WO2023120448A1 - Heat source unit and refrigeration device - Google Patents

Heat source unit and refrigeration device Download PDF

Info

Publication number
WO2023120448A1
WO2023120448A1 PCT/JP2022/046568 JP2022046568W WO2023120448A1 WO 2023120448 A1 WO2023120448 A1 WO 2023120448A1 JP 2022046568 W JP2022046568 W JP 2022046568W WO 2023120448 A1 WO2023120448 A1 WO 2023120448A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
valve
heat exchanger
source unit
receiver
Prior art date
Application number
PCT/JP2022/046568
Other languages
French (fr)
Japanese (ja)
Inventor
東 近藤
覚 阪江
千晴 冨田
一輝 浮田
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Publication of WO2023120448A1 publication Critical patent/WO2023120448A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems

Definitions

  • Patent Document 1 Japanese Patent Application Laid-Open No. 2015-75259
  • normal operation which is a refrigeration cycle operation according to the heat load required from the heat exchanger on the user side
  • the appropriateness of the amount of refrigerant in the refrigerant circuit are determined.
  • a refrigerating apparatus capable of switching between a refrigerant amount determination operation, which is a refrigeration cycle operation, is disclosed.
  • the refrigerant is caused to flow through the receiver bypass pipe to bypass the receiver.
  • the receiver In the refrigeration system of Patent Document 1, the receiver is at a high temperature during normal operation, and the receiver is at a low temperature during the refrigerant amount determination operation. Therefore, if the refrigerant amount judgment operation is frequently performed, phenomena such as dew condensation on the outer shell of the receiver and thermal stress acting on the pipe joints occur due to the repetition of the high temperature state and the low temperature state of the receiver. Therefore, the refrigerating device of Patent Document 1 needs to be painted or brazed in order to withstand this phenomenon.
  • a heat source unit is a heat source unit that configures a refrigerant circuit that performs a refrigeration cycle by being connected to a usage unit.
  • the heat source unit includes a compressor, a first heat exchanger, a receiver, a first flow path, and a first valve.
  • the compressor compresses refrigerant.
  • the first heat exchanger is used as a refrigerant condenser.
  • the receiver collects refrigerant discharged from the first heat exchanger during normal operation using the first heat exchanger as a condenser.
  • the first flow path bypasses the first heat exchanger and connects the discharge side of the compressor and the receiver.
  • the first valve opens and closes the first flow path. The first valve opens during a refrigerant amount detection operation for detecting the amount of refrigerant in the refrigerant circuit.
  • the refrigerant discharged from the compressor is sent to the receiver via the first flow path bypassing the first heat exchanger. be able to.
  • the refrigerant amount detection operation can be performed in a state in which the liquid refrigerant in the receiver is pushed out to the refrigerant circuit and the receiver is filled with gas refrigerant. Therefore, even if the refrigerant amount detection operation is performed, the receiver can maintain a high temperature state. Therefore, even if the frequency of the refrigerant quantity detection operation is increased, phenomena such as dew condensation on the outer shell of the receiver and thermal stress acting on the pipe joints can be reduced.
  • the heat source unit according to the second aspect is the heat source unit according to the first aspect and further includes a control section.
  • the control unit closes the first valve during normal operation and opens the first valve during refrigerant amount detection operation.
  • the first valve is closed and the first flow path is not used. Therefore, normal operation and refrigerant amount detection operation can be appropriately performed.
  • the heat source unit according to the third aspect is the heat source unit according to the first aspect or the second aspect, and further includes a second flow path.
  • a second flow path is connected to the first heat exchanger and bypasses the receiver. During the refrigerant amount sensing operation, the refrigerant flows from the first heat exchanger to the second flow path.
  • the heat source unit it is possible to reduce the amount of refrigerant sent to the receiver by causing the refrigerant to flow through the second channel during the refrigerant amount detection operation. Therefore, it is possible to suppress accumulation of the liquid refrigerant in the receiver, so that it is possible to improve the accuracy of detecting the refrigerant amount in the refrigerant amount detection operation.
  • the heat source unit according to the fourth aspect is the heat source unit according to the third aspect and further includes a second valve.
  • the second valve opens and closes the second flow path.
  • the second valve is opened to allow the refrigerant to flow through the second flow path, and during normal operation, the second valve is closed to allow the second flow path to flow. It is possible to suppress the coolant from flowing through the flow path. Therefore, normal operation and refrigerant amount detection operation can be performed more appropriately.
  • the heat source unit according to the fifth aspect is the heat source unit according to the first to fourth aspects, and further includes a third valve.
  • a third valve is positioned downstream of the receiver during normal operation. The degree of opening of the third valve is reduced during the refrigerant amount detection operation.
  • the heat source unit it is possible to prevent the density of the liquid refrigerant from becoming too low by reducing the degree of opening of the third valve arranged downstream of the receiver during the refrigerant amount detection operation.
  • the heat source unit according to the sixth aspect is the heat source unit according to the fifth aspect, further comprising a second flow path.
  • a second flow path is connected to the first heat exchanger and bypasses the receiver.
  • the second flow path further bypasses the third valve.
  • the refrigerant can flow through the second channel that bypasses the receiver and the third valve during the refrigerant amount detection operation. Therefore, the refrigerant amount detection operation can be performed while preventing the density of the liquid refrigerant from becoming too low.
  • the heat source unit according to the seventh aspect is the heat source unit according to the fifth aspect or sixth aspect, further comprising a second flow path and a second valve.
  • a second flow path is connected to the first heat exchanger and bypasses the receiver.
  • the second valve opens and closes the second flow path.
  • the refrigerant amount detection operation after the first valve is opened, the second valve is opened and the degree of opening of the third valve is reduced.
  • the first valve is opened to push out the liquid refrigerant in the receiver, and then the second valve is opened to suppress accumulation of the liquid refrigerant in the receiver.
  • the degree of opening of the valve it is possible to prevent the density of the liquid refrigerant from becoming too low. Therefore, the amount of refrigerant can be detected while maintaining the density of the liquid refrigerant.
  • a heat source unit is the heat source unit according to the first aspect to the seventh aspect, wherein the refrigerant amount detection operation is performed by using the condenser outlet temperature when the first heat exchanger is used as a condenser, the high pressure of the refrigerant circuit, , the low pressure of the refrigerant circuit, the outlet temperature of the receiver, the outside air temperature, the evaporation temperature, and the number of revolutions of the compressor are used to detect the amount of refrigerant.
  • the amount of refrigerant is detected using at least one of the condenser outlet temperature, high pressure, low pressure, receiver outlet temperature, outside air temperature, evaporation temperature, and compressor rotation speed, Refrigerant amount detection operation can be easily realized.
  • a refrigeration apparatus includes the heat source unit and the utilization unit of the first to eighth aspects.
  • the utilization unit is connected to the heat source unit and includes a second heat exchanger.
  • the refrigeration system of the ninth aspect is equipped with the heat source unit described above. Therefore, even if the frequency of the refrigerant amount detection operation is increased, phenomena such as dew condensation on the outer shell of the receiver and thermal stress acting on the pipe joints can be reduced. realizable.
  • FIG. 1 is a schematic configuration diagram of a refrigeration system according to an embodiment;
  • FIG. It is a control block diagram of refrigeration according to the embodiment.
  • FIG. 4 is a diagram showing the operation (refrigerant flow) in cooling operation of normal operation;
  • FIG. 4 is a diagram showing the operation (refrigerant flow) in the refrigerant amount detection operation;
  • FIG. 4 is a diagram showing the operation (refrigerant flow) in the refrigerant amount detection operation;
  • 4 is a flow chart of a refrigerant amount detection operation;
  • Refrigeration Equipment (1-1) Overall Configuration As shown in FIG. 1, a refrigeration equipment 1 cools the inside of a low-temperature warehouse, a shipping container, a showcase of a store, etc. by means of a vapor compression refrigeration cycle. It is a device.
  • the refrigerator 1 mainly has a heat source unit 2, a utilization unit 5, connecting pipes 6 and 7, and a control section 8. Communication pipes 6 and 7 connect the heat source unit 2 and the utilization unit 5 .
  • the controller 8 controls components of the heat source unit 2 and the utilization unit 5 .
  • a vapor compression refrigerant circuit 10 of the refrigeration system 1 is configured by connecting the heat source unit 2 , the utilization unit 5 , and the connection pipes 6 and 7 .
  • the refrigeration system 1 is configured to be able to perform normal operation and refrigerant amount detection operation.
  • the refrigerant amount detection operation is a refrigeration cycle operation for detecting the amount of refrigerant in the refrigerant circuit 10 .
  • Normal operation is operation other than refrigerant amount determination operation.
  • the normal operation is a refrigeration cycle operation corresponding to the heat load requested by the utilization unit 5 .
  • the normal operation includes a cooling operation for cooling the inside of the refrigerator and a heating operation for heating the inside of the refrigerator.
  • the heat source unit 2 is installed outdoors. As described above, the heat source unit 2 is connected to the utilization unit 5 via the connecting pipes 6 and 7, and constitutes a part of the refrigerant circuit 10 that performs the refrigeration cycle.
  • the heat source unit 2 mainly includes a compressor 21, a four-way switching valve 22, an accumulator 23, a first heat exchanger 24, a first fan 25, a receiver 26, a branch pipe 27, and a supercooling expansion valve. 28, a subcooling heat exchanger 29, a first valve V1, a second valve V2, a third valve V3, a first flow path P1, and a second flow path P2.
  • the compressor 21 is a device that compresses low-pressure refrigerant to high pressure.
  • a positive displacement compressor driven by a motor whose rotational speed is controlled by an inverter can be used.
  • the compressor 21 has a suction pipe 21a connected to the suction side and a discharge pipe 21b connected to the discharge side.
  • the suction pipe 21 a is a refrigerant pipe that connects the suction side of the compressor 21 and the four-way switching valve 22 .
  • the discharge pipe 21 b is a refrigerant pipe that connects the discharge side of the compressor 21 and the four-way switching valve 22 .
  • An accumulator 23 is connected to the intake pipe 21a.
  • the accumulator 23 separates the inflowing refrigerant into liquid refrigerant and gas refrigerant, and allows only the gas refrigerant to flow to the suction side of the compressor 21 .
  • the four-way switching valve 22 is a valve for switching the refrigerant flow path.
  • the four-way switching valve 22 connects the discharge pipe 21b of the compressor 21 and the gas-side gas refrigerant pipe 24a of the first heat exchanger 24 (the solid line of the four-way switching valve 22 in FIG. reference).
  • the first heat exchanger 24 functions as a condenser for the refrigerant compressed by the compressor 21, and the second heat exchanger 52 functions as an evaporator for the refrigerant condensed in the first heat exchanger 24. do.
  • the four-way switching valve 22 connects the discharge pipe 21b of the compressor 21 and the communication pipe 7 on the gas side, side gas refrigerant pipe 24a (see the dotted line of the four-way switching valve 22 in FIG. 1).
  • the second heat exchanger 52 functions as a condenser for the refrigerant compressed by the compressor 21, and the first heat exchanger 24 functions as an evaporator for the refrigerant condensed in the second heat exchanger 52. do.
  • the first heat exchanger 24 is a device for exchanging heat between air and refrigerant.
  • the first heat exchanger 24 functions as a refrigerant condenser during cooling operation, and functions as a refrigerant evaporator during heating operation.
  • a cross-fin fin-and-tube heat exchanger can be used as the first heat exchanger 24.
  • the first heat exchanger 24 is not limited to this, and may be another type of heat exchanger.
  • a gas refrigerant pipe 24a is connected to the gas side of the first heat exchanger 24, and a liquid refrigerant pipe 24b is connected to the liquid side.
  • the gas refrigerant pipe 24 a is a refrigerant pipe that connects the four-way switching valve 22 and the gas side end of the first heat exchanger 24 .
  • the liquid refrigerant pipe 24b is a refrigerant pipe that connects the liquid side end of the first heat exchanger 24 and the liquid side communication pipe 6 .
  • the liquid refrigerant pipe 24b is a flow path through which the refrigerant passes during the cooling operation.
  • the first fan 25 sucks outdoor air into the heat source unit 2, exchanges heat with the refrigerant in the first heat exchanger 24, and then discharges the air to the outside.
  • a centrifugal fan, a multi-blade fan, or the like driven by a motor such as a DC fan motor can be used.
  • the receiver 26 is a refrigerant container that stores surplus refrigerant in the refrigerant circuit 10 .
  • the receiver 26 stores liquid refrigerant and adjusts the amount of refrigerant circulating in the refrigerant circuit 10 when the amount of refrigerant in the evaporator or the condenser changes due to changes in operating conditions.
  • a receiver 26 is arranged between the first heat exchanger 24 and the subcooling heat exchanger 29 .
  • the branch pipe 27, the supercooling expansion valve 28, and the supercooling heat exchanger 29 constitute a supercooling circuit.
  • the branch pipe 27 connects the liquid refrigerant pipe 24b between the supercooling heat exchanger 29 and the third valve V3 and the suction side of the compressor 21.
  • the branch pipe 27 branches a portion of the refrigerant that has exited the supercooling heat exchanger 29 during the cooling operation and sends the branch to the compressor 21 .
  • the supercooling expansion valve 28 is arranged on the branch pipe 27 . Specifically, the supercooling expansion valve 28 is arranged between the third valve V3 and the supercooling heat exchanger 29 on the branch pipe 27 .
  • the subcooling expansion valve 28 reduces the pressure of the refrigerant exiting the subcooling heat exchanger 29 so that the subcooling heat exchanger 29 serves as a cooling source for the refrigerant entering from the inlet.
  • the supercooling expansion valve 28 is an electric expansion valve whose opening degree can be adjusted.
  • the supercooling heat exchanger 29 exchanges heat between the refrigerant flowing through the branch pipe 27 on the downstream side of the supercooling expansion valve 28 and the refrigerant flowing through the liquid refrigerant pipe 24b on the downstream side of the first heat exchanger 24.
  • Equipment In the supercooling heat exchanger 29 , the refrigerant that has entered the branch pipe 27 and has been decompressed by the supercooling expansion valve 28 cools the refrigerant that has exited the first heat exchanger 24 .
  • the subcooling heat exchanger 29 cools the refrigerant discharged from the first heat exchanger 24 during cooling operation using the first heat exchanger 24 as a condenser.
  • a plate-type or double-tube heat exchanger can be used as the supercooling heat exchanger 29, for example.
  • the first flow path P1 bypasses the first heat exchanger 24 and connects the discharge side of the compressor 21 and the receiver 26 .
  • the first flow path P1 is a pipe that bypasses the first heat exchanger 24 and sends the refrigerant discharged from the compressor 21 to the receiver 26 during the refrigerant amount detection operation.
  • the 1st flow path P1 contains the discharge pipe 21b. Refrigerant flows through the first flow path P1 during refrigerant amount detection operation, and does not flow through the first flow path P1 during normal operation. In this embodiment, the refrigerant flows through the first flow path P1 during the refrigerant amount detection operation, and does not flow through the first flow path P1 during the cooling operation and the heating operation.
  • a first valve V1 for opening and closing the first flow path P1 is arranged in the first flow path P1.
  • the first valve V1 is, for example, an electric valve, an electromagnetic valve, or the like.
  • the first valve V1 is an electrically operated valve whose opening cannot be adjusted.
  • the first valve V1 is open during the refrigerant amount detection operation, and is closed during the normal operation. In this embodiment, the first valve V1 is opened during the refrigerant amount detection operation, and closed during the cooling operation and the heating operation.
  • the second flow path P2 is connected to the first heat exchanger 24 and bypasses the receiver 26.
  • the second flow path P2 is a pipe for sending the refrigerant that has passed through the first heat exchanger 24 to the communication pipe 6 without passing through the receiver 26 during the refrigerant amount detection operation.
  • the second flow path P2 is provided downstream of the first heat exchanger 24 during the refrigerant amount detection operation.
  • the second flow path P2 connects the first heat exchanger 24 and a pipe on the downstream side of the supercooling heat exchanger 29 in the refrigerant flow during the refrigerant amount detection operation to Exchanger 29 is also bypassed.
  • the second flow path P2 further bypasses the third valve V3.
  • a second valve V2 is arranged in the second flow path P2.
  • the second valve V2 is, for example, an electric valve, an electromagnetic valve, or the like.
  • the second valve V2 is an electrically operated valve whose opening cannot be adjusted.
  • the second valve V2 opens and closes the second flow path P2.
  • the second valve V2 is opened during refrigerant amount detection operation, and closed during normal operation.
  • the third valve V3 is arranged downstream of the receiver 26 during normal operation (cooling operation in this embodiment).
  • the third valve V3 is arranged downstream of the subcooling heat exchanger 29 during normal operation (cooling operation in this embodiment).
  • the degree of opening of the third valve V3 can be adjusted.
  • the third valve V3 is an electric expansion valve.
  • the degree of opening of the third valve V3 decreases during the refrigerant amount detection operation.
  • the third valve V3 is at the minimum opening during the refrigerant amount detection operation.
  • the third valve V3 adjusts the flow rate of the refrigerant flowing through the first heat exchanger 24, and the like.
  • the degree of opening of the third valve V3 during refrigerant amount detection operation is smaller than the degree of opening of the third valve V3 during normal operation.
  • the degree of opening of the third valve V3 is reduced when the normal operation is switched to the refrigerant amount detection operation.
  • the second valve V2 opens and the opening degree of the third valve V3 decreases.
  • the heat source unit 2 is provided with a plurality of check valves V4 to V9.
  • the first check valve V4 is arranged downstream of the first heat exchanger 24 in the refrigerant flow and upstream of the receiver 26 in the refrigerant flow.
  • the first check valve V4 is provided in the liquid refrigerant pipe 24b. The first check valve V4 allows the flow of refrigerant from the first heat exchanger 24 side and blocks the flow of refrigerant from the receiver 26 side.
  • the second check valve V5 is arranged between the receiver 26 and the first heat exchanger 24.
  • the second check valve V5 allows the flow of refrigerant from the receiver 26 side and blocks the flow of refrigerant from the first heat exchanger 24 side.
  • the third check valve V6 is provided in the refrigerant pipe that bypasses the subcooling heat exchanger 29 during heating operation.
  • the third check valve V6 allows the flow of refrigerant from the first stop valve 31 side and blocks the flow of refrigerant from the first heat exchanger 24 side.
  • the fourth check valve V7 is arranged between the third valve V3 and the first closing valve 31.
  • the fourth check valve V7 permits the flow of refrigerant from the third valve V3 side and blocks the flow of refrigerant from the first stop valve 31 side.
  • the fifth check valve V8 is arranged between the four-way switching valve 22 and the accumulator 23.
  • the fifth check valve V8 allows the flow of refrigerant from the four-way switching valve 22 side and blocks the flow of refrigerant from the accumulator 23 side.
  • the sixth check valve V9 is arranged between the compressor 21 and the four-way switching valve 22.
  • the sixth check valve V9 permits the flow of refrigerant from the compressor 21 side and blocks the flow of refrigerant from the four-way switching valve 22 side.
  • the heat source unit 2 is provided with closing valves 31 and 32 .
  • the first shut-off valve 31 is provided at the connecting portion between the heat source unit 2 and the connecting pipe 6 .
  • the second shutoff valve 32 is provided at the connecting portion between the heat source unit 2 and the connecting pipe 7 .
  • the first shut-off valve 31 and the second shut-off valve 32 are valves that are manually opened and closed. Here, liquid refrigerant flows through the first closing valve 31 and gas refrigerant flows through the second closing valve 32 .
  • the heat source unit 2 is provided with various sensors. Specifically, as shown in FIGS. 1 and 2, the heat source unit 2 includes a suction pressure sensor 41, a discharge pressure sensor 42, a suction temperature sensor 43, a discharge temperature sensor 44, an outdoor temperature sensor 45, and a first heat exchange sensor.
  • a vessel outlet temperature sensor 46, a subcooling heat exchanger outlet temperature sensor 47 and a receiver outlet temperature sensor 48 are provided.
  • a suction pressure sensor 41 detects the suction pressure of the compressor 21 .
  • a discharge pressure sensor 42 detects the discharge pressure of the compressor 21 .
  • a suction temperature sensor 43 detects the suction temperature of the compressor 21 .
  • a discharge temperature sensor 44 detects the discharge temperature of the compressor 21 .
  • the outdoor temperature sensor 45 detects the temperature of outdoor air flowing into the heat source unit 2 .
  • a first heat exchanger outlet temperature sensor 46 detects the outlet temperature of the condenser when the first heat exchanger is used as the condenser.
  • a supercooling heat exchanger outlet temperature sensor 47 detects the outlet temperature of the supercooling heat exchanger 29 when the first heat exchanger 24 is used as a condenser.
  • Receiver outlet temperature sensor 48 detects the outlet temperature of receiver 26 .
  • the usage unit 5 is an internal unit that cools the interior of the refrigerator.
  • the utilization unit 5 is connected to the heat source unit 2 via connecting pipes 6 and 7 and forms part of the refrigerant circuit 10 .
  • the usage unit 5 mainly has a usage side expansion valve 51 , a second heat exchanger 52 and a second fan 53 .
  • the user-side expansion valve 51 is an electric expansion valve or the like connected to the liquid side of the second heat exchanger 52 and adjusts the flow rate of the refrigerant flowing through the second heat exchanger 52 . Also, the user-side expansion valve 51 can block passage of the refrigerant.
  • the second heat exchanger 52 is a device for exchanging heat between the air inside the refrigerator and the refrigerant.
  • the second heat exchanger 52 functions as a refrigerant evaporator during the cooling operation, and cools the air inside the refrigerator. Further, the second heat exchanger 52 functions as a refrigerant condenser during the heating operation, and heats the air in the refrigerator.
  • a cross-fin type fin-and-tube heat exchanger composed of heat transfer tubes and a large number of fins can be used.
  • the second heat exchanger 52 is not limited to this, and may be another type of heat exchanger.
  • the second fan 53 sucks air into the usage unit 5 and supplies the air heat-exchanged with the refrigerant in the second heat exchanger 52 into the refrigerator.
  • a centrifugal fan or a multi-blade fan driven by a motor such as a DC fan motor can be used.
  • the usage unit 5 is provided with various sensors. Specifically, the utilization unit 5 is provided with an in-chamber temperature sensor 54, a second heat exchanger inlet temperature sensor 55, and a second heat exchanger outlet temperature sensor 56 shown in FIG.
  • the in-chamber temperature sensor 54 detects the temperature of the air flowing into the utilization unit 5 (in-chamber temperature).
  • a second heat exchanger inlet temperature sensor 55 detects the temperature of the refrigerant at the inlet of the second heat exchanger 52 (on the liquid-liquid side during cooling operation).
  • a second heat exchanger outlet temperature sensor 56 detects the temperature of the refrigerant at the outlet of the second heat exchanger 52 (on the gas side during cooling operation).
  • Connecting pipes 6 and 7 are refrigerant pipes that are installed on site when the refrigeration system 1 is installed at the installation site.
  • the connecting pipes 6 and 7 have different lengths and pipe diameters depending on conditions such as the combination of the heat source unit 2 and the utilization unit 5 and the installation location. For this reason, for example, when installing a new air conditioner, it is necessary to fill an appropriate amount of refrigerant according to conditions such as the length and diameter of the connecting pipes 6 and 7 .
  • liquid refrigerant flows through the connecting pipe 6 and gas refrigerant flows through the connecting pipe 7 .
  • FIG. 8 has a control unit 8 connected via a communication line.
  • the first controller 81 is provided in the heat source unit 2 .
  • the second control section 82 is provided in the usage unit 5 .
  • the first controller 81, the second controller 82, and the remote controller 60 are wiredly connected via a transmission line or a communication line, but may be wirelessly connected.
  • the first control unit 81, the second control unit 82, and the control device of the remote controller 60 of the refrigeration apparatus 1 perform various calculations and processes, and are realized by a calculation processing device such as a CPU, for example.
  • the first control section 81 controls the operation of each section that configures the heat source unit 2 .
  • the first control section 81 mainly has a first CPU 81a, a first transmission section 81b, and a first storage section 81c.
  • the first control unit 81 includes a suction pressure sensor 41, a suction temperature sensor 43, a discharge pressure sensor 42, a discharge temperature sensor 44, an outdoor temperature sensor 45, a first heat exchanger outlet temperature sensor 46, and a supercooling heat exchanger outlet temperature sensor. 47 and receiver outlet temperature sensor 48.
  • the first CPU 81a is connected to the first transmission section 81b and the first storage section 81c.
  • the first transmission section 81 b transmits control data and the like to and from the second control section 82 .
  • the first storage unit 81c stores control data and the like.
  • the first CPU 81a transmits, reads and writes control data and the like via the first transmission section 81b and the first storage section 81c, and the compressor 21 and the four-way switching as components provided in the heat source unit 2. It controls the operation of the valve 22, the first fan 25, the first valve V1, the second valve V2, the third valve V3, the supercooling expansion valve 28, and the like.
  • the second control section 82 controls the operation of each section that configures the usage unit 5 .
  • the second control section 82 mainly has a second CPU 82a, a second transmission section 82b, a second storage section 82c, and a second communication section 82d.
  • the second control unit 82 is configured to receive detection signals from the inside temperature sensor 54 , the second heat exchanger inlet temperature sensor 55 and the second heat exchanger outlet temperature sensor 56 .
  • the second CPU 82a is connected to the second transmission section 82b, the second storage section 82c and the second communication section 82d.
  • the second transmission section 82 b transmits control data and the like to and from the first control section 81 .
  • the second storage unit 82c stores control data and the like.
  • the second communication unit 82d transmits and receives control data and the like to and from the remote controller 60.
  • FIG. The second CPU 82a transmits, reads, writes, and transmits/receives control data and the like via the second transmission section 82b, the second storage section 82c, and the second communication section 82d, and performs It controls the operation of the second fan 53, the user-side expansion valve 51, and the like.
  • the remote controller 60 is used by the user to input various settings.
  • the remote control 60 mainly includes a remote control CPU 61 , a remote control storage section 62 , a remote control communication section 63 , a remote control operation section 64 and a remote control display section 65 .
  • the remote controller CPU 61 is connected to the remote controller storage unit 62 , the remote controller communication unit 63 , the remote controller operation unit 64 and the remote controller display unit 65 .
  • the remote controller storage unit 62 stores control data and the like.
  • the remote control communication unit 63 transmits and receives control data and the like to and from the second communication unit 82d.
  • a remote control operation unit 64 receives an input such as a control command from a user.
  • the remote control display unit 65 displays operation and the like.
  • the remote control CPU 61 receives input of operation commands, control commands, etc. via the remote control operation unit 64 , reads and writes control data, etc. in the remote control storage unit 62 , and displays the operation state and control state on the remote control display unit 65 . While performing such operations, a control command or the like is issued to the second control unit 82 via the remote control communication unit 63 .
  • the refrigeration system 1 includes the control unit 8 that controls the operation of the components.
  • the controller 8 controls the intake pressure sensor 41, the intake temperature sensor 43, the discharge pressure sensor 42, the discharge temperature sensor 44, the outdoor temperature sensor 45, the first heat exchanger outlet temperature sensor 46, and the supercooling heat exchanger outlet temperature sensor. 47, a compressor 21, a four-way The switching valve 22, the first fan 25, the supercooling expansion valve 28, the first valve V1, the second valve V2, the third valve V3, the second fan 53, the user-side expansion valve 51, etc. are controlled, and the cooling operation and heating are performed. It is configured to be able to perform operation, refrigerant amount detection operation, and various controls.
  • the first control unit 81 performs control so as to switch between normal operation and refrigerant amount detection operation.
  • the first control unit 81 controls various devices 21, 22, 25 and various valves 28, V1 to V3 according to the heat load from the utilization unit 5 during normal operation.
  • the first control unit 81 closes the first valve V1 during normal operation so that the refrigerant does not flow through the first flow path P1.
  • the first control unit 81 closes the second valve V2 during normal operation so that the refrigerant does not flow through the second flow path P2. Thereby, the first control unit 81 causes the refrigerant to flow from the first heat exchanger 24 to the receiver 26 through the liquid refrigerant pipe 24b during the cooling operation.
  • the first control unit 81 controls the degree of opening of the third valve V3 according to the heat load requested by the usage unit 5.
  • the first controller 81 fully opens the third valve V3 during the cooling operation.
  • the first control unit 81 opens the first valve V1 during the refrigerant amount detection operation for detecting the amount of refrigerant in the refrigerant circuit 10 .
  • the first control unit 81 opens the first valve V1 when switching to the refrigerant amount detection operation.
  • the first controller 81 causes the coolant to flow through the first flow path P1.
  • the first control unit 81 opens the second valve V2 during the refrigerant amount detection operation. Thereby, the first controller 81 causes the refrigerant to flow from the first heat exchanger 24 to the second flow path P2.
  • the first control unit 81 causes the refrigerant to flow from the first heat exchanger 24 to the second flow path P2 that bypasses the receiver 26 and the third valve V3 during the refrigerant amount detection operation.
  • the first control unit 81 reduces the degree of opening of the third valve V3 during the refrigerant amount detection operation.
  • the first control unit 81 sets the opening degree of the third valve V3 to the minimum opening degree when switching to the refrigerant amount detection operation.
  • the first control unit 81 opens the second valve V2 after opening the first valve V1, and reduces the opening degree of the third valve V3.
  • the first control unit 81 controls the condenser outlet temperature when the first heat exchanger 24 is used as a condenser, the high pressure of the refrigerant circuit 10, the low pressure of the refrigerant circuit 10, the outlet temperature of the receiver 26, and the , the ambient temperature, the evaporation temperature, and the rotation speed of the compressor 21 are used to detect the amount of refrigerant.
  • the condenser outlet temperature is detected by the first heat exchanger outlet temperature sensor 46 .
  • a high pressure in the refrigerant circuit 10 is detected by a discharge pressure sensor 42 .
  • a low pressure in the refrigerant circuit 10 is detected by a suction pressure sensor 41 .
  • the outlet temperature of receiver 26 is detected by receiver outlet temperature sensor 48 .
  • the outdoor air temperature is detected by an outdoor temperature sensor 45 .
  • the evaporation temperature is obtained by converting the suction pressure detected by the suction pressure sensor 41 into the saturation temperature of the refrigerant.
  • the rotation speed of the compressor 21 is grasped from the compressor 21 .
  • the degree of subcooling which is the temperature difference between the condensation temperature of the refrigerant in the condenser and the outlet temperature of the condenser (specifically, the pressure of the refrigerant detected by the discharge pressure sensor 42 is converted into the saturation temperature.
  • the temperature difference obtained by subtracting the temperature of the refrigerant detected by the first heat exchanger outlet temperature sensor 46 from the saturation temperature is used to perform the refrigerant amount detection operation.
  • FIG. 1 a cooling operation and a heating operation as normal operations and a refrigerant amount detection operation are performed.
  • the cooling operation and the refrigerant amount detection operation will be described below.
  • the operation of the refrigeration apparatus 1 described below is performed by a control section 8 having a first control section 81 and a second control section 82 that control the equipment configuration of the refrigeration apparatus 1 .
  • Cooling Operation The operation of the cooling operation will be described with reference to FIG.
  • the operating frequency of the compressor 21 is controlled so that the low pressure value of the refrigeration cycle (detected value of the suction pressure sensor 41) becomes a constant value, and the degree of superheat of the refrigerant at the outlet of the second heat exchanger 52 is The opening degree of the utilization side expansion valve 51 is adjusted so as to achieve a predetermined target value.
  • the cooling operation is performed by the control unit 8 that receives a cooling operation command via the remote control operation unit 64, and controls the compressor 21, the four-way switching valve 22, the first fan 25, This is performed by controlling the operations of the first valve V1, the second valve V2, the third valve V3, the user-side expansion valve 51, the second fan 53, and the like.
  • the first valve V1 is closed to prevent the coolant from flowing through the first flow path P1.
  • the second valve V2 is closed to prevent the refrigerant from flowing through the second flow path P2.
  • the third valve V3 is fully opened.
  • the discharge side of the compressor 21 is connected to the gas side of the first heat exchanger 24 by the four-way switching valve 22, and the suction side of the compressor 21 is connected via the communication pipe 7 on the gas side. It is connected to the gas side of the second heat exchanger 52 (see the solid line of the four-way switching valve 22 in FIG. 3).
  • the first heat exchanger 24 is used as a condenser.
  • low-pressure gas refrigerant is sucked into the compressor 21 and compressed into high-pressure gas refrigerant.
  • the high-pressure gas refrigerant is sent to the first heat exchanger 24 via the check valve V9 and the four-way switching valve 22.
  • the high-pressure gas refrigerant exchanges heat with the outdoor air supplied by the first fan 25 in the first heat exchanger 24 and is condensed into a high-pressure liquid refrigerant.
  • the high-pressure liquid refrigerant is sent to the receiver 26 via the check valve V4, temporarily stored in the receiver 26, and then sent to the subcooling heat exchanger 29.
  • the high-pressure liquid refrigerant further cooled by the subcooling heat exchanger 29 flows out of the heat source unit 2 via the third valve V3, the check valve V7 and the closing valve 31.
  • Refrigerant flowing out from the heat source unit 2 is sent to the utilization unit 5 via the communication pipe 6 on the liquid side.
  • the high-pressure liquid refrigerant is sent to the second heat exchanger 52 after being decompressed by the usage-side expansion valve 51 .
  • this refrigerant exchanges heat with the air in the chamber supplied by the second fan 53 and evaporates to become a low-pressure gas refrigerant.
  • This low-pressure gas refrigerant flows out of the utilization unit 5 .
  • the refrigerant flowing out of the utilization unit 5 is sent to the heat source unit 2 via the gas-side communication pipe 7, via the shut-off valve 32, the four-way switching valve 22, the check valve V8, and the accumulator 23, and again, It is sucked into the compressor 21 .
  • a portion of the refrigerant exiting the subcooling heat exchanger 29 is branched and sent to the compressor 21 through the branch pipe 27 .
  • the refrigerant flowing through the branch pipe 27 and decompressed by the subcooling expansion valve 28 cools the refrigerant flowing to the usage unit 5 .
  • step S1 when the first control unit 81 receives the instruction to perform the refrigerant amount detection operation, it starts the refrigerant amount detection control (step S1).
  • the first control unit 81 determines whether the cooling operation is being performed (step S2). If the cooling operation is not performed in step S2, the refrigerant amount detection control is ended (step S9). On the other hand, in step S2, when the cooling operation is being performed, the refrigerant amount detection operation is started.
  • the first valve V1 is opened (step S3).
  • the refrigerant bypasses the first heat exchanger 24 and flows through the first flow path P1 that connects the discharge side of the compressor 21 and the receiver 26 . Therefore, the gas refrigerant discharged from the compressor 21 can be sent to the receiver 26 via the first flow path P ⁇ b>1 that bypasses the first heat exchanger 24 .
  • the liquid refrigerant in the receiver 26 is pushed out to the refrigerant circuit 10, and the receiver 26 is filled with gas refrigerant.
  • step S3 the liquid refrigerant in the receiver 26 is discharged.
  • Gas refrigerant discharged from the compressor 21 is sent to the receiver 26 through the first flow path P1.
  • the liquid refrigerant discharged from the receiver 26 flows out of the heat source unit 2 via the supercooling heat exchanger 29, the third valve V3, the check valve V7 and the closing valve 31.
  • Refrigerant flowing out of the heat source unit 2 is sent to the utilization unit 5 via the connecting pipe 6 .
  • the refrigerant sent to the usage unit 5 flows out of the usage unit 5 via the usage side expansion valve 51 and the second heat exchanger 52 .
  • Refrigerant flowing out from the utilization unit 5 is sent to the heat source unit 2 via the communication pipe 7, and is again supplied to the compressor 21 via the stop valve 32, the four-way switching valve 22, the check valve V8, and the accumulator 23. is inhaled into
  • step S4 it is determined whether or not the liquid refrigerant in the receiver 26 has been discharged (step S4).
  • step S4 of the present embodiment as shown in FIG. 6, it is determined whether or not the degree of supercooling is less than the first value.
  • the first control unit 81 controls the degree of supercooling at the outlet of the supercooling heat exchanger 29, which is the temperature difference between the condensation temperature of the refrigerant in the supercooling heat exchanger 29 and the outlet temperature of the supercooling heat exchanger 29.
  • Use f(HP)-TL Use f(HP)-TL.
  • the first control unit 81 controls the discharge pressure HP of the compressor 21 detected by the discharge pressure sensor 42 and the pressure of the supercooling heat exchanger 29 detected by the supercooling heat exchanger outlet temperature sensor 47. Outlet temperature TL is acquired. Then, the obtained discharge pressure HP is converted into the saturation temperature f (HP), and the degree of supercooling f (HP), which is the temperature difference obtained by subtracting the outlet temperature TL of the supercooling heat exchanger 29 from this saturation temperature f (HP) - Calculate TL. In this embodiment, the first control unit 81 determines whether or not the degree of supercooling f(HP)-TL is less than the first value.
  • the first value is, for example, 1, but can be set arbitrarily.
  • step S4 if the degree of supercooling f(HP)-TL is greater than or equal to the first value, that state is maintained. On the other hand, in step S4, if the subcooling degree f(HP)-TL is less than the first value, it is determined that the liquid refrigerant in the receiver 26 has been pushed out and the gas refrigerant is filled.
  • step S5 the second valve V2 is opened and the degree of opening of the third valve V3 is decreased.
  • the opening operation of the second valve V2 and the operation of throttling the third valve V3 in step S5 are performed substantially simultaneously.
  • step S5 sending the refrigerant to the receiver 26 and the subcooling heat exchanger 29 is suppressed.
  • an operation for determining the amount of refrigerant in the refrigerant circuit 10 is performed.
  • the gas refrigerant discharged from the compressor 21 is sent to the second flow path P2 via the check valve V9, the four-way switching valve 22 and the first heat exchanger 24. Then, it flows out of the heat source unit 2 via the second valve V2, the check valve V7 and the closing valve 31.
  • Refrigerant flowing out of the heat source unit 2 is sent to the utilization unit 5 via the connecting pipe 6 .
  • the refrigerant sent to the usage unit 5 flows out of the usage unit 5 via the usage side expansion valve 51 and the second heat exchanger 52 .
  • Refrigerant flowing out from the utilization unit 5 is sent to the heat source unit 2 via the communication pipe 7, and is again supplied to the compressor 21 via the stop valve 32, the four-way switching valve 22, the check valve V8, and the accumulator 23. is inhaled into
  • step S6 it is determined whether or not the amount of refrigerant in the refrigerant circuit 10 satisfies the reference amount (step S6).
  • step S6 of the present embodiment as shown in FIG. 6, it is determined whether or not the degree of supercooling is less than the second value.
  • the first control unit 81 controls subcooling, which is the temperature difference between the condensation temperature of the refrigerant in the first heat exchanger 24 used as a condenser and the outlet temperature Tcl of the first heat exchanger 24 used as a condenser.
  • the degree f(HP)-Tcl is used.
  • the first control unit 81 controls the discharge pressure HP of the compressor 21 detected by the discharge pressure sensor 42 and the pressure of the first heat exchanger 24 detected by the first heat exchanger outlet temperature sensor 46. Obtain the outlet temperature Tcl. Then, the obtained discharge pressure HP is converted into the saturation temperature f (HP), and the degree of supercooling f (HP), which is the temperature difference obtained by subtracting the outlet temperature Tcl of the first heat exchanger 24 from this saturation temperature f (HP) - Calculate Tcl. In this embodiment, the first control unit 81 determines whether or not the degree of supercooling f(HP)-Tcl is equal to or greater than the second value.
  • the second value is, for example, 3, but can be set arbitrarily.
  • step S7 If the subcooling degree f(HP)-Tcl is equal to or greater than the second value in step S6, the first control unit 81 determines that the amount of refrigerant in the refrigerant circuit 10 is normal (step S7). On the other hand, if the subcooling degree f(HP)-Tcl is less than the second value in step S6, the first control unit 81 determines that the amount of refrigerant in the refrigerant circuit 10 is abnormal (step S8 ). Here, if it is determined in step S8 that the amount of refrigerant is abnormal, the amount of refrigerant in the refrigerant circuit 10 does not meet the reference amount, so that the occurrence of refrigerant leakage is notified.
  • the refrigerant amount detection control ends (step S9).
  • Such a refrigerant amount detection operation may be performed irregularly, but is performed periodically in the present embodiment. As a periodical operation, for example, the refrigerant amount detection operation is performed once a day.
  • the refrigeration apparatus 1 and the heat source unit 2 include the compressor 21, the first heat exchanger 24, the receiver 26, the first flow path P1, the first valve V1, Prepare.
  • Compressor 21 compresses the refrigerant.
  • the first heat exchanger 24 is used as a refrigerant condenser.
  • the receiver 26 stores the refrigerant discharged from the first heat exchanger 24 during normal operation using the first heat exchanger 24 as a condenser.
  • the first flow path P1 bypasses the first heat exchanger 24 and connects the discharge side of the compressor 21 and the receiver 26 .
  • the first valve V1 opens and closes the first flow path P1. During the refrigerant amount detection operation for detecting the amount of refrigerant in the refrigerant circuit 10, the first valve V1 is opened.
  • the first valve V1 is opened during the refrigerant amount detection operation, as shown in FIG. , can be sent to the receiver 26 .
  • the liquid refrigerant in the receiver 26 is pushed out to the refrigerant circuit 10, and the refrigerant amount detection operation can be performed in a state where the receiver 26 is filled with gas refrigerant as shown in FIG. Therefore, as shown in FIG. 4, even if the high-temperature liquid refrigerant is discharged, the receiver 26 is filled with the high-temperature gas refrigerant when performing the refrigerant amount detection operation, so that the high-temperature state can be maintained.
  • the temperature change of the receiver 26 can be reduced. It is possible to reduce phenomena such as the effect of thermal stress on the As a result, the normal operation and the refrigerant amount detection operation can be performed without increasing the resistance of the receiver 26 .
  • the second heat exchanger 52 can continue to cool the inside of the refrigerator, so it is possible to suppress the deterioration of the cooling capacity.
  • the refrigerating apparatus 1 and the heat source unit 2 of this embodiment further include a first control section 81 .
  • the first control unit 81 closes the first valve V1 during normal operation, and opens the first valve V1 during refrigerant amount detection operation.
  • the first valve V1 is closed and the first flow path P1 is not used.
  • the first valve V1 is opened and the first flow path P1 is used. Therefore, normal operation and refrigerant amount detection operation can be appropriately performed.
  • the refrigerating apparatus 1 and the heat source unit 2 of this embodiment further include a second flow path P2.
  • the second flow path P2 is connected to the first heat exchanger 24 and bypasses the receiver 26 .
  • the refrigerant flows from the first heat exchanger 24 to the second flow path P2.
  • the refrigerating apparatus 1 and the heat source unit 2 of this embodiment further include a second valve V2.
  • the second valve V2 opens and closes the second flow path P2.
  • the refrigerant can flow through the second flow path P2 by opening the second valve V2 during the refrigerant amount detection operation.
  • the second valve V2 during normal operation, by closing the second valve V2, it is possible to suppress the refrigerant from flowing through the second flow path P2. Therefore, normal operation and refrigerant amount detection operation can be performed more appropriately.
  • the refrigerating device 1 and the heat source unit 2 of this embodiment further include a third valve V3.
  • the third valve V3 is arranged downstream of the receiver 26 during normal operation. During the refrigerant amount detection operation, the degree of opening of the third valve V3 is reduced.
  • the refrigerating apparatus 1 and the heat source unit 2 of this embodiment further include a second flow path P2.
  • the second flow path P2 also bypasses the receiver 26 and the third valve V3.
  • the refrigerant can flow through the second flow path P2 that bypasses the receiver 26 and the third valve V3 during the refrigerant amount detection operation. Therefore, the refrigerant amount detection operation can be performed while preventing the density of the liquid refrigerant from becoming too low.
  • the liquid refrigerant in the receiver 26 is pushed out by opening the first valve V1, and then, as shown in FIG. It is possible to suppress accumulation of the liquid refrigerant, and it is possible to suppress the density of the liquid refrigerant from becoming too low due to the reduction in the degree of opening of the third valve V3. Therefore, the amount of refrigerant can be detected while maintaining the density of the liquid refrigerant.
  • the refrigerant amount detection operation is performed using the condenser outlet temperature when the first heat exchanger 24 is used as a condenser, the high pressure of the refrigerant circuit 10, the low pressure of the refrigerant circuit 10, the receiver At least one of the outlet temperature of 26, the outside air temperature, the evaporation temperature, and the rotation speed of the compressor 21 is used to detect the amount of refrigerant.
  • the refrigerant amount is detected using at least one of the condenser outlet temperature, high pressure, low pressure, receiver 26 outlet temperature, outside air temperature, evaporation temperature, and compressor 21 rotation speed. can be easily realized.
  • the temperature before and after the supercooling heat exchanger 29 may be used for the refrigerant amount detection operation.
  • a refrigerating apparatus 1 of this embodiment includes a heat source unit 2 and a utilization unit 5 .
  • the utilization unit 5 is connected to the heat source unit 2 and includes a second heat exchanger 52 .
  • the heat source unit 2 since the heat source unit 2 is provided, it is possible to realize the refrigerating apparatus 1 that reduces phenomena such as dew condensation on the outer shell of the receiver 26 and thermal stress acting on the piping joints even if the frequency of the refrigerant amount detection operation is increased. .
  • the refrigerant amount detection operation has been described by exemplifying the operation of performing the refrigerant amount detection operation after the cooling operation as the normal operation has been performed for a predetermined period of time, but the operation is not limited to this.
  • the refrigerant amount detection operation of the present disclosure is an operation that stabilizes the state of the refrigerant circulating in the refrigerant circuit 10 and fills the refrigerant circuit 10 with refrigerant until the amount of refrigerant in the refrigerant circuit 10 reaches a target amount. may be applied to
  • the refrigerating apparatus 1 and the heat source unit 2 of the present disclosure perform the refrigerant amount detection operation by detecting whether or not the amount of refrigerant in the refrigerant circuit 10 satisfies the reference amount, and the refrigerant leakage detection operation for detecting whether the amount of refrigerant in the refrigerant circuit 10 satisfies the reference amount.
  • a refrigerant charging operation for charging can be performed.
  • step S4 in the step of determining whether or not the liquid refrigerant in the receiver 26 has been discharged during the refrigerant amount detection operation (step S4), the degree of supercooling at the outlet of the supercooling heat exchanger 29 is used for determination. but not limited to.
  • another index may be used in step S4, and the liquid level of the liquid refrigerant stored in the receiver 26 may be detected.
  • the index detected by the heat source unit 2 is used to detect the amount of refrigerant during the refrigerant amount detection operation, but the present invention is not limited to this.
  • the refrigerant amount detection operation may use the index detected by the usage unit 5 or may use the index detected by the heat source unit 2 and the usage unit 5 .
  • the refrigerant amount is detected by using the opening degree of the user-side expansion valve 51 of the user unit 5, the outlet temperature of the second heat exchanger 52, and the like.
  • the refrigeration apparatus 1 including one usage unit 5 was described as an example, but the present invention is not limited to this.
  • a refrigeration apparatus of the present disclosure may comprise more than one utilization unit. In this case, the capacity of each usage unit may be the same or different.
  • Refrigerating device 2 Heat source unit 5: Utilization unit 10: Refrigerant circuit 21: Compressor 24: First heat exchanger 26: Receiver 52: Second heat exchanger 81: First control unit (control unit) P1: first flow path P2: second flow path V1: first valve V2: second valve V3: third valve

Abstract

A heat source unit (2) is connected to a utilization unit (5), thereby constituting a refrigerant circuit that performs a refrigeration cycle. The heat source unit (2) comprises a compressor (21), a first heat exchanger (24), a receiver (26), a first flow path (P1), and a first valve (V1). The compressor (21) compresses a refrigerant. The first heat exchanger (24) is used as a condenser for the refrigerant. The receiver (26) accumulates the refrigerant from the first heat exchanger (24) during normal operation when the first heat exchanger (24) is used as the condenser. The first flow path (P1) bypasses the first heat exchanger (24) and connects the discharge side of the compressor (21) and the receiver (26). The first valve (V1) opens and closes the first flow path (P1). The first valve (V1) opens during refrigerant amount detection operation for detecting the amount of refrigerant in the refrigerant circuit (10).

Description

熱源ユニット及び冷凍装置Heat source unit and refrigerator
 熱源ユニット及び冷凍装置に関する。 Regarding heat source units and refrigeration equipment.
 特許文献1(特開2015-75259号公報)には、利用側熱交換器から要求される熱負荷に応じた冷凍サイクル運転である通常運転と、冷媒回路内の冷媒量の適否を判定するための冷凍サイクル運転である冷媒量判定運転とを切り換えて行うことが可能な冷凍装置が開示されている。特許文献1の冷凍装置では、冷媒量判定運転において、レシーババイパス管に冷媒を流して、レシーバをバイパスさせている。 In Patent Document 1 (Japanese Patent Application Laid-Open No. 2015-75259), normal operation, which is a refrigeration cycle operation according to the heat load required from the heat exchanger on the user side, and the appropriateness of the amount of refrigerant in the refrigerant circuit are determined. A refrigerating apparatus capable of switching between a refrigerant amount determination operation, which is a refrigeration cycle operation, is disclosed. In the refrigerating apparatus of Patent Literature 1, in the refrigerant amount determination operation, the refrigerant is caused to flow through the receiver bypass pipe to bypass the receiver.
 上記特許文献1の冷凍装置において、通常運転時には、レシーバは高温となり、冷媒量判定運転時には、レシーバは低温となる。このため、冷媒量判定運転を頻繁に行うと、レシーバの高温状態と低温状態とが繰り返されることに起因して、レシーバ外殻の結露、配管接続部への熱応力作用などの現象が起こる。したがって、特許文献1の冷凍装置では、この現象に耐えるために、塗装やろう付けを行う必要が生じる。 In the refrigeration system of Patent Document 1, the receiver is at a high temperature during normal operation, and the receiver is at a low temperature during the refrigerant amount determination operation. Therefore, if the refrigerant amount judgment operation is frequently performed, phenomena such as dew condensation on the outer shell of the receiver and thermal stress acting on the pipe joints occur due to the repetition of the high temperature state and the low temperature state of the receiver. Therefore, the refrigerating device of Patent Document 1 needs to be painted or brazed in order to withstand this phenomenon.
 第1観点に係る熱源ユニットは、利用ユニットと接続されることにより、冷凍サイクルを行う冷媒回路を構成する熱源ユニットである。熱源ユニットは、圧縮機と、第1熱交換器と、レシーバと、第1流路と、第1弁と、を備える。圧縮機は、冷媒を圧縮する。第1熱交換器は、冷媒の凝縮器として用いられる。レシーバは、第1熱交換器を凝縮器として用いる通常運転時に、第1熱交換器から出た冷媒を溜める。第1流路は、第1熱交換器をバイパスして、圧縮機の吐出側とレシーバとを接続する。第1弁は、第1流路を開閉する。冷媒回路内の冷媒量を検知するための冷媒量検知運転時に、第1弁が開く。 A heat source unit according to the first aspect is a heat source unit that configures a refrigerant circuit that performs a refrigeration cycle by being connected to a usage unit. The heat source unit includes a compressor, a first heat exchanger, a receiver, a first flow path, and a first valve. The compressor compresses refrigerant. The first heat exchanger is used as a refrigerant condenser. The receiver collects refrigerant discharged from the first heat exchanger during normal operation using the first heat exchanger as a condenser. The first flow path bypasses the first heat exchanger and connects the discharge side of the compressor and the receiver. The first valve opens and closes the first flow path. The first valve opens during a refrigerant amount detection operation for detecting the amount of refrigerant in the refrigerant circuit.
 第1観点の熱源ユニットによれば、冷媒量検知運転時に第1弁が開くので、圧縮機から吐出される冷媒を、第1熱交換器をバイパスする第1流路を介して、レシーバに送ることができる。これにより、レシーバ内の液冷媒を冷媒回路に押し出して、レシーバをガス冷媒で充満させた状態で、冷媒量検知運転を行うことができる。このため、冷媒量検知運転を行っても、レシーバは高温状態を維持できる。したがって、冷媒量検知運転の頻度を上げても、レシーバ外殻の結露、配管接続部への熱応力作用などの現象を減らすことができる。 According to the heat source unit of the first aspect, since the first valve is opened during the refrigerant amount detection operation, the refrigerant discharged from the compressor is sent to the receiver via the first flow path bypassing the first heat exchanger. be able to. As a result, the refrigerant amount detection operation can be performed in a state in which the liquid refrigerant in the receiver is pushed out to the refrigerant circuit and the receiver is filled with gas refrigerant. Therefore, even if the refrigerant amount detection operation is performed, the receiver can maintain a high temperature state. Therefore, even if the frequency of the refrigerant quantity detection operation is increased, phenomena such as dew condensation on the outer shell of the receiver and thermal stress acting on the pipe joints can be reduced.
 第2観点に係る熱源ユニットは、第1観点の熱源ユニットであって、制御部をさらに備える。制御部は、通常運転時に、第1弁を閉め、かつ、冷媒量検知運転時に、第1弁を開ける。 The heat source unit according to the second aspect is the heat source unit according to the first aspect and further includes a control section. The control unit closes the first valve during normal operation and opens the first valve during refrigerant amount detection operation.
 第2観点に係る熱源ユニットでは、第1熱交換器を凝縮器として用いる通常運転時に、第1弁を閉めて、第1流路を使わない。このため、通常運転と冷媒量検知運転とを適切に行うことができる。 In the heat source unit according to the second aspect, during normal operation using the first heat exchanger as a condenser, the first valve is closed and the first flow path is not used. Therefore, normal operation and refrigerant amount detection operation can be appropriately performed.
 第3観点に係る熱源ユニットは、第1観点または第2観点の熱源ユニットであって、第2流路をさらに備える。第2流路は、第1熱交換器と接続され、レシーバをバイパスする。冷媒量検知運転時に、冷媒は、第1熱交換器から第2流路に流れる。 The heat source unit according to the third aspect is the heat source unit according to the first aspect or the second aspect, and further includes a second flow path. A second flow path is connected to the first heat exchanger and bypasses the receiver. During the refrigerant amount sensing operation, the refrigerant flows from the first heat exchanger to the second flow path.
 第3観点に係る熱源ユニットでは、冷媒量検知運転時に、第2流路に冷媒を流すことによって、レシーバに冷媒を送ることを減らすことができる。このため、レシーバに液冷媒が溜まることを抑制できるので、冷媒量検知運転において、冷媒量を検知する精度を高めることができる。 In the heat source unit according to the third aspect, it is possible to reduce the amount of refrigerant sent to the receiver by causing the refrigerant to flow through the second channel during the refrigerant amount detection operation. Therefore, it is possible to suppress accumulation of the liquid refrigerant in the receiver, so that it is possible to improve the accuracy of detecting the refrigerant amount in the refrigerant amount detection operation.
 第4観点に係る熱源ユニットは、第3観点の熱源ユニットであって、第2弁をさらに備える。第2弁は、第2流路を開閉する。 The heat source unit according to the fourth aspect is the heat source unit according to the third aspect and further includes a second valve. The second valve opens and closes the second flow path.
 第4観点に係る熱源ユニットでは、冷媒量検知運転時に、第2弁を開けることによって、第2流路に冷媒を流すことができるとともに、通常運転時に、第2弁を閉めることによって、第2流路に冷媒を流すことを抑制できる。このため、通常運転と冷媒量検知運転とをより適切に行うことができる。 In the heat source unit according to the fourth aspect, during the refrigerant amount detection operation, the second valve is opened to allow the refrigerant to flow through the second flow path, and during normal operation, the second valve is closed to allow the second flow path to flow. It is possible to suppress the coolant from flowing through the flow path. Therefore, normal operation and refrigerant amount detection operation can be performed more appropriately.
 第5観点に係る熱源ユニットは、第1観点から第4観点の熱源ユニットであって、第3弁をさらに備える。第3弁は、通常運転時に、レシーバの下流側に配置される。冷媒量検知運転時に、第3弁の開度が小さくなる。 The heat source unit according to the fifth aspect is the heat source unit according to the first to fourth aspects, and further includes a third valve. A third valve is positioned downstream of the receiver during normal operation. The degree of opening of the third valve is reduced during the refrigerant amount detection operation.
 第5観点に係る熱源ユニットでは、冷媒量検知運転時に、レシーバの下流に配置された第3弁の開度を小さくすることによって、液冷媒の密度が低くなりすぎることを抑制できる。 In the heat source unit according to the fifth aspect, it is possible to prevent the density of the liquid refrigerant from becoming too low by reducing the degree of opening of the third valve arranged downstream of the receiver during the refrigerant amount detection operation.
 第6観点に係る熱源ユニットは、第5観点の熱源ユニットであって、第2流路をさらに備える。第2流路は、第1熱交換器と接続され、レシーバをバイパスする。第2流路は、第3弁をさらにバイパスする。 The heat source unit according to the sixth aspect is the heat source unit according to the fifth aspect, further comprising a second flow path. A second flow path is connected to the first heat exchanger and bypasses the receiver. The second flow path further bypasses the third valve.
 第6観点に係る熱源ユニットでは、冷媒量検知運転時に、レシーバ及び第3弁をバイパスする第2流路に冷媒を流すことができる。このため、液冷媒の密度が低くなりすぎることを抑制しつつ、冷媒量検知運転を行うことができる。 In the heat source unit according to the sixth aspect, the refrigerant can flow through the second channel that bypasses the receiver and the third valve during the refrigerant amount detection operation. Therefore, the refrigerant amount detection operation can be performed while preventing the density of the liquid refrigerant from becoming too low.
 第7観点に係る熱源ユニットは、第5観点または第6観点の熱源ユニットであって、第2流路と、第2弁と、をさらに備える。第2流路は、第1熱交換器と接続され、レシーバをバイパスする。第2弁は、第2流路を開閉する。冷媒量検知運転時には、第1弁が開いた後に、第2弁が開くとともに、第3弁の開度が小さくなる。 The heat source unit according to the seventh aspect is the heat source unit according to the fifth aspect or sixth aspect, further comprising a second flow path and a second valve. A second flow path is connected to the first heat exchanger and bypasses the receiver. The second valve opens and closes the second flow path. During the refrigerant amount detection operation, after the first valve is opened, the second valve is opened and the degree of opening of the third valve is reduced.
 第7観点に係る熱源ユニットでは、第1弁が開くことによって、レシーバ内の液冷媒を押し出した後に、第2弁が開くことによって、レシーバ内に液冷媒が溜まることを抑制できるとともに、第3弁の開度が小さくなることによって、液冷媒の密度が低くなりすぎることを抑制できる。このため、液冷媒の密度を保ちつつ、冷媒量を検知することができる。 In the heat source unit according to the seventh aspect, the first valve is opened to push out the liquid refrigerant in the receiver, and then the second valve is opened to suppress accumulation of the liquid refrigerant in the receiver. By reducing the degree of opening of the valve, it is possible to prevent the density of the liquid refrigerant from becoming too low. Therefore, the amount of refrigerant can be detected while maintaining the density of the liquid refrigerant.
 第8観点に係る熱源ユニットは、第1観点から第7観点の熱源ユニットであって、冷媒量検知運転は、第1熱交換器を凝縮器として用いるときの凝縮器出口温度、冷媒回路の高圧、冷媒回路の低圧、レシーバの出口温度、外気温、蒸発温度、及び圧縮機の回転数の少なくとも1つを用いて、冷媒量の検知を行う。 A heat source unit according to an eighth aspect is the heat source unit according to the first aspect to the seventh aspect, wherein the refrigerant amount detection operation is performed by using the condenser outlet temperature when the first heat exchanger is used as a condenser, the high pressure of the refrigerant circuit, , the low pressure of the refrigerant circuit, the outlet temperature of the receiver, the outside air temperature, the evaporation temperature, and the number of revolutions of the compressor are used to detect the amount of refrigerant.
 第8観点に係る熱源ユニットでは、凝縮器出口温度、高圧、低圧、レシーバの出口温度、外気温、蒸発温度、及び圧縮機の回転数の少なくとも1つを用いて、冷媒量を検知するので、冷媒量検知運転を容易に実現できる。 In the heat source unit according to the eighth aspect, the amount of refrigerant is detected using at least one of the condenser outlet temperature, high pressure, low pressure, receiver outlet temperature, outside air temperature, evaporation temperature, and compressor rotation speed, Refrigerant amount detection operation can be easily realized.
 第9観点に係る冷凍装置は、第1観点から第8観点の熱源ユニットと、利用ユニットと、を備える。利用ユニットは、熱源ユニットと接続され、第2熱交換器を含む。 A refrigeration apparatus according to the ninth aspect includes the heat source unit and the utilization unit of the first to eighth aspects. The utilization unit is connected to the heat source unit and includes a second heat exchanger.
 第9観点の冷凍装置では、上記熱源ユニットを備えているので、冷媒量検知運転の頻度を上げても、レシーバ外殻の結露、配管接続部への熱応力作用などの現象を減らす冷凍装置を実現できる。 The refrigeration system of the ninth aspect is equipped with the heat source unit described above. Therefore, even if the frequency of the refrigerant amount detection operation is increased, phenomena such as dew condensation on the outer shell of the receiver and thermal stress acting on the pipe joints can be reduced. realizable.
実施形態に係る冷凍装置の概略構成図である。1 is a schematic configuration diagram of a refrigeration system according to an embodiment; FIG. 実施形態に係る冷凍の制御ブロック図である。It is a control block diagram of refrigeration according to the embodiment. 通常運転の冷却運転における動作(冷媒の流れ)を示す図である。FIG. 4 is a diagram showing the operation (refrigerant flow) in cooling operation of normal operation; 冷媒量検知運転における動作(冷媒の流れ)を示す図である。FIG. 4 is a diagram showing the operation (refrigerant flow) in the refrigerant amount detection operation; 冷媒量検知運転における動作(冷媒の流れ)を示す図である。FIG. 4 is a diagram showing the operation (refrigerant flow) in the refrigerant amount detection operation; 冷媒量検知運転のフローチャートである。4 is a flow chart of a refrigerant amount detection operation;
 本開示の一実施形態に係る冷凍装置について、図面を参照しながら説明する。 A refrigerating device according to an embodiment of the present disclosure will be described with reference to the drawings.
 (1)冷凍装置
 (1-1)全体構成
 図1に示すように、冷凍装置1は、蒸気圧縮式の冷凍サイクルによって、低温倉庫、輸送コンテナ、店舗のショーケース等の庫内の冷却を行う装置である。
(1) Refrigeration Equipment (1-1) Overall Configuration As shown in FIG. 1, a refrigeration equipment 1 cools the inside of a low-temperature warehouse, a shipping container, a showcase of a store, etc. by means of a vapor compression refrigeration cycle. It is a device.
 冷凍装置1は、主として、熱源ユニット2と、利用ユニット5と、連絡配管6、7と、制御部8と、を有している。連絡配管6、7は、熱源ユニット2と利用ユニット5とを接続する。制御部8は、熱源ユニット2及び利用ユニット5の構成機器を制御する。そして、冷凍装置1の蒸気圧縮式の冷媒回路10は、熱源ユニット2と、利用ユニット5と、連絡配管6、7とが接続されることによって構成されている。 The refrigerator 1 mainly has a heat source unit 2, a utilization unit 5, connecting pipes 6 and 7, and a control section 8. Communication pipes 6 and 7 connect the heat source unit 2 and the utilization unit 5 . The controller 8 controls components of the heat source unit 2 and the utilization unit 5 . A vapor compression refrigerant circuit 10 of the refrigeration system 1 is configured by connecting the heat source unit 2 , the utilization unit 5 , and the connection pipes 6 and 7 .
 冷凍装置1は、通常運転と、冷媒量検知運転と、を行うことが可能に構成されている。冷媒量検知運転は、冷媒回路10内の冷媒量を検知するための冷凍サイクル運転である。通常運転は、冷媒量判定運転以外の運転である。また、通常運転は、利用ユニット5から要求される熱負荷に応じた冷凍サイクル運転である。ここでは、通常運転は、庫内の冷却を行う冷却運転と、庫内の加熱を行う加熱運転と、を含む。 The refrigeration system 1 is configured to be able to perform normal operation and refrigerant amount detection operation. The refrigerant amount detection operation is a refrigeration cycle operation for detecting the amount of refrigerant in the refrigerant circuit 10 . Normal operation is operation other than refrigerant amount determination operation. Also, the normal operation is a refrigeration cycle operation corresponding to the heat load requested by the utilization unit 5 . Here, the normal operation includes a cooling operation for cooling the inside of the refrigerator and a heating operation for heating the inside of the refrigerator.
 (1-2)機器の詳細構成
 (1-2-1)熱源ユニット
 熱源ユニット2は、屋外に設置されている。熱源ユニット2は、上記のように、連絡配管6、7を介して利用ユニット5に接続されており、冷凍サイクルを行う冷媒回路10の一部を構成している。
(1-2) Detailed Configuration of Equipment (1-2-1) Heat Source Unit The heat source unit 2 is installed outdoors. As described above, the heat source unit 2 is connected to the utilization unit 5 via the connecting pipes 6 and 7, and constitutes a part of the refrigerant circuit 10 that performs the refrigeration cycle.
 次に、熱源ユニット2の構成について説明する。熱源ユニット2は、主として、圧縮機21と、四路切換弁22と、アキュムレータ23と、第1熱交換器24と、第1ファン25と、レシーバ26と、分岐配管27と、過冷却膨張弁28と、過冷却熱交換器29と、第1弁V1と、第2弁V2と、第3弁V3と、第1流路P1と、第2流路P2と、を有している。 Next, the configuration of the heat source unit 2 will be described. The heat source unit 2 mainly includes a compressor 21, a four-way switching valve 22, an accumulator 23, a first heat exchanger 24, a first fan 25, a receiver 26, a branch pipe 27, and a supercooling expansion valve. 28, a subcooling heat exchanger 29, a first valve V1, a second valve V2, a third valve V3, a first flow path P1, and a second flow path P2.
 圧縮機21は、低圧の冷媒を高圧になるまで圧縮する機器である。圧縮機21として、例えば、インバータにより回転数が制御されるモータよって駆動される容積式圧縮機を用いることができる。 The compressor 21 is a device that compresses low-pressure refrigerant to high pressure. As the compressor 21, for example, a positive displacement compressor driven by a motor whose rotational speed is controlled by an inverter can be used.
 圧縮機21は、吸入側に吸入管21aが接続されており、吐出側に吐出管21bが接続されている。吸入管21aは、圧縮機21の吸入側と四路切換弁22とを接続する冷媒管である。吐出管21bは、圧縮機21の吐出側と四路切換弁22とを接続する冷媒管である。 The compressor 21 has a suction pipe 21a connected to the suction side and a discharge pipe 21b connected to the discharge side. The suction pipe 21 a is a refrigerant pipe that connects the suction side of the compressor 21 and the four-way switching valve 22 . The discharge pipe 21 b is a refrigerant pipe that connects the discharge side of the compressor 21 and the four-way switching valve 22 .
 吸入管21aには、アキュムレータ23が接続されている。アキュムレータ23は、流入した冷媒を液冷媒とガス冷媒とに分離し、ガス冷媒のみを圧縮機21の吸入側へ流す。 An accumulator 23 is connected to the intake pipe 21a. The accumulator 23 separates the inflowing refrigerant into liquid refrigerant and gas refrigerant, and allows only the gas refrigerant to flow to the suction side of the compressor 21 .
 四路切換弁22は、冷媒の流路を切り換えるための弁である。四路切換弁22は、冷却運転時には、圧縮機21の吐出管21bと、第1熱交換器24のガス側のガス冷媒管24aとを接続する(図1の四路切換弁22の実線を参照)。これにより、第1熱交換器24が圧縮機21によって圧縮された冷媒の凝縮器として機能し、かつ、第2熱交換器52が第1熱交換器24において凝縮された冷媒の蒸発器として機能する。また、四路切換弁22は、加熱運転時には、圧縮機21の吐出管21bとガス側の連絡配管7とを接続するとともに、圧縮機21の吸入管21aと、第1熱交換器24のガス側のガス冷媒管24aとを接続する(図1の四路切換弁22の点線を参照)。これにより、第2熱交換器52が圧縮機21によって圧縮された冷媒の凝縮器として機能し、かつ、第1熱交換器24が第2熱交換器52において凝縮された冷媒の蒸発器として機能する。 The four-way switching valve 22 is a valve for switching the refrigerant flow path. During cooling operation, the four-way switching valve 22 connects the discharge pipe 21b of the compressor 21 and the gas-side gas refrigerant pipe 24a of the first heat exchanger 24 (the solid line of the four-way switching valve 22 in FIG. reference). Thereby, the first heat exchanger 24 functions as a condenser for the refrigerant compressed by the compressor 21, and the second heat exchanger 52 functions as an evaporator for the refrigerant condensed in the first heat exchanger 24. do. During heating operation, the four-way switching valve 22 connects the discharge pipe 21b of the compressor 21 and the communication pipe 7 on the gas side, side gas refrigerant pipe 24a (see the dotted line of the four-way switching valve 22 in FIG. 1). Thereby, the second heat exchanger 52 functions as a condenser for the refrigerant compressed by the compressor 21, and the first heat exchanger 24 functions as an evaporator for the refrigerant condensed in the second heat exchanger 52. do.
 第1熱交換器24は、空気と冷媒とを熱交換するための機器である。第1熱交換器24は、冷却運転時には冷媒の凝縮器として機能し、加熱運転時には冷媒の蒸発器として機能する。第1熱交換器24として、例えば、クロスフィン式のフィン・アンド・チューブ型熱交換器を用いることができる。ただし、第1熱交換器24は、これに限定されず、他の型式の熱交換器であっても良い。 The first heat exchanger 24 is a device for exchanging heat between air and refrigerant. The first heat exchanger 24 functions as a refrigerant condenser during cooling operation, and functions as a refrigerant evaporator during heating operation. As the first heat exchanger 24, for example, a cross-fin fin-and-tube heat exchanger can be used. However, the first heat exchanger 24 is not limited to this, and may be another type of heat exchanger.
 第1熱交換器24のガス側にガス冷媒管24aが接続されており、液側に液冷媒管24bが接続されている。ガス冷媒管24aは、四路切換弁22と、第1熱交換器24のガス側端とを接続する冷媒管である。液冷媒管24bは、第1熱交換器24の液側端と液側の連絡配管6とを接続する冷媒管である。なお、液冷媒管24bは、冷却運転時に冷媒が通る流路である。 A gas refrigerant pipe 24a is connected to the gas side of the first heat exchanger 24, and a liquid refrigerant pipe 24b is connected to the liquid side. The gas refrigerant pipe 24 a is a refrigerant pipe that connects the four-way switching valve 22 and the gas side end of the first heat exchanger 24 . The liquid refrigerant pipe 24b is a refrigerant pipe that connects the liquid side end of the first heat exchanger 24 and the liquid side communication pipe 6 . The liquid refrigerant pipe 24b is a flow path through which the refrigerant passes during the cooling operation.
 第1ファン25は、熱源ユニット2内に室外空気を吸入して、第1熱交換器24において冷媒と熱交換させた後に、外部に排出する。第1ファン25として、例えば、DCファンモータ等からなるモータによって駆動される遠心ファンや多翼ファン等を用いることができる。 The first fan 25 sucks outdoor air into the heat source unit 2, exchanges heat with the refrigerant in the first heat exchanger 24, and then discharges the air to the outside. As the first fan 25, for example, a centrifugal fan, a multi-blade fan, or the like driven by a motor such as a DC fan motor can be used.
 レシーバ26は、冷媒回路10における余剰冷媒を貯留する冷媒容器である。レシーバ26は、運転状態の変化により蒸発器内や凝縮器内の冷媒量が変化したときに、液冷媒を貯留して冷媒回路10を循環する冷媒量を調整する。レシーバ26は、第1熱交換器24と過冷却熱交換器29との間に配置されている。 The receiver 26 is a refrigerant container that stores surplus refrigerant in the refrigerant circuit 10 . The receiver 26 stores liquid refrigerant and adjusts the amount of refrigerant circulating in the refrigerant circuit 10 when the amount of refrigerant in the evaporator or the condenser changes due to changes in operating conditions. A receiver 26 is arranged between the first heat exchanger 24 and the subcooling heat exchanger 29 .
 分岐配管27と、過冷却膨張弁28と、過冷却熱交換器29とは、過冷却回路を構成している。 The branch pipe 27, the supercooling expansion valve 28, and the supercooling heat exchanger 29 constitute a supercooling circuit.
 分岐配管27は、過冷却熱交換器29と第3弁V3との間の液冷媒管24bと、圧縮機21の吸入側と、を接続している。分岐配管27は、冷却運転時に過冷却熱交換器29を出た冷媒の一部を分岐して圧縮機21に送る。 The branch pipe 27 connects the liquid refrigerant pipe 24b between the supercooling heat exchanger 29 and the third valve V3 and the suction side of the compressor 21. The branch pipe 27 branches a portion of the refrigerant that has exited the supercooling heat exchanger 29 during the cooling operation and sends the branch to the compressor 21 .
 過冷却膨張弁28は、分岐配管27に配置されている。詳細には、過冷却膨張弁28は、分岐配管27上において、第3弁V3と過冷却熱交換器29との間に配置されている。過冷却膨張弁28は、過冷却熱交換器29から出た冷媒を、過冷却熱交換器29を入口から入る冷媒の冷却源とするために減圧する。ここでは、過冷却膨張弁28は、開度の調整ができる電動膨張弁である。 The supercooling expansion valve 28 is arranged on the branch pipe 27 . Specifically, the supercooling expansion valve 28 is arranged between the third valve V3 and the supercooling heat exchanger 29 on the branch pipe 27 . The subcooling expansion valve 28 reduces the pressure of the refrigerant exiting the subcooling heat exchanger 29 so that the subcooling heat exchanger 29 serves as a cooling source for the refrigerant entering from the inlet. Here, the supercooling expansion valve 28 is an electric expansion valve whose opening degree can be adjusted.
 過冷却熱交換器29は、過冷却膨張弁28よりも下流側の分岐配管27を流れる冷媒と、第1熱交換器24の下流側の液冷媒管24bを流れる冷媒とを熱交換するための機器である。過冷却熱交換器29において、分岐配管27に入り、過冷却膨張弁28で減圧された冷媒は、第1熱交換器24を出た冷媒を冷却する。このように、過冷却熱交換器29は、第1熱交換器24を凝縮器として用いる冷却運転時に、第1熱交換器24から出た冷媒を冷やす。過冷却熱交換器29として、例えば、プレート式、二重管式などの熱交換器を用いることができる。 The supercooling heat exchanger 29 exchanges heat between the refrigerant flowing through the branch pipe 27 on the downstream side of the supercooling expansion valve 28 and the refrigerant flowing through the liquid refrigerant pipe 24b on the downstream side of the first heat exchanger 24. Equipment. In the supercooling heat exchanger 29 , the refrigerant that has entered the branch pipe 27 and has been decompressed by the supercooling expansion valve 28 cools the refrigerant that has exited the first heat exchanger 24 . Thus, the subcooling heat exchanger 29 cools the refrigerant discharged from the first heat exchanger 24 during cooling operation using the first heat exchanger 24 as a condenser. As the supercooling heat exchanger 29, for example, a plate-type or double-tube heat exchanger can be used.
 第1流路P1は、第1熱交換器24をバイパスして、圧縮機21の吐出側とレシーバ26とを接続する。第1流路P1は、冷媒量検知運転時に、第1熱交換器24をバイパスして、圧縮機21から吐出された冷媒をレシーバ26に送る配管である。なお、図1では、第1流路P1は、吐出管21bを含む。冷媒量検知運転時には、第1流路P1に冷媒が流れ、通常運転時には、第1流路P1に冷媒が流れない。本実施形態では、冷媒量検知運転時には、第1流路P1に冷媒が流れ、冷却運転時及び加熱運転時には、第1流路P1に冷媒が流れない。 The first flow path P1 bypasses the first heat exchanger 24 and connects the discharge side of the compressor 21 and the receiver 26 . The first flow path P1 is a pipe that bypasses the first heat exchanger 24 and sends the refrigerant discharged from the compressor 21 to the receiver 26 during the refrigerant amount detection operation. In addition, in FIG. 1, the 1st flow path P1 contains the discharge pipe 21b. Refrigerant flows through the first flow path P1 during refrigerant amount detection operation, and does not flow through the first flow path P1 during normal operation. In this embodiment, the refrigerant flows through the first flow path P1 during the refrigerant amount detection operation, and does not flow through the first flow path P1 during the cooling operation and the heating operation.
 第1流路P1には、第1流路P1を開閉する第1弁V1が配置されている。第1弁V1は、例えば、電動弁、電磁弁などである。ここでは、第1弁V1は、開度の調整ができない電動弁である。冷媒量検知運転時に、第1弁V1は開き、通常運転時に、第1弁V1は閉じる。本実施形態では、冷媒量検知運転時に、第1弁V1は開き、冷却運転時及び加熱運転時に、第1弁V1は閉じる。 A first valve V1 for opening and closing the first flow path P1 is arranged in the first flow path P1. The first valve V1 is, for example, an electric valve, an electromagnetic valve, or the like. Here, the first valve V1 is an electrically operated valve whose opening cannot be adjusted. The first valve V1 is open during the refrigerant amount detection operation, and is closed during the normal operation. In this embodiment, the first valve V1 is opened during the refrigerant amount detection operation, and closed during the cooling operation and the heating operation.
 第2流路P2は、第1熱交換器24と接続され、レシーバ26をバイパスする。第2流路P2は、冷媒量検知運転時に、第1熱交換器24を通った冷媒を、レシーバ26を通らずに、連絡配管6に送るための配管である。第2流路P2は、冷媒量検知運転時に、第1熱交換器24の下流側に設けられる。本実施形態では、第2流路P2は、冷媒量検知運転時の冷媒流れにおいて、第1熱交換器24と、過冷却熱交換器29の下流側の配管とを接続して、過冷却熱交換器29をさらにバイパスする。第2流路P2は、第3弁V3をさらにバイパスする。 The second flow path P2 is connected to the first heat exchanger 24 and bypasses the receiver 26. The second flow path P2 is a pipe for sending the refrigerant that has passed through the first heat exchanger 24 to the communication pipe 6 without passing through the receiver 26 during the refrigerant amount detection operation. The second flow path P2 is provided downstream of the first heat exchanger 24 during the refrigerant amount detection operation. In the present embodiment, the second flow path P2 connects the first heat exchanger 24 and a pipe on the downstream side of the supercooling heat exchanger 29 in the refrigerant flow during the refrigerant amount detection operation to Exchanger 29 is also bypassed. The second flow path P2 further bypasses the third valve V3.
 第2流路P2には、第2弁V2が配置されている。第2弁V2は、例えば、電動弁、電磁弁などである。ここでは、第2弁V2は、開度の調整ができない電動弁である。第2弁V2は、第2流路P2を開閉する。冷媒量検知運転時に、第2弁V2は開き、通常運転時に、第2弁V2は閉じる。 A second valve V2 is arranged in the second flow path P2. The second valve V2 is, for example, an electric valve, an electromagnetic valve, or the like. Here, the second valve V2 is an electrically operated valve whose opening cannot be adjusted. The second valve V2 opens and closes the second flow path P2. The second valve V2 is opened during refrigerant amount detection operation, and closed during normal operation.
 第3弁V3は、通常運転(本実施形態では冷却運転)時に、レシーバ26の下流側に配置される。ここでは、第3弁V3は、通常運転(本実施形態では冷却運転)時に、過冷却熱交換器29の下流側に配置される。第3弁V3は、開度の調整ができる。ここでは、第3弁V3は、電動膨張弁である。 The third valve V3 is arranged downstream of the receiver 26 during normal operation (cooling operation in this embodiment). Here, the third valve V3 is arranged downstream of the subcooling heat exchanger 29 during normal operation (cooling operation in this embodiment). The degree of opening of the third valve V3 can be adjusted. Here, the third valve V3 is an electric expansion valve.
 冷媒量検知運転時に、第3弁V3の開度が小さくなる。本実施形態では、冷媒量検知運転において、第3弁V3は、最小開度である。通常運転時に、第3弁V3は、第1熱交換器24を流れる冷媒の流量の調整等を行う。冷媒量検知運転時の第3弁V3の開度は、通常運転時の第3弁V3の開度よりも小さい。ここでは、通常運転から冷媒量検知運転に切り替わった時に、第3弁V3の開度を小さくする。 The degree of opening of the third valve V3 decreases during the refrigerant amount detection operation. In this embodiment, the third valve V3 is at the minimum opening during the refrigerant amount detection operation. During normal operation, the third valve V3 adjusts the flow rate of the refrigerant flowing through the first heat exchanger 24, and the like. The degree of opening of the third valve V3 during refrigerant amount detection operation is smaller than the degree of opening of the third valve V3 during normal operation. Here, the degree of opening of the third valve V3 is reduced when the normal operation is switched to the refrigerant amount detection operation.
 冷媒量検知運転時には、第1弁V1が開いた後に、第2弁V2が開くとともに、第3弁V3の開度が小さくなる。 During the refrigerant amount detection operation, after the first valve V1 opens, the second valve V2 opens and the opening degree of the third valve V3 decreases.
 また、熱源ユニット2には、複数の逆止弁V4~V9が設けられている。具体的には、第1逆止弁V4は、第1熱交換器24の冷媒流れ下流側において、レシーバ26の冷媒流れ上流側に配置されている。また、第1逆止弁V4は、液冷媒管24bに設けられている。第1逆止弁V4は、第1熱交換器24側からの冷媒の流れを許容し、レシーバ26側からの冷媒の流れを遮断する。 Also, the heat source unit 2 is provided with a plurality of check valves V4 to V9. Specifically, the first check valve V4 is arranged downstream of the first heat exchanger 24 in the refrigerant flow and upstream of the receiver 26 in the refrigerant flow. Also, the first check valve V4 is provided in the liquid refrigerant pipe 24b. The first check valve V4 allows the flow of refrigerant from the first heat exchanger 24 side and blocks the flow of refrigerant from the receiver 26 side.
 第2逆止弁V5は、レシーバ26と第1熱交換器24との間に配置されている。第2逆止弁V5は、レシーバ26側からの冷媒の流れを許容し、第1熱交換器24側からの冷媒の流れを遮断する。 The second check valve V5 is arranged between the receiver 26 and the first heat exchanger 24. The second check valve V5 allows the flow of refrigerant from the receiver 26 side and blocks the flow of refrigerant from the first heat exchanger 24 side.
 第3逆止弁V6は、加熱運転時に、過冷却熱交換器29をバイパスする冷媒配管に設けられている。第3逆止弁V6は、第1閉鎖弁31側からの冷媒の流れを許容し、第1熱交換器24側からの冷媒の流れを遮断する。 The third check valve V6 is provided in the refrigerant pipe that bypasses the subcooling heat exchanger 29 during heating operation. The third check valve V6 allows the flow of refrigerant from the first stop valve 31 side and blocks the flow of refrigerant from the first heat exchanger 24 side.
 第4逆止弁V7は、第3弁V3と第1閉鎖弁31との間に配置されている。第4逆止弁V7は、第3弁V3側からの冷媒の流れを許容し、第1閉鎖弁31側からの冷媒の流れを遮断する。 The fourth check valve V7 is arranged between the third valve V3 and the first closing valve 31. The fourth check valve V7 permits the flow of refrigerant from the third valve V3 side and blocks the flow of refrigerant from the first stop valve 31 side.
 第5逆止弁V8は、四路切換弁22とアキュムレータ23との間に配置されている。第5逆止弁V8は、四路切換弁22側からの冷媒の流れを許容し、アキュムレータ23側からの冷媒の流れを遮断する。 The fifth check valve V8 is arranged between the four-way switching valve 22 and the accumulator 23. The fifth check valve V8 allows the flow of refrigerant from the four-way switching valve 22 side and blocks the flow of refrigerant from the accumulator 23 side.
 第6逆止弁V9は、圧縮機21と四路切換弁22との間に配置されている。第6逆止弁V9は、圧縮機21側からの冷媒の流れを許容し、四路切換弁22側からの冷媒の流れを遮断する。 The sixth check valve V9 is arranged between the compressor 21 and the four-way switching valve 22. The sixth check valve V9 permits the flow of refrigerant from the compressor 21 side and blocks the flow of refrigerant from the four-way switching valve 22 side.
 また、熱源ユニット2には、閉鎖弁31、32が設けられている。第1閉鎖弁31は、熱源ユニット2と連絡配管6との接続部に設けられている。第2閉鎖弁32は、熱源ユニット2と連絡配管7との接続部に設けられている。第1閉鎖弁31及び第2閉鎖弁32は、手動で開閉される弁である。ここでは、第1閉鎖弁31には液冷媒が流れ、第2閉鎖弁32にはガス冷媒が流れる。 Also, the heat source unit 2 is provided with closing valves 31 and 32 . The first shut-off valve 31 is provided at the connecting portion between the heat source unit 2 and the connecting pipe 6 . The second shutoff valve 32 is provided at the connecting portion between the heat source unit 2 and the connecting pipe 7 . The first shut-off valve 31 and the second shut-off valve 32 are valves that are manually opened and closed. Here, liquid refrigerant flows through the first closing valve 31 and gas refrigerant flows through the second closing valve 32 .
 また、熱源ユニット2には、各種のセンサが設けられている。具体的には、図1及び図2に示すように、熱源ユニット2には、吸入圧力センサ41、吐出圧力センサ42、吸入温度センサ43、吐出温度センサ44、室外温度センサ45、第1熱交換器出口温度センサ46、過冷却熱交換器出口温度センサ47及びレシーバ出口温度センサ48が設けられている。吸入圧力センサ41は、圧縮機21の吸入圧力を検出する。吐出圧力センサ42は、圧縮機21の吐出圧力を検出する。吸入温度センサ43は、圧縮機21の吸入温度を検出する。吐出温度センサ44は、圧縮機21の吐出温度を検出する。室外温度センサ45は、熱源ユニット2内に流入する室外空気の温度を検出する。第1熱交換器出口温度センサ46は、第1熱交換器を凝縮器として用いるときの凝縮器の出口温度を検出する。過冷却熱交換器出口温度センサ47は、第1熱交換器24を凝縮器として用いるときの過冷却熱交換器29の出口温度を検出する。レシーバ出口温度センサ48は、レシーバ26の出口温度を検出する。 Also, the heat source unit 2 is provided with various sensors. Specifically, as shown in FIGS. 1 and 2, the heat source unit 2 includes a suction pressure sensor 41, a discharge pressure sensor 42, a suction temperature sensor 43, a discharge temperature sensor 44, an outdoor temperature sensor 45, and a first heat exchange sensor. A vessel outlet temperature sensor 46, a subcooling heat exchanger outlet temperature sensor 47 and a receiver outlet temperature sensor 48 are provided. A suction pressure sensor 41 detects the suction pressure of the compressor 21 . A discharge pressure sensor 42 detects the discharge pressure of the compressor 21 . A suction temperature sensor 43 detects the suction temperature of the compressor 21 . A discharge temperature sensor 44 detects the discharge temperature of the compressor 21 . The outdoor temperature sensor 45 detects the temperature of outdoor air flowing into the heat source unit 2 . A first heat exchanger outlet temperature sensor 46 detects the outlet temperature of the condenser when the first heat exchanger is used as the condenser. A supercooling heat exchanger outlet temperature sensor 47 detects the outlet temperature of the supercooling heat exchanger 29 when the first heat exchanger 24 is used as a condenser. Receiver outlet temperature sensor 48 detects the outlet temperature of receiver 26 .
 (1-2-2)利用ユニット
 利用ユニット5は、庫内を冷却する庫内ユニットである。利用ユニット5は、連絡配管6、7を介して熱源ユニット2に接続されており、冷媒回路10の一部を構成する。
(1-2-2) Usage Unit The usage unit 5 is an internal unit that cools the interior of the refrigerator. The utilization unit 5 is connected to the heat source unit 2 via connecting pipes 6 and 7 and forms part of the refrigerant circuit 10 .
 利用ユニット5は、主として、利用側膨張弁51と、第2熱交換器52と、第2ファン53と、を有している。 The usage unit 5 mainly has a usage side expansion valve 51 , a second heat exchanger 52 and a second fan 53 .
 利用側膨張弁51は、第2熱交換器52の液側に接続された電動膨張弁等であり、第2熱交換器52を流れる冷媒の流量の調整等を行う。また、利用側膨張弁51は、冷媒の通過を遮断することも可能である。 The user-side expansion valve 51 is an electric expansion valve or the like connected to the liquid side of the second heat exchanger 52 and adjusts the flow rate of the refrigerant flowing through the second heat exchanger 52 . Also, the user-side expansion valve 51 can block passage of the refrigerant.
 第2熱交換器52は、庫内の空気と冷媒とを熱交換するための機器である。第2熱交換器52は、冷却運転時には冷媒の蒸発器として機能し、庫内の空気を冷却する。また、第2熱交換器52は、加熱運転時には冷媒の凝縮器として機能し、庫内の空気を加熱する。第2熱交換器52として、例えば、伝熱管と多数のフィンとにより構成されたクロスフィン式のフィン・アンド・チューブ型熱交換器を用いることができる。ただし、第2熱交換器52は、これに限定されず、他の型式の熱交換器であっても良い。 The second heat exchanger 52 is a device for exchanging heat between the air inside the refrigerator and the refrigerant. The second heat exchanger 52 functions as a refrigerant evaporator during the cooling operation, and cools the air inside the refrigerator. Further, the second heat exchanger 52 functions as a refrigerant condenser during the heating operation, and heats the air in the refrigerator. As the second heat exchanger 52, for example, a cross-fin type fin-and-tube heat exchanger composed of heat transfer tubes and a large number of fins can be used. However, the second heat exchanger 52 is not limited to this, and may be another type of heat exchanger.
 第2ファン53は、利用ユニット5内に空気を吸入するとともに、第2熱交換器52で冷媒と熱交換された空気を庫内に供給する。第2ファン53として、例えば、DCファンモータ等からなるモータによって駆動される遠心ファンや多翼ファン等を用いることができる。 The second fan 53 sucks air into the usage unit 5 and supplies the air heat-exchanged with the refrigerant in the second heat exchanger 52 into the refrigerator. As the second fan 53, for example, a centrifugal fan or a multi-blade fan driven by a motor such as a DC fan motor can be used.
 また、利用ユニット5には、各種のセンサが設けられている。具体的には、利用ユニット5には、庫内温度センサ54、図2に示す第2熱交換器入口温度センサ55及び第2熱交換器出口温度センサ56が設けられている。庫内温度センサ54は、利用ユニット5に流入する空気の温度(庫内温度)を検出する。第2熱交換器入口温度センサ55は、第2熱交換器52の入口(冷却運転時には液液側)の冷媒の温度を検出する。第2熱交換器出口温度センサ56は、第2熱交換器52の出口(冷却運転時にはガス側)の冷媒の温度を検出する。 Also, the usage unit 5 is provided with various sensors. Specifically, the utilization unit 5 is provided with an in-chamber temperature sensor 54, a second heat exchanger inlet temperature sensor 55, and a second heat exchanger outlet temperature sensor 56 shown in FIG. The in-chamber temperature sensor 54 detects the temperature of the air flowing into the utilization unit 5 (in-chamber temperature). A second heat exchanger inlet temperature sensor 55 detects the temperature of the refrigerant at the inlet of the second heat exchanger 52 (on the liquid-liquid side during cooling operation). A second heat exchanger outlet temperature sensor 56 detects the temperature of the refrigerant at the outlet of the second heat exchanger 52 (on the gas side during cooling operation).
 (1-2-3)連絡配管
 連絡配管6、7は、冷凍装置1を設置場所に設置する際に、現地にて施工される冷媒管である。連絡配管6、7は、熱源ユニット2と利用ユニット5との組み合わせや設置場所等の条件に応じて長さや管径が異なるものである。このため、例えば、新規に空気調和装置を設置する場合には、連絡配管6、7の長さや管径等の条件に応じた適正な量の冷媒を充填する必要がある。ここでは、連絡配管6には液冷媒が流れ、連絡配管7にはガス冷媒が流れる。
(1-2-3) Connecting Pipes Connecting pipes 6 and 7 are refrigerant pipes that are installed on site when the refrigeration system 1 is installed at the installation site. The connecting pipes 6 and 7 have different lengths and pipe diameters depending on conditions such as the combination of the heat source unit 2 and the utilization unit 5 and the installation location. For this reason, for example, when installing a new air conditioner, it is necessary to fill an appropriate amount of refrigerant according to conditions such as the length and diameter of the connecting pipes 6 and 7 . Here, liquid refrigerant flows through the connecting pipe 6 and gas refrigerant flows through the connecting pipe 7 .
 (1-3)制御の詳細構成
 図2に示すように、冷凍装置1は、構成機器の運転制御を行うために、第1制御部81と第2制御部82とリモコン60とが伝送線や通信線を介して接続された制御部8を備えている。第1制御部81は、熱源ユニット2に設けられている。第2制御部82は、利用ユニット5に設けられている。なお、ここでは、第1制御部81、第2制御部82及びリモコン60が伝送線や通信線を介して有線接続されているが、無線接続されていてもよい。
(1-3) Detailed Configuration of Control As shown in FIG. It has a control unit 8 connected via a communication line. The first controller 81 is provided in the heat source unit 2 . The second control section 82 is provided in the usage unit 5 . Here, the first controller 81, the second controller 82, and the remote controller 60 are wiredly connected via a transmission line or a communication line, but may be wirelessly connected.
 冷凍装置1の第1制御部81、第2制御部82及びリモコン60の制御装置は、各種演算及び処理を行い、例えば、CPUなどの演算処理装置により実現される。 The first control unit 81, the second control unit 82, and the control device of the remote controller 60 of the refrigeration apparatus 1 perform various calculations and processes, and are realized by a calculation processing device such as a CPU, for example.
 (1-3-1)第1制御部
 第1制御部81は、熱源ユニット2を構成する各部の動作を制御する。第1制御部81は、主として、第1CPU81aと、第1伝送部81bと、第1記憶部81cと、を有している。第1制御部81は、吸入圧力センサ41、吸入温度センサ43、吐出圧力センサ42、吐出温度センサ44、室外温度センサ45、第1熱交換器出口温度センサ46、過冷却熱交換器出口温度センサ47及びレシーバ出口温度センサ48の検出信号を受けることができるように構成されている。
(1-3-1) First Control Section The first control section 81 controls the operation of each section that configures the heat source unit 2 . The first control section 81 mainly has a first CPU 81a, a first transmission section 81b, and a first storage section 81c. The first control unit 81 includes a suction pressure sensor 41, a suction temperature sensor 43, a discharge pressure sensor 42, a discharge temperature sensor 44, an outdoor temperature sensor 45, a first heat exchanger outlet temperature sensor 46, and a supercooling heat exchanger outlet temperature sensor. 47 and receiver outlet temperature sensor 48.
 第1CPU81aは、第1伝送部81b及び第1記憶部81cに接続されている。第1伝送部81bは、第2制御部82との間で制御データ等の伝送を行う。第1記憶部81cは、制御データ等を記憶する。そして、第1CPU81aは、第1伝送部81b及び第1記憶部81cを介して、制御データ等の伝送及び読み書きを行いつつ、熱源ユニット2に設けられた構成機器としての圧縮機21、四路切換弁22、第1ファン25、第1弁V1、第2弁V2、第3弁V3、過冷却膨張弁28等の運転制御を行う。 The first CPU 81a is connected to the first transmission section 81b and the first storage section 81c. The first transmission section 81 b transmits control data and the like to and from the second control section 82 . The first storage unit 81c stores control data and the like. Then, the first CPU 81a transmits, reads and writes control data and the like via the first transmission section 81b and the first storage section 81c, and the compressor 21 and the four-way switching as components provided in the heat source unit 2. It controls the operation of the valve 22, the first fan 25, the first valve V1, the second valve V2, the third valve V3, the supercooling expansion valve 28, and the like.
 (1-3-2)第2制御部
 第2制御部82は、利用ユニット5を構成する各部の動作を制御する。第2制御部82は、主として、第2CPU82aと、第2伝送部82bと、第2記憶部82cと、第2通信部82dと、を有している。第2制御部82は、庫内温度センサ54、第2熱交換器入口温度センサ55及び第2熱交換器出口温度センサ56の検出信号を受けることができるように構成されている。
(1-3-2) Second Control Section The second control section 82 controls the operation of each section that configures the usage unit 5 . The second control section 82 mainly has a second CPU 82a, a second transmission section 82b, a second storage section 82c, and a second communication section 82d. The second control unit 82 is configured to receive detection signals from the inside temperature sensor 54 , the second heat exchanger inlet temperature sensor 55 and the second heat exchanger outlet temperature sensor 56 .
 第2CPU82aは、第2伝送部82b、第2記憶部82c及び第2通信部82dに接続されている。第2伝送部82bは、第1制御部81との間で制御データ等の伝送を行う。第2記憶部82cは、制御データ等を記憶する。第2通信部82dは、リモコン60との間で制御データ等の送受信を行う。そして、第2CPU82aは、第2伝送部82b、第2記憶部82c及び第2通信部82dを介して、制御データ等の伝送、読み書き及び送受信を行いつつ、利用ユニット5に設けられた構成機器としての第2ファン53、利用側膨張弁51等の運転制御を行う。 The second CPU 82a is connected to the second transmission section 82b, the second storage section 82c and the second communication section 82d. The second transmission section 82 b transmits control data and the like to and from the first control section 81 . The second storage unit 82c stores control data and the like. The second communication unit 82d transmits and receives control data and the like to and from the remote controller 60. FIG. The second CPU 82a transmits, reads, writes, and transmits/receives control data and the like via the second transmission section 82b, the second storage section 82c, and the second communication section 82d, and performs It controls the operation of the second fan 53, the user-side expansion valve 51, and the like.
 (1-3-3)リモコン
 リモコン60は、ユーザーが各種設定を入力するものである。リモコン60は、主として、リモコンCPU61と、リモコン記憶部62と、リモコン通信部63と、リモコン操作部64と、リモコン表示部65と、を有している。
(1-3-3) Remote Controller The remote controller 60 is used by the user to input various settings. The remote control 60 mainly includes a remote control CPU 61 , a remote control storage section 62 , a remote control communication section 63 , a remote control operation section 64 and a remote control display section 65 .
 リモコンCPU61は、リモコン記憶部62、リモコン通信部63、リモコン操作部64及びリモコン表示部65に接続されている。リモコン記憶部62は、制御データ等を記憶する。リモコン通信部63は、第2通信部82dとの間で制御データ等の送受信を行う。リモコン操作部64は、ユーザーからの制御指令等の入力を受け付ける。リモコン表示部65は、運転表示等を行う。そして、リモコンCPU61は、リモコン操作部64を介して運転指令や制御指令等の入力を受け付けて、リモコン記憶部62に制御データ等の読み書きを行い、リモコン表示部65に運転状態や制御状態の表示等を行いつつ、リモコン通信部63を介して、第2制御部82に制御指令等を行う。 The remote controller CPU 61 is connected to the remote controller storage unit 62 , the remote controller communication unit 63 , the remote controller operation unit 64 and the remote controller display unit 65 . The remote controller storage unit 62 stores control data and the like. The remote control communication unit 63 transmits and receives control data and the like to and from the second communication unit 82d. A remote control operation unit 64 receives an input such as a control command from a user. The remote control display unit 65 displays operation and the like. The remote control CPU 61 receives input of operation commands, control commands, etc. via the remote control operation unit 64 , reads and writes control data, etc. in the remote control storage unit 62 , and displays the operation state and control state on the remote control display unit 65 . While performing such operations, a control command or the like is issued to the second control unit 82 via the remote control communication unit 63 .
 このように、冷凍装置1は、構成機器の運転制御を行う制御部8を備えている。そして、制御部8は、吸入圧力センサ41、吸入温度センサ43、吐出圧力センサ42、吐出温度センサ44、室外温度センサ45、第1熱交換器出口温度センサ46、過冷却熱交換器出口温度センサ47、レシーバ出口温度センサ48、庫内温度センサ54、第2熱交換器入口温度センサ55及び第2熱交換器出口温度センサ56の検出信号等に基づいて構成機器としての圧縮機21、四路切換弁22、第1ファン25、過冷却膨張弁28、第1弁V1、第2弁V2、第3弁V3、第2ファン53、利用側膨張弁51等の制御を行い、冷却運転、加熱運転、冷媒量検知運転及び各種制御を行うことができるように構成されている。 As described above, the refrigeration system 1 includes the control unit 8 that controls the operation of the components. The controller 8 controls the intake pressure sensor 41, the intake temperature sensor 43, the discharge pressure sensor 42, the discharge temperature sensor 44, the outdoor temperature sensor 45, the first heat exchanger outlet temperature sensor 46, and the supercooling heat exchanger outlet temperature sensor. 47, a compressor 21, a four-way The switching valve 22, the first fan 25, the supercooling expansion valve 28, the first valve V1, the second valve V2, the third valve V3, the second fan 53, the user-side expansion valve 51, etc. are controlled, and the cooling operation and heating are performed. It is configured to be able to perform operation, refrigerant amount detection operation, and various controls.
 (1-3-4)第1制御部による通常運転及び冷媒量検知運転の制御
 第1制御部81は、通常運転と冷媒量検知運転とを切り換えて行うように制御する。第1制御部81は、通常運転時に、利用ユニット5からの熱負荷に応じて、各種機器21、22、25及び各種弁28、V1~V3を制御する。
(1-3-4) Control of Normal Operation and Refrigerant Amount Detection Operation by First Control Unit The first control unit 81 performs control so as to switch between normal operation and refrigerant amount detection operation. The first control unit 81 controls various devices 21, 22, 25 and various valves 28, V1 to V3 according to the heat load from the utilization unit 5 during normal operation.
 第1制御部81は、通常運転時に、第1弁V1を閉めて、第1流路P1に冷媒が流れないように制御する。 The first control unit 81 closes the first valve V1 during normal operation so that the refrigerant does not flow through the first flow path P1.
 また、第1制御部81は、通常運転時に、第2弁V2を閉めて、第2流路P2に冷媒が流れないように制御する。これにより、第1制御部81は、冷却運転時に、第1熱交換器24から、液冷媒管24bを通って、レシーバ26へ冷媒を流す。 Also, the first control unit 81 closes the second valve V2 during normal operation so that the refrigerant does not flow through the second flow path P2. Thereby, the first control unit 81 causes the refrigerant to flow from the first heat exchanger 24 to the receiver 26 through the liquid refrigerant pipe 24b during the cooling operation.
 また、第1制御部81は、利用ユニット5から要求される熱負荷に応じて、第3弁V3の開度を制御する。ここでは、第1制御部81は、冷却運転時には、第3弁V3を全開にする。 In addition, the first control unit 81 controls the degree of opening of the third valve V3 according to the heat load requested by the usage unit 5. Here, the first controller 81 fully opens the third valve V3 during the cooling operation.
 第1制御部81は、冷媒回路10内の冷媒量を検知するための冷媒量検知運転時に、第1弁V1を開ける。ここでは、第1制御部81は、冷媒量検知運転時に切り替わった時に、第1弁V1を開ける。これにより、第1制御部81は、第1流路P1に冷媒を流す。 The first control unit 81 opens the first valve V1 during the refrigerant amount detection operation for detecting the amount of refrigerant in the refrigerant circuit 10 . Here, the first control unit 81 opens the first valve V1 when switching to the refrigerant amount detection operation. Thereby, the first controller 81 causes the coolant to flow through the first flow path P1.
 また第1制御部81は、冷媒量検知運転時に、第2弁V2を開ける。これにより、第1制御部81は、第1熱交換器24から第2流路P2に冷媒を流す。ここでは、第1制御部81は、冷媒量検知運転時に、第1熱交換器24から、レシーバ26及び第3弁V3をバイパスする第2流路P2に冷媒を流す。 Also, the first control unit 81 opens the second valve V2 during the refrigerant amount detection operation. Thereby, the first controller 81 causes the refrigerant to flow from the first heat exchanger 24 to the second flow path P2. Here, the first control unit 81 causes the refrigerant to flow from the first heat exchanger 24 to the second flow path P2 that bypasses the receiver 26 and the third valve V3 during the refrigerant amount detection operation.
 また、第1制御部81は、冷媒量検知運転時に、第3弁V3の開度を小さくする。ここでは、第1制御部81は、冷媒量検知運転時に切り替わったときに、第3弁V3の開度を最小開度にする。 Also, the first control unit 81 reduces the degree of opening of the third valve V3 during the refrigerant amount detection operation. Here, the first control unit 81 sets the opening degree of the third valve V3 to the minimum opening degree when switching to the refrigerant amount detection operation.
 また、第1制御部81は、冷媒量検知運転時には、第1弁V1を開けた後に、第2弁V2を開くとともに、第3弁V3の開度を小さくする。 Further, during the refrigerant amount detection operation, the first control unit 81 opens the second valve V2 after opening the first valve V1, and reduces the opening degree of the third valve V3.
 また、第1制御部81は、冷媒量検知運転時に、第1熱交換器24を凝縮器として用いるときの凝縮器出口温度、冷媒回路10の高圧、冷媒回路10の低圧、レシーバ26の出口温度、外気温、蒸発温度、及び圧縮機21の回転数の少なくとも1つを用いて、冷媒量の検知を行う。なお、凝縮器出口温度は、第1熱交換器出口温度センサ46で検出される。冷媒回路10の高圧は、吐出圧力センサ42で検出される。冷媒回路10の低圧は、吸入圧力センサ41で検出される。レシーバ26の出口温度は、レシーバ出口温度センサ48で検出される。外気温は、室外温度センサ45で検出される。蒸発温度は、吸入圧力センサ41で検出された吸入圧力を冷媒の飽和温度に換算することによって得られる。圧縮機21の回転数は、圧縮機21から把握される。 Further, during the refrigerant amount detection operation, the first control unit 81 controls the condenser outlet temperature when the first heat exchanger 24 is used as a condenser, the high pressure of the refrigerant circuit 10, the low pressure of the refrigerant circuit 10, the outlet temperature of the receiver 26, and the , the ambient temperature, the evaporation temperature, and the rotation speed of the compressor 21 are used to detect the amount of refrigerant. The condenser outlet temperature is detected by the first heat exchanger outlet temperature sensor 46 . A high pressure in the refrigerant circuit 10 is detected by a discharge pressure sensor 42 . A low pressure in the refrigerant circuit 10 is detected by a suction pressure sensor 41 . The outlet temperature of receiver 26 is detected by receiver outlet temperature sensor 48 . The outdoor air temperature is detected by an outdoor temperature sensor 45 . The evaporation temperature is obtained by converting the suction pressure detected by the suction pressure sensor 41 into the saturation temperature of the refrigerant. The rotation speed of the compressor 21 is grasped from the compressor 21 .
 本実施形態では、凝縮器における冷媒の凝縮温度と凝縮器の出口温度との温度差である過冷却度(具体的には、吐出圧力センサ42で検出される冷媒の圧力を飽和温度に換算し、この飽和温度から第1熱交換器出口温度センサ46で検出される冷媒の温度を差し引いた温度差)を用いて、冷媒量検知運転を行う。 In this embodiment, the degree of subcooling, which is the temperature difference between the condensation temperature of the refrigerant in the condenser and the outlet temperature of the condenser (specifically, the pressure of the refrigerant detected by the discharge pressure sensor 42 is converted into the saturation temperature. , the temperature difference obtained by subtracting the temperature of the refrigerant detected by the first heat exchanger outlet temperature sensor 46 from the saturation temperature) is used to perform the refrigerant amount detection operation.
 (2)冷凍装置の動作
 次に、図1~図5を参照して、本実施形態の冷凍装置1の動作について説明する。冷凍装置1では、通常運転としての冷却運転及び加熱運転と、冷媒量検知運転とが行われる。以下、冷却運転及び冷媒量検知運転について説明する。なお、下記の冷凍装置1の動作は、冷凍装置1の機器構成を制御する第1制御部81及び第2制御部82を有する制御部8によって行われる。
(2) Operation of Refrigerating Device Next, the operation of the refrigerating device 1 of the present embodiment will be described with reference to FIGS. 1 to 5. FIG. In the refrigeration system 1, a cooling operation and a heating operation as normal operations and a refrigerant amount detection operation are performed. The cooling operation and the refrigerant amount detection operation will be described below. The operation of the refrigeration apparatus 1 described below is performed by a control section 8 having a first control section 81 and a second control section 82 that control the equipment configuration of the refrigeration apparatus 1 .
 (2-1)冷却運転
 冷却運転の動作について、図3を参照して説明する。冷却運転では、冷凍サイクルの低圧の値(吸入圧力センサ41の検出値)が一定値になるように圧縮機21の運転周波数が制御され、第2熱交換器52の出口の冷媒の過熱度が所定の目標値になるように、利用側膨張弁51の開度が調節される。
(2-1) Cooling Operation The operation of the cooling operation will be described with reference to FIG. In the cooling operation, the operating frequency of the compressor 21 is controlled so that the low pressure value of the refrigeration cycle (detected value of the suction pressure sensor 41) becomes a constant value, and the degree of superheat of the refrigerant at the outlet of the second heat exchanger 52 is The opening degree of the utilization side expansion valve 51 is adjusted so as to achieve a predetermined target value.
 冷却運転は、リモコン操作部64を介して冷却運転の指令を受け付けた制御部8が、熱源ユニット2及び利用ユニット5の構成機器としての圧縮機21、四路切換弁22、第1ファン25、第1弁V1、第2弁V2、第3弁V3、利用側膨張弁51、第2ファン53等を運転制御することによって行われる。 The cooling operation is performed by the control unit 8 that receives a cooling operation command via the remote control operation unit 64, and controls the compressor 21, the four-way switching valve 22, the first fan 25, This is performed by controlling the operations of the first valve V1, the second valve V2, the third valve V3, the user-side expansion valve 51, the second fan 53, and the like.
 図3に示すように、冷却運転時には、第1弁V1を閉めて、第1流路P1に冷媒を流さない。また、冷却運転時には、第2弁V2を閉めて、第2流路P2に冷媒を流さない。また、冷却運転時には、第3弁V3を全開にする。また、冷却運転時は、四路切換弁22によって、圧縮機21の吐出側が第1熱交換器24のガス側に接続され、かつ、圧縮機21の吸入側がガス側の連絡配管7を介して第2熱交換器52のガス側に接続される(図3の四路切換弁22の実線を参照)。また、冷却運転時には、第1熱交換器24は、凝縮器として用いられる。 As shown in FIG. 3, during the cooling operation, the first valve V1 is closed to prevent the coolant from flowing through the first flow path P1. Also, during the cooling operation, the second valve V2 is closed to prevent the refrigerant from flowing through the second flow path P2. Further, during the cooling operation, the third valve V3 is fully opened. Further, during cooling operation, the discharge side of the compressor 21 is connected to the gas side of the first heat exchanger 24 by the four-way switching valve 22, and the suction side of the compressor 21 is connected via the communication pipe 7 on the gas side. It is connected to the gas side of the second heat exchanger 52 (see the solid line of the four-way switching valve 22 in FIG. 3). Also, during the cooling operation, the first heat exchanger 24 is used as a condenser.
 冷却運転では、低圧のガス冷媒が、圧縮機21に吸入されて圧縮されて高圧のガス冷媒となる。高圧のガス冷媒は、逆止弁V9及び四路切換弁22を経由して第1熱交換器24に送られる。高圧のガス冷媒は、第1熱交換器24において、第1ファン25によって供給される室外空気と熱交換を行って凝縮して高圧の液冷媒となる。高圧の液冷媒は、逆止弁V4を経由してレシーバ26に送られ、レシーバ26内に一時的に溜められた後、過冷却熱交換器29に送られる。過冷却熱交換器29でさらに冷却された高圧の液冷媒は、第3弁V3、逆止弁V7及び閉鎖弁31を経由して、熱源ユニット2から流出する。 In the cooling operation, low-pressure gas refrigerant is sucked into the compressor 21 and compressed into high-pressure gas refrigerant. The high-pressure gas refrigerant is sent to the first heat exchanger 24 via the check valve V9 and the four-way switching valve 22. The high-pressure gas refrigerant exchanges heat with the outdoor air supplied by the first fan 25 in the first heat exchanger 24 and is condensed into a high-pressure liquid refrigerant. The high-pressure liquid refrigerant is sent to the receiver 26 via the check valve V4, temporarily stored in the receiver 26, and then sent to the subcooling heat exchanger 29. The high-pressure liquid refrigerant further cooled by the subcooling heat exchanger 29 flows out of the heat source unit 2 via the third valve V3, the check valve V7 and the closing valve 31.
 熱源ユニット2から流出した冷媒は、液側の連絡配管6を経由して、利用ユニット5に送られる。利用ユニット5では、高圧の液冷媒が、利用側膨張弁51によって減圧された後に、第2熱交換器52に送られる。この冷媒は、第2熱交換器52において、第2ファン53によって供給される庫内の空気と熱交換を行って蒸発して低圧のガス冷媒となる。この低圧のガス冷媒は、利用ユニット5から流出する。  Refrigerant flowing out from the heat source unit 2 is sent to the utilization unit 5 via the communication pipe 6 on the liquid side. In the usage unit 5 , the high-pressure liquid refrigerant is sent to the second heat exchanger 52 after being decompressed by the usage-side expansion valve 51 . In the second heat exchanger 52 , this refrigerant exchanges heat with the air in the chamber supplied by the second fan 53 and evaporates to become a low-pressure gas refrigerant. This low-pressure gas refrigerant flows out of the utilization unit 5 .
 利用ユニット5から流出した冷媒は、ガス側の連絡配管7を経由して熱源ユニット2に送られ、閉鎖弁32、四路切換弁22及び逆止弁V8及びアキュムレータ23を経由して、再び、圧縮機21に吸入される。 The refrigerant flowing out of the utilization unit 5 is sent to the heat source unit 2 via the gas-side communication pipe 7, via the shut-off valve 32, the four-way switching valve 22, the check valve V8, and the accumulator 23, and again, It is sucked into the compressor 21 .
 ここで、本実施形態の過冷却回路の冷却運転時の役割について説明する。過冷却熱交換器29を出た冷媒の一部を分岐して、分岐配管27を通じて、圧縮機21に送る。また、過冷却熱交換器29において、分岐配管27を流れて過冷却膨張弁28で減圧された冷媒によって、利用ユニット5へ流れる冷媒を冷却する。 Here, the role of the supercooling circuit of this embodiment during the cooling operation will be described. A portion of the refrigerant exiting the subcooling heat exchanger 29 is branched and sent to the compressor 21 through the branch pipe 27 . In the subcooling heat exchanger 29 , the refrigerant flowing through the branch pipe 27 and decompressed by the subcooling expansion valve 28 cools the refrigerant flowing to the usage unit 5 .
 (2-2)冷媒量検知運転
 冷媒量検知運転の動作について、主に図2及び図4~図6を参照して説明する。ここでは、通常運転としての冷却運転が所定時間行われた後に、冷媒量検知運転を行って、冷媒回路10内の冷媒量が基準量を満たすかどうかを検知する例について、説明する。
(2-2) Refrigerant Amount Detection Operation The operation of the refrigerant amount detection operation will be described mainly with reference to FIGS. 2 and 4 to 6. FIG. Here, an example will be described in which after the cooling operation as the normal operation is performed for a predetermined time, the refrigerant amount detection operation is performed to detect whether or not the amount of refrigerant in the refrigerant circuit 10 satisfies the reference amount.
 図6に示すように、まず、第1制御部81は、冷媒量検知運転を行うことを受信すると、冷媒量検知制御を開始する(ステップS1)。 As shown in FIG. 6, first, when the first control unit 81 receives the instruction to perform the refrigerant amount detection operation, it starts the refrigerant amount detection control (step S1).
 次に、第1制御部81(詳細には第1CPU81a)は、冷却運転が行われているか否かを判定する(ステップS2)。ステップS2において、冷却運転が行われていない場合には、冷媒量検知制御を終了する(ステップS9)。一方、ステップS2において、冷却運転が行われている場合には、冷媒量検知運転を開始する。 Next, the first control unit 81 (specifically, the first CPU 81a) determines whether the cooling operation is being performed (step S2). If the cooling operation is not performed in step S2, the refrigerant amount detection control is ended (step S9). On the other hand, in step S2, when the cooling operation is being performed, the refrigerant amount detection operation is started.
 具体的には、第1弁V1を開ける(ステップS3)。これにより、図4に示すように、第1熱交換器24をバイパスして、圧縮機21の吐出側とレシーバ26とを接続する第1流路P1に冷媒が流れる。このため、圧縮機21から吐出されるガス冷媒を、第1熱交換器24をバイパスする第1流路P1を介して、レシーバ26に送ることができる。このようにして、レシーバ26内の液冷媒を冷媒回路10に押し出して、レシーバ26をガス冷媒で充満させる。 Specifically, the first valve V1 is opened (step S3). As a result, as shown in FIG. 4 , the refrigerant bypasses the first heat exchanger 24 and flows through the first flow path P1 that connects the discharge side of the compressor 21 and the receiver 26 . Therefore, the gas refrigerant discharged from the compressor 21 can be sent to the receiver 26 via the first flow path P<b>1 that bypasses the first heat exchanger 24 . Thus, the liquid refrigerant in the receiver 26 is pushed out to the refrigerant circuit 10, and the receiver 26 is filled with gas refrigerant.
 このように、このステップS3では、レシーバ26内の液冷媒を排出する運転を行う。この運転では、以下の動作を行う。圧縮機21から吐出されたガス冷媒は、第1流路P1からレシーバ26に送られる。そして、レシーバ26から排出された液冷媒は、過冷却熱交換器29、第3弁V3、逆止弁V7及び閉鎖弁31を経由して、熱源ユニット2から流出する。熱源ユニット2から流出した冷媒は、連絡配管6を経由して、利用ユニット5に送られる。利用ユニット5に送られた冷媒は、利用側膨張弁51及び第2熱交換器52を経由して、利用ユニット5から流出する。利用ユニット5から流出した冷媒は、連絡配管7を経由して熱源ユニット2に送られ、閉鎖弁32、四路切換弁22及び逆止弁V8及びアキュムレータ23を経由して、再び、圧縮機21に吸入される。 In this way, in this step S3, the liquid refrigerant in the receiver 26 is discharged. In this operation, the following operations are performed. Gas refrigerant discharged from the compressor 21 is sent to the receiver 26 through the first flow path P1. The liquid refrigerant discharged from the receiver 26 flows out of the heat source unit 2 via the supercooling heat exchanger 29, the third valve V3, the check valve V7 and the closing valve 31. Refrigerant flowing out of the heat source unit 2 is sent to the utilization unit 5 via the connecting pipe 6 . The refrigerant sent to the usage unit 5 flows out of the usage unit 5 via the usage side expansion valve 51 and the second heat exchanger 52 . Refrigerant flowing out from the utilization unit 5 is sent to the heat source unit 2 via the communication pipe 7, and is again supplied to the compressor 21 via the stop valve 32, the four-way switching valve 22, the check valve V8, and the accumulator 23. is inhaled into
 次に、レシーバ26内の液冷媒が排出されたか否かを判定する(ステップS4)。本実施形態のステップS4では、図6に示すように、過冷却度が第1値未満であるか否かを判定する。ここでは、第1制御部81は、過冷却熱交換器29における冷媒の凝縮温度と、過冷却熱交換器29の出口温度との温度差である、過冷却熱交換器29出口の過冷却度f(HP)-TLを用いる。 Next, it is determined whether or not the liquid refrigerant in the receiver 26 has been discharged (step S4). In step S4 of the present embodiment, as shown in FIG. 6, it is determined whether or not the degree of supercooling is less than the first value. Here, the first control unit 81 controls the degree of supercooling at the outlet of the supercooling heat exchanger 29, which is the temperature difference between the condensation temperature of the refrigerant in the supercooling heat exchanger 29 and the outlet temperature of the supercooling heat exchanger 29. Use f(HP)-TL.
 より具体的には、第1制御部81は、吐出圧力センサ42で検出された圧縮機21の吐出圧力HPと、過冷却熱交換器出口温度センサ47で検出された過冷却熱交換器29の出口温度TLと、を取得する。そして、取得した吐出圧力HPを飽和温度f(HP)に換算し、この飽和温度f(HP)から過冷却熱交換器29の出口温度TLを差し引いた温度差である過冷却度f(HP)-TLを算出する。本実施形態では、第1制御部81は、この過冷却度f(HP)-TLが、第1値未満であるか否かを判定する。第1値は、例えば1であるが、任意に設定することができる。 More specifically, the first control unit 81 controls the discharge pressure HP of the compressor 21 detected by the discharge pressure sensor 42 and the pressure of the supercooling heat exchanger 29 detected by the supercooling heat exchanger outlet temperature sensor 47. Outlet temperature TL is acquired. Then, the obtained discharge pressure HP is converted into the saturation temperature f (HP), and the degree of supercooling f (HP), which is the temperature difference obtained by subtracting the outlet temperature TL of the supercooling heat exchanger 29 from this saturation temperature f (HP) - Calculate TL. In this embodiment, the first control unit 81 determines whether or not the degree of supercooling f(HP)-TL is less than the first value. The first value is, for example, 1, but can be set arbitrarily.
 ステップS4において、過冷却度f(HP)-TLが第1値以上である場合には、その状態を保持する。一方、ステップS4において、過冷却度f(HP)-TLが第1値未満である場合には、レシーバ26内の液冷媒が押し出されて、ガス冷媒が充満したと判定する。 In step S4, if the degree of supercooling f(HP)-TL is greater than or equal to the first value, that state is maintained. On the other hand, in step S4, if the subcooling degree f(HP)-TL is less than the first value, it is determined that the liquid refrigerant in the receiver 26 has been pushed out and the gas refrigerant is filled.
 次に、第2弁V2を開けるとともに、第3弁V3の開度を小さくする(ステップS5)。ステップS5での第2弁V2の開動作及び第3弁V3を絞る動作は、ほぼ同時に行われる。 Next, the second valve V2 is opened and the degree of opening of the third valve V3 is decreased (step S5). The opening operation of the second valve V2 and the operation of throttling the third valve V3 in step S5 are performed substantially simultaneously.
 第2弁V2を開けることによって、図5に示すように、レシーバ26をバイパスして、第1熱交換器24から第2流路P2に冷媒が流れる。これにより、レシーバ26に冷媒を送ることを抑制できる。本実施形態では、ステップS5では、レシーバ26及び過冷却熱交換器29に冷媒を送ることを抑制する。 By opening the second valve V2, as shown in FIG. 5, the refrigerant bypasses the receiver 26 and flows from the first heat exchanger 24 to the second flow path P2. As a result, sending the refrigerant to the receiver 26 can be suppressed. In this embodiment, in step S5, sending the refrigerant to the receiver 26 and the subcooling heat exchanger 29 is suppressed.
 また、第3弁V3の開度を小さくすることによって、液冷媒の密度が低くなりすぎることを抑制できる。 Also, by reducing the degree of opening of the third valve V3, it is possible to prevent the density of the liquid refrigerant from becoming too low.
 このように、このステップS5では、冷媒回路10内の冷媒量を判定するための運転を行う。この運転では、以下の動作を行う。圧縮機21から吐出されたガス冷媒は、逆止弁V9、四路切換弁22及び第1熱交換器24を経由して、第2流路P2に送られる。そして、第2弁V2、逆止弁V7及び閉鎖弁31を経由して、熱源ユニット2から流出する。熱源ユニット2から流出した冷媒は、連絡配管6を経由して、利用ユニット5に送られる。利用ユニット5に送られた冷媒は、利用側膨張弁51及び第2熱交換器52を経由して、利用ユニット5から流出する。利用ユニット5から流出した冷媒は、連絡配管7を経由して熱源ユニット2に送られ、閉鎖弁32、四路切換弁22及び逆止弁V8及びアキュムレータ23を経由して、再び、圧縮機21に吸入される。 Thus, in this step S5, an operation for determining the amount of refrigerant in the refrigerant circuit 10 is performed. In this operation, the following operations are performed. The gas refrigerant discharged from the compressor 21 is sent to the second flow path P2 via the check valve V9, the four-way switching valve 22 and the first heat exchanger 24. Then, it flows out of the heat source unit 2 via the second valve V2, the check valve V7 and the closing valve 31. Refrigerant flowing out of the heat source unit 2 is sent to the utilization unit 5 via the connecting pipe 6 . The refrigerant sent to the usage unit 5 flows out of the usage unit 5 via the usage side expansion valve 51 and the second heat exchanger 52 . Refrigerant flowing out from the utilization unit 5 is sent to the heat source unit 2 via the communication pipe 7, and is again supplied to the compressor 21 via the stop valve 32, the four-way switching valve 22, the check valve V8, and the accumulator 23. is inhaled into
 次に、冷媒回路10内の冷媒量が基準量を満たしているか否かを判定する(ステップS6)。本実施形態のステップS6では、図6に示すように、過冷却度が第2値未満であるか否かを判定する。ここでは、第1制御部81は、凝縮器として用いられる第1熱交換器24における冷媒の凝縮温度と凝縮器として用いられる第1熱交換器24の出口温度Tclとの温度差である過冷却度f(HP)-Tclを用いる。 Next, it is determined whether or not the amount of refrigerant in the refrigerant circuit 10 satisfies the reference amount (step S6). In step S6 of the present embodiment, as shown in FIG. 6, it is determined whether or not the degree of supercooling is less than the second value. Here, the first control unit 81 controls subcooling, which is the temperature difference between the condensation temperature of the refrigerant in the first heat exchanger 24 used as a condenser and the outlet temperature Tcl of the first heat exchanger 24 used as a condenser. The degree f(HP)-Tcl is used.
 より具体的には、第1制御部81は、吐出圧力センサ42で検出された圧縮機21の吐出圧力HPと、第1熱交換器出口温度センサ46で検出された第1熱交換器24の出口温度Tclと、を取得する。そして、取得した吐出圧力HPを飽和温度f(HP)に換算し、この飽和温度f(HP)から第1熱交換器24の出口温度Tclを差し引いた温度差である過冷却度f(HP)-Tclを算出する。本実施形態では、第1制御部81は、この過冷却度f(HP)-Tclが、第2値以上であるか否かを判定する。第2値は、例えば3であるが、任意に設定することができる。 More specifically, the first control unit 81 controls the discharge pressure HP of the compressor 21 detected by the discharge pressure sensor 42 and the pressure of the first heat exchanger 24 detected by the first heat exchanger outlet temperature sensor 46. Obtain the outlet temperature Tcl. Then, the obtained discharge pressure HP is converted into the saturation temperature f (HP), and the degree of supercooling f (HP), which is the temperature difference obtained by subtracting the outlet temperature Tcl of the first heat exchanger 24 from this saturation temperature f (HP) - Calculate Tcl. In this embodiment, the first control unit 81 determines whether or not the degree of supercooling f(HP)-Tcl is equal to or greater than the second value. The second value is, for example, 3, but can be set arbitrarily.
 ステップS6において、過冷却度f(HP)-Tclが第2値以上である場合には、第1制御部81は、冷媒回路10内の冷媒量が正常であると判定する(ステップS7)。一方、ステップS6において、過冷却度f(HP)-Tclが第2値未満である場合には、第1制御部81は、冷媒回路10内の冷媒量が異常であると判定する(ステップS8)。
ここでは、ステップS8において冷媒量が異常であると判定されると、冷媒回路10内の冷媒量が基準量を満たしていないので、冷媒漏洩が生じていることを報知する。
If the subcooling degree f(HP)-Tcl is equal to or greater than the second value in step S6, the first control unit 81 determines that the amount of refrigerant in the refrigerant circuit 10 is normal (step S7). On the other hand, if the subcooling degree f(HP)-Tcl is less than the second value in step S6, the first control unit 81 determines that the amount of refrigerant in the refrigerant circuit 10 is abnormal (step S8 ).
Here, if it is determined in step S8 that the amount of refrigerant is abnormal, the amount of refrigerant in the refrigerant circuit 10 does not meet the reference amount, so that the occurrence of refrigerant leakage is notified.
 ステップS7及びS8において冷媒回路10内の冷媒量を検知すると、冷媒量検知制御を終了する(ステップS9)。このような冷媒量検知運転は、不定期に行ってもよいが、本実施形態では定期的に行う。定期的な運転として、例えば、冷媒量検知運転は1日1回行われる。 When the amount of refrigerant in the refrigerant circuit 10 is detected in steps S7 and S8, the refrigerant amount detection control ends (step S9). Such a refrigerant amount detection operation may be performed irregularly, but is performed periodically in the present embodiment. As a periodical operation, for example, the refrigerant amount detection operation is performed once a day.
 (3)特徴
 (3-1)
 以上説明したように、本実施形態に係る冷凍装置1及び熱源ユニット2は、圧縮機21と、第1熱交換器24と、レシーバ26と、第1流路P1と、第1弁V1と、を備える。圧縮機21は、冷媒を圧縮する。第1熱交換器24は、冷媒の凝縮器として用いられる。レシーバ26は、第1熱交換器24を凝縮器として用いる通常運転時に、第1熱交換器24から出た冷媒を溜める。第1流路P1は、第1熱交換器24をバイパスして、圧縮機21の吐出側とレシーバ26とを接続する。第1弁V1は、第1流路P1を開閉する。冷媒回路10内の冷媒量を検知するための冷媒量検知運転時に、第1弁V1が開く。
(3) Features (3-1)
As described above, the refrigeration apparatus 1 and the heat source unit 2 according to the present embodiment include the compressor 21, the first heat exchanger 24, the receiver 26, the first flow path P1, the first valve V1, Prepare. Compressor 21 compresses the refrigerant. The first heat exchanger 24 is used as a refrigerant condenser. The receiver 26 stores the refrigerant discharged from the first heat exchanger 24 during normal operation using the first heat exchanger 24 as a condenser. The first flow path P1 bypasses the first heat exchanger 24 and connects the discharge side of the compressor 21 and the receiver 26 . The first valve V1 opens and closes the first flow path P1. During the refrigerant amount detection operation for detecting the amount of refrigerant in the refrigerant circuit 10, the first valve V1 is opened.
 ここでは、冷媒量検知運転時に第1弁V1が開くので、図4に示すように、圧縮機21から吐出される冷媒を、第1熱交換器24をバイパスする第1流路P1を介して、レシーバ26に送ることができる。これにより、レシーバ26内の液冷媒を冷媒回路10に押し出して、レシーバ26をガス冷媒で充満させた状態で、図5に示すように、冷媒量検知運転を行うことができる。このため、冷媒量検知運転を行う際に、図4に示すように、レシーバ26は、高温の液冷媒を排出しても高温のガス冷媒が充填されるので、高温状態を維持できる。したがって、冷媒量検知運転の頻度を上げて、通常運転と冷媒量検知運転との切り替え頻度が多くても、レシーバ26の温度変化を減らすことができるので、レシーバ26外殻の結露、配管接続部への熱応力作用などの現象を減らすことができる。これにより、レシーバ26の耐力を上げずに、通常運転及び冷媒量検知運転を行うことができる。 Here, since the first valve V1 is opened during the refrigerant amount detection operation, as shown in FIG. , can be sent to the receiver 26 . As a result, the liquid refrigerant in the receiver 26 is pushed out to the refrigerant circuit 10, and the refrigerant amount detection operation can be performed in a state where the receiver 26 is filled with gas refrigerant as shown in FIG. Therefore, as shown in FIG. 4, even if the high-temperature liquid refrigerant is discharged, the receiver 26 is filled with the high-temperature gas refrigerant when performing the refrigerant amount detection operation, so that the high-temperature state can be maintained. Therefore, even if the frequency of the refrigerant amount detection operation is increased and the frequency of switching between the normal operation and the refrigerant amount detection operation is high, the temperature change of the receiver 26 can be reduced. It is possible to reduce phenomena such as the effect of thermal stress on the As a result, the normal operation and the refrigerant amount detection operation can be performed without increasing the resistance of the receiver 26 .
 また、冷媒量検知運転を行っても、第2熱交換器52による庫内の冷却を続行できるので、冷却能力の低下を抑制することができる。 Also, even if the refrigerant amount detection operation is performed, the second heat exchanger 52 can continue to cool the inside of the refrigerator, so it is possible to suppress the deterioration of the cooling capacity.
 (3-2)
 本実施形態の冷凍装置1及び熱源ユニット2は、第1制御部81をさらに備える。第1制御部81は、通常運転時に、第1弁V1を閉め、かつ、冷媒量検知運転時に、第1弁V1を開ける。
(3-2)
The refrigerating apparatus 1 and the heat source unit 2 of this embodiment further include a first control section 81 . The first control unit 81 closes the first valve V1 during normal operation, and opens the first valve V1 during refrigerant amount detection operation.
 ここでは、第1熱交換器24を凝縮器として用いる冷却運転時に、第1弁V1を閉めて、第1流路P1を使わない。一方、冷媒量判定運転時に、第1弁V1を開けて、第1流路P1を使う。このため、通常運転と冷媒量検知運転とを適切に行うことができる。 Here, during the cooling operation using the first heat exchanger 24 as a condenser, the first valve V1 is closed and the first flow path P1 is not used. On the other hand, during the refrigerant amount determination operation, the first valve V1 is opened and the first flow path P1 is used. Therefore, normal operation and refrigerant amount detection operation can be appropriately performed.
 (3-3)
 本実施形態の冷凍装置1及び熱源ユニット2は、第2流路P2をさらに備える。第2流路P2は、第1熱交換器24と接続され、レシーバ26をバイパスする。冷媒量検知運転時に、冷媒は、第1熱交換器24から第2流路P2に流れる。
(3-3)
The refrigerating apparatus 1 and the heat source unit 2 of this embodiment further include a second flow path P2. The second flow path P2 is connected to the first heat exchanger 24 and bypasses the receiver 26 . During the refrigerant amount detection operation, the refrigerant flows from the first heat exchanger 24 to the second flow path P2.
 ここでは、冷媒量検知運転時に、第2流路P2に冷媒を流すことによって、レシーバ26に冷媒を送ることを減らすことができる。このため、図4に示すレシーバ26内の液冷媒を排出する運転後に、図5に示す冷媒量を判定する運転を行っても、レシーバ26に液冷媒が溜まることを抑制できる。したがって、冷媒量検知運転において、冷媒量を検知する精度を高めることができる。 Here, it is possible to reduce the amount of refrigerant sent to the receiver 26 by causing the refrigerant to flow through the second flow path P2 during the refrigerant amount detection operation. Therefore, even if the operation for determining the amount of refrigerant shown in FIG. 5 is performed after the operation for discharging the liquid refrigerant in the receiver 26 shown in FIG. Therefore, in the refrigerant amount detection operation, it is possible to improve the accuracy of detecting the refrigerant amount.
 (3-4)
 本実施形態の冷凍装置1及び熱源ユニット2は、第2弁V2をさらに備える。第2弁V2は、第2流路P2を開閉する。
(3-4)
The refrigerating apparatus 1 and the heat source unit 2 of this embodiment further include a second valve V2. The second valve V2 opens and closes the second flow path P2.
 ここでは、冷媒量検知運転時に、第2弁V2を開けることによって、第2流路P2に冷媒を流すことができる。一方、通常運転時に、第2弁V2を閉めることによって、第2流路P2に冷媒を流すことを抑制できる。このため、通常運転と冷媒量検知運転とをより適切に行うことができる。 Here, the refrigerant can flow through the second flow path P2 by opening the second valve V2 during the refrigerant amount detection operation. On the other hand, during normal operation, by closing the second valve V2, it is possible to suppress the refrigerant from flowing through the second flow path P2. Therefore, normal operation and refrigerant amount detection operation can be performed more appropriately.
 (3-5)
 本実施形態の冷凍装置1及び熱源ユニット2は、第3弁V3をさらに備える。第3弁V3は、通常運転時に、レシーバ26の下流側に配置される。冷媒量検知運転時に、第3弁V3の開度が小さくなる。
(3-5)
The refrigerating device 1 and the heat source unit 2 of this embodiment further include a third valve V3. The third valve V3 is arranged downstream of the receiver 26 during normal operation. During the refrigerant amount detection operation, the degree of opening of the third valve V3 is reduced.
 ここでは、冷媒量検知運転時に、レシーバ26の下流に配置された第3弁V3の開度を小さくすることによって、液冷媒の密度が低くなりすぎることを抑制できる。 Here, by reducing the degree of opening of the third valve V3 arranged downstream of the receiver 26 during the refrigerant amount detection operation, it is possible to prevent the density of the liquid refrigerant from becoming too low.
 (3-6)
 本実施形態の冷凍装置1及び熱源ユニット2は、第2流路P2をさらに備える。第2流路P2は、レシーバ26及び第3弁V3をさらにバイパスする。
(3-6)
The refrigerating apparatus 1 and the heat source unit 2 of this embodiment further include a second flow path P2. The second flow path P2 also bypasses the receiver 26 and the third valve V3.
 ここでは、冷媒量検知運転時に、レシーバ26及び第3弁V3をバイパスする第2流路P2に冷媒を流すことができる。このため、液冷媒の密度が低くなりすぎることを抑制しつつ、冷媒量検知運転を行うことができる。 Here, the refrigerant can flow through the second flow path P2 that bypasses the receiver 26 and the third valve V3 during the refrigerant amount detection operation. Therefore, the refrigerant amount detection operation can be performed while preventing the density of the liquid refrigerant from becoming too low.
 (3-7)
 本実施形態の冷凍装置1及び熱源ユニット2において、冷媒量検知運転時には、第1弁V1が開いた後に、第2弁V2が開くとともに、第3弁V3の開度が小さくなる。
(3-7)
In the refrigerating apparatus 1 and the heat source unit 2 of this embodiment, after the first valve V1 opens, the second valve V2 opens and the opening degree of the third valve V3 decreases during the refrigerant amount detection operation.
 ここでは、図4に示すように、第1弁V1が開くことによって、レシーバ26内の液冷媒を押し出した後に、図5に示すように、第2弁V2が開くことによって、レシーバ26内に液冷媒が溜まることを抑制できるとともに、第3弁V3の開度が小さくなることによって、液冷媒の密度が低くなりすぎることを抑制できる。このため、液冷媒の密度を保ちつつ、冷媒量を検知することができる。 Here, as shown in FIG. 4, the liquid refrigerant in the receiver 26 is pushed out by opening the first valve V1, and then, as shown in FIG. It is possible to suppress accumulation of the liquid refrigerant, and it is possible to suppress the density of the liquid refrigerant from becoming too low due to the reduction in the degree of opening of the third valve V3. Therefore, the amount of refrigerant can be detected while maintaining the density of the liquid refrigerant.
 (3-8)
 本実施形態の冷凍装置1及び熱源ユニット2は、冷媒量検知運転は、第1熱交換器24を凝縮器として用いるときの凝縮器出口温度、冷媒回路10の高圧、冷媒回路10の低圧、レシーバ26の出口温度、外気温、蒸発温度、及び圧縮機21の回転数の少なくとも1つを用いて、冷媒量の検知を行う。
(3-8)
In the refrigerating apparatus 1 and the heat source unit 2 of the present embodiment, the refrigerant amount detection operation is performed using the condenser outlet temperature when the first heat exchanger 24 is used as a condenser, the high pressure of the refrigerant circuit 10, the low pressure of the refrigerant circuit 10, the receiver At least one of the outlet temperature of 26, the outside air temperature, the evaporation temperature, and the rotation speed of the compressor 21 is used to detect the amount of refrigerant.
 ここでは、凝縮器出口温度、高圧、低圧、レシーバ26の出口温度、外気温、蒸発温度、及び圧縮機21の回転数の少なくとも1つを用いて、冷媒量を検知するので、冷媒量検知運転を容易に実現できる。 Here, the refrigerant amount is detected using at least one of the condenser outlet temperature, high pressure, low pressure, receiver 26 outlet temperature, outside air temperature, evaporation temperature, and compressor 21 rotation speed. can be easily realized.
 なお、過冷却熱交換器29をさらに備える冷凍装置1及び熱源ユニット2において、冷媒量検知運転は、過冷却熱交換器29の前後の温度を用いてもよい。 In addition, in the refrigerating apparatus 1 and the heat source unit 2 further including the supercooling heat exchanger 29, the temperature before and after the supercooling heat exchanger 29 may be used for the refrigerant amount detection operation.
 (3-9)
 本実施形態の冷凍装置1は、熱源ユニット2と、利用ユニット5と、を備える。利用ユニット5は、熱源ユニット2と接続され、第2熱交換器52を含む。
(3-9)
A refrigerating apparatus 1 of this embodiment includes a heat source unit 2 and a utilization unit 5 . The utilization unit 5 is connected to the heat source unit 2 and includes a second heat exchanger 52 .
 ここでは、上記熱源ユニット2を備えているので、冷媒量検知運転の頻度を上げても、レシーバ26外殻の結露、配管接続部への熱応力作用などの現象を減らす冷凍装置1を実現できる。 Here, since the heat source unit 2 is provided, it is possible to realize the refrigerating apparatus 1 that reduces phenomena such as dew condensation on the outer shell of the receiver 26 and thermal stress acting on the piping joints even if the frequency of the refrigerant amount detection operation is increased. .
 (4)変形例
 (4-1)変形例A
 上記実施形態では、冷媒量検知運転は、通常運転としての冷却運転が所定時間行われた後に、冷媒量検知運転を行う動作を例に挙げて説明したが、これに限定されない。本開示の冷媒量検知運転は、冷媒回路10内を循環する冷媒の状態を安定させる運転を行いつつ、冷媒回路10内の冷媒量が目標量に到達するまで冷媒回路10に冷媒を充填する運転に適用してもよい。
(4) Modification (4-1) Modification A
In the above-described embodiment, the refrigerant amount detection operation has been described by exemplifying the operation of performing the refrigerant amount detection operation after the cooling operation as the normal operation has been performed for a predetermined period of time, but the operation is not limited to this. The refrigerant amount detection operation of the present disclosure is an operation that stabilizes the state of the refrigerant circulating in the refrigerant circuit 10 and fills the refrigerant circuit 10 with refrigerant until the amount of refrigerant in the refrigerant circuit 10 reaches a target amount. may be applied to
 このように、本開示の冷凍装置1及び熱源ユニット2は、冷媒量検知運転として、冷媒回路10内の冷媒量が基準量を満たすか否かを検知する冷媒漏洩検知運転と、試運転時に冷媒を充填する冷媒充填運転と、を行うことができる。 In this way, the refrigerating apparatus 1 and the heat source unit 2 of the present disclosure perform the refrigerant amount detection operation by detecting whether or not the amount of refrigerant in the refrigerant circuit 10 satisfies the reference amount, and the refrigerant leakage detection operation for detecting whether the amount of refrigerant in the refrigerant circuit 10 satisfies the reference amount. A refrigerant charging operation for charging can be performed.
 (4-2)変形例B
 上記実施形態では、冷媒量検知運転時に、レシーバ26内の液冷媒が排出されたか否かを判定する工程(ステップS4)では、過冷却熱交換器29の出口の過冷却度を用いて判定しているが、これに限定されない。本開示の冷媒量検知運転では、ステップS4において、別の指標を用いてもよく、レシーバ26内に貯留される液冷媒の液面を検出してもよい。
(4-2) Modification B
In the above embodiment, in the step of determining whether or not the liquid refrigerant in the receiver 26 has been discharged during the refrigerant amount detection operation (step S4), the degree of supercooling at the outlet of the supercooling heat exchanger 29 is used for determination. but not limited to. In the refrigerant amount detection operation of the present disclosure, another index may be used in step S4, and the liquid level of the liquid refrigerant stored in the receiver 26 may be detected.
 (4-3)変形例C
 上記実施形態では、冷媒量検知運転時に、熱源ユニット2が検出する指標を用いて、冷媒量の検知を行うが、これに限定されない。冷媒量検知運転は、利用ユニット5が検出する指標を用いてもよく、熱源ユニット2及び利用ユニット5が検出する指標を用いてもよい。本変形例では、冷媒量検知運転は、利用ユニット5の利用側膨張弁51の開度、第2熱交換器52の出口温度などを用いて、冷媒量の検知を行う。
(4-3) Modification C
In the above embodiment, the index detected by the heat source unit 2 is used to detect the amount of refrigerant during the refrigerant amount detection operation, but the present invention is not limited to this. The refrigerant amount detection operation may use the index detected by the usage unit 5 or may use the index detected by the heat source unit 2 and the usage unit 5 . In this modification, the refrigerant amount is detected by using the opening degree of the user-side expansion valve 51 of the user unit 5, the outlet temperature of the second heat exchanger 52, and the like.
 (4-4)変形例D
 上記実施形態では、1つの利用ユニット5を備える冷凍装置1を例に挙げて説明したが、これに限定されない。本開示の冷凍装置は、2つ以上の利用ユニットを備えてもよい。この場合、各利用ユニットの容量は、同じでもよく、異なっていてもよい。
(4-4) Modification D
In the above embodiment, the refrigeration apparatus 1 including one usage unit 5 was described as an example, but the present invention is not limited to this. A refrigeration apparatus of the present disclosure may comprise more than one utilization unit. In this case, the capacity of each usage unit may be the same or different.
 (4-5)変形例E
 上記実施形態では、過冷却回路を備える冷凍装置1を例に挙げて説明したが、これに限定されない。本変形例では、分岐配管27、過冷却膨張弁28及び過冷却熱交換器29は、省略されている。
(4-5) Modification E
Although the refrigerating apparatus 1 including the supercooling circuit has been described as an example in the above embodiment, the present invention is not limited to this. In this modification, the branch pipe 27, the supercooling expansion valve 28 and the supercooling heat exchanger 29 are omitted.
 (4-6)変形例F
 上記実施形態では、冷却運転及び加熱運転が可能な冷凍装置1を例に挙げて説明したが、これに限定されない。本変形例では、冷却運転専用の冷凍装置である。
(4-6) Modification F
In the above embodiment, the refrigeration apparatus 1 capable of cooling operation and heating operation has been described as an example, but the present invention is not limited to this. In this modified example, the refrigeration system is exclusively for cooling operation.
 以上、本開示の実施形態を説明したが、特許請求の範囲に記載された本開示の趣旨及び範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。 Although embodiments of the present disclosure have been described above, it will be appreciated that various changes in form and detail may be made without departing from the spirit and scope of the present disclosure as set forth in the appended claims. .
1      :冷凍装置
2      :熱源ユニット
5      :利用ユニット
10     :冷媒回路
21     :圧縮機
24     :第1熱交換器
26     :レシーバ
52     :第2熱交換器
81     :第1制御部(制御部)
P1     :第1流路
P2     :第2流路
V1     :第1弁
V2     :第2弁
V3     :第3弁
Reference Signs List 1: Refrigerating device 2: Heat source unit 5: Utilization unit 10: Refrigerant circuit 21: Compressor 24: First heat exchanger 26: Receiver 52: Second heat exchanger 81: First control unit (control unit)
P1: first flow path P2: second flow path V1: first valve V2: second valve V3: third valve
特開2015-75259号公報JP 2015-75259 A

Claims (9)

  1.  利用ユニット(5)と接続されることにより、冷凍サイクルを行う冷媒回路(10)を構成する熱源ユニット(2)であって、
     冷媒を圧縮する圧縮機(21)と、
     前記冷媒の凝縮器として用いられる第1熱交換器(24)と、
     前記第1熱交換器を凝縮器として用いる通常運転時に、前記第1熱交換器から出た前記冷媒を溜めるレシーバ(26)と、
     前記第1熱交換器をバイパスして、前記圧縮機の吐出側と前記レシーバとを接続する第1流路(P1)と、
     前記第1流路を開閉する第1弁(V1)と、
    を備え、
     前記冷媒回路内の冷媒量を検知するための冷媒量検知運転時に、前記第1弁が開く、
    熱源ユニット。
    A heat source unit (2) that constitutes a refrigerant circuit (10) that performs a refrigeration cycle by being connected to a utilization unit (5),
    a compressor (21) for compressing a refrigerant;
    a first heat exchanger (24) used as a condenser for the refrigerant;
    a receiver (26) for storing the refrigerant discharged from the first heat exchanger during normal operation using the first heat exchanger as a condenser;
    a first flow path (P1) connecting the discharge side of the compressor and the receiver, bypassing the first heat exchanger;
    a first valve (V1) that opens and closes the first flow path;
    with
    the first valve opens during a refrigerant amount detection operation for detecting the amount of refrigerant in the refrigerant circuit;
    heat source unit.
  2.  前記通常運転時に、前記第1弁を閉め、かつ、前記冷媒量検知運転時に、前記第1弁を開ける、制御部(81)をさらに備える、
    請求項1に記載の熱源ユニット。
    A control unit (81) that closes the first valve during the normal operation and opens the first valve during the refrigerant amount detection operation,
    The heat source unit according to claim 1.
  3.  前記第1熱交換器と接続され、前記レシーバをバイパスする第2流路(P2)をさらに備え、
     前記冷媒量検知運転時に、前記冷媒は、前記第1熱交換器から前記第2流路に流れる、
    請求項1または2に記載の熱源ユニット。
    further comprising a second flow path (P2) connected to the first heat exchanger and bypassing the receiver;
    During the refrigerant amount detection operation, the refrigerant flows from the first heat exchanger to the second flow path,
    The heat source unit according to claim 1 or 2.
  4.  前記第2流路を開閉する第2弁(V2)をさらに備える、
    請求項3に記載の熱源ユニット。
    Further comprising a second valve (V2) that opens and closes the second flow path,
    The heat source unit according to claim 3.
  5.  前記通常運転時に、前記レシーバの下流側に配置される第3弁(V3)をさらに備え、
     前記冷媒量検知運転時に、前記第3弁の開度が小さくなる、
    請求項1~4のいずれか1項に記載の熱源ユニット。
    Further comprising a third valve (V3) arranged downstream of the receiver during normal operation,
    The degree of opening of the third valve decreases during the refrigerant amount detection operation,
    A heat source unit according to any one of claims 1 to 4.
  6.  前記第1熱交換器と接続され、前記レシーバをバイパスする第2流路(P2)をさらに備え、
     前記第2流路は、前記第3弁をバイパスする、
    請求項5に記載の熱源ユニット。
    further comprising a second flow path (P2) connected to the first heat exchanger and bypassing the receiver;
    the second flow path bypasses the third valve;
    The heat source unit according to claim 5.
  7.  前記第1熱交換器と接続され、前記レシーバをバイパスする第2流路(P2)と、
     前記第2流路を開閉する第2弁(V2)と、
    をさらに備え、
     前記冷媒量検知運転時には、前記第1弁が開いた後に、前記第2弁が開くとともに、前記第3弁の開度が小さくなる、
    請求項5または6に記載の熱源ユニット。
    a second flow path (P2) connected to the first heat exchanger and bypassing the receiver;
    a second valve (V2) for opening and closing the second flow path;
    further comprising
    During the refrigerant amount detection operation, the second valve opens after the first valve opens, and the opening degree of the third valve decreases.
    The heat source unit according to claim 5 or 6.
  8.  前記冷媒量検知運転は、前記第1熱交換器を凝縮器として用いるときの凝縮器出口温度、前記冷媒回路の高圧、前記冷媒回路の低圧、前記レシーバの出口温度、外気温、蒸発温度、及び前記圧縮機の回転数の少なくとも1つを用いて、冷媒量の検知を行う、
    請求項1~7のいずれか1項に記載の熱源ユニット。
    The refrigerant amount detection operation includes a condenser outlet temperature when the first heat exchanger is used as a condenser, a high pressure of the refrigerant circuit, a low pressure of the refrigerant circuit, an outlet temperature of the receiver, an outside air temperature, an evaporation temperature, and Detecting the amount of refrigerant using at least one of the rotation speeds of the compressor,
    The heat source unit according to any one of claims 1-7.
  9.  請求項1~8のいずれか1項に記載の熱源ユニットと、
     前記熱源ユニットと接続され、第2熱交換器を含む利用ユニットと、
    を備える、
    冷凍装置(1)。
    a heat source unit according to any one of claims 1 to 8;
    a utilization unit connected to the heat source unit and including a second heat exchanger;
    comprising
    A refrigerator (1).
PCT/JP2022/046568 2021-12-21 2022-12-19 Heat source unit and refrigeration device WO2023120448A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021207527A JP7348547B2 (en) 2021-12-21 2021-12-21 Heat source unit and refrigeration equipment
JP2021-207527 2021-12-21

Publications (1)

Publication Number Publication Date
WO2023120448A1 true WO2023120448A1 (en) 2023-06-29

Family

ID=86902627

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/046568 WO2023120448A1 (en) 2021-12-21 2022-12-19 Heat source unit and refrigeration device

Country Status (2)

Country Link
JP (1) JP7348547B2 (en)
WO (1) WO2023120448A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09273839A (en) * 1996-04-05 1997-10-21 Hitachi Ltd Refrigerating cycle
US6076367A (en) * 1993-09-28 2000-06-20 Jdm, Ltd. Variable speed liquid refrigerant pump
WO2013080914A1 (en) * 2011-11-29 2013-06-06 日立アプライアンス株式会社 Air conditioner
JP2015075259A (en) * 2013-10-07 2015-04-20 ダイキン工業株式会社 Refrigeration device
JP2016205729A (en) * 2015-04-24 2016-12-08 三菱重工業株式会社 Refrigeration cycle device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6076367A (en) * 1993-09-28 2000-06-20 Jdm, Ltd. Variable speed liquid refrigerant pump
JPH09273839A (en) * 1996-04-05 1997-10-21 Hitachi Ltd Refrigerating cycle
WO2013080914A1 (en) * 2011-11-29 2013-06-06 日立アプライアンス株式会社 Air conditioner
JP2015075259A (en) * 2013-10-07 2015-04-20 ダイキン工業株式会社 Refrigeration device
JP2016205729A (en) * 2015-04-24 2016-12-08 三菱重工業株式会社 Refrigeration cycle device

Also Published As

Publication number Publication date
JP2023092358A (en) 2023-07-03
JP7348547B2 (en) 2023-09-21

Similar Documents

Publication Publication Date Title
JP5234167B2 (en) Leakage diagnostic device
JP4120682B2 (en) Air conditioner and heat source unit
JP6156528B1 (en) Refrigeration equipment
WO2009107615A1 (en) Air conditioner
WO2014103028A1 (en) Air conditioner
AU2009248466B2 (en) Refrigeration Apparatus
KR20080071601A (en) Air conditioner
WO2014068967A1 (en) Refrigeration device
EP2257749B1 (en) Refrigerating system and method for operating the same
WO2016009516A1 (en) Refrigerating and air conditioning device
WO2018097154A1 (en) Refrigeration device
EP2314954B1 (en) Refrigeration device
WO2009103469A2 (en) Refrigerating system and method for operating the same
CN109073304B (en) Refrigerating device
JP5487831B2 (en) Leakage diagnosis method and leak diagnosis apparatus
JP6515902B2 (en) Heat source unit of refrigeration system
JP4562650B2 (en) Air conditioner
WO2023120448A1 (en) Heat source unit and refrigeration device
WO2018101439A1 (en) Method for determining pipe diameter, device for determining pipe diameter, and refrigerating device
JP5200120B2 (en) Valve check method for refrigeration circuit
JP2023092357A (en) Heat source unit and refrigeration device
JP7397286B2 (en) Refrigeration cycle equipment
WO2017110339A1 (en) Air-conditioning apparatus
CN112005062B (en) Refrigeration cycle device and refrigeration device
JP2023034884A (en) Refrigeration cycle device and method for determining leakage of coolant

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22911151

Country of ref document: EP

Kind code of ref document: A1