WO2023120327A1 - Adhesive electrode for acquiring biosignal, electrode piece, and biosensor - Google Patents

Adhesive electrode for acquiring biosignal, electrode piece, and biosensor Download PDF

Info

Publication number
WO2023120327A1
WO2023120327A1 PCT/JP2022/046057 JP2022046057W WO2023120327A1 WO 2023120327 A1 WO2023120327 A1 WO 2023120327A1 JP 2022046057 W JP2022046057 W JP 2022046057W WO 2023120327 A1 WO2023120327 A1 WO 2023120327A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive
electrode
biosignal acquisition
adhesive electrode
meth
Prior art date
Application number
PCT/JP2022/046057
Other languages
French (fr)
Japanese (ja)
Inventor
千春 小田根
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2023120327A1 publication Critical patent/WO2023120327A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/251Means for maintaining electrode contact with the body
    • A61B5/257Means for maintaining electrode contact with the body using adhesive means, e.g. adhesive pads or tapes
    • A61B5/259Means for maintaining electrode contact with the body using adhesive means, e.g. adhesive pads or tapes using conductive adhesive means, e.g. gels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/263Bioelectric electrodes therefor characterised by the electrode materials
    • A61B5/268Bioelectric electrodes therefor characterised by the electrode materials containing conductive polymers, e.g. PEDOT:PSS polymers

Definitions

  • the present invention relates to an adhesive electrode for biosignal acquisition, an electrode piece, and a biosensor.
  • a biosensor In medical institutions such as hospitals and clinics, nursing homes, and homes, biosensors that measure biometric information such as electrocardiogram, pulse wave, electroencephalogram, and myoelectricity are used.
  • a biosensor includes a bioelectrode that comes into contact with a living body to acquire biometric information of a subject.
  • the biosensor is attached to the subject's skin, the bioelectrode is brought into contact with the subject's skin, and the biometric information is measured by acquiring an electrical signal related to the biometric information with the bioelectrode.
  • a bioelectrode for such a biosensor has, for example, an adhesive layer containing a conductive organic polymer compound and an adhesive material, and is used for bonding to a surface to which a wiring substrate is attached.
  • a seat has been disclosed (see, for example, Patent Document 1).
  • the pressure-sensitive adhesive sheet of Patent Document 1 does not have sufficient water resistance, when it is applied to the surface of a living body for a long period of time, for example, 1 to 3 days, the pressure-sensitive adhesive sheet of Patent Document 1 absorbs sweat and external moisture. As a result, there was a problem that the adhesive swelled and the adhesive strength decreased. When the adhesive strength is reduced, the adhesive strength and conformability to the biological surface of the adhesive sheet are reduced, so that the conductivity of the adhesive sheet of Patent Document 1 is reduced and noise increases during use. was there.
  • An object of one aspect of the present invention is to provide an adhesive electrode for acquiring biosignals that can maintain stable conductivity even when used for a long period of time and that can keep noise low.
  • biosignal acquisition adhesive electrode includes an adhesive electrode layer containing a conductive polymer, a binder resin made of a water-based emulsion adhesive, and a moisturizing agent.
  • biosignal acquisition adhesive electrode according to the present invention can maintain stable conductivity even when used for a long period of time, and can keep noise low.
  • FIG. 4 is an explanatory diagram showing the internal state of the biosignal acquisition adhesive electrode according to the embodiment of the present invention; It is a figure explaining an example of the relationship between the magnitude
  • FIG. 4 is a diagram illustrating another example of the relationship between the magnitude of the storage elastic modulus G′ and the adhesion to the surface of the living body. It is a figure explaining an example of an electrocardiogram waveform.
  • 4 is a graph showing the relationship between the glycerin content and sheet resistance of electrode sheets of Examples 1 to 4.
  • FIG. FIG. 2 is a diagram showing the relationship between the glycerin content and the tack force of the electrode sheets of Examples 1 to 4.
  • FIG. 4 is a graph showing the relationship between the glycerin content and peel strength of the electrode sheets of Examples 1 to 4.
  • FIG. FIG. 2 is a graph showing the relationship between the glycerin content and area swelling ratio of electrode sheets of Examples 1 to 4.
  • FIG. 10 is a diagram showing the relationship between the storage elastic modulus G′ of the electrode sheets of Examples 3 and 8 and noise.
  • FIG. 10 is a diagram showing the relationship between the number of days and the tack force of the electrode sheet of Example 1-3.
  • FIG. 10 is a diagram showing the relationship between the number of days of the electrode sheet of Example 3-4 and the rate of change in resistance;
  • the adhesive electrode for biosignal acquisition according to an embodiment of the present invention is composed of an adhesive electrode layer, and may be provided with other layers.
  • the biosignal acquisition adhesive electrode according to the present embodiment can be in any shape such as a sheet shape.
  • the adhesive electrode layer contains a conductive polymer, a binder resin, and a moisturizing agent.
  • FIG. 1 is an explanatory diagram showing the internal state of a biosignal acquisition adhesive electrode. As shown in FIG. 1, the biosignal acquisition adhesive electrode 1 is composed of an adhesive electrode layer 10.
  • the adhesive electrode layer 10 includes a conductive polymer 11, a binder resin 12 and a moisturizing agent 13. Conductive polymer 11 and moisturizing agent 13 are dispersed in binder resin 12 in conductive electrode layer 10 .
  • Examples of conductive polymers include polythiophene-based conductive polymers, polyaniline-based conductive polymers, polypyrrole-based conductive polymers, polyacetylene-based conductive polymers, polyphenylene-based conductive polymers, derivatives thereof, and derivatives thereof. can be used. These may be used individually by 1 type, and may be used together 2 or more types.
  • Polythiophene-based conductive polymers include polythiophene, poly(3-methylthiophene), poly(3-ethylthiophene), poly(3-propylthiophene), poly(3-butylthiophene), and poly(3-hexylthiophene).
  • Polyaniline-based conductive polymers include polyaniline, polystyrenesulfonic acid (also referred to as PSS), polyvinylsulfonic acid, polyallylsulfonic acid, polyacrylsulfonic acid, polymethacrylsulfonic acid, poly(2-acrylamido-2-methylpropanesulfone acid), polyisoprene sulfonic acid, polysulfoethyl methacrylate, poly(4-sulfobutyl methacrylate), polymers having sulfonic acid groups such as polymethacryloxybenzene sulfonic acid, polyvinyl carboxylic acid, polystyrene carboxylic acid, polyallyl carboxylic acid Polymers having a carboxylic acid group such as acid, polyacryliccarboxylic acid, polymethacryliccarboxylic acid, poly(2-acrylamido-2-methylpropanecarboxylic acid), polyisoprenecarboxylic acid, and polyacrylic
  • polystyrene sulfonic acid may be used as a homopolymer obtained by polymerizing one type alone, or may be used as a copolymer of two or more types.
  • a polymer having a sulfonic acid group is preferable, and polystyrene sulfonic acid is more preferable, because the conductivity can be further increased.
  • Polypyrrole-based conductive polymers include polypyrrole, poly(N-methylpyrrole), poly(3-methylpyrrole), poly(3-ethylpyrrole), poly(3-n-propylpyrrole), poly(3-butyl pyrrole), poly(3-octylpyrrole), poly(3-decylpyrrole), poly(3-dodecylpyrrole), poly(3,4-dimethylpyrrole), poly(3,4-dibutylpyrrole), poly(3 -carboxypyrrole), poly(3-methyl-4-carboxypyrrole), poly(3-methyl-4-carboxyethylpyrrole), poly(3-methyl-4-carboxybutylpyrrole), poly(3-hydroxypyrrole) , poly(3-methoxypyrrole), poly(3-ethoxypyrrole), poly(3-butoxypyrrole), poly(3-hexyloxypyrrole) and
  • polyacetylene-based conductive polymers include polyacetylenes having polar groups such as polyphenylacetylene monoesters having an ester at the para-position of phenylacetylene and polyphenylacetylene monoamides having an amide at the para-position of phenylacetylene.
  • polyphenylene-based conductive polymers examples include polyphenylene vinylene.
  • polythiophene doped with polyaniline examples include polythiophene doped with polyaniline as a dopant.
  • PEDOT/PSS which is PEDOT doped with PSS, or the like can be used.
  • the conductive polymer is preferably a composite of polythiophene doped with polyaniline as a dopant.
  • PEDOT/PSS which is PEDOT doped with PSS, is more preferable because it has lower contact impedance with a living body and high conductivity.
  • the binder resin consists of a water-based emulsion adhesive.
  • the water-based emulsion adhesive has a function of improving the adhesiveness and flexibility of the biosignal acquisition adhesive electrode. Therefore, by including the water-based emulsion adhesive in the biosignal acquisition adhesive electrode, the biosignal acquisition adhesive electrode can be made to have low elasticity, and the ability to follow the irregularities on the surface of the living body can be improved.
  • An acrylic emulsion pressure-sensitive adhesive can be used as the water-based emulsion pressure-sensitive adhesive.
  • acrylic emulsion pressure-sensitive adhesive it is preferable to use a silane-based emulsion pressure-sensitive adhesive containing a water-dispersible copolymer and an organic liquid component compatible with the water-dispersible copolymer.
  • a water-dispersible copolymer is a polymer obtained by copolymerizing a monomer mixture containing an (meth)acrylic acid alkyl ester with a silane-based monomer that can be copolymerized with the (meth)acrylic acid alkyl ester. be.
  • the monomer mixture containing (meth)acrylic acid alkyl ester is a monomer mixture containing (meth)acrylic acid alkyl ester as a main component, preferably 50 wt % to 100 wt %.
  • the (meth)acrylic acid alkyl ester a linear or branched alkyl ester having an alkyl group having 1 to 15 carbon atoms, preferably 1 to 9 carbon atoms is used.
  • the monomer mixture containing the (meth)acrylic acid alkyl ester may contain a carboxyl group-containing monomer copolymerizable with the (meth)acrylic acid alkyl ester.
  • the carboxyl group-containing monomer copolymerizable with the (meth)acrylic acid alkyl ester is a polymerizable compound containing a carboxyl group in its structure and is copolymerizable with the (meth)acrylic acid alkyl ester.
  • Examples include (meth)acrylic acid, itaconic acid, maleic acid, maleic anhydride, 2-methacryloyloxyethylsuccinic acid, and the like. Acrylic acid and 2-methacryloyloxyethylsuccinic acid are particularly preferred.
  • the carboxyl group-containing monomer is 0.1 wt% with respect to 100 wt% of the monomer mixture containing the (meth)acrylic acid alkyl ester from the viewpoint of hydrolysis of the silane-based monomer and adjustment of the resulting adhesiveness. It is preferable to contain ⁇ 10 wt%.
  • the silane-based monomer copolymerizable with the (meth)acrylic acid alkyl ester is not particularly limited as long as it is a polymerizable compound having a silicon atom and is copolymerizable with the (meth)acrylic acid alkyl ester.
  • silane compounds having a (meth)acryloyl group such as (meth)acryloyloxyalkylsilane derivatives, are preferred because of their excellent copolymerizability with (meth)acrylic acid alkyl esters.
  • silane-based monomers examples include 3-(meth)acryloyloxypropyltrimethoxysilane, 3-(meth)acryloyloxypropyltriethoxysilane, 3-(meth)acryloyloxypropylmethyldimethoxysilane and 3-(meth)acryloyloxypropyltrimethoxysilane. ) acryloyloxypropylmethyldiethoxysilane and the like. These silane-based monomers can be used alone or in combination of two or more.
  • silane monomers other than the above examples include vinyltrimethoxysilane, vinyltriethoxysilane, 4-vinylbutyltrimethoxysilane, 4-vinylbutyltriethoxysilane, 8-vinyloctyltrimethoxysilane, 8 -vinyloctyltriethoxysilane, 10-methacryloyloxydecyltrimethoxysilane, 10-acryloyloxydecyltrimethoxysilane, 10-methacryloyloxydecyltriethoxysilane and 10-acryloyloxydecyltriethoxysilane, etc. can also be used.
  • the silane-based monomer is added to the monomer mixture containing the (meth)acrylic acid alkyl ester in an amount of 0.005 wt% to 2 wt% with respect to 100 wt% of the monomer mixture containing the (meth)acrylic acid alkyl ester. Polymerization is preferred.
  • the silane-based monomer When the silane-based monomer is copolymerized with the monomer mixture containing the (meth)acrylic acid alkyl ester, the silane compound serving as a cross-linking point can be evenly present in the molecules of the obtained copolymer. becomes.
  • the water-based emulsion pressure-sensitive adhesive is a water-dispersed type, the inside and outside of the water-based emulsion pressure-sensitive adhesive particles are uniformly cross-linked, so the cohesive force is excellent, and the addition of the organic liquid component reduces skin irritation. In addition to being durable, it also has excellent fixation and sweat resistance.
  • the water-dispersible copolymer is obtained by copolymerizing a monomer copolymerizable with a (meth)acrylic acid alkyl ester other than the silane-based monomer and the carboxyl group-containing monomer, if necessary.
  • Examples of monomers copolymerizable with (meth)acrylic acid alkyl esters other than silane-based monomers and carboxyl group-containing monomers include styrenesulfonic acid, allylsulfonic acid, sulfopropyl (meth)acrylate, ( meth) Acryloyloxynaphthalenesulfonic acid, sulfoxyl group-containing monomers such as acrylamidomethylpropanesulfonic acid, hydroxyl group-containing monomers such as (meth)acrylic acid hydroxyethyl ester and (meth)acrylic acid hydroxypropyl ester, (meth) ) Acrylamide, dimethyl (meth) acrylamide, N-butyl acrylamide, N-methylol (meth) acrylamide and N-methylolpropane (meth) amide group-containing monomers such as acrylamide, (meth) acrylic acid aminoethyl ester, (meth ) acrylic acid di
  • the water-dispersible polymer can be obtained, for example, by subjecting a mixture of a monomer mixture containing an (meth)acrylic acid alkyl ester and a silane-based monomer to ordinary emulsion polymerization to obtain a (meth)acrylic acid alkyl ester copolymer. It can be prepared as an aqueous dispersion of the coalescence.
  • polymerization method General batch polymerization, continuous dropping polymerization, divided dropping polymerization, etc. can be adopted as the polymerization method, and the polymerization temperature is, for example, 20°C to 100°C.
  • the polymerization initiator used for polymerization is not particularly limited, and common components used as polymerization initiators can be used.
  • a chain transfer agent may be used in the polymerization to adjust the degree of polymerization.
  • the chain transfer agent is not particularly limited, and common components used as chain transfer agent weights can be used.
  • the water-dispersible copolymer is produced by obtaining a copolymer of a monomer mixture containing a (meth)acrylic acid ester and a silane-based monomer by a method other than emulsion polymerization, followed by addition of an emulsifier to water. It may be prepared by dispersing in
  • the organic liquid component contained in the acrylic emulsion pressure-sensitive adhesive is blended with the water-dispersible copolymer to maintain good adhesion to the biological surface and reduce keratin damage during peeling, reducing pain during peeling. can also be reduced.
  • the organic liquid component is preferably liquid at room temperature and has good compatibility with the water-dispersible copolymer.
  • compatible means that the organic liquid component is uniformly dissolved and incorporated into the water-dispersed copolymer, and refers to a state in which separation cannot be visually confirmed.
  • organic liquid components examples include esters of monobasic or polybasic acids having 8 to 18 carbon atoms and branched alcohols having 14 to 18 carbon atoms, and unsaturated fatty acids or branched acids having 14 to 18 carbon atoms and 4 Examples include esters with alcohols having a lower valence and the like.
  • esters of monobasic or polybasic acids having 8 to 18 carbon atoms and branched alcohols having 14 to 18 carbon atoms include isostearyl laurate, isocetyl myristate, octyldodecyl myristate, and isostearyl palmitate. , isocetyl stearate, octyldodecyl oleate, diisostearyl adipate, diisocetyl sebacate, trioleyl trimellitate and triisocetyl trimellitate.
  • Examples of unsaturated fatty acids or branched acids having 14 to 18 carbon atoms include myristoleic acid, oleic acid, linoleic acid, linolenic acid, isopalmitic acid and isostearic acid.
  • tetravalent or lower alcohols examples include ethylene glycol, propylene glycol, glycerin, trimethylolpropane, pentaerythritol and sorbitan.
  • the content of the organic liquid component can be set arbitrarily according to the types of the water-dispersible copolymer and the organic liquid component, for example, 20 wt% to 80 wt% with respect to 100 wt% of the water-dispersible copolymer. good too.
  • the acrylic emulsion pressure-sensitive adhesive is a silane emulsion pressure-sensitive adhesive
  • the acrylic emulsion pressure-sensitive adhesive specifically includes 2-ethylhexyl acrylate, methyl methacrylate, acrylic acid and 3-methacryloxypropyltrimethoxysilane.
  • a silane-based emulsion adhesive can be used.
  • the acrylic emulsion pressure-sensitive adhesive may be a two-component or three-component acrylic emulsion pressure-sensitive adhesive containing a monomer mixture containing a (meth)acrylic acid alkyl ester and a carboxyl group-containing monomer. . These may be included in a predetermined amount as appropriate within a range in which the performance of the solvent and other components can be exhibited.
  • the monomer mixture containing the (meth)acrylic acid alkyl ester contained in the two-component or three-component acrylic emulsion pressure-sensitive adhesive is the monomer containing the (meth)acrylic acid alkyl ester contained in the above silane-based emulsion pressure-sensitive adhesive. Since a monomer mixture similar to the monomer mixture can be used, the details are omitted.
  • the carboxyl group-containing monomer is preferably a carboxyl group-containing monomer copolymerizable with (meth)acrylic acid alkyl ester.
  • the carboxyl group-containing monomer copolymerizable with the (meth)acrylic acid alkyl ester is the same monomer as the carboxyl group-containing monomer included in the monomer mixture containing the (meth)acrylic acid alkyl ester. Since a body mixture can be used, details are omitted.
  • the two-component acrylic emulsion adhesive contains 2-ethylhexyl acrylate, which is a monomer mixture containing (meth)acrylic acid alkyl ester, and acrylic acid, which is a carboxyl group-containing monomer mixture.
  • An adhesive can be used.
  • the three-component acrylic emulsion adhesive includes 2-ethylhexyl acrylate and methyl methacrylate, which are monomer mixtures containing (meth)acrylic acid alkyl esters, and acrylic acid, which is a carboxyl group-containing monomer mixture. and can be used.
  • the average particle size of the water-based emulsion adhesive is preferably 100 nm to 1.0 ⁇ m, more preferably 100 nm to 500 nm, even more preferably 100 nm to 300 nm.
  • the adhesive force and water resistance can be imparted to the biosignal acquisition adhesive electrode.
  • the shape of the water-based emulsion pressure-sensitive adhesive is not particularly limited, and may be, for example, spherical, ellipsoidal, spindle-shaped, crushed, plate-shaped, columnar, or the like.
  • Average particle size refers to the volume average particle size based on the effective diameter.
  • the average particle size is, for example, a particle size distribution curve obtained by measuring the particle size distribution of an emulsion pressure-sensitive adhesive or an acrylic emulsion pressure-sensitive adhesive by a laser diffraction/scattering method or a dynamic light scattering method. It is the particle diameter (median diameter) when 50% by volume is accumulated from the smaller one.
  • the content of the binder resin is preferably 35 wt% to 90 wt%, more preferably 40 wt% to 85 wt%, even more preferably 50 wt% to 80 wt%.
  • the content of the binder resin is within the above preferred range, it is possible to impart adhesive strength and flexibility to the biosignal acquisition adhesive electrode, and to suppress a decrease in conductivity.
  • the moisturizer has the function of improving the conductivity of the adhesive electrode for biosignal acquisition, as well as the adhesive strength and flexibility.
  • Moisturizing agents include glycerin, ethylene glycol, propylene glycol, sorbitol, and polyol compounds such as these polymers N-methylpyrrolidone (NMP), dimethylformaldehyde (DMF), N—N′-dimethylacetamide (DMAc) and dimethylsulfoxide. and aprotic compounds such as (DMSO). These may be used individually by 1 type, and may be used together 2 or more types. Among these, glycerin is preferable from the viewpoint of compatibility with other components.
  • the content of the moisturizing agent is preferably 2 wt% to 60 wt%, more preferably 3 wt% to 50 wt%, and even more preferably 5 wt% to 35 wt% with respect to 100 wt% of the electrode. If the content of the humectant is within the above preferable range, the adhesive strength of the biosignal acquisition adhesive electrode can be improved, high adhesiveness to the biological surface can be maintained, and the storage elastic modulus can be reduced. and increase viscoelasticity, it is possible to suppress the magnitude of noise generated during use. In addition, the biosignal acquisition adhesive electrode can suppress water absorption from the outside and suppress swelling.
  • the thickness of the adhesive electrode layer is preferably 10 ⁇ m to 100 ⁇ m, more preferably 15 ⁇ m to 90 ⁇ m, even more preferably 20 ⁇ m to 80 ⁇ m.
  • the adhesive electrode for biosignal acquisition can be provided with sufficient strength, flexibility, and conductive stability during deformation.
  • the thickness of the adhesive electrode layer refers to the length in the direction perpendicular to the surface of the adhesive electrode layer.
  • the thickness of the adhesive electrode layer is, for example, the thickness measured at an arbitrary location in the cross section of the adhesive electrode layer. An average value may be used.
  • the sheet resistance (surface resistance) of the adhesive electrode layer is preferably 500 ⁇ / ⁇ or less, more preferably 400 ⁇ / ⁇ or less, and even more preferably 100 ⁇ / ⁇ or less. If the sheet resistance is 100 ⁇ / ⁇ or less, the biosignal acquisition adhesive electrode can have sufficient electrical conductivity for a living body.
  • the sheet resistance can be used as an indicator of the conductivity of the biosignal acquisition adhesive electrode according to the present embodiment.
  • the sheet resistance of the adhesive electrode for biosignal acquisition is obtained by measuring by eddy current measurement in accordance with JIS Z 2316-1:2014 using a general non-contact resistance measuring machine.
  • the measurement range may be appropriately set to any range according to the shape, size, etc. of the biosignal acquisition adhesive electrode.
  • the measurement range may be 0.5 mm to 150 mm on the main surface.
  • the tack force of the adhesive electrode layer is preferably 4.0 gf/ ⁇ 5 mm or more, more preferably 10 gf/ ⁇ 5 mm or more, and even more preferably 20 gf/ ⁇ 5 mm or more.
  • the biosignal acquisition adhesive electrode can have sufficient adhesive force to be attached to the surface of a living body.
  • the tack force of the adhesive electrode for biosignal acquisition can be measured using a general tack tester.
  • the biosignal acquisition adhesive electrode is fixed to the upper surface of the plate via double-sided tape, and the probe with a predetermined diameter (for example, 5 mm) and the biosignal acquisition adhesive electrode are placed vertically. Install in the opposite direction.
  • the probe is lowered at a predetermined pressing speed (for example, 0.01 mm/s) under an environmental temperature of 25° C., and a load of 50 gf is applied to the biosignal acquisition adhesive electrode on the plate for 1 second.
  • the probe After being held, the probe is lifted at a predetermined lifting speed (e.g., 1 mm/s), and the load required to peel off the probe from the biosignal acquisition adhesive electrode is determined as a tack force at 25°C (unit: gf/ ⁇ 5 mm).
  • a predetermined lifting speed e.g. 1 mm/s
  • the load required to peel off the probe from the biosignal acquisition adhesive electrode is determined as a tack force at 25°C (unit: gf/ ⁇ 5 mm).
  • the area expansion coefficient of the adhesive electrode layer is preferably 2.5 or less, more preferably 2.3 or less, and even more preferably 1.5 or less.
  • a lower area expansion coefficient is preferable, and the lower limit thereof is not particularly limited, but may be, for example, 1.1. If the area expansion coefficient is 2.5 or less, the adhesive force for biosignal acquisition will swell due to contact with water or humidity, and the adhesive strength will decrease even when the adhesive electrode for biosignal acquisition is attached to a wet surface where the surface of a living body is wet. can be suppressed.
  • the biosignal acquisition adhesive electrode there is little change in shape due to swelling of the biosignal acquisition adhesive electrode, it is excellent in water resistance, and it is suitable for use in an environment where it is in contact with water for a long period of time, or is submerged in water. Furthermore, if the degree of swelling is 2.5 or less, even if the adhesive electrode for biosignal acquisition swells due to slight detachment after adhesion, the adhesive force with the interface with the surface of the living body is strong. It can suppress the decrease in strength.
  • the area expansion rate of the biosignal acquisition adhesive electrode can be used as an indicator of the water resistance of the biosignal acquisition adhesive electrode.
  • the area expansion rate of the adhesive electrode for biosignal acquisition can be measured, for example, by immersing a sample obtained by cutting an electrode sheet into a predetermined size (for example, a size of 3 cm ⁇ 3 cm) in a bath containing water at 25° C. for 1 hour. After that, the degree of swelling calculated by measuring the area of the sample can be used.
  • a conductive composition containing a conductive polymer and a binder resin is produced by mixing the conductive polymer and the binder resin in the above ratio.
  • a humectant is further included in the conductive composition in the above ratio.
  • the conductive polymer, the binder resin, and the humectant may be dissolved in a solvent and used as an aqueous solution.
  • the conductive composition optionally contains a solvent in an arbitrary ratio, and is an aqueous solution of the conductive composition (aqueous conductive composition ) may be used.
  • a solvent the same solvents as those described above can be used.
  • the conductive composition After the conductive composition is applied to the surface of the release base material, the conductive composition is heated to promote the cross-linking reaction of the binder resin contained in the conductive composition and cure the binder resin. Thereby, a cured product of the conductive composition is obtained. If necessary, the surface of the obtained cured product is punched (pressed) using a press machine or the like to shape the outer shape of the cured product into a predetermined shape. As a result, the biosignal acquisition adhesive electrode, which is a molded body having a predetermined external shape, is obtained. In addition, you may shape
  • the biosignal acquisition adhesive electrode according to the present embodiment includes an adhesive electrode layer containing a conductive polymer, a binder resin, and a moisturizing agent. It consists of at least one component of the agent.
  • the biosignal acquisition adhesive electrode according to the present embodiment has a low resistance, can suppress swelling due to water absorption, and can suppress viscoelasticity to a low level.
  • the adhesive electrode for biosignal acquisition according to the present embodiment can improve water resistance, so that it is possible to suppress a decrease in adhesive force while maintaining low resistance, and to improve flexibility and Followability to the surface can be improved. Therefore, the biosignal acquisition adhesive electrode according to the present embodiment can maintain the adhesive force to the surface of the living body, so that even when used for a long period of time, it is possible to maintain stable conductivity and reduce noise. be able to.
  • the viscoelasticity of the biosignal acquisition adhesive electrode can be evaluated by measuring the storage elastic modulus G' and the loss elastic modulus G'' of the biosignal acquisition adhesive electrode.
  • the storage elastic modulus G′ corresponds to a portion stored as elastic energy when the biosignal acquisition adhesive electrode is deformed, and is an index representing the degree of hardness of the biosignal acquisition adhesive electrode. As shown in FIG. 2, the smaller the storage elastic modulus G′, the more closely the tissue can follow the irregularities on the surface of the living body and prevent the formation of gaps. There is a tendency. As the storage elastic modulus G' increases, as shown in FIG. 3, it becomes difficult to follow the unevenness of the surface of the living body and gaps are likely to occur, making it difficult to adhere to the surface of the living body.
  • the loss elastic modulus G′′ corresponds to a loss energy portion that is dissipated due to internal friction or the like when the biosignal acquisition adhesive electrode is deformed, and represents the degree of viscosity of the biosignal acquisition adhesive electrode.
  • the storage elastic modulus G' at 32°C of the biosignal acquisition adhesive electrode can be measured in accordance with JIS K 7244-7:1998.
  • the biosignal acquisition adhesive electrode is punched into a disk shape having a predetermined size (for example, 8 mm in diameter) to prepare a test piece.
  • a dynamic viscoelasticity measuring device for this test piece, the viscoelasticity is measured at a frequency of 1 Hz, a temperature range of -60 ° C to 100 ° C, and a heating rate of 5 ° C / min.
  • the storage modulus G' at 32°C of the adhesive electrode is determined.
  • the loss elastic modulus G'' of the adhesive electrode for biosignal acquisition can also be measured according to JIS K 7244-7: 1998, like the storage elastic modulus G'.
  • the loss tangent (loss coefficient) tan ⁇ is obtained from the storage elastic modulus G' and the loss elastic modulus G' calculated by viscoelasticity measurement of the biosignal acquisition adhesive electrode.
  • the loss tangent tan ⁇ is the ratio G′′/G′ of the loss elastic modulus G′′ and the storage elastic modulus G′.
  • the temperature at which the loss tangent tan ⁇ becomes maximum (peak top temperature) is the glass transition temperature.
  • the greater the tangent tan ⁇ the more viscous the biosignal acquisition adhesive electrode tends to be, the more liquid-like the deformation behavior, and the smaller the rebound elastic energy.
  • the loss tangent tan ⁇ is preferably small.
  • the water resistance of the biosignal acquisition adhesive electrode can be evaluated by measuring the area expansion rate of the biosignal acquisition adhesive electrode.
  • the adhesive force of the biosignal acquisition adhesive electrode can be evaluated by measuring the tack force or peel force.
  • the peel force of the biosignal acquisition adhesive electrode can be measured using a general tensile tester. For example, after attaching a backing tape to one side of the biosignal acquisition adhesive electrode, a sample piece having a predetermined size (for example, width 10 mm ⁇ length 50 mm) is cut from the adhesive electrode for biosignal acquisition with the backing tape. . Using a laminator, the surface of the sample piece on the side of the adhesive electrode for biosignal acquisition is attached to a resin plate (for example, bakelite (phenol resin) plate).
  • a resin plate for example, bakelite (phenol resin) plate
  • peel test was performed by pulling the backing tape of the sample piece on the resin plate under the conditions of 23 ° C., a peel angle of 180 °, and a peel speed of 300 mm / min.
  • the peel adhesive strength (peel force) (unit: N/10 mm) of the electrode at 23°C can be measured.
  • the conductivity can be evaluated by measuring the sheet resistance of the biosignal acquisition adhesive electrode according to this embodiment.
  • the noise of the biosignal acquisition adhesive electrode is measured by attaching the biosignal acquisition adhesive electrode to a part of the subject's arm, setting the distance between the electrodes at a predetermined interval (for example, 10 cm), and wiring a pair of electrodes. It can be measured by connecting to the measuring device by connecting with a predetermined interval (for example, 10 cm).
  • the noise of the biosignal acquisition adhesive electrode can be calculated from the waveform detected when the biosignal acquisition adhesive electrode is used.
  • the waveform is an electrocardiogram waveform obtained by measuring an electrocardiogram, it is composed of P waves, QRS waves and T waves, as shown in FIG.
  • the magnitude of noise is represented by the amplitude of variation from the baseline.
  • the biosignal acquisition adhesive electrode according to the present embodiment maintains the adhesive force to the surface of the living body, thereby stably maintaining the electrical conductivity. Since it can be maintained, durability can be improved.
  • the durability of the tack force and sheet resistance can be evaluated by determining the change in tack force over time and the change in sheet resistance over time of the biosignal acquisition adhesive electrode according to the present embodiment.
  • the durability of the tack force of the biosignal acquisition adhesive electrode is measured at predetermined time intervals (for example, 1 hour, It can be evaluated by measuring the tack force every 1 day, 5 days, 7 days and 14 days) and measuring the change in the tack force over time. Since the tack force can be measured in the same manner as described above, the details are omitted.
  • an acrylic emulsion adhesive can be used as the water-based emulsion adhesive.
  • the water resistance of the biosignal acquisition adhesive electrode can be reliably increased, so that it is possible to suppress a decrease in adhesive force while maintaining a low and stable resistance, and to reliably enhance the ability to follow the surface of a living body. . Therefore, the biosignal acquisition adhesive electrode according to the present embodiment can reliably keep the viscoelasticity low, and thus can have high adhesive strength and conformability to the surface of the living body.
  • the adhesive electrode for biosignal acquisition according to the present embodiment includes, as an acrylic emulsion adhesive, a monomer mixture containing a (meth)acrylic acid alkyl ester, and a silane-based compound copolymerizable with the (meth)acrylic acid alkyl ester.
  • a silane-based emulsion adhesive containing a water-dispersible copolymer obtained by copolymerizing monomers and an organic liquid component compatible with the water-dispersible copolymer can be used.
  • the viscoelasticity of the biosignal acquisition adhesive electrode according to the present embodiment can be reliably kept low, so that the adhesive force can be increased, and the followability to the surface of the living body can be further improved.
  • the acrylic emulsion adhesive is selected from the group including a monomer mixture containing a (meth)acrylic acid alkyl ester and a monomer mixture containing a carboxyl group. It can contain the above components. Even in this case, since the viscoelasticity of the biosignal acquisition adhesive electrode according to the present embodiment can be reliably kept low, the adhesive force can be increased, and the followability to the biological surface can be further improved. can.
  • the water-based emulsion adhesive can have an average particle size of 100 nm to 1.0 ⁇ m.
  • the dispersibility of the water-based emulsion pressure-sensitive adhesive can be enhanced, so that the effect of the addition of the water-based emulsion pressure-sensitive adhesive can be exhibited more easily. Therefore, since the biosignal acquisition adhesive electrode according to the present embodiment can reliably keep the viscoelasticity lower, the adhesive force can be increased, and the followability to the biological surface can be further improved. .
  • the biosignal acquisition adhesive electrode according to the present embodiment can have a binder resin content of 35 wt % to 90 wt %. As a result, the biosignal acquisition adhesive electrode according to the present embodiment can reliably improve the water resistance, so that the resistance can be stably maintained low and sufficient adhesive strength can be exhibited. The conformability to the surface of the living body can be further enhanced. Therefore, the biosignal acquisition adhesive electrode according to the present embodiment can more stably maintain conductivity, and can more stably suppress the generation of noise.
  • the biosignal acquisition adhesive electrode according to the present embodiment can use glycerin as a moisturizing agent. As a result, the biosignal acquisition adhesive electrode according to the present embodiment can reduce the resistance, so that the conductivity can be improved and the noise can be further suppressed.
  • the biosignal acquisition adhesive electrode according to the present embodiment can contain 5 wt % to 60 wt % of glycerin. As a result, since the effect of adding glycerin can be reliably exhibited, the biosignal acquisition adhesive electrode according to the present embodiment can reliably reduce the resistance, and thus the conductivity can be reliably improved. can be achieved, and the noise can be further reliably suppressed to a low level.
  • the thickness of the adhesive electrode layer can be set to 10 ⁇ m to 100 ⁇ mn.
  • the biosignal acquisition adhesive electrode according to the present embodiment can reliably suppress a decrease in adhesive force while maintaining a low resistance, and can further enhance the followability to the surface of a living body. It is possible to reliably improve the durability.
  • the adhesive electrode for biosignal acquisition according to the present embodiment can have a sheet resistance of the adhesive electrode layer of 500 ⁇ / ⁇ or less. Thereby, the adhesive electrode for biosignal acquisition according to the present embodiment can exhibit good conductivity.
  • the adhesive electrode for biosignal acquisition according to the present embodiment can have a tack force of the adhesive electrode layer of 4.0 gf/ ⁇ 5 mm or more. Thereby, the adhesive electrode for biosignal acquisition according to the present embodiment can have excellent adhesive strength.
  • the adhesive electrode for biosignal acquisition according to the present embodiment can have an area expansion coefficient of the adhesive electrode layer of 2.5 or less. As a result, the biosignal acquisition adhesive electrode according to the present embodiment can maintain more stable conductivity for a long period of time, and can further suppress noise.
  • the biosignal acquisition adhesive electrode according to the present embodiment is formed in a film form as described above, it is preferable to use the biosignal acquisition adhesive electrode as an electrode piece provided on a base material. Since the electrode piece has higher rigidity than when the adhesive electrode for biosignal acquisition is used alone, it is possible to improve the handleability.
  • the base material used for the electrode piece can be formed using any appropriate material.
  • the substrate used for the electrode piece include polyolefin resins such as polyethylene (PE) and polyethylene naphthalate (PEN), polyester resins such as polyethylene terephthalate (PET), acrylic resins, polyurethane resins, and polystyrene resins. Resins, silicone resins, acrylic resins, vinyl chloride resins, plastic substrates such as polyimide (PI) and polycarbonate (PC), metal plates, glass substrates, and the like can be used.
  • the substrate used for the electrode piece may be a substrate having no porous structure or a substrate having a porous structure (porous body) such as a non-woven fabric sheet.
  • the biosignal acquisition adhesive electrode according to the present embodiment can maintain conductivity and suppress noise even when used for a long period of time, and has excellent durability.
  • it can be suitably used as a bioelectrode of a patch-type biosensor that is attached to the skin of a living body or the like and that requires high conductivity and safety to the skin.
  • Examples 1-2 to 1-5, Examples 2-2 to 2-5, Examples 3-2 to 3-5, Examples 4-2 to 4-5, and Examples 5 to 7 are examples.
  • Examples 1-1, 2-1, 3-1 and 4-1 are comparative examples.
  • Example 1 Preparation of adhesive electrode for biosignal acquisition>
  • Glycerin manufactured by Wako Pure Chemical Industries, Ltd.
  • the solid content shown in Table 1 were added to a plastic container and stirred and defoamed using a planetary stirrer to prepare a uniform composition for forming an adhesive electrode.
  • Example 1 The content of each component in the adhesive electrode-forming composition was as shown in Table 1.
  • the solid content of the silane-based emulsion pressure-sensitive adhesive (manufactured by Nitto Denko Corporation) as the binder resin was 3.25 g
  • the solid content of glycerin was 0 g
  • the solid content of glycerin was used.
  • Example 1-3 had a glycerin solid content of 1 g
  • Example 1-4 had a glycerin solid content of 2 g
  • Example 1-5 had a glycerin solid content of 5 g.
  • Example 2 In Example 1, the procedure was the same as in Example 1, except that the solid content of the silane-based emulsion adhesive (manufactured by Nitto Denko Corporation) was changed to 5.25 g as the binder resin, and the solid content of the moisturizing agent was changed to the solid content shown in Table 1. Then, an electrode sheet was produced.
  • Example 2 as in Example 1, Examples 2-1 to 2-5 are examples in which the solid content of glycerin was 0 g, 0.5 g, 1 g, 2 g, and 5 g, respectively.
  • Example 3 In Example 1, the procedure was the same as in Example 1, except that the solid content of the silane-based emulsion adhesive (manufactured by Nitto Denko Corporation) was changed to 6.5 g as the binder resin, and the solid content of the moisturizing agent was changed to that shown in Table 1. Then, an electrode sheet was produced.
  • Example 3 as in Example 1, Examples 3-1 to 3-5 are examples in which the solid content of glycerin was 0 g, 0.5 g, 1 g, 2 g, and 5 g, respectively.
  • Example 4 In Example 1, the procedure was the same as in Example 1, except that the solid content of the silane-based emulsion adhesive (manufactured by Nitto Denko Corporation) was changed to 7.8 g as the binder resin, and the solid content of the moisturizing agent was changed to that shown in Table 1. Then, an electrode sheet was produced.
  • Example 4 as in Example 1, Examples 4-1 to 4-5 are examples in which the solid content of glycerin was 0 g, 0.5 g, 1 g, 2 g, and 5 g, respectively.
  • Example 5 In Example 1, the silane emulsion pressure-sensitive adhesive (manufactured by Nitto Denko Corporation) was changed to a three-component acrylic emulsion pressure-sensitive adhesive (manufactured by Nitto Denko Corporation) as the binder resin, and the three-component acrylic emulsion pressure-sensitive adhesive (manufactured by Nitto Denko Corporation) and An electrode sheet was produced in the same manner as in Example 1, except that the solid content of the moisturizing agent was changed as shown in Table 1.
  • Examples 5-1 to 5-6 were performed by changing the solid content of each of the three-component acrylic emulsion adhesive (manufactured by Nitto Denko) and the moisturizing agent.
  • Example 6 In Example 1, the silane emulsion pressure-sensitive adhesive (manufactured by Nitto Denko Corporation) was changed to a two-component acrylic emulsion pressure-sensitive adhesive (manufactured by Nitto Denko Corporation) as the binder resin, and the two-component acrylic emulsion pressure-sensitive adhesive (manufactured by Nitto Denko Corporation) and An electrode sheet was produced in the same manner as in Example 1, except that the solid content of the moisturizing agent was changed as shown in Table 1.
  • Examples 6-1 to 6-6 were performed by changing the solid content of each of the two-component acrylic emulsion pressure-sensitive adhesive (manufactured by Nitto Denko) and the moisturizing agent.
  • Example 7 In Example 1, the silane-based emulsion pressure-sensitive adhesive (manufactured by Nitto Denko Co., Ltd.) was changed to PVA as the binder resin, and the PVA and moisturizing agent were changed to the solid content shown in Table 1. An electrode sheet was produced.
  • Table 1 shows the solid content of the conductive polymer, binder resin, and moisturizing agent contained in the electrode sheet in each example, and Table 2 shows the content corresponding to the solid content of each component.
  • the sheet resistance of the electrode sheet was measured by eddy current measurement in accordance with JIS Z 2316-1:2014 using a non-contact resistance measuring machine (NC-80NC, manufactured by Napson). The measurement range was 0.5 mm to 150 mm of the main surface of the electrode sheet. The sheet resistance was evaluated as "good” when it was 500 ⁇ / ⁇ or less, and was evaluated as “poor” when it exceeded 500 ⁇ / ⁇ . Table 3 shows the measurement results of the sheet resistance of the electrode sheet of each example.
  • FIG. 5 shows the relationship between the glycerin content of the electrode sheets of Examples 1 to 4 and the sheet resistance.
  • the tack force of the electrode sheet was measured using a tackiness tester (Tackiness Tester TAC1000, manufactured by Lesca).
  • the electrode sheet is fixed to the upper surface of the plate of the tacking tester via double-sided tape, and the electrode sheet and the probe having a diameter of 5 mm are installed so as to vertically face each other.
  • the probe was lowered at a pressing speed of 0.01 mm/s under an environmental temperature of 25°C, and a load of 50 gf was held on the electrode sheet on the plate for 1 second.
  • the load required to peel off the probe from the electrode sheet was measured as a tack force (unit: gf/ ⁇ 5 mm) at 25°C.
  • Table 3 shows the measurement results of the tack force of the electrode sheet of each example.
  • FIG. 6 shows the relationship between the glycerin content of the electrode sheets of Examples 1 to 4 and the tack force.
  • the viscoelasticity of the electrode sheet was evaluated by measuring the storage elastic modulus G' and the loss elastic modulus G'' of the electrode sheet.
  • the storage modulus G' of the electrode sheet at 32°C was determined by dynamic viscoelasticity measurement.
  • a test piece having a diameter of 8 mm is prepared by cutting an electrode sheet.
  • a dynamic viscoelasticity measuring device Advanced Rheometric Expansion System (ARES)-G2, manufactured by TA Instruments
  • the test piece was measured at a frequency of 1 Hz, a temperature range of -60 ° C. to 100 ° C., and a heating rate of 5 ° C.
  • the electrode sheet was attached to the inside of the subject's arm, the distance between the electrodes was set to 10 cm, wires were connected to a pair of electrodes, and a measuring device (manufactured by Nitto) was connected to evaluate noise.
  • the relationship between the storage elastic modulus G' of the electrode sheets of Examples 3 and 8 and noise is shown in FIG.
  • Durability was evaluated by measuring changes over time in tack force and sheet resistance. (Durability of tack force) With the electrode sheet of Example 1-3 sandwiched between separators, the tack force of the electrode sheet was measured in an environment of 40° C. and 75% RH every 1 hour, 1 day, 5 days, 7 days and 14 days. , the durability of the tack force of the electrode sheet was evaluated. The tack force was measured in the same manner as described above for [tack force].
  • FIG. 10 shows the relationship between the number of days and the tack force of the electrode sheet of Example 1-3.
  • the electrode sheet of Example 3-4 was placed in contact with the sheet impregnated with physiological saline, and kept in an environment of 40° C. and 90% RH for 1 hour, 1 day, and 5 days.
  • the sheet resistance of the electrode sheet was measured every 7 days and 14 days, and the rate of change in resistance of the electrode sheet was obtained based on the following formula (2).
  • the sheet resistance was measured in the same manner as in [Sheet resistance] described above. When the resistance change rate was 1.5 or less, it was evaluated as "good”, and when it exceeded 1.2, it was evaluated as "poor”.
  • FIG. 11 shows the relationship between the number of days of the electrode sheet of Example 3-4 and the resistance change rate.
  • Rate of change in resistance sheet resistance of the electrode sheet after a predetermined period of time after soaking in physiological saline/sheet resistance of the electrode sheet before soaking in physiological saline (2)
  • Examples 1-2 to 1-5, Examples 2-2 to 2-5, Examples 3-2 to 3-5, Examples 4-2 to 4-5, and Examples 5 to 7 the characteristics of the electrode sheet are all determined under the conditions of use. However, in Examples 1-1, 2-1, 3-1 and 4-1, one or more of the characteristics of the electrode sheets did not satisfy the conditions of use.
  • the electrode sheet of Example 1-3 satisfied the usage conditions in terms of tack force durability
  • the electrode sheet of Example 3-4 satisfied the usage conditions in terms of sheet resistance durability.
  • the sheet resistance durability did not meet the conditions of use.
  • the electrode sheet of contains a water-based emulsion adhesive as a binder resin in addition to the conductive polymer.
  • a humectant it was possible to reduce the resistance, suppress the swelling due to water absorption, and suppress the viscoelasticity to a low level.
  • Examples 1-2 to 1-5, Examples 2-2 to 2-5, Examples 3-2 to 3-5, Examples 4-2 to 4-5, and Examples 5 to 7 The bridge sheet can maintain electrical conductivity and suppress noise even when used for a long period of time, and can have excellent durability. Therefore, the electrode sheets of Examples 1-2 to 1-5, Examples 2-2 to 2-5, Examples 3-2 to 3-5, and Examples 4-2 to 4-5 are: It can be said that the biosensor can be effectively used for stably measuring an electrocardiogram continuously for a long time while the biosensor is brought into close contact with the subject's skin.
  • an adhesive electrode for biosignal acquisition comprising an adhesive electrode layer containing a conductive polymer, a binder resin made of an aqueous emulsion adhesive, and a moisturizing agent.
  • the acrylic emulsion pressure-sensitive adhesive is water obtained by copolymerizing a monomer mixture containing a (meth)acrylic acid alkyl ester with a silane-based monomer copolymerizable with the (meth)acrylic acid alkyl ester.
  • the adhesive electrode for biosignal acquisition according to ⁇ 2> which is a silane-based emulsion adhesive containing a dispersible copolymer and an organic liquid component compatible with the water-dispersible copolymer.
  • the acrylic emulsion adhesive comprises a monomer mixture containing a (meth)acrylic acid alkyl ester and a carboxyl group-containing monomer.
  • the water-based emulsion adhesive has an average particle size of 100 nm to 1.0 ⁇ m.
  • ⁇ 6> The biosignal acquisition adhesive electrode according to ⁇ 1> or ⁇ 2>, wherein the content of the binder resin is 35 wt % to 90 wt %.
  • ⁇ 7> The biosignal acquisition adhesive electrode according to any one of ⁇ 1> to ⁇ 5>, wherein the moisturizing agent is glycerin.
  • ⁇ 8> The biosignal acquisition adhesive electrode according to ⁇ 6>, wherein the glycerin content is 5 wt % to 60 wt %.
  • ⁇ 9> The adhesive electrode for biosignal acquisition according to any one of ⁇ 1> to ⁇ 7>, wherein the adhesive electrode layer has a thickness of 10 ⁇ m to 100 ⁇ m.
  • ⁇ 10> The adhesive electrode for biosignal acquisition according to any one of ⁇ 1> to ⁇ 8>, wherein the adhesive electrode layer has a sheet resistance of 500 ⁇ / ⁇ or less.
  • ⁇ 12> The biosignal acquiring adhesive electrode according to any one of ⁇ 1> to ⁇ 10>, wherein the adhesive electrode layer has an area expansion coefficient of 2.5 or less.
  • An electrode piece in which the adhesive electrode for biosignal acquisition according to any one of ⁇ 1> to ⁇ 12> is provided on a substrate.
  • a biosensor comprising the adhesive electrode for biosignal acquisition according to any one of ⁇ 1> to ⁇ 12>.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

The adhesive electrode for acquiring a biosignal according to the present invention is provided with an adhesive electrode layer that comprises an electroconductive polymer, a binder resin comprising a water-based emulsion adhesive agent, and a moisturizing agent.

Description

生体信号取得用粘着性電極、電極片及び生体センサAdhesive electrode for biosignal acquisition, electrode piece and biosensor
 本発明は、生体信号取得用粘着性電極、電極片及び生体センサに関する。 The present invention relates to an adhesive electrode for biosignal acquisition, an electrode piece, and a biosensor.
 病院や診療所等の医療機関、介護施設又は自宅等において、例えば、心電、脈波、脳波、筋電等の生体情報を測定する生体センサが用いられる。生体センサは、生体と接触して被験者の生体情報を取得する生体電極を備えている。生体情報を測定する際には、生体センサを被験者の皮膚に貼り付けて生体電極を被験者の皮膚に接触させ、生体情報に関する電気信号を生体電極で取得することで生体情報が測定される。 In medical institutions such as hospitals and clinics, nursing homes, and homes, biosensors that measure biometric information such as electrocardiogram, pulse wave, electroencephalogram, and myoelectricity are used. A biosensor includes a bioelectrode that comes into contact with a living body to acquire biometric information of a subject. When measuring biometric information, the biosensor is attached to the subject's skin, the bioelectrode is brought into contact with the subject's skin, and the biometric information is measured by acquiring an electrical signal related to the biometric information with the bioelectrode.
 このような生体センサ用の生体電極として、例えば、導電性有機高分子化合物と粘着材料とを含む粘着剤層を有し、配線基板が貼り付けられる被貼り付け面に貼り合せることに用いられる粘着シートが開示されている(例えば、特許文献1参照)。 A bioelectrode for such a biosensor has, for example, an adhesive layer containing a conductive organic polymer compound and an adhesive material, and is used for bonding to a surface to which a wiring substrate is attached. A seat has been disclosed (see, for example, Patent Document 1).
日本国特開2020-147659号公報Japanese Patent Application Laid-Open No. 2020-147659
 しかしながら、特許文献1の粘着シートは、耐水性が十分でないため、生体表面に、例えば1日~3日の長時間にわたって貼付すると、特許文献1の粘着シートが汗及び外部の水分等を吸収することで膨潤し、粘着力が低下するという問題があった。粘着力が低下すると、粘着シートの生体表面への接着力及び生体表面への追従性が低下するため、特許文献1の粘着シートの導電性が低下すると共に、使用時においてノイズが増大するという問題があった。 However, since the pressure-sensitive adhesive sheet of Patent Document 1 does not have sufficient water resistance, when it is applied to the surface of a living body for a long period of time, for example, 1 to 3 days, the pressure-sensitive adhesive sheet of Patent Document 1 absorbs sweat and external moisture. As a result, there was a problem that the adhesive swelled and the adhesive strength decreased. When the adhesive strength is reduced, the adhesive strength and conformability to the biological surface of the adhesive sheet are reduced, so that the conductivity of the adhesive sheet of Patent Document 1 is reduced and noise increases during use. was there.
 本発明の一態様は、長期間使用しても、安定した導電性を維持することができると共に、ノイズを低く抑えることができる生体信号取得用粘着性電極を提供することを目的とする。 An object of one aspect of the present invention is to provide an adhesive electrode for acquiring biosignals that can maintain stable conductivity even when used for a long period of time and that can keep noise low.
 本発明に係る生体信号取得用粘着性電極の一態様は、導電性高分子と、水系エマルジョン粘着剤からなるバインダー樹脂と、保湿剤と、を含む粘着性電極層を備える。 One aspect of the biosignal acquisition adhesive electrode according to the present invention includes an adhesive electrode layer containing a conductive polymer, a binder resin made of a water-based emulsion adhesive, and a moisturizing agent.
 本発明に係る生体信号取得用粘着性電極の一態様は、長期間使用しても、安定した導電性を維持することができると共に、ノイズを低く抑えることができる。 One aspect of the biosignal acquisition adhesive electrode according to the present invention can maintain stable conductivity even when used for a long period of time, and can keep noise low.
本発明の実施形態に係る生体信号取得用粘着性電極の内部の状態を示す説明図である。FIG. 4 is an explanatory diagram showing the internal state of the biosignal acquisition adhesive electrode according to the embodiment of the present invention; 貯蔵弾性率G'の大きさと生体表面への密着性との関係の一例を説明する図である。It is a figure explaining an example of the relationship between the magnitude|size of storage elastic modulus G', and adhesiveness to a living body surface. 貯蔵弾性率G'の大きさと生体表面への密着性との関係の他の一例を説明する図である。FIG. 4 is a diagram illustrating another example of the relationship between the magnitude of the storage elastic modulus G′ and the adhesion to the surface of the living body. 心電図波形の一例を説明する図である。It is a figure explaining an example of an electrocardiogram waveform. 例1~例4の電極シートのグリセリン含有量とシート抵抗との関係を示す図である。4 is a graph showing the relationship between the glycerin content and sheet resistance of electrode sheets of Examples 1 to 4. FIG. 例1~例4の電極シートのグリセリン含有量とタック力との関係を示す図である。FIG. 2 is a diagram showing the relationship between the glycerin content and the tack force of the electrode sheets of Examples 1 to 4. FIG. 例1~例4の電極シートのグリセリン含有量とピール力との関係を示す図である。FIG. 4 is a graph showing the relationship between the glycerin content and peel strength of the electrode sheets of Examples 1 to 4. FIG. 例1~例4の電極シートのグリセリン含有量と面積膨潤率との関係を示す図である。FIG. 2 is a graph showing the relationship between the glycerin content and area swelling ratio of electrode sheets of Examples 1 to 4. FIG. 例3及び例8の電極シートの貯蔵弾性率G'とノイズとの関係を示す図である。FIG. 10 is a diagram showing the relationship between the storage elastic modulus G′ of the electrode sheets of Examples 3 and 8 and noise. 例1-3の電極シートの日数とタック力との関係を示す図である。FIG. 10 is a diagram showing the relationship between the number of days and the tack force of the electrode sheet of Example 1-3. 例3-4の電極シートの日数と抵抗変化率との関係を示す図である。FIG. 10 is a diagram showing the relationship between the number of days of the electrode sheet of Example 3-4 and the rate of change in resistance;
 以下、本発明の実施の形態について、詳細に説明する。なお、本明細書において数値範囲を示す「~」は、別段の断わりがない限り、その前後に記載された数値を下限値及び上限値として含むことを意味する。 Hereinafter, embodiments of the present invention will be described in detail. In this specification, "-" indicating a numerical range means that the numerical values before and after it are included as a lower limit and an upper limit, unless otherwise specified.
<生体信号取得用粘着性電極>
 本発明の実施形態に係る生体信号取得用粘着性電極について説明する。本実施形態に係る生体信号取得用粘着性電極は、粘着性電極層からなり、他の層を備えてもよい。本実施形態に係る生体信号取得用粘着性電極は、シート状等、任意の形状とすることができる。
<Adhesive electrode for biosignal acquisition>
An adhesive electrode for biosignal acquisition according to an embodiment of the present invention will be described. The adhesive electrode for biosignal acquisition according to the present embodiment is composed of an adhesive electrode layer, and may be provided with other layers. The biosignal acquisition adhesive electrode according to the present embodiment can be in any shape such as a sheet shape.
 粘着性電極層は、導電性高分子と、バインダー樹脂と、保湿剤とを含む。図1は、生体信号取得用粘着性電極の内部の状態を示す説明図である。図1に示すように、生体信号取得用粘着性電極1は、粘着性電極層10で構成され、粘着性電極層10は、導電性高分子11、バインダー樹脂12及び保湿剤13を含み、粘着性電極層10内には導電性高分子11及び保湿剤13がバインダー樹脂12中に分散した状態で含まれている。 The adhesive electrode layer contains a conductive polymer, a binder resin, and a moisturizing agent. FIG. 1 is an explanatory diagram showing the internal state of a biosignal acquisition adhesive electrode. As shown in FIG. 1, the biosignal acquisition adhesive electrode 1 is composed of an adhesive electrode layer 10. The adhesive electrode layer 10 includes a conductive polymer 11, a binder resin 12 and a moisturizing agent 13. Conductive polymer 11 and moisturizing agent 13 are dispersed in binder resin 12 in conductive electrode layer 10 .
 導電性高分子としては、例えば、ポリチオフェン系導電性高分子、ポリアニリン系導電性高分子、ポリピロール系導電性高分子、ポリアセチレン系導電性高分子、ポリフェニレン系導電性高分子及びこれらの誘導体、並びにこれらの複合体等を用いることができる。これらは、一種単独で用いてもよいし、二種以上併用してもよい。 Examples of conductive polymers include polythiophene-based conductive polymers, polyaniline-based conductive polymers, polypyrrole-based conductive polymers, polyacetylene-based conductive polymers, polyphenylene-based conductive polymers, derivatives thereof, and derivatives thereof. can be used. These may be used individually by 1 type, and may be used together 2 or more types.
 ポリチオフェン系導電性高分子としては、ポリチオフェン、ポリ(3-メチルチオフェン)、ポリ(3-エチルチオフェン)、ポリ(3-プロピルチオフェン)、ポリ(3-ブチルチオフェン)、ポリ(3-ヘキシルチオフェン)、ポリ(3-ヘプチルチオフェン)、ポリ(3-オクチルチオフェン)、ポリ(3-デシルチオフェン)、ポリ(3-ドデシルチオフェン)、ポリ(3-オクタデシルチオフェン)、ポリ(3-ブロモチオフェン)、ポリ(3-クロロチオフェン)、ポリ(3-ヨードチオフェン)、ポリ(3-シアノチオフェン)、ポリ(3-フェニルチオフェン)、ポリ(3,4-ジメチルチオフェン)、ポリ(3,4-ジブチルチオフェン)、ポリ(3-ヒドロキシチオフェン)、ポリ(3-メトキシチオフェン)、ポリ(3-エトキシチオフェン)、ポリ(3-ブトキシチオフェン)、ポリ(3-ヘキシルオキシチオフェン)、ポリ(3-ヘプチルオキシチオフェン)、ポリ(3-オクチルオキシチオフェン)、ポリ(3-デシルオキシチオフェン)、ポリ(3-ドデシルオキシチオフェン)、ポリ(3-オクタデシルオキシチオフェン)、ポリ(3,4-ジヒドロキシチオフェン)、ポリ(3,4-ジメトキシチオフェン)、ポリ(3,4-ジエトキシチオフェン)、ポリ(3,4-ジプロポキシチオフェン)、ポリ(3,4-ジブトキシチオフェン)、ポリ(3,4-ジヘキシルオキシチオフェン)、ポリ(3,4-ジヘプチルオキシチオフェン)、ポリ(3,4-ジオクチルオキシチオフェン)、ポリ(3,4-ジデシルオキシチオフェン)、ポリ(3,4-ジドデシルオキシチオフェン)、ポリ(3,4-エチレンジオキシチオフェン)(PEDOTともいう)、ポリ(3,4-プロピレンジオキシチオフェン)、ポリ(3,4-ブテンジオキシチオフェン)、ポリ(3-メチル-4-メトキシチオフェン)、ポリ(3-メチル-4-エトキシチオフェン)、ポリ(3-カルボキシチオフェン)、ポリ(3-メチル-4-カルボキシチオフェン)、ポリ(3-メチル-4-カルボキシエチルチオフェン)及びポリ(3-メチル-4-カルボキシブチルチオフェン)等が挙げられる。 Polythiophene-based conductive polymers include polythiophene, poly(3-methylthiophene), poly(3-ethylthiophene), poly(3-propylthiophene), poly(3-butylthiophene), and poly(3-hexylthiophene). , poly(3-heptylthiophene), poly(3-octylthiophene), poly(3-decylthiophene), poly(3-dodecylthiophene), poly(3-octadecylthiophene), poly(3-bromothiophene), poly (3-chlorothiophene), poly(3-iodothiophene), poly(3-cyanothiophene), poly(3-phenylthiophene), poly(3,4-dimethylthiophene), poly(3,4-dibutylthiophene) , poly(3-hydroxythiophene), poly(3-methoxythiophene), poly(3-ethoxythiophene), poly(3-butoxythiophene), poly(3-hexyloxythiophene), poly(3-heptyloxythiophene) , poly(3-octyloxythiophene), poly(3-decyloxythiophene), poly(3-dodecyloxythiophene), poly(3-octadecyloxythiophene), poly(3,4-dihydroxythiophene), poly(3 ,4-dimethoxythiophene), poly(3,4-diethoxythiophene), poly(3,4-dipropoxythiophene), poly(3,4-dibutoxythiophene), poly(3,4-dihexyloxythiophene) , poly(3,4-diheptyloxythiophene), poly(3,4-dioctyloxythiophene), poly(3,4-didecyloxythiophene), poly(3,4-didodecyloxythiophene), poly( 3,4-ethylenedioxythiophene) (also known as PEDOT), poly(3,4-propylenedioxythiophene), poly(3,4-butenedioxythiophene), poly(3-methyl-4-methoxythiophene) , poly(3-methyl-4-ethoxythiophene), poly(3-carboxythiophene), poly(3-methyl-4-carboxythiophene), poly(3-methyl-4-carboxyethylthiophene) and poly(3- methyl-4-carboxybutylthiophene) and the like.
 ポリアニリン系導電性高分子としては、ポリアニリン、ポリスチレンスルホン酸(PSSともいう)、ポリビニルスルホン酸、ポリアリルスルホン酸、ポリアクリルスルホン酸、ポリメタクリルスルホン酸、ポリ(2-アクリルアミド-2-メチルプロパンスルホン酸)、ポリイソプレンスルホン酸、ポリスルホエチルメタクリレート、ポリ(4-スルホブチルメタクリレート)、ポリメタクリルオキシベンゼンスルホン酸等のスルホン酸基を有する高分子や、ポリビニルカルボン酸、ポリスチレンカルボン酸、ポリアリルカルボン酸、ポリアクリルカルボン酸、ポリメタクリルカルボン酸、ポリ(2-アクリルアミド-2-メチルプロパンカルボン酸)及びポリイソプレンカルボン酸、ポリアクリル酸等のカルボン酸基を有する高分子が挙げられる。これらは、1種を単独で重合した単独重合体で用いてもよいし、2種以上の共重合体で用いてもよい。これらポリアニオンの中でも、導電性をより高くできることから、スルホン酸基を有する高分子が好ましく、ポリスチレンスルホン酸がより好ましい。 Polyaniline-based conductive polymers include polyaniline, polystyrenesulfonic acid (also referred to as PSS), polyvinylsulfonic acid, polyallylsulfonic acid, polyacrylsulfonic acid, polymethacrylsulfonic acid, poly(2-acrylamido-2-methylpropanesulfone acid), polyisoprene sulfonic acid, polysulfoethyl methacrylate, poly(4-sulfobutyl methacrylate), polymers having sulfonic acid groups such as polymethacryloxybenzene sulfonic acid, polyvinyl carboxylic acid, polystyrene carboxylic acid, polyallyl carboxylic acid Polymers having a carboxylic acid group such as acid, polyacryliccarboxylic acid, polymethacryliccarboxylic acid, poly(2-acrylamido-2-methylpropanecarboxylic acid), polyisoprenecarboxylic acid, and polyacrylic acid can be mentioned. These may be used as a homopolymer obtained by polymerizing one type alone, or may be used as a copolymer of two or more types. Among these polyanions, a polymer having a sulfonic acid group is preferable, and polystyrene sulfonic acid is more preferable, because the conductivity can be further increased.
 ポリピロール系導電性高分子としては、ポリピロール、ポリ(N-メチルピロール)、ポリ(3-メチルピロール)、ポリ(3-エチルピロール)、ポリ(3-n-プロピルピロール)、ポリ(3-ブチルピロール)、ポリ(3-オクチルピロール)、ポリ(3-デシルピロール)、ポリ(3-ドデシルピロール)、ポリ(3,4-ジメチルピロール)、ポリ(3,4-ジブチルピロール)、ポリ(3-カルボキシピロール)、ポリ(3-メチル-4-カルボキシピロール)、ポリ(3-メチル-4-カルボキシエチルピロール)、ポリ(3-メチル-4-カルボキシブチルピロール)、ポリ(3-ヒドロキシピロール)、ポリ(3-メトキシピロール)、ポリ(3-エトキシピロール)、ポリ(3-ブトキシピロール)、ポリ(3-ヘキシルオキシピロール)及びポリ(3-メチル-4-ヘキシルオキシピロール)等が挙げられる。 Polypyrrole-based conductive polymers include polypyrrole, poly(N-methylpyrrole), poly(3-methylpyrrole), poly(3-ethylpyrrole), poly(3-n-propylpyrrole), poly(3-butyl pyrrole), poly(3-octylpyrrole), poly(3-decylpyrrole), poly(3-dodecylpyrrole), poly(3,4-dimethylpyrrole), poly(3,4-dibutylpyrrole), poly(3 -carboxypyrrole), poly(3-methyl-4-carboxypyrrole), poly(3-methyl-4-carboxyethylpyrrole), poly(3-methyl-4-carboxybutylpyrrole), poly(3-hydroxypyrrole) , poly(3-methoxypyrrole), poly(3-ethoxypyrrole), poly(3-butoxypyrrole), poly(3-hexyloxypyrrole) and poly(3-methyl-4-hexyloxypyrrole), etc. .
 ポリアセチレン系導電性高分子としては、フェニルアセチレンのパラ位にエステルを有するポリフェニルアセチレンモノエステルやフェニルアセチレンのパラ位にアミドを有するポリフェニルアセチレンモノアミド等の極性基を有するポリアセチレン等が挙げられる。 Examples of polyacetylene-based conductive polymers include polyacetylenes having polar groups such as polyphenylacetylene monoesters having an ester at the para-position of phenylacetylene and polyphenylacetylene monoamides having an amide at the para-position of phenylacetylene.
 ポリフェニレン系導電性高分子としては、ポリフェニレンビニレン等が挙げられる。 Examples of polyphenylene-based conductive polymers include polyphenylene vinylene.
 これらの複合体として、ポリチオフェンにドーパントとしてポリアニリンをドープした複合体等が挙げられる。ポリチオフェンとポリアニリンとの複合体として、PEDOTにPSSをドープしたPEDOT/PSS等を用いることができる。 Examples of these composites include polythiophene doped with polyaniline as a dopant. As a composite of polythiophene and polyaniline, PEDOT/PSS, which is PEDOT doped with PSS, or the like can be used.
 導電性高分子として、上記の中でも、ポリチオフェンにドーパントとしてポリアニリンをドープした複合体が好ましい。ポリチオフェンとポリアニリンとの複合体の中でも、生体との接触インピーダンスがより低く、高い導電性を有する点から、PEDOTにPSSをドープしたPEDOT/PSSがより好ましい。 Among the above, the conductive polymer is preferably a composite of polythiophene doped with polyaniline as a dopant. Among composites of polythiophene and polyaniline, PEDOT/PSS, which is PEDOT doped with PSS, is more preferable because it has lower contact impedance with a living body and high conductivity.
 バインダー樹脂は、水系エマルジョン粘着剤からなる。水系エマルジョン粘着剤は、生体信号取得用粘着性電極の粘着性及び柔軟性を向上させる機能を有する。そのため、水系エマルジョン粘着剤が生体信号取得用粘着性電極に含まれることで、生体信号取得用粘着性電極を低弾性とし、生体表面の凹凸に対する追従性を向上させることができる。 The binder resin consists of a water-based emulsion adhesive. The water-based emulsion adhesive has a function of improving the adhesiveness and flexibility of the biosignal acquisition adhesive electrode. Therefore, by including the water-based emulsion adhesive in the biosignal acquisition adhesive electrode, the biosignal acquisition adhesive electrode can be made to have low elasticity, and the ability to follow the irregularities on the surface of the living body can be improved.
 水系エマルジョン粘着剤としては、アクリル系エマルジョン粘着剤を用いることができる。 An acrylic emulsion pressure-sensitive adhesive can be used as the water-based emulsion pressure-sensitive adhesive.
 アクリル系エマルジョン粘着剤は、水分散型共重合体と、水分散型共重合体と相溶する有機液状成分とを含むシラン系エマルジョン粘着剤を用いることが好ましい。 For the acrylic emulsion pressure-sensitive adhesive, it is preferable to use a silane-based emulsion pressure-sensitive adhesive containing a water-dispersible copolymer and an organic liquid component compatible with the water-dispersible copolymer.
 水分散型共重合体は、(メタ)アクリル酸アルキルエステルを含む単量体混合物に(メタ)アクリル酸アルキルエステルと共重合可能なシラン系単量体を共重合させることで得られる重合体である。 A water-dispersible copolymer is a polymer obtained by copolymerizing a monomer mixture containing an (meth)acrylic acid alkyl ester with a silane-based monomer that can be copolymerized with the (meth)acrylic acid alkyl ester. be.
 (メタ)アクリル酸アルキルエステルを含む単量体混合物とは、(メタ)アクリル酸アルキルエステルを主成分として含み、好ましくは50wt%~100wt%含む単量体混合物である。 The monomer mixture containing (meth)acrylic acid alkyl ester is a monomer mixture containing (meth)acrylic acid alkyl ester as a main component, preferably 50 wt % to 100 wt %.
 (メタ)アクリル酸アルキルエステルとしては、アルキル基の炭素数が1~15、好ましくは1~9の直鎖又は分岐アルキルエステルが用いられる。具体的には、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸ペンチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸ヘプチル、(メタ)アクリル酸n-オクチル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸n-ノニル、(メタ)アクリル酸イソノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ウンデシル、(メタ)アクリル酸トリデシル等の直鎖又は分岐アルキル基を有する(メタ)アクリル酸アルキルエステルが挙げられる。これらは単独で又は2種以上を組み合わせて使用できる。 As the (meth)acrylic acid alkyl ester, a linear or branched alkyl ester having an alkyl group having 1 to 15 carbon atoms, preferably 1 to 9 carbon atoms is used. Specifically, for example, methyl (meth)acrylate, ethyl (meth)acrylate, n-butyl (meth)acrylate, isobutyl (meth)acrylate, pentyl (meth)acrylate, hexyl (meth)acrylate , heptyl (meth)acrylate, n-octyl (meth)acrylate, isooctyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, n-nonyl (meth)acrylate, isononyl (meth)acrylate, ( Examples include (meth)acrylic acid alkyl esters having a linear or branched alkyl group such as decyl methacrylate, undecyl (meth)acrylate, and tridecyl (meth)acrylate. These can be used individually or in combination of 2 or more types.
 (メタ)アクリル酸アルキルエステルを含む単量体混合物は、(メタ)アクリル酸アルキルエステルと共重合可能なカルボキシル基含有単量体を含んでもよい。 The monomer mixture containing the (meth)acrylic acid alkyl ester may contain a carboxyl group-containing monomer copolymerizable with the (meth)acrylic acid alkyl ester.
 (メタ)アクリル酸アルキルエステルと共重合可能なカルボキシル基含有単量体としては、その構造中にカルボキシル基を含む重合性化合物であって、(メタ)アクリル酸アルキルエステルと共重合可能なものであれば特に限定されないが、例えば、(メタ)アクリル酸、イタコン酸、マレイン酸、無水マレイン酸、2-メタクリロイルオキシエチルコハク酸等が挙げられる。特に、アクリル酸、2-メタクリロイルオキシエチルコハク酸が好ましい。 The carboxyl group-containing monomer copolymerizable with the (meth)acrylic acid alkyl ester is a polymerizable compound containing a carboxyl group in its structure and is copolymerizable with the (meth)acrylic acid alkyl ester. Examples include (meth)acrylic acid, itaconic acid, maleic acid, maleic anhydride, 2-methacryloyloxyethylsuccinic acid, and the like. Acrylic acid and 2-methacryloyloxyethylsuccinic acid are particularly preferred.
 カルボキシル基含有単量体は、シラン系単量体の加水分解や得られる粘着性の調整の観点から、(メタ)アクリル酸アルキルエステルを含む単量体混合物100wt%に対して、0.1wt%~10wt%含むことが好ましい。 The carboxyl group-containing monomer is 0.1 wt% with respect to 100 wt% of the monomer mixture containing the (meth)acrylic acid alkyl ester from the viewpoint of hydrolysis of the silane-based monomer and adjustment of the resulting adhesiveness. It is preferable to contain ~10 wt%.
 (メタ)アクリル酸アルキルエステルと共重合可能なシラン系単量体としては、ケイ素原子を有する重合性化合物であって、(メタ)アクリル酸アルキルエステルと共重合可能なものであれば特に限定されないが、(メタ)アクリル酸アルキルエステルに対する共重合性に優れている点で、(メタ)アクリロイルオキシアルキルシラン誘導体等の(メタ)アクリロイル基を有するシラン化合物が好ましい。シラン系単量体としては、例えば、3-(メタ)アクリロイルオキシプロピルトリメトキシシラン、3-(メタ)アクリロイルオキシプロピルトリエトキシシラン、3-(メタ)アクリロイルオキシプロピルメチルジメトキシシラン及び3-(メタ)アクリロイルオキシプロピルメチルジエトキシシラン等が挙げられる。これらのシラン系単量体は、単独で又は2種以上を組み合わせて使用できる。 The silane-based monomer copolymerizable with the (meth)acrylic acid alkyl ester is not particularly limited as long as it is a polymerizable compound having a silicon atom and is copolymerizable with the (meth)acrylic acid alkyl ester. However, silane compounds having a (meth)acryloyl group, such as (meth)acryloyloxyalkylsilane derivatives, are preferred because of their excellent copolymerizability with (meth)acrylic acid alkyl esters. Examples of silane-based monomers include 3-(meth)acryloyloxypropyltrimethoxysilane, 3-(meth)acryloyloxypropyltriethoxysilane, 3-(meth)acryloyloxypropylmethyldimethoxysilane and 3-(meth)acryloyloxypropyltrimethoxysilane. ) acryloyloxypropylmethyldiethoxysilane and the like. These silane-based monomers can be used alone or in combination of two or more.
 また、上記以外のシラン系単量体としては、例えば、ビニルトリメトキシシラン、ビニルトリエトキシシラン、4-ビニルブチルトリメトキシシラン、4-ビニルブチルトリエトキシシラン、8-ビニルオクチルトリメトキシシラン、8-ビニルオクチルトリエトキシシラン、10-メタクリロイルオキシデシルトリメトキシシラン、10-アクリロイルオキシデシルトリメトキシシラン、10-メタクリロイルオキシデシルトリエトキシシラン及び10-アクリロイルオキシデシルトリエトキシシラン等も使用できる。 Examples of silane monomers other than the above include vinyltrimethoxysilane, vinyltriethoxysilane, 4-vinylbutyltrimethoxysilane, 4-vinylbutyltriethoxysilane, 8-vinyloctyltrimethoxysilane, 8 -vinyloctyltriethoxysilane, 10-methacryloyloxydecyltrimethoxysilane, 10-acryloyloxydecyltrimethoxysilane, 10-methacryloyloxydecyltriethoxysilane and 10-acryloyloxydecyltriethoxysilane, etc. can also be used.
 シラン系単量体は、(メタ)アクリル酸アルキルエステルを含む単量体混合物に、(メタ)アクリル酸アルキルエステルを含む単量体混合物100wt%に対して、0.005wt%~2wt%を共重合させることが好ましい。 The silane-based monomer is added to the monomer mixture containing the (meth)acrylic acid alkyl ester in an amount of 0.005 wt% to 2 wt% with respect to 100 wt% of the monomer mixture containing the (meth)acrylic acid alkyl ester. Polymerization is preferred.
 シラン系単量体は、(メタ)アクリル酸アルキルエステルを含む単量体混合物に共重合させることにより、架橋点となるシラン化合物が、得られる共重合体の分子内に均等に存在しうる状態となる。これにより、水系エマルジョン粘着剤は、水分散型であるにも関わらず、水系エマルジョン粘着剤の粒子の内部と外側が均一に架橋されるので凝集力に優れ、有機液状成分の添加により低皮膚刺激性であるのに加え、優れた固定性及び耐汗固定性を兼ね備える。 When the silane-based monomer is copolymerized with the monomer mixture containing the (meth)acrylic acid alkyl ester, the silane compound serving as a cross-linking point can be evenly present in the molecules of the obtained copolymer. becomes. As a result, even though the water-based emulsion pressure-sensitive adhesive is a water-dispersed type, the inside and outside of the water-based emulsion pressure-sensitive adhesive particles are uniformly cross-linked, so the cohesive force is excellent, and the addition of the organic liquid component reduces skin irritation. In addition to being durable, it also has excellent fixation and sweat resistance.
 水分散型共重合体は、必要に応じて、上記のシラン系単量体及びカルボキシル基含有単量体以外の(メタ)アクリル酸アルキルエステルと共重合可能な単量体を共重合させたものであってもよい。シラン系単量体及びカルボキシル基含有単量体以外の(メタ)アクリル酸アルキルエステルと共重合可能な単量体は、水系エマルジョン粘着剤をシート状等に形成する場合の生体信号取得用粘着性電極の凝集力の調整や、有機液状成分との相溶性改善等を目的として用いることができ、使用量は、(メタ)アクリル酸アルキルエステルの含有量の一部を置き換えて、目的に応じて任意に設定できる。 The water-dispersible copolymer is obtained by copolymerizing a monomer copolymerizable with a (meth)acrylic acid alkyl ester other than the silane-based monomer and the carboxyl group-containing monomer, if necessary. may be Monomers other than silane-based monomers and carboxyl group-containing monomers that can be copolymerized with (meth)acrylic acid alkyl esters are used for biosignal acquisition when water-based emulsion adhesives are formed into sheets, etc. It can be used for the purpose of adjusting the cohesive force of the electrode, improving compatibility with organic liquid components, etc. Can be set arbitrarily.
 シラン系単量体及びカルボキシル基含有単量体以外の(メタ)アクリル酸アルキルエステルと共重合可能な単量体としては、例えば、スチレンスルホン酸、アリルスルホン酸、スルホプロピル(メタ)アクリレート、(メタ)アクリロイルオキシナフタレンスルホン酸、アクリルアミドメチルプロパンスルホン酸等のスルホキシル基含有単量体、(メタ)アクリル酸ヒドロキシエチルエステル及び(メタ)アクリル酸ヒドロキシプロピルエステル等のヒドロキシル基含有単量体、(メタ)アクリルアミド、ジメチル(メタ)アクリルアミド、N-ブチルアクリルアミド、N-メチロール(メタ)アクリルアミド及びN-メチロールプロパン(メタ)アクリルアミド等のアミド基含有単量体、(メタ)アクリル酸アミノエチルエステル、(メタ)アクリル酸ジメチルアミノエチルエステル、(メタ)アクリル酸tert-ブチルアミノエチルエステル等の(メタ)アクリル酸アルキルアミノアルキルエステル、(メタ)アクリル酸メトキシエチルエステル及び(メタ)アクリル酸エトキシエチルエステル等の(メタ)アクリル酸アルコキシアルキルエステル、(メタ)アクリル酸メトキシエチレングリコールエステル、(メタ)アクリル酸テトラヒドロフルフリルエステル、(メタ)アクリル酸メトキシエチレングリコールエステル、(メタ)アクリル酸メトキシジエチレングリコールエステル、(メタ)アクリル酸メトキシポリエチレングリコールエステル及び(メタ)アクリル酸メトキシポリプロピレングリコールエステル等のアルコキシ基(又は側鎖にエーテル結合)含有(メタ)アクリル酸エステル、(メタ)アクリロニトリル、酢酸ビニル、プロピオン酸ビニル、N-ビニル-2-ピロリドン、メチルビニルピロリドン、ビニルピリジン、ビニルピペリジン、ビニルピリミジン、ビニルピペラジン、ビニルピラジン、ビニルピロール、ビニルイミダゾール、ビニルカプロラクタム、ビニルオキサゾール及びビニルモルホリン等のビニル系単量体等が挙げられる。これらは単独で又は2種以上を組み合わせて使用できる。 Examples of monomers copolymerizable with (meth)acrylic acid alkyl esters other than silane-based monomers and carboxyl group-containing monomers include styrenesulfonic acid, allylsulfonic acid, sulfopropyl (meth)acrylate, ( meth) Acryloyloxynaphthalenesulfonic acid, sulfoxyl group-containing monomers such as acrylamidomethylpropanesulfonic acid, hydroxyl group-containing monomers such as (meth)acrylic acid hydroxyethyl ester and (meth)acrylic acid hydroxypropyl ester, (meth) ) Acrylamide, dimethyl (meth) acrylamide, N-butyl acrylamide, N-methylol (meth) acrylamide and N-methylolpropane (meth) amide group-containing monomers such as acrylamide, (meth) acrylic acid aminoethyl ester, (meth ) acrylic acid dimethylaminoethyl ester, (meth)acrylic acid alkylaminoalkyl ester such as (meth)acrylic acid tert-butylaminoethyl ester, (meth)acrylic acid methoxyethyl ester and (meth)acrylic acid ethoxyethyl ester (Meth)acrylate alkoxyalkyl ester, (meth)acrylate methoxyethylene glycol ester, (meth)acrylate tetrahydrofurfuryl ester, (meth)acrylate methoxyethylene glycol ester, (meth)acrylate methoxydiethylene glycol ester, (meth)acrylate ) Alkoxy group (or ether bond in side chain) containing (meth)acrylic acid ester such as methoxypolyethylene glycol acrylate and methoxypolypropylene glycol (meth)acrylate, (meth)acrylonitrile, vinyl acetate, vinyl propionate, N -vinyl monomers such as vinyl-2-pyrrolidone, methylvinylpyrrolidone, vinylpyridine, vinylpiperidine, vinylpyrimidine, vinylpiperazine, vinylpyrazine, vinylpyrrole, vinylimidazole, vinylcaprolactam, vinyloxazole and vinylmorpholine; be done. These can be used individually or in combination of 2 or more types.
 水分散型重合体は、例えば、(メタ)アクリル酸アルキルエステルを含む単量体混合物とシラン系単量体との混合物を通常の乳化重合に付すことにより、(メタ)アクリル酸アルキルエステル共重合体の水分散液として調製することができる。 The water-dispersible polymer can be obtained, for example, by subjecting a mixture of a monomer mixture containing an (meth)acrylic acid alkyl ester and a silane-based monomer to ordinary emulsion polymerization to obtain a (meth)acrylic acid alkyl ester copolymer. It can be prepared as an aqueous dispersion of the coalescence.
 重合方法としては、一般的な一括重合、連続滴下重合、分割滴下重合等を採用でき、重合温度は、例えば、20℃~100℃である。 General batch polymerization, continuous dropping polymerization, divided dropping polymerization, etc. can be adopted as the polymerization method, and the polymerization temperature is, for example, 20°C to 100°C.
 重合に用いる重合開始剤としては、特に限定されず、重合開始剤として用いられる一般的な成分を用いることができる。 The polymerization initiator used for polymerization is not particularly limited, and common components used as polymerization initiators can be used.
 重合には重合度を調整するために連鎖移動剤を用いてもよい。連鎖移動剤としては、特に限定されず、連鎖移動剤重として用いられる一般的な成分を用いることができる。 A chain transfer agent may be used in the polymerization to adjust the degree of polymerization. The chain transfer agent is not particularly limited, and common components used as chain transfer agent weights can be used.
 水分散型共重合体は、上記方法の他、(メタ)アクリル酸エステルを含む単量体混合物とシラン系単量体との共重合体を乳化重合以外の方法で得た後、乳化剤により水に分散させて調製してもよい。 In addition to the above method, the water-dispersible copolymer is produced by obtaining a copolymer of a monomer mixture containing a (meth)acrylic acid ester and a silane-based monomer by a method other than emulsion polymerization, followed by addition of an emulsifier to water. It may be prepared by dispersing in
 アクリル系エマルジョン粘着剤に含まれる有機液状成分は、水分散型共重合体に配合されることで、生体表面に対する良好な接着性を保つと共に、剥離時の角質損傷を低減して剥離時の痛みも低減させることができる。 The organic liquid component contained in the acrylic emulsion pressure-sensitive adhesive is blended with the water-dispersible copolymer to maintain good adhesion to the biological surface and reduce keratin damage during peeling, reducing pain during peeling. can also be reduced.
 有機液状成分は、常温で液状であって、水分散型共重合体との相溶性が良好であることが好ましい。なお、「相溶」とは、水分散型の共重合体中に有機液状成分が均一に溶解して取り込まれていることをいい、目視にて分離が確認できない状態をいう。 The organic liquid component is preferably liquid at room temperature and has good compatibility with the water-dispersible copolymer. The term "compatible" means that the organic liquid component is uniformly dissolved and incorporated into the water-dispersed copolymer, and refers to a state in which separation cannot be visually confirmed.
 有機液状成分としては、炭素数が8~18の一塩基酸又は多塩基酸と炭素数が14~18の分岐アルコールとのエステル、及び炭素数が14~18の不飽和脂肪酸又は分岐酸と4価以下のアルコールとのエステル等が挙げられる。 Examples of organic liquid components include esters of monobasic or polybasic acids having 8 to 18 carbon atoms and branched alcohols having 14 to 18 carbon atoms, and unsaturated fatty acids or branched acids having 14 to 18 carbon atoms and 4 Examples include esters with alcohols having a lower valence and the like.
 炭素数が8~18の一塩基酸又は多塩基酸と炭素数が14~18の分岐アルコールとのエステルとしては、例えば、ラウリン酸イソステアリル、ミリスチン酸イソセチル、ミリスチン酸オクチルドデシル、パルミチン酸イソステアリル、ステアリン酸イソセチル、オレイン酸オクチルドデシル、アジピン酸ジイソステアリル、セバシン酸ジイソセチル、トリメリト酸トリオレイル及びトリメリト酸トリイソセチル等が挙げられる。 Examples of esters of monobasic or polybasic acids having 8 to 18 carbon atoms and branched alcohols having 14 to 18 carbon atoms include isostearyl laurate, isocetyl myristate, octyldodecyl myristate, and isostearyl palmitate. , isocetyl stearate, octyldodecyl oleate, diisostearyl adipate, diisocetyl sebacate, trioleyl trimellitate and triisocetyl trimellitate.
 炭素数が14~18の不飽和脂肪酸又は分岐酸としては、例えば、ミリストレイン酸、オレイン酸、リノール酸、リノレン酸、イソパルミチン酸及びイソステアリン酸等が挙げられる。 Examples of unsaturated fatty acids or branched acids having 14 to 18 carbon atoms include myristoleic acid, oleic acid, linoleic acid, linolenic acid, isopalmitic acid and isostearic acid.
 4価以下のアルコールとしては、例えば、エチレングリコール、プロピレングリコール、グリセリン、トリメチロールプロパン、ペンタエリスリトール及びソルビタン等が挙げられる。 Examples of tetravalent or lower alcohols include ethylene glycol, propylene glycol, glycerin, trimethylolpropane, pentaerythritol and sorbitan.
 有機液状成分の含有量は、水分散型共重合体及び有機液状成分の種類等に応じて適宜任意に設定でき、例えば、水分散型共重合体100wt%に対して、20wt%~80wt%としてもよい。 The content of the organic liquid component can be set arbitrarily according to the types of the water-dispersible copolymer and the organic liquid component, for example, 20 wt% to 80 wt% with respect to 100 wt% of the water-dispersible copolymer. good too.
 アクリル系エマルジョン粘着剤が、シラン系エマルジョン粘着剤である場合、アクリル系エマルジョン粘着剤としては、具体的には、2-エチルヘキシルアクリレート、メチルメタクリレート、アクリル酸及び3-メタクリルオキシプロピルトリメトキシシランを含むシラン系エマルジョン粘着剤を用いることができる。 When the acrylic emulsion pressure-sensitive adhesive is a silane emulsion pressure-sensitive adhesive, the acrylic emulsion pressure-sensitive adhesive specifically includes 2-ethylhexyl acrylate, methyl methacrylate, acrylic acid and 3-methacryloxypropyltrimethoxysilane. A silane-based emulsion adhesive can be used.
 また、アクリル系エマルジョン粘着剤は、(メタ)アクリル酸アルキルエステルを含む単量体混合物と、カルボキシル基含有単量体とを含む、2成分又は3成分のアクリル系エマルジョン粘着剤を用いることができる。これらは、溶媒や他の成分の性能を発揮できる範囲内で適宜所定量含んでもよい。 Also, the acrylic emulsion pressure-sensitive adhesive may be a two-component or three-component acrylic emulsion pressure-sensitive adhesive containing a monomer mixture containing a (meth)acrylic acid alkyl ester and a carboxyl group-containing monomer. . These may be included in a predetermined amount as appropriate within a range in which the performance of the solvent and other components can be exhibited.
 2成分又は3成分のアクリル系エマルジョン粘着剤に含まれる(メタ)アクリル酸アルキルエステルを含む単量体混合物は、上記のシラン系エマルジョン粘着剤に含まれる(メタ)アクリル酸アルキルエステルを含む単量体混合物と同様の単量体混合物を用いることができるため、詳細は省略する。 The monomer mixture containing the (meth)acrylic acid alkyl ester contained in the two-component or three-component acrylic emulsion pressure-sensitive adhesive is the monomer containing the (meth)acrylic acid alkyl ester contained in the above silane-based emulsion pressure-sensitive adhesive. Since a monomer mixture similar to the monomer mixture can be used, the details are omitted.
 カルボキシル基含有単量体は、(メタ)アクリル酸アルキルエステルと共重合可能なカルボキシル基含有単量体であることが好ましい。(メタ)アクリル酸アルキルエステルと共重合可能なカルボキシル基含有単量体は、上記の、(メタ)アクリル酸アルキルエステルを含む単量体混合物に含められるカルボキシル基含有単量体と同様の単量体混合物を用いることができるため、詳細は省略する。 The carboxyl group-containing monomer is preferably a carboxyl group-containing monomer copolymerizable with (meth)acrylic acid alkyl ester. The carboxyl group-containing monomer copolymerizable with the (meth)acrylic acid alkyl ester is the same monomer as the carboxyl group-containing monomer included in the monomer mixture containing the (meth)acrylic acid alkyl ester. Since a body mixture can be used, details are omitted.
 2成分アクリル系エマルジョン粘着剤としては、具体的には、(メタ)アクリル酸アルキルエステルを含む単量体混合物である2-エチルヘキシルアクリレートと、カルボキシル基含有単量体混合物であるアクリル酸とを含む粘着剤を用いることができる。 Specifically, the two-component acrylic emulsion adhesive contains 2-ethylhexyl acrylate, which is a monomer mixture containing (meth)acrylic acid alkyl ester, and acrylic acid, which is a carboxyl group-containing monomer mixture. An adhesive can be used.
 3成分アクリル系エマルジョン粘着剤としては、具体的には、(メタ)アクリル酸アルキルエステルを含む単量体混合物である2-エチルヘキシルアクリレート及びメチルメタクリレートと、カルボキシル基含有単量体混合物であるアクリル酸とを含む粘着剤を用いることができる。 Specifically, the three-component acrylic emulsion adhesive includes 2-ethylhexyl acrylate and methyl methacrylate, which are monomer mixtures containing (meth)acrylic acid alkyl esters, and acrylic acid, which is a carboxyl group-containing monomer mixture. and can be used.
 水系エマルジョン粘着剤の平均粒子径は、100nm~1.0μmであることが好ましく、100nm~500nmであることがより好ましく、100nm~300nmであることがさらに好ましい。平均粒子径が上記の好ましい範囲内であると、生体信号取得用粘着性電極に粘着力及び耐水性を与えることができる。 The average particle size of the water-based emulsion adhesive is preferably 100 nm to 1.0 μm, more preferably 100 nm to 500 nm, even more preferably 100 nm to 300 nm. When the average particle size is within the above preferable range, the adhesive force and water resistance can be imparted to the biosignal acquisition adhesive electrode.
 水系エマルジョン粘着剤の形状は、特に限定されず、例えば、球状、楕円体状、紡錘状、破砕状、板状及び柱状等でよい。 The shape of the water-based emulsion pressure-sensitive adhesive is not particularly limited, and may be, for example, spherical, ellipsoidal, spindle-shaped, crushed, plate-shaped, columnar, or the like.
 平均粒子径とは、有効径による体積平均粒子径をいう。平均粒子径は、例えば、レーザ回折・散乱法又は動的光散乱法等によって系エマルジョン粘着剤又はアクリル系エマルジョン粘着剤の粒度分布を測定して求めた粒度分布曲線において、その積算量が粒子の小さい方から累積して体積基準で50%を占める時の粒子径(メディアン径)である。 "Average particle size" refers to the volume average particle size based on the effective diameter. The average particle size is, for example, a particle size distribution curve obtained by measuring the particle size distribution of an emulsion pressure-sensitive adhesive or an acrylic emulsion pressure-sensitive adhesive by a laser diffraction/scattering method or a dynamic light scattering method. It is the particle diameter (median diameter) when 50% by volume is accumulated from the smaller one.
 バインダー樹脂の含有量は、35wt%~90wt%であることが好ましく、40wt%~85wt%であることがより好ましく、50wt%~80wt%であることがさらに好ましい。バインダー樹脂の含有量が上記の好ましい範囲内であると、生体信号取得用粘着性電極に粘着力及び軟性を与えることができると共に、導電性の低下を抑えることができる。 The content of the binder resin is preferably 35 wt% to 90 wt%, more preferably 40 wt% to 85 wt%, even more preferably 50 wt% to 80 wt%. When the content of the binder resin is within the above preferred range, it is possible to impart adhesive strength and flexibility to the biosignal acquisition adhesive electrode, and to suppress a decrease in conductivity.
 保湿剤は、生体信号取得用粘着性電極の導電性を向上させると共に、粘着力及び柔軟性を向上させる機能を有する。保湿剤としては、グリセリン、エチレングリコール、プロピレングリコール、ソルビトール、これらの重合体等のポリオール化合物N-メチルピロリドン(NMP)、ジメチルホルムアルデヒド(DMF)、N-N'-ジメチルアセトアミド(DMAc)及びジメチルスルホキシド(DMSO)等の非プロトン性化合物等が挙げられる。これらは、一種単独で用いてもよいし、二種以上併用してもよい。これらの中でも、他の成分との相溶性の観点から、グリセリンが好ましい。 The moisturizer has the function of improving the conductivity of the adhesive electrode for biosignal acquisition, as well as the adhesive strength and flexibility. Moisturizing agents include glycerin, ethylene glycol, propylene glycol, sorbitol, and polyol compounds such as these polymers N-methylpyrrolidone (NMP), dimethylformaldehyde (DMF), N—N′-dimethylacetamide (DMAc) and dimethylsulfoxide. and aprotic compounds such as (DMSO). These may be used individually by 1 type, and may be used together 2 or more types. Among these, glycerin is preferable from the viewpoint of compatibility with other components.
 保湿剤の含有量は、電極100wt%に対して、2wt%~60wt%であることが好ましく、3wt%~50wt%であることがより好ましく、5wt%~35wt%であることがさらに好ましい。保湿剤の含有量が上記の好ましい範囲内であれば、生体信号取得用粘着性電極の粘着力を向上させ、生体表面に対して高い接着性を維持することができると共に、貯蔵弾性率を低下させ、粘弾性を高めることができるので、使用時に生じるノイズの大きさを抑えることができる。また、生体信号取得用粘着性電極が外部からの吸水を抑制し、膨潤を抑制できる。 The content of the moisturizing agent is preferably 2 wt% to 60 wt%, more preferably 3 wt% to 50 wt%, and even more preferably 5 wt% to 35 wt% with respect to 100 wt% of the electrode. If the content of the humectant is within the above preferable range, the adhesive strength of the biosignal acquisition adhesive electrode can be improved, high adhesiveness to the biological surface can be maintained, and the storage elastic modulus can be reduced. and increase viscoelasticity, it is possible to suppress the magnitude of noise generated during use. In addition, the biosignal acquisition adhesive electrode can suppress water absorption from the outside and suppress swelling.
 粘着性電極層の厚みは、10μm~100μmであることが好ましく、15μm~90μmであることがより好ましく、20μm~80μmであることがさらに好ましい。粘着性電極層の厚みが上記の好ましい範囲内であると、生体信号取得用粘着性電極に十分な強度及び柔軟性、変形時の導電安定性を与えることができる。 The thickness of the adhesive electrode layer is preferably 10 µm to 100 µm, more preferably 15 µm to 90 µm, even more preferably 20 µm to 80 µm. When the thickness of the adhesive electrode layer is within the above preferable range, the adhesive electrode for biosignal acquisition can be provided with sufficient strength, flexibility, and conductive stability during deformation.
 なお、粘着性電極層の厚みとは、粘着性電極層の表面に垂直な方向の長さをいう。粘着性電極層の厚みは、例えば、粘着性電極層の断面において、任意の場所を測定した時の厚さであり、任意の場所で複数箇所測定した場合には、これらの測定箇所の厚みの平均値としてもよい。 The thickness of the adhesive electrode layer refers to the length in the direction perpendicular to the surface of the adhesive electrode layer. The thickness of the adhesive electrode layer is, for example, the thickness measured at an arbitrary location in the cross section of the adhesive electrode layer. An average value may be used.
 粘着性電極層のシート抵抗(表面抵抗)は、500Ω/□以下であることが好ましく、400Ω/□以下であることがより好ましく、100Ω/□以下であることがさらに好ましい。シート抵抗が100Ω/□以下であれば、生体信号取得用粘着性電極は、生体用として十分な導電性を有することができる。 The sheet resistance (surface resistance) of the adhesive electrode layer is preferably 500Ω/□ or less, more preferably 400Ω/□ or less, and even more preferably 100Ω/□ or less. If the sheet resistance is 100Ω/□ or less, the biosignal acquisition adhesive electrode can have sufficient electrical conductivity for a living body.
 なお、シート抵抗は、本実施形態に係る生体信号取得用粘着性電極の導電性の指標として用いることができる。生体信号取得用粘着性電極のシート抵抗は、一般的な非接触式抵抗測定機を用いて、JIS Z 2316-1:2014に準拠して、渦電流測定法によって測定することで求められる。測定範囲は、生体信号取得用粘着性電極の形状及び大きさ等に応じて適宜任意の範囲に設定してよい。例えば、生体信号取得用粘着性電極がシート状の電極である場合、測定範囲は主表面の0.5mm~150mmとしてよい。 Note that the sheet resistance can be used as an indicator of the conductivity of the biosignal acquisition adhesive electrode according to the present embodiment. The sheet resistance of the adhesive electrode for biosignal acquisition is obtained by measuring by eddy current measurement in accordance with JIS Z 2316-1:2014 using a general non-contact resistance measuring machine. The measurement range may be appropriately set to any range according to the shape, size, etc. of the biosignal acquisition adhesive electrode. For example, when the biosignal acquisition adhesive electrode is a sheet-like electrode, the measurement range may be 0.5 mm to 150 mm on the main surface.
 粘着性電極層のタック力は、4.0gf/Φ5mm以上であることが好ましく、10gf/Φ5mm以上であることがより好ましく、20gf/Φ5mm以上であることがさらに好ましい。タック力が上記の好ましい範囲内であると、生体信号取得用粘着性電極は、生体表面に貼付するのに十分な粘着力を有することができる。 The tack force of the adhesive electrode layer is preferably 4.0 gf/Φ5 mm or more, more preferably 10 gf/Φ5 mm or more, and even more preferably 20 gf/Φ5 mm or more. When the tack force is within the above preferred range, the biosignal acquisition adhesive electrode can have sufficient adhesive force to be attached to the surface of a living body.
 生体信号取得用粘着性電極のタック力は、一般的なタッキング試験機を用いて測定できる。タッキング試験機には、プレートの上面に両面テープを介して生体信号取得用粘着性電極を固定し、所定の大きさの直径(例えば、5mm)のプローブと生体信号取得用粘着性電極とが上下方向に対向するように設置する。タック力の測定時には、25℃の環境温度下において、プローブを所定の押しつけ速度(例えば、0.01mm/s)で下降させてプレート上の生体信号取得用粘着性電極に50gfの荷重を1秒間保持した後、プローブを所定の引き上げ速度(例えば、1mm/s)で上昇させて、プローブを生体信号取得用粘着性電極から引き剥がすのに必要な荷重を、25℃でのタック力(単位:gf/Φ5mm)として測定できる。 The tack force of the adhesive electrode for biosignal acquisition can be measured using a general tack tester. In the tacking tester, the biosignal acquisition adhesive electrode is fixed to the upper surface of the plate via double-sided tape, and the probe with a predetermined diameter (for example, 5 mm) and the biosignal acquisition adhesive electrode are placed vertically. Install in the opposite direction. When measuring the tack force, the probe is lowered at a predetermined pressing speed (for example, 0.01 mm/s) under an environmental temperature of 25° C., and a load of 50 gf is applied to the biosignal acquisition adhesive electrode on the plate for 1 second. After being held, the probe is lifted at a predetermined lifting speed (e.g., 1 mm/s), and the load required to peel off the probe from the biosignal acquisition adhesive electrode is determined as a tack force at 25°C (unit: gf/Φ5 mm).
 粘着性電極層の面積膨張率は、2.5以下であることが好ましく、2.3以下であることがより好ましく、1.5以下であることがさらに好ましい。なお、面積膨張率は低い方が好ましく、その下限値は特に限定されないが、例えば、1.1としてよい。面積膨張率が2.5以下であれば、生体の表面が濡れた湿潤面に貼付された場合でも水分や湿気との接触により生体信号取得用粘着性電極が膨潤して接着力が低下することを抑制できる。また、生体信号取得用粘着性電極の膨潤による形状の変化が少なく、耐水性に優れ、長期にわたり水と接触、又は浸水する等の環境での使用に適している。さらに、膨潤度が2.5以下であれば、接着後にわずかな剥離が生じて生体信号取得用粘着性電極が膨潤したとしても、生体表面との界面との接着力が強固であるため、剥離力の低下を抑制できる。 The area expansion coefficient of the adhesive electrode layer is preferably 2.5 or less, more preferably 2.3 or less, and even more preferably 1.5 or less. A lower area expansion coefficient is preferable, and the lower limit thereof is not particularly limited, but may be, for example, 1.1. If the area expansion coefficient is 2.5 or less, the adhesive force for biosignal acquisition will swell due to contact with water or humidity, and the adhesive strength will decrease even when the adhesive electrode for biosignal acquisition is attached to a wet surface where the surface of a living body is wet. can be suppressed. In addition, there is little change in shape due to swelling of the biosignal acquisition adhesive electrode, it is excellent in water resistance, and it is suitable for use in an environment where it is in contact with water for a long period of time, or is submerged in water. Furthermore, if the degree of swelling is 2.5 or less, even if the adhesive electrode for biosignal acquisition swells due to slight detachment after adhesion, the adhesive force with the interface with the surface of the living body is strong. It can suppress the decrease in strength.
 生体信号取得用粘着性電極の面積膨張率は、生体信号取得用粘着性電極の耐水性の指標として用いることができる。生体信号取得用粘着性電極の面積膨張率は、例えば、電極シートを所定の大きさ(例えば、3cm×3cmのサイズ)に切断したサンプルを水が入っている浴中に25℃、1時間浸漬した後、サンプルの面積を計測して算出される膨潤度を用いることができる。 The area expansion rate of the biosignal acquisition adhesive electrode can be used as an indicator of the water resistance of the biosignal acquisition adhesive electrode. The area expansion rate of the adhesive electrode for biosignal acquisition can be measured, for example, by immersing a sample obtained by cutting an electrode sheet into a predetermined size (for example, a size of 3 cm×3 cm) in a bath containing water at 25° C. for 1 hour. After that, the degree of swelling calculated by measuring the area of the sample can be used.
 なお、膨潤度は、下記式(1)の通り、25℃の純水に所定時間(例えば、1時間や24時間)浸漬した後の生体信号取得用粘着性電極の面積と、純水に浸漬する前の生体信号取得用粘着性電極の面積との比より算出できる。
膨潤度=(1時間浸漬後の電極シートの面積/浸漬前の電極シートの面積) ・・・(1)
Incidentally, as shown in the following formula (1), the degree of swelling is the area of the biosignal acquisition adhesive electrode after being immersed in pure water at 25° C. for a predetermined time (for example, 1 hour or 24 hours), and the area of the adhesive electrode immersed in pure water. It can be calculated from the ratio to the area of the biosignal acquisition adhesive electrode before the measurement.
Degree of swelling=(area of electrode sheet after immersion for 1 hour/area of electrode sheet before immersion) (1)
 本実施形態に係る生体信号取得用粘着性電極の製造方法の一例について説明する。導電性高分子及びバインダー樹脂を上記割合で混合して、導電性高分子及びバインダー樹脂を含む導電性組成物を作製する。導電性組成物にさらに保湿剤を上記割合で含める。なお、導電性組成物を作製する際、導電性高分子、バインダー樹脂及び保湿剤は、溶媒に溶解した水溶液を用いてもよい。 An example of a method for manufacturing a biosignal acquisition adhesive electrode according to this embodiment will be described. A conductive composition containing a conductive polymer and a binder resin is produced by mixing the conductive polymer and the binder resin in the above ratio. A humectant is further included in the conductive composition in the above ratio. In preparing the conductive composition, the conductive polymer, the binder resin, and the humectant may be dissolved in a solvent and used as an aqueous solution.
 導電性組成物は、必要に応じて、導電性高分子、バインダー樹脂及び保湿剤を含む溶媒の他に、さらに溶媒を適宜任意の割合で含み、導電性組成物の水溶液(導電性組成物水溶液)を用いてもよい。溶媒としては、上記の溶媒と同様の溶媒を用いることができる。 In addition to the solvent containing the conductive polymer, the binder resin, and the humectant, the conductive composition optionally contains a solvent in an arbitrary ratio, and is an aqueous solution of the conductive composition (aqueous conductive composition ) may be used. As the solvent, the same solvents as those described above can be used.
 導電性組成物を剥離基材の表面に塗布した後、導電性組成物を加熱することによって、導電性組成物に含まれるバインダー樹脂の架橋反応を進行させ、バインダー樹脂を硬化させる。これにより、導電性組成物の硬化物が得られる。得られた硬化物は、必要に応じて、硬化物の表面をプレス機等を用いて打ち抜き(プレス)等を行うことで、硬化物の外形を所定の形状に成形する。これにより、所定形状の外形を有する成形体である生体信号取得用粘着性電極が得られる。なお、プレス機に代えてレーザ加工機により成形してもよい。また、得られた硬化物は、その表面に1つ以上の貫通孔を形成してもよい。さらに、硬化物をそのまま生体信号取得用粘着性電極として用いることができる場合には、硬化物は、成形等を行わずに生体信号取得用粘着性電極として用いてもよい。 After the conductive composition is applied to the surface of the release base material, the conductive composition is heated to promote the cross-linking reaction of the binder resin contained in the conductive composition and cure the binder resin. Thereby, a cured product of the conductive composition is obtained. If necessary, the surface of the obtained cured product is punched (pressed) using a press machine or the like to shape the outer shape of the cured product into a predetermined shape. As a result, the biosignal acquisition adhesive electrode, which is a molded body having a predetermined external shape, is obtained. In addition, you may shape|mold by a laser processing machine instead of a press machine. Moreover, the obtained cured product may form one or more through-holes on its surface. Furthermore, when the cured product can be used as it is as the biosignal acquisition adhesive electrode, the cured product may be used as the biosignal acquisition adhesive electrode without molding or the like.
 このように、本実施形態に係る生体信号取得用粘着性電極は、導電性高分子、バインダー樹脂及び保湿剤を含む粘着性電極層を備え、バインダー樹脂は、水系エマルジョン粘着剤及びアクリル系エマルジョン粘着剤の少なくとも一方の成分から構成される。これにより、本実施形態に係る生体信号取得用粘着性電極は、低い抵抗を有し、吸水による膨潤を抑えることができると共に、粘弾性を低く抑えることができる。このため、本実施形態に係る生体信号取得用粘着性電極は、耐水性を向上させることができるので、低い抵抗を維持しつつ粘着力の低下を抑えることができると共に、柔軟性を高めて生体表面への追従性を高めることができる。よって、本実施形態に係る生体信号取得用粘着性電極は、生体表面への粘着力を維持できるため、長期間使用しても、安定した導電性を維持することができると共に、ノイズを低く抑えることができる。 As described above, the biosignal acquisition adhesive electrode according to the present embodiment includes an adhesive electrode layer containing a conductive polymer, a binder resin, and a moisturizing agent. It consists of at least one component of the agent. Thereby, the biosignal acquisition adhesive electrode according to the present embodiment has a low resistance, can suppress swelling due to water absorption, and can suppress viscoelasticity to a low level. For this reason, the adhesive electrode for biosignal acquisition according to the present embodiment can improve water resistance, so that it is possible to suppress a decrease in adhesive force while maintaining low resistance, and to improve flexibility and Followability to the surface can be improved. Therefore, the biosignal acquisition adhesive electrode according to the present embodiment can maintain the adhesive force to the surface of the living body, so that even when used for a long period of time, it is possible to maintain stable conductivity and reduce noise. be able to.
 なお、生体信号取得用粘着性電極の粘弾性は、生体信号取得用粘着性電極の貯蔵弾性率G'及び損失弾性率G''を測定することで評価できる。貯蔵弾性率G'は、生体信号取得用粘着性電極が変形する際に弾性エネルギーとして貯蔵される部分に相当し、生体信号取得用粘着性電極の硬さの程度を表す指標である。貯蔵弾性率G'が小さいほど、図2に示すように、生体表面の凹凸に追従して隙間が生じないように密着させることができるため、接着保持力が高く、歪による剥がれが抑制される傾向にある。貯蔵弾性率G'が大きいほど、図3に示すように、生体表面の凹凸に追従し難く隙間が生じ易くなるため、生体表面に密着させ難くなる。損失弾性率G"は、生体信号取得用粘着性電極が変形する際に内部摩擦等により散逸される損失エネルギー部分に相当し、生体信号取得用粘着性電極の粘性の程度を表す。 The viscoelasticity of the biosignal acquisition adhesive electrode can be evaluated by measuring the storage elastic modulus G' and the loss elastic modulus G'' of the biosignal acquisition adhesive electrode. The storage elastic modulus G′ corresponds to a portion stored as elastic energy when the biosignal acquisition adhesive electrode is deformed, and is an index representing the degree of hardness of the biosignal acquisition adhesive electrode. As shown in FIG. 2, the smaller the storage elastic modulus G′, the more closely the tissue can follow the irregularities on the surface of the living body and prevent the formation of gaps. There is a tendency. As the storage elastic modulus G' increases, as shown in FIG. 3, it becomes difficult to follow the unevenness of the surface of the living body and gaps are likely to occur, making it difficult to adhere to the surface of the living body. The loss elastic modulus G″ corresponds to a loss energy portion that is dissipated due to internal friction or the like when the biosignal acquisition adhesive electrode is deformed, and represents the degree of viscosity of the biosignal acquisition adhesive electrode.
 生体信号取得用粘着性電極の32℃における貯蔵弾性率G'は、JIS K 7244-7:1998に準拠して測定できる。例えば、生体信号取得用粘着性電極を所定の大きさ(例えば、直径8mm)の直径を有する円盤状に打ち抜いて、試験片を作製する。この試験片を動的粘弾測定装置を用いて、周波数1Hzの条件で、-60℃~100℃の温度範囲、昇温速度5℃/分で粘弾性を測定することで、生体信号取得用粘着性電極の32℃における貯蔵弾性率G'が求められる。 The storage elastic modulus G' at 32°C of the biosignal acquisition adhesive electrode can be measured in accordance with JIS K 7244-7:1998. For example, the biosignal acquisition adhesive electrode is punched into a disk shape having a predetermined size (for example, 8 mm in diameter) to prepare a test piece. Using a dynamic viscoelasticity measuring device for this test piece, the viscoelasticity is measured at a frequency of 1 Hz, a temperature range of -60 ° C to 100 ° C, and a heating rate of 5 ° C / min. The storage modulus G' at 32°C of the adhesive electrode is determined.
 生体信号取得用粘着性電極の損失弾性率G''も、貯蔵弾性率G'と同様に、JIS K 7244-7:1998に準拠して測定できる。 The loss elastic modulus G'' of the adhesive electrode for biosignal acquisition can also be measured according to JIS K 7244-7: 1998, like the storage elastic modulus G'.
 また、生体信号取得用粘着性電極の粘弾性測定により算出される貯蔵弾性率G'及び損失弾性率G'により損失正接(損失係数)tanδが求められる。損失正接tanδは、損失弾性率G''と貯蔵弾性率G'の比G"/G'である。損失正接tanδが極大となる時の温度(ピークトップ温度)はガラス転移温度となる。損失正接tanδが大きいほど、生体信号取得用粘着性電極は粘性の傾向が強く、変形挙動が液体的となり、反発弾性エネルギーが小さくなる傾向がある。そのため、損失正接tanδは小さいことが好ましい。 Also, the loss tangent (loss coefficient) tan δ is obtained from the storage elastic modulus G' and the loss elastic modulus G' calculated by viscoelasticity measurement of the biosignal acquisition adhesive electrode. The loss tangent tan δ is the ratio G″/G′ of the loss elastic modulus G″ and the storage elastic modulus G′. The temperature at which the loss tangent tan δ becomes maximum (peak top temperature) is the glass transition temperature. The greater the tangent tan δ, the more viscous the biosignal acquisition adhesive electrode tends to be, the more liquid-like the deformation behavior, and the smaller the rebound elastic energy.Therefore, the loss tangent tan δ is preferably small.
 生体信号取得用粘着性電極の耐水性は、生体信号取得用粘着性電極の面積膨張率を測定することで評価できる。 The water resistance of the biosignal acquisition adhesive electrode can be evaluated by measuring the area expansion rate of the biosignal acquisition adhesive electrode.
 生体信号取得用粘着性電極の粘着力は、タック力又はピール力を測定することで評価できる。生体信号取得用粘着性電極のピール力は、一般的な引張試験機を用いて測定できる。例えば、生体信号取得用粘着性電極の片面に裏打ちテープを貼り合わせた後、裏打ちテープ付き生体信号取得用粘着性電極から所定の大きさ(例えば、幅10mm×長さ50mm)の試料片を切り出す。ラミネータを使用して、試料片の生体信号取得用粘着性電極側の面を樹脂製プレート(例えば、ベークライト(フェノール樹脂)板)に貼り合わせる。引張試験機を使用して、23℃、剥離角度180°及び剥離速度300mm/分の条件で樹脂製プレート上の試料片の裏打ちテープを引っ張る剥離試験を行い、樹脂製プレートに対する生体信号取得用粘着性電極の23℃での剥離粘着力(ピール力)(単位:N/10mm)を測定できる。 The adhesive force of the biosignal acquisition adhesive electrode can be evaluated by measuring the tack force or peel force. The peel force of the biosignal acquisition adhesive electrode can be measured using a general tensile tester. For example, after attaching a backing tape to one side of the biosignal acquisition adhesive electrode, a sample piece having a predetermined size (for example, width 10 mm × length 50 mm) is cut from the adhesive electrode for biosignal acquisition with the backing tape. . Using a laminator, the surface of the sample piece on the side of the adhesive electrode for biosignal acquisition is attached to a resin plate (for example, bakelite (phenol resin) plate). Using a tensile tester, a peel test was performed by pulling the backing tape of the sample piece on the resin plate under the conditions of 23 ° C., a peel angle of 180 °, and a peel speed of 300 mm / min. The peel adhesive strength (peel force) (unit: N/10 mm) of the electrode at 23°C can be measured.
 導電性は、本実施形態に係る生体信号取得用粘着性電極のシート抵抗を測定することで評価できる。 The conductivity can be evaluated by measuring the sheet resistance of the biosignal acquisition adhesive electrode according to this embodiment.
 生体信号取得用粘着性電極のノイズは、生体信号取得用粘着性電極を被験者の腕の一部に貼付して、電極間距離を所定間隔(例えば、10cm)として、1対の電極同士を配線でつないで計測装置に接続することで測定できる。 The noise of the biosignal acquisition adhesive electrode is measured by attaching the biosignal acquisition adhesive electrode to a part of the subject's arm, setting the distance between the electrodes at a predetermined interval (for example, 10 cm), and wiring a pair of electrodes. It can be measured by connecting to the measuring device by connecting with
 生体信号取得用粘着性電極のノイズは、生体信号取得用粘着性電極の使用時に検出される波形から算出できる。例えば、波形が心電図を測定して得られる心電図波形である場合、図4に示すように、P波、QRS波及びT波で構成される。ノイズの大きさは、基線からの変動振幅で表される。 The noise of the biosignal acquisition adhesive electrode can be calculated from the waveform detected when the biosignal acquisition adhesive electrode is used. For example, when the waveform is an electrocardiogram waveform obtained by measuring an electrocardiogram, it is composed of P waves, QRS waves and T waves, as shown in FIG. The magnitude of noise is represented by the amplitude of variation from the baseline.
 このように、本実施形態に係る生体信号取得用粘着性電極は、本実施形態に係る生体信号取得用粘着性電極は、生体表面への粘着力を維持することで、導電性を安定して維持できるため、耐久性を高めることができる。耐久性は、本実施形態に係る生体信号取得用粘着性電極の、タック力の経時変化と、シート抵抗の経時変化を求めることで、タック力の及びシート抵抗の耐久性を評価できる。 As described above, the biosignal acquisition adhesive electrode according to the present embodiment maintains the adhesive force to the surface of the living body, thereby stably maintaining the electrical conductivity. Since it can be maintained, durability can be improved. The durability of the tack force and sheet resistance can be evaluated by determining the change in tack force over time and the change in sheet resistance over time of the biosignal acquisition adhesive electrode according to the present embodiment.
 生体信号取得用粘着性電極のタック力の耐久性は、生体信号取得用粘着性電極をセパレータで挟んだ状態で、40℃、75%RHの環境下において、所定時間毎(例えば、1時間、1日、5日、7日及び14日毎)にタック力を測定し、タック力の経時的な変化を測定することで評価できる。タック力の測定方法は、上述と同様に行うことができるため詳細は省略する。 The durability of the tack force of the biosignal acquisition adhesive electrode is measured at predetermined time intervals (for example, 1 hour, It can be evaluated by measuring the tack force every 1 day, 5 days, 7 days and 14 days) and measuring the change in the tack force over time. Since the tack force can be measured in the same manner as described above, the details are omitted.
 生体信号取得用粘着性電極のシート抵抗の耐久性は、生理食塩水を染み込ませたシートに生体信号取得用粘着性電極が接触した状態で設置して、40℃、90%RHの環境下において、所定時間毎(例えば、1時間、1日、5日、7日及び14日毎)に、生体信号取得用粘着性電極のシート抵抗を測定し、下記式(2)に基づいて、生体信号取得用粘着性電極の抵抗変化率を求めることで評価できる。シート抵抗の測定方法は、上述と同様に行うことができるため詳細は省略する。
抵抗変化率=生理食塩水を染み込ませて所定時間後における生体信号取得用粘着性電極のシート抵抗/生理食塩水を染み込ませる前の生体信号取得用粘着性電極のシート抵抗 ・・・(2)
The durability of the sheet resistance of the biosignal acquisition adhesive electrode was evaluated by placing the biosignal acquisition adhesive electrode in contact with a sheet impregnated with physiological saline, and testing it in an environment of 40°C and 90% RH. , every predetermined time (for example, every 1 hour, 1 day, 5 days, 7 days, and 14 days), the sheet resistance of the biosignal acquisition adhesive electrode is measured, and biosignal acquisition is performed based on the following formula (2): It can be evaluated by obtaining the rate of change in resistance of the adhesive electrode for use. Since the sheet resistance can be measured in the same manner as described above, the details are omitted.
Rate of change in resistance = Sheet resistance of the biosignal acquisition adhesive electrode after a predetermined period of time after soaking in physiological saline/Sheet resistance of the biosignal acquisition adhesive electrode before soaking in physiological saline (2)
 本実施形態に係る生体信号取得用粘着性電極は、水系エマルジョン粘着剤として、アクリル系エマルジョン粘着剤を用いることができる。これにより、生体信号取得用粘着性電極は、耐水性を確実に高められるので、抵抗を低く安定して維持しつつ粘着力の低下を抑え、生体表面への追従性を確実に高めることができる。よって、本実施形態に係る生体信号取得用粘着性電極は、粘弾性を確実に低く抑えることができるため、高い粘着力及び生体表面への追従性を有することができる。 For the biosignal acquisition adhesive electrode according to the present embodiment, an acrylic emulsion adhesive can be used as the water-based emulsion adhesive. As a result, the water resistance of the biosignal acquisition adhesive electrode can be reliably increased, so that it is possible to suppress a decrease in adhesive force while maintaining a low and stable resistance, and to reliably enhance the ability to follow the surface of a living body. . Therefore, the biosignal acquisition adhesive electrode according to the present embodiment can reliably keep the viscoelasticity low, and thus can have high adhesive strength and conformability to the surface of the living body.
 本実施形態に係る生体信号取得用粘着性電極は、アクリル系エマルジョン粘着剤として、(メタ)アクリル酸アルキルエステルを含む単量体混合物と、(メタ)アクリル酸アルキルエステルと共重合可能なシラン系単量体を共重合させて得られる水分散型共重合体と、水分散型共重合体と相溶する有機液状成分とを含むシラン系エマルジョン粘着剤を用いることができる。これにより、本実施形態に係る生体信号取得用粘着性電極は、粘弾性を確実に低く抑えることができるため、粘着力を高めることができ、生体表面への追従性をより向上させることができる。 The adhesive electrode for biosignal acquisition according to the present embodiment includes, as an acrylic emulsion adhesive, a monomer mixture containing a (meth)acrylic acid alkyl ester, and a silane-based compound copolymerizable with the (meth)acrylic acid alkyl ester. A silane-based emulsion adhesive containing a water-dispersible copolymer obtained by copolymerizing monomers and an organic liquid component compatible with the water-dispersible copolymer can be used. As a result, the viscoelasticity of the biosignal acquisition adhesive electrode according to the present embodiment can be reliably kept low, so that the adhesive force can be increased, and the followability to the surface of the living body can be further improved. .
 本実施形態に係る生体信号取得用粘着性電極は、アクリル系エマルジョン粘着剤として、(メタ)アクリル酸アルキルエステルを含む単量体混合物とカルボキシル基含有単量体混合物を含む群から選択される一種以上の成分を含むことができる。この場合でも、本実施形態に係る生体信号取得用粘着性電極は、粘弾性を確実に低く抑えることができるため、粘着力を高めることができ、生体表面への追従性をより向上させることができる。 In the adhesive electrode for biosignal acquisition according to the present embodiment, the acrylic emulsion adhesive is selected from the group including a monomer mixture containing a (meth)acrylic acid alkyl ester and a monomer mixture containing a carboxyl group. It can contain the above components. Even in this case, since the viscoelasticity of the biosignal acquisition adhesive electrode according to the present embodiment can be reliably kept low, the adhesive force can be increased, and the followability to the biological surface can be further improved. can.
 本実施形態に係る生体信号取得用粘着性電極は、水系エマルジョン粘着剤の平均粒子径を100nm~1.0μmにできる。これにより、水系エマルジョン粘着剤の分散性を高めることができるため、水系エマルジョン粘着剤の添加による効果をより発揮させ易くなる。このため、本実施形態に係る生体信号取得用粘着性電極は、粘弾性を確実により低く抑えることができるため、粘着力を高めることができ、生体表面への追従性をさらに向上させることができる。 In the biosignal acquisition adhesive electrode according to the present embodiment, the water-based emulsion adhesive can have an average particle size of 100 nm to 1.0 μm. As a result, the dispersibility of the water-based emulsion pressure-sensitive adhesive can be enhanced, so that the effect of the addition of the water-based emulsion pressure-sensitive adhesive can be exhibited more easily. Therefore, since the biosignal acquisition adhesive electrode according to the present embodiment can reliably keep the viscoelasticity lower, the adhesive force can be increased, and the followability to the biological surface can be further improved. .
 本実施形態に係る生体信号取得用粘着性電極は、バインダー樹脂の含有量を35wt%~90wt%にできる。これにより、本実施形態に係る生体信号取得用粘着性電極は、耐水性を確実に向上させることができるため、抵抗を低く安定して維持しつつ十分な粘着力を発揮することができると共に、生体表面への追従性をさらに高めることができる。よって、本実施形態に係る生体信号取得用粘着性電極は、導電性をより安定して維持することができると共に、ノイズの発生をより安定して低く抑えることができる。 The biosignal acquisition adhesive electrode according to the present embodiment can have a binder resin content of 35 wt % to 90 wt %. As a result, the biosignal acquisition adhesive electrode according to the present embodiment can reliably improve the water resistance, so that the resistance can be stably maintained low and sufficient adhesive strength can be exhibited. The conformability to the surface of the living body can be further enhanced. Therefore, the biosignal acquisition adhesive electrode according to the present embodiment can more stably maintain conductivity, and can more stably suppress the generation of noise.
 本実施形態に係る生体信号取得用粘着性電極は、保湿剤にグリセリンを用いることができる。これにより、本実施形態に係る生体信号取得用粘着性電極は、抵抗を低下させることができるため、導電性を向上させることができると共に、ノイズをさらに低く抑えることができる。 The biosignal acquisition adhesive electrode according to the present embodiment can use glycerin as a moisturizing agent. As a result, the biosignal acquisition adhesive electrode according to the present embodiment can reduce the resistance, so that the conductivity can be improved and the noise can be further suppressed.
 本実施形態に係る生体信号取得用粘着性電極は、グリセリンを5wt%~60wt%含むことができる。これにより、グリセリンの添加効果を確実に発揮することができるため、本実施形態に係る生体信号取得用粘着性電極は、抵抗を確実に低下させることができるため、導電性を確実に向上させることができると共に、ノイズをさらに確実に低く抑えることができる。 The biosignal acquisition adhesive electrode according to the present embodiment can contain 5 wt % to 60 wt % of glycerin. As a result, since the effect of adding glycerin can be reliably exhibited, the biosignal acquisition adhesive electrode according to the present embodiment can reliably reduce the resistance, and thus the conductivity can be reliably improved. can be achieved, and the noise can be further reliably suppressed to a low level.
 本実施形態に係る生体信号取得用粘着性電極は、粘着性電極層の厚みを10μm~100μmnにできる。これにより、本実施形態に係る生体信号取得用粘着性電極は、低い抵抗を維持しつつ粘着力の低下を確実に抑えることができると共に、生体表面への追従性をより高めることができるため、耐久性の向上を確実に図ることができる。 In the biosignal acquisition adhesive electrode according to the present embodiment, the thickness of the adhesive electrode layer can be set to 10 μm to 100 μmn. As a result, the biosignal acquisition adhesive electrode according to the present embodiment can reliably suppress a decrease in adhesive force while maintaining a low resistance, and can further enhance the followability to the surface of a living body. It is possible to reliably improve the durability.
 本実施形態に係る生体信号取得用粘着性電極は、粘着性電極層のシート抵抗を500Ω/□以下にできる。これにより、本実施形態に係る生体信号取得用粘着性電極は、良好な導電性を発揮することができる。 The adhesive electrode for biosignal acquisition according to the present embodiment can have a sheet resistance of the adhesive electrode layer of 500Ω/□ or less. Thereby, the adhesive electrode for biosignal acquisition according to the present embodiment can exhibit good conductivity.
 本実施形態に係る生体信号取得用粘着性電極は、粘着性電極層のタック力を4.0gf/Φ5mm以上にできる。これにより、本実施形態に係る生体信号取得用粘着性電極は、優れた粘着力を有することができる。 The adhesive electrode for biosignal acquisition according to the present embodiment can have a tack force of the adhesive electrode layer of 4.0 gf/Φ5 mm or more. Thereby, the adhesive electrode for biosignal acquisition according to the present embodiment can have excellent adhesive strength.
 本実施形態に係る生体信号取得用粘着性電極は、粘着性電極層の面積膨張率を2.5以下にできる。これにより、本実施形態に係る生体信号取得用粘着性電極は、長期間において、さらに安定した導電性を維持することができると共に、ノイズをさらに低く抑えることができる。 The adhesive electrode for biosignal acquisition according to the present embodiment can have an area expansion coefficient of the adhesive electrode layer of 2.5 or less. As a result, the biosignal acquisition adhesive electrode according to the present embodiment can maintain more stable conductivity for a long period of time, and can further suppress noise.
 本実施形態に係る生体信号取得用粘着性電極は、上記の通り、フィルム状に形成されていることから、生体信号取得用粘着性電極を基材に設けた電極片として用いることが好ましい。電極片は、生体信号取得用粘着性電極を単体で用いる場合よりも高い剛性を有するため、取り扱い性を高めることができる。 Since the biosignal acquisition adhesive electrode according to the present embodiment is formed in a film form as described above, it is preferable to use the biosignal acquisition adhesive electrode as an electrode piece provided on a base material. Since the electrode piece has higher rigidity than when the adhesive electrode for biosignal acquisition is used alone, it is possible to improve the handleability.
 電極片に用いられる基材は、適宜任意の材料を用いて形成することができる。電極片に用いられる基材としては、例えば、ポリエチレン(PE)、ポリエチレンナフタレート(PEN)等のポリオレフィン系樹脂、ポリエチレンテレフタレート(PET)等のポリエステル系樹脂、アクリル系樹脂、ポリウレタン系樹脂、ポリスチレン系樹脂、シリコーン系樹脂、アクリル系樹脂、塩化ビニル系樹脂、ポリイミド(PI)、ポリカーボネート(PC)等のプラスチック基材、金属板及びガラス基材等を用いることができる。電極片に用いられる基材は、多孔質構造を有しない基材でもよいし、不織布シート等の多孔質構造を有する基材(多孔質体)でもよい。 The base material used for the electrode piece can be formed using any appropriate material. Examples of the substrate used for the electrode piece include polyolefin resins such as polyethylene (PE) and polyethylene naphthalate (PEN), polyester resins such as polyethylene terephthalate (PET), acrylic resins, polyurethane resins, and polystyrene resins. Resins, silicone resins, acrylic resins, vinyl chloride resins, plastic substrates such as polyimide (PI) and polycarbonate (PC), metal plates, glass substrates, and the like can be used. The substrate used for the electrode piece may be a substrate having no porous structure or a substrate having a porous structure (porous body) such as a non-woven fabric sheet.
 本実施形態に係る生体信号取得用粘着性電極は、上記の通り、長期間使用しても、導電性を維持すると共にノイズを低く抑えることができ、優れた耐久性を有することから、生体センサ、特に生体の皮膚等に貼付され、高い導電性及び皮膚に対する安全性が要求される貼付型の生体センサの生体電極として好適に用いることができる。 As described above, the biosignal acquisition adhesive electrode according to the present embodiment can maintain conductivity and suppress noise even when used for a long period of time, and has excellent durability. In particular, it can be suitably used as a bioelectrode of a patch-type biosensor that is attached to the skin of a living body or the like and that requires high conductivity and safety to the skin.
 以下、例を示して実施形態をさらに具体的に説明するが、実施形態はこれらの例により限定されるものではない。例1-2~例1-5、例2-2~例2-5、例3-2~例3-5、例4-2~例4-5、例5~例7が実施例であり、例1-1、例2-1、例3-1及び例4-1が比較例である。 Hereinafter, the embodiments will be described more specifically with examples, but the embodiments are not limited to these examples. Examples 1-2 to 1-5, Examples 2-2 to 2-5, Examples 3-2 to 3-5, Examples 4-2 to 4-5, and Examples 5 to 7 are examples. , Examples 1-1, 2-1, 3-1 and 4-1 are comparative examples.
<生体信号取得用粘着性電極の作製>
[例1]
(粘着性電極形成用組成物の作製)
 導電性高分子としてPEDOT/PSSのペレット(「Orgacon DRY」、日本アグフアマテリアルズ社製)0.8gと、バインダー樹脂としてシラン系エマルジョン粘着剤(日東電工社製)3.25gと、保湿剤としてグリセリン(和光純薬社製)を表1に示す固形分量とを、プラスチック容器に添加して、遊星攪拌装置を用いて攪拌脱泡し、均一な粘着性電極形成用組成物を調製した。粘着性電極形成用組成物における各成分の含有率は、表1に示す通りであった。なお、例1はバインダー樹脂としてシラン系エマルジョン粘着剤(日東電工社製)の固形分量を3.25gとし、例1-1はグリセリンの固形分量を0gとし、例1-2はグリセリンの固形分量を0.5gとし、例1-3はグリセリンの固形分量を1gとし、例1-4はグリセリンの固形分量を2gとし、例1-5はグリセリンの固形分量を5gとした。
<Preparation of adhesive electrode for biosignal acquisition>
[Example 1]
(Preparation of adhesive electrode-forming composition)
0.8 g of PEDOT/PSS pellets (“Orgacon DRY”, manufactured by Nihon Agfa Materials Co., Ltd.) as a conductive polymer, 3.25 g of a silane emulsion adhesive (manufactured by Nitto Denko) as a binder resin, and 3.25 g as a moisturizing agent. Glycerin (manufactured by Wako Pure Chemical Industries, Ltd.) and the solid content shown in Table 1 were added to a plastic container and stirred and defoamed using a planetary stirrer to prepare a uniform composition for forming an adhesive electrode. The content of each component in the adhesive electrode-forming composition was as shown in Table 1. In Example 1, the solid content of the silane-based emulsion pressure-sensitive adhesive (manufactured by Nitto Denko Corporation) as the binder resin was 3.25 g, in Example 1-1, the solid content of glycerin was 0 g, and in Example 1-2, the solid content of glycerin was used. was 0.5 g, Example 1-3 had a glycerin solid content of 1 g, Example 1-4 had a glycerin solid content of 2 g, and Example 1-5 had a glycerin solid content of 5 g.
(電極シートの作製)
 調製した粘着性電極形成用組成物をポリエチレンテレフタレート(PET)フィルム上にアプリケータを用いて塗工した後、粘着性電極形成用組成物を乾燥オーブン(SPHH-201、ESPEC社製)で130℃、3分間加熱乾燥することで、粘着性電極形成用組成物の電極シートを作製した。
(Preparation of electrode sheet)
After applying the prepared composition for forming an adhesive electrode onto a polyethylene terephthalate (PET) film using an applicator, the composition for forming an adhesive electrode was dried in a drying oven (SPHH-201, manufactured by ESPEC) at 130°C. , and dried by heating for 3 minutes to prepare an electrode sheet of the adhesive electrode-forming composition.
[例2]
 例1において、バインダー樹脂としてシラン系エマルジョン粘着剤(日東電工社製)の固形分量を5.25gに変更し、保湿剤を表1に示す固形分量に変更したこと以外は、例1と同様にして行い、電極シートを作製した。なお、例2においても、例1と同様、例2-1~例2-5は、それぞれ、グリセリンの固形分量を0g、0.5g、1g、2g、5gとした例である。
[Example 2]
In Example 1, the procedure was the same as in Example 1, except that the solid content of the silane-based emulsion adhesive (manufactured by Nitto Denko Corporation) was changed to 5.25 g as the binder resin, and the solid content of the moisturizing agent was changed to the solid content shown in Table 1. Then, an electrode sheet was produced. In Example 2, as in Example 1, Examples 2-1 to 2-5 are examples in which the solid content of glycerin was 0 g, 0.5 g, 1 g, 2 g, and 5 g, respectively.
[例3]
 例1において、バインダー樹脂としてシラン系エマルジョン粘着剤(日東電工社製)の固形分量を6.5gに変更し、保湿剤を表1に示す固形分量に変更したこと以外は、例1と同様にして行い、電極シートを作製した。なお、例3においても、例1と同様、例3-1~例3-5は、それぞれ、グリセリンの固形分量を0g、0.5g、1g、2g、5gとした例である。
[Example 3]
In Example 1, the procedure was the same as in Example 1, except that the solid content of the silane-based emulsion adhesive (manufactured by Nitto Denko Corporation) was changed to 6.5 g as the binder resin, and the solid content of the moisturizing agent was changed to that shown in Table 1. Then, an electrode sheet was produced. In Example 3, as in Example 1, Examples 3-1 to 3-5 are examples in which the solid content of glycerin was 0 g, 0.5 g, 1 g, 2 g, and 5 g, respectively.
[例4]
 例1において、バインダー樹脂としてシラン系エマルジョン粘着剤(日東電工社製)の固形分量を7.8gに変更し、保湿剤を表1に示す固形分量に変更したこと以外は、例1と同様にして行い、電極シートを作製した。なお、例4においても、例1と同様、例4-1~例4-5は、それぞれ、グリセリンの固形分量を0g、0.5g、1g、2g、5gとした例である。
[Example 4]
In Example 1, the procedure was the same as in Example 1, except that the solid content of the silane-based emulsion adhesive (manufactured by Nitto Denko Corporation) was changed to 7.8 g as the binder resin, and the solid content of the moisturizing agent was changed to that shown in Table 1. Then, an electrode sheet was produced. In Example 4, as in Example 1, Examples 4-1 to 4-5 are examples in which the solid content of glycerin was 0 g, 0.5 g, 1 g, 2 g, and 5 g, respectively.
[例5]
 例1において、バインダー樹脂としてシラン系エマルジョン粘着剤(日東電工社製)を3成分アクリル系エマルジョン粘着剤(日東電工社製)に変更し、3成分アクリル系エマルジョン粘着剤(日東電工社製)及び保湿剤を表1に示す固形分量に変更したこと以外は、例1と同様にして行い、電極シートを作製した。なお、例5では、3成分アクリル系エマルジョン粘着剤(日東電工社製)及び保湿剤のそれぞれの固形分量を変更して、例5-1~例5-6を行った。
[Example 5]
In Example 1, the silane emulsion pressure-sensitive adhesive (manufactured by Nitto Denko Corporation) was changed to a three-component acrylic emulsion pressure-sensitive adhesive (manufactured by Nitto Denko Corporation) as the binder resin, and the three-component acrylic emulsion pressure-sensitive adhesive (manufactured by Nitto Denko Corporation) and An electrode sheet was produced in the same manner as in Example 1, except that the solid content of the moisturizing agent was changed as shown in Table 1. In Example 5, Examples 5-1 to 5-6 were performed by changing the solid content of each of the three-component acrylic emulsion adhesive (manufactured by Nitto Denko) and the moisturizing agent.
[例6]
 例1において、バインダー樹脂としてシラン系エマルジョン粘着剤(日東電工社製)を2成分アクリル系エマルジョン粘着剤(日東電工社製)に変更し、2成分アクリル系エマルジョン粘着剤(日東電工社製)及び保湿剤を表1に示す固形分量に変更したこと以外は、例1と同様にして行い、電極シートを作製した。なお、例6では、2成分アクリル系エマルジョン粘着剤(日東電工社製)及び保湿剤のそれぞれの固形分量を変更して、例6-1~例6-6を行った。
[Example 6]
In Example 1, the silane emulsion pressure-sensitive adhesive (manufactured by Nitto Denko Corporation) was changed to a two-component acrylic emulsion pressure-sensitive adhesive (manufactured by Nitto Denko Corporation) as the binder resin, and the two-component acrylic emulsion pressure-sensitive adhesive (manufactured by Nitto Denko Corporation) and An electrode sheet was produced in the same manner as in Example 1, except that the solid content of the moisturizing agent was changed as shown in Table 1. In Example 6, Examples 6-1 to 6-6 were performed by changing the solid content of each of the two-component acrylic emulsion pressure-sensitive adhesive (manufactured by Nitto Denko) and the moisturizing agent.
[例7]
 例1において、バインダー樹脂としてシラン系エマルジョン粘着剤(日東電工社製)をPVAに変更し、PVA及び保湿剤を表1に示す固形分量に変更したこと以外は、例1と同様にして行い、電極シートを作製した。
[Example 7]
In Example 1, the silane-based emulsion pressure-sensitive adhesive (manufactured by Nitto Denko Co., Ltd.) was changed to PVA as the binder resin, and the PVA and moisturizing agent were changed to the solid content shown in Table 1. An electrode sheet was produced.
 各例における、電極シートに含まれる、導電性高分子、バインダー樹脂及び保湿剤の固形分量を表1に示し、各成分の固形分量に対応した含有率を表2に示す。 Table 1 shows the solid content of the conductive polymer, binder resin, and moisturizing agent contained in the electrode sheet in each example, and Table 2 shows the content corresponding to the solid content of each component.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
<電極シートの評価>
 得られた各例の電極シートの、シート抵抗、タック力、ピール力、面積膨張率、貯蔵弾性率G'、損失弾性率G'、損失正接tanδ及びノイズを測定した。
<Evaluation of electrode sheet>
Sheet resistance, tack force, peel force, area expansion coefficient, storage elastic modulus G′, loss elastic modulus G′, loss tangent tan δ and noise of the obtained electrode sheet of each example were measured.
[シート抵抗]
 非接触式抵抗測定機(NC-80NC、ナプソン社製)を用いて、JIS Z 2316-1:2014に準拠して、渦電流測定法によって電極シートのシート抵抗を測定した。測定範囲は、電極シートの主表面の0.5mm~150mmとした。シート抵抗は、500Ω/□以下である場合は「良好」と評価し、500Ω/□超える場合は「不良」と評価した。各例の電極シートのシート抵抗の測定結果を表3に示す。なお、例1~例4の電極シートのグリセリン含有量とシート抵抗との関係を図5に示す。
[Sheet resistance]
The sheet resistance of the electrode sheet was measured by eddy current measurement in accordance with JIS Z 2316-1:2014 using a non-contact resistance measuring machine (NC-80NC, manufactured by Napson). The measurement range was 0.5 mm to 150 mm of the main surface of the electrode sheet. The sheet resistance was evaluated as "good" when it was 500Ω/□ or less, and was evaluated as "poor" when it exceeded 500Ω/□. Table 3 shows the measurement results of the sheet resistance of the electrode sheet of each example. FIG. 5 shows the relationship between the glycerin content of the electrode sheets of Examples 1 to 4 and the sheet resistance.
[タック力]
 タッキング試験機(Tackiness Tester TAC1000、レスカ社製)を用いて、電極シートのタック力を測定した。タッキング試験機のプレートの上面に両面テープを介して電極シートを固定し、直径が5mmのプローブと電極シートとが上下方向に対向するように設置する。タック力の測定時には、25℃の環境温度下において、プローブを0.01mm/sの押しつけ速度で下降させてプレート上の電極シートに50gfの荷重を1秒間保持した後、プローブを1mm/sの引き上げ速度で上昇させて、プローブを電極シートから引き剥がすのに必要な荷重を、25℃でのタック力(単位:gf/Φ5mm)として測定した。タック力は、4.0gf/Φ5mm以上である場合は「良好」と評価し、4.0gf/Φ5mm未満の場合は「不良」と評価した。各例の電極シートのタック力の測定結果を表3に示す。なお、例1~例4の電極シートのグリセリン含有量とタック力との関係を図6に示す。
[Tack force]
The tack force of the electrode sheet was measured using a tackiness tester (Tackiness Tester TAC1000, manufactured by Lesca). The electrode sheet is fixed to the upper surface of the plate of the tacking tester via double-sided tape, and the electrode sheet and the probe having a diameter of 5 mm are installed so as to vertically face each other. When measuring the tack force, the probe was lowered at a pressing speed of 0.01 mm/s under an environmental temperature of 25°C, and a load of 50 gf was held on the electrode sheet on the plate for 1 second. The load required to peel off the probe from the electrode sheet was measured as a tack force (unit: gf/Φ5 mm) at 25°C. When the tack force was 4.0 gf/Φ5 mm or more, it was evaluated as “good”, and when it was less than 4.0 gf/Φ5 mm, it was evaluated as “poor”. Table 3 shows the measurement results of the tack force of the electrode sheet of each example. FIG. 6 shows the relationship between the glycerin content of the electrode sheets of Examples 1 to 4 and the tack force.
[ピール力]
 電極シートの片面に裏打ちテープを貼り合わせた後、裏打ちテープ付き電極シートから試料片(幅10mm×長さ50mm)を切り出した。次に、ラミネータを使用して、試料片の電極シート側の面を樹脂製プレート(ベークライト板)に貼り合わせた。貼合わせにおいては、貼合わせ速度を10mm/秒とし、温度条件を80℃とし、圧力条件を0.15MPaとした。そして、引張試験機(オートグラフAGS-50NX、株式会社島津製作所製)を使用して、23℃、剥離角度180°及び剥離速度300mm/分の条件で、樹脂製プレート上の試料片の裏打ちテープを引っ張る剥離試験を行い、樹脂製プレートに対する電極シートの23℃での剥離粘着力(ピール力)(単位:N/10mm)を測定した。ピール力が1.0N/10mm以下である場合は「良好」と評価し、1.0N/10mm未満の場合は「不良」と評価した。各例の電極シートのピール力の測定結果を表3に示す。なお、例1~例4の電極シートのグリセリン含有量とピール力との関係を図7に示す。
[Peel force]
After attaching a backing tape to one side of the electrode sheet, a sample piece (width 10 mm×length 50 mm) was cut out from the electrode sheet with the backing tape. Next, using a laminator, the surface of the sample piece on the side of the electrode sheet was attached to a resin plate (bakelite plate). In the bonding, the bonding speed was set to 10 mm/sec, the temperature condition was set to 80° C., and the pressure condition was set to 0.15 MPa. Then, using a tensile tester (Autograph AGS-50NX, manufactured by Shimadzu Corporation), the backing tape of the sample piece on the resin plate under the conditions of 23 ° C., a peeling angle of 180 ° and a peeling speed of 300 mm / min. A peeling test was performed by pulling the electrode sheet, and the peeling adhesive strength (peel force) (unit: N/10 mm) of the electrode sheet to the resin plate at 23°C was measured. When the peel force was 1.0 N/10 mm or less, it was evaluated as "good", and when it was less than 1.0 N/10 mm, it was evaluated as "poor". Table 3 shows the measurement results of the peel force of the electrode sheet of each example. FIG. 7 shows the relationship between the glycerin content of the electrode sheets of Examples 1 to 4 and the peel force.
[面積膨張率]
 電極シートを3cm×3cmのサイズに切断したサンプルを水が入っている浴中に25℃、で1時間浸漬した。電極シートを25℃の純水に浸漬する前の面積と、25℃の純水に1時間浸漬した後の電極シートの面積とを測定した。下記式(1)の通り、25℃の純水に1時間浸漬した後の電極シートの面積と、浸漬する前の電極シートの面積との比を、膨潤度として算出した。面積膨張率は、2.5以下である場合は「良好」と評価し、2.5を超える場合は「不良」と評価した。各例の電極シートの面積膨張率の測定結果を表3に示す。なお、例1~例4の電極シートのグリセリン含有量と面積膨潤率との関係を図8に示す。
膨潤度=(1時間浸漬後の電極シートの面積/浸漬前の電極シートの面積) ・・・(1)
[Area expansion rate]
A sample obtained by cutting the electrode sheet into a size of 3 cm×3 cm was immersed in a bath containing water at 25° C. for 1 hour. The area of the electrode sheet before being immersed in pure water at 25° C. and the area of the electrode sheet after being immersed in pure water at 25° C. for 1 hour were measured. As shown in the following formula (1), the ratio of the area of the electrode sheet after being immersed in pure water at 25° C. for 1 hour to the area of the electrode sheet before being immersed was calculated as the degree of swelling. When the area expansion rate was 2.5 or less, it was evaluated as "good", and when it exceeded 2.5, it was evaluated as "poor". Table 3 shows the measurement results of the area expansion coefficient of the electrode sheet of each example. FIG. 8 shows the relationship between the glycerin content of the electrode sheets of Examples 1 to 4 and the area swelling ratio.
Degree of swelling=(area of electrode sheet after immersion for 1 hour/area of electrode sheet before immersion) (1)
[貯蔵弾性率G'及び損失弾性率G'']
 電極シートの粘弾性は、電極シートの貯蔵弾性率G'及び損失弾性率G''を測定して評価した。電極シートの32℃における貯蔵弾性率G'は、動的粘弾性測定により求めた。具体的には、電極シートを直径8mmの大きさに切断した試験片を準備する。試験片を動的粘弾性測定装置(Advanced Rheometric Expansion System(ARES)-G2、TA Instruments社製)を用いて、周波数1Hzの条件で、-60℃~100℃の温度範囲、昇温速度5℃/分で測定することで、電極シートの32℃における貯蔵弾性率G'及び損失弾性率G''を算出した。貯蔵弾性率G'が450000Pa以下である場合は「良好」と評価し、450000Pa超える場合は「不良」と評価した。損失弾性率G''は、100000Pa以下である場合は「良好」と評価し、100000Pa超える場合は「不良」と評価した。各例の電極シートの貯蔵弾性率G'及び損失弾性率G''の測定結果を表3に示す。
[Storage modulus G' and loss modulus G'']
The viscoelasticity of the electrode sheet was evaluated by measuring the storage elastic modulus G' and the loss elastic modulus G'' of the electrode sheet. The storage modulus G' of the electrode sheet at 32°C was determined by dynamic viscoelasticity measurement. Specifically, a test piece having a diameter of 8 mm is prepared by cutting an electrode sheet. Using a dynamic viscoelasticity measuring device (Advanced Rheometric Expansion System (ARES)-G2, manufactured by TA Instruments), the test piece was measured at a frequency of 1 Hz, a temperature range of -60 ° C. to 100 ° C., and a heating rate of 5 ° C. /min to calculate the storage elastic modulus G' and the loss elastic modulus G'' of the electrode sheet at 32°C. When the storage elastic modulus G' was 450000Pa or less, it was evaluated as "good", and when it exceeded 450000Pa, it was evaluated as "poor". When the loss elastic modulus G'' was 100,000 Pa or less, it was evaluated as "good", and when it exceeded 100,000 Pa, it was evaluated as "poor". Table 3 shows the measurement results of the storage elastic modulus G' and the loss elastic modulus G'' of the electrode sheet of each example.
[損失正接tanδ]
 損失正接tanδは、損失弾性率G''と貯蔵弾性率G'の比G''/G'より求めた。損失正接tanδが0.40未満である場合は「良好」と評価し、0.40以上である場合は「不良」と評価した。各例の電極シートの損失正接tanδの測定結果を表3に示す。
[Loss tangent tan δ]
The loss tangent tan δ was obtained from the ratio G''/G' of the loss elastic modulus G'' and the storage elastic modulus G'. When the loss tangent tan δ was less than 0.40, it was evaluated as "good", and when it was 0.40 or more, it was evaluated as "poor". Table 3 shows the measurement results of the loss tangent tan δ of the electrode sheet of each example.
[ノイズ]
 電極シートを被験者の腕の内側に貼付して、電極間距離を10cmとして、1対の電極に配線をつないで計測装置(Nitto社製)を接続して、ノイズを評価した。なお、例3及び例8の電極シートの貯蔵弾性率G'とノイズとの関係を図9に示す。
[noise]
The electrode sheet was attached to the inside of the subject's arm, the distance between the electrodes was set to 10 cm, wires were connected to a pair of electrodes, and a measuring device (manufactured by Nitto) was connected to evaluate noise. The relationship between the storage elastic modulus G' of the electrode sheets of Examples 3 and 8 and noise is shown in FIG.
[耐久性]
 耐久性として、タック力及びシート抵抗の経時変化を測定し、評価した。
(タック力の耐久性)
 例1-3の電極シートをセパレータで挟んだ状態で、40℃、75%RHの環境下において、1時間、1日、5日、7日及び14日毎に、電極シートのタック力を測定し、電極シートのタック力の耐久性を評価した。タック力の測定方法は、上述の[タック力]と同様に行った。例1-3の電極シートの日数とタック力との関係を図10に示す。
[durability]
Durability was evaluated by measuring changes over time in tack force and sheet resistance.
(Durability of tack force)
With the electrode sheet of Example 1-3 sandwiched between separators, the tack force of the electrode sheet was measured in an environment of 40° C. and 75% RH every 1 hour, 1 day, 5 days, 7 days and 14 days. , the durability of the tack force of the electrode sheet was evaluated. The tack force was measured in the same manner as described above for [tack force]. FIG. 10 shows the relationship between the number of days and the tack force of the electrode sheet of Example 1-3.
(シート抵抗の耐久性)
 生理食塩水を染み込ませたシートに例3-4の電極シートが接触するように静置して、40℃、90%RH環境下の環境に保持した状態で、1時間、1日、5日、7日及び14日毎に、電極シートのシート抵抗を測定し、下記式(2)に基づいて、電極シートの抵抗変化率を求めた。シート抵抗の測定方法は、上述の[シート抵抗]と同様に行った。抵抗変化率が1.5以下である場合は「良好」と評価し、1.2を超える場合は「不良」と評価した。例3-4の電極シートの日数と抵抗変化率との関係を図11に示す。
抵抗変化率=生理食塩水を染み込ませて所定時間後における電極シートのシート抵抗/生理食塩水を染み込ませる前の電極シートのシート抵抗 ・・・(2)
(Durability of sheet resistance)
The electrode sheet of Example 3-4 was placed in contact with the sheet impregnated with physiological saline, and kept in an environment of 40° C. and 90% RH for 1 hour, 1 day, and 5 days. The sheet resistance of the electrode sheet was measured every 7 days and 14 days, and the rate of change in resistance of the electrode sheet was obtained based on the following formula (2). The sheet resistance was measured in the same manner as in [Sheet resistance] described above. When the resistance change rate was 1.5 or less, it was evaluated as "good", and when it exceeded 1.2, it was evaluated as "poor". FIG. 11 shows the relationship between the number of days of the electrode sheet of Example 3-4 and the resistance change rate.
Rate of change in resistance = sheet resistance of the electrode sheet after a predetermined period of time after soaking in physiological saline/sheet resistance of the electrode sheet before soaking in physiological saline (2)
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3より、例1-2~例1-5、例2-2~例2-5、例3-2~例3-5、例4-2~例4-5、例5~例7では、電極シートの各特性はいずれも使用条件.を満たしたが、例1-1、例2-1、例3-1及び例4-1では、電極シートの各特性の何れか一つ以上は使用条件を満たさなかった。 From Table 3, Examples 1-2 to 1-5, Examples 2-2 to 2-5, Examples 3-2 to 3-5, Examples 4-2 to 4-5, and Examples 5 to 7 , the characteristics of the electrode sheet are all determined under the conditions of use. However, in Examples 1-1, 2-1, 3-1 and 4-1, one or more of the characteristics of the electrode sheets did not satisfy the conditions of use.
 また、例1-3の電極シートは、タック力の耐久性が使用条件を満たし、例3-4の電極シートは、シート抵抗の耐久性が使用条件を満たしたが、例7の電極シートは、シート抵抗の耐久性が使用条件を満たさなかった。 Further, the electrode sheet of Example 1-3 satisfied the usage conditions in terms of tack force durability, and the electrode sheet of Example 3-4 satisfied the usage conditions in terms of sheet resistance durability. , the sheet resistance durability did not meet the conditions of use.
 よって、例1-2~例1-5、例2-2~例2-5、例3-2~例3-5、例4-2~例4-5、例5~例7の各例の電極シートは、例1-1、例2-1、例3-1及び例4-1の各例の電極シートと異なり、導電性高分子の他に、水系エマルジョン粘着剤をバインダー樹脂として含みかつ保湿剤を含むことで、抵抗を低くし、吸水による膨潤を抑えると共に、粘弾性を低く抑えることができた。 Therefore, Examples 1-2 to 1-5, Examples 2-2 to 2-5, Examples 3-2 to 3-5, Examples 4-2 to 4-5, Examples 5 to 7 Unlike the electrode sheets of Examples 1-1, 2-1, 3-1 and 4-1, the electrode sheet of contains a water-based emulsion adhesive as a binder resin in addition to the conductive polymer. In addition, by containing a humectant, it was possible to reduce the resistance, suppress the swelling due to water absorption, and suppress the viscoelasticity to a low level.
 したがって、例1-2~例1-5、例2-2~例2-5、例3-2~例3-5、例4-2~例4-5、例5~例7の各例の電橋シートは、長期間使用しても、導電性を維持すると共にノイズを低く抑えることができ、優れた耐久性を有することができる。このため、例1-2~例1-5、例2-2~例2-5、例3-2~例3-5、例4-2~例4-5の各例の電極シートは、生体センサを被験者の肌に密着させて長時間継続して心電図を安定して測定するのに有効に用いることができるといえる。 Therefore, Examples 1-2 to 1-5, Examples 2-2 to 2-5, Examples 3-2 to 3-5, Examples 4-2 to 4-5, and Examples 5 to 7 The bridge sheet can maintain electrical conductivity and suppress noise even when used for a long period of time, and can have excellent durability. Therefore, the electrode sheets of Examples 1-2 to 1-5, Examples 2-2 to 2-5, Examples 3-2 to 3-5, and Examples 4-2 to 4-5 are: It can be said that the biosensor can be effectively used for stably measuring an electrocardiogram continuously for a long time while the biosensor is brought into close contact with the subject's skin.
 以上の通り、実施形態を説明したが、上記実施形態は、例として提示したものであり、上記実施形態により本発明が限定されるものではない。上記実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の組み合わせ、省略、置き換え、変更等を行うことが可能である。これら実施形態やその変形は、発明の範囲や要旨に含まれると共に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 As described above, the embodiment has been described, but the above embodiment is presented as an example, and the present invention is not limited by the above embodiment. The above embodiments can be implemented in various other forms, and various combinations, omissions, replacements, changes, etc. can be made without departing from the scope of the invention. These embodiments and their modifications are included in the scope and gist of the invention, and are included in the scope of the invention described in the claims and equivalents thereof.
 なお、本発明の実施形態の態様は、例えば、以下の通りである。
<1> 導電性高分子と、水系エマルジョン粘着剤からなるバインダー樹脂と、保湿剤とを含む粘着性電極層を備える生体信号取得用粘着性電極。
<2> 前記水系エマルジョン粘着剤が、アクリル系エマルジョン粘着剤である<1>に記載の生体信号取得用粘着性電極。
<3> 前記アクリル系エマルジョン粘着剤が、(メタ)アクリル酸アルキルエステルを含む単量体混合物に(メタ)アクリル酸アルキルエステルと共重合可能なシラン系単量体を共重合させて得られる水分散型共重合体と、前記水分散型共重合体と相溶する有機液状成分とを含むシラン系エマルジョン粘着剤である<2>に記載の生体信号取得用粘着性電極。
<4> 前記アクリル系エマルジョン粘着剤が、(メタ)アクリル酸アルキルエステルを含む単量体混合物と、カルボキシル基含有単量体とを含む<2>に記載の生体信号取得用粘着性電極。
<5> 前記水系エマルジョン粘着剤の平均粒子径が、100nm~1.0μmである<1>~<3>の何れか一つに記載の生体信号取得用粘着性電極。
<6> 前記バインダー樹脂の含有量が、35wt%~90wt%である<1>又は<2>に記載の生体信号取得用粘着性電極。
<7> 前記保湿剤が、グリセリンである<1>~<5>の何れか一つに記載の生体信号取得用粘着性電極。
<8> 前記グリセリンの含有量が、5wt%~60wt%である<6>に記載の生体信号取得用粘着性電極。
<9> 前記粘着性電極層の厚みが、10μm~100μmである<1>~<7>の何れか一つに記載の生体信号取得用粘着性電極。
<10> 前記粘着性電極層のシート抵抗が、500Ω/□以下である<1>~<8>の何れか一つに記載の生体信号取得用粘着性電極。
<11> 前記粘着性電極層のタック力が、4.0gf/Φ5mm以上である<1>~<9>の何れか一つに記載の生体信号取得用粘着性電極。
<12> 前記粘着性電極層の面積膨張率が、2.5以下である<1>~<10>の何れか一つに記載の生体信号取得用粘着性電極。
<13> <1>~<12>の何れか一つに記載の生体信号取得用粘着性電極を基材に設けた電極片。
<14><1>~<12>の何れか一つに記載の生体信号取得用粘着性電極を備える生体センサ。
In addition, the aspect of embodiment of this invention is as follows, for example.
<1> An adhesive electrode for biosignal acquisition, comprising an adhesive electrode layer containing a conductive polymer, a binder resin made of an aqueous emulsion adhesive, and a moisturizing agent.
<2> The adhesive electrode for biosignal acquisition according to <1>, wherein the water-based emulsion adhesive is an acrylic emulsion adhesive.
<3> The acrylic emulsion pressure-sensitive adhesive is water obtained by copolymerizing a monomer mixture containing a (meth)acrylic acid alkyl ester with a silane-based monomer copolymerizable with the (meth)acrylic acid alkyl ester. The adhesive electrode for biosignal acquisition according to <2>, which is a silane-based emulsion adhesive containing a dispersible copolymer and an organic liquid component compatible with the water-dispersible copolymer.
<4> The biosignal acquisition adhesive electrode according to <2>, wherein the acrylic emulsion adhesive comprises a monomer mixture containing a (meth)acrylic acid alkyl ester and a carboxyl group-containing monomer.
<5> The adhesive electrode for biosignal acquisition according to any one of <1> to <3>, wherein the water-based emulsion adhesive has an average particle size of 100 nm to 1.0 μm.
<6> The biosignal acquisition adhesive electrode according to <1> or <2>, wherein the content of the binder resin is 35 wt % to 90 wt %.
<7> The biosignal acquisition adhesive electrode according to any one of <1> to <5>, wherein the moisturizing agent is glycerin.
<8> The biosignal acquisition adhesive electrode according to <6>, wherein the glycerin content is 5 wt % to 60 wt %.
<9> The adhesive electrode for biosignal acquisition according to any one of <1> to <7>, wherein the adhesive electrode layer has a thickness of 10 μm to 100 μm.
<10> The adhesive electrode for biosignal acquisition according to any one of <1> to <8>, wherein the adhesive electrode layer has a sheet resistance of 500Ω/□ or less.
<11> The biosignal acquiring adhesive electrode according to any one of <1> to <9>, wherein the adhesive electrode layer has a tack force of 4.0 gf/Φ5 mm or more.
<12> The biosignal acquiring adhesive electrode according to any one of <1> to <10>, wherein the adhesive electrode layer has an area expansion coefficient of 2.5 or less.
<13> An electrode piece in which the adhesive electrode for biosignal acquisition according to any one of <1> to <12> is provided on a substrate.
<14> A biosensor comprising the adhesive electrode for biosignal acquisition according to any one of <1> to <12>.
 本出願は、2021年12月20日に日本国特許庁に出願した特願2021-205939号に基づく優先権を主張し、前記出願に記載された全ての内容を援用する。 This application claims priority based on Japanese Patent Application No. 2021-205939 filed with the Japan Patent Office on December 20, 2021, and incorporates all the contents described in the above application.
 1 生体信号取得用粘着性電極
 10 粘着性電極層
 11 導電性高分子
 12 バインダー樹脂
 13 保湿剤
REFERENCE SIGNS LIST 1 Adhesive electrode for biosignal acquisition 10 Adhesive electrode layer 11 Conductive polymer 12 Binder resin 13 Humectant

Claims (14)

  1.  導電性高分子と、水系エマルジョン粘着剤からなるバインダー樹脂と、保湿剤とを含む粘着性電極層を備える生体信号取得用粘着性電極。 An adhesive electrode for biosignal acquisition, comprising an adhesive electrode layer containing a conductive polymer, a binder resin made of a water-based emulsion adhesive, and a moisturizing agent.
  2.  前記水系エマルジョン粘着剤が、アクリル系エマルジョン粘着剤である請求項1に記載の生体信号取得用粘着性電極。 The adhesive electrode for biosignal acquisition according to claim 1, wherein the water-based emulsion adhesive is an acrylic emulsion adhesive.
  3.  前記アクリル系エマルジョン粘着剤が、(メタ)アクリル酸アルキルエステルを含む単量体混合物に(メタ)アクリル酸アルキルエステルと共重合可能なシラン系単量体を共重合させて得られる水分散型共重合体と、前記水分散型共重合体と相溶する有機液状成分とを含むシラン系エマルジョン粘着剤である請求項2に記載の生体信号取得用粘着性電極。 The acrylic emulsion adhesive is a water-dispersible copolymer obtained by copolymerizing a monomer mixture containing an (meth)acrylic acid alkyl ester with a silane-based monomer copolymerizable with the (meth)acrylic acid alkyl ester. 3. The biosignal acquisition adhesive electrode according to claim 2, which is a silane emulsion adhesive containing a polymer and an organic liquid component compatible with the water-dispersible copolymer.
  4.  前記アクリル系エマルジョン粘着剤が、(メタ)アクリル酸アルキルエステルを含む単量体混合物と、カルボキシル基含有単量体とを含む請求項2に記載の生体信号取得用粘着性電極。 The biosignal acquisition adhesive electrode according to claim 2, wherein the acrylic emulsion adhesive contains a monomer mixture containing a (meth)acrylic acid alkyl ester and a carboxyl group-containing monomer.
  5.  前記水系エマルジョン粘着剤の平均粒子径が、100nm~1.0μmである請求項1に記載の生体信号取得用粘着性電極。 The adhesive electrode for biosignal acquisition according to claim 1, wherein the water-based emulsion adhesive has an average particle size of 100 nm to 1.0 µm.
  6.  前記バインダー樹脂の含有量が、35wt%~90wt%である請求項1に記載の生体信号取得用粘着性電極。 The adhesive electrode for biosignal acquisition according to claim 1, wherein the content of the binder resin is 35 wt% to 90 wt%.
  7.  前記保湿剤が、グリセリンである請求項1に記載の生体信号取得用粘着性電極。 The adhesive electrode for biosignal acquisition according to claim 1, wherein the moisturizing agent is glycerin.
  8.  前記グリセリンの含有量が、5wt%~60wt%である請求項6に記載の生体信号取得用粘着性電極。 The adhesive electrode for biosignal acquisition according to claim 6, wherein the glycerin content is 5 wt% to 60 wt%.
  9.  前記粘着性電極層の厚みが、10μm~100μmである請求項1に記載の生体信号取得用粘着性電極。 The adhesive electrode for biosignal acquisition according to claim 1, wherein the adhesive electrode layer has a thickness of 10 µm to 100 µm.
  10.  前記粘着性電極層のシート抵抗が、500Ω/□以下である請求項1に記載の生体信号取得用粘着性電極。 The adhesive electrode for biosignal acquisition according to claim 1, wherein the adhesive electrode layer has a sheet resistance of 500Ω/□ or less.
  11.  前記粘着性電極層のタック力が、4.0gf/Φ5mm以上である請求項1に記載の生体信号取得用粘着性電極。 The adhesive electrode for biosignal acquisition according to claim 1, wherein the adhesive electrode layer has a tack force of 4.0 gf/Φ5 mm or more.
  12.  前記粘着性電極層の面積膨張率が、2.5以下である請求項1に記載の生体信号取得用粘着性電極。 The adhesive electrode for biosignal acquisition according to claim 1, wherein the area expansion coefficient of the adhesive electrode layer is 2.5 or less.
  13.  請求項1に記載の生体信号取得用粘着性電極を基材に設けた電極片。 An electrode piece in which the biosignal acquisition adhesive electrode according to claim 1 is provided on a base material.
  14.  請求項1に記載の生体信号取得用粘着性電極を備える生体センサ。 A biosensor comprising the adhesive electrode for biosignal acquisition according to claim 1.
PCT/JP2022/046057 2021-12-20 2022-12-14 Adhesive electrode for acquiring biosignal, electrode piece, and biosensor WO2023120327A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021205939 2021-12-20
JP2021-205939 2021-12-20

Publications (1)

Publication Number Publication Date
WO2023120327A1 true WO2023120327A1 (en) 2023-06-29

Family

ID=86902528

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/046057 WO2023120327A1 (en) 2021-12-20 2022-12-14 Adhesive electrode for acquiring biosignal, electrode piece, and biosensor

Country Status (1)

Country Link
WO (1) WO2023120327A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014193818A (en) * 2013-03-28 2014-10-09 Dainippon Printing Co Ltd Medical adhesive product
JP2019033809A (en) * 2017-08-10 2019-03-07 日本電信電話株式会社 Elastic electrode, manufacturing method for the same, and wearable electrode

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014193818A (en) * 2013-03-28 2014-10-09 Dainippon Printing Co Ltd Medical adhesive product
JP2019033809A (en) * 2017-08-10 2019-03-07 日本電信電話株式会社 Elastic electrode, manufacturing method for the same, and wearable electrode

Similar Documents

Publication Publication Date Title
Jiang et al. Infant skin friendly adhesive hydrogel patch activated at body temperature for bioelectronics securing and diabetic wound healing
Deng et al. Self-healing conductive hydrogels: preparation, properties and applications
He et al. Bioinspired and microgel-tackified adhesive hydrogel with rapid self-healing and high stretchability
Wang et al. Self-adhesive, stretchable, biocompatible, and conductive nonvolatile eutectogels as wearable conformal strain and pressure sensors and biopotential electrodes for precise health monitoring
AU652717B2 (en) Non-stringy adhesive hydrophilic gels
EP1830897B1 (en) Multi-purpose adhesive composition
Qi et al. Tough, anti-swelling supramolecular hydrogels mediated by surfactant–polymer interactions for underwater sensors
US8258365B2 (en) Acrylate adhesive composition with water-resistant adhesive properties
JP6297673B2 (en) High water content adhesive gel, composition for producing high water content adhesive gel, and electrode pad
Wang et al. An oriented Fe3+-regulated lignin-based hydrogel with desired softness, conductivity, stretchability, and asymmetric adhesiveness towards anti-interference pressure sensors
JP7283654B2 (en) Adhesive sheet
EP2745851A1 (en) Silicone film
Wang et al. A ternary heterogeneous hydrogel with strength elements for resilient, self-healing, and recyclable epidermal electronics
WO2023120327A1 (en) Adhesive electrode for acquiring biosignal, electrode piece, and biosensor
Lan et al. Highly Skin-Compliant Polymeric Electrodes with Synergistically Boosted Conductivity toward Wearable Health Monitoring
Ma et al. Self-healing electrical bioadhesive interface for electrophysiology recording
Cao et al. Recent advances in electronic skins: material progress and applications
JP6814899B2 (en) Biosensor
Parvini et al. Triple crosslinking conductive hydrogels with digitally printable and outstanding mechanical stability for high-resolution conformable bioelectronics
TW201945495A (en) Biosensor laminate and biosensor
Ignacio et al. In vivo tests of a novel wound dressing based on biomaterials with tissue adhesion controlled through external stimuli
WO2020184346A1 (en) Biosensor
WO2024070680A1 (en) Adhesive electrode for acquiring biosignal, and biosensor
WO2023234332A1 (en) Biosensor
KR101419020B1 (en) Adhesive gel composition for human body electrode

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22911035

Country of ref document: EP

Kind code of ref document: A1