferably 0.1-10.0%, more preferably 0.1-5.0%.
  • the method for manufacturing a blow-molded bottle according to this embodiment has a step of blow-molding the preform obtained by the method for manufacturing a molded body according to this embodiment to mold a bottle.
  • the preform in the blow molding process, the preform is put into a mold of a desired shape heated to a predetermined temperature by a heater, and then high-pressure air is blown into the mold to mount the preform on the mold to form a bottle.
  • the heating temperature of the preform is preferably 90°C to 150°C, more preferably 100°C to 140°C, and particularly preferably 110°C to 130°C.
  • the blow-molded bottle according to this embodiment is preferably a pressure-resistant bottle for filling with a carbonate-containing liquid.
  • the blow-molded bottle according to this embodiment has excellent pressure resistance and heat resistance, and is suitable for filling with a carbonate-containing liquid.
  • the blow-molded bottle according to the present embodiment is preferably a bottle for filling hot beverages, a bottle for hot sale for filling at a high temperature, or a heat-resistant bottle.
  • the blow-molded bottle according to this embodiment has excellent heat resistance and high gas barrier properties, and deformation of the container during hot sale is suppressed. reduction in volume can be realized. In addition, recyclability is also improved.
  • the beverage product according to this embodiment is characterized by filling the molded bottle according to this embodiment with a beverage.
  • Blow-molded bottles can have various shapes depending on the shape of the mold used.
  • the shape of the blow-molded bottle is not particularly limited as long as it can hold a beverage as long as it is for a beverage.
  • it is suitable for carbonic acid-containing liquids such as carbonated beverages such as beer and champagne, and hot beverages such as tea and coffee, by molding into an appropriate shape with a uniform and sufficiently thick wall thickness.
  • the mouth of the bottle is usually sealed with a resin cap or the like, and the pressure inside the bottle (internal pressure) is higher than the outside of the bottle. Therefore, it is preferable that the bottom of the bottle has a pressure-resistant shape that suppresses deformation due to the internal pressure in order to box, transport, display in a store, etc. in an upright state under high internal pressure. Since the deformation of the bottom and body of the bottle is generally accompanied by a creep (irreversible deformation due to continuous stress) phenomenon, there is commonality in wall thicknesses and shapes suitable for these bottles.
  • a bottle used for filling a carbonated liquid, a hot beverage, or the like may be referred to as a "heat-resistant and pressure bottle”. That is, the blow-molded bottle of this embodiment is suitable for a heat-resistant and pressure-resistant bottle.
  • the pressure-resistant shape of the bottom of the heat and pressure bottle can be, for example, a petaloid shape, a so-called champagne bottom shape with a dome shape facing the inside of the container, or a shape with unevenness in the center of the bottom surface. If the average wall thickness is large, deformation and bursting of the bottle due to internal pressure are less likely to occur. Specifically, depending on the internal pressure, the average wall thickness of the bottle body is preferably 0.20 mm or more, more preferably 0.25 mm or more, and even more preferably 0.30 mm or more. The average wall thickness, on the other hand, is also preferably 0.70 mm or less from the standpoint of bottle moldability.
  • the blow-molded bottle according to the present embodiment has less unevenness in wall thickness and can be uniformly thinned, so that a lightweight heat-resistant and pressure-resistant bottle can be obtained.
  • the weight/content of the bottle is preferably 10 g/L or more, more preferably 20 g/L or more, still more preferably 30 g/L or more, and particularly preferably 50 g/L or more.
  • /L or less is preferable, 150 g/L or less is more preferable, and 120 g/L or less is particularly preferable.
  • the blow-molded bottle according to the present embodiment is a uniform thin-walled bottle with excellent gas barrier properties, and is particularly suitable as a pressure-resistant bottle for filling carbonated liquids such as carbonated beverages.
  • the blow-molded bottle according to the present embodiment is excellent in creep resistance and impact resistance when filled with a carbonated liquid.
  • a bottle for filling a liquid containing 1 to 10 GV of carbon dioxide more preferably as a bottle for filling a liquid containing 1 to 5 GV of carbon dioxide, and a liquid containing 1 to 3 GV of carbon dioxide. It is more preferable as a filling bottle for , and particularly preferable as a filling bottle for a liquid containing 1 to 2 GV of carbon dioxide gas.
  • the blow-molded bottle according to this embodiment has excellent oxygen barrier properties. Suitable for alcoholic beverages such as wine bottles.
  • gas barrier property is superior to that of conventional PET bottles for alcoholic beverages, shelf life can be extended without using other means for improving gas barrier property such as multi-layer molding or coating.
  • the resin composition of the blow-molded bottle according to the present embodiment has a glass transition temperature of 50° C. or higher, deformation due to the pressure difference between the inside and outside of the bottle is less likely to occur. be.
  • it since it does not easily deform even when stored in a high-temperature environment, it is suitable for pressure-resistant bottles that are filled at high temperatures and hot beverage bottles that are heated and sold.
  • a preform with suppressed whitening can be obtained in spite of having a preform molding cycle time equivalent to that of a PET bottle, and whitening is suppressed in a bottle obtained by blow molding it. .
  • the film according to the present embodiment comprises a polyester resin (A) having a structural unit (A-1) derived from terephthalic acid and a structural unit (A-2) derived from an aliphatic diol, and 2,5-furandicarboxylic acid.
  • a polyester resin (B) having a structural unit (B-1) derived from 1,2-ethanediol and a structural unit (B-2) derived from 1,2-ethanediol, and a polyester resin obtained by (Equation 1) A film made of a resin composition in which the content of B) is 1 to 90% by mass, and the intrinsic viscosity (IV value) measured according to (Condition 4) is 0.50 dl / g or more and 1.00 dl / g or less
  • the haze value measured according to JIS K 7136:2000 "Plastics - Determination of haze of transparent materials" is 0.01 to 6.0%, except that the luminous flux is narrowed to 7.0 mm square.
  • the "film” includes an article generally called a "sheet”.
  • the content of the polyester resin (B) in the film is preferably 1-90% by mass, more preferably 20-90% by mass, and most preferably 40-90% by mass. By setting it as said range, a film with high transparency, gas-barrier property, and surface hardness can be obtained.
  • the haze value of the film is preferably 0.01-6.0%, more preferably 0.01-4.5%, and most preferably 0.01-1.5%. By setting it as these ranges, it can be used suitably for the uses which require high transparency, such as an optical use.
  • the method for producing a film according to this embodiment has a step of blending the masterbatch according to this embodiment and the polyester resin (A) to form a film. That is, the masterbatch according to the present embodiment, the polyester resin (A), and other additives used as necessary are directly melt-kneaded during injection molding, and then injected into a mold in a molten state and cooled. to form a film.
  • a twin screw is provided in order to use pellets obtained by blending the polyester resin (A) and the polyester resin (B) and pellets of the polyester resin (A) as raw materials for molding.
  • the polyester resin (A) and the polyester resin (B) are sufficiently compatible in the film.
  • the resin temperature in this extrusion step is not particularly limited, but it is usually in the range of 200 to 300° C., preferably 240 to 280° C., from the standpoint of moldability and suppression of thermal deterioration.
  • the film according to the present embodiment can also be made into a biaxially stretched film with excellent mechanical properties by being biaxially stretched.
  • a conventionally known method can be used as a method for producing a biaxially stretched film. The following methods are mentioned.
  • the melted film extruded from the die is cooled and solidified with a cooling roll to obtain an unstretched film.
  • a cooling roll In this case, it is necessary to increase the adhesion between the film and the rotary cooling drum in order to improve the flatness of the film, and the electrostatic application adhesion method and/or the liquid coating adhesion method are preferably employed.
  • the resulting unstretched film is then biaxially stretched. In that case, first, the unstretched film is stretched in one direction by a roll or tenter type stretching machine.
  • the stretching temperature is usually 80 to 140° C., preferably 85 to 120° C.
  • the stretching ratio is usually 2.5 to 7 times, preferably 3.0 to 6 times.
  • the stretching temperature perpendicular to the stretching direction in the first stage is usually 70 to 170° C., and the stretching ratio is usually 3.0 to 7 times, preferably 3.5 to 6 times.
  • heat treatment is performed at a temperature of 160 to 240° C. under tension or under relaxation within 30% to obtain a biaxially oriented film.
  • a method of stretching in one direction in two or more stages can also be employed. In that case, it is preferable that the stretching ratios in the two directions finally fall within the above ranges.
  • a simultaneous biaxial stretching method can also be adopted in the production of the biaxially stretched film.
  • the simultaneous biaxial stretching method is a method in which the above unstretched film is stretched simultaneously in two directions while the temperature is controlled at usually 70 to 120°C, preferably 80 to 110°C.
  • the draw ratio is preferably 4 to 50 times, more preferably 7 to 35 times, still more preferably 10 to 25 times in terms of area magnification.
  • heat treatment is performed at a temperature of 160 to 240° C. under tension or under relaxation of 30% or less to obtain a stretched and oriented film.
  • Conventionally known stretching methods such as a screw method, a pantograph method, a linear drive method, and the like can be employed for the simultaneous biaxial stretching apparatus that employs the above-described stretching method.
  • the temperature of the polyester was raised from 25°C to 280°C, then lowered to 25°C, and then raised to 260°C again.
  • the temperature increase rate and temperature decrease rate were set to 10° C./min.
  • the midpoint glass transition temperature in this second temperature rise was defined as the glass transition temperature.
  • Melting point of polyester The apex of the melting peak in the second temperature rise measured with the same equipment and conditions as the measurement of the glass transition temperature was defined as the melting point.
  • Gas barrier property oxygen permeability
  • the oxygen permeability of the blow-molded bottle was measured using an oxygen permeability measuring device (OX-TRAN2/21 manufactured by MODERN CONTROL).
  • the oxygen transmission rate was conditioned at 23°C and 90% RH for 12 hours from the start of the measurement, and the value after 72 hours from the start of the measurement was taken.
  • the oxygen gas barrier properties were evaluated relative to the oxygen permeability of a general-purpose PET bottle (100% general-purpose PET bottle obtained in Reference Example E1 described later) as 1. Specifically, the oxygen permeability of Reference Example E1 was divided by the oxygen permeability of the sample for comparison, and the evaluation was made by a magnification. The oxygen gas barrier property was evaluated as good when the calculated magnification exceeded 1.
  • b* value of bottle The degree of coloration of the bottle is indicated by the degree of coloration b* value, which is the color difference in JIS K 7105-1981 “Testing methods for optical properties of plastics”. Colorless is defined as having a b* value of 2.0 or less. The b* value is more preferably 1.7 or less. The b* value can be obtained by Equation (5). Note that X, Y, or Z in Equation 5 are tristimulus values. Further, the correlation between the b* value and visual observation in the present invention is roughly shown in Table 1.
  • Polyethylene furanoate pellets and polyethylene terephthalate pellets are weighed so that the content of the polyester resin (B) obtained by (Equation 1) is 50% by mass, and uniformly stirred to form a pellet mixture for preparing a masterbatch. got The obtained pellet mixture was charged into a hopper, kneaded under the following conditions, and a molten resin was obtained from a 2.5 mm ⁇ strand die. The resulting molten resin was directly immersed in a water bath at 23° C. and cooled to form a strand, which was passed through a pelletizer to obtain a masterbatch of polyethylene furanoate and polyethylene terephthalate.
  • Example A2 A masterbatch was obtained in the same manner as in Example A1, except that the polyethylene furanoate pellets and the polyethylene terephthalate pellets were weighed so that the content of the polyester resin (B) obtained by (Equation 1) was 60% by mass. rice field.
  • Example A3 A masterbatch was obtained in the same manner as in Example A1, except that the polyethylene furanoate pellets and the polyethylene terephthalate pellets were weighed so that the content of the polyester resin (B) obtained by (Equation 1) was 70% by mass. rice field.
  • the resulting pellet mixture was put into a hopper and injection molded under the following conditions to obtain a bottle preform.
  • the volume was 22.7 ml, the weight was 20 g, and the average wall thickness of the trunk was 2.9 mm.
  • Example B2 A bottle preform was obtained in the same manner as in Example B1, except that the masterbatch of Example A2 was used. The volume, weight, and average wall thickness of the trunk portion were the same as in Example B1.
  • Example B3 A bottle preform was obtained in the same manner as in Example B1 except that the masterbatch of Example A3 was used. The volume, weight, and average wall thickness of the trunk portion were the same as in Example B1.
  • Example D1 to D3, Comparative Example D1, Reference Example E1 Blow molded bottles of Examples D1 to D3 were obtained by blow molding the preforms of Examples B1 to B3 using a blow molding machine (FRB-1 manufactured by Frontier Corporation). Further, the preform of Comparative Example B1 was similarly blow-molded to obtain a blow-molded bottle of Comparative Example D1. Further, the preform of Reference Example C1 was similarly blow-molded to obtain a blow-molded bottle of Reference Example E1.
  • the blow-molded bottle was a bottle for hot sale having a volume of 280 ml, a weight of 20 g, and an average body thickness of 0.26 mm.
  • Table 2 shows the obtained evaluation results.
  • Examples D1 to D3 had higher gas barrier properties than Reference Example E1.
  • Examples D1 to D3 had a lower haze value and b* than Comparative Example D1 in which the cycle time was the same as 22 seconds, and the appearance was good. Therefore, Examples D1 to D3, which passed through the masterbatch, were able to mold bottles with a good appearance while maintaining cycle time equivalent to that of Reference Example E1, that is, ensuring productivity equivalent to that of PET bottles.
  • Xplore series MC15 manufactured by Xplore Instruments
  • Example F2 Example F1 except that the amounts of the resins used in the preparation of the masterbatch were 13.5 g of polyethylene furanoate and 1.5 g of polyethylene terephthalate, and the amounts of the resins in the preparation of the polyester composition were set to 1.67 g of the masterbatch and 13.33 g of polyethylene terephthalate.
  • the intrinsic viscosity (IV value) of the obtained masterbatch strand was 0.82 dl/g.
  • Example G1 A metal frame (SUS304, outer diameter 110 mm, inner diameter 70 mm, thickness 0.2 mm) that has been subjected to surface release treatment is placed on a 150 mm ⁇ 150 mm polyimide film (Upilex S, manufactured by Ube Industries, Ltd., thickness 0.05 mm). 2.0 g of the polyester composition obtained in Example F1 was measured on the inside of the tube, and the same polyimide film of 150 mm x 150 mm was placed thereon. With the masterbatch sandwiched between the polyimide films sandwiched between two iron plates (160 mm ⁇ 160 mm, thickness 3 mm), a heat press (IMC-180C type manufactured by Imoto Seisakusho Co., Ltd.) is used to heat press.
  • IMC-180C type manufactured by Imoto Seisakusho Co., Ltd.
  • a hot press film of 70 mm ⁇ 70 mm ⁇ 0.2 mm in thickness was obtained.
  • the hot-pressing temperature was 280° C.
  • the hot-pressing time was 1 minute for preheating and 1 minute for pressing.
  • the haze of the resulting film was as good as 1.33%.
  • the intrinsic viscosity (IV value) of the resulting film was 0.62 dl/g.
  • Example G2 A heat-pressed film was obtained in the same manner as in Example G1, except that the polyester composition obtained in Example F2 was used.
  • the resulting film had a haze of 4.30%, which was inferior to Example G1, but was better than Comparative Example G1 in which no masterbatch was used.
  • the intrinsic viscosity (IV value) of the resulting film was 0.68 dl/g.
  • Example G1 A heat-pressed film was obtained in the same manner as in Example G1, except that the polyester composition obtained in Comparative Example F1 was used.
  • the obtained film had a haze of 7.27% and was insufficient in transparency.
  • the intrinsic viscosity (IV value) of the resulting film was 0.64 dl/g.

Abstract

The purpose of the present disclosure is to provide: a masterbatch which, for PET/PEF blend molding, does not require extra molding time, can achieve stabilized molding, and further, makes it possible to obtain a good quality molded article; a preform; a blow-molded bottle; a film; a beverage product; a method for producing a preform; a method for producing a blow-molded bottle; and a method for producing a film. A masterbatch according to the present disclosure contains a polyester resin (A) comprising a terephthalic acid-derived structural unit (A-1) and an aliphatic diol-derived structural unit (A-2), and a polyester resin (B) comprising a 2,5-furandicarboxylic acid-derived structural unit (B-1) and a 1,2-ethanediol-derived structural unit (B-2). The content ratio of the polyester resin (B), determined by (formula 1), is 45 mass% to 90 wt%, and the intrinsic viscosity (IV value), measured under (condition 1), is 0.50 dl/g to 1.20 dl/g.

Description

マスターバッチ、プリフォーム、ブロー成形ボトル、飲料製品、フィルム、プリフォームの製造方法及びブロー成形ボトルの製造方法MASTERBATCH, PREFORM, BLOW-MOLDED BOTTLE, BEVERAGE PRODUCTS, FILM, PREFORM MANUFACTURING METHOD AND BLOW-MOLDED BOTTLE MANUFACTURING METHOD
 本開示は、例えば、ポリエチレンテレフタレート樹脂(以降、PET樹脂又はPETともいう。)とポリエチレンフラノエート樹脂(以降、PEF樹脂又はPEFともいう。)とを含むマスターバッチに関する。さらに、当該マスターバッチを用いて成形したプリフォーム、当該プリフォームをブロー成形したボトル、当該ボトルに飲料が充填された飲料製品、当該マスターバッチを用いたフィルム、前記プリフォームの製造方法及び前記ブロー成形ボトルの製造方法に関する。 The present disclosure relates to a masterbatch containing, for example, polyethylene terephthalate resin (hereinafter also referred to as PET resin or PET) and polyethylene furanoate resin (hereinafter also referred to as PEF resin or PEF). Furthermore, a preform molded using the masterbatch, a bottle obtained by blow molding the preform, a beverage product in which the bottle is filled with a beverage, a film using the masterbatch, a method for producing the preform, and the blow It relates to a method for manufacturing molded bottles.
 従来、PETは、透明性、機械的特性及びガスバリア性に優れており、炭酸飲料、果汁、水等の飲料用容器や、ディスプレイ用部材、食品包装部材、建材等に用いられるフィルムとして広く使われている。さらに、また、PEFは、PETの代替ポリエステルとして期待されている。 Conventionally, PET has excellent transparency, mechanical properties, and gas barrier properties, and has been widely used as a film for beverage containers such as carbonated drinks, fruit juices, and water, display members, food packaging members, and construction materials. ing. Furthermore, PEF is expected as a substitute polyester for PET.
 例えば、プラスチック容器を延伸ブロー成形法において製造するための、PEFを含有するプリフォームが開示されている(例えば、特許文献1を参照。)。具体的には、プリフォームの製造の際に、粘度0.75dl/g~0.9dl/gおよび含水量50ppm未満を有するプリフォームとすることにより、機械強度およびバリア性が高い容器が得られると記載されている。また、フィルム用途では、PEFを用いた二軸延伸フィルムが開示されている(特許文献2を参照)。 For example, a PEF-containing preform for manufacturing a plastic container by stretch blow molding has been disclosed (see, for example, Patent Document 1). Specifically, a container having high mechanical strength and high barrier properties can be obtained by producing a preform having a viscosity of 0.75 dl/g to 0.9 dl/g and a water content of less than 50 ppm. is described. For film applications, a biaxially stretched film using PEF has been disclosed (see Patent Document 2).
特表2018-510800号公報Japanese Patent Publication No. 2018-510800 特表2017-536427号公報Japanese Patent Publication No. 2017-536427
 PEFは、PETよりも耐熱性及びガスバリア性が高いことから、PETとPEFとをブレンドすることによって、より酸化劣化しやすい内容液、例えば、ビール・果汁・茶飲料等の内容液、又は、加温販売する各種飲料等の内容液を充填できる容器が得られることが期待される。 PEF has higher heat resistance and gas barrier properties than PET. It is expected that a container that can be filled with contents such as various beverages sold hot can be obtained.
 しかし、耐熱温度が異なるPETとPEFのブレンド成形において、異樹脂を相溶させるために必要な混錬時間が多くなる問題、及び、成形工程の、特に冷却時の結晶化速度の違いによる成形品質低下を招く問題がある。これらの問題は、成形時間の長期化、成形の不安定化、及び成形品の品質低下を招く原因となる。 However, in the blend molding of PET and PEF, which have different heat resistance temperatures, there is a problem that the kneading time required to make the different resins compatible and the molding quality due to the difference in the crystallization speed during the molding process, especially during cooling. There are problems that lead to degradation. These problems lead to prolonged molding time, unstable molding, and deterioration in the quality of molded products.
 そこで本開示は、PETとPEFのブレンド成形において、成形時間の長期化を招かず、成形の安定化が図られ、さらには得られる成形品の品質が良好となることを実現するマスターバッチ、プリフォーム、ブロー成形ボトル、フィルム、飲料製品、プリフォームの製造方法、ブロー成形ボトル及びフィルムの製造方法を提供することを目的とする。 Therefore, in the blend molding of PET and PEF, the masterbatch and the printer realize that the molding is stabilized without prolonging the molding time, and the quality of the resulting molded product is improved. It is an object of the present invention to provide a method for manufacturing reformed, blow-molded bottles, films, beverage products, preforms, and methods for manufacturing blow-molded bottles and films.
 本発明者らは鋭意検討したところ、主材であるPETに、添加材としてPEFをブレンドする際に、PEFを添加剤として主材に所定濃度の高濃度でマスターバッチ化することで、短時間での相溶化・混錬を可能とし、成形品質および生産適性に優れたブレンドのポリエステル成形品が得られることを見出し、本発明を完成させた。すなわち、本発明に係るマスターバッチは、テレフタル酸由来の構造単位(A-1)と、脂肪族ジオール由来の構造単位(A-2)とを有するポリエステル樹脂(A)と、2,5-フランジカルボン酸由来の構造単位(B-1)と、1,2-エタンジオール由来の構造単位(B-2)とを有するポリエステル樹脂(B)と、を含有し、(数1)で求められるポリエステル樹脂(B)の含有率が45質量%~90重量%であり、(条件1)により測定した固有粘度(IV値)が0.50dl/g~1.20dl/gであることを特徴とする。
(数1)ポリエステル樹脂(B)の含有率(質量%)=ポリエステル樹脂(B)の含有量/(ポリエステル樹脂(A)の含有量+ポリエステル樹脂(B)の含有量)
(条件1)マスターバッチ0.25gをフェノール/1,1,2,2-テトラクロロエタン=50/50(重量比)の混合溶媒50mlに溶解し、ウベローデ粘度計を用いて30℃で測定する、Huggins定数は0.32とする。
As a result of extensive studies by the present inventors, when PET, which is the main material, is blended with PEF as an additive, by using PEF as an additive in the main material and making a masterbatch at a predetermined high concentration, it is possible to achieve a short time. The inventors have found that a blended polyester molded product can be obtained that is capable of compatibilization and kneading at a high temperature and that is excellent in molding quality and production suitability, and completed the present invention. That is, the masterbatch according to the present invention comprises a polyester resin (A) having a terephthalic acid-derived structural unit (A-1) and an aliphatic diol-derived structural unit (A-2), and a 2,5-flange A polyester containing a structural unit (B-1) derived from a carboxylic acid and a polyester resin (B) having a structural unit (B-2) derived from 1,2-ethanediol, and obtained by (Equation 1) The content of the resin (B) is 45% by mass to 90% by weight, and the intrinsic viscosity (IV value) measured according to (Condition 1) is 0.50 dl/g to 1.20 dl/g. .
(Formula 1) content of polyester resin (B) (% by mass) = content of polyester resin (B) / (content of polyester resin (A) + content of polyester resin (B))
(Condition 1) 0.25 g of the masterbatch is dissolved in 50 ml of a mixed solvent of phenol/1,1,2,2-tetrachloroethane = 50/50 (weight ratio), and measured at 30°C using an Ubbelohde viscometer. The Huggins constant is 0.32.
 本発明に係るマスターバッチでは、耐圧ボトル、加温販売用ボトル又は耐熱ボトルの成形向けである形態を含む。 The masterbatch according to the present invention includes forms for molding pressure-resistant bottles, bottles for heated sales, or heat-resistant bottles.
 本発明に係る成形体の製造方法は、テレフタル酸由来の構造単位(A-1)と、脂肪族ジオール由来の構造単位(A-2)とを有するポリエステル樹脂(A)と、2,5-フランジカルボン酸由来の構造単位(B-1)と、1,2-エタンジオール由来の構造単位(B-2)とを有するポリエステル樹脂(B)と、を含有し、(数1)で求められるポリエステル樹脂(B)の含有率が90質量%以下であり、(条件1)により測定した固有粘度(IV値)が0.50dl/g~1.20dl/gであるマスターバッチを作製する工程と、該マスターバッチと前記ポリエステル樹脂(A)とを別途溶融混練することによって成形体を成形する工程と、を特徴とする。
(数1)ポリエステル樹脂(B)の含有率(質量%)=ポリエステル樹脂(B)の含有量/(ポリエステル樹脂(A)の含有量+ポリエステル樹脂(B)の含有量)
(条件1)マスターバッチ0.25gをフェノール/1,1,2,2-テトラクロロエタン=50/50(重量比)の混合溶媒50mlに溶解し、ウベローデ粘度計を用いて30℃で測定する、Huggins定数は0.32とする。
The method for producing a molded article according to the present invention includes a polyester resin (A) having a terephthalic acid-derived structural unit (A-1) and an aliphatic diol-derived structural unit (A-2), and a 2,5- It contains a structural unit (B-1) derived from furandicarboxylic acid and a polyester resin (B) having a structural unit (B-2) derived from 1,2-ethanediol, and is obtained by (Equation 1) A step of producing a masterbatch having a polyester resin (B) content of 90% by mass or less and an intrinsic viscosity (IV value) measured according to (Condition 1) of 0.50 dl / g to 1.20 dl / g. and a step of separately melt-kneading the masterbatch and the polyester resin (A) to form a molded body.
(Formula 1) content of polyester resin (B) (% by mass) = content of polyester resin (B) / (content of polyester resin (A) + content of polyester resin (B))
(Condition 1) 0.25 g of the masterbatch is dissolved in 50 ml of a mixed solvent of phenol/1,1,2,2-tetrachloroethane = 50/50 (weight ratio), and measured at 30°C using an Ubbelohde viscometer. The Huggins constant is 0.32.
 本発明に係る成形体の製造方法では、前記マスターバッチが、(数1)で求められるポリエステル樹脂(B)の含有率が45質量%~90重量%であるマスターバッチであり、前記成形体を成形する工程が、該マスターバッチと前記ポリエステル樹脂(A)とをブレンドしてボトル用のプリフォームを成形する工程である形態を包含する。 In the method for producing a molded body according to the present invention, the masterbatch is a masterbatch in which the content of the polyester resin (B) determined by (Equation 1) is 45% by mass to 90% by weight, and the molded body is The step of molding includes a step of blending the masterbatch and the polyester resin (A) to mold a preform for a bottle.
 本発明に係るブロー成形ボトルの製造方法では、本発明に係る成形体の製造方法によって得られたプリフォームをブロー成形してボトルを成形する工程を有することを特徴とする。 The method for manufacturing a blow-molded bottle according to the present invention is characterized by having a step of molding a bottle by blow-molding the preform obtained by the method for manufacturing a molded body according to the present invention.
 本発明に係るプリフォームは、テレフタル酸由来の構造単位(A-1)と、脂肪族ジオール由来の構造単位(A-2)とを有するポリエステル樹脂(A)と、
2,5-フランジカルボン酸由来の構造単位(B-1)と、1,2-エタンジオール由来の構造単位(B-2)とを有するポリエステル樹脂(B)と、を含有し、
(数1)で求められるポリエステル樹脂(B)の含有率が5~25質量%である樹脂組成物からなるボトル用のプリフォームであって、
(条件2)により測定した固有粘度(IV値)が0.65dl/g以上1.00dl/g以下であり、光束を7.0mm角に絞ったこと以外は、JIS K 7136:2000「プラスチック-透明材料のヘーズの求め方」に従って測定した曇価が0.1~8%であることを特徴とする。
(数1)ポリエステル樹脂(B)の含有率(質量%)=ポリエステル樹脂(B)の含有量/(ポリエステル樹脂(A)の含有量+ポリエステル樹脂(B)の含有量)
(条件2)プリフォームから切り出したサンプル0.25gをフェノール/1,1,2,2-テトラクロロエタン=50/50(重量比)の混合溶媒50mlに溶解し、ウベローデ粘度計を用いて30℃で測定する、Huggins定数は0.32とする。
The preform according to the present invention comprises a polyester resin (A) having a terephthalic acid-derived structural unit (A-1) and an aliphatic diol-derived structural unit (A-2),
A polyester resin (B) having a structural unit (B-1) derived from 2,5-furandicarboxylic acid and a structural unit (B-2) derived from 1,2-ethanediol,
A bottle preform made of a resin composition having a polyester resin (B) content of 5 to 25% by mass as determined by (Equation 1),
Except that the intrinsic viscosity (IV value) measured under (Condition 2) is 0.65 dl / g or more and 1.00 dl / g or less, and the luminous flux is narrowed to 7.0 mm square, JIS K 7136: 2000 "Plastic- It is characterized by having a haze value of 0.1 to 8% as measured according to "Method for Determining Haze of Transparent Materials".
(Formula 1) content of polyester resin (B) (% by mass) = content of polyester resin (B) / (content of polyester resin (A) + content of polyester resin (B))
(Condition 2) 0.25 g of a sample cut from the preform was dissolved in 50 ml of a mixed solvent of phenol/1,1,2,2-tetrachloroethane = 50/50 (weight ratio), and measured at 30°C using an Ubbelohde viscometer. , and the Huggins constant is 0.32.
 本発明に係るブロー成形ボトルは、テレフタル酸由来の構造単位(A-1)と、脂肪族ジオール由来の構造単位(A-2)とを有するポリエステル樹脂(A)と、2,5-フランジカルボン酸由来の構造単位(B-1)と、1,2-エタンジオール由来の構造単位(B-2)とを有するポリエステル樹脂(B)と、を含有し、(数1)で求められるポリエステル樹脂(B)の含有率が5~25質量%である樹脂組成物からなるブロー成形ボトルであって、(条件3)により測定した固有粘度(IV値)が0.65dl/g以上1.00dl/g以下であり、光束を7.0mm角に絞ったこと以外は、JIS K 7136:2000「プラスチック-透明材料のヘーズの求め方」に従って測定した曇価が0.1~20%であることを特徴とする。
(数1)ポリエステル樹脂(B)の含有率(質量%)=ポリエステル樹脂(B)の含有量/(ポリエステル樹脂(A)の含有量+ポリエステル樹脂(B)の含有量)
(条件3)ブロー成形ボトルから切り出したサンプル0.25gをフェノール/1,1,2,2-テトラクロロエタン=50/50(重量比)の混合溶媒50mlに溶解し、ウベローデ粘度計を用いて30℃で測定する、Huggins定数は0.32とする。
The blow-molded bottle according to the present invention comprises a polyester resin (A) having a structural unit (A-1) derived from terephthalic acid and a structural unit (A-2) derived from an aliphatic diol, and 2,5-furandicarboxylic A polyester resin containing a structural unit (B-1) derived from an acid and a polyester resin (B) having a structural unit (B-2) derived from 1,2-ethanediol, and obtained by (Equation 1) A blow-molded bottle made of a resin composition in which the content of (B) is 5 to 25% by mass, wherein the intrinsic viscosity (IV value) measured according to (Condition 3) is 0.65 dl/g or more and 1.00 dl/ g or less, and the haze value measured according to JIS K 7136: 2000 "Plastics - Determination of haze of transparent materials" is 0.1 to 20%, except that the luminous flux is narrowed to 7.0 mm square. Characterized by
(Formula 1) content of polyester resin (B) (% by mass) = content of polyester resin (B) / (content of polyester resin (A) + content of polyester resin (B))
(Condition 3) 0.25 g of a sample cut from a blow-molded bottle was dissolved in 50 ml of a mixed solvent of phenol/1,1,2,2-tetrachloroethane = 50/50 (weight ratio), and measured at 30 using an Ubbelohde viscometer. The Huggins constant, measured in °C, is taken to be 0.32.
 本発明に係るブロー成形ボトルは、炭酸含有液の充填用の耐圧ボトルであることが好ましい。本発明に係るブロー成形ボトルは、耐圧性及び耐熱性に優れており、炭酸含有液の充填用として好適である。また、リサイクル性に関しても好適である。 The blow-molded bottle according to the present invention is preferably a pressure-resistant bottle for filling with a carbonate-containing liquid. INDUSTRIAL APPLICABILITY The blow-molded bottle according to the present invention is excellent in pressure resistance and heat resistance, and is suitable for filling with a carbonate-containing liquid. Moreover, it is suitable also regarding recyclability.
 本発明に係るブロー成形ボトルは、加温販売用ボトルの充填用ボトル又は高温で充填するための耐熱ボトルであることが好ましい。本発明に係るブロー成形ボトルは、耐熱性及び高ガスバリア性に優れており、例えば60℃のホット飲料の状態で販売されるときのあるいは、例えば90℃の液温で充填されるときの容器の変形が抑制され、この結果、容器デザインの自由度が高く、容器軽量化及びCO排出量削減を実現できる。また、リサイクル性に関しても好適である。 The blow-molded bottle according to the present invention is preferably a bottle for filling hot sales bottles or a heat-resistant bottle for filling at high temperature. The blow-molded bottle according to the present invention has excellent heat resistance and high gas barrier properties, and can be used as a container when sold as a hot beverage at 60°C, for example, or when filled at a liquid temperature of 90°C, for example. Deformation is suppressed, and as a result, the degree of freedom in container design is high, and reduction in container weight and reduction in CO 2 emissions can be realized. Moreover, it is suitable also regarding recyclability.
 本発明に係る飲料製品は、本発明に係る成形ボトルに飲料を充填したことを特徴とする。 The beverage product according to the present invention is characterized by filling the molded bottle according to the present invention with a beverage.
 本発明に係る成形体の製造方法では、前記成形体がフィルムである形態を包含する。 The method for producing a molded article according to the present invention includes a form in which the molded article is a film.
 本発明に係るフィルムは、テレフタル酸由来の構造単位(A-1)と、脂肪族ジオール由来の構造単位(A-2)とを有するポリエステル樹脂(A)と、2,5-フランジカルボン酸由来の構造単位(B-1)と、1,2-エタンジオール由来の構造単位(B-2)とを有するポリエステル樹脂(B)と、を含有し、(数1)で求められるポリエステル樹脂(B)の含有率が1~90質量%である樹脂組成物からなるフィルムであって、(条件4)により測定した固有粘度(IV値)が0.50dl/g以上1.00dl/g以下であり、光束を7.0mm角に絞ったこと以外は、JIS K 7136:2000「プラスチック-透明材料のヘーズの求め方」に従って測定した曇価が0.01~6.0%であることを特徴とする。
(数1)ポリエステル樹脂(B)の含有率(質量%)=ポリエステル樹脂(B)の含有量/(ポリエステル樹脂(A)の含有量+ポリエステル樹脂(B)の含有量)
(条件4)フィルム0.25gをフェノール/1,1,2,2-テトラクロロエタン=50/50(重量比)の混合溶媒50mlに溶解し、ウベローデ粘度計を用いて30℃で測定する、Huggins定数は0.32とする。
The film according to the present invention includes a polyester resin (A) having a terephthalic acid-derived structural unit (A-1) and an aliphatic diol-derived structural unit (A-2), and a 2,5-furandicarboxylic acid-derived and a polyester resin (B) having a structural unit (B-1) and a structural unit (B-2) derived from 1,2-ethanediol, and the polyester resin (B ) content is 1 to 90% by mass, and the intrinsic viscosity (IV value) measured according to (Condition 4) is 0.50 dl / g or more and 1.00 dl / g or less , The haze value measured according to JIS K 7136: 2000 "Plastics - Determination of haze of transparent materials" is 0.01 to 6.0%, except that the luminous flux is narrowed to 7.0 mm square. do.
(Formula 1) content of polyester resin (B) (% by mass) = content of polyester resin (B) / (content of polyester resin (A) + content of polyester resin (B))
(Condition 4) 0.25 g of the film is dissolved in 50 ml of a mixed solvent of phenol/1,1,2,2-tetrachloroethane = 50/50 (weight ratio), and measured at 30°C using an Ubbelohde viscometer. The constant is 0.32.
 本開示によれば、PETとPEFのブレンド成形において、成形時間の長期化を招かず、成形の安定化が図られ、さらには得られる成形品の品質が良好となることを実現するマスターバッチ、プリフォーム、ブロー成形ボトル、フィルム、飲料製品、プリフォームの製造方法、ブロー成形ボトルの製造方法及びフィルムの製造方法を提供することができる。得られた成形品は、成形品質が高く、高い生産適性を有している。 According to the present disclosure, in blend molding of PET and PEF, a masterbatch that realizes stable molding without prolonging the molding time and further improving the quality of the resulting molded product, Preforms, blow-molded bottles, films, beverage products, methods of making preforms, methods of making blow-molded bottles, and methods of making films can be provided. The resulting molded product has high molding quality and high productivity.
プリフォームのヘーズ測定方法について説明する概略図である。It is a schematic diagram explaining a haze measuring method of a preform.
 本発明の実施の形態について、図面を参照しながら説明するが、本発明はこれらの記載に限定して解釈されない。本発明の効果を奏する限り、実施形態は種々の変形をしてもよい。 Although the embodiments of the present invention will be described with reference to the drawings, the present invention is not interpreted as being limited to these descriptions. Various modifications may be made to the embodiments as long as the effects of the present invention are achieved.
[マスターバッチ]
 本実施形態に係るマスターバッチは、テレフタル酸由来の構造単位(A-1)と、脂肪族ジオール由来の構造単位(A-2)とを有するポリエステル樹脂(A)と、2,5-フランジカルボン酸由来の構造単位(B-1)と、1,2-エタンジオール由来の構造単位(B-2)とを有するポリエステル樹脂(B)と、を含有し、(数1)で求められるポリエステル樹脂(B)の含有率が90質量%以下である。
(数1)ポリエステル樹脂(B)の含有率(質量%)=ポリエステル樹脂(B)の含有量/(ポリエステル樹脂(A)の含有量+ポリエステル樹脂(B)の含有量)
[Master Badge]
The masterbatch according to the present embodiment comprises a polyester resin (A) having a structural unit (A-1) derived from terephthalic acid and a structural unit (A-2) derived from an aliphatic diol, and 2,5-furandicarboxylic A polyester resin containing a structural unit (B-1) derived from an acid and a polyester resin (B) having a structural unit (B-2) derived from 1,2-ethanediol, and obtained by (Equation 1) The content of (B) is 90% by mass or less.
(Formula 1) content of polyester resin (B) (% by mass) = content of polyester resin (B) / (content of polyester resin (A) + content of polyester resin (B))
 本明細書において、「・・・由来の構造単位」とは、当該単量体(モノマー)に由来してポリマーであるポリエステルに取り込まれた構造単位をさす。以下、「・・・由来の構造単位」は単に「単位」または「構造単位」と称し、例えば、「ジオール由来の構造単位」を「ジオール単位」または「ジオール構造単位」、「テレフタル酸由来の構造単位」を「テレフタル酸単位」または「テレフタル酸構造単位」、「2,5-フランジカルボン酸由来の構造単位」を「2,5-フランジカルボン酸単位」または「2,5-フランジカルボン酸構造単位」、「1,2-エタンジオール由来の構造単位」を「1,2-エタンジオール単位」または「1,2-エタンジオール構造単位」と各々称す場合がある。 In the present specification, the term "structural unit derived from ..." refers to a structural unit derived from the monomer (monomer) and incorporated into the polymer polyester. Hereinafter, "structural unit derived from ..." is simply referred to as "unit" or "structural unit", for example, "structural unit derived from diol" is "diol unit" or "diol structural unit", " "Structural unit" is "terephthalic acid unit" or "terephthalic acid structural unit", "structural unit derived from 2,5-furandicarboxylic acid" is "2,5-furandicarboxylic acid unit" or "2,5-furandicarboxylic acid "structural unit" and "structural unit derived from 1,2-ethanediol" are sometimes referred to as "1,2-ethanediol unit" or "1,2-ethanediol structural unit", respectively.
 本明細書において、「主たる構造単位」とは、当該「構造単位」の中で最も多くの割合を占める構造単位をさし、通常、当該構造単位中の50モル%以上、好ましくは70モル%以上、より好ましくは80モル%以上、更に好ましくは90~100モル%を占める構造単位である。 As used herein, the term "main structural unit" refers to a structural unit that accounts for the largest proportion of the "structural unit", and is usually 50 mol% or more, preferably 70 mol% of the structural unit. Above, the structural unit accounts for more preferably 80 mol % or more, still more preferably 90 to 100 mol %.
(ポリエステル樹脂)
 ポリエステル樹脂は、ジカルボン酸単位とジオール単位を有するところ、ポリエステル樹脂(A)は、テレフタル酸単位を、ポリエステルを構成する全ジカルボン酸単位の主たる構造単位とし、脂肪族ジオール単位を、ポリエステルを構成する全ジオール単位の主たる構造単位とすることが好ましい。エチレングリコール単位を、ポリエステルを構成する全ジオール単位の主たる構造単位とすることがより好ましい。また、ポリエステル樹脂(B)は、2,5-フランジカルボン酸単位を、ポリエステルを構成する全ジカルボン酸単位の主たる構造単位とし、1,2-エタンジオール単位を、ポリエステルを構成する全ジオール単位の主たる構造単位とすることが好ましい。
(polyester resin)
A polyester resin has a dicarboxylic acid unit and a diol unit, and the polyester resin (A) has a terephthalic acid unit as the main structural unit of all the dicarboxylic acid units that constitute the polyester, and an aliphatic diol unit that constitutes the polyester. It is preferably the main structural unit of all diol units. It is more preferable to use ethylene glycol units as main structural units of all diol units constituting the polyester. In the polyester resin (B), 2,5-furandicarboxylic acid units are the main structural units of all dicarboxylic acid units constituting the polyester, and 1,2-ethanediol units are the main structural units of all diol units constituting the polyester. It is preferably used as the main structural unit.
 ポリエステル樹脂(A)は、PET樹脂である形態を包含する。また、ポリエステル樹脂(B)は、PEF樹脂である形態を包含する。次にポリエステル樹脂(A)及びポリエステル樹脂(B)についてより具体的に説明する。 The polyester resin (A) includes a form that is a PET resin. Moreover, the polyester resin (B) includes a form that is a PEF resin. Next, the polyester resin (A) and polyester resin (B) will be described in more detail.
(ポリエステル樹脂(A))
<ジカルボン酸構造単位>
 ポリエステル樹脂(A)は、ジカルボン酸構造単位として、テレフタル酸由来の構造単位(A-1)を含む。テレフタル酸由来の構造単位(A-1)を含むことにより、ガラス転移温度が上がり、耐熱性が良好になり、さらにガスバリア性も良好となる。ポリエステル樹脂(A)は、テレフタル酸由来の構造単位(A-1)を主たるジカルボン酸単位とすることが好ましい。すなわち、テレフタル酸由来の構造単位(A-1)は、全ジカルボン酸構造単位100モル%中に、通常50モル%以上、好ましくは70モル%以上、より好ましくは80モル%以上、更に好ましくは90~100モル%含有するのがよい。
(Polyester resin (A))
<Dicarboxylic acid structural unit>
The polyester resin (A) contains a structural unit (A-1) derived from terephthalic acid as a dicarboxylic acid structural unit. By including the structural unit (A-1) derived from terephthalic acid, the glass transition temperature is increased, the heat resistance is improved, and the gas barrier property is also improved. The polyester resin (A) preferably has a structural unit (A-1) derived from terephthalic acid as a main dicarboxylic acid unit. That is, the structural unit (A-1) derived from terephthalic acid is usually 50 mol% or more, preferably 70 mol% or more, more preferably 80 mol% or more, still more preferably 100 mol% of all dicarboxylic acid structural units. It is preferably contained in an amount of 90 to 100 mol %.
 ジカルボン酸単位としてテレフタル酸単位以外のジカルボン酸(「テレフタル酸以外のジカルボン酸」ともいう)構造単位を有していてもよい。テレフタル酸以外のジカルボン酸は、脂肪族ジカルボン酸、テレフタル酸を除く芳香族ジカルボン酸が挙げられる。脂肪族ジカルボン酸としては、シュウ酸、コハク酸、グルタル酸、アジピン酸、セバシン酸、ダイマー酸、ドデカン二酸などの鎖状脂肪族ジカルボン酸;1,6-シクロヘキサンジカルボン酸等の環状脂肪族ジカルボン酸が挙げられる。テレフタル酸を除く芳香族ジカルボン酸としては、イソフタル酸、ナフタレンジカルボン酸、ジフェニルジカルボン酸等が挙げられる。 A dicarboxylic acid unit other than a terephthalic acid unit (also referred to as a "dicarboxylic acid other than terephthalic acid") may be included as a dicarboxylic acid unit. Dicarboxylic acids other than terephthalic acid include aliphatic dicarboxylic acids and aromatic dicarboxylic acids other than terephthalic acid. Aliphatic dicarboxylic acids include chain aliphatic dicarboxylic acids such as oxalic acid, succinic acid, glutaric acid, adipic acid, sebacic acid, dimer acid and dodecanedioic acid; cycloaliphatic dicarboxylic acids such as 1,6-cyclohexanedicarboxylic acid; acid. Aromatic dicarboxylic acids other than terephthalic acid include isophthalic acid, naphthalenedicarboxylic acid, diphenyldicarboxylic acid and the like.
 ジカルボン酸構造単位としてテレフタル酸以外のジカルボン酸構造単位を含む場合について、含まれるテレフタル酸以外のジカルボン酸構造単位は、1種のみであっても、2種以上を任意の組み合わせと比率で含んでもよい。ポリエステル樹脂(A)がテレフタル酸以外のジカルボン酸構造単位を含む場合の含有量は、テレフタル酸構造単位を含有することによる上記の効果を十分に得やすい点では少ないことが好ましい。また、一方で、柔軟性等に優れる点では、多いことが好ましい。そこで、テレフタル酸以外のジカルボン酸構造単位を含む場合、その含有量は、全ジカルボン酸構造単位100モル%中に、通常10モル%以上、好ましくは20モル%以上、更に好ましくは30モル%以上がよく、その上限は通常50モル%である。 In the case where a dicarboxylic acid structural unit other than terephthalic acid is contained as a dicarboxylic acid structural unit, the dicarboxylic acid structural unit other than terephthalic acid contained may be of only one type or two or more types in any combination and ratio. good. In the case where the polyester resin (A) contains a dicarboxylic acid structural unit other than terephthalic acid, the content is preferably small in order to sufficiently obtain the above effects due to the inclusion of the terephthalic acid structural unit. On the other hand, from the point of view of excellent flexibility and the like, a large number is preferable. Therefore, when a dicarboxylic acid structural unit other than terephthalic acid is contained, the content thereof is usually 10 mol% or more, preferably 20 mol% or more, more preferably 30 mol% or more, based on 100 mol% of all dicarboxylic acid structural units. and its upper limit is usually 50 mol %.
<ジオール構造単位>
 本実施形態では、ジオール構造単位として、脂肪族ジオール由来の構造単位(A-2)を含む。脂肪族ジオール由来の構造単位(A-2)を含むことにより、ポリエステルを用いて製造したボトルの耐熱性およびガスバリア性が向上する。また、ジオール構造単位として、脂肪族ジオール以外のジオール(以下、「脂肪族ジオール以外のジオール」ともいう)を構造単位として含んでいてもよく、脂肪族ジオール以外のジオールとしては、芳香族ジオールが挙げられる。脂肪族ジオールとしては、2,2’-オキシジエタノール、2,2’-(エチレンジオキシ)ジエタノール、1,3-プロパンジオール、1,2-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,4-シクロヘキサンジオール、1,4-シクロヘキサンジメタノール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、イソソルバイド等が挙げられる。また、芳香族ジオールとしては、例えば、キシリレングリコール、4,4’-ジヒドロキシビフェニル、2,2-ビス(4’-ヒドロキシフェニル)プロパン、2,2-ビス(4’-β-ヒドロキシエトキシフェニル)プロパン、ビス(4-ヒドロキシフェニル)スルホン、ビス(4-β-ヒドロキシエトキシフェニル)スルホン等が挙げられる。ポリエステル樹脂(A)が脂肪族ジオールのジオール構造単位を含む場合における脂肪族ジオール以外のジオールは、1種のみでも、2種以上が任意の組み合わせと比率で含まれていてもよい。
<Diol Structural Unit>
In this embodiment, a structural unit (A-2) derived from an aliphatic diol is included as a diol structural unit. Including the structural unit (A-2) derived from the aliphatic diol improves the heat resistance and gas barrier properties of the bottle produced using the polyester. In addition, as the diol structural unit, a diol other than an aliphatic diol (hereinafter also referred to as "a diol other than an aliphatic diol") may be included as a structural unit. mentioned. Aliphatic diols include 2,2′-oxydiethanol, 2,2′-(ethylenedioxy)diethanol, 1,3-propanediol, 1,2-propanediol, 1,4-butanediol, 1,5 -Pentanediol, 1,6-hexanediol, 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol, ethylene glycol, diethylene glycol, triethylene glycol, isosorbide and the like. Examples of aromatic diols include xylylene glycol, 4,4'-dihydroxybiphenyl, 2,2-bis(4'-hydroxyphenyl)propane, 2,2-bis(4'-β-hydroxyethoxyphenyl ) propane, bis(4-hydroxyphenyl)sulfone, bis(4-β-hydroxyethoxyphenyl)sulfone and the like. When the polyester resin (A) contains diol structural units of aliphatic diols, the diols other than the aliphatic diols may be contained alone or in any combination and ratio.
 ポリエステル樹脂(A)は、エチレングリコール由来の構造単位(A-2)を主たるジオール構造単位とすることが好ましい。すなわち、エチレングリコール構造単位は、ポリエステル樹脂(A)に含まれる全ジオール構造単位100モル%中に、通常50モル%以上、好ましくは70モル%以上、より好ましくは80モル%以上、更に好ましくは90モル%以上、特に好ましくは100モル%含むことが、耐熱性とガスバリア性向上の観点から好ましい。 The polyester resin (A) preferably has ethylene glycol-derived structural units (A-2) as main diol structural units. That is, the ethylene glycol structural unit is usually 50 mol% or more, preferably 70 mol% or more, more preferably 80 mol% or more, still more preferably 100 mol% of all diol structural units contained in the polyester resin (A). From the viewpoint of improving heat resistance and gas barrier properties, it is preferable to contain 90 mol % or more, particularly preferably 100 mol %.
(ポリエステル樹脂(B))
<ジカルボン酸構造単位>
 ポリエステル樹脂(B)は、ジカルボン酸構造単位として、2,5-フランジカルボン酸由来の構造単位(B-1)を含む。2,5-フランジカルボン酸由来の構造単位(B-1)を含むことにより、ガラス転移温度が上がり、耐熱性が良好になり、さらにガスバリア性も良好となる。ポリエステル樹脂(B)は、2,5-フランジカルボン酸由来の構造単位(B-1)を主たるジカルボン酸単位とすることが好ましい。すなわち、2,5-フランジカルボン酸由来の構造単位は、全ジカルボン酸構造単位100モル%中に、通常50モル%以上、好ましくは70モル%以上、より好ましくは80モル%以上、更に好ましくは90~100モル%含有するのがよい。
(Polyester resin (B))
<Dicarboxylic acid structural unit>
The polyester resin (B) contains a structural unit (B-1) derived from 2,5-furandicarboxylic acid as a dicarboxylic acid structural unit. By containing the structural unit (B-1) derived from 2,5-furandicarboxylic acid, the glass transition temperature is increased, the heat resistance is improved, and the gas barrier property is also improved. The polyester resin (B) preferably has a structural unit (B-1) derived from 2,5-furandicarboxylic acid as a main dicarboxylic acid unit. That is, the structural unit derived from 2,5-furandicarboxylic acid is usually 50 mol% or more, preferably 70 mol% or more, more preferably 80 mol% or more, still more preferably 100 mol% of all dicarboxylic acid structural units. It is preferably contained in an amount of 90 to 100 mol %.
 ジカルボン酸単位として2,5-フランジカルボン酸単位以外のジカルボン酸(「2,5-フランジカルボン酸以外のジカルボン酸」ともいう)構造単位を有していてもよい。2,5-フランジカルボン酸以外のジカルボン酸は、脂肪族ジカルボン酸、芳香族ジカルボン酸が挙げられる。脂肪族ジカルボン酸としては、シュウ酸、コハク酸、グルタル酸、アジピン酸、セバシン酸、ダイマー酸、ドデカン二酸などの鎖状脂肪族ジカルボン酸;1,6-シクロヘキサンジカルボン酸等の環状脂肪族ジカルボン酸が挙げられる。芳香族ジカルボン酸としては、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸、ジフェニルジカルボン酸等が挙げられる。これらのジカルボン酸のうち、柔軟性に優れることから、脂肪族ジカルボン酸が好ましく、鎖状脂肪族ジカルボン酸がより好ましい。 As dicarboxylic acid units, dicarboxylic acid units other than 2,5-furandicarboxylic acid units (also referred to as "dicarboxylic acids other than 2,5-furandicarboxylic acid") structural units may be included. Dicarboxylic acids other than 2,5-furandicarboxylic acid include aliphatic dicarboxylic acids and aromatic dicarboxylic acids. Aliphatic dicarboxylic acids include chain aliphatic dicarboxylic acids such as oxalic acid, succinic acid, glutaric acid, adipic acid, sebacic acid, dimer acid and dodecanedioic acid; cycloaliphatic dicarboxylic acids such as 1,6-cyclohexanedicarboxylic acid; acid. Examples of aromatic dicarboxylic acids include terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid, and diphenyldicarboxylic acid. Among these dicarboxylic acids, aliphatic dicarboxylic acids are preferable, and chain aliphatic dicarboxylic acids are more preferable, because they are excellent in flexibility.
 ジカルボン酸構造単位として2,5-フランジカルボン酸以外のジカルボン酸構造単位を含む場合について、含まれる2,5-フランジカルボン酸以外のジカルボン酸構造単位は、1種のみであっても、2種以上を任意の組み合わせと比率で含んでもよい。ポリエステル樹脂(B)が2,5-フランジカルボン酸以外のジカルボン酸構造単位を含む場合の含有量は、2,5-フランジカルボン酸構造単位を含有することによる上記の効果を十分に得やすい点では少ないことが好ましい。また、一方で、柔軟性等に優れる点では、多いことが好ましい。そこで、2,5-フランジカルボン酸以外のジカルボン酸構造単位を含む場合、その含有量は、全ジカルボン酸構造単位100モル%中に、通常10モル%以上、好ましくは20モル%以上、更に好ましくは30モル%以上がよく、その上限は通常50モル%である。 In the case where a dicarboxylic acid structural unit other than 2,5-furandicarboxylic acid is included as a dicarboxylic acid structural unit, the dicarboxylic acid structural unit other than 2,5-furandicarboxylic acid contained may be one type or two types. The above may be included in any combination and ratio. In the case where the polyester resin (B) contains a dicarboxylic acid structural unit other than 2,5-furandicarboxylic acid, the content of the dicarboxylic acid structural unit is such that it is easy to sufficiently obtain the above effects due to the inclusion of the 2,5-furandicarboxylic acid structural unit. less is preferable. On the other hand, from the point of view of excellent flexibility and the like, a large number is preferable. Therefore, when a dicarboxylic acid structural unit other than 2,5-furandicarboxylic acid is contained, the content thereof is usually 10 mol% or more, preferably 20 mol% or more, more preferably 20 mol% or more, based on 100 mol% of all dicarboxylic acid structural units. is preferably 30 mol % or more, and its upper limit is usually 50 mol %.
<ジオール構造単位>
 本実施形態では、ジオール構造単位として、1,2-エタンジオール由来の構造単位(B-2)を含む。1,2-エタンジオール由来の構造単位(B-2)を含むことにより、ポリエステルを用いて製造したボトルの耐熱性およびガスバリア性が向上する。また、ジオール構造単位として、1,2-エタンジオール以外のジオール(以下、「1,2-エタンジオール以外のジオール」ともいう)を構造単位として含んでいてもよく、1,2-エタンジオール以外のジオールとしては、1,2-エタンジオールを除く脂肪族ジオール、芳香族ジオールが挙げられる。1,2-エタンジオールを除く脂肪族ジオールとしては、2,2’-オキシジエタノール、2,2’-(エチレンジオキシ)ジエタノール、1,3-プロパンジオール、1,2-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,4-シクロヘキサンジオール、1,4-シクロヘキサンジメタノール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、イソソルバイド等が挙げられる。また、芳香族ジオールとしては、例えば、キシリレングリコール、4,4’-ジヒドロキシビフェニル、2,2-ビス(4’-ヒドロキシフェニル)プロパン、2,2-ビス(4’-β-ヒドロキシエトキシフェニル)プロパン、ビス(4-ヒドロキシフェニル)スルホン、ビス(4-β-ヒドロキシエトキシフェニル)スルホン等が挙げられる。ポリエステル樹脂(B)が1,2-エタンジオール以外のジオール構造単位を含む場合における1,2-エタンジオール以外のジオールは、1種のみでも、2種以上が任意の組み合わせと比率で含まれていてもよい。
<Diol Structural Unit>
In this embodiment, a structural unit (B-2) derived from 1,2-ethanediol is included as a diol structural unit. By including the structural unit (B-2) derived from 1,2-ethanediol, the heat resistance and gas barrier properties of bottles produced using polyester are improved. In addition, as a diol structural unit, a diol other than 1,2-ethanediol (hereinafter also referred to as "a diol other than 1,2-ethanediol") may be included as a structural unit. Diols include aliphatic diols and aromatic diols excluding 1,2-ethanediol. Aliphatic diols other than 1,2-ethanediol include 2,2′-oxydiethanol, 2,2′-(ethylenedioxy)diethanol, 1,3-propanediol, 1,2-propanediol, 1,2-propanediol, 4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol, ethylene glycol, diethylene glycol, triethylene glycol, isosorbide and the like. Examples of aromatic diols include xylylene glycol, 4,4'-dihydroxybiphenyl, 2,2-bis(4'-hydroxyphenyl)propane, 2,2-bis(4'-β-hydroxyethoxyphenyl ) propane, bis(4-hydroxyphenyl)sulfone, bis(4-β-hydroxyethoxyphenyl)sulfone and the like. When the polyester resin (B) contains a diol structural unit other than 1,2-ethanediol, the diol other than 1,2-ethanediol may be used alone or in any combination and ratio. may
 ポリエステル樹脂(B)は、1,2-エタンジオール由来の構造単位(B-2)を主たるジオール構造単位とすることが好ましい。すなわち、1,2-エタンジオール構造単位は、ポリエステル樹脂(B)に含まれる全ジオール構造単位100モル%中に、通常50モル%以上、好ましくは70モル%以上、より好ましくは80モル%以上、更に好ましくは90モル%以上、特に好ましくは100モル%含むことが、耐熱性とガスバリア性向上の観点から好ましい。 The polyester resin (B) preferably has a structural unit (B-2) derived from 1,2-ethanediol as a main diol structural unit. That is, the 1,2-ethanediol structural unit is usually 50 mol% or more, preferably 70 mol% or more, more preferably 80 mol% or more in 100 mol% of all diol structural units contained in the polyester resin (B). , more preferably 90 mol % or more, and particularly preferably 100 mol %, from the viewpoint of improving heat resistance and gas barrier properties.
(ポリエステル樹脂(A)のその他の共重合成分及びポリエステル樹脂(B)のその他の共重合成分)
 ポリエステル樹脂(A)とポリエステル樹脂(B)は、ジカルボン酸とジオール以外の他の共重合成分に由来する構造単位を含んでもよい。他の共重合成分としては、3官能以上の官能基を含有する化合物が挙げられる。
(Other Copolymerization Components of Polyester Resin (A) and Other Copolymerization Components of Polyester Resin (B))
The polyester resin (A) and the polyester resin (B) may contain structural units derived from copolymerization components other than dicarboxylic acid and diol. Other copolymerization components include compounds containing trifunctional or higher functional groups.
 3官能以上の官能基を有する化合物としては、3官能以上の多価アルコール、3官能以上の多価カルボン酸(或いはその無水物、酸塩化物、又は低級アルキルエステル)、3官能以上のヒドロキシカルボン酸(或いはその無水物、酸塩化物、又は低級アルキルエステル)、3官能以上のアミン類などが挙げられる。 Examples of compounds having trifunctional or higher functional groups include trifunctional or higher polyhydric alcohols, trifunctional or higher polycarboxylic acids (or their anhydrides, acid chlorides, or lower alkyl esters), trifunctional or higher hydroxycarboxylic acids. Acids (or their anhydrides, acid chlorides, or lower alkyl esters), tri- or higher functional amines, and the like.
 3官能以上の多価アルコールとしては、グリセリン、トリメチロールプロパン、ペンタエリスリトール等が挙げられる。これらは、1種を単独で用いても、2種以上を任意の組み合わせと比率で用いてもよい。 Examples of trifunctional or higher polyhydric alcohols include glycerin, trimethylolpropane, and pentaerythritol. One of these may be used alone, or two or more may be used in any combination and ratio.
 3官能以上の多価カルボン酸又はその無水物としては、トリメシン酸、プロパントリカルボン酸、無水トリメリット酸、無水ピロメリット酸、ベンゾフェノンテトラカルボン酸無水物、シクロペンタテトラカルボン酸無水物等が挙げられる。これらは、1種を単独で用いても、2種以上を任意の組み合わせと比率で用いてもよい。 Tri- or more functional polycarboxylic acids or anhydrides thereof include trimesic acid, propanetricarboxylic acid, trimellitic anhydride, pyromellitic anhydride, benzophenonetetracarboxylic anhydride, cyclopentatetracarboxylic anhydride and the like. . One of these may be used alone, or two or more may be used in any combination and ratio.
 3官能以上のヒドロキシカルボン酸としては、リンゴ酸、ヒドロキシグルタル酸、ヒドロキシメチルグルタル酸、酒石酸、クエン酸、ヒドロキシイソフタル酸、ヒドロキシテレフタル酸等が挙げられる。これらは、1種を単独で用いても、2種以上を任意の組み合わせと比率で用いてもよい。 Examples of trifunctional or higher hydroxycarboxylic acids include malic acid, hydroxyglutaric acid, hydroxymethylglutaric acid, tartaric acid, citric acid, hydroxyisophthalic acid, and hydroxyterephthalic acid. One of these may be used alone, or two or more may be used in any combination and ratio.
 ポリエステル樹脂(A)又はポリエステル樹脂(B)が3官能以上の官能基を有する化合物由来の構造単位を含む場合の含有量は、ひずみ硬化性が向上しやすい点では多いことが好ましいが、一方で、本実施形態のポリエステルの架橋が適度に進行し、安定にストランドを抜き出しやすく、成形性、機械物性等が良好となりやすい点では少ないことが好ましい。そこで、その含有量は、ポリエステルを構成する全構造単位の合計100モル%に対して、通常5モル%以下、特に4モル%以下、とりわけ3モル%以下とすることが好ましく、他の共重合成分を有さない二元系のポリエステルが最も好ましい。 When the polyester resin (A) or polyester resin (B) contains a structural unit derived from a compound having a trifunctional or higher functional group, the content is preferably large in terms of easily improving the strain hardening property, but on the other hand , the polyester of the present embodiment is appropriately crosslinked, the strand is easily pulled out stably, and the moldability, mechanical properties, etc. are likely to be good, so the amount is preferably small. Therefore, the content thereof is usually 5 mol% or less, particularly preferably 4 mol% or less, particularly preferably 3 mol% or less, relative to the total 100 mol% of all structural units constituting the polyester. Binary polyesters with no components are most preferred.
<鎖延長剤>
 ポリエステル樹脂(A)又はポリエステル樹脂(B)の製造に際し、カーボネート化合物、ジイソシアネート化合物、ジオキサゾリン、珪酸エステル等の鎖延長剤を使用してもよい。例えば、ジフェニルカーボネート等のカーボネート化合物を、ポリエステルの全構造単位100モル%に対して、好ましくは20モル%以下、より好ましくは10モル%以下となるように用いることにより、ポリエステルカーボネートを得ることもできる。
<Chain extender>
A chain extender such as a carbonate compound, a diisocyanate compound, a dioxazoline, or a silicate ester may be used in the production of the polyester resin (A) or the polyester resin (B). For example, polyester carbonate can be obtained by using a carbonate compound such as diphenyl carbonate in an amount of preferably 20 mol% or less, more preferably 10 mol% or less, relative to 100 mol% of the total structural units of the polyester. can.
 この場合、カーボネート化合物としては、具体的には、ジフェニルカーボネート、ジトリールカーボネート、ビス(クロロフェニル)カーボネート、m-クレジルカーボネート、ジナフチルカーボネート、ジメチルカーボネート、ジエチルカーボネート、ジブチルカーボネート、エチレンカーボネート、ジアミルカーボネート、ジシクロヘキシルカーボネート等が挙げられる。その他、フェノール類、アルコール類のようなヒドロキシ化合物から誘導される、同種又は異種のヒドロキシ化合物からなるカーボネート化合物も使用可能である。 In this case, specific examples of carbonate compounds include diphenyl carbonate, ditolyl carbonate, bis(chlorophenyl) carbonate, m-cresyl carbonate, dinaphthyl carbonate, dimethyl carbonate, diethyl carbonate, dibutyl carbonate, ethylene carbonate, and diamyl carbonate. carbonate, dicyclohexyl carbonate and the like. In addition, carbonate compounds composed of the same or different hydroxy compounds derived from hydroxy compounds such as phenols and alcohols can also be used.
 また、ジイソシアネート化合物としては、具体的には、2,4-トリレンジイソシアネート、2,4-トリレンジイソシアネートと2,6-トリレンジイソシアネートとの混合体、ジフェニルメタンジイソシアネート、1,5-ナフチレンジイソシアネート、キシリレンジイソシアネート、水素化キシリレンジイソシアネート、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート等の公知のジイソシアネートなどが挙げられる。 Further, specific diisocyanate compounds include 2,4-tolylene diisocyanate, a mixture of 2,4-tolylene diisocyanate and 2,6-tolylene diisocyanate, diphenylmethane diisocyanate, and 1,5-naphthylene diisocyanate. , xylylene diisocyanate, hydrogenated xylylene diisocyanate, hexamethylene diisocyanate, and isophorone diisocyanate.
 珪酸エステルとしては、具体的には、テトラメトキシシラン、ジメトキシジフェニルシラン、ジメトキシジメチルシラン、ジフェニルジヒドロキシラン等が挙げられる。これらは、いずれも1種を単独で用いてもよく、2種以上を任意の組み合わせと比率で用いてもよい。 Specific examples of silicate esters include tetramethoxysilane, dimethoxydiphenylsilane, dimethoxydimethylsilane, and diphenyldihydroxysilane. Any one of these may be used alone, or two or more thereof may be used in any combination and ratio.
<末端封止剤>
 また、本実施形態においては、ポリエステルの末端基をカルボジイミド、エポキシ化合物、単官能性のアルコール又はカルボン酸等で封止してもよい。末端封止剤を用いる場合、その含有量は、ポリエステルの全構造単位100モル%に対して、20モル%以下とすることが好ましく、10モル%以下とすることがより好ましい。
<Terminal blocking agent>
Further, in this embodiment, the terminal groups of the polyester may be blocked with carbodiimide, epoxy compound, monofunctional alcohol, carboxylic acid, or the like. When a terminal blocking agent is used, the content thereof is preferably 20 mol % or less, more preferably 10 mol % or less, relative to 100 mol % of the total structural units of the polyester.
 この場合、末端封止剤のカルボジイミド化合物としては、分子中に1個以上のカルボジイミド基を有する化合物(ポリカルボジイミド化合物を含む)が挙げられる。具体的には、モノカルボジイミド化合物として、ジシクロヘキシルカルボジイミド、ジイソプロピルカルボジイミド、ジメチルカルボジイミド、ジイソブチルカルボジイミド、ジオクチルカルボジイミド、t-ブチルイソプロピルカルボジイミド、ジフェニルカルボジイミド、ジ-t-ブチルカルボジイミド、ジ-β-ナフチルカルボジイミド、N,N’-ジ-2,6-ジイソプロピルフェニルカルボジイミド等が挙げられる。これらは、いずれも1種を単独で用いてもよく、2種以上を任意の組み合わせと比率で用いてもよい。なお、本実施形態のポリエステルの製造には、後述する本実施形態のポリエステル組成物と同様に、その特性が損なわれない範囲において、各種の添加剤、例えば熱安定剤、酸化防止剤、加水分解防止剤、結晶核剤、難燃剤、帯電防止剤、離型剤、紫外線吸収剤等を用いてもよい。 In this case, examples of the carbodiimide compound as the terminal blocking agent include compounds having one or more carbodiimide groups in the molecule (including polycarbodiimide compounds). Specifically, the monocarbodiimide compounds include dicyclohexylcarbodiimide, diisopropylcarbodiimide, dimethylcarbodiimide, diisobutylcarbodiimide, dioctylcarbodiimide, t-butylisopropylcarbodiimide, diphenylcarbodiimide, di-t-butylcarbodiimide, di-β-naphthylcarbodiimide, N, and N'-di-2,6-diisopropylphenylcarbodiimide. Any one of these may be used alone, or two or more thereof may be used in any combination and ratio. Incidentally, in the production of the polyester of the present embodiment, in the same manner as the polyester composition of the present embodiment, which will be described later, various additives such as heat stabilizers, antioxidants, hydrolysis agents, as long as the properties are not impaired. An inhibitor, a crystal nucleating agent, a flame retardant, an antistatic agent, a release agent, an ultraviolet absorber, and the like may be used.
(ポリエステル樹脂(A)の原料及びポリエステル樹脂(B)の原料)
 ポリエステル樹脂(A)とポリエステル樹脂(B)の製造に用いる原料は、石油由来原料を用いてもよく、バイオマス由来の原料を用いてもよい。環境保護の観点では、バイオマス由来の原料を用いることが好ましく、バイオマス由来の原料を主たる構造単位とすることがより好ましい。バイオマス由来の原料としては、2,5-フランジカルボン酸、コハク酸、グルタル酸、アジピン酸、セバシン酸などのジカルボン酸成分、1,3-プロパンジオール、1,4-ブタンジオール、1,2-エタンジオールなどのジオール成分などが挙げられる。
(Raw material for polyester resin (A) and raw material for polyester resin (B))
Raw materials used for producing the polyester resin (A) and the polyester resin (B) may be petroleum-derived raw materials or biomass-derived raw materials. From the viewpoint of environmental protection, it is preferable to use a biomass-derived raw material, and it is more preferable to use a biomass-derived raw material as the main structural unit. Raw materials derived from biomass include dicarboxylic acid components such as 2,5-furandicarboxylic acid, succinic acid, glutaric acid, adipic acid, and sebacic acid, 1,3-propanediol, 1,4-butanediol, 1,2- Examples include diol components such as ethanediol.
(ポリエステル樹脂(A)の物性)
 ポリエステル樹脂(A)は、以下の方法により測定した固有粘度が0.60dl/g以上1.30dl/g以下であることが好ましい。また、そのガラス転移温度が50℃以上150℃以下であることが好ましい。ポリエステル0.25gをフェノール/1,1,2,2-テトラクロロエタン=50/50(重量比)の混合溶媒50mlに溶解し、ウベローデ粘度計を用いて30℃で測定する、Huggins定数は0.32とする。
(Physical properties of polyester resin (A))
The polyester resin (A) preferably has an intrinsic viscosity of 0.60 dl/g or more and 1.30 dl/g or less measured by the following method. Moreover, it is preferable that the glass transition temperature is 50° C. or higher and 150° C. or lower. 0.25 g of polyester is dissolved in 50 ml of a mixed solvent of phenol/1,1,2,2-tetrachloroethane=50/50 (weight ratio), and measured at 30° C. using an Ubbelohde viscometer. 32.
<固有粘度>
 ポリエステル樹脂(A)は、固有粘度が0.70dl/g以上であることが特に好ましく、0.75dl/g以上であることが殊更好ましく、0.80dl/g以上であることが最も好ましい。また、1.50dl/g以下であることが好ましく、1.30dl/g以下であることがより好ましい。すなわち、ポリエステル樹脂(A)の固有粘度は、0.70dl/g以上、1.50dl/g以下であることが好ましい。固有粘度をこのような範囲とすることにより、ボトルやフィルム成形に適することとなる。
<Intrinsic viscosity>
The polyester resin (A) particularly preferably has an intrinsic viscosity of 0.70 dl/g or more, particularly preferably 0.75 dl/g or more, most preferably 0.80 dl/g or more. Also, it is preferably 1.50 dl/g or less, more preferably 1.30 dl/g or less. That is, the intrinsic viscosity of the polyester resin (A) is preferably 0.70 dl/g or more and 1.50 dl/g or less. By setting the intrinsic viscosity within such a range, it is suitable for bottle and film molding.
<ガラス転移温度(Tg)>
 ポリエステル樹脂(A)のガラス転移温度は、50℃以上、150℃以下であることが好ましい。ガラス転移温度は、60℃以上であることがより好ましい。また、一方で、130℃以下であることがより好ましい。ポリエステルのガラス転移温度が上述の範囲内にあることにより、ボトルの内容物が炭酸水などの発泡性物質であっても、ボトル内外の圧力差による変形が起こりにくく、また、ボトルを高温環境下で保存しても、変形しにくくなる。ガラス転移温度は、示差走査熱量測定装置を用いて、JIS K7121-1987の方法により測定することができる。具体的には、ポリエステルを25℃から、融点+30~60℃まで昇温した後、25℃まで降温し、再び、融点+30~60℃まで昇温する。ここで、昇温速度及び降温速度は10℃/分とする。この2回目の昇温における中間点ガラス転移温度をガラス転移温度とする。
<Glass transition temperature (Tg)>
The glass transition temperature of the polyester resin (A) is preferably 50°C or higher and 150°C or lower. More preferably, the glass transition temperature is 60° C. or higher. On the other hand, it is more preferable that the temperature is 130° C. or lower. Since the glass transition temperature of polyester is within the range described above, even if the content of the bottle is a foaming substance such as carbonated water, deformation due to the pressure difference between the inside and outside of the bottle is unlikely to occur, and the bottle can be stored in a high temperature environment. Even if you save it with , it will be difficult to deform. The glass transition temperature can be measured by the method of JIS K7121-1987 using a differential scanning calorimeter. Specifically, the polyester is heated from 25°C to the melting point +30 to 60°C, then lowered to 25°C, and then raised again to the melting point +30 to 60°C. Here, the rate of temperature increase and the rate of temperature decrease are set to 10° C./min. The midpoint glass transition temperature in this second temperature rise is taken as the glass transition temperature.
(ポリエステル樹脂(B)の物性)
 ポリエステル樹脂(B)は、固有粘度が0.70dl/g以上1.50dl/g以下であることが好ましい。また、そのガラス転移温度が50℃以上150℃以下であることが好ましい。
(Physical properties of polyester resin (B))
The polyester resin (B) preferably has an intrinsic viscosity of 0.70 dl/g or more and 1.50 dl/g or less. Moreover, it is preferable that the glass transition temperature is 50° C. or higher and 150° C. or lower.
<固有粘度>
 ポリエステル樹脂(B)は、固有粘度が0.70dl/g以上であることが特に好ましく、0.80dl/g以上であることが殊更好ましく、1.00dl/g以上であることが最も好ましい。また、1.50dl/g以下であることが好ましく、1.30dl/g以下であることがより好ましい。すなわち、ポリエステル樹脂(B)の固有粘度は、0.70dl/g以上、1.50dl/g以下であることが好ましい。固有粘度をこのような範囲とすることにより、延伸成形性と耐クリープ性が共に優れたポリエステルとすることができる。 固有粘度が上述の範囲内にあることにより、ひずみ硬化性に優れ、厚さのムラが小さく、耐クリープ性と耐衝撃性が良好な成形品を得やすくなる。また、厚さのムラが少なく、均一薄膜化が可能となることにより、ポリエステル樹脂(B)を用いることにより、ボトルの軽量化が可能となり、環境負荷を軽減できる。更に、成形時に高い圧力をかけずに押出しやすい。
<Intrinsic viscosity>
The polyester resin (B) particularly preferably has an intrinsic viscosity of 0.70 dl/g or more, particularly preferably 0.80 dl/g or more, and most preferably 1.00 dl/g or more. Also, it is preferably 1.50 dl/g or less, more preferably 1.30 dl/g or less. That is, the intrinsic viscosity of the polyester resin (B) is preferably 0.70 dl/g or more and 1.50 dl/g or less. By setting the intrinsic viscosity within such a range, a polyester having both excellent stretchability and creep resistance can be obtained. When the intrinsic viscosity is within the above range, it becomes easy to obtain a molded article having excellent strain hardening property, small unevenness in thickness, and good creep resistance and impact resistance. In addition, the use of the polyester resin (B) makes it possible to reduce the weight of the bottle by using the polyester resin (B), which reduces unevenness in thickness and enables a uniform thin film, thereby reducing the burden on the environment. Furthermore, it is easy to extrude without applying high pressure during molding.
 固有粘度が高いことにより、ポリエステルのひずみ硬化性が発現しやすい理由は以下のように推測される。ひずみ硬化とは、延伸速度に依存して、樹脂の粘度が線形粘度より大きく上昇する現象である。通常、延伸プロセスでは、厚みの薄い場所に応力が集中して変形が進み、厚みムラが拡大しやすい。しかしながら、ひずみ硬化性を有するポリマーは、延伸されても、薄くなった場所の粘度が高くなるために、厚みが均一になりやすく、延伸成形プロセスに適する。 The reason why the strain hardening property of polyester is likely to occur due to its high intrinsic viscosity is presumed as follows. Strain hardening is a phenomenon in which the viscosity of a resin increases more than the linear viscosity depending on the drawing speed. Normally, in the stretching process, stress is concentrated on a thin portion of the film, causing deformation to progress, and thickness unevenness tends to increase. However, even if the polymer having strain hardening property is stretched, the viscosity becomes high at the thinned portion, so the thickness tends to be uniform, and it is suitable for the stretch molding process.
<ガラス転移温度(Tg)>
 ポリエステル樹脂(B)のガラス転移温度は、50℃以上、150℃以下であることが好ましい。ガラス転移温度は、60℃以上であることがより好ましい。また、一方で、130℃以下であることがより好ましい。ポリエステルのガラス転移温度が上述の範囲内にあることにより、ボトルの内容物が炭酸水などの発泡性物質であっても、ボトル内外の圧力差による変形が起こりにくく、また、ボトルを高温環境下で保存しても、変形しにくくなる。
<Glass transition temperature (Tg)>
The glass transition temperature of the polyester resin (B) is preferably 50°C or higher and 150°C or lower. More preferably, the glass transition temperature is 60° C. or higher. On the other hand, it is more preferable that the temperature is 130° C. or lower. Since the glass transition temperature of polyester is within the range described above, even if the content of the bottle is a foaming substance such as carbonated water, deformation due to the pressure difference between the inside and outside of the bottle is unlikely to occur, and the bottle can be stored in a high temperature environment. Even if you save it with , it will be difficult to deform.
 本実施形態のポリエステルの製造方法としては、ポリエステル樹脂の製造に関する公知の方法が採用できる。また、この際の反応条件は、従来から採用されている適切な条件を設定することができ、特に制限されない。 As the method for producing the polyester of the present embodiment, a known method for producing a polyester resin can be employed. Moreover, the reaction conditions at this time are not particularly limited, and any suitable conditions that have been conventionally employed can be set.
 具体的には、2,5-フランジカルボン酸を必須成分とするジカルボン酸成分と、好ましくは1,2-エタンジオールを含む脂肪族ジオール成分と、必要に応じて用いられる他の共重合成分等とを用いて、エステル化反応又はエステル交換反応工程を行い、引き続いて重縮合反応工程を行うことにより、製造することができる。なお、エステル化反応又はエステル交換反応工程と、重縮合反応工程とを含めて、ポリエステル製造工程、ともいう。反応に際しては、必要に応じて、前述の鎖延長剤や末端封止剤を用いてもよい。また、固有粘度を高くする点では、ポリエステル製造工程の重縮合反応工程を行った後に、更に固相重合工程を行うことが好ましい。 Specifically, a dicarboxylic acid component containing 2,5-furandicarboxylic acid as an essential component, an aliphatic diol component preferably containing 1,2-ethanediol, other copolymer components used as necessary, etc. can be produced by carrying out an esterification reaction or a transesterification reaction step using and subsequently carrying out a polycondensation reaction step. In addition, the esterification reaction or transesterification reaction step and the polycondensation reaction step are also referred to as a polyester production step. In the reaction, if necessary, the aforementioned chain extender or terminal blocking agent may be used. Further, in order to increase the intrinsic viscosity, it is preferable to perform the solid phase polymerization step after performing the polycondensation reaction step in the polyester production process.
(ボトル成形用のマスターバッチにおけるポリエステル樹脂(A)とポリエステル樹脂(B)との配合割合)
 本実施形態に係るマスターバッチは、(数1)で求められるポリエステル樹脂(B)の含有率が90質量%以下である。マスターバッチを用いずに、ポリエステル樹脂(A)とポリエステル樹脂(B)とをブレンド成形して、ブレンド成形品中のポリエステル樹脂(B)の含有率を所望の含有率にすることも考えられる。しかし、ポリエステル樹脂(A)として例えばPET樹脂100%をプリフォームに成形するときに、生産性と品質確保を考慮したサイクルタイム(以降、基準サイクルタイムともいう。)と同じ時間でポリエステル樹脂(A)とポリエステル樹脂(B)とをブレンド成形すると、ポリエステル樹脂(A)とポリエステル樹脂(B)との相溶化が不十分となり、プリフォームの外観が白化する。プリフォームの白化を抑制するために、サイクルタイムを基準サイクルタイムよりも長くするとプリフォームの生産性が低下する。このような問題を解決するために、マスターバッチとポリエステル樹脂(A)とをブレンド成形して、ブレンド成形品中のポリエステル樹脂(B)の含有率を所望の含有率にする。しかし、本実施形態に係るマスターバッチにおいて、(数1)で求められるポリエステル樹脂(B)の含有率が90質量%を超えると、基準サイクルタイムでブレンド成形したプリフォームは、外観において白化が認められ、十分な透明性が得られない。(数1)で求められるポリエステル樹脂(B)の含有率を90質量%以下とすることで、サイクルタイムを短くすることができる。さらに、70質量%以下とすることで、PET樹脂100%の成形条件及びサイクルタイムで、ポリエステル樹脂(A)とポリエステル樹脂(B)とが十分に相溶化した成形品を得ることができる。
(Mixing ratio of polyester resin (A) and polyester resin (B) in masterbatch for bottle molding)
In the masterbatch according to the present embodiment, the content of the polyester resin (B) determined by (Equation 1) is 90% by mass or less. It is also conceivable to carry out blend molding of the polyester resin (A) and the polyester resin (B) without using a masterbatch to adjust the content of the polyester resin (B) in the blend molded product to a desired content. However, when molding 100% PET resin as the polyester resin (A) into a preform, the polyester resin (A ) and the polyester resin (B) are blend-molded, the compatibilization of the polyester resin (A) and the polyester resin (B) becomes insufficient, and the appearance of the preform becomes white. If the cycle time is made longer than the reference cycle time in order to suppress whitening of the preform, the productivity of the preform is lowered. In order to solve such problems, the masterbatch and the polyester resin (A) are blend-molded to adjust the content of the polyester resin (B) in the blend-molded product to a desired content. However, in the masterbatch according to the present embodiment, when the content of the polyester resin (B) obtained by (Equation 1) exceeds 90% by mass, whitening is observed in the appearance of the preform blend-molded at the reference cycle time. and sufficient transparency cannot be obtained. The cycle time can be shortened by setting the content of the polyester resin (B) determined by (Equation 1) to 90% by mass or less. Furthermore, by setting the amount to 70% by mass or less, it is possible to obtain a molded product in which the polyester resin (A) and the polyester resin (B) are sufficiently compatible under the molding conditions and cycle time of 100% PET resin.
 実施形態に係るマスターバッチでは、(数1)で求められるポリエステル樹脂(B)の含有率が45質量%以上であることが好ましい。成形品の高生産性と高品質とを両立させることができる。(数1)で求められるポリエステル樹脂(B)の含有率が45質量%未満であると、PET樹脂100%の成形条件と同じサイクルタイムで、ポリエステル樹脂(A)とポリエステル樹脂(B)とが十分に相溶化した成形品を得ることができるものの、マスターバッチとポリエステル樹脂(A)とをブレンド成形するときに、ポリエステル樹脂(A)の配合率を下げ、マスターバッチの配合率を高める必要があり、多くのマスターバッチを準備しなければならず、また、在庫管理の負担が増加する。その結果、プリフォームの生産効率が低下する場合がある。 In the masterbatch according to the embodiment, it is preferable that the content of the polyester resin (B) determined by (Equation 1) is 45% by mass or more. It is possible to achieve both high productivity and high quality of molded products. When the content of the polyester resin (B) obtained by (Equation 1) is less than 45% by mass, the polyester resin (A) and the polyester resin (B) are mixed at the same cycle time as the molding conditions of 100% PET resin. Although a sufficiently compatible molded product can be obtained, when the masterbatch and the polyester resin (A) are blend-molded, it is necessary to reduce the blending ratio of the polyester resin (A) and increase the blending ratio of the masterbatch. Therefore, many masterbatches must be prepared, and the burden of inventory management increases. As a result, the preform production efficiency may decrease.
 フィルムを成形する際にもプリフォームと同様に、マスターバッチを用いることでポリエステル樹脂(A)とポリエステル樹脂(B)との相溶化が進み、フィルムの白化を抑制できる。マスターバッチ中のポリエステル樹脂(B)の含有率は、45~90重量%が好ましく、さらに好ましくは45~80重量%であり、より好ましくは45~70重量%である。上記の範囲とすることで、上記を下回るとマスターバッチ中のポリエステル(B)の含有率が低く、フィルム中のポリエステル(B)の含有率を上げることが難しくなり所望の物性を達成できないことがある。上記を上回ると十分な透明性が得られないことがある。 Similar to preforms, when molding a film, the use of a masterbatch promotes compatibility between the polyester resin (A) and the polyester resin (B) and suppresses whitening of the film. The content of the polyester resin (B) in the masterbatch is preferably 45-90% by weight, more preferably 45-80% by weight, and even more preferably 45-70% by weight. By setting the above range, if it is less than the above, the content of the polyester (B) in the masterbatch will be low, and it will be difficult to increase the content of the polyester (B) in the film, making it impossible to achieve the desired physical properties. be. When the above is exceeded, sufficient transparency may not be obtained.
 本実施形態に係るマスターバッチでは、(条件1)により測定した固有粘度(IV値)が0.50dl/g以上1.20dl/g以下であることが好ましい。
(条件1)マスターバッチ0.25gをフェノール/1,1,2,2-テトラクロロエタン=50/50(重量比)の混合溶媒50mlに溶解し、ウベローデ粘度計を用いて30℃で測定する、Huggins定数は0.32とする。(条件1)により測定した固有粘度(IV値)が0.50dl/g未満であると、成形体の機械物性が不十分になる場合がある。一方、固有粘度(IV値)が1.20dl/gを超えると、成型が困難になる場合がある。
The masterbatch according to the present embodiment preferably has an intrinsic viscosity (IV value) measured according to (Condition 1) of 0.50 dl/g or more and 1.20 dl/g or less.
(Condition 1) 0.25 g of the masterbatch is dissolved in 50 ml of a mixed solvent of phenol/1,1,2,2-tetrachloroethane = 50/50 (weight ratio), and measured at 30°C using an Ubbelohde viscometer. The Huggins constant is 0.32. If the intrinsic viscosity (IV value) measured according to (Condition 1) is less than 0.50 dl/g, the mechanical properties of the molded product may be insufficient. On the other hand, when the intrinsic viscosity (IV value) exceeds 1.20 dl/g, molding may become difficult.
 本実施形態に係るマスターバッチでは、耐圧ボトル、加温販売用ボトル又は耐熱ボトルの成形向けであることを含む。PET樹脂にPEF樹脂をブレンドして得た容器は、機械強度およびバリア性が高いことが期待され、耐圧ボトル、加温販売用ボトル又は耐熱ボトルに向いている。しかし、相溶性が不十分であると外観が白化するため、透明性が好まれる容器としては白化が抑制されていることが好ましい。本実施形態に係るマスターバッチを用いてPET樹脂にPEF樹脂をブレンドして得た容器は、PET樹脂と同様の成形時間で、透明性が得られる。 The masterbatch according to this embodiment includes being for molding pressure-resistant bottles, bottles for heated sales, or heat-resistant bottles. A container obtained by blending a PET resin with a PEF resin is expected to have high mechanical strength and barrier properties, and is suitable for a pressure-resistant bottle, a heated bottle, or a heat-resistant bottle. However, if the compatibility is insufficient, the appearance will whiten. Therefore, it is preferable that the whitening is suppressed for a container for which transparency is preferred. A container obtained by blending PET resin with PEF resin using the masterbatch according to the present embodiment can obtain transparency in the same molding time as PET resin.
 本実施形態に係るマスターバッチは、(数1)で求められるポリエステル樹脂(B)の含有率が90質量%以下であることを満たし、相溶性に影響の出ない範囲においてポリエステル樹脂(A)及びポリエステル樹脂(B)以外の熱可塑性樹脂を含有することができる。ただし、ブロー成形ボトルへのポリエステル樹脂(B)の含有量を確保する観点から、マスターバッチの全質量に対して、ポリエステル樹脂(A)及びポリエステル樹脂(B)の合計質量は50%以上、好ましくは、80%以上、さらに好ましくは100%とする。 The masterbatch according to the present embodiment satisfies that the content of the polyester resin (B) obtained by (Equation 1) is 90% by mass or less, and the polyester resin (A) and the A thermoplastic resin other than the polyester resin (B) can be contained. However, from the viewpoint of ensuring the content of the polyester resin (B) in the blow-molded bottle, the total mass of the polyester resin (A) and the polyester resin (B) is preferably 50% or more with respect to the total mass of the masterbatch. is 80% or more, more preferably 100%.
<マスターバッチに含ませるポリエステル樹脂(A)及びポリエステル樹脂(B)以外の熱可塑性樹脂>
 マスターバッチに含ませるポリエステル樹脂(A)及びポリエステル樹脂(B)以外の熱可塑性樹脂(以降、他の熱可塑性樹脂1ともいう。)としては、ポリエステル樹脂(A)及びポリエステル樹脂(B)以外のポリエステル(以降、他のポリエステル1ともいう。)、架橋性熱可塑性樹脂、アクリル、ポリカーボネートなどが挙げられる。これらのうち、ひずみ硬化性などに優れる点では、他のポリエステル1および架橋性熱可塑性樹脂の少なくとも何れかであることが好ましい。他の熱可塑性樹脂1は、1種のみを用いてもよく、2種以上を任意の組み合わせと比率で用いてもよい。
<Thermoplastic resin other than polyester resin (A) and polyester resin (B) contained in masterbatch>
Thermoplastic resins other than polyester resin (A) and polyester resin (B) (hereinafter also referred to as other thermoplastic resin 1) to be contained in the masterbatch include polyester resin (A) and polyester resin (B) other than Examples thereof include polyester (hereinafter also referred to as other polyester 1), crosslinkable thermoplastic resin, acryl, polycarbonate, and the like. Among these, at least one of the other polyester 1 and the crosslinkable thermoplastic resin is preferable in terms of excellent strain hardening property. Other thermoplastic resins 1 may be used alone, or two or more of them may be used in any combination and ratio.
<他のポリエステル1>
 他のポリエステル1は、ジオール由来の構造単位とジカルボン酸由来の構造単位とを有するポリエステルであって、ポリエステル樹脂(A)及びポリエステル樹脂(B)以外のポリエステルである。他のポリエステルが有するジカルボン酸単位を構成するジカルボン酸としては、例えば、o-フタル酸、イソフタル酸、コハク酸、アジピン酸、セバシン酸、アゼライン酸、オクチルコハク酸、シクロヘキサンジカルボン酸、ナフタレンジカルボン酸、フマル酸、マレイン酸、イタコン酸、デカメチレンカルボン酸、これらの無水物及び低級アルキルエステル等が挙げられる。
<Other Polyester 1>
Another polyester 1 is a polyester having a diol-derived structural unit and a dicarboxylic acid-derived structural unit, and is a polyester other than the polyester resin (A) and the polyester resin (B). Examples of dicarboxylic acids constituting dicarboxylic acid units of other polyesters include o-phthalic acid, isophthalic acid, succinic acid, adipic acid, sebacic acid, azelaic acid, octylsuccinic acid, cyclohexanedicarboxylic acid, naphthalenedicarboxylic acid, fumaric acid, maleic acid, itaconic acid, decamethylenecarboxylic acid, their anhydrides and lower alkyl esters.
 一方、他のポリエステル1が有するジオール単位を構成するジオールとしては、例えば、1,3-プロパンジオール、1,4-ブタンジオール、ジエチレングリコール、1,5-ペンタンジオール、1,6-ヘキサンジオール、ジプロピレングリコール、トリエチレングリコール、テトラエチレングリコール、1,2-プロパンジオール、1,3-ブタンジオール、2,3-ブタンジオール、ネオペンチルグリコール(2,2-ジメチルプロパン-1,3-ジオール)、1,2-ヘキサンジオール、2,5-ヘキサンジオール、2-メチル-2,4-ペンタンジオール、3-メチル-1,3-ペンタンジオール、2-エチル-1,3-ヘキサンジオール、ポリテトラメチレングリコール等の鎖状ジオール;1,4-シクロヘキサンジオール、1,4-シクロヘキサンジメタノール、2,2-ビス(4-ヒドロキシシクロヘキシル)プロパン、2,2-ビス(4-ヒドロキシシクロヘキシル)プロパンのアルキレンオキサイド付加物等の環状ジオール等の脂肪族ジオール等が挙げられる。 On the other hand, examples of the diol constituting the diol unit possessed by the other polyester 1 include 1,3-propanediol, 1,4-butanediol, diethylene glycol, 1,5-pentanediol, 1,6-hexanediol, di propylene glycol, triethylene glycol, tetraethylene glycol, 1,2-propanediol, 1,3-butanediol, 2,3-butanediol, neopentyl glycol (2,2-dimethylpropane-1,3-diol), 1,2-hexanediol, 2,5-hexanediol, 2-methyl-2,4-pentanediol, 3-methyl-1,3-pentanediol, 2-ethyl-1,3-hexanediol, polytetramethylene Chain diols such as glycol; alkylene oxides of 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol, 2,2-bis(4-hydroxycyclohexyl)propane, and 2,2-bis(4-hydroxycyclohexyl)propane Aliphatic diols such as cyclic diols such as adducts and the like are included.
<架橋性熱可塑性樹脂>
 マスターバッチ中に含まれるカルボキシル基やヒドロキシル基と反応が可能な官能基を有する架橋性熱可塑性樹脂を併用することによっても、ひずみ硬化性を向上させることができる。カルボキシル基やヒドロキシル基と反応が可能な官能基としては、エポキシ基、オキサゾリン基、カルボキシル基、カルボジイミド基等が挙げられる。これらの官能基は、熱可塑性樹脂の側鎖にあることが好ましい。これらの官能基が側鎖にあることによって、分岐構造を形成し、延伸成形時の分子の伸張に対する緩和が遅くなり、ひずみ硬化性が向上する。
<Crosslinkable thermoplastic resin>
The strain hardening property can also be improved by jointly using a crosslinkable thermoplastic resin having a functional group capable of reacting with the carboxyl group or hydroxyl group contained in the masterbatch. Examples of functional groups capable of reacting with carboxyl groups and hydroxyl groups include epoxy groups, oxazoline groups, carboxyl groups, and carbodiimide groups. These functional groups are preferably on the side chains of the thermoplastic resin. When these functional groups are present in the side chains, a branched structure is formed, which delays the relaxation of molecular extension during stretch molding, thereby improving the strain hardening property.
 なお、マスターバッチに含ませるポリエステル樹脂(A)及びポリエステル樹脂(B)以外の熱可塑性樹脂は、マスターバッチに含ませず、マスターバッチとポリエステル樹脂(A)とをブレンドしてプリフォームを成形する際に添加して、一緒にブレンドしてもよい。 Thermoplastic resins other than the polyester resin (A) and the polyester resin (B) contained in the masterbatch are not included in the masterbatch, and the masterbatch and the polyester resin (A) are blended to form a preform. They may be added at the same time and blended together.
<マスターバッチに含ませる添加剤>
 マスターバッチの製造には、その特性が損なわれない範囲において、各種の添加剤、例えば熱安定剤、酸化防止剤、加水分解防止剤、結晶核剤、難燃剤、帯電防止剤、離型剤、紫外線吸収剤等を用いてもよい。
<Additives to be included in the masterbatch>
In the production of the masterbatch, various additives such as heat stabilizers, antioxidants, hydrolysis inhibitors, crystal nucleating agents, flame retardants, antistatic agents, release agents, An ultraviolet absorber or the like may be used.
 これらの添加剤は、ポリエステルの重合反応前に反応装置に添加してもよいし、重合反応開始から重合反応終了の前に搬送装置等に添加してもよいし、重合反応終了後、生成物の抜出前に添加してもよい。また、抜出後の生成物に添加してもよい。 These additives may be added to the reactor before the polyester polymerization reaction, may be added to the conveying device or the like from the start of the polymerization reaction to before the end of the polymerization reaction, or may be added to the product after the end of the polymerization reaction. may be added before extraction. Alternatively, it may be added to the product after extraction.
 また、マスターバッチの製造時には、上述の各種の添加剤の他に、耐衝撃性改質剤、結晶核剤、強化剤、増量剤、ブルーイング剤等を添加して成形してもよい。添加剤等を用いる場合、1種を単独で用いてもよく、2種以上を任意の組み合わせと比率で用いてもよい。 Also, during the production of the masterbatch, in addition to the various additives described above, an impact resistance modifier, a crystal nucleating agent, a reinforcing agent, an extender, a bluing agent, etc. may be added and molded. When an additive or the like is used, one type may be used alone, or two or more types may be used in any combination and ratio.
 なお、添加剤、耐衝撃性改質剤、結晶核剤、強化剤、増量剤、ブルーイング剤等についてはマスターバッチに含ませず、マスターバッチとポリエステル樹脂(A)とをブレンドしてプリフォームを成形する際に添加して、一緒にブレンドしてもよい。 Additives, impact modifiers, crystal nucleating agents, reinforcing agents, extenders, bluing agents, etc. are not included in the masterbatch, and the masterbatch and the polyester resin (A) are blended to form a preform. may be added during molding and blended together.
<耐衝撃性改質剤>
 マスターバッチは、後にプリフォームを成形することを考慮して耐衝撃性改質剤を含有していてもよい。耐衝撃性改質剤を含有することにより、プリフォームの機械物性を良好とすることができる。耐衝撃性改質剤を含有する場合の含有量は、プリフォームの質量を基準として0.01重量%以上、10重量%以下が好ましい。耐衝撃性改質剤としては、ブタジエン系ゴム、アクリル系ゴム、シリコーン・アクリル複合ゴム等が挙げられる。中でも、それらのコアシェル型の耐衝撃改質剤、例えば、メタブレン(三菱ケミカル社製)、カネエース(カネカ社製)等が好適に用いられる。
<Impact modifier>
The masterbatch may contain impact modifiers for later molding into preforms. By containing the impact modifier, the mechanical properties of the preform can be improved. When the impact modifier is included, the content thereof is preferably 0.01% by weight or more and 10% by weight or less based on the mass of the preform. Examples of impact modifiers include butadiene-based rubbers, acrylic-based rubbers, silicone-acrylic composite rubbers, and the like. Among them, core-shell type impact modifiers such as Metabrene (manufactured by Mitsubishi Chemical Corporation) and Kaneace (manufactured by Kaneka Corporation) are preferably used.
 マスターバッチの製造には、フィラーを用いてもよい。フィラーは無機系でも有機系でもよい。フィラーの含有量は、プリフォームを基準として、フィラーの添加効果が十分に得られ、且つプリフォームの引張伸びや耐衝撃性が維持される範囲で選択すればよい。無機系フィラーとしては、無水シリカ、雲母、タルク、酸化チタン、炭酸カルシウム、ケイ藻土、アロフェン、ベントナイト、チタン酸カリウム、ゼオライト、セピオライト、スメクタイト、カオリン、カオリナイト、ガラス、石灰石、カーボン、ワラステナイト、焼成パーライト、珪酸カルシウム、珪酸ナトリウム等の珪酸塩、酸化アルミニウム、炭酸マグネシウム、水酸化カルシウム等の水酸化物、炭酸第二鉄、酸化亜鉛、酸化鉄、リン酸アルミニウム、硫酸バリウム等の塩類等が挙げられる。 A filler may be used in the production of the masterbatch. The filler may be inorganic or organic. The content of the filler may be selected within a range in which the effect of addition of the filler is sufficiently obtained and the tensile elongation and impact resistance of the preform are maintained, based on the preform. Inorganic fillers include anhydrous silica, mica, talc, titanium oxide, calcium carbonate, diatomaceous earth, allophane, bentonite, potassium titanate, zeolite, sepiolite, smectite, kaolin, kaolinite, glass, limestone, carbon, and wollastonite. , calcined perlite, calcium silicate, silicates such as sodium silicate, hydroxides such as aluminum oxide, magnesium carbonate, calcium hydroxide, salts such as ferric carbonate, zinc oxide, iron oxide, aluminum phosphate, barium sulfate, etc. is mentioned.
 無機系フィラーを含むプリフォームの場合、プリフォーム中における含有量は、通常1重量%以上であり、好ましくは3重量%以上であり、更に好ましくは5重量%以上である。また、通常80重量%以下であり、好ましくは70重量%以下であり、更に好ましくは60重量%以下である。 In the case of a preform containing an inorganic filler, the content in the preform is usually 1% by weight or more, preferably 3% by weight or more, and more preferably 5% by weight or more. Also, it is usually 80% by weight or less, preferably 70% by weight or less, and more preferably 60% by weight or less.
 有機系フィラーとしては、生澱粉、加工澱粉、パルプ、キチン・キトサン質、椰子殻粉、竹粉末、樹皮粉末、ケナフや藁等の粉末等が挙げられる。また、パルプ等の繊維をナノレベルに解繊したナノファイバーセルロース等も挙げられる。 Organic fillers include raw starch, modified starch, pulp, chitin/chitosan, coconut shell powder, bamboo powder, bark powder, kenaf and straw powder, and the like. Also, nanofiber cellulose obtained by defibrating fibers such as pulp to a nano level can be used.
 有機系フィラーを含むプリフォームの場合、プリフォーム中における含有量は、通常0.1重量%以上であり、好ましくは1重量%以上である。また、通常70重量%以下であり、好ましくは50重量%以下である。 In the case of a preform containing an organic filler, the content in the preform is usually 0.1% by weight or more, preferably 1% by weight or more. Moreover, it is usually 70% by weight or less, preferably 50% by weight or less.
 結晶核剤としては、ガラス繊維、炭素繊維、チタンウィスカー、マイカ、タルク、窒化ホウ素、CaCO、TiO、シリカ、層状ケイ酸塩、ポリエチレンワックス、ポリプロピレンワックス等が挙げられ、タルク、窒化ホウ素、シリカ、層状ケイ酸塩、ポリエチレンワックス、ポリプロピレンワックスが好ましく、中でも、タルクが好ましい。 Crystal nucleating agents include glass fiber, carbon fiber, titanium whisker, mica, talc, boron nitride, CaCO 3 , TiO 2 , silica, layered silicate, polyethylene wax, polypropylene wax, etc. Talc, boron nitride, Silica, layered silicate, polyethylene wax and polypropylene wax are preferred, and talc is particularly preferred.
 なお、プリフォームの剛性改良のために添加する無機フィラーや熱安定剤として添加する有機安定剤等も、結晶化促進に寄与する可能性がある。また、ポリエステルの製造過程或いは成形加工過程で混入した無機物或いは有機物の異物等も結晶核剤となり得る。従って、本明細書でいう結晶核剤とは、結晶化促進に寄与する、常温で固体である粒子をいう。 In addition, inorganic fillers added to improve the rigidity of the preform and organic stabilizers added as heat stabilizers may also contribute to the promotion of crystallization. In addition, foreign matter such as inorganic substances or organic substances mixed in during the manufacturing process or molding process of polyester can also serve as a crystal nucleating agent. Accordingly, the term "crystal nucleating agent" as used herein refers to particles that are solid at room temperature and contribute to the promotion of crystallization.
 結晶核剤の粒径は、小さいことが好ましい。結晶核剤の粒径は、好ましくは5μm以下、より好ましくは3μm以下、さらに好ましくは1μm以下、最も好ましくは0.5μm以下である。なお、結晶核剤の粒径の下限は、通常0.1μmである。 The particle size of the crystal nucleating agent is preferably small. The grain size of the crystal nucleating agent is preferably 5 μm or less, more preferably 3 μm or less, still more preferably 1 μm or less, and most preferably 0.5 μm or less. The lower limit of the grain size of the crystal nucleating agent is usually 0.1 μm.
 プリフォームの製造に結晶核剤を用いる場合、その量は、プリフォームの質量を基準として、好ましくは0.001重量%以上、より好ましくは0.01重量%以上、さらに好ましくは0.1重量%以上である。また、結晶核剤の量の上限は、プリフォームの質量を基準として好ましくは30重量%、より好ましくは10重量%、さらに好ましくは5重量%、特に好ましくは1重量%である。結晶核剤の量を上述の範囲とすることにより、結晶化促進効果が発現しやすく、また、プリフォームの機械物性としなやかさ等も得られる傾向にある。 When a crystal nucleating agent is used in the production of the preform, its amount is preferably 0.001% by weight or more, more preferably 0.01% by weight or more, and still more preferably 0.1% by weight, based on the mass of the preform. % or more. The upper limit of the amount of the crystal nucleating agent is preferably 30% by weight, more preferably 10% by weight, still more preferably 5% by weight, particularly preferably 1% by weight, based on the mass of the preform. By setting the amount of the crystal nucleating agent within the above range, the effect of promoting crystallization is likely to be exhibited, and mechanical properties and flexibility of the preform tend to be obtained.
<ブルーイング剤>
 マスターバッチは、ブルーイング剤をさらに含んでいてもよい。ブルーイング剤を入れることで、ボトルを成形したときにb*を2以下に制御しやすい。
<Bluing agent>
The masterbatch may further contain a bluing agent. By adding a bluing agent, it is easy to control b* to 2 or less when a bottle is molded.
[マスターバッチの製造方法]
 本実施形態のマスターバッチの製造は、公知の方法が採用できる。例えば、各原料を単軸或いは二軸押出機やバンバリミキサー等を用いて溶融混練してペレット化することにより製造することができる。
[Manufacturing method of masterbatch]
A known method can be employed for the production of the masterbatch of the present embodiment. For example, it can be produced by melt-kneading each raw material using a single-screw or twin-screw extruder, Banbury mixer, or the like, and pelletizing.
<組成の確認法>
 マスターバッチの組成は、従来公知の方法により確認することができる。例えば、HPLC(高速液体クロマトグラフィー)により組成物を構成成分に分離した後、各成分をNMR(核磁気共鳴分光法)や、メタノール分解後にGC/MS(ガスクロマトグラフィー質量分析法)等の方法により分析することにより確認できる。
<Confirmation method of composition>
The composition of the masterbatch can be confirmed by a conventionally known method. For example, after separating the composition into constituent components by HPLC (high performance liquid chromatography), each component is analyzed by NMR (nuclear magnetic resonance spectroscopy), or after methanol decomposition, GC/MS (gas chromatography mass spectrometry) or the like. It can be confirmed by analyzing by
[プリフォーム]
 本実施形態に係るプリフォームは、テレフタル酸由来の構造単位(A-1)と、脂肪族ジオール由来の構造単位(A-2)とを有するポリエステル樹脂(A)と、2,5-フランジカルボン酸由来の構造単位(B-1)と、1,2-エタンジオール由来の構造単位(B-2)とを有するポリエステル樹脂(B)と、を含有し、(数1)で求められるポリエステル樹脂(B)の含有率が5~25質量%である樹脂組成物からなるボトル用のプリフォームであって、(条件2)により測定した固有粘度(IV値)が0.65dl/g以上1.00dl/g以下であり、光束を7.0mm角に絞ったこと以外は、JIS K 7136:2000「プラスチック-透明材料のヘーズの求め方」に従って測定した曇価が0.1~8.0%である。(数1)で求められるポリエステル樹脂(B)の含有率は好ましくは、5~15質量%であり、より好ましくは5~10質量%である。(条件2)により測定した固有粘度(IV値)は好ましくは0.65dl/g以上0.95dl/g以下であり、より好ましくは0.70dl/g以上0.90dl/g以下である。曇価は好ましくは0.1~6.0%であり、より好ましくは0.1~3.0%である。
(数1)ポリエステル樹脂(B)の含有率(質量%)=ポリエステル樹脂(B)の含有量/(ポリエステル樹脂(A)の含有量+ポリエステル樹脂(B)の含有量)
(条件2)プリフォームから切り出したサンプル0.25gをフェノール/1,1,2,2-テトラクロロエタン=50/50(重量比)の混合溶媒50mlに溶解し、ウベローデ粘度計を用いて30℃で測定する、Huggins定数は0.32とする。
[preform]
The preform according to the present embodiment comprises a polyester resin (A) having a structural unit (A-1) derived from terephthalic acid and a structural unit (A-2) derived from an aliphatic diol, and 2,5-furandicarboxylic A polyester resin containing a structural unit (B-1) derived from an acid and a polyester resin (B) having a structural unit (B-2) derived from 1,2-ethanediol, and obtained by (Equation 1) 1. A bottle preform made of a resin composition containing 5 to 25% by mass of (B) and having an intrinsic viscosity (IV value) of 0.65 dl/g or more as measured according to (Condition 2). 00 dl/g or less, and the haze value measured according to JIS K 7136:2000 "Plastics - Determining the haze of transparent materials" is 0.1 to 8.0%, except that the luminous flux is focused to 7.0 mm square. is. The content of the polyester resin (B) determined by (Equation 1) is preferably 5 to 15% by mass, more preferably 5 to 10% by mass. The intrinsic viscosity (IV value) measured according to (Condition 2) is preferably 0.65 dl/g or more and 0.95 dl/g or less, more preferably 0.70 dl/g or more and 0.90 dl/g or less. The haze value is preferably 0.1-6.0%, more preferably 0.1-3.0%.
(Formula 1) content of polyester resin (B) (% by mass) = content of polyester resin (B) / (content of polyester resin (A) + content of polyester resin (B))
(Condition 2) 0.25 g of a sample cut from the preform was dissolved in 50 ml of a mixed solvent of phenol/1,1,2,2-tetrachloroethane = 50/50 (weight ratio), and measured at 30°C using an Ubbelohde viscometer. , and the Huggins constant is 0.32.
 ここで本実施形態に係る成形体の製造方法では、前記マスターバッチが、(数1)で求められるポリエステル樹脂(B)の含有率が45質量%~90重量%であるマスターバッチであり、前記成形体を成形する工程が、該マスターバッチと前記ポリエステル樹脂(A)とをブレンドしてボトル用のプリフォームを成形する工程である形態を包含する。 Here, in the method for producing a molded article according to the present embodiment, the masterbatch is a masterbatch in which the content of the polyester resin (B) obtained by (Equation 1) is 45% by weight to 90% by weight, and A mode in which the step of molding a molded article is a step of molding a preform for a bottle by blending the masterbatch and the polyester resin (A) is included.
 すなわち、本実施形態に係るマスターバッチと、ポリエステル樹脂(A)と、必要に応じて用いられるその他の添加剤を、射出成形時に直接溶融混練した後、溶融状態で金型に射出、冷却、取り出しによりプリフォームを形成する。本実施形態では、マスターバッチとして、すでにポリエステル樹脂(A)とポリエステル樹脂(B)とをブレンド済みのペレットと、ポリエステル樹脂(A)のペレットを成形用原料とするため、2軸スクリューを備えた射出成型機などで用いて射出成形時に直接溶融混練してプリフォームを成形したとしても、プリフォーム中におけるポリエステル樹脂(A)とポリエステル樹脂(B)と相溶化が十分に行われている。この押出工程の樹脂温度は、特に限定されるものではないが、通常210~290℃、中でも230~270℃の範囲であることが成形性及び熱劣化抑制の面から好ましい。溶融混練は、例えば2軸スクリュウーを備えた射出成型機の場合、プリフォームを成形する際の2軸スクリュウー間の通過時間にあたる120秒以上300秒以下となるので、本実施形態に係るプリフォームの製造方法では、PET製プリフォームと同様のサイクルタイムで相溶化して白化が抑制されたプリフォームを成形することができる。 That is, the masterbatch according to the present embodiment, the polyester resin (A), and other additives used as necessary are directly melt-kneaded during injection molding, and then injected into the mold in a molten state, cooled, and taken out. to form a preform. In this embodiment, as a masterbatch, a twin screw is provided in order to use pellets obtained by blending the polyester resin (A) and the polyester resin (B) and pellets of the polyester resin (A) as raw materials for molding. Even if the polyester resin (A) and the polyester resin (B) in the preform are sufficiently compatible with each other, even if the preform is formed by direct melt-kneading during injection molding using an injection molding machine or the like. Although the resin temperature in this extrusion step is not particularly limited, it is usually in the range of 210 to 290° C., preferably 230 to 270° C., from the standpoint of moldability and suppression of thermal deterioration. For example, in the case of an injection molding machine equipped with twin screws, the melt-kneading time is 120 seconds or more and 300 seconds or less, which corresponds to the passage time between the twin screws when molding the preform. In the manufacturing method, it is possible to mold a preform in which whitening is suppressed by compatibilization in the same cycle time as a PET preform.
[ブロー成形ボトル]
 本実施形態に係るブロー成形ボトルは、テレフタル酸由来の構造単位(A-1)と、脂肪族ジオール由来の構造単位(A-2)とを有するポリエステル樹脂(A)と、2,5-フランジカルボン酸由来の構造単位(B-1)と、1,2-エタンジオール由来の構造単位(B-2)とを有するポリエステル樹脂(B)と、を含有し、(数1)で求められるポリエステル樹脂(B)の含有率が5~25質量%である樹脂組成物からなるブロー成形ボトルであって、(条件3)により測定した固有粘度(IV値)が0.65dl/g以上1.00dl/g以下であり、光束を7.0mm角に絞ったこと以外は、JIS K 7136:2000「プラスチック-透明材料のヘーズの求め方」に従って測定した曇価が0.1~20%である。(数1)で求められるポリエステル樹脂(B)の含有率は好ましくは、5~15質量%であり、より好ましくは5~10質量%である。(条件3)により測定した固有粘度(IV値)は好ましくは0.65dl/g以上0.95dl/g以下であり、より好ましくは0.70dl/g以上0.90dl/g以下である。曇価は好ましくは0.1~10.0%であり、より好ましくは0.1~5.0%である。
(数1)ポリエステル樹脂(B)の含有率(質量%)=ポリエステル樹脂(B)の含有量/(ポリエステル樹脂(A)の含有量+ポリエステル樹脂(B)の含有量)
(条件3)ブロー成形ボトルから切り出したサンプル0.25gをフェノール/1,1,2,2-テトラクロロエタン=50/50(重量比)の混合溶媒50mlに溶解し、ウベローデ粘度計を用いて30℃で測定する、Huggins定数は0.32とする。
[Blow molding bottle]
The blow-molded bottle according to the present embodiment comprises a polyester resin (A) having a structural unit (A-1) derived from terephthalic acid and a structural unit (A-2) derived from an aliphatic diol, and a 2,5-flange A polyester containing a structural unit (B-1) derived from a carboxylic acid and a polyester resin (B) having a structural unit (B-2) derived from 1,2-ethanediol, and obtained by (Equation 1) A blow-molded bottle made of a resin composition having a resin (B) content of 5 to 25% by mass, and having an intrinsic viscosity (IV value) measured according to (Condition 3) of 0.65 dl/g or more and 1.00 dl. /g or less, and the haze value measured according to JIS K 7136:2000 "Plastics - Determination of haze of transparent materials" is 0.1 to 20%, except that the luminous flux is focused to 7.0 mm square. The content of the polyester resin (B) determined by (Equation 1) is preferably 5 to 15% by mass, more preferably 5 to 10% by mass. The intrinsic viscosity (IV value) measured according to (Condition 3) is preferably 0.65 dl/g or more and 0.95 dl/g or less, more preferably 0.70 dl/g or more and 0.90 dl/g or less. The haze value is preferably 0.1-10.0%, more preferably 0.1-5.0%.
(Formula 1) content of polyester resin (B) (% by mass) = content of polyester resin (B) / (content of polyester resin (A) + content of polyester resin (B))
(Condition 3) 0.25 g of a sample cut from a blow-molded bottle was dissolved in 50 ml of a mixed solvent of phenol/1,1,2,2-tetrachloroethane = 50/50 (weight ratio), and measured at 30 using an Ubbelohde viscometer. The Huggins constant, measured in °C, is taken to be 0.32.
 ここで本実施形態に係るブロー成形ボトルの製造方法は、本実施形態に係る成形体の製造方法によって得られたプリフォームをブロー成形してボトルを成形する工程を有する。 Here, the method for manufacturing a blow-molded bottle according to this embodiment has a step of blow-molding the preform obtained by the method for manufacturing a molded body according to this embodiment to mold a bottle.
 すなわち、ブロー成形工程において、プリフォームを、ヒーターで所定の温度まで加熱した所望の形状の金型中に投入した後に、高圧空気を吹き込み、金型に着装することにより、ボトルを成形する。プリフォームの加熱温度は、好ましくは90℃~150℃、より好ましくは100℃~140℃、特に好ましくは110~130℃である。上記範囲でプリフォームを加熱し、高圧空気を吹き込むことで、ブロー成形においてボトルの厚みを均一にすることができる。 That is, in the blow molding process, the preform is put into a mold of a desired shape heated to a predetermined temperature by a heater, and then high-pressure air is blown into the mold to mount the preform on the mold to form a bottle. The heating temperature of the preform is preferably 90°C to 150°C, more preferably 100°C to 140°C, and particularly preferably 110°C to 130°C. By heating the preform within the above range and blowing in high-pressure air, the thickness of the bottle can be made uniform in blow molding.
 本実施形態に係るブロー成形ボトルは、炭酸含有液の充填用の耐圧ボトルであることが好ましい。本実施形態に係るブロー成形ボトルは、耐圧性及び耐熱性に優れており、炭酸含有液の充填用として好適である。 The blow-molded bottle according to this embodiment is preferably a pressure-resistant bottle for filling with a carbonate-containing liquid. The blow-molded bottle according to this embodiment has excellent pressure resistance and heat resistance, and is suitable for filling with a carbonate-containing liquid.
 本実施形態に係るブロー成形ボトルは、ホット飲料の充填用ボトル又は高温で充填するための加温販売用ボトル又は耐熱ボトルであることが好ましい。本実施形態に係るブロー成形ボトルは、耐熱性及び高ガスバリア性に優れており、ホット販売時の容器の変形が抑制され、この結果、容器デザインの自由度が高く、容器軽量化及びCO排出量削減を実現できる。また、リサイクル性も向上している。 The blow-molded bottle according to the present embodiment is preferably a bottle for filling hot beverages, a bottle for hot sale for filling at a high temperature, or a heat-resistant bottle. The blow-molded bottle according to this embodiment has excellent heat resistance and high gas barrier properties, and deformation of the container during hot sale is suppressed. reduction in volume can be realized. In addition, recyclability is also improved.
 本実施形態に係る飲料製品は、本実施形態に係る成形ボトルに飲料を充填したことを特徴とする。 The beverage product according to this embodiment is characterized by filling the molded bottle according to this embodiment with a beverage.
 ブロー成形ボトルは、用いる金型形状に応じて様々な形状とすることができる。ブロー成形ボトルの形状は、特に限定されず、飲料用であれば飲料を保持できる形状であればよい。特に、均一で十分に厚い壁厚で適切な形状に成形することにより、ビールやシャンパン等の炭酸飲料等の炭酸含有液;茶やコーヒー等のホット飲料に好適である。 Blow-molded bottles can have various shapes depending on the shape of the mold used. The shape of the blow-molded bottle is not particularly limited as long as it can hold a beverage as long as it is for a beverage. In particular, it is suitable for carbonic acid-containing liquids such as carbonated beverages such as beer and champagne, and hot beverages such as tea and coffee, by molding into an appropriate shape with a uniform and sufficiently thick wall thickness.
 これらの液体をボトルに充填する場合、通常、ボトル口部を樹脂キャップ等で密封して、ボトル外部に比べてボトル内部の圧力(内圧)が高い状態になる。そこで、この内圧が高い状態で、直立状態での箱詰め、搬送、商店での陳列等を行うために、ボトル底部は、内圧による変形を抑制する耐圧形状にすることが好ましい。ボトル底部や胴部の変形は、一般的にクリープ(継続的な応力による不可逆的な変形)現象を伴うことから、これらのボトルに適した壁厚や形状には共通性がある。そこで、以下、炭酸含有液またはホット飲料等の充填に用いられるボトルを「耐熱圧ボトル」と言う場合がある。すなわち、本実施形態のブロー成形ボトルは、耐熱圧ボトルに好適である。 When these liquids are filled into a bottle, the mouth of the bottle is usually sealed with a resin cap or the like, and the pressure inside the bottle (internal pressure) is higher than the outside of the bottle. Therefore, it is preferable that the bottom of the bottle has a pressure-resistant shape that suppresses deformation due to the internal pressure in order to box, transport, display in a store, etc. in an upright state under high internal pressure. Since the deformation of the bottom and body of the bottle is generally accompanied by a creep (irreversible deformation due to continuous stress) phenomenon, there is commonality in wall thicknesses and shapes suitable for these bottles. Therefore, hereinafter, a bottle used for filling a carbonated liquid, a hot beverage, or the like may be referred to as a "heat-resistant and pressure bottle". That is, the blow-molded bottle of this embodiment is suitable for a heat-resistant and pressure-resistant bottle.
 耐熱圧ボトルの底部の耐圧形状は、例えば、花弁(ペタロイド)状、容器内側に向いたドーム形状とした所謂シャンパン底形状、底面の中央部に凹凸形状を施した形状等を用いることができる。平均壁厚が厚いと、内圧によるボトルの変形や破裂が起こり難い。具体的には、内圧にも依るが、ボトル胴部の平均肉厚が好ましくは0.20mm以上、より好ましくは0.25mm以上、更に好ましくは0.30mm以上とすることがよい。平均壁厚は、また、一方で、ボトルの成型性の観点から0.70mm以下であることが好ましい。 The pressure-resistant shape of the bottom of the heat and pressure bottle can be, for example, a petaloid shape, a so-called champagne bottom shape with a dome shape facing the inside of the container, or a shape with unevenness in the center of the bottom surface. If the average wall thickness is large, deformation and bursting of the bottle due to internal pressure are less likely to occur. Specifically, depending on the internal pressure, the average wall thickness of the bottle body is preferably 0.20 mm or more, more preferably 0.25 mm or more, and even more preferably 0.30 mm or more. The average wall thickness, on the other hand, is also preferably 0.70 mm or less from the standpoint of bottle moldability.
 本実施形態に係るブロー成形ボトルは、壁厚のムラが少なく、均一薄膜化が可能となることにより、軽量な耐熱圧ボトルを得ることができる。具体的には、ボトルの重量/内容量は、10g/L以上が好ましく、20g/L以上がより好ましく、30g/L以上が更に好ましく、50g/L以上が特に好ましく、また、一方で、200g/L以下が好ましく、150g/L以下がより好ましく、120g/L以下が特に好ましい。 The blow-molded bottle according to the present embodiment has less unevenness in wall thickness and can be uniformly thinned, so that a lightweight heat-resistant and pressure-resistant bottle can be obtained. Specifically, the weight/content of the bottle is preferably 10 g/L or more, more preferably 20 g/L or more, still more preferably 30 g/L or more, and particularly preferably 50 g/L or more. /L or less is preferable, 150 g/L or less is more preferable, and 120 g/L or less is particularly preferable.
 また、本実施形態に係るブロー成形ボトルは、ガスバリア性に優れた均一薄壁なボトルをとなるため、特に、炭酸飲料等の含炭酸液体充填用の耐圧ボトルに好適である。また、本実施形態に係るブロー成形ボトルは、含炭酸液体を充填した場合における耐クリープ性と耐衝撃性に優れる。具体的には、1~10GVの炭酸ガスを含有する液の充填用ボトルとして好ましく、1~5GVの炭酸ガスを含有する液の充填用ボトルとしてより好ましく、1~3GVの炭酸ガスを含有する液の充填用ボトルとして更に好ましく、1~2GVの炭酸ガスを含有する液の充填用ボトルとして特に好ましい。 In addition, the blow-molded bottle according to the present embodiment is a uniform thin-walled bottle with excellent gas barrier properties, and is particularly suitable as a pressure-resistant bottle for filling carbonated liquids such as carbonated beverages. Moreover, the blow-molded bottle according to the present embodiment is excellent in creep resistance and impact resistance when filled with a carbonated liquid. Specifically, it is preferable as a bottle for filling a liquid containing 1 to 10 GV of carbon dioxide, more preferably as a bottle for filling a liquid containing 1 to 5 GV of carbon dioxide, and a liquid containing 1 to 3 GV of carbon dioxide. It is more preferable as a filling bottle for , and particularly preferable as a filling bottle for a liquid containing 1 to 2 GV of carbon dioxide gas.
 本実施形態に係るブロー成形ボトルは、酸素バリア性に優れている。ワインボトル等のアルコール飲料に好適である。特に、従来のアルコール飲料用PETボトルよりガスバリア性が優れるため、多層成形やコーティングなどその他のガスバリア性向上手段を用いることなく、シェルフライフを延長できる。本実施形態に係るブロー成形ボトルの樹脂組成物がガラス転移温度50℃以上であるときは、ボトル内外の圧力差による変形が起こり難いことから、炭酸飲料等の発泡性物質充填用ボトルに好適である。また、高温環境下で保存しても変形し難いことから、高温で充填する耐圧ボトルやホット飲料等加温販売される加温販売用ボトルに好適である。  The blow-molded bottle according to this embodiment has excellent oxygen barrier properties. Suitable for alcoholic beverages such as wine bottles. In particular, since the gas barrier property is superior to that of conventional PET bottles for alcoholic beverages, shelf life can be extended without using other means for improving gas barrier property such as multi-layer molding or coating. When the resin composition of the blow-molded bottle according to the present embodiment has a glass transition temperature of 50° C. or higher, deformation due to the pressure difference between the inside and outside of the bottle is less likely to occur. be. In addition, since it does not easily deform even when stored in a high-temperature environment, it is suitable for pressure-resistant bottles that are filled at high temperatures and hot beverage bottles that are heated and sold. 
 本実施形態では、PETボトルと同等のプリフォーム成形のサイクルタイムを有するにもかかわらず、白化を抑制したプリフォームを得ることができ、さらに、それをブロー成形したボトルは白化が抑制されている。 In this embodiment, a preform with suppressed whitening can be obtained in spite of having a preform molding cycle time equivalent to that of a PET bottle, and whitening is suppressed in a bottle obtained by blow molding it. .
[フィルム]
 本実施形態に係るフィルムは、テレフタル酸由来の構造単位(A-1)と、脂肪族ジオール由来の構造単位(A-2)とを有するポリエステル樹脂(A)と、2,5-フランジカルボン酸由来の構造単位(B-1)と、1,2-エタンジオール由来の構造単位(B-2)とを有するポリエステル樹脂(B)と、を含有し、(数1)で求められるポリエステル樹脂(B)の含有率が1~90質量%である樹脂組成物からなるフィルムであって、(条件4)により測定した固有粘度(IV値)が0.50dl/g以上1.00dl/g以下であり、光束を7.0mm角に絞ったこと以外は、JIS K 7136:2000「プラスチック-透明材料のヘーズの求め方」に従って測定した曇価が0.01~6.0%である。なお、本実施形態において「フィルム」は、一般的に「シート」と称される物品を含む。
(数1)ポリエステル樹脂(B)の含有率(質量%)=ポリエステル樹脂(B)の含有量/(ポリエステル樹脂(A)の含有量+ポリエステル樹脂(B)の含有量)
(条件4)フィルムから切り出したサンプル0.25gをフェノール/1,1,2,2-テトラクロロエタン=50/50(重量比)の混合溶媒50mlに溶解し、ウベローデ粘度計を用いて30℃で測定する、Huggins定数は0.32とする。
[the film]
The film according to the present embodiment comprises a polyester resin (A) having a structural unit (A-1) derived from terephthalic acid and a structural unit (A-2) derived from an aliphatic diol, and 2,5-furandicarboxylic acid. A polyester resin (B) having a structural unit (B-1) derived from 1,2-ethanediol and a structural unit (B-2) derived from 1,2-ethanediol, and a polyester resin obtained by (Equation 1) ( A film made of a resin composition in which the content of B) is 1 to 90% by mass, and the intrinsic viscosity (IV value) measured according to (Condition 4) is 0.50 dl / g or more and 1.00 dl / g or less The haze value measured according to JIS K 7136:2000 "Plastics - Determination of haze of transparent materials" is 0.01 to 6.0%, except that the luminous flux is narrowed to 7.0 mm square. In addition, in this embodiment, the "film" includes an article generally called a "sheet".
(Formula 1) content of polyester resin (B) (% by mass) = content of polyester resin (B) / (content of polyester resin (A) + content of polyester resin (B))
(Condition 4) 0.25 g of a sample cut from the film was dissolved in 50 ml of a mixed solvent of phenol/1,1,2,2-tetrachloroethane = 50/50 (weight ratio), and measured at 30°C using an Ubbelohde viscometer. The measured Huggins constant is 0.32.
 フィルム中のポリエステル樹脂(B)の含有率は、1~90質量%が好ましく、より好ましくは20~90質量%、最も好ましくは40~90質量%である。上記の範囲とすることで、透明性が高く、さらにガスバリア性や表面硬度が高いフィルムを得ることができる。 The content of the polyester resin (B) in the film is preferably 1-90% by mass, more preferably 20-90% by mass, and most preferably 40-90% by mass. By setting it as said range, a film with high transparency, gas-barrier property, and surface hardness can be obtained.
 フィルムの曇価は、0.01~6.0%が好ましく、さらに好ましくは0.01~4.5%であり、最も好ましくは0.01~1.5%である。これらの範囲とすることで、光学用途等の高い透明性が要求される用途で好適に使用することができる。 The haze value of the film is preferably 0.01-6.0%, more preferably 0.01-4.5%, and most preferably 0.01-1.5%. By setting it as these ranges, it can be used suitably for the uses which require high transparency, such as an optical use.
 ここで本実施形態に係るフィルムの製造方法は、本実施形態に係るマスターバッチと、ポリエステル樹脂(A)と、をブレンドしてフィルムを成形する工程を有する。すなわち、本実施形態に係るマスターバッチと、ポリエステル樹脂(A)と、必要に応じて用いられるその他の添加剤を、射出成形時に直接溶融混練した後、溶融状態で金型に射出、冷却することでフィルムを形成する。本実施形態では、マスターバッチとして、すでにポリエステル樹脂(A)とポリエステル樹脂(B)とをブレンド済みのペレットと、ポリエステル樹脂(A)のペレットを成形用原料とするため、2軸スクリューを備えた押出機などを用いて成形時に直接溶融混練してフィルムを成形したとしても、フィルム中におけるポリエステル樹脂(A)とポリエステル樹脂(B)と相溶化が十分に行われている。この押出工程の樹脂温度は、特に限定されるものではないが、通常200~300℃、中でも240~280℃の範囲であることが成形性及び熱劣化抑制の面から好ましい。 Here, the method for producing a film according to this embodiment has a step of blending the masterbatch according to this embodiment and the polyester resin (A) to form a film. That is, the masterbatch according to the present embodiment, the polyester resin (A), and other additives used as necessary are directly melt-kneaded during injection molding, and then injected into a mold in a molten state and cooled. to form a film. In this embodiment, as a masterbatch, a twin screw is provided in order to use pellets obtained by blending the polyester resin (A) and the polyester resin (B) and pellets of the polyester resin (A) as raw materials for molding. Even if the film is formed by direct melt-kneading during molding using an extruder or the like, the polyester resin (A) and the polyester resin (B) are sufficiently compatible in the film. The resin temperature in this extrusion step is not particularly limited, but it is usually in the range of 200 to 300° C., preferably 240 to 280° C., from the standpoint of moldability and suppression of thermal deterioration.
 本実施形態に係るフィルムは、二軸延伸することで機械物性に優れた二軸延伸フィルムとすることもできる。 The film according to the present embodiment can also be made into a biaxially stretched film with excellent mechanical properties by being biaxially stretched.
 二軸延伸フィルムを製造する方法については、従来公知の方法を使用できるが。次の方法が挙げられる。 A conventionally known method can be used as a method for producing a biaxially stretched film. The following methods are mentioned.
 マスターバッチとその他原料を使用し、ダイから押し出された溶融フィルムを冷却ロールで冷却固化して未延伸フィルムを得る。この場合、フィルムの平面性を向上させるためにフィルムと回転冷却ドラムとの密着性を高める必要があり、静電印加密着法及び/又は液体塗布密着法が好ましく採用される。次に、得られた未延伸フィルムは二軸方向に延伸される。その場合、まず、前記の未延伸フィルムを一方向にロールまたはテンター方式の延伸機により延伸する。延伸温度は、通常80~140℃、好ましくは85~120℃であり、延伸倍率は通常2.5~7倍、好ましくは3.0~6倍である。次いで、一段目の延伸方向と直交する延伸温度は通常70~170℃であり、延伸倍率は通常3.0~7倍、好ましくは3.5~6倍である。そして、引き続き160~240℃の温度で緊張下または30%以内の弛緩下で熱処理を行い、二軸配向フィルムを得る。延伸においては、一方向の延伸を2段階以上で行う方法を採用することもできる。その場合、最終的に二方向の延伸倍率がそれぞれ上記範囲となるように行うことが好ましい。 Using a masterbatch and other raw materials, the melted film extruded from the die is cooled and solidified with a cooling roll to obtain an unstretched film. In this case, it is necessary to increase the adhesion between the film and the rotary cooling drum in order to improve the flatness of the film, and the electrostatic application adhesion method and/or the liquid coating adhesion method are preferably employed. The resulting unstretched film is then biaxially stretched. In that case, first, the unstretched film is stretched in one direction by a roll or tenter type stretching machine. The stretching temperature is usually 80 to 140° C., preferably 85 to 120° C., and the stretching ratio is usually 2.5 to 7 times, preferably 3.0 to 6 times. Next, the stretching temperature perpendicular to the stretching direction in the first stage is usually 70 to 170° C., and the stretching ratio is usually 3.0 to 7 times, preferably 3.5 to 6 times. Subsequently, heat treatment is performed at a temperature of 160 to 240° C. under tension or under relaxation within 30% to obtain a biaxially oriented film. In the stretching, a method of stretching in one direction in two or more stages can also be employed. In that case, it is preferable that the stretching ratios in the two directions finally fall within the above ranges.
 また、二軸延伸フィルムの製造において同時二軸延伸法を採用することもできる。同時二軸延伸法は、上述の未延伸フィルムを通常70~120℃、好ましくは80~110℃で温度コントロールされた状態で二方向に同時に延伸する方法である。延伸倍率は、面積倍率で好ましくは4~50倍、より好ましくは7~35倍、さらに好ましくは10~25倍である。そして、引き続き、160~240℃の温度で緊張下または30%以内の弛緩下で熱処理を行い、延伸配向フィルムを得る。上述の延伸方式を採用する同時二軸延伸装置に関しては、スクリュー方式、パンタグラフ方式、リニアー駆動方式等、従来から公知の延伸方式を採用することができる。 A simultaneous biaxial stretching method can also be adopted in the production of the biaxially stretched film. The simultaneous biaxial stretching method is a method in which the above unstretched film is stretched simultaneously in two directions while the temperature is controlled at usually 70 to 120°C, preferably 80 to 110°C. The draw ratio is preferably 4 to 50 times, more preferably 7 to 35 times, still more preferably 10 to 25 times in terms of area magnification. Subsequently, heat treatment is performed at a temperature of 160 to 240° C. under tension or under relaxation of 30% or less to obtain a stretched and oriented film. Conventionally known stretching methods such as a screw method, a pantograph method, a linear drive method, and the like can be employed for the simultaneous biaxial stretching apparatus that employs the above-described stretching method.
 上述の二軸延伸フィルムの延伸工程中にフィルム表面にプライマー処理やハードコート処理を行う、いわゆる塗布延伸法(インラインコーティング)を施す場合は、一軸延伸後のフィルムにプライマー層又はハードコート層形成用の塗布液を塗布すればよい。塗布延伸法によりフィルム上にプライマーやハードコート層を設ける場合には、延伸と同時に塗布が可能になると共に塗布層の厚みを延伸倍率に応じて薄くすることができ、二軸延伸フィルムとして好適なフィルムを製造できる。 In the case of applying a so-called application stretching method (in-line coating), in which the film surface is subjected to a primer treatment or a hard coat treatment during the stretching process of the biaxially stretched film, the film after uniaxial stretching is used for forming a primer layer or a hard coat layer. is applied. When a primer or hard coat layer is provided on the film by a coating and stretching method, coating can be performed simultaneously with stretching, and the thickness of the coating layer can be reduced according to the stretching ratio, making it suitable as a biaxially stretched film. film can be produced.
 以下に実施例を挙げて本発明をさらに詳細に説明するが、本発明はその要旨を超えない
限り、以下の実施例に限定されるものではない。
EXAMPLES The present invention will be described in more detail below with reference to examples, but the present invention is not limited to the following examples as long as the gist thereof is not exceeded.
 以下の実施例および比較例における評価方法は、下記のとおりである。
(1)ポリエステルの固有粘度
 測定対象のサンプル0.25gを精秤し、フェノール/1,1,2,2-テトラクロロエタン=50/50(重量比)の混合溶媒50mlを加えて溶解させた溶液について、ウデローデ粘度管を用いて30℃で測定した。Huggins定数は0.32とした。
(2)ポリエステルのガラス転移温度
 ガラス転移温度は、示差走査熱量測定装置「DSC7000x」(株式会社日立ハイテクサイエンス製)を用いて、JIS K7121-1987の方法により測定した。具体的には、ポリエステルを25℃から280℃まで昇温した後、25℃まで降温し、再び260℃まで昇温した。ここで、昇温速度及び降温速度は10℃/分とした。この2回目の昇温における中間点ガラス転移温度をガラス転移温度とした。
(3)ポリエステルの融点
 ガラス転移温度の測定と同様の装置・条件で測定された、2回目の昇温における融解ピークの頂点を融点とした。
(4)ガスバリア性(酸素透過度)
 酸素透過率測定装置(MODERNCONTROL社製 OX-TRAN2/21)を用いて、ブロー成形ボトルの酸素透過度を測定した。酸素透過度は、23℃90%RHの条件にて、測定開始から12時間コンディショニングして、測定開始から72時間経過後の値とした。酸素ガスバリア性は、汎用PETボトル(後述する参考例E1で得られた汎用PET100%ボトル)の酸素透過度を1として、相対評価した。具体的には、参考例E1の酸素透過度を比較対象とするサンプルの酸素透過度で割って、倍率で評価した。酸素ガスバリア性は、算出した倍率が1を超える場合を良好とした。
(5)曇価(ヘイズ)
 ヘーズメーター「NDH7000SPII」(日本電色社製)を用いて、7.0mm角の積分球マスクを使用して光束を絞った以外は、JIS K 7136:2000「プラスチック-透明材料のヘーズの求め方」に従って測定した。プリフォームは、底部から4cmの胴部を、ブロー成型ボトルは底部から3cmの胴部を測定箇所として4回測定した平均値を曇価とした。また、プリフォームの測定は、図1に示すように、プリフォームを縦方向に半分に切り出し、プリフォームの外面が積分球側かつ、プリフォームの幅方向の中心に光束が当たるように設置して実施した。
(6)ボトルのb*値
 ボトルの着色の程度は、JIS  K  7105-1981「プラスチックの光学的特性試験方法」における色差である着色度b*値を指標とする。b*値が2.0以下であるものを無色という。b*値は、より好ましくは1.7以下である。b*値は数5で求めることができる。なお、数5において、X、Y又はZは三刺激値である。また、本発明におけるb*値と目視との相関はおおよそ表1に示す通りである。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-T000002
Evaluation methods in the following examples and comparative examples are as follows.
(1) Intrinsic viscosity of polyester A solution obtained by precisely weighing 0.25 g of a sample to be measured and dissolving it by adding 50 ml of a mixed solvent of phenol/1,1,2,2-tetrachloroethane = 50/50 (weight ratio). was measured at 30° C. using a Uderohde viscosity tube. The Huggins constant was set to 0.32.
(2) Glass transition temperature of polyester The glass transition temperature was measured by the method of JIS K7121-1987 using a differential scanning calorimeter "DSC7000x" (manufactured by Hitachi High-Tech Science Co., Ltd.). Specifically, the temperature of the polyester was raised from 25°C to 280°C, then lowered to 25°C, and then raised to 260°C again. Here, the temperature increase rate and temperature decrease rate were set to 10° C./min. The midpoint glass transition temperature in this second temperature rise was defined as the glass transition temperature.
(3) Melting point of polyester The apex of the melting peak in the second temperature rise measured with the same equipment and conditions as the measurement of the glass transition temperature was defined as the melting point.
(4) Gas barrier property (oxygen permeability)
The oxygen permeability of the blow-molded bottle was measured using an oxygen permeability measuring device (OX-TRAN2/21 manufactured by MODERN CONTROL). The oxygen transmission rate was conditioned at 23°C and 90% RH for 12 hours from the start of the measurement, and the value after 72 hours from the start of the measurement was taken. The oxygen gas barrier properties were evaluated relative to the oxygen permeability of a general-purpose PET bottle (100% general-purpose PET bottle obtained in Reference Example E1 described later) as 1. Specifically, the oxygen permeability of Reference Example E1 was divided by the oxygen permeability of the sample for comparison, and the evaluation was made by a magnification. The oxygen gas barrier property was evaluated as good when the calculated magnification exceeded 1.
(5) Cloudiness (Haze)
Using a haze meter "NDH7000SPII" (manufactured by Nippon Denshoku Co., Ltd.), JIS K 7136: 2000 "Plastics - How to determine the haze of transparent materials" except that the luminous flux was narrowed using a 7.0 mm square integrating sphere mask. ”. The haze value of the preform was measured four times at the body portion 4 cm from the bottom, and the haze value of the blow-molded bottle was measured at the body portion 3 cm from the bottom. In addition, as shown in Fig. 1, the preform was cut in half lengthwise and placed so that the outer surface of the preform was on the integrating sphere side and the center of the width direction of the preform was exposed to the light beam. implemented.
(6) b* value of bottle The degree of coloration of the bottle is indicated by the degree of coloration b* value, which is the color difference in JIS K 7105-1981 “Testing methods for optical properties of plastics”. Colorless is defined as having a b* value of 2.0 or less. The b* value is more preferably 1.7 or less. The b* value can be obtained by Equation (5). Note that X, Y, or Z in Equation 5 are tristimulus values. Further, the correlation between the b* value and visual observation in the present invention is roughly shown in Table 1.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-T000002
[マスターバッチの製造]
(実施例A1)
 KZW15(株式会社テクノベル社製)を用いて、ポリエステル樹脂(B)としてポリエチレンフラノエート(三菱ケミカル社製、IV=1.12dl/g、ガラス転移点83℃)とポリエステル樹脂(A)としてポリエチレンテレフタレート(三菱ケミカルインドネシア社製、BK2180、IV=0.83dl/g、ガラス転移点74℃)とを混練し、マスターバッチを作製した。具体的には、下記の操作を行った。(数1)で求められるポリエステル樹脂(B)の含有率が50質量%になるようにポリエチレンフラノエートのペレットとポリエチレンテレフタレートのペレットを秤量し、均一に攪拌することでマスターバッチ作製用のペレット混合物を得た。得られたペレット混合物をホッパーに投入し、下記の条件で混練を行い2.5mmΦのストランドダイから溶融樹脂を得た。得られた溶融樹脂を23℃の水槽に直接浸して冷却することでストランド状にし、ペレタイザーに通すことでポリエチレンフラノエートとポリエチレンテレフタレートのマスターバッチを得た。
(数1)ポリエステル樹脂(B)の含有率(質量%)=ポリエステル樹脂(B)の含有量/(ポリエステル樹脂(A)の含有量+ポリエステル樹脂(B)の含有量)
(溶融混練条件)
ペレット供給量:2.0kg/h
シリンダー温度 C1:200℃、C2~C8:280℃
ヘッド温度:280℃
ダイ温度:280℃
スクリュー回転数:250rpm
[Production of masterbatch]
(Example A1)
Using KZW15 (manufactured by Technobell Co., Ltd.), polyethylene furanoate (manufactured by Mitsubishi Chemical Corporation, IV = 1.12 dl / g, glass transition point 83 ° C.) as polyester resin (B) and polyethylene terephthalate as polyester resin (A) (Mitsubishi Chemical Indonesia, BK2180, IV = 0.83 dl/g, glass transition point 74°C) were kneaded to prepare a masterbatch. Specifically, the following operations were performed. Polyethylene furanoate pellets and polyethylene terephthalate pellets are weighed so that the content of the polyester resin (B) obtained by (Equation 1) is 50% by mass, and uniformly stirred to form a pellet mixture for preparing a masterbatch. got The obtained pellet mixture was charged into a hopper, kneaded under the following conditions, and a molten resin was obtained from a 2.5 mmφ strand die. The resulting molten resin was directly immersed in a water bath at 23° C. and cooled to form a strand, which was passed through a pelletizer to obtain a masterbatch of polyethylene furanoate and polyethylene terephthalate.
(Formula 1) content of polyester resin (B) (% by mass) = content of polyester resin (B) / (content of polyester resin (A) + content of polyester resin (B))
(Melt-kneading conditions)
Pellets supply rate: 2.0 kg/h
Cylinder temperature C1: 200°C, C2-C8: 280°C
Head temperature: 280°C
Die temperature: 280°C
Screw rotation speed: 250 rpm
(実施例A2)
 (数1)で求められるポリエステル樹脂(B)の含有率が60質量%になるようにポリエチレンフラノエートのペレットとポリエチレンテレフタレートのペレットを秤量した以外は、実施例A1と同様にしてマスターバッチを得た。
(Example A2)
A masterbatch was obtained in the same manner as in Example A1, except that the polyethylene furanoate pellets and the polyethylene terephthalate pellets were weighed so that the content of the polyester resin (B) obtained by (Equation 1) was 60% by mass. rice field.
(実施例A3)
 (数1)で求められるポリエステル樹脂(B)の含有率が70質量%になるようにポリエチレンフラノエートのペレットとポリエチレンテレフタレートのペレットを秤量した以外は、実施例A1と同様にしてマスターバッチを得た。
(Example A3)
A masterbatch was obtained in the same manner as in Example A1, except that the polyethylene furanoate pellets and the polyethylene terephthalate pellets were weighed so that the content of the polyester resin (B) obtained by (Equation 1) was 70% by mass. rice field.
[ボトル用プリフォームの製造]
[実施例B1]
 実施例A1のマスターバッチとポリエステル樹脂(A)としてポリエチレンテレフタレート(三菱ケミカルインドネシア社製、BK2180、IV=0.83dl/g、ガラス転移点74℃)とをプリフォーム用原料として、ボトル用プリフォームを製造した。具体的には、下記の操作を行った。(数1)で求められるポリエステル樹脂(B)の含有率が10質量%になるように実施例A1のマスターバッチのペレットとポリエチレンテレフタレートのペレットを秤量し、均一に攪拌することでボトル用プリフォーム作製用のペレット混合物を得た。得られたペレット混合物をホッパーに投入し、下記の条件で射出成形を行い、ボトル用プリフォームを得た。容量は22.7ml、重量が20g、胴部平均肉厚は2.9mmであった。
(射出成形条件)
CHUAN LIH FA社製「CLF180」
溶融温度:300℃
射出圧:290bar
サイクルタイム22秒
冷却時間5秒
[Manufacture of bottle preforms]
[Example B1]
A bottle preform is prepared by using the masterbatch of Example A1 and polyethylene terephthalate (manufactured by Mitsubishi Chemical Indonesia, BK2180, IV=0.83 dl/g, glass transition point 74° C.) as a polyester resin (A) as raw materials for preforms. manufactured. Specifically, the following operations were performed. The masterbatch pellets and polyethylene terephthalate pellets of Example A1 were weighed so that the content of the polyester resin (B) obtained by (Equation 1) was 10% by mass, and uniformly stirred to obtain a bottle preform. A pellet mixture was obtained for fabrication. The resulting pellet mixture was put into a hopper and injection molded under the following conditions to obtain a bottle preform. The volume was 22.7 ml, the weight was 20 g, and the average wall thickness of the trunk was 2.9 mm.
(Injection molding conditions)
"CLF180" manufactured by CHUAN LIH FA
Melting temperature: 300°C
Injection pressure: 290bar
Cycle time 22 seconds Cooling time 5 seconds
[実施例B2]
 実施例A2のマスターバッチを用いた以外は実施例B1と同様にしてボトル用プリフォームを得た。容量、重量、胴部平均肉厚は、実施例B1と同様であった。
[Example B2]
A bottle preform was obtained in the same manner as in Example B1, except that the masterbatch of Example A2 was used. The volume, weight, and average wall thickness of the trunk portion were the same as in Example B1.
[実施例B3]
 実施例A3のマスターバッチを用いた以外は実施例B1と同様にしてボトル用プリフォームを得た。容量、重量、胴部平均肉厚は、実施例B1と同様であった。
[Example B3]
A bottle preform was obtained in the same manner as in Example B1 except that the masterbatch of Example A3 was used. The volume, weight, and average wall thickness of the trunk portion were the same as in Example B1.
[比較例B1]
 ポリエステル樹脂(B)としてポリエチレンフラノエート(三菱ケミカル社製、IV=1.12dl/g、ガラス転移点83℃)とポリエステル樹脂(A)としてポリエチレンテレフタレート(三菱ケミカルインドネシア社製、BK2180、IV=0.83dl/g、ガラス転移点74℃)とをプリフォーム原料として、マスターバッチを用いずにボトル用プリフォームを製造した。具体的には、下記の操作を行った。(数1)で求められるポリエステル樹脂(B)の含有率が10質量%になるようにポリエチレンフラノエートのペレットとポリエチレンテレフタレートのペレットを秤量し、均一に攪拌することでボトル用プリフォーム作製用のペレット混合物を得た。得られたペレット混合物をホッパーに投入し、下記の条件で射出成形を行い、ボトル用プリフォームを得た。容量は22.7ml、重量が20g、胴部平均肉厚は2.9mmであった。
(射出成形条件)
CHUAN LIH FA社製「CLF180」
溶融温度:300℃
射出圧:290bar
サイクルタイム22秒
冷却時間5秒
[Comparative Example B1]
Polyethylene furanoate (manufactured by Mitsubishi Chemical Corporation, IV = 1.12 dl / g, glass transition point 83 ° C.) as the polyester resin (B) and polyethylene terephthalate (manufactured by Mitsubishi Chemical Indonesia, BK2180, IV = 0) as the polyester resin (A) .83 dl/g, glass transition point 74° C.) was used as a preform raw material to produce a bottle preform without using a masterbatch. Specifically, the following operations were performed. Polyethylene furanoate pellets and polyethylene terephthalate pellets were weighed so that the content of the polyester resin (B) obtained by (Equation 1) was 10% by mass, and uniformly stirred to prepare a bottle preform. A pellet mixture was obtained. The resulting pellet mixture was put into a hopper and injection molded under the following conditions to obtain a bottle preform. The volume was 22.7 ml, the weight was 20 g, and the average wall thickness of the trunk was 2.9 mm.
(Injection molding conditions)
"CLF180" manufactured by CHUAN LIH FA
Melting temperature: 300°C
Injection pressure: 290bar
Cycle time 22 seconds Cooling time 5 seconds
[参考例C1]汎用PET100%ボトルのプリフォームの製造
 市販のポリエステル(三菱ケミカル株式会社製ポリエチレンテレフタレート 商品名「ノバペックス BK2180」、IV=0.83dl/g、ガラス転移点74℃)をプリフォーム用原料として、ボトル用プリフォームを製造した。容量は22.7ml、重量が20g、胴部平均肉厚は2.9mmであった。
(射出成形条件)
CHUAN LIH FA社製「CLF180」
溶融温度:300℃
射出圧:290bar
サイクルタイム22秒
冷却時間5秒
[Reference Example C1] Production of preform for general-purpose PET 100% bottle Commercially available polyester (polyethylene terephthalate trade name “Novapex BK2180” manufactured by Mitsubishi Chemical Corporation, IV = 0.83 dl / g, glass transition point 74 ° C.) for preform As a raw material, a bottle preform was manufactured. The volume was 22.7 ml, the weight was 20 g, and the average wall thickness of the trunk was 2.9 mm.
(Injection molding conditions)
"CLF180" manufactured by CHUAN LIH FA
Melting temperature: 300°C
Injection pressure: 290bar
Cycle time 22 seconds Cooling time 5 seconds
[ブロー成形ボトルの製造]
[実施例D1~D3、比較例D1、参考例E1]
 実施例B1~B3のプリフォームを、ブロー成形機(フロンティア社製 FRB-1)を用いてブロー成形することにより、実施例D1~D3のブロー成形ボトルを得た。また、比較例B1のプリフォームを、同様にブロー成形することにより、比較例D1のブロー成形ボトルを得た。また、参考例C1のプリフォームを、同様にブロー成形することにより、参考例E1のブロー成形ボトルを得た。ブロー成形ボトルは、容量280ml、重量20g、胴部平均肉厚0.26mmの加温販売用ボトルであり、ブロー成形した際の歩留まりは100%であった。
[Manufacturing of blow-molded bottles]
[Examples D1 to D3, Comparative Example D1, Reference Example E1]
Blow molded bottles of Examples D1 to D3 were obtained by blow molding the preforms of Examples B1 to B3 using a blow molding machine (FRB-1 manufactured by Frontier Corporation). Further, the preform of Comparative Example B1 was similarly blow-molded to obtain a blow-molded bottle of Comparative Example D1. Further, the preform of Reference Example C1 was similarly blow-molded to obtain a blow-molded bottle of Reference Example E1. The blow-molded bottle was a bottle for hot sale having a volume of 280 ml, a weight of 20 g, and an average body thickness of 0.26 mm.
 得られた評価結果を表2に示す。 Table 2 shows the obtained evaluation results.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表2にまとめた結果より、以下のことが判明した。実施例D1~D3は、参考例E1と比較して、ガスバリア性が高かった。また、実施例D1~D3は、サイクルタイムを22秒と同時間とした比較例D1に対して曇価及びb*が低く、外観が良好であった。よって、マスターバッチを経た実施例D1~D3は、サイクルタイムを参考例E1と同等、すなわち、PETボトルと同等の生産性を確保しつつ、外観が良好なボトルを成形することができた。 From the results summarized in Table 2, the following was found. Examples D1 to D3 had higher gas barrier properties than Reference Example E1. In addition, Examples D1 to D3 had a lower haze value and b* than Comparative Example D1 in which the cycle time was the same as 22 seconds, and the appearance was good. Therefore, Examples D1 to D3, which passed through the masterbatch, were able to mold bottles with a good appearance while maintaining cycle time equivalent to that of Reference Example E1, that is, ensuring productivity equivalent to that of PET bottles.
 実施例B1~B3と実施例D1~D3とを比較すると、それぞれ、ブロー成形を経ることで、曇価とb*は大きくなることが分かった。よって、良好な外観のボトルを得るためには、良好な外観のプリフォームを製造する必要があることが分かった。 Comparing Examples B1 to B3 with Examples D1 to D3, it was found that the haze value and b* increased through blow molding. Therefore, it has been found that it is necessary to produce a preform with a good appearance in order to obtain a bottle with a good appearance.
(実施例F1)
 小型混錬機(Xplore Instruments社製 XploreシリーズMC15)を用いて、ポリエチレンフラノエート(三菱ケミカル社製、IV=1.12dl/g、ガラス転移点83℃)7.5gと、ポリエチレンテレフタレート(三菱ケミカル社製、GM700Z、IV=0.84dl/g、ガラス転移点74℃)7.5gを原料としてホッパーから供給し、回転数100rpm、240℃、窒素雰囲気下で5分間混練した後、パージ孔から混練後の樹脂を回収することにより、ポリエステルマスターバッチのストランドを得た。樹脂を回収する際には23℃の純水に受けて急冷することで結晶化を抑制した。得られたマスターバッチのストランドの固有粘度(IV値)は0.76dl/gであった。次いで、得られたマスターバッチ3gとマスターバッチ作成に使用した製品と同様のポリエチレンテレフタレート12gを前述と同様の操作で混練してポリエステル組成物(ポリエチレンフラノエート/ポリエチレンテレフタレート=10/90重量%)のストランドを得た。
(Example F1)
Using a small kneader (Xplore series MC15 manufactured by Xplore Instruments), polyethylene furanoate (manufactured by Mitsubishi Chemical Corporation, IV = 1.12 dl / g, glass transition point 83 ° C.) 7.5 g and polyethylene terephthalate (Mitsubishi Chemical GM700Z, IV = 0.84 dl/g, glass transition point 74°C) was supplied from a hopper as a raw material, kneaded for 5 minutes at 100 rpm, 240°C under a nitrogen atmosphere, and then passed through a purge hole. A polyester masterbatch strand was obtained by recovering the resin after kneading. When the resin was recovered, crystallization was suppressed by quenching it with pure water at 23°C. The intrinsic viscosity (IV value) of the resulting masterbatch strand was 0.76 dl/g. Next, 3 g of the obtained masterbatch and 12 g of polyethylene terephthalate, which is the same as the product used to prepare the masterbatch, are kneaded in the same manner as described above to obtain a polyester composition (polyethylene furanoate/polyethylene terephthalate = 10/90% by weight). Got a strand.
(実施例F2)
 マスターバッチ作成の樹脂配合量をポリエチレンフラノエート13.5g、ポリエチレンテレフタレート1.5gとし、ポリエステル組成物作成の樹脂配合量をマスターバッチ1.67g、ポリエチレンテレフタレート13.33gとした以外は、実施例F1と同様にしてポリエステル組成物(ポリエチレンフラノエート/ポリエチレンテレフタレート=10/90重量%)のストランドを得た。なお、得られたマスターバッチのストランドの固有粘度(IV値)は0.82dl/gであった。
(Example F2)
Example F1 except that the amounts of the resins used in the preparation of the masterbatch were 13.5 g of polyethylene furanoate and 1.5 g of polyethylene terephthalate, and the amounts of the resins in the preparation of the polyester composition were set to 1.67 g of the masterbatch and 13.33 g of polyethylene terephthalate. A strand of a polyester composition (polyethylene furanoate/polyethylene terephthalate=10/90% by weight) was obtained in the same manner as above. The intrinsic viscosity (IV value) of the obtained masterbatch strand was 0.82 dl/g.
(比較例F1)
 ポリエチレンフラノエート(三菱ケミカル社製、IV=1.12dl/g、ガラス転移点83℃)1.5gと、ポリエチレンテレフタレート(三菱ケミカルイ社製、GM700Z、IV=0.84dl/g、ガラス転移点74℃)13.5gを原料としてホッパーから供給し、回転数100rpm、240℃、窒素雰囲気下で5分間混練した後、パージ孔から混練後の樹脂を回収することにより、ポリエステル組成物のストランド(ポリエチレンフラノエート/ポリエチレンテレフタレート=10/90重量%)を得た。
(Comparative example F1)
1.5 g of polyethylene furanoate (manufactured by Mitsubishi Chemical Corporation, IV = 1.12 dl / g, glass transition point 83 ° C.) and polyethylene terephthalate (manufactured by Mitsubishi Chemical Corporation, GM700Z, IV = 0.84 dl / g, glass transition point 74 ℃) 13.5 g as a raw material is supplied from a hopper, kneaded for 5 minutes under a nitrogen atmosphere at a rotation speed of 100 rpm, 240 ° C., and then the resin after kneading is recovered from the purge hole to obtain a strand of the polyester composition (polyethylene furanoate/polyethylene terephthalate=10/90% by weight).
(実施例G1)
 150mm×150mmのポリイミドフィルム(宇部興産株式会社製 ユーピレックスS厚さ0.05mm)の上に、表面離型処理された金枠(SUS304 外径110mm 内径70mm 厚み0.2mm)を置き、この金枠の内側に実施例F1で得られたポリエステル組成物を2.0g測り採り、その上に更に150mm×150mmの同ポリイミドフィルムを載せた。鉄板(160mm×160mm 厚み3mm)2枚の間に、このポリイミドフィルムで挟まれたマスターバッチを挟持させた状態で、熱プレス機(株式会社井元製作所製 IMC-180C型)を用いて、熱プレスすることにより、70mm×70mm×厚み0.2mmの熱プレスフィルムを得た。熱プレス温度は280℃、熱プレス時間は予熱1分、プレス1分とした。得られたフィルムのヘーズは、1.33%と良好であった。得られたフィルムの固有粘度(IV値)は0.62dl/gであった。
(Example G1)
A metal frame (SUS304, outer diameter 110 mm, inner diameter 70 mm, thickness 0.2 mm) that has been subjected to surface release treatment is placed on a 150 mm × 150 mm polyimide film (Upilex S, manufactured by Ube Industries, Ltd., thickness 0.05 mm). 2.0 g of the polyester composition obtained in Example F1 was measured on the inside of the tube, and the same polyimide film of 150 mm x 150 mm was placed thereon. With the masterbatch sandwiched between the polyimide films sandwiched between two iron plates (160 mm × 160 mm, thickness 3 mm), a heat press (IMC-180C type manufactured by Imoto Seisakusho Co., Ltd.) is used to heat press. By doing so, a hot press film of 70 mm×70 mm×0.2 mm in thickness was obtained. The hot-pressing temperature was 280° C., and the hot-pressing time was 1 minute for preheating and 1 minute for pressing. The haze of the resulting film was as good as 1.33%. The intrinsic viscosity (IV value) of the resulting film was 0.62 dl/g.
(実施例G2)
 実施例F2で得たポリエステル組成物を用いた以外は実施例G1と同様にして熱プレスフィルムを得た。得られたフィルムのヘーズは、4.30%と実施例G1には劣るもののマスターバッチを使用しない比較例G1よりも良好であった。得られたフィルムの固有粘度(IV値)は0.68dl/gであった。
(Example G2)
A heat-pressed film was obtained in the same manner as in Example G1, except that the polyester composition obtained in Example F2 was used. The resulting film had a haze of 4.30%, which was inferior to Example G1, but was better than Comparative Example G1 in which no masterbatch was used. The intrinsic viscosity (IV value) of the resulting film was 0.68 dl/g.
(比較例G1)
 比較例F1で得たポリエステル組成物を用いた以外は実施例G1と同様にして熱プレスフィルムを得た。得られたフィルムのヘーズは7.27%であり透明性が不十分であった。得られたフィルムの固有粘度(IV値)は0.64dl/gであった。

 
 
(Comparative example G1)
A heat-pressed film was obtained in the same manner as in Example G1, except that the polyester composition obtained in Comparative Example F1 was used. The obtained film had a haze of 7.27% and was insufficient in transparency. The intrinsic viscosity (IV value) of the resulting film was 0.64 dl/g.


Claims (12)

  1.  テレフタル酸由来の構造単位(A-1)と、脂肪族ジオール由来の構造単位(A-2)とを有するポリエステル樹脂(A)と、
     2,5-フランジカルボン酸由来の構造単位(B-1)と、1,2-エタンジオール由来の構造単位(B-2)とを有するポリエステル樹脂(B)と、を含有し、
     (数1)で求められるポリエステル樹脂(B)の含有率が45質量%~90重量%であり、
     (条件1)により測定した固有粘度(IV値)が0.50dl/g~1.20dl/gであることを特徴とするマスターバッチ。
    (数1)ポリエステル樹脂(B)の含有率(質量%)=ポリエステル樹脂(B)の含有量/(ポリエステル樹脂(A)の含有量+ポリエステル樹脂(B)の含有量)
    (条件1)マスターバッチ0.25gをフェノール/1,1,2,2-テトラクロロエタン=50/50(重量比)の混合溶媒50mlに溶解し、ウベローデ粘度計を用いて30℃で測定する、Huggins定数は0.32とする。
    a polyester resin (A) having a structural unit (A-1) derived from terephthalic acid and a structural unit (A-2) derived from an aliphatic diol;
    A polyester resin (B) having a structural unit (B-1) derived from 2,5-furandicarboxylic acid and a structural unit (B-2) derived from 1,2-ethanediol,
    The content of the polyester resin (B) determined by (Equation 1) is 45% by weight to 90% by weight,
    A masterbatch characterized by having an intrinsic viscosity (IV value) measured according to (Condition 1) of 0.50 dl/g to 1.20 dl/g.
    (Formula 1) content of polyester resin (B) (% by mass) = content of polyester resin (B) / (content of polyester resin (A) + content of polyester resin (B))
    (Condition 1) 0.25 g of the masterbatch is dissolved in 50 ml of a mixed solvent of phenol/1,1,2,2-tetrachloroethane = 50/50 (weight ratio), and measured at 30°C using an Ubbelohde viscometer. The Huggins constant is 0.32.
  2.  耐圧ボトル、加温販売用ボトル又は耐熱ボトルの成形向けであることを特徴とする請求項1に記載のマスターバッチ。 The masterbatch according to claim 1, which is for molding pressure-resistant bottles, bottles for heated sales, or heat-resistant bottles.
  3.  テレフタル酸由来の構造単位(A-1)と、脂肪族ジオール由来の構造単位(A-2)とを有するポリエステル樹脂(A)と、
     2,5-フランジカルボン酸由来の構造単位(B-1)と、1,2-エタンジオール由来の構造単位(B-2)とを有するポリエステル樹脂(B)と、を含有し、
     (数1)で求められるポリエステル樹脂(B)の含有率が90質量%以下であり、(条件1)により測定した固有粘度(IV値)が0.50dl/g~1.20dl/gであるマスターバッチを作製する工程と、
     該マスターバッチと前記ポリエステル樹脂(A)とを別途溶融混練することによって成形体を成形する工程と、を特徴とする成形体の製造方法。
    (数1)ポリエステル樹脂(B)の含有率(質量%)=ポリエステル樹脂(B)の含有量/(ポリエステル樹脂(A)の含有量+ポリエステル樹脂(B)の含有量)
    (条件1)マスターバッチ0.25gをフェノール/1,1,2,2-テトラクロロエタン=50/50(重量比)の混合溶媒50mlに溶解し、ウベローデ粘度計を用いて30℃で測定する、Huggins定数は0.32とする。
    a polyester resin (A) having a structural unit (A-1) derived from terephthalic acid and a structural unit (A-2) derived from an aliphatic diol;
    A polyester resin (B) having a structural unit (B-1) derived from 2,5-furandicarboxylic acid and a structural unit (B-2) derived from 1,2-ethanediol,
    The polyester resin (B) content determined by (Equation 1) is 90% by mass or less, and the intrinsic viscosity (IV value) measured by (Condition 1) is 0.50 dl / g to 1.20 dl / g. A step of making a masterbatch;
    and a step of separately melt-kneading the masterbatch and the polyester resin (A) to form a molded article.
    (Formula 1) content of polyester resin (B) (% by mass) = content of polyester resin (B) / (content of polyester resin (A) + content of polyester resin (B))
    (Condition 1) 0.25 g of the masterbatch is dissolved in 50 ml of a mixed solvent of phenol/1,1,2,2-tetrachloroethane = 50/50 (weight ratio), and measured at 30°C using an Ubbelohde viscometer. The Huggins constant is 0.32.
  4.  前記マスターバッチが、(数1)で求められるポリエステル樹脂(B)の含有率が45質量%~90重量%であるマスターバッチであり、
     前記成形体を成形する工程が、該マスターバッチと前記ポリエステル樹脂(A)とをブレンドしてボトル用のプリフォームを成形する工程であることを特徴とする請求項3に記載の成形体の製造方法。
    The masterbatch is a masterbatch in which the content of the polyester resin (B) determined by (Equation 1) is 45% by weight to 90% by weight,
    4. The production of the molded article according to claim 3, wherein the step of molding the molded article is a step of blending the masterbatch and the polyester resin (A) to form a preform for a bottle. Method.
  5.  請求項4に記載のプリフォームをブロー成形してボトルを成形する工程を有することを特徴とするブロー成形ボトルの製造方法。 A method for producing a blow-molded bottle, comprising the step of blow-molding the preform according to claim 4 to form a bottle.
  6.  テレフタル酸由来の構造単位(A-1)と、脂肪族ジオール由来の構造単位(A-2)とを有するポリエステル樹脂(A)と、
     2,5-フランジカルボン酸由来の構造単位(B-1)と、1,2-エタンジオール由来の構造単位(B-2)とを有するポリエステル樹脂(B)と、を含有し、
     (数1)で求められるポリエステル樹脂(B)の含有率が5~25質量%である樹脂組成物からなるボトル用のプリフォームであって、
     (条件2)により測定した固有粘度(IV値)が0.65dl/g以上1.00dl/g以下であり、
     光束を7.0mm角に絞ったこと以外は、JIS K 7136:2000「プラスチック-透明材料のヘーズの求め方」に従って測定した曇価が0.1~8%であることを特徴とするプリフォーム。
    (数1)ポリエステル樹脂(B)の含有率(質量%)=ポリエステル樹脂(B)の含有量/(ポリエステル樹脂(A)の含有量+ポリエステル樹脂(B)の含有量)
    (条件2)プリフォームから切り出したサンプル0.25gをフェノール/1,1,2,2-テトラクロロエタン=50/50(重量比)の混合溶媒50mlに溶解し、ウベローデ粘度計を用いて30℃で測定する、Huggins定数は0.32とする。
     
    a polyester resin (A) having a structural unit (A-1) derived from terephthalic acid and a structural unit (A-2) derived from an aliphatic diol;
    A polyester resin (B) having a structural unit (B-1) derived from 2,5-furandicarboxylic acid and a structural unit (B-2) derived from 1,2-ethanediol,
    A bottle preform made of a resin composition having a polyester resin (B) content of 5 to 25% by mass as determined by (Equation 1),
    (Condition 2) has an intrinsic viscosity (IV value) of 0.65 dl/g or more and 1.00 dl/g or less,
    A preform characterized by having a haze value of 0.1 to 8% as measured according to JIS K 7136:2000 "Plastics - Determination of haze of transparent materials" except that the luminous flux is narrowed to 7.0 mm square. .
    (Formula 1) content of polyester resin (B) (% by mass) = content of polyester resin (B) / (content of polyester resin (A) + content of polyester resin (B))
    (Condition 2) 0.25 g of a sample cut from the preform was dissolved in 50 ml of a mixed solvent of phenol/1,1,2,2-tetrachloroethane = 50/50 (weight ratio), and measured at 30°C using an Ubbelohde viscometer. , and the Huggins constant is 0.32.
  7.  テレフタル酸由来の構造単位(A-1)と、脂肪族ジオール由来の構造単位(A-2)とを有するポリエステル樹脂(A)と、
     2,5-フランジカルボン酸由来の構造単位(B-1)と、1,2-エタンジオール由来の構造単位(B-2)とを有するポリエステル樹脂(B)と、を含有し、
     (数1)で求められるポリエステル樹脂(B)の含有率が5~25質量%である樹脂組成物からなるブロー成形ボトルであって、
     (条件3)により測定した固有粘度(IV値)が0.65dl/g以上1.00dl/g以下であり、
     光束を7.0mm角に絞ったこと以外は、JIS K 7136:2000「プラスチック-透明材料のヘーズの求め方」に従って測定した曇価が0.1~20%であることを特徴とするブロー成形ボトル。
    (数1)ポリエステル樹脂(B)の含有率(質量%)=ポリエステル樹脂(B)の含有量/(ポリエステル樹脂(A)の含有量+ポリエステル樹脂(B)の含有量)
    (条件3)ブロー成形ボトルから切り出したサンプル0.25gをフェノール/1,1,2,2-テトラクロロエタン=50/50(重量比)の混合溶媒50mlに溶解し、ウベローデ粘度計を用いて30℃で測定する、Huggins定数は0.32とする。
    a polyester resin (A) having a structural unit (A-1) derived from terephthalic acid and a structural unit (A-2) derived from an aliphatic diol;
    A polyester resin (B) having a structural unit (B-1) derived from 2,5-furandicarboxylic acid and a structural unit (B-2) derived from 1,2-ethanediol,
    A blow-molded bottle made of a resin composition having a polyester resin (B) content of 5 to 25% by mass as determined by (Equation 1),
    (Condition 3) has an intrinsic viscosity (IV value) of 0.65 dl/g or more and 1.00 dl/g or less,
    Blow molding characterized in that the haze value measured according to JIS K 7136: 2000 "Plastics - Determination of haze of transparent materials" is 0.1 to 20%, except that the luminous flux is narrowed to 7.0 mm square. Bottle.
    (Formula 1) content of polyester resin (B) (% by mass) = content of polyester resin (B) / (content of polyester resin (A) + content of polyester resin (B))
    (Condition 3) 0.25 g of a sample cut from a blow-molded bottle was dissolved in 50 ml of a mixed solvent of phenol/1,1,2,2-tetrachloroethane = 50/50 (weight ratio), and measured at 30 using an Ubbelohde viscometer. The Huggins constant, measured in °C, is taken to be 0.32.
  8.  炭酸含有液の充填用の耐圧ボトルであることを特徴とする請求項7に記載のブロー成形ボトル。 The blow-molded bottle according to claim 7, which is a pressure-resistant bottle for filling with a carbonate-containing liquid.
  9.  加温販売用ボトルの充填用ボトル又は高温で充填するための耐熱ボトルであることを特徴とする請求項7に記載のブロー成形ボトル。 The blow-molded bottle according to claim 7, which is a bottle for filling hot sales bottles or a heat-resistant bottle for filling at high temperature.
  10.  請求項7~9のいずれか一つに記載のブロー成形ボトルに飲料を充填したことを特徴とする飲料製品。 A beverage product characterized by filling the blow-molded bottle according to any one of claims 7 to 9 with a beverage.
  11.  前記成形体がフィルムであることを特徴とする請求項3に記載の成形体の製造方法。 The method for producing a molded article according to claim 3, wherein the molded article is a film.
  12.  テレフタル酸由来の構造単位(A-1)と、脂肪族ジオール由来の構造単位(A-2)とを有するポリエステル樹脂(A)と、
     2,5-フランジカルボン酸由来の構造単位(B-1)と、1,2-エタンジオール由来の構造単位(B-2)とを有するポリエステル樹脂(B)と、を含有し、
     (数1)で求められるポリエステル樹脂(B)の含有率が1~90質量%である樹脂組成物からなるフィルムであって、
     (条件4)により測定した固有粘度(IV値)が0.50dl/g以上1.00dl/g以下であり、
     光束を7.0mm角に絞ったこと以外は、JIS K 7136:2000「プラスチック-透明材料のヘーズの求め方」に従って測定した曇価が0.01~6.0%であることを特徴とするフィルム。
    (数1)ポリエステル樹脂(B)の含有率(質量%)=ポリエステル樹脂(B)の含有量/(ポリエステル樹脂(A)の含有量+ポリエステル樹脂(B)の含有量)
    (条件4)フィルム0.25gをフェノール/1,1,2,2-テトラクロロエタン=50/50(重量比)の混合溶媒50mlに溶解し、ウベローデ粘度計を用いて30℃で測定する、Huggins定数は0.32とする。

     
    a polyester resin (A) having a structural unit (A-1) derived from terephthalic acid and a structural unit (A-2) derived from an aliphatic diol;
    A polyester resin (B) having a structural unit (B-1) derived from 2,5-furandicarboxylic acid and a structural unit (B-2) derived from 1,2-ethanediol,
    A film made of a resin composition having a polyester resin (B) content of 1 to 90% by mass as determined by (Equation 1),
    (Condition 4) has an intrinsic viscosity (IV value) of 0.50 dl/g or more and 1.00 dl/g or less,
    The haze value measured according to JIS K 7136: 2000 "Plastics - Determination of haze of transparent materials" is 0.01 to 6.0%, except that the luminous flux is narrowed to 7.0 mm square. the film.
    (Formula 1) content of polyester resin (B) (% by mass) = content of polyester resin (B) / (content of polyester resin (A) + content of polyester resin (B))
    (Condition 4) 0.25 g of the film is dissolved in 50 ml of a mixed solvent of phenol/1,1,2,2-tetrachloroethane = 50/50 (weight ratio), and measured at 30°C using an Ubbelohde viscometer. The constant is 0.32.

PCT/JP2022/047191 2021-12-23 2022-12-21 Masterbatch, preform, blow-molded bottle, beverage product, film, method for producing preform, and method for producing blow-molded bottle WO2023120596A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-209347 2021-12-23
JP2021209347 2021-12-23

Publications (1)

Publication Number Publication Date
WO2023120596A1 true WO2023120596A1 (en) 2023-06-29

Family

ID=86902666

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/047191 WO2023120596A1 (en) 2021-12-23 2022-12-21 Masterbatch, preform, blow-molded bottle, beverage product, film, method for producing preform, and method for producing blow-molded bottle

Country Status (1)

Country Link
WO (1) WO2023120596A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0770419A (en) * 1993-09-01 1995-03-14 Mitsui Petrochem Ind Ltd Polyester resin composition and bottle produced therefrom
JPH11106617A (en) * 1997-09-30 1999-04-20 Mitsui Chem Inc Polyester composition, bottle and its production
JP2017509773A (en) * 2014-04-02 2017-04-06 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Polyester blend
CN107840948A (en) * 2016-09-19 2018-03-27 中国科学院宁波材料技术与工程研究所 A kind of bio-based high-molecular compound and preparation method thereof
JP2018104070A (en) * 2016-12-28 2018-07-05 東洋製罐株式会社 Container and producing method thereof
JP2018518396A (en) * 2015-06-11 2018-07-12 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company Enhanced barrier performance with blends of poly (ethylene furandicarboxylate) and poly (ethylene terephthalate)
US20180346662A1 (en) * 2015-12-03 2018-12-06 The Coca-Cola Company Furanoate-based polyester and copolyester compositions using falling strand devolatilization
JP2018204005A (en) * 2017-05-31 2018-12-27 三菱ケミカル株式会社 Resin composition, film, multilayer film, stretched film, and packaging material
JP2019104161A (en) * 2017-12-12 2019-06-27 株式会社クラレ Multilayer structure and product including the same
WO2020158903A1 (en) * 2019-01-30 2020-08-06 三菱エンジニアリングプラスチックス株式会社 Resin composition for powder lamination shaping method, pellets, powder, method for producing shaped article, and shaped article

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0770419A (en) * 1993-09-01 1995-03-14 Mitsui Petrochem Ind Ltd Polyester resin composition and bottle produced therefrom
JPH11106617A (en) * 1997-09-30 1999-04-20 Mitsui Chem Inc Polyester composition, bottle and its production
JP2017509773A (en) * 2014-04-02 2017-04-06 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Polyester blend
JP2018518396A (en) * 2015-06-11 2018-07-12 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company Enhanced barrier performance with blends of poly (ethylene furandicarboxylate) and poly (ethylene terephthalate)
US20180346662A1 (en) * 2015-12-03 2018-12-06 The Coca-Cola Company Furanoate-based polyester and copolyester compositions using falling strand devolatilization
CN107840948A (en) * 2016-09-19 2018-03-27 中国科学院宁波材料技术与工程研究所 A kind of bio-based high-molecular compound and preparation method thereof
JP2018104070A (en) * 2016-12-28 2018-07-05 東洋製罐株式会社 Container and producing method thereof
JP2018204005A (en) * 2017-05-31 2018-12-27 三菱ケミカル株式会社 Resin composition, film, multilayer film, stretched film, and packaging material
JP2019104161A (en) * 2017-12-12 2019-06-27 株式会社クラレ Multilayer structure and product including the same
WO2020158903A1 (en) * 2019-01-30 2020-08-06 三菱エンジニアリングプラスチックス株式会社 Resin composition for powder lamination shaping method, pellets, powder, method for producing shaped article, and shaped article

Similar Documents

Publication Publication Date Title
JP4190498B2 (en) &#34;PET copolymer&#34; compositions having enhanced mechanical properties and stretch ratios, products made therewith and processes
JP2018518396A (en) Enhanced barrier performance with blends of poly (ethylene furandicarboxylate) and poly (ethylene terephthalate)
KR20090021716A (en) Blend of polyester with polycarbonate having advanced heat resistance
CN111868147B (en) Biaxially stretched film
WO2022004811A1 (en) Polyethylene furanoate, highly-viscous polyethylene furanoate manufacturing method, polyester composition, polyester bottle, polyester bottle manufacturing method, and beverage product
JP4968329B2 (en) Biaxial stretch blow molded container and manufacturing method thereof
JPS58160344A (en) Hollow polyester molding having excellent gas barrier properties
EP2003169B1 (en) Polyester resin composition, method for producing same and molded body
WO2023120596A1 (en) Masterbatch, preform, blow-molded bottle, beverage product, film, method for producing preform, and method for producing blow-molded bottle
JP4525447B2 (en) Heat-resistant polyester stretch-molded container and method for producing the same
JP2018076427A (en) Polyester resin composition
EP4201829A1 (en) Multi-layer container, method for producing same, and method for producing reclaimed polyester
JPWO2010010803A1 (en) Anti-peeling gas barrier laminate
WO2011118608A1 (en) Heat-resistant stretch molded polyester container and method for producing same
KR101405869B1 (en) Method for Preparing Polyester/Polycarbonate Blend with Advanced Color Stability
JP5549046B2 (en) Polyester resin composition
JP5098373B2 (en) Method for producing polyester resin composition
EP4019249A1 (en) Resin layered body
JP2018076430A (en) Polyester resin composition
JP2007084642A (en) Polyester resin composition
WO2020218324A1 (en) Polyester resin composition, polyester injection-molded article, polyester extrusion-molded article, polyester foam, polyester container, polyester bottle, polyester tableware, and polyester feeding bottle
JP2015101697A (en) Polyester resin composition for blow molding and blow molded article
JP2020132828A (en) Biaxial oriented film
JP2011252087A (en) Method for producing solid phase-polymerized pellet comprising polyester resin composition
JP2008231316A (en) Aromatic polyester resin-based stretched article

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22911298

Country of ref document: EP

Kind code of ref document: A1