WO2023120303A1 - Light-emitting molded body and wavelength conversion member - Google Patents

Light-emitting molded body and wavelength conversion member Download PDF

Info

Publication number
WO2023120303A1
WO2023120303A1 PCT/JP2022/045854 JP2022045854W WO2023120303A1 WO 2023120303 A1 WO2023120303 A1 WO 2023120303A1 JP 2022045854 W JP2022045854 W JP 2022045854W WO 2023120303 A1 WO2023120303 A1 WO 2023120303A1
Authority
WO
WIPO (PCT)
Prior art keywords
mol
group
polyimide resin
formula
repeating structural
Prior art date
Application number
PCT/JP2022/045854
Other languages
French (fr)
Japanese (ja)
Inventor
敦史 酒井
勇希 佐藤
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Publication of WO2023120303A1 publication Critical patent/WO2023120303A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/14Polyamide-imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials

Definitions

  • the present invention relates to a luminescent molded article and a wavelength conversion member.
  • polyimide resin Due to the rigidity of the molecular chain, resonance stabilization, and strong chemical bonding, polyimide resin is a useful engineering plastic with high thermal stability, high strength, and high solvent resistance, and is applied in a wide range of fields. Polyimide resins having crystallinity can further improve their heat resistance, strength and chemical resistance, and thus are expected to be used as metal substitutes. However, although the polyimide resin has high heat resistance, it does not show thermoplasticity and has a problem of low moldability.
  • Patent Document 1 As polyimide molding materials, highly heat-resistant resin Vespel (registered trademark) and the like are known (Patent Document 1). Since it is necessary to perform molding, it is also disadvantageous in terms of cost. On the other hand, a resin such as a crystalline resin that has a melting point and is fluid at high temperatures can be molded easily and inexpensively.
  • thermoplastic polyimide resins with thermoplasticity have been reported.
  • Thermoplastic polyimide resins are excellent in moldability in addition to the inherent heat resistance of polyimide resins. Therefore, thermoplastic polyimide resins can also be applied to moldings used in harsh environments where general-purpose thermoplastic resins such as nylon and polyester could not be applied.
  • inorganic luminescent materials such as phosphors have hitherto been mainstream (Patent Document 2).
  • inorganic light-emitting materials have excellent light-emitting properties, they are expensive in terms of raw materials and manufacturing costs, making it difficult to use them in large amounts depending on the application.
  • luminescent materials such as phosphors are generally pulverized into particles by pulverizing sintered materials and then dispersed in resin or glass for molding. Molding was difficult.
  • Organic luminescent materials can be produced in large quantities at a lower cost than inorganic light-emitting materials. Therefore, it is possible to use a large amount without worrying about the cost, and it is possible to secure a good light emitting space in a wide range.
  • organic material itself can be made into a film, the selectivity of the shape to be used is remarkably improved.
  • organic light-emitting materials are thus very promising, it has been difficult to find a substitute for inorganic light-emitting materials from among the many existing organic materials.
  • organic materials there are not many materials that exhibit luminous properties, and when considering application to wavelength conversion materials, etc., it is assumed that they will be used in harsh environments, so high weather resistance and However, it has been difficult to achieve these requirements with organic materials.
  • an object of the present invention is to provide a luminescent molded article and a wavelength conversion member which are composed of an organic material and have excellent luminescent properties and heat resistance.
  • R 1 is a C 6-22 divalent group containing at least one alicyclic hydrocarbon structure.
  • R 2 is a C 5-16 divalent chain aliphatic group.
  • X 1 and X 2 are each independently a tetravalent group having 6 to 22 carbon atoms containing at least one aromatic ring.) and the content ratio of the repeating structural unit of the formula (1) to the total of the repeating structural units of the formula (1) and the repeating structural unit of the formula (2) is 20 to 70 mol%.
  • Polyimide resin (A) A luminescent molded article comprising The amount of active protons in the luminescent molded product is 0.01 mol% or more when the total of the repeating structural unit of the formula (1) and the repeating structural unit of the formula (2) is 100 mol%.
  • Luminous molding. [2] The above [ 1]. [3] The luminescent molded article according to the above [1], wherein the molded article consists only of the polyimide resin (A). [4] The luminescent molded article according to any one of [1] to [3] above, which is obtained by compression-molding the powder containing the polyimide resin (A). [5] A wavelength conversion member comprising the luminescent molded product according to any one of [1] to [4] above.
  • the present invention it is possible to provide a luminescent molded article and a wavelength conversion member that are composed of an organic material and have excellent luminescent properties and heat resistance.
  • FIG. 1 shows three-dimensional data of excitation wavelength vs. emission wavelength vs. fluorescence intensity, prepared by excitation-emission matrix (EEM) measurement for the powder of Reference Example 1.
  • FIG. FIG. 2 is three-dimensional data of excitation wavelength vs. emission wavelength vs. fluorescence intensity, which was created by performing EEM measurement for Comparative Molded Body 1 of Comparative Example 1.
  • FIG. 3 shows three-dimensional data of excitation wavelength vs. emission wavelength vs. fluorescence intensity, which was created by performing EEM measurement for molded body 1 of Example 1.
  • FIG. EEM excitation-emission matrix
  • Embodiments of the luminescent molded article and the wavelength conversion member according to the present invention are described in detail below.
  • the term "A to B” regarding numerical values means “A or more and B or less” (when A ⁇ B) or "A or less than B” (when A>B). .
  • a combination of preferred aspects is a more preferred aspect.
  • the luminescent molding of the present invention comprises a repeating structural unit represented by the following formula (1) and a repeating structural unit represented by the following formula (2):
  • R 1 is a C 6-22 divalent group containing at least one alicyclic hydrocarbon structure.
  • R 2 is a C 5-16 divalent chain aliphatic group.
  • X 1 and X 2 are each independently a tetravalent group having 6 to 22 carbon atoms containing at least one aromatic ring.) and the content ratio of the repeating structural unit of the formula (1) to the total of the repeating structural units of the formula (1) and the repeating structural unit of the formula (2) is 20 to 70 mol%.
  • Polyimide resin (A) and the amount of active protons in the luminescent molded product is 0.01 mol% or more when the total of the repeating structural units of the formula (1) and the repeating structural units of the formula (2) is 100 mol%. is.
  • the luminescent molded article of the present invention (hereinafter sometimes simply referred to as ⁇ molded article'') has the above-described structure, so that it exhibits excellent luminescent properties and heat resistance while being composed of an organic material.
  • the active protons can easily approach the carbonyl portion of the polyimide, the contribution of the enol type in the chemical skeleton of the polyimide increases, and thermal energy due to molecular motion is generated. It is considered that the deactivation of is suppressed and the luminous properties are improved. Moreover, it is considered that a lone pair of electrons exists on the nitrogen atoms of the polyimide, which makes it less susceptible to resonance stabilization and more likely to cause ESIPT than when an aromatic amine is used. Furthermore, since the polyimide resin (A) has a predetermined structure, it is also excellent in heat resistance.
  • the active proton is hydrogen contained in the structure of the polyimide resin (A), and hydrogen contained in the structure of components other than the polyimide resin (A) that are optionally blended, It refers to hydrogen (active hydrogen) that can replace deuterium contained in the solvent when the molded piece is dissolved in a solvent containing a heavy solvent in which the active hydrogen of the solvent is replaced with deuterium.
  • the active hydrogen contained in the structure of the polyimide resin (A) and the active hydrogen contained in the structure of components other than the polyimide resin (A) to be blended as needed include the polyimide resin (A) or other Active hydrogen derived from the component itself (for example, resin skeleton, etc.), active hydrogen derived from unreacted raw materials remaining in the polyimide resin (A) or other components, polyimide resin (A), or other components deteriorated and active hydrogen generated by the reaction.
  • Specific examples of these active hydrogens include hydrogen such as amino group, acetyl group, amic acid, hydroxy group, and mercapto group contained in the structure of the polyimide resin (A) or other components.
  • the amount of active protons in the light-emitting molded article of the present invention is 0.01 mol% or more when the total of the repeating structural units of the above formula (1) and the repeating structural units of the above formula (2) is 100 mol%. Yes, preferably 0.05 mol % or more, more preferably 0.10 mol % or more, and still more preferably 0.20 mol % or more. If the amount of active protons in the molded product is less than 0.01 mol %, sufficient light emission characteristics cannot be obtained. Further, the upper limit of the active proton amount is not particularly limited.
  • the total of the repeating structural unit of (1) and the repeating structural unit of the above formula (2) is 100 mol%, it is preferably 10.0 mol% or less, more preferably 5.0 mol% or less, and still more preferably It is 1.0 mol % or less.
  • Functional groups corresponding to the active protons are highly polar and highly hydrophilic. Therefore, as the number of such functional groups increases in the luminescent molded article, the water absorption rate of the luminescent molded article tends to increase. By setting the amount of active protons within the above range, the water absorption rate of the luminescent molding does not become too high, and deterioration of the water absorption can be suppressed.
  • the amount of active protons is the sum of the repeating structural unit of the above formula (1) and the repeating structural unit of the above formula (2).
  • 100 mol% preferably 0.01 to 10.0 mol%, more preferably 0.05 to 10.0 mol%, still more preferably 0.10 to 5.0 mol%, still more It is preferably 0.20 to 1.0 mol %.
  • the amount of active protons in the compact can be measured by the method described in Examples.
  • the active proton preferably contains hydrogen of the terminal amino group contained in the structure of the polyimide resin (A), more preferably hydrogen of the terminal amino group.
  • Hydrogen of the terminal amino group contained in the structure of the polyimide resin (A) is preferable in that the content can be controlled by the heating temperature at the time of molding the light-emitting molded article, and thus the amount of active protons can also be controlled.
  • the amount of amino groups in the molded article is preferably 0.01 mol% or more when the total of the repeating structural unit of the above formula (1) and the repeating structural unit of the above formula (2) is 100 mol%. , more preferably 0.03 mol % or more, still more preferably 0.05 mol % or more.
  • the amount of amino groups is 100 mol% when the total of the repeating structural units of the above formula (1) and the repeating structural units of the above formula (2) is , preferably 10.0 mol % or less, more preferably 5.0 mol % or less, still more preferably 1.0 mol % or less.
  • the amount of amino groups is the repeating structural unit of the above formula (1) and the repeating structural unit of the above formula (2).
  • the amount of amino groups in the molded article can be measured by the method described in Examples.
  • the active protons may also be active hydrogens (hereinafter sometimes referred to as "externally active protons") contained in the structures of components other than the polyimide resin (A) that are blended as needed.
  • Components having externally active protons include, for example, resins having active hydrogens in their structures. By further including a resin having active hydrogen in the structure of the molded article, the amount of active protons in the molded article can be increased. Examples of such resins include resins having an acetyl group, an amic acid group, an amino group, a hydroxy group, a mercapto group, or the like in their structure.
  • the polyimide resin (A) used in the present invention is a repeating structural unit represented by the following formula (1) and a repeating structural unit represented by the following formula (2):
  • R 1 is a C 6-22 divalent group containing at least one alicyclic hydrocarbon structure.
  • R 2 is a C 5-16 divalent chain aliphatic group.
  • X 1 and X 2 are each independently a tetravalent group having 6 to 22 carbon atoms containing at least one aromatic ring.) and the content ratio of the repeating structural unit of the formula (1) to the total of the repeating structural unit of the formula (1) and the repeating structural unit of the formula (2) is 20 to 70 mol%.
  • the polyimide resin (A) used in the present invention is a crystalline thermoplastic resin.
  • the thermoplastic polyimide resin is a polyimide resin having no glass transition temperature (Tg), or a glass transition temperature lower than the glass transition temperature, which is formed by closing the imide ring after molding in the state of a polyimide precursor such as polyamic acid. It is distinguished from polyimide resin, which decomposes at temperature.
  • R 1 is a C 6-22 divalent group containing at least one alicyclic hydrocarbon structure.
  • the alicyclic hydrocarbon structure means a ring derived from an alicyclic hydrocarbon compound, and the alicyclic hydrocarbon compound may be saturated or unsaturated, and It may be cyclic or polycyclic.
  • Examples of the alicyclic hydrocarbon structure include, but are not limited to, cycloalkane rings such as cyclohexane ring, cycloalkene rings such as cyclohexene, bicycloalkane rings such as norbornane ring, and bicycloalkene rings such as norbornene. Do not mean.
  • a cycloalkane ring is preferred, a cycloalkane ring having 4 to 7 carbon atoms is more preferred, and a cyclohexane ring is even more preferred.
  • R 1 has 6 to 22 carbon atoms, preferably 8 to 17 carbon atoms.
  • R 1 contains at least one, preferably 1 to 3, alicyclic hydrocarbon structures.
  • R 1 is preferably a divalent group represented by the following formula (R1-1) or (R1-2).
  • (m 11 and m 12 are each independently an integer of 0 to 2, preferably 0 or 1;
  • m 13 to m 15 are each independently an integer of 0 to 2, preferably 0 or 1.)
  • R 1 is particularly preferably a divalent group represented by the following formula (R1-3).
  • R1-3 the positional relationship of the two methylene groups with respect to the cyclohexane ring may be cis or trans, and the ratio of cis to trans may be can be any value.
  • X 1 is a tetravalent group having 6 to 22 carbon atoms containing at least one aromatic ring.
  • the aromatic ring may be a single ring or a condensed ring, and examples include, but are not limited to, benzene ring, naphthalene ring, anthracene ring, tetracene ring and perylene ring. Among these, benzene ring, naphthalene ring and perylene ring are preferred, and benzene ring is more preferred.
  • X 1 has 6 to 22 carbon atoms, preferably 6 to 20 carbon atoms.
  • X 1 contains at least one, preferably 1 to 3, aromatic rings.
  • X 1 is preferably a tetravalent group represented by any one of formulas (X-1) to (X-6) below.
  • R 11 to R 24 are each independently an alkyl group having 1 to 4 carbon atoms;
  • p 11 to p 13 and p 19 to p 24 are each independently an integer of 0 to 2, preferably 0.
  • p 14 , p 15 , p 16 and p 18 are each independently an integer of 0 to 3, preferably 0.
  • p 17 is an integer of 0 to 4, preferably 0.
  • Each of L 11 to L 13 is independently a single bond, a carbonyl group, or an alkylene group having 1 to 4 carbon atoms.) Since X 1 is a tetravalent group having 6 to 22 carbon atoms and containing at least one aromatic ring, R 12 , R 13 , p 12 and p 13 in formula (X-2) are represented by formula (X- The number of carbon atoms in the tetravalent group represented by 2) is selected within the range of 10 to 22. Similarly, L 11 , R 14 , R 15 , p 14 and p 15 in formula (X-3) are in the range of 12 to 22 carbon atoms in the tetravalent group represented by formula (X-3).
  • L 12 , L 13 , R 16 , R 17 , R 18 , p 16 , p 17 and p 18 in formula (X-4) are selected to contain tetravalent is selected so that the number of carbon atoms in the group falls within the range of 18 to 22, and R 19 , R 20 , p 19 and p 20 in formula (X-5) are tetravalent represented by formula (X-5) is selected so that the number of carbon atoms in the group is within the range of 10 to 22, and R 21 , R 22 , R 23 , R 24 , p 21 , p 22 , p 23 and p 24 in formula (X-6) are It is selected so that the number of carbon atoms in the tetravalent group represented by formula (X-6) falls within the range of 20-22.
  • X 1 is particularly preferably a tetravalent group represented by any one of the following formulas (X-7) to (X-10).
  • R 2 is a divalent chain aliphatic group having 5 to 16 carbon atoms, preferably 6 to 14 carbon atoms, more preferably 7 to 12 carbon atoms, still more preferably 8 to 10 carbon atoms.
  • the chain aliphatic group means a group derived from a chain aliphatic compound, the chain aliphatic compound may be saturated or unsaturated, straight-chain It may be branched or branched.
  • R 2 is preferably an alkylene group having 5 to 16 carbon atoms, more preferably an alkylene group having 6 to 14 carbon atoms, still more preferably an alkylene group having 7 to 12 carbon atoms, and most preferably an alkylene group having 8 to 10 carbon atoms. It is an alkylene group.
  • the alkylene group may be a straight-chain alkylene group or a branched alkylene group, but is preferably a straight-chain alkylene group.
  • R 2 is preferably one or more selected from the group consisting of octamethylene group and decamethylene group, particularly preferably octamethylene group.
  • X2 is defined in the same manner as X1 in Formula (1), and the preferred embodiments are also the same.
  • the content ratio of the repeating structural unit of formula (1) to the total of the repeating structural unit of formula (1) and the repeating structural unit of formula (2) is 20 to 70 mol %.
  • the content ratio of the repeating structural unit of formula (1) is within the above range, it is possible to sufficiently crystallize the polyimide resin.
  • the content ratio of the repeating structural unit of formula (1) to the total of the repeating structural unit of formula (1) and the repeating structural unit of formula (2) is preferably 65 mol% or less from the viewpoint of expressing high crystallinity.
  • the polyimide resin (A) The crystallinity of is increased, and a resin molding having more excellent heat resistance can be obtained.
  • the content ratio is preferably 25 mol% or more, more preferably 30 mol% or more, and still more preferably 32 mol% or more from the viewpoint of moldability, and is even more preferable from the viewpoint of expressing high crystallinity. is 35 mol % or less.
  • the content ratio is preferably 25 to 35 mol%, more preferably 30 to 35 mol%, and still more preferably 32 to 35 mol%. is.
  • the total content ratio of the repeating structural units of the formula (1) and the repeating structural units of the formula (2) with respect to all repeating structural units constituting the polyimide resin (A) is preferably 50 to 100 mol%, more preferably 75 ⁇ 100 mol%, more preferably 80 to 100 mol%, still more preferably 85 to 100 mol%.
  • Polyimide resin (A) may further contain a repeating structural unit of the following formula (3).
  • the content ratio of the repeating structural unit of formula (3) to the sum of the repeating structural units of formula (1) and the repeating structural units of formula (2) is preferably 25 mol % or less.
  • the lower limit is not particularly limited as long as it exceeds 0 mol %.
  • the content ratio of the repeating structural unit of formula (3) to the total of the repeating structural unit of formula (1) and the repeating structural unit of formula (2) is From the viewpoint of improvement, it is preferably 5 mol% or more, more preferably 10 mol% or more, while from the viewpoint of maintaining crystallinity, it is preferably 20 mol% or less, more preferably 15 mol% or less. . Specifically, from the viewpoint of improving heat resistance and maintaining crystallinity, the content ratio is preferably 5 to 20 mol %, more preferably 10 to 15 mol %. (R 3 is a C 6-22 divalent group containing at least one aromatic ring. X 3 is a C 6-22 tetravalent group containing at least one aromatic ring.)
  • R 3 is a C 6-22 divalent group containing at least one aromatic ring.
  • the aromatic ring may be a single ring or a condensed ring, and examples include, but are not limited to, benzene ring, naphthalene ring, anthracene ring, and tetracene ring. Among these, benzene ring and naphthalene ring are preferred, and benzene ring is more preferred.
  • R 3 has 6 to 22 carbon atoms, preferably 6 to 18 carbon atoms.
  • R 3 contains at least one, preferably 1 to 3, aromatic rings.
  • R 3 is preferably a divalent group represented by the following formula (R3-1) or (R3-2).
  • (m 31 and m 32 are each independently an integer of 0 to 2, preferably 0 or 1;
  • m 33 and m 34 are each independently an integer of 0 to 2, preferably 0 or 1.
  • R 21 , R 22 and R 23 are each independently an alkyl group having 1 to 4 carbon atoms, an alkenyl group having 2 to 4 carbon atoms, or an alkynyl group having 2 to 4 carbon atoms.
  • p 21 , p 22 and p 23 are integers of 0 to 4, preferably 0.
  • L 21 is a single bond, a carbonyl group or an alkylene group having 1 to 4 carbon atoms.) Since R 3 is a divalent group having 6 to 22 carbon atoms and containing at least one aromatic ring, m 31 , m 32 , R 21 and p 21 in formula (R3-1) are represented by formula (R3- It is selected so that the number of carbon atoms of the divalent group represented by 1) falls within the range of 6-22. Similarly, L 21 , m 33 , m 34 , R 22 , R 23 , p 22 and p 23 in formula (R3-2) have It is chosen to fall within the range of 12-22.
  • X3 is defined in the same manner as X1 in Formula (1), and the preferred embodiments are also the same.
  • the terminal structure of the polyimide resin (A) is not particularly limited, but from the viewpoint of increasing the amount of active protons, it is preferable to have an amino group at the terminal, and from the viewpoint of improving heat aging resistance, it has 5 to 5 carbon atoms. It is preferably terminated with 14 chain aliphatic groups. The chain aliphatic group may be saturated or unsaturated, linear or branched. When the polyimide resin (A) has the above specific group at its terminal, a resin composition having excellent heat aging resistance can be obtained.
  • saturated chain aliphatic groups having 5 to 14 carbon atoms include n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, n-undecyl group, Lauryl group, n-tridecyl group, n-tetradecyl group, isopentyl group, neopentyl group, 2-methylpentyl group, 2-methylhexyl group, 2-ethylpentyl group, 3-ethylpentyl group, isooctyl group, 2-ethylhexyl group , 3-ethylhexyl group, isononyl group, 2-ethyloctyl group, isodecyl group, isododecyl group, isotridecyl group, isotetradecyl group and the like.
  • Examples of unsaturated chain aliphatic groups having 5 to 14 carbon atoms include 1-pentenyl group, 2-pentenyl group, 1-hexenyl group, 2-hexenyl group, 1-heptenyl group, 2-heptenyl group, 1- octenyl group, 2-octenyl group, nonenyl group, decenyl group, dodecenyl group, tridecenyl group, tetradecenyl group and the like.
  • the chain aliphatic group is preferably a saturated chain aliphatic group, and more preferably a saturated straight chain aliphatic group.
  • the chain aliphatic group preferably has 6 or more carbon atoms, more preferably 7 or more carbon atoms, still more preferably 8 or more carbon atoms, and preferably 12 or less carbon atoms, more preferably 12 or less carbon atoms. has 10 or less carbon atoms, more preferably 9 or less carbon atoms. Only one type of chain aliphatic group may be used, or two or more types thereof may be used.
  • the chain aliphatic group is particularly preferably one or more selected from the group consisting of n-octyl group, isooctyl group, 2-ethylhexyl group, n-nonyl group, isononyl group, n-decyl group, and isodecyl group. More preferably one or more selected from the group consisting of n-octyl group, isooctyl group, 2-ethylhexyl group, n-nonyl group and isononyl group, most preferably n-octyl group and isooctyl group , and 2-ethylhexyl group.
  • the polyimide resin (A) preferably has only chain aliphatic groups having 5 to 14 carbon atoms at its terminals in addition to terminal amino groups and terminal carboxy groups.
  • the content thereof is preferably 10 mol % or less, more preferably 5 mol % or less, relative to the chain aliphatic group having 5 to 14 carbon atoms.
  • the content of the chain aliphatic group having 5 to 14 carbon atoms in the polyimide resin (A) is 100 in total of all repeating structural units constituting the polyimide resin (A). It is preferably 0.01 mol % or more, more preferably 0.1 mol % or more, and still more preferably 0.2 mol % or more based on mol %.
  • the content of the chain aliphatic group having 5 to 14 carbon atoms in the polyimide resin (A) is Preferably 10 mol% or less, more preferably 6 mol% or less, still more preferably 3.5 mol% or less, even more preferably 2.0 mol% or less, more preferably 100 mol% or less of all repeating structural units More preferably, it is 1.2 mol % or less.
  • the content of the chain aliphatic group having 5 to 14 carbon atoms in the polyimide resin (A) can be determined by depolymerizing the polyimide resin (A).
  • Polyimide resin (A) preferably has a melting point of 360° C. or lower and a glass transition temperature of 150° C. or higher.
  • the melting point of the polyimide resin (A) is preferably 280° C. or higher, more preferably 290° C. or higher, from the viewpoint of heat resistance, and is preferably 345° C. or lower, more preferably 345° C. or lower, from the viewpoint of achieving high moldability. is 340° C. or less, more preferably 335° C. or less.
  • the melting point of the polyimide resin (A) is preferably 280 to 345° C., more preferably 280 to 340° C., still more preferably 290 to 345° C.
  • the glass transition temperature of the polyimide resin (A) is more preferably 160° C. or higher, more preferably 170° C. or higher from the viewpoint of heat resistance, and preferably 250° C. from the viewpoint of expressing high moldability. Below, more preferably 230° C. or less, and still more preferably 200° C. or less. Specifically, from the viewpoint of heat resistance and high moldability, the glass transition temperature of the polyimide resin (A) is preferably 160 to 250°C, more preferably 160 to 230°C, and still more preferably 170°C. ⁇ 200°C.
  • the polyimide resin (A) is measured by a differential scanning calorimeter, and after melting the polyimide resin, the temperature is lowered at a rate of 20 ° C./min.
  • the heat quantity at the crystallization exothermic peak observed upon cooling (hereinafter also simply referred to as “crystallization exothermic value”) is preferably 5.0 mJ/mg or more, more preferably 10.0 mJ/mg or more. More preferably, it is 17.0 mJ/mg or more.
  • the upper limit of the crystallization heat value is not particularly limited, it is usually 45.0 mJ/mg or less.
  • the melting point, glass transition temperature, and crystallization heat value of the polyimide resin (A) can all be measured by a differential scanning calorimeter, and specifically by the methods described in Examples.
  • the weight average molecular weight Mw of the polyimide resin (A) is preferably 40,000 to 150,000, more preferably 40,000 to 100,000, still more preferably 42,000 to 80,000, still more preferably 45,000 to 70,000, more preferably 45,000 to 65,000.
  • the weight average molecular weight Mw of the polyimide resin (A) is 40,000 or more, the heat distortion temperature (HDT) under low load environment is improved and the mechanical strength is also improved. Further, when Mw is 150,000 or less, moldability is good.
  • the weight average molecular weight Mw of the polyimide resin (A) can be measured by a gel permeation chromatography (GPC) method using polymethyl methacrylate (PMMA) as a standard sample, and specifically can be measured by the method described in Examples. .
  • the logarithmic viscosity at 30° C. of a 0.5% by mass concentrated sulfuric acid solution of the polyimide resin (A) is preferably in the range of 0.8 to 2.0 dL/g, more preferably 0.9 to 1.8 dL/g. .
  • the logarithmic viscosity ⁇ is obtained from the following formula by measuring the flow times of concentrated sulfuric acid and the polyimide resin solution at 30° C.
  • ln [(ts/t 0 )/C] t 0 : Flow time of concentrated sulfuric acid ts: Flow time of polyimide resin solution C: 0.5 (g/dL)
  • Polyimide resin (A) can be produced by reacting a tetracarboxylic acid component and a diamine component.
  • the tetracarboxylic acid component contains a tetracarboxylic acid and/or derivative thereof containing at least one aromatic ring
  • the diamine component contains a diamine containing at least one alicyclic hydrocarbon structure and a linear aliphatic diamine. .
  • the tetracarboxylic acid containing at least one aromatic ring is preferably a compound in which four carboxy groups are directly bonded to the aromatic ring, and may contain an alkyl group in its structure.
  • the tetracarboxylic acid preferably has 6 to 26 carbon atoms.
  • Examples of the tetracarboxylic acid include pyromellitic acid, 2,3,5,6-toluenetetracarboxylic acid, 3,3′,4,4′-benzophenonetetracarboxylic acid, and 3,3′,4,4′-biphenyl. Tetracarboxylic acid, 1,4,5,8-naphthalenetetracarboxylic acid and the like are preferred. Among these, pyromellitic acid is more preferable.
  • Derivatives of tetracarboxylic acids containing at least one aromatic ring include anhydrides or alkyl esters of tetracarboxylic acids containing at least one aromatic ring.
  • the tetracarboxylic acid derivative preferably has 6 to 38 carbon atoms.
  • Anhydrides of tetracarboxylic acids include pyromellitic monoanhydride, pyromellitic dianhydride, 2,3,5,6-toluenetetracarboxylic dianhydride, 3,3′,4,4′-diphenyl sulfonetetracarboxylic dianhydride, 3,3′,4,4′-benzophenonetetracarboxylic dianhydride, 3,3′,4,4′-biphenyltetracarboxylic dianhydride, 1,4,5, 8-naphthalenetetracarboxylic dianhydride and the like are included.
  • alkyl esters of tetracarboxylic acids include dimethyl pyromellitic acid, diethyl pyromellitic acid, dipropyl pyromellitic acid, diisopropyl pyromellitic acid, dimethyl 2,3,5,6-toluenetetracarboxylate, 3,3′,4 ,4′-diphenylsulfonetetracarboxylate dimethyl, 3,3′,4,4′-benzophenonetetracarboxylate dimethyl, 3,3′,4,4′-biphenyltetracarboxylate dimethyl, 1,4,5,8 -Naphthalenetetracarboxylate dimethyl and the like.
  • the alkyl group preferably has 1 to 3 carbon atoms.
  • At least one compound selected from the above may be used alone, or two or more compounds may be used in combination.
  • the diamine containing at least one alicyclic hydrocarbon structure preferably has 6 to 22 carbon atoms, such as 1,2-bis(aminomethyl)cyclohexane, 1,3-bis(aminomethyl)cyclohexane, 1,4- Bis(aminomethyl)cyclohexane, 1,2-cyclohexanediamine, 1,3-cyclohexanediamine, 1,4-cyclohexanediamine, 4,4'-diaminodicyclohexylmethane, 4,4'-methylenebis(2-methylcyclohexylamine) , carvonediamine, limonenediamine, isophoronediamine, norbornanediamine, bis(aminomethyl)tricyclo[5.2.1.0 2,6 ]decane, 3,3′-dimethyl-4,4′-diaminodicyclohexylmethane, 4,4'-Diaminodicyclohexylpropane and the like are preferred.
  • Diamines containing an alicyclic hydrocarbon structure generally have structural isomers, but the ratio of cis/trans isomers is not limited.
  • the chain aliphatic diamine may be linear or branched, and preferably has 5 to 16 carbon atoms, more preferably 6 to 14 carbon atoms, and still more preferably 7 to 12 carbon atoms. In addition, if the chain portion has 5 to 16 carbon atoms, an ether bond may be included therebetween.
  • Chain aliphatic diamines such as 1,5-pentamethylenediamine, 2-methylpentane-1,5-diamine, 3-methylpentane-1,5-diamine, 1,6-hexamethylenediamine, 1,7-hepta methylenediamine, 1,8-octamethylenediamine, 1,9-nonamethylenediamine, 1,10-decamethylenediamine, 1,11-undecamethylenediamine, 1,12-dodecamethylenediamine, 1,13-trideca Methylenediamine, 1,14-tetradecamethylenediamine, 1,16-hexadecamethylenediamine, 2,2'-(ethylenedioxy)bis(ethyleneamine) and the like are preferred.
  • Chain aliphatic diamines may be used singly or in combination. Among these, chain aliphatic diamines having 8 to 10 carbon atoms can be preferably used, and one or more selected from the group consisting of 1,8-octamethylenediamine and 1,10-decamethylenediamine is particularly preferable. can be used for
  • the molar amount of the diamine charged containing at least one alicyclic hydrocarbon structure with respect to the total amount of the diamine containing at least one alicyclic hydrocarbon structure and the chain aliphatic diamine The ratio is preferably 20-70 mol %.
  • the molar amount is preferably 25 mol% or more, more preferably 30 mol% or more, still more preferably 32 mol% or more, and from the viewpoint of expressing high crystallinity, preferably 60 mol% or less, more preferably 50 mol% or more.
  • the diamine component may contain a diamine containing at least one aromatic ring.
  • the diamine containing at least one aromatic ring preferably has 6 to 22 carbon atoms, such as orthoxylylenediamine, metaxylylenediamine, paraxylylenediamine, 1,2-diethynylbenzenediamine, 1,3-diethynyl.
  • the molar ratio of the charged amount of the diamine containing at least one aromatic ring to the total amount of the diamine containing at least one alicyclic hydrocarbon structure and the chain aliphatic diamine is 25 mol% or less. It is preferably 20 mol % or less, still more preferably 15 mol % or less. Although the lower limit of the molar ratio is not particularly limited, it is preferably 5 mol % or more, more preferably 10 mol % or more, from the viewpoint of improving heat resistance.
  • the molar ratio is more preferably 12 mol% or less, even more preferably 10 mol% or less, even more preferably 5 mol% or less, and even more preferably 0 mol %.
  • the charged amount ratio of the tetracarboxylic acid component and the diamine component is preferably 0.9 to 1.1 mol of the diamine component with respect to 1 mol of the tetracarboxylic acid component.
  • a terminal blocking agent may be mixed in addition to the tetracarboxylic acid component and the diamine component.
  • the terminal blocking agent one or more selected from the group consisting of monoamines and dicarboxylic acids is preferable.
  • the amount of the terminal blocking agent used may be an amount that can introduce a desired amount of terminal groups into the polyimide resin (A), and is 0.0001 to 0.001 to 0.001 to 1 mol of the tetracarboxylic acid and/or derivative thereof.
  • a monoamine terminal blocking agent is preferable as the terminal blocking agent, and from the viewpoint of improving heat aging resistance by introducing the chain aliphatic group having 5 to 14 carbon atoms described above at the end of the polyimide resin (A). , monoamines having a chain aliphatic group of 5 to 14 carbon atoms are more preferred, and monoamines having a saturated linear aliphatic group of 5 to 14 carbon atoms are even more preferred.
  • the terminal blocking agent is particularly preferably one or more selected from the group consisting of n-octylamine, isooctylamine, 2-ethylhexylamine, n-nonylamine, isononylamine, n-decylamine, and isodecylamine. More preferably one or more selected from the group consisting of n-octylamine, isooctylamine, 2-ethylhexylamine, n-nonylamine, and isononylamine, and most preferably n-octylamine and isooctyl One or more selected from the group consisting of amines and 2-ethylhexylamine.
  • polymerization method for producing the polyimide resin (A) As a polymerization method for producing the polyimide resin (A), a known polymerization method can be applied, and the method described in International Publication No. 2016/147996 can be used.
  • the luminescent molded article of the present invention can be formed, for example, by compression molding. More specifically, it is preferable to compress and mold a powder containing the polyimide resin (A). Moreover, the molded article preferably consists of the polyimide resin (A) only, and such a molded article is preferably formed by compression-molding a powder consisting of the polyimide resin (A) only.
  • the luminescent molded article of the present invention may further contain other resins than the polyimide resin (A), if necessary.
  • Other resins include, for example, amorphous thermoplastic resins, crystalline thermoplastic resins, and thermosetting resins.
  • amorphous thermoplastic resins include polystyrene resin; polyvinyl chloride; polyvinylidene chloride; polymethyl methacrylate; acrylonitrile-butadiene-styrene resin; polycarbonate resin; Ether resins; polyethersulfone resins; polyetherimide resins; polyamideimide resins; polyurethane resins; These can be used individually by 1 type or in combination of 2 or more types.
  • thermoplastic resins examples include polyolefin resins such as polyethylene, polypropylene, and cyclic polyolefins; polyamide resins; polyacetal resins; polyphenylene sulfide resins; polyester resin; liquid crystal polymer; fluorine resin such as polytetrafluoroethylene and polyvinylidene fluoride; polymethylpentene resin; polyurethane resin; Alternatively, a resin having a melting point lower than the melting point of the polyimide resin (A) may be used. These can be used individually by 1 type or in combination of 2 or more types.
  • the thermosetting resin is not particularly limited as long as it is a thermosetting resin capable of dispersing the polyimide resin (A).
  • thermosetting resin is composed of epoxy resin and urethane resin from the viewpoint of containing the polyimide resin (A) to be used in the molded body while maintaining the shape thereof, and from the viewpoint of the dispersibility of the polyimide resin (A).
  • One or more selected from the group are preferred, and epoxy resins are more preferred.
  • the other resin is preferably a resin capable of supplying external active protons to the polyimide resin (A).
  • it is a resin having active hydrogen in its structure, and more specifically, it includes polyamide resin, polyamideimide resin, epoxy resin, urethane resin, urea resin, phenol resin, cyanate resin, and the like.
  • the active hydrogen that the resin has in the structure includes active hydrogen derived from the resin itself (resin skeleton), active hydrogen derived from unreacted raw materials remaining in the resin, and active hydrogen generated due to deterioration of the resin. etc.
  • polyamide resin it is the hydrogen of the amide group contained in the structure
  • phenol resin it is the hydrogen of the hydroxyl group contained in the structure.
  • the molded article of the present invention is one selected from the group consisting of polyamide resins, polyamideimide resins, epoxy resins, urethane resins, urea resins, phenol resins and cyanate resins, from the viewpoint of obtaining molded articles having excellent light emitting properties. It is preferable that the above resin (B) is included.
  • the resin (B) is a resin having active hydrogen in its structure, and by compounding with a polyimide resin (A) having a predetermined structure, the amount of active protons in the resulting molded product can be increased, and light emission can be achieved. characteristics can be improved.
  • a molded product can be obtained not only by compression molding but also by injection molding, and the degree of freedom in designing the shape of the molded product is improved.
  • Resin (B) is one or more selected from the group consisting of polyamide resins, polyamideimide resins, epoxy resins, urethane resins, urea resins, phenol resins and cyanate resins, and among them from the group consisting of polyamide resins and epoxy resins.
  • polyamide resins include polyamide 6 (PA6), polyamide 66, polyamide 66/6, polyamide 46, polyamide 11, polyamide 12, MXD6, polyamide 9T and the like, and polyamideimide resins include Torlon (manufactured by Solvay) and the like.
  • Epoxy resins include bisphenol A type epoxy resins, urethane resins include thermoplastic urethane resins, and urea resins include pure polyurea, hybrid polyurea, urea urethane, and the like.
  • Phenolic resins include novolac type phenolic resins and resol type phenolic resins, and cyanate resins include CYTESTER (manufactured by Mitsubishi Gas Chemical Company, Inc.).
  • One of the above resins (B) may be used alone, or two or more thereof may be used in combination.
  • the resin (B) is a resin having active hydrogen in its structure
  • a molded body containing the resin (B) can have an increased amount of active protons compared to a molded body made of only the polyimide resin (A). It is possible to improve the light emission characteristics.
  • the amount of active protons in the molded body is 100 mol% of the repeating structural unit of the above formula (1) and the repeating structural unit of the above formula (2). , preferably 0.01 to 100,000 mol %, more preferably 1 to 10,000 mol %, still more preferably 100 to 2,000 mol %.
  • the mass ratio (A/B) of the polyimide resin (A) and the resin (B) in the molded article is preferably 1/99 to 99/1, more preferably It is in the range of 5/95 to 95/5, more preferably 10/90 to 90/10, still more preferably 10/90 to 85/15. Within the above range, the dispersibility between the resins is improved, and a decrease in the mechanical strength of the molded article can be suppressed.
  • the total content of the polyimide resin (A) and the resin (B) in the molded body is preferably 70% by mass or more, more preferably 80% by mass or more, and still more preferably 90% by mass, from the viewpoint of obtaining the effects of the present invention. % or more. Moreover, an upper limit is 100 mass %.
  • the luminescent molded article of the present invention contains a filler, a delustering agent, a nucleating agent, a plasticizer, an antistatic agent, an anti-coloring agent, an anti-gelling agent, a flame retardant, a coloring agent, a slidability improver, an antioxidant, Additives such as a conductive agent and a resin modifier may be contained as necessary.
  • the content of the additive in the molded article is not particularly limited, but from the viewpoint of expressing the effect of the additive while maintaining the physical properties derived from the polyimide resin (A), it is usually 50 % by mass or less, preferably 0.0001 to 30% by mass, more preferably 0.0001 to 15% by mass, still more preferably 0.001 to 10% by mass, still more preferably 0.01 to 8% by mass be.
  • the luminescent molded article can be easily produced by thermoforming a resin composition containing the polyimide resin (A).
  • Thermoforming methods include compression molding, injection molding, extrusion molding, blow molding, laser molding, ultrasonic thermoforming, welding, and welding. is.
  • Thermoforming is preferred because molding can be performed without setting the molding temperature to a high temperature exceeding, for example, 400°C. Among them, when performing compression molding or injection molding, molding is possible without setting the molding temperature and the mold temperature at the time of molding to a high temperature, which is preferable.
  • ⁇ 1> Compression molding In the case of producing a molded body consisting only of the polyimide resin (A), it is more preferable to carry out compression molding from the viewpoint of increasing the amount of active protons in the molded body to a predetermined amount or more.
  • the amount of active protons is determined by the amount of hydrogen in terminal amino groups contained in the structure of polyimide resin (A).
  • the amount of terminal amino groups contained in the structure of the polyimide resin (A) is the largest in the powder state immediately after synthesis, and tends to decrease as the polyimide resin (A) is exposed to higher temperatures in subsequent processing steps. be. Therefore, from the viewpoint of appropriately leaving the terminal amino groups of the polyimide resin (A) in the molded body, the molded body is produced by compression molding, which has a smaller number of heat treatments involving melting and less processing time than injection molding. is preferred.
  • a known method can be used, but it is preferable to use, for example, the following method.
  • preforming First, powder of polyimide resin (A) is put into a mold and compressed to perform preforming.
  • the powder of the polyimide resin (A) is preferably washed and dried as appropriate after synthesizing the resin. Drying can be performed by a known method using a hot air dryer, a dehumidifying dryer, or the like.
  • the drying temperature is preferably 80-160°C, more preferably 120-150°C.
  • the drying time is preferably 6 to 24 hours, more preferably 8 to 16 hours.
  • the volume average particle diameter (D50) of the polyimide resin (A) powder is preferably 10 to 100 ⁇ m. Within the above range, the polyimide resin (A) powder can be easily handled, and workability and moldability are improved. Therefore, the polyimide resin (A) may be pulverized or granulated before molding so as to have the above volume average particle size, if necessary.
  • the volume average particle diameter (D50) of the polyimide resin (A) powder can be measured by the method described in Examples.
  • the mold may be appropriately selected according to the shape of the molded body and molding conditions, and known molds can be used. Moreover, it is preferable to apply a release agent to the mold in advance.
  • a device for preforming includes, for example, a cooling press device.
  • Preferred conditions for preforming include, for example, gauge pressure of 20 to 25 MPa, normal temperature (15 to 25° C.), and forming in an inert gas atmosphere.
  • thermoforming After preforming, thermoforming is performed while compressing to obtain a molded body.
  • Apparatus for thermoforming includes, for example, a vacuum press apparatus, an autoclave apparatus, a double belt press apparatus, and the like.
  • the temperature during thermoforming is preferably 335-385°C, more preferably 350-370°C. By setting the amount within the above range, a good molded product can be obtained while controlling the active protons to a predetermined amount or more.
  • the atmosphere during thermoforming includes, for example, an air atmosphere, an inert gas atmosphere, a vacuum atmosphere, and the like. Among them, thermoforming in a vacuum atmosphere (-0.1 bar or less) is preferable from the viewpoint of preventing coloration of the molded body due to heating and exhibiting good light emitting properties.
  • the pressure during thermoforming is preferably 5-30 MPa, and the treatment time is preferably 10-20 minutes.
  • thermoforming After the heat treatment, the compact is removed from the mold and compressed and cooled.
  • a cooling press apparatus and the like can be mentioned.
  • conditions for compression cooling for example, it is preferable to carry out at normal temperature (15 to 25° C.) in an atmospheric atmosphere under the same pressure and processing time as in thermoforming.
  • the resin In the case of injection molding, the resin is once melted and pelletized, and the pellets are introduced into various molding machines to produce a molded body. There is a tendency for the base amount to decrease.
  • the resin (B) when the resin (B) is blended, the resin (B) serves as a source of externally active protons, so the amount of active protons in the molded body can be increased to a predetermined amount or more, and excellent light emission characteristics can be achieved. It is possible to obtain a molded body having.
  • a known method can be used, but it is preferable to use, for example, the following method.
  • the polyimide resin (A), the resin (B), and, if necessary, after adding and dry blending various optional components, this is introduced into an extruder, preferably melted at 290 to 350 ° C. After melt-kneading and extruding in an extruder and cooling the extruded strand, pellets are produced by a pelletizer.
  • the polyimide resin (A) is introduced into the extruder, preferably melted at 290 to 350 ° C., and the resin (B) and various optional components are introduced here, and the polyimide resin (A ), extruded, and after cooling the extruded strand, pellets may be produced by a pelletizer.
  • the pellets After drying the pellets, they can be introduced into various molding machines and thermoformed preferably at 290 to 350°C to produce a resin molded body having a desired shape.
  • the temperature during thermoforming is more preferably 310 to 350°C.
  • the luminescent molded article of the present invention is excellent in luminescent properties and heat resistance, and thus can be applied to applications such as wavelength conversion members, fluorescent inks, and white luminescent materials. Among them, it can be suitably used as a wavelength conversion member.
  • the wavelength conversion member is preferably made of the luminescent molded article of the present invention.
  • Examples of the wavelength conversion member include wavelength conversion films for various uses. Since the wavelength conversion member made of the luminescent molded article of the present invention is made of an organic material, it can be used in large quantities without worrying about the cost, so it is possible to secure a good luminescent space over a wide range.
  • the wavelength conversion member made of the luminescent molded article of the present invention has a high degree of freedom in shape design at the time of molding, and can be molded into a sheet shape or a film shape, which is difficult with inorganic materials, and is particularly suitable as a wavelength conversion film. is.
  • the wavelength conversion member made of the luminescent molded article of the present invention is excellent in heat resistance, it is expected to be used in a harsh environment such as outdoors, and is used as a wavelength conversion film for agriculture and gardening, and for SI solar cells. It is suitable as a wavelength conversion film.
  • IR measurement ⁇ Infrared spectroscopic analysis (IR measurement)>
  • the IR measurement of the polyimide resin was performed using "JIR-WINSPEC50" manufactured by JEOL Ltd.
  • ⁇ Melting point, glass transition temperature, crystallization temperature, crystallization heat value> The melting point Tm, glass transition temperature Tg, crystallization temperature Tc, and crystallization heat value ⁇ Hc of the polyimide resin were measured using a differential scanning calorimeter (“DSC-6220” manufactured by SII Nano Technology Co., Ltd.). A polyimide resin was subjected to a thermal history under the following conditions in a nitrogen atmosphere.
  • the conditions for the thermal history were as follows: first temperature rise (up to 380°C, temperature increase rate 10°C/min), then cooling (up to 40°C, temperature decrease rate 20°C/min), and then temperature increase second time (up to 380°C, temperature increase rate 10°C/min) temperature rate of 10° C./min).
  • the melting point Tm was determined by reading the peak top value of the endothermic peak observed the second time the temperature was raised.
  • the glass transition temperature Tg was determined by reading the value observed at the second heating.
  • the crystallization temperature Tc was determined by reading the peak top value of the exothermic peak observed during cooling. For Tm, Tg and Tc, when multiple peaks were observed, the peak top value of each peak was read.
  • the crystallization heat value ⁇ Hc (mJ/mg) was calculated from the area of the exothermic peak observed during cooling.
  • ⁇ Semi-crystallization time> The semi-crystallization time of the polyimide resin was measured using a differential scanning calorimeter ("DSC-6220" manufactured by SII Nanotechnology Co., Ltd.). The semi-crystallization time was measured under nitrogen atmosphere at 420°C for 10 minutes to completely melt the polyimide resin, followed by rapid cooling at a cooling rate of 70°C/min. The time taken from the appearance of the peak to the peak top was calculated and determined. In addition, in Table 1, when the semi-crystallization time was 20 seconds or less, it was described as " ⁇ 20".
  • the D50 of the polyimide resin particles was determined by laser diffraction particle size distribution measurement.
  • a laser diffraction light scattering type particle size distribution analyzer (“LMS-2000e” manufactured by Malvern) was used as a measuring device.
  • the D50 measurement of the resin particles was carried out using water as a dispersing medium under ultrasonic conditions so that the resin particles are sufficiently dispersed. The measurement range was 0.02 to 2000 ⁇ m.
  • ⁇ Amount of active protons> A 40 mg sample was collected in a vial, 5 mL of HFIP (hexafluoroisopropanol) was added, and the sample was allowed to stand overnight for dissolution. 0.2 mL of heavy chloroform was added to the sample after dissolution and mixed, and the mixed liquid was used as a sample for NMR measurement. NMR measurement was performed at room temperature (23° C.) using a nuclear magnetic resonance apparatus (NMR, “Avance-5003” manufactured by Bruker). A 5 mm ⁇ BBO Cryo Probe was used as the probe. A faint signal was detected between 6.1 and 7.1 ppm in approximately 7/3 samples of HFIP/deuterochloroform. These signals were assigned to active protons since they were not observed with heavy HFIP.
  • HFIP hexafluoroisopropanol
  • ⁇ Amount of terminal amino groups was calculated from the amount of active protons measured by the NMR measurement. Since the molded bodies produced in Example 1 and Comparative Example 1 and the powder of Reference Example 1 do not contain a resin other than the polyimide resin (A), the observed active protons are within the structure of the polyimide resin (A). It is speculated that it corresponds to the hydrogen of the terminal amino group contained in.
  • ⁇ Luminous characteristics> The molded bodies produced in Examples 1 to 6 and Comparative Example 1, and the powder of Reference Example 1 were visually evaluated for the presence or absence of light emission.
  • the evaluation criteria were as follows. (Evaluation criteria) A: Sufficient light emission B: Light emission C: No light emission
  • EEM Excitation-Emission Matrix Measurement> EEM measurement was performed on the compacts produced in Example 1 and Comparative Example 1 and the powder of Reference Example 1.
  • the molded bodies of Example 1 and Comparative Example 1 were used as they were, and measurements were made on a surface with a diameter of 100 mm.
  • the powder of Reference Example 1 a sample was packed in a powder holder attached to the apparatus and set in a holder for solids to prepare a sample for measurement. The measurement was performed using a fluorescence spectrophotometer (manufactured by Horiba, Ltd., "Duetta, Fluorolog-3") under the following conditions.
  • Excitation side Excitation measurement wavelength: 250-850 nm Slit width: 2 mm (band pass) Send wavelength: 5 nm Excitation side filter: none (emission side) Emission measurement wavelength: 250-850 nm Slit width: 2 mm (band pass) Send wavelength: 5 nm Emission side filter: None Detector Integration time: 0.1 sec/step Sample mounting angle: 0deg FF
  • ⁇ Bending strength and bending elastic modulus> Three specimens of 80 mm ⁇ 10 mm ⁇ thickness 4 mm defined by ISO 316 were cut out from the compacts produced in Examples 1 to 5 and used for measurement. Using a bending tester “Bendgraph” (manufactured by Toyo Seiki Seisakusho Co., Ltd.), a bending test was performed at a temperature of 23° C. and a test speed of 2 mm/min according to ISO178 to measure bending strength and bending elastic modulus. The flexural strength and flexural modulus of each compact were average values calculated from the measured values of three test pieces.
  • HDT Heat distortion temperature
  • Three specimens of 80 mm ⁇ 10 mm ⁇ thickness 4 mm defined by ISO 316 were cut out from the compacts produced in Examples 1 to 5 and used for measurement. The measurement was carried out flatwise in accordance with JIS K7191-1,2:2015. Specifically, using an HDT tester "Auto-HDT3D-2" (manufactured by Toyo Seiki Seisakusho Co., Ltd.), thermal deformation was performed under the conditions of a distance between fulcrums of 64 mm, a load of 1.80 MPa, and a heating rate of 120 ° C./hour. Temperature was measured. The heat distortion temperature of each compact was the average value calculated from the measured values of three test pieces.
  • Compressive strength measurement Five MD test pieces of 10 mm ⁇ 10 mm ⁇ 4 mm thickness and five TD direction test specimens of 10 mm ⁇ 10 mm ⁇ 4 mm thickness are cut out from the molded bodies produced in Examples 1 to 5, used for the measurements. Measurement was performed in accordance with JIS K7181: 2011 using a universal material testing machine 59R5582 (manufactured by Instron) at a temperature of 23 ⁇ 1 ° C and a humidity of 50 ⁇ 5% RH at a test speed of 1 mm / min. It was carried out by creating a compressive stress-strain curve under the conditions. Compressive strength generally refers to the maximum strength of a material at which it fails under compression.
  • the value of the gradient threshold value of 2% was read as the "apparent yield point" from the compressive stress-strain curve, and the value of the compressive strain of 20% was ""compressive yield stress".
  • Each value in the MD direction and the TD direction was the average value calculated from the measured values of five test pieces.
  • the logarithmic viscosity ⁇ is 1.30 dL/g
  • the melting point Tm is 323° C.
  • the glass transition temperature Tg is 184° C.
  • the crystallization temperature Tc is 266° C.
  • the heat of crystallization ⁇ Hc is 21.0 mJ/mg
  • the half-crystallization time is 20. Seconds or less, the weight average molecular weight (Mw) was 55,000, and the volume average particle diameter (D50) was 17 ⁇ m.
  • Table 1 shows the composition and evaluation results of the polyimide resin in Production Example 1.
  • the mol % of the tetracarboxylic acid component and the diamine component in Table 1 are values calculated from the amount of each component charged during the production of the polyimide resin.
  • Example 1 100 g of the polyimide resin 1 powder obtained in Production Example 1 was introduced into a pressing mold ( ⁇ 100 mm) previously coated with a release agent. A cold press was used to compress and preform the powder in the mold. Then, using a manual hydraulic vacuum press device (IMC-1AEA type, manufactured by Imoto Seisakusho Co., Ltd.), in a vacuum atmosphere (-0.1 bar), at 350 ° C., contact the press upper plate for 7 minutes (preheating process), gradually and held at 10 MPa for 10 minutes (pressurization process), removed from the mold and cooled with a cooling press at room temperature (23 ° C.) in an air atmosphere at 10 MPa for 10 minutes and cooled (cooling process ), and a molded body 1 (diameter: 100 mm, thickness: 10 mm) made of polyimide resin was manufactured. Using the molded article 1 thus produced, the emission characteristics were evaluated by the method described above. Table 2 shows the results.
  • IMC-1AEA type manufactured by Imoto Seisakusho Co.
  • Comparative example 1 The powder of polyimide resin 1 obtained in Production Example 1 was introduced into an extruder, melted at 350° C. and extruded to prepare pellets. The obtained pellets were introduced into an injection molding machine (“Roboshot ⁇ -S30iA” manufactured by FANUC CORPORATION) and injection molded at a barrel temperature of 350° C. and a mold temperature of 195° C. to obtain Comparative molded product 1 made of polyimide resin. manufactured. Using the manufactured comparative molded article 1, the emission characteristics were evaluated by the method described above. Table 2 shows the results.
  • the molded body of Comparative Example 1 As shown in Table 2, even with the molded body containing the predetermined polyimide resin (A), the molded body of Comparative Example 1, in which the amount of active protons was below the detection limit, hardly emitted light. On the other hand, the molded article of Example 1, which contains a predetermined polyimide resin (A) and has a predetermined amount of active protons, was observed to emit sufficient light, and had better light emission characteristics than Reference Example 1, which is a powder. was confirmed.
  • FIG. 1 shows the powder of Reference Example 1
  • FIG. 2 shows the comparative compact 1 of Comparative Example 1
  • FIG. 3 shows the compact 1 of Example 1, respectively.
  • FIG. 2 shows the powder of Reference Example 1 and the molded body of Example 1
  • ⁇ EX excitation wavelengths
  • an emission peak at an emission wavelength ( ⁇ EX ) of about 550 nm was confirmed.
  • the emission peak at an emission wavelength ( ⁇ EX ) of about 550 nm was stronger in the molded article of Example 1 than in the powder of Reference Example 1, corresponding to the difference in emission characteristics visually observed.
  • Example 2 to 4 In Examples 2 to 4, compacts were produced in the same manner as in Example 1, except that the compression molding conditions were changed as shown in Table 3, and various evaluations were performed by the above methods. Table 3 shows the results.
  • Example 5 a molded body was produced in the same manner as in Example 1, except that the polyimide resin powder washed and filtered in Production Example 1 was not dried and was introduced into the pressing mold in an undried state. Then, various evaluations were performed by the above methods. Table 3 shows the results.
  • the molded bodies of Examples 2 to 5 containing the predetermined polyimide resin (A) and having the predetermined amount of active protons were also observed to emit sufficient light.
  • the molded bodies of Examples 1, 3 and 4 have a bending strength of 100 MPa or more, an HDT of 160° C. or more, a good appearance, and are materials that are difficult to break during compression, so they have high strength and heat resistance. , flexibility and compression characteristics were also confirmed to be excellent.
  • Example 6 The polyimide resin 1 obtained in Production Example 1 and the polyamide resin PA6 ("UBE nylon 1030B” manufactured by Ube Industries, Ltd., melting point 215 to 225 ° C., glass transition temperature 50 ° C.) are in a mass ratio of 10:90.
  • PA6 is introduced from the hopper on the root side of a co-rotating twin-screw kneading extruder ("HK-25D” manufactured by Parker Corporation), and the powder of polyimide resin 1 is introduced into the extruder from the side feeder,
  • the mixture was kneaded under conditions of a set cylinder temperature of 260° C., a feed amount of 6 kg/h, and a screw rotation speed of 200 rpm, and the strand was extruded.
  • the strand extruded from the extruder was cooled with water, pelletized by a pelletizer ("Fan Cutter FC-Mini-4/N" manufactured by Hoshi Plastics Co., Ltd.), and used for injection molding.
  • an injection molding machine (“Roboshot ⁇ -S30iA” manufactured by Fanuc Co., Ltd.) was used to set the cylinder temperature to 250 ° C. and the mold temperature to 80. °C and an injection speed of 62.5 mm/s to produce a molded body (diameter: 100 mm, thickness: 10 mm).
  • the amount of active protons was measured and the emission characteristics were evaluated by the methods described above. The amount of active protons was 812 mol % when the sum of the repeating structural units of formula (1) and the repeating structural units of formula (2) was taken as 100 mol %, and the emission characteristic was A.
  • Example 6 From the results of Example 6, the amount of active protons in the molded product obtained by compounding the polyamide resin PA6, which is a resin having active hydrogen in the structure as the resin (B), and a predetermined polyimide resin (A) can be increased, and it was confirmed that the molded product exhibits good luminescence.
  • the light-emitting molded article of the present invention is composed of an organic material and has excellent light-emitting properties and heat resistance, so it can be applied to applications such as wavelength conversion members.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

A light-emitting molded body including a polyimide resin (A) that includes repeating structural units represented by formula (1) and repeating structural units represented by formula (2) (R1 is a C6-22 divalent group including at least one alicyclic hydrocarbon structure, R2 is a C5-16 divalent chain aliphatic group, and X1 and X2 each independently are a C6-22 tetravalent group including at least one aromatic ring), the content ratio of the repeating structural units of formula (1) being 20-70 mol% relative to the total of the repeating structural units of formula (1) and the repeating structural units of formula (2), wherein the amount of active protons in the molded body is 0.01 mol% or greater, where the total of the repeating structural units of formula (1) and the repeating structural units of formula (2) is 100 mol%.

Description

発光成形体及び波長変換部材Light-emitting molded article and wavelength conversion member
 本発明は、発光成形体及び波長変換部材に関する。 The present invention relates to a luminescent molded article and a wavelength conversion member.
 ポリイミド樹脂は分子鎖の剛直性、共鳴安定化、強い化学結合によって、高熱安定性、高強度、高耐溶媒性を有する有用なエンジニアリングプラスチックであり、幅広い分野で応用されている。また結晶性を有しているポリイミド樹脂はその耐熱性、強度、耐薬品性をさらに向上させることができることから、金属代替等としての利用が期待されている。しかしながらポリイミド樹脂は高耐熱性である反面、熱可塑性を示さず、成形加工性が低いという問題がある。 Due to the rigidity of the molecular chain, resonance stabilization, and strong chemical bonding, polyimide resin is a useful engineering plastic with high thermal stability, high strength, and high solvent resistance, and is applied in a wide range of fields. Polyimide resins having crystallinity can further improve their heat resistance, strength and chemical resistance, and thus are expected to be used as metal substitutes. However, although the polyimide resin has high heat resistance, it does not show thermoplasticity and has a problem of low moldability.
 ポリイミド成形材料としては高耐熱樹脂ベスペル(登録商標)等が知られているが(特許文献1)、高温下でも流動性が極めて低いため成形加工が困難であり、高温、高圧条件下で長時間成形を行う必要があることからコスト的にも不利である。これに対し、結晶性樹脂のように融点を有し、高温での流動性がある樹脂であれば容易にかつ安価で成形加工が可能である。 As polyimide molding materials, highly heat-resistant resin Vespel (registered trademark) and the like are known (Patent Document 1). Since it is necessary to perform molding, it is also disadvantageous in terms of cost. On the other hand, a resin such as a crystalline resin that has a melting point and is fluid at high temperatures can be molded easily and inexpensively.
 そこで近年、熱可塑性を有するポリイミド樹脂が報告されている。熱可塑性ポリイミド樹脂はポリイミド樹脂が本来有している耐熱性に加え、成形加工性にも優れる。そのため熱可塑性ポリイミド樹脂は、汎用の熱可塑性樹脂であるナイロンやポリエステルは適用できなかった過酷な環境下で使用される成形体への適用も可能である。 Therefore, in recent years, polyimide resins with thermoplasticity have been reported. Thermoplastic polyimide resins are excellent in moldability in addition to the inherent heat resistance of polyimide resins. Therefore, thermoplastic polyimide resins can also be applied to moldings used in harsh environments where general-purpose thermoplastic resins such as nylon and polyester could not be applied.
 ところで、発光材料としては、これまで蛍光体等の無機系の発光材料が主流であった(特許文献2)。
 しかし、無機系の発光材料は、発光特性は優れているものの、原料及び製造のコストが高いため、用途によっては多量に使用することは難しい。また、蛍光体等の発光材料は、通常、焼結した材料を粉砕して粒子化した後、樹脂やガラスに分散させて成形するのが一般的であり、発光材料自体をフィルム化する等の成形は困難であった。
By the way, as a luminescent material, inorganic luminescent materials such as phosphors have hitherto been mainstream (Patent Document 2).
However, although inorganic light-emitting materials have excellent light-emitting properties, they are expensive in terms of raw materials and manufacturing costs, making it difficult to use them in large amounts depending on the application. Also, luminescent materials such as phosphors are generally pulverized into particles by pulverizing sintered materials and then dispersed in resin or glass for molding. Molding was difficult.
特開2005-28524号公報JP 2005-28524 A 特開2017-155098号公報JP 2017-155098 A
 そこで近年、無機系の発光材料に替わる、有機系の発光材料の開発が待たれている。有機系の発光材料は、無機系の発光材料に比べて、低コストに、且つ大量に製造することができる。そのため、コストを気にせず、多量な使用もできるため、広範囲に良好な発光スペースを確保することが可能となる。また、有機系材料であれば、それ自体をフィルム化することもできるため、使用形状の選択性が格段に向上する。 Therefore, in recent years, the development of organic luminescent materials to replace inorganic luminescent materials has been awaited. Organic light-emitting materials can be produced in large quantities at a lower cost than inorganic light-emitting materials. Therefore, it is possible to use a large amount without worrying about the cost, and it is possible to secure a good light emitting space in a wide range. In addition, since the organic material itself can be made into a film, the selectivity of the shape to be used is remarkably improved.
 このように有機系の発光材料は、非常に有望である一方、数多く存在する有機系材料の中から、無機系の発光材料を代替するような材料を見出すことは困難であった。特に、有機系材料の中で、発光特性を示す材料はあまり多くはなく、更に、波長変換材料等への適用を考えた場合、過酷な環境での使用が想定されるため、高い耐候性や、耐熱性が求められるところ、有機系材料でそれらを実現するのは困難であった。 While organic light-emitting materials are thus very promising, it has been difficult to find a substitute for inorganic light-emitting materials from among the many existing organic materials. In particular, among organic materials, there are not many materials that exhibit luminous properties, and when considering application to wavelength conversion materials, etc., it is assumed that they will be used in harsh environments, so high weather resistance and However, it has been difficult to achieve these requirements with organic materials.
 そこで本発明は、有機系材料で構成され、且つ発光特性及び耐熱性に優れた発光成形体及び波長変換部材を提供することを目的とする。 Accordingly, an object of the present invention is to provide a luminescent molded article and a wavelength conversion member which are composed of an organic material and have excellent luminescent properties and heat resistance.
 本発明者らは、鋭意検討した結果、所定のポリイミド樹脂を含み、且つ所定の要件を満たす発光成形体により上記課題を解決できることを見出し、本発明を完成させるに至った。 As a result of intensive studies, the present inventors have found that the above problems can be solved by a light-emitting molded article that contains a predetermined polyimide resin and satisfies predetermined requirements, and has completed the present invention.
 すなわち、本発明の要旨構成は、以下のとおりである。
[1]下記式(1)で示される繰り返し構成単位及び下記式(2)で示される繰り返し構成単位:
Figure JPOXMLDOC01-appb-C000002

(Rは少なくとも1つの脂環式炭化水素構造を含む炭素数6~22の2価の基である。Rは炭素数5~16の2価の鎖状脂肪族基である。X及びXは、それぞれ独立に、少なくとも1つの芳香環を含む炭素数6~22の4価の基である。)
を含み、該式(1)の繰り返し構成単位と該式(2)の繰り返し構成単位の合計に対する該式(1)の繰り返し構成単位の含有比が20~70モル%であるポリイミド樹脂(A)を含む発光成形体であって、
 前記発光成形体中の活性プロトン量が、前記式(1)の繰り返し構成単位と前記式(2)の繰り返し構成単位の合計を100モル%としたときに、0.01モル%以上である、発光成形体。
[2] 前記成形体が、更にポリアミド樹脂、ポリアミドイミド樹脂、エポキシ樹脂、ウレタン樹脂、ウレア樹脂、フェノール樹脂及びシアネート樹脂からなる群から選択される1種以上の樹脂(B)を含む、上記[1]に記載の発光成形体。
[3] 前記成形体が、前記ポリイミド樹脂(A)のみからなる、上記[1]に記載の発光成形体。
[4] 前記ポリイミド樹脂(A)を含む粉末を圧縮成形してなる、上記[1]~[3]のいずれか1項に記載の発光成形体。
[5]上記[1]~[4]のいずれか1項に記載の発光成形体からなる、波長変換部材。
That is, the gist and configuration of the present invention are as follows.
[1] A repeating structural unit represented by the following formula (1) and a repeating structural unit represented by the following formula (2):
Figure JPOXMLDOC01-appb-C000002

(R 1 is a C 6-22 divalent group containing at least one alicyclic hydrocarbon structure. R 2 is a C 5-16 divalent chain aliphatic group. X 1 and X 2 are each independently a tetravalent group having 6 to 22 carbon atoms containing at least one aromatic ring.)
and the content ratio of the repeating structural unit of the formula (1) to the total of the repeating structural units of the formula (1) and the repeating structural unit of the formula (2) is 20 to 70 mol%. Polyimide resin (A) A luminescent molded article comprising
The amount of active protons in the luminescent molded product is 0.01 mol% or more when the total of the repeating structural unit of the formula (1) and the repeating structural unit of the formula (2) is 100 mol%. Luminous molding.
[2] The above [ 1].
[3] The luminescent molded article according to the above [1], wherein the molded article consists only of the polyimide resin (A).
[4] The luminescent molded article according to any one of [1] to [3] above, which is obtained by compression-molding the powder containing the polyimide resin (A).
[5] A wavelength conversion member comprising the luminescent molded product according to any one of [1] to [4] above.
 本発明によれば、有機系材料で構成され、且つ発光特性及び耐熱性に優れた発光成形体及び波長変換部材を提供することができる。 According to the present invention, it is possible to provide a luminescent molded article and a wavelength conversion member that are composed of an organic material and have excellent luminescent properties and heat resistance.
図1は、参考例1の粉体について、励起-蛍光マトリクス(EEM)測定を行って作成した、励起波長vs.発光波長vs.蛍光強度の3次元データである。FIG. 1 shows three-dimensional data of excitation wavelength vs. emission wavelength vs. fluorescence intensity, prepared by excitation-emission matrix (EEM) measurement for the powder of Reference Example 1. FIG. 図2は、比較例1の比較成形体1について、EEM測定を行って作成した、励起波長vs.発光波長vs.蛍光強度の3次元データである。FIG. 2 is three-dimensional data of excitation wavelength vs. emission wavelength vs. fluorescence intensity, which was created by performing EEM measurement for Comparative Molded Body 1 of Comparative Example 1. FIG. 図3は、実施例1の成形体1について、EEM測定を行って作成した、励起波長vs.発光波長vs.蛍光強度の3次元データである。FIG. 3 shows three-dimensional data of excitation wavelength vs. emission wavelength vs. fluorescence intensity, which was created by performing EEM measurement for molded body 1 of Example 1. FIG.
 本発明に従う発光成形体及び波長変換部材の実施形態について、以下で詳細に説明する。
 なお、本明細書において、数値の記載に関する「A~B」という用語は、「A以上B以下」(A<Bの場合)又は「A以下B以上」(A>Bの場合)を意味する。また、本発明において、好ましい態様の組み合わせは、より好ましい態様である。
Embodiments of the luminescent molded article and the wavelength conversion member according to the present invention are described in detail below.
In this specification, the term "A to B" regarding numerical values means "A or more and B or less" (when A<B) or "A or less than B" (when A>B). . Moreover, in the present invention, a combination of preferred aspects is a more preferred aspect.
[発光成形体]
 本発明の発光成形体は、下記式(1)で示される繰り返し構成単位及び下記式(2)で示される繰り返し構成単位:
Figure JPOXMLDOC01-appb-C000003

(Rは少なくとも1つの脂環式炭化水素構造を含む炭素数6~22の2価の基である。Rは炭素数5~16の2価の鎖状脂肪族基である。X及びXは、それぞれ独立に、少なくとも1つの芳香環を含む炭素数6~22の4価の基である。)
を含み、該式(1)の繰り返し構成単位と該式(2)の繰り返し構成単位の合計に対する該式(1)の繰り返し構成単位の含有比が20~70モル%であるポリイミド樹脂(A)を含み、前記発光成形体中の活性プロトン量が、前記式(1)の繰り返し構成単位と前記式(2)の繰り返し構成単位の合計を100モル%としたときに、0.01モル%以上である。
[Light emitting molding]
The luminescent molding of the present invention comprises a repeating structural unit represented by the following formula (1) and a repeating structural unit represented by the following formula (2):
Figure JPOXMLDOC01-appb-C000003

(R 1 is a C 6-22 divalent group containing at least one alicyclic hydrocarbon structure. R 2 is a C 5-16 divalent chain aliphatic group. X 1 and X 2 are each independently a tetravalent group having 6 to 22 carbon atoms containing at least one aromatic ring.)
and the content ratio of the repeating structural unit of the formula (1) to the total of the repeating structural units of the formula (1) and the repeating structural unit of the formula (2) is 20 to 70 mol%. Polyimide resin (A) and the amount of active protons in the luminescent molded product is 0.01 mol% or more when the total of the repeating structural units of the formula (1) and the repeating structural units of the formula (2) is 100 mol%. is.
 本発明の発光成形体(以下、単に「成形体」ということがある。)は上記構成であることにより、有機系材料で構成されながら、優れた発光特性及び耐熱性を発揮する。
 本発明の発光成形体が上記効果を奏する理由については定かではないが、以下のように推察する。
 ポリイミド樹脂(A)は、ポリイミドのジアミン部に脂肪族骨格を有しており、カルボニル部が、ケト型(N-C=O部)からエノール型(N=C-OH部)に電子状態が変化し易い構造になっていると考えられる。そのため、成形体中の活性プロトン量を所定量以上とすることで、該活性プロトンがポリイミドのカルボニル部に近づき易くなり、ポリイミドの化学骨格中のエノール型の寄与が大きくなり、分子運動による熱エネルギーの失活が抑制され、発光特性が向上するものと考えられる。また、ポリイミドの窒素原子上には、非共有電子対が存在しており、芳香族アミンを用いた場合より、共鳴の安定化の影響を受けにくく、ESIPTを引き起こし易くなっていると考えられる。
 さらに、ポリイミド樹脂(A)は、所定の構造を有しているため、耐熱性にも優れている。
The luminescent molded article of the present invention (hereinafter sometimes simply referred to as ``molded article'') has the above-described structure, so that it exhibits excellent luminescent properties and heat resistance while being composed of an organic material.
Although the reason why the luminescent molded article of the present invention exhibits the above effects is not clear, it is speculated as follows.
The polyimide resin (A) has an aliphatic skeleton in the diamine part of the polyimide, and the carbonyl part has an electronic state from the keto type (NC=O part) to the enol type (N=C-OH part). It is thought that it has a structure that is easily changed. Therefore, by setting the amount of active protons in the molded body to a predetermined amount or more, the active protons can easily approach the carbonyl portion of the polyimide, the contribution of the enol type in the chemical skeleton of the polyimide increases, and thermal energy due to molecular motion is generated. It is considered that the deactivation of is suppressed and the luminous properties are improved. Moreover, it is considered that a lone pair of electrons exists on the nitrogen atoms of the polyimide, which makes it less susceptible to resonance stabilization and more likely to cause ESIPT than when an aromatic amine is used.
Furthermore, since the polyimide resin (A) has a predetermined structure, it is also excellent in heat resistance.
<活性プロトン>
 本明細書において、活性プロトンとは、ポリイミド樹脂(A)の構造中に含まれる水素、及び必要に応じて配合されるポリイミド樹脂(A)以外の成分の構造中に含まれる水素であって、溶媒の活性水素が重水素に置き換わった重溶媒を含む溶媒に成形体片を溶解させた際に、該溶媒中に含まれる重水素と置換可能な水素(活性水素)を指す。
 ポリイミド樹脂(A)の構造中に含まれる活性水素、及び必要に応じて配合されるポリイミド樹脂(A)以外の成分の構造中に含まれる活性水素としては、ポリイミド樹脂(A)又はそれ以外の成分そのもの(例えば樹脂骨格等)に由来する活性水素、ポリイミド樹脂(A)又はそれ以外の成分中に残存する未反応原料に由来する活性水素、ポリイミド樹脂(A)又はそれ以外の成分が劣化したことにより発生した活性水素等が挙げられる。これらの活性水素の具体例としては、ポリイミド樹脂(A)又はそれ以外の成分の構造中に含まれる、アミノ基、アセチル基、アミド酸、ヒドロキシ基、メルカプト基等の水素等が挙げられる。
<Active proton>
In the present specification, the active proton is hydrogen contained in the structure of the polyimide resin (A), and hydrogen contained in the structure of components other than the polyimide resin (A) that are optionally blended, It refers to hydrogen (active hydrogen) that can replace deuterium contained in the solvent when the molded piece is dissolved in a solvent containing a heavy solvent in which the active hydrogen of the solvent is replaced with deuterium.
The active hydrogen contained in the structure of the polyimide resin (A) and the active hydrogen contained in the structure of components other than the polyimide resin (A) to be blended as needed include the polyimide resin (A) or other Active hydrogen derived from the component itself (for example, resin skeleton, etc.), active hydrogen derived from unreacted raw materials remaining in the polyimide resin (A) or other components, polyimide resin (A), or other components deteriorated and active hydrogen generated by the reaction. Specific examples of these active hydrogens include hydrogen such as amino group, acetyl group, amic acid, hydroxy group, and mercapto group contained in the structure of the polyimide resin (A) or other components.
 本発明の発光成形体中の活性プロトン量は、上記式(1)の繰り返し構成単位と上記式(2)の繰り返し構成単位の合計を100モル%としたときに、0.01モル%以上であり、好ましくは0.05モル%以上、より好ましくは0.10モル%以上、更に好ましくは0.20モル%以上である。成形体中の活性プロトン量が、0.01モル%未満であると、十分な発光特性が得られない。
 また、上記活性プロトン量の上限は、特に限定されないが、例えば、成形体がポリイミド樹脂(A)のみからなる場合には、吸水性の悪化を抑制する観点から、上記活性プロトン量は、上記式(1)の繰り返し構成単位と上記式(2)の繰り返し構成単位の合計を100モル%としたときに、好ましくは10.0モル%以下、より好ましくは5.0モル%以下、更に好ましくは1.0モル%以下である。上記活性プロトンに対応する官能基(例えば、アミノ基やヒドロキシ基等)は極性が高く、親水性も高い。そのため、発光成形体中で、このような官能基の数が増すほど、発光成形体の吸水率は高くなる傾向にある。活性プロトン量を上記範囲内とすることで、発光成形体の吸水率が高くなり過ぎず、吸水性が悪化することを抑制できる。
 具体的には、十分な発光特性の観点及び吸水性の悪化を抑制する観点から、上記活性プロトン量は、上記式(1)の繰り返し構成単位と上記式(2)の繰り返し構成単位の合計を100モル%としたときに、好ましくは0.01~10.0モル%、より好ましくは0.05~10.0モル%、更に好ましくは0.10~5.0モル%であり、より更に好ましくは0.20~1.0モル%である。
 なお、成形体中の活性プロトン量は、実施例に記載の方法により測定できる。
The amount of active protons in the light-emitting molded article of the present invention is 0.01 mol% or more when the total of the repeating structural units of the above formula (1) and the repeating structural units of the above formula (2) is 100 mol%. Yes, preferably 0.05 mol % or more, more preferably 0.10 mol % or more, and still more preferably 0.20 mol % or more. If the amount of active protons in the molded product is less than 0.01 mol %, sufficient light emission characteristics cannot be obtained.
Further, the upper limit of the active proton amount is not particularly limited. When the total of the repeating structural unit of (1) and the repeating structural unit of the above formula (2) is 100 mol%, it is preferably 10.0 mol% or less, more preferably 5.0 mol% or less, and still more preferably It is 1.0 mol % or less. Functional groups corresponding to the active protons (for example, amino groups, hydroxy groups, etc.) are highly polar and highly hydrophilic. Therefore, as the number of such functional groups increases in the luminescent molded article, the water absorption rate of the luminescent molded article tends to increase. By setting the amount of active protons within the above range, the water absorption rate of the luminescent molding does not become too high, and deterioration of the water absorption can be suppressed.
Specifically, from the viewpoint of sufficient light emission characteristics and suppression of deterioration of water absorption, the amount of active protons is the sum of the repeating structural unit of the above formula (1) and the repeating structural unit of the above formula (2). When 100 mol%, preferably 0.01 to 10.0 mol%, more preferably 0.05 to 10.0 mol%, still more preferably 0.10 to 5.0 mol%, still more It is preferably 0.20 to 1.0 mol %.
The amount of active protons in the compact can be measured by the method described in Examples.
 活性プロトンは、ポリイミド樹脂(A)の構造中に含まれる末端アミノ基の水素を含むことが好ましく、より好ましくは該末端アミノ基の水素である。ポリイミド樹脂(A)の構造中に含まれる末端アミノ基の水素は、発光成形体を成形する際の加熱温度により、その含有量を制御でき、これにより活性プロトン量も制御できる点で好ましい。
 なお、成形体中のアミノ基量としては、上記式(1)の繰り返し構成単位と上記式(2)の繰り返し構成単位の合計を100モル%としたときに、好ましくは0.01モル%以上、更に好ましくは0.03モル%以上、より更に好ましくは0.05モル%以上である。
 また、活性プロトンによる吸水性の悪化を抑制する観点から、上記アミノ基量は、上記式(1)の繰り返し構成単位と上記式(2)の繰り返し構成単位の合計を100モル%としたときに、好ましくは10.0モル%以下、より好ましくは5.0モル%以下、更に好ましくは1.0モル%以下である。具体的には、十分な発光特性の観点及び活性プロトンによる吸水性の悪化を抑制する観点から、上記アミノ基量は、上記式(1)の繰り返し構成単位と上記式(2)の繰り返し構成単位の合計を100モル%としたときに、好ましくは0.01~10.0モル%、より好ましくは0.03~5.0モル%、更に好ましくは0.05~1.0モル%である。
 なお、成形体中のアミノ基量は、実施例に記載の方法により測定できる。
The active proton preferably contains hydrogen of the terminal amino group contained in the structure of the polyimide resin (A), more preferably hydrogen of the terminal amino group. Hydrogen of the terminal amino group contained in the structure of the polyimide resin (A) is preferable in that the content can be controlled by the heating temperature at the time of molding the light-emitting molded article, and thus the amount of active protons can also be controlled.
The amount of amino groups in the molded article is preferably 0.01 mol% or more when the total of the repeating structural unit of the above formula (1) and the repeating structural unit of the above formula (2) is 100 mol%. , more preferably 0.03 mol % or more, still more preferably 0.05 mol % or more.
In addition, from the viewpoint of suppressing the deterioration of water absorbency due to active protons, the amount of amino groups is 100 mol% when the total of the repeating structural units of the above formula (1) and the repeating structural units of the above formula (2) is , preferably 10.0 mol % or less, more preferably 5.0 mol % or less, still more preferably 1.0 mol % or less. Specifically, from the viewpoint of sufficient light emission characteristics and the viewpoint of suppressing deterioration of water absorption due to active protons, the amount of amino groups is the repeating structural unit of the above formula (1) and the repeating structural unit of the above formula (2). When the total of 100 mol%, preferably 0.01 to 10.0 mol%, more preferably 0.03 to 5.0 mol%, still more preferably 0.05 to 1.0 mol% .
The amount of amino groups in the molded article can be measured by the method described in Examples.
 また活性プロトンは、必要に応じて配合されるポリイミド樹脂(A)以外の成分の構造中に含まれる活性水素(以下、特に「外部活性プロトン」ということもある)であってもよい。外部活性プロトンを有する成分としては、例えば、構造中に活性水素を有する樹脂が挙げられる。成形体が、更に、構造中に活性水素を有する樹脂を含むことにより、成形体中の活性プロトン量を増やすことができる。このような樹脂としては、例えばその構造中に、アセチル基、アミド酸、アミノ基、ヒドロキシ基、メルカプト基等を有する樹脂が挙げられる。 The active protons may also be active hydrogens (hereinafter sometimes referred to as "externally active protons") contained in the structures of components other than the polyimide resin (A) that are blended as needed. Components having externally active protons include, for example, resins having active hydrogens in their structures. By further including a resin having active hydrogen in the structure of the molded article, the amount of active protons in the molded article can be increased. Examples of such resins include resins having an acetyl group, an amic acid group, an amino group, a hydroxy group, a mercapto group, or the like in their structure.
<ポリイミド樹脂(A)>
 本発明に用いるポリイミド樹脂(A)は、下記式(1)で示される繰り返し構成単位及び下記式(2)で示される繰り返し構成単位:
Figure JPOXMLDOC01-appb-C000004

(Rは少なくとも1つの脂環式炭化水素構造を含む炭素数6~22の2価の基である。Rは炭素数5~16の2価の鎖状脂肪族基である。X及びXは、それぞれ独立に、少なくとも1つの芳香環を含む炭素数6~22の4価の基である。)
を含み、該式(1)の繰り返し構成単位と該式(2)の繰り返し構成単位の合計に対する該式(1)の繰り返し構成単位の含有比が20~70モル%である。
<Polyimide resin (A)>
The polyimide resin (A) used in the present invention is a repeating structural unit represented by the following formula (1) and a repeating structural unit represented by the following formula (2):
Figure JPOXMLDOC01-appb-C000004

(R 1 is a C 6-22 divalent group containing at least one alicyclic hydrocarbon structure. R 2 is a C 5-16 divalent chain aliphatic group. X 1 and X 2 are each independently a tetravalent group having 6 to 22 carbon atoms containing at least one aromatic ring.)
and the content ratio of the repeating structural unit of the formula (1) to the total of the repeating structural unit of the formula (1) and the repeating structural unit of the formula (2) is 20 to 70 mol%.
 本発明に用いるポリイミド樹脂(A)は結晶性熱可塑性樹脂である。熱可塑性のポリイミド樹脂は、例えばポリアミド酸等のポリイミド前駆体の状態で成形した後にイミド環を閉環して形成される、ガラス転移温度(Tg)を持たないポリイミド樹脂、あるいはガラス転移温度よりも低い温度で分解してしまうポリイミド樹脂とは区別される。 The polyimide resin (A) used in the present invention is a crystalline thermoplastic resin. The thermoplastic polyimide resin is a polyimide resin having no glass transition temperature (Tg), or a glass transition temperature lower than the glass transition temperature, which is formed by closing the imide ring after molding in the state of a polyimide precursor such as polyamic acid. It is distinguished from polyimide resin, which decomposes at temperature.
 式(1)の繰り返し構成単位について、以下に詳述する。
 Rは少なくとも1つの脂環式炭化水素構造を含む炭素数6~22の2価の基である。ここで、脂環式炭化水素構造とは、脂環式炭化水素化合物から誘導される環を意味し、該脂環式炭化水素化合物は、飽和であっても不飽和であってもよく、単環であっても多環であってもよい。
 脂環式炭化水素構造としては、シクロヘキサン環等のシクロアルカン環、シクロヘキセン等のシクロアルケン環、ノルボルナン環等のビシクロアルカン環、及びノルボルネン等のビシクロアルケン環が例示されるが、これらに限定されるわけではない。これらの中でも、好ましくはシクロアルカン環、より好ましくは炭素数4~7のシクロアルカン環、さらに好ましくはシクロヘキサン環である。
 Rの炭素数は6~22であり、好ましくは8~17である。
 Rは脂環式炭化水素構造を少なくとも1つ含み、好ましくは1~3個含む。
The repeating structural unit of formula (1) is described in detail below.
R 1 is a C 6-22 divalent group containing at least one alicyclic hydrocarbon structure. Here, the alicyclic hydrocarbon structure means a ring derived from an alicyclic hydrocarbon compound, and the alicyclic hydrocarbon compound may be saturated or unsaturated, and It may be cyclic or polycyclic.
Examples of the alicyclic hydrocarbon structure include, but are not limited to, cycloalkane rings such as cyclohexane ring, cycloalkene rings such as cyclohexene, bicycloalkane rings such as norbornane ring, and bicycloalkene rings such as norbornene. Do not mean. Among these, a cycloalkane ring is preferred, a cycloalkane ring having 4 to 7 carbon atoms is more preferred, and a cyclohexane ring is even more preferred.
R 1 has 6 to 22 carbon atoms, preferably 8 to 17 carbon atoms.
R 1 contains at least one, preferably 1 to 3, alicyclic hydrocarbon structures.
 Rは、好ましくは下記式(R1-1)又は(R1-2)で表される2価の基である。
Figure JPOXMLDOC01-appb-C000005

(m11及びm12は、それぞれ独立に、0~2の整数であり、好ましくは0又は1である。m13~m15は、それぞれ独立に、0~2の整数であり、好ましくは0又は1である。)
R 1 is preferably a divalent group represented by the following formula (R1-1) or (R1-2).
Figure JPOXMLDOC01-appb-C000005

(m 11 and m 12 are each independently an integer of 0 to 2, preferably 0 or 1; m 13 to m 15 are each independently an integer of 0 to 2, preferably 0 or 1.)
 Rは、特に好ましくは下記式(R1-3)で表される2価の基である。
Figure JPOXMLDOC01-appb-C000006

 なお、上記の式(R1-3)で表される2価の基において、2つのメチレン基のシクロヘキサン環に対する位置関係はシスであってもトランスであってもよく、またシスとトランスの比は如何なる値でもよい。
R 1 is particularly preferably a divalent group represented by the following formula (R1-3).
Figure JPOXMLDOC01-appb-C000006

In the divalent group represented by the above formula (R1-3), the positional relationship of the two methylene groups with respect to the cyclohexane ring may be cis or trans, and the ratio of cis to trans may be can be any value.
 Xは少なくとも1つの芳香環を含む炭素数6~22の4価の基である。前記芳香環は単環でも縮合環でもよく、ベンゼン環、ナフタレン環、アントラセン環、テトラセン環及びペリレン環等が例示されるが、これらに限定されるわけではない。これらの中でも、好ましくはベンゼン環、ナフタレン環及びペリレン環であり、より好ましくはベンゼン環である。
 Xの炭素数は6~22であり、好ましくは6~20である。
 Xは芳香環を少なくとも1つ含み、好ましくは1~3個含む。
X 1 is a tetravalent group having 6 to 22 carbon atoms containing at least one aromatic ring. The aromatic ring may be a single ring or a condensed ring, and examples include, but are not limited to, benzene ring, naphthalene ring, anthracene ring, tetracene ring and perylene ring. Among these, benzene ring, naphthalene ring and perylene ring are preferred, and benzene ring is more preferred.
X 1 has 6 to 22 carbon atoms, preferably 6 to 20 carbon atoms.
X 1 contains at least one, preferably 1 to 3, aromatic rings.
 Xは、好ましくは下記式(X-1)~(X-6)のいずれかで表される4価の基である。
Figure JPOXMLDOC01-appb-C000007

(R11~R24は、それぞれ独立に、炭素数1~4のアルキル基である。p11~p13及びp19~p24は、それぞれ独立に、0~2の整数であり、好ましくは0である。p14、p15、p16及びp18は、それぞれ独立に、0~3の整数であり、好ましくは0である。p17は0~4の整数であり、好ましくは0である。L11~L13は、それぞれ独立に、単結合、カルボニル基又は炭素数1~4のアルキレン基である。)
 なお、Xは少なくとも1つの芳香環を含む炭素数6~22の4価の基であるので、式(X-2)におけるR12、R13、p12及びp13は、式(X-2)で表される4価の基の炭素数が10~22の範囲に入るように選択される。
 同様に、式(X-3)におけるL11、R14、R15、p14及びp15は、式(X-3)で表される4価の基の炭素数が12~22の範囲に入るように選択され、式(X-4)におけるL12、L13、R16、R17、R18、p16、p17及びp18は、式(X-4)で表される4価の基の炭素数が18~22の範囲に入るように選択され、式(X-5)におけるR19、R20、p19及びp20は、式(X-5)で表される4価の基の炭素数が10~22の範囲に入るように選択され、式(X-6)におけるR21、R22、R23、R24、p21、p22、p23及びp24は、式(X-6)で表される4価の基の炭素数が20~22の範囲に入るように選択される。
X 1 is preferably a tetravalent group represented by any one of formulas (X-1) to (X-6) below.
Figure JPOXMLDOC01-appb-C000007

(R 11 to R 24 are each independently an alkyl group having 1 to 4 carbon atoms; p 11 to p 13 and p 19 to p 24 are each independently an integer of 0 to 2, preferably 0. p 14 , p 15 , p 16 and p 18 are each independently an integer of 0 to 3, preferably 0. p 17 is an integer of 0 to 4, preferably 0. Each of L 11 to L 13 is independently a single bond, a carbonyl group, or an alkylene group having 1 to 4 carbon atoms.)
Since X 1 is a tetravalent group having 6 to 22 carbon atoms and containing at least one aromatic ring, R 12 , R 13 , p 12 and p 13 in formula (X-2) are represented by formula (X- The number of carbon atoms in the tetravalent group represented by 2) is selected within the range of 10 to 22.
Similarly, L 11 , R 14 , R 15 , p 14 and p 15 in formula (X-3) are in the range of 12 to 22 carbon atoms in the tetravalent group represented by formula (X-3). L 12 , L 13 , R 16 , R 17 , R 18 , p 16 , p 17 and p 18 in formula (X-4) are selected to contain tetravalent is selected so that the number of carbon atoms in the group falls within the range of 18 to 22, and R 19 , R 20 , p 19 and p 20 in formula (X-5) are tetravalent represented by formula (X-5) is selected so that the number of carbon atoms in the group is within the range of 10 to 22, and R 21 , R 22 , R 23 , R 24 , p 21 , p 22 , p 23 and p 24 in formula (X-6) are It is selected so that the number of carbon atoms in the tetravalent group represented by formula (X-6) falls within the range of 20-22.
 Xは、特に好ましくは下記式(X-7)~(X-10)のいずれかで表される4価の基である。
Figure JPOXMLDOC01-appb-C000008
X 1 is particularly preferably a tetravalent group represented by any one of the following formulas (X-7) to (X-10).
Figure JPOXMLDOC01-appb-C000008
 次に、式(2)の繰り返し構成単位について、以下に詳述する。
 Rは炭素数5~16の2価の鎖状脂肪族基であり、好ましくは炭素数6~14、より好ましくは炭素数7~12、更に好ましくは炭素数8~10である。ここで、鎖状脂肪族基とは、鎖状脂肪族化合物から誘導される基を意味し、該鎖状脂肪族化合物は、飽和であっても不飽和であってもよく、直鎖状であっても分岐状であってもよい。
 Rは、好ましくは炭素数5~16のアルキレン基であり、より好ましくは炭素数6~14、更に好ましくは炭素数7~12のアルキレン基であり、なかでも好ましくは炭素数8~10のアルキレン基である。前記アルキレン基は、直鎖アルキレン基であっても分岐アルキレン基であってもよいが、好ましくは直鎖アルキレン基である。
 Rは、好ましくはオクタメチレン基及びデカメチレン基からなる群から選択される1種以上であり、特に好ましくはオクタメチレン基である。
Next, the repeating structural unit of formula (2) will be described in detail below.
R 2 is a divalent chain aliphatic group having 5 to 16 carbon atoms, preferably 6 to 14 carbon atoms, more preferably 7 to 12 carbon atoms, still more preferably 8 to 10 carbon atoms. Here, the chain aliphatic group means a group derived from a chain aliphatic compound, the chain aliphatic compound may be saturated or unsaturated, straight-chain It may be branched or branched.
R 2 is preferably an alkylene group having 5 to 16 carbon atoms, more preferably an alkylene group having 6 to 14 carbon atoms, still more preferably an alkylene group having 7 to 12 carbon atoms, and most preferably an alkylene group having 8 to 10 carbon atoms. It is an alkylene group. The alkylene group may be a straight-chain alkylene group or a branched alkylene group, but is preferably a straight-chain alkylene group.
R 2 is preferably one or more selected from the group consisting of octamethylene group and decamethylene group, particularly preferably octamethylene group.
 Xは、式(1)におけるXと同様に定義され、好ましい様態も同様である。 X2 is defined in the same manner as X1 in Formula (1), and the preferred embodiments are also the same.
 式(1)の繰り返し構成単位と式(2)の繰り返し構成単位の合計に対する、式(1)の繰り返し構成単位の含有比は20~70モル%である。式(1)の繰り返し構成単位の含有比が上記範囲である場合、ポリイミド樹脂を十分に結晶化させ得ることが可能となる。該含有量比が20モル%未満であると成形加工性が低下し、70モル%を超えると結晶性が低下するため、耐熱性が低下する。
 式(1)の繰り返し構成単位と式(2)の繰り返し構成単位の合計に対する、式(1)の繰り返し構成単位の含有比は、高い結晶性を発現する観点から、好ましくは65モル%以下、より好ましくは60モル%以下、更に好ましくは50モル%以下、より更に好ましくは40モル%未満である。
 式(1)の繰り返し構成単位と式(2)の繰り返し構成単位の合計に対する式(1)の繰り返し構成単位の含有比が20モル%以上、40モル%未満であると、ポリイミド樹脂(A)の結晶性が高くなり、より耐熱性に優れる樹脂成形体を得ることができる。上記含有比は、成形加工性の観点からは、好ましくは25モル%以上、より好ましくは30モル%以上、更に好ましくは32モル%以上であり、高い結晶性を発現する観点から、より更に好ましくは35モル%以下である。具体的には、成形加工性の観点及び高い結晶性を発現する観点から、上記含有比は、好ましくは25~35モル%、より好ましくは30~35モル%、更に好ましくは32~35モル%である。
The content ratio of the repeating structural unit of formula (1) to the total of the repeating structural unit of formula (1) and the repeating structural unit of formula (2) is 20 to 70 mol %. When the content ratio of the repeating structural unit of formula (1) is within the above range, it is possible to sufficiently crystallize the polyimide resin. When the content ratio is less than 20 mol %, moldability is deteriorated, and when it exceeds 70 mol %, crystallinity is deteriorated, resulting in deterioration of heat resistance.
The content ratio of the repeating structural unit of formula (1) to the total of the repeating structural unit of formula (1) and the repeating structural unit of formula (2) is preferably 65 mol% or less from the viewpoint of expressing high crystallinity. More preferably 60 mol % or less, still more preferably 50 mol % or less, still more preferably less than 40 mol %.
When the content ratio of the repeating structural unit of the formula (1) to the total of the repeating structural unit of the formula (1) and the repeating structural unit of the formula (2) is 20 mol% or more and less than 40 mol%, the polyimide resin (A) The crystallinity of is increased, and a resin molding having more excellent heat resistance can be obtained. The content ratio is preferably 25 mol% or more, more preferably 30 mol% or more, and still more preferably 32 mol% or more from the viewpoint of moldability, and is even more preferable from the viewpoint of expressing high crystallinity. is 35 mol % or less. Specifically, from the viewpoint of moldability and high crystallinity, the content ratio is preferably 25 to 35 mol%, more preferably 30 to 35 mol%, and still more preferably 32 to 35 mol%. is.
 ポリイミド樹脂(A)を構成する全繰り返し構成単位に対する、式(1)の繰り返し構成単位と式(2)の繰り返し構成単位の合計の含有比は、好ましくは50~100モル%、より好ましくは75~100モル%、更に好ましくは80~100モル%、より更に好ましくは85~100モル%である。 The total content ratio of the repeating structural units of the formula (1) and the repeating structural units of the formula (2) with respect to all repeating structural units constituting the polyimide resin (A) is preferably 50 to 100 mol%, more preferably 75 ~100 mol%, more preferably 80 to 100 mol%, still more preferably 85 to 100 mol%.
 ポリイミド樹脂(A)は、さらに、下記式(3)の繰り返し構成単位を含有してもよい。その場合、式(1)の繰り返し構成単位と式(2)の繰り返し構成単位の合計に対する、式(3)の繰り返し構成単位の含有比は、好ましくは25モル%以下である。一方で、下限は特に限定されず、0モル%を超えていればよい。
 式(3)の繰り返し構成単位を含有する場合、式(1)の繰り返し構成単位と式(2)の繰り返し構成単位の合計に対する、式(3)の繰り返し構成単位の含有比は、耐熱性の向上という観点からは、好ましくは5モル%以上、より好ましくは10モル%以上であり、一方で結晶性を維持する観点からは、好ましくは20モル%以下、より好ましくは15モル%以下である。具体的には、耐熱性の向上の観点及び結晶性を維持する観点から、上記含有比は好ましくは5~20モル%、より好ましくは10~15モル%である。
Figure JPOXMLDOC01-appb-C000009

(Rは少なくとも1つの芳香環を含む炭素数6~22の2価の基である。Xは少なくとも1つの芳香環を含む炭素数6~22の4価の基である。)
Polyimide resin (A) may further contain a repeating structural unit of the following formula (3). In that case, the content ratio of the repeating structural unit of formula (3) to the sum of the repeating structural units of formula (1) and the repeating structural units of formula (2) is preferably 25 mol % or less. On the other hand, the lower limit is not particularly limited as long as it exceeds 0 mol %.
When the repeating structural unit of formula (3) is contained, the content ratio of the repeating structural unit of formula (3) to the total of the repeating structural unit of formula (1) and the repeating structural unit of formula (2) is From the viewpoint of improvement, it is preferably 5 mol% or more, more preferably 10 mol% or more, while from the viewpoint of maintaining crystallinity, it is preferably 20 mol% or less, more preferably 15 mol% or less. . Specifically, from the viewpoint of improving heat resistance and maintaining crystallinity, the content ratio is preferably 5 to 20 mol %, more preferably 10 to 15 mol %.
Figure JPOXMLDOC01-appb-C000009

(R 3 is a C 6-22 divalent group containing at least one aromatic ring. X 3 is a C 6-22 tetravalent group containing at least one aromatic ring.)
 Rは少なくとも1つの芳香環を含む炭素数6~22の2価の基である。前記芳香環は単環でも縮合環でもよく、ベンゼン環、ナフタレン環、アントラセン環、及びテトラセン環が例示されるが、これらに限定されるわけではない。これらの中でも、好ましくはベンゼン環及びナフタレン環であり、より好ましくはベンゼン環である。
 Rの炭素数は6~22であり、好ましくは6~18である。
 Rは芳香環を少なくとも1つ含み、好ましくは1~3個含む。
R 3 is a C 6-22 divalent group containing at least one aromatic ring. The aromatic ring may be a single ring or a condensed ring, and examples include, but are not limited to, benzene ring, naphthalene ring, anthracene ring, and tetracene ring. Among these, benzene ring and naphthalene ring are preferred, and benzene ring is more preferred.
R 3 has 6 to 22 carbon atoms, preferably 6 to 18 carbon atoms.
R 3 contains at least one, preferably 1 to 3, aromatic rings.
 Rは、好ましくは下記式(R3-1)又は(R3-2)で表される2価の基である。
Figure JPOXMLDOC01-appb-C000010

(m31及びm32は、それぞれ独立に、0~2の整数であり、好ましくは0又は1である。m33及びm34は、それぞれ独立に、0~2の整数であり、好ましくは0又は1である。R21、R22、及びR23は、それぞれ独立に、炭素数1~4のアルキル基、炭素数2~4のアルケニル基、又は炭素数2~4のアルキニル基である。p21、p22及びp23は0~4の整数であり、好ましくは0である。L21は、単結合、カルボニル基又は炭素数1~4のアルキレン基である。)
 なお、Rは少なくとも1つの芳香環を含む炭素数6~22の2価の基であるので、式(R3-1)におけるm31、m32、R21及びp21は、式(R3-1)で表される2価の基の炭素数が6~22の範囲に入るように選択される。
 同様に、式(R3-2)におけるL21、m33、m34、R22、R23、p22及びp23は、式(R3-2)で表される2価の基の炭素数が12~22の範囲に入るように選択される。
R 3 is preferably a divalent group represented by the following formula (R3-1) or (R3-2).
Figure JPOXMLDOC01-appb-C000010

(m 31 and m 32 are each independently an integer of 0 to 2, preferably 0 or 1; m 33 and m 34 are each independently an integer of 0 to 2, preferably 0 or 1. R 21 , R 22 and R 23 are each independently an alkyl group having 1 to 4 carbon atoms, an alkenyl group having 2 to 4 carbon atoms, or an alkynyl group having 2 to 4 carbon atoms. p 21 , p 22 and p 23 are integers of 0 to 4, preferably 0. L 21 is a single bond, a carbonyl group or an alkylene group having 1 to 4 carbon atoms.)
Since R 3 is a divalent group having 6 to 22 carbon atoms and containing at least one aromatic ring, m 31 , m 32 , R 21 and p 21 in formula (R3-1) are represented by formula (R3- It is selected so that the number of carbon atoms of the divalent group represented by 1) falls within the range of 6-22.
Similarly, L 21 , m 33 , m 34 , R 22 , R 23 , p 22 and p 23 in formula (R3-2) have It is chosen to fall within the range of 12-22.
 Xは、式(1)におけるXと同様に定義され、好ましい様態も同様である。 X3 is defined in the same manner as X1 in Formula (1), and the preferred embodiments are also the same.
 ポリイミド樹脂(A)の末端構造には特に制限はないが、活性プロトン量を高くする観点からは、アミノ基を末端に有することが好ましく、耐熱老化性を向上する観点からは、炭素数5~14の鎖状脂肪族基を末端に有することが好ましい。
 該鎖状脂肪族基は、飽和であっても不飽和であってもよく、直鎖状であっても分岐状であってもよい。ポリイミド樹脂(A)が上記特定の基を末端に有すると、耐熱老化性に優れる樹脂組成物を得ることができる。
 炭素数5~14の飽和鎖状脂肪族基としては、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ウンデシル基、ラウリル基、n-トリデシル基、n-テトラデシル基、イソペンチル基、ネオペンチル基、2-メチルペンチル基、2-メチルヘキシル基、2-エチルペンチル基、3-エチルペンチル基、イソオクチル基、2-エチルヘキシル基、3-エチルヘキシル基、イソノニル基、2-エチルオクチル基、イソデシル基、イソドデシル基、イソトリデシル基、イソテトラデシル基等が挙げられる。
 炭素数5~14の不飽和鎖状脂肪族基としては、1-ペンテニル基、2-ペンテニル基、1-へキセニル基、2-へキセニル基、1-ヘプテニル基、2-ヘプテニル基、1-オクテニル基、2-オクテニル基、ノネニル基、デセニル基、ドデセニル基、トリデセニル基、テトラデセニル基等が挙げられる。
 中でも、上記鎖状脂肪族基は飽和鎖状脂肪族基であることが好ましく、飽和直鎖状脂肪族基であることがより好ましい。また耐熱老化性を得る観点から、上記鎖状脂肪族基は好ましくは炭素数6以上、より好ましくは炭素数7以上、更に好ましくは炭素数8以上であり、好ましくは炭素数12以下、より好ましくは炭素数10以下、更に好ましくは炭素数9以下である。上記鎖状脂肪族基は1種のみでもよく、2種以上でもよい。
 上記鎖状脂肪族基は、特に好ましくはn-オクチル基、イソオクチル基、2-エチルヘキシル基、n-ノニル基、イソノニル基、n-デシル基、及びイソデシル基からなる群から選択される1種以上であり、更に好ましくはn-オクチル基、イソオクチル基、2-エチルヘキシル基、n-ノニル基、及びイソノニル基からなる群から選択される1種以上であり、最も好ましくはn-オクチル基、イソオクチル基、及び2-エチルヘキシル基からなる群から選択される1種以上である。
 またポリイミド樹脂(A)は、耐熱老化性の観点から、末端アミノ基及び末端カルボキシ基以外に、炭素数5~14の鎖状脂肪族基のみを末端に有することが好ましい。上記以外の基を末端に有する場合、その含有量は、好ましくは炭素数5~14の鎖状脂肪族基に対し10モル%以下、より好ましくは5モル%以下である。
The terminal structure of the polyimide resin (A) is not particularly limited, but from the viewpoint of increasing the amount of active protons, it is preferable to have an amino group at the terminal, and from the viewpoint of improving heat aging resistance, it has 5 to 5 carbon atoms. It is preferably terminated with 14 chain aliphatic groups.
The chain aliphatic group may be saturated or unsaturated, linear or branched. When the polyimide resin (A) has the above specific group at its terminal, a resin composition having excellent heat aging resistance can be obtained.
Examples of saturated chain aliphatic groups having 5 to 14 carbon atoms include n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, n-undecyl group, Lauryl group, n-tridecyl group, n-tetradecyl group, isopentyl group, neopentyl group, 2-methylpentyl group, 2-methylhexyl group, 2-ethylpentyl group, 3-ethylpentyl group, isooctyl group, 2-ethylhexyl group , 3-ethylhexyl group, isononyl group, 2-ethyloctyl group, isodecyl group, isododecyl group, isotridecyl group, isotetradecyl group and the like.
Examples of unsaturated chain aliphatic groups having 5 to 14 carbon atoms include 1-pentenyl group, 2-pentenyl group, 1-hexenyl group, 2-hexenyl group, 1-heptenyl group, 2-heptenyl group, 1- octenyl group, 2-octenyl group, nonenyl group, decenyl group, dodecenyl group, tridecenyl group, tetradecenyl group and the like.
Among them, the chain aliphatic group is preferably a saturated chain aliphatic group, and more preferably a saturated straight chain aliphatic group. From the viewpoint of obtaining heat aging resistance, the chain aliphatic group preferably has 6 or more carbon atoms, more preferably 7 or more carbon atoms, still more preferably 8 or more carbon atoms, and preferably 12 or less carbon atoms, more preferably 12 or less carbon atoms. has 10 or less carbon atoms, more preferably 9 or less carbon atoms. Only one type of chain aliphatic group may be used, or two or more types thereof may be used.
The chain aliphatic group is particularly preferably one or more selected from the group consisting of n-octyl group, isooctyl group, 2-ethylhexyl group, n-nonyl group, isononyl group, n-decyl group, and isodecyl group. more preferably one or more selected from the group consisting of n-octyl group, isooctyl group, 2-ethylhexyl group, n-nonyl group and isononyl group, most preferably n-octyl group and isooctyl group , and 2-ethylhexyl group.
Moreover, from the viewpoint of heat aging resistance, the polyimide resin (A) preferably has only chain aliphatic groups having 5 to 14 carbon atoms at its terminals in addition to terminal amino groups and terminal carboxy groups. When a group other than the above is present at the terminal, the content thereof is preferably 10 mol % or less, more preferably 5 mol % or less, relative to the chain aliphatic group having 5 to 14 carbon atoms.
 ポリイミド樹脂(A)中の上記炭素数5~14の鎖状脂肪族基の含有量は、優れた耐熱老化性を発現する観点から、ポリイミド樹脂(A)を構成する全繰り返し構成単位の合計100モル%に対し、好ましくは0.01モル%以上、より好ましくは0.1モル%以上、更に好ましくは0.2モル%以上である。また、十分な分子量を確保し良好な機械的物性を得るためには、ポリイミド樹脂(A)中の上記炭素数5~14の鎖状脂肪族基の含有量は、ポリイミド樹脂(A)を構成する全繰り返し構成単位の合計100モル%に対し、好ましくは10モル%以下、より好ましくは6モル%以下、更に好ましくは3.5モル%以下、より更に好ましくは2.0モル%以下、より更に好ましくは1.2モル%以下である。
 ポリイミド樹脂(A)中の上記炭素数5~14の鎖状脂肪族基の含有量は、ポリイミド樹脂(A)を解重合することにより求めることができる。
From the viewpoint of exhibiting excellent heat aging resistance, the content of the chain aliphatic group having 5 to 14 carbon atoms in the polyimide resin (A) is 100 in total of all repeating structural units constituting the polyimide resin (A). It is preferably 0.01 mol % or more, more preferably 0.1 mol % or more, and still more preferably 0.2 mol % or more based on mol %. In addition, in order to secure a sufficient molecular weight and obtain good mechanical properties, the content of the chain aliphatic group having 5 to 14 carbon atoms in the polyimide resin (A) is Preferably 10 mol% or less, more preferably 6 mol% or less, still more preferably 3.5 mol% or less, even more preferably 2.0 mol% or less, more preferably 100 mol% or less of all repeating structural units More preferably, it is 1.2 mol % or less.
The content of the chain aliphatic group having 5 to 14 carbon atoms in the polyimide resin (A) can be determined by depolymerizing the polyimide resin (A).
 ポリイミド樹脂(A)は、360℃以下の融点を有し、かつ150℃以上のガラス転移温度を有することが好ましい。
 ポリイミド樹脂(A)の融点は、耐熱性の観点から、より好ましくは280℃以上、更に好ましくは290℃以上であり、高い成形加工性を発現する観点からは、好ましくは345℃以下、より好ましくは340℃以下、更に好ましくは335℃以下である。具体的には、耐熱性の観点及び高い成形加工性を発現する観点から、ポリイミド樹脂(A)の融点は、好ましくは280~345℃、更に好ましくは280~340℃、より更に好ましくは290~335℃である。
 また、ポリイミド樹脂(A)のガラス転移温度は、耐熱性の観点から、より好ましくは160℃以上、より好ましくは170℃以上であり、高い成形加工性を発現する観点からは、好ましくは250℃以下、より好ましくは230℃以下、更に好ましくは200℃以下である。具体的には、耐熱性の観点及び高い成形加工性を発現する観点から、ポリイミド樹脂(A)のガラス転移温度は、好ましくは160~250℃、より好ましくは160~230℃、更に好ましくは170~200℃である。
 また、ポリイミド樹脂(A)は、結晶性、耐熱性、機械的強度、耐薬品性を向上させる観点から、示差走査型熱量計測定により、該ポリイミド樹脂を溶融後、降温速度20℃/分で冷却した際に観測される結晶化発熱ピークの熱量(以下、単に「結晶化発熱量」ともいう)が、5.0mJ/mg以上であることが好ましく、10.0mJ/mg以上であることがより好ましく、17.0mJ/mg以上であることが更に好ましい。結晶化発熱量の上限は特に限定されないが、通常45.0mJ/mg以下である。
 ポリイミド樹脂(A)の融点、ガラス転移温度、結晶化発熱量は、いずれも示差走査型熱量計により測定することができ、具体的には実施例に記載の方法により測定できる。
Polyimide resin (A) preferably has a melting point of 360° C. or lower and a glass transition temperature of 150° C. or higher.
The melting point of the polyimide resin (A) is preferably 280° C. or higher, more preferably 290° C. or higher, from the viewpoint of heat resistance, and is preferably 345° C. or lower, more preferably 345° C. or lower, from the viewpoint of achieving high moldability. is 340° C. or less, more preferably 335° C. or less. Specifically, from the viewpoint of heat resistance and high molding processability, the melting point of the polyimide resin (A) is preferably 280 to 345° C., more preferably 280 to 340° C., still more preferably 290 to 345° C. 335°C.
Further, the glass transition temperature of the polyimide resin (A) is more preferably 160° C. or higher, more preferably 170° C. or higher from the viewpoint of heat resistance, and preferably 250° C. from the viewpoint of expressing high moldability. Below, more preferably 230° C. or less, and still more preferably 200° C. or less. Specifically, from the viewpoint of heat resistance and high moldability, the glass transition temperature of the polyimide resin (A) is preferably 160 to 250°C, more preferably 160 to 230°C, and still more preferably 170°C. ~200°C.
In addition, from the viewpoint of improving the crystallinity, heat resistance, mechanical strength, and chemical resistance, the polyimide resin (A) is measured by a differential scanning calorimeter, and after melting the polyimide resin, the temperature is lowered at a rate of 20 ° C./min. The heat quantity at the crystallization exothermic peak observed upon cooling (hereinafter also simply referred to as “crystallization exothermic value”) is preferably 5.0 mJ/mg or more, more preferably 10.0 mJ/mg or more. More preferably, it is 17.0 mJ/mg or more. Although the upper limit of the crystallization heat value is not particularly limited, it is usually 45.0 mJ/mg or less.
The melting point, glass transition temperature, and crystallization heat value of the polyimide resin (A) can all be measured by a differential scanning calorimeter, and specifically by the methods described in Examples.
 ポリイミド樹脂(A)の重量平均分子量Mwは、好ましくは40,000~150,000であり、より好ましくは40,000~100,000、更に好ましくは42,000~80,000、より更に好ましくは45,000~70,000、より更に好ましくは45,000~65,000の範囲である。ポリイミド樹脂(A)の重量平均分子量Mwが40,000以上であれば、低荷重環境下での熱変形温度(HDT)が向上し、機械的強度も良好になる。またMwが150,000以下であれば、成形加工性が良好である。
 ポリイミド樹脂(A)の重量平均分子量Mwは、ポリメチルメタクリレート(PMMA)を標準試料としてゲルろ過クロマトグラフィー(GPC)法により測定することができ、具体的には実施例に記載の方法で測定できる。
The weight average molecular weight Mw of the polyimide resin (A) is preferably 40,000 to 150,000, more preferably 40,000 to 100,000, still more preferably 42,000 to 80,000, still more preferably 45,000 to 70,000, more preferably 45,000 to 65,000. When the weight average molecular weight Mw of the polyimide resin (A) is 40,000 or more, the heat distortion temperature (HDT) under low load environment is improved and the mechanical strength is also improved. Further, when Mw is 150,000 or less, moldability is good.
The weight average molecular weight Mw of the polyimide resin (A) can be measured by a gel permeation chromatography (GPC) method using polymethyl methacrylate (PMMA) as a standard sample, and specifically can be measured by the method described in Examples. .
 ポリイミド樹脂(A)の0.5質量%濃硫酸溶液の30℃における対数粘度は、好ましくは0.8~2.0dL/g、より好ましくは0.9~1.8dL/gの範囲である。対数粘度が0.8dL/g以上であれば、得られる樹脂成形体においてミクロ相分離構造を形成しやすくなり、また十分な機械的強度が得られる。対数粘度が2.0dL/g以下であると、成形加工性及び取り扱い性が良好になる。対数粘度μは、キャノンフェンスケ粘度計を使用して、30℃において濃硫酸及び上記ポリイミド樹脂溶液の流れる時間をそれぞれ測定し、下記式から求められる。具体的には実施例に記載の方法で測定できる。
  μ=ln[(ts/t)/C]
   t:濃硫酸の流れる時間
   ts:ポリイミド樹脂溶液の流れる時間
   C:0.5(g/dL)
The logarithmic viscosity at 30° C. of a 0.5% by mass concentrated sulfuric acid solution of the polyimide resin (A) is preferably in the range of 0.8 to 2.0 dL/g, more preferably 0.9 to 1.8 dL/g. . When the logarithmic viscosity is 0.8 dL/g or more, it becomes easy to form a microphase-separated structure in the resulting resin molding, and sufficient mechanical strength can be obtained. When the logarithmic viscosity is 2.0 dL/g or less, molding processability and handleability are improved. The logarithmic viscosity μ is obtained from the following formula by measuring the flow times of concentrated sulfuric acid and the polyimide resin solution at 30° C. using a Canon Fenske viscometer. Specifically, it can be measured by the method described in Examples.
μ = ln [(ts/t 0 )/C]
t 0 : Flow time of concentrated sulfuric acid ts: Flow time of polyimide resin solution C: 0.5 (g/dL)
(ポリイミド樹脂(A)の製造方法)
 ポリイミド樹脂(A)は、テトラカルボン酸成分とジアミン成分とを反応させることにより製造することができる。該テトラカルボン酸成分は少なくとも1つの芳香環を含むテトラカルボン酸及び/又はその誘導体を含有し、該ジアミン成分は少なくとも1つの脂環式炭化水素構造を含むジアミン及び鎖状脂肪族ジアミンを含有する。
(Method for producing polyimide resin (A))
Polyimide resin (A) can be produced by reacting a tetracarboxylic acid component and a diamine component. The tetracarboxylic acid component contains a tetracarboxylic acid and/or derivative thereof containing at least one aromatic ring, and the diamine component contains a diamine containing at least one alicyclic hydrocarbon structure and a linear aliphatic diamine. .
 少なくとも1つの芳香環を含むテトラカルボン酸は4つのカルボキシ基が直接芳香環に結合した化合物であることが好ましく、構造中にアルキル基を含んでいてもよい。また前記テトラカルボン酸は、炭素数6~26であるものが好ましい。前記テトラカルボン酸としては、ピロメリット酸、2,3,5,6-トルエンテトラカルボン酸、3,3’,4,4’-ベンゾフェノンテトラカルボン酸、3,3’,4,4’-ビフェニルテトラカルボン酸、1,4,5,8-ナフタレンテトラカルボン酸等が好ましい。これらの中でもピロメリット酸がより好ましい。 The tetracarboxylic acid containing at least one aromatic ring is preferably a compound in which four carboxy groups are directly bonded to the aromatic ring, and may contain an alkyl group in its structure. The tetracarboxylic acid preferably has 6 to 26 carbon atoms. Examples of the tetracarboxylic acid include pyromellitic acid, 2,3,5,6-toluenetetracarboxylic acid, 3,3′,4,4′-benzophenonetetracarboxylic acid, and 3,3′,4,4′-biphenyl. Tetracarboxylic acid, 1,4,5,8-naphthalenetetracarboxylic acid and the like are preferred. Among these, pyromellitic acid is more preferable.
 少なくとも1つの芳香環を含むテトラカルボン酸の誘導体としては、少なくとも1つの芳香環を含むテトラカルボン酸の無水物又はアルキルエステル体が挙げられる。前記テトラカルボン酸誘導体は、炭素数6~38であるものが好ましい。テトラカルボン酸の無水物としては、ピロメリット酸一無水物、ピロメリット酸二無水物、2,3,5,6-トルエンテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物等が挙げられる。テトラカルボン酸のアルキルエステル体としては、ピロメリット酸ジメチル、ピロメリット酸ジエチル、ピロメリット酸ジプロピル、ピロメリット酸ジイソプロピル、2,3,5,6-トルエンテトラカルボン酸ジメチル、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸ジメチル、3,3’,4,4’-ベンゾフェノンテトラカルボン酸ジメチル、3,3’,4,4’-ビフェニルテトラカルボン酸ジメチル、1,4,5,8-ナフタレンテトラカルボン酸ジメチル等が挙げられる。上記テトラカルボン酸のアルキルエステル体において、アルキル基の炭素数は1~3が好ましい。 Derivatives of tetracarboxylic acids containing at least one aromatic ring include anhydrides or alkyl esters of tetracarboxylic acids containing at least one aromatic ring. The tetracarboxylic acid derivative preferably has 6 to 38 carbon atoms. Anhydrides of tetracarboxylic acids include pyromellitic monoanhydride, pyromellitic dianhydride, 2,3,5,6-toluenetetracarboxylic dianhydride, 3,3′,4,4′-diphenyl sulfonetetracarboxylic dianhydride, 3,3′,4,4′-benzophenonetetracarboxylic dianhydride, 3,3′,4,4′-biphenyltetracarboxylic dianhydride, 1,4,5, 8-naphthalenetetracarboxylic dianhydride and the like are included. Examples of alkyl esters of tetracarboxylic acids include dimethyl pyromellitic acid, diethyl pyromellitic acid, dipropyl pyromellitic acid, diisopropyl pyromellitic acid, dimethyl 2,3,5,6-toluenetetracarboxylate, 3,3′,4 ,4′-diphenylsulfonetetracarboxylate dimethyl, 3,3′,4,4′-benzophenonetetracarboxylate dimethyl, 3,3′,4,4′-biphenyltetracarboxylate dimethyl, 1,4,5,8 -Naphthalenetetracarboxylate dimethyl and the like. In the above alkyl ester of tetracarboxylic acid, the alkyl group preferably has 1 to 3 carbon atoms.
 少なくとも1つの芳香環を含むテトラカルボン酸及び/又はその誘導体は、上記から選ばれる少なくとも1つの化合物を単独で用いてもよく、2つ以上の化合物を組み合わせて用いてもよい。 As the tetracarboxylic acid and/or derivative thereof containing at least one aromatic ring, at least one compound selected from the above may be used alone, or two or more compounds may be used in combination.
 少なくとも1つの脂環式炭化水素構造を含むジアミンの炭素数は6~22が好ましく、例えば、1,2-ビス(アミノメチル)シクロヘキサン、1,3-ビス(アミノメチル)シクロヘキサン、1,4-ビス(アミノメチル)シクロヘキサン、1,2-シクロヘキサンジアミン、1,3-シクロヘキサンジアミン、1,4-シクロヘキサンジアミン、4,4’-ジアミノジシクロヘキシルメタン、4,4’-メチレンビス(2-メチルシクロヘキシルアミン)、カルボンジアミン、リモネンジアミン、イソフォロンジアミン、ノルボルナンジアミン、ビス(アミノメチル)トリシクロ[5.2.1.02,6]デカン、3,3’-ジメチル-4,4’-ジアミノジシクロヘキシルメタン、4,4’-ジアミノジシクロヘキシルプロパン等が好ましい。これらの化合物を単独で用いてもよく、これらから選ばれる2つ以上の化合物を組み合わせて用いてもよい。これらのうち、1,3-ビス(アミノメチル)シクロヘキサンが好適に使用できる。なお、脂環式炭化水素構造を含むジアミンは一般的には構造異性体を持つが、シス体/トランス体の比率は限定されない。 The diamine containing at least one alicyclic hydrocarbon structure preferably has 6 to 22 carbon atoms, such as 1,2-bis(aminomethyl)cyclohexane, 1,3-bis(aminomethyl)cyclohexane, 1,4- Bis(aminomethyl)cyclohexane, 1,2-cyclohexanediamine, 1,3-cyclohexanediamine, 1,4-cyclohexanediamine, 4,4'-diaminodicyclohexylmethane, 4,4'-methylenebis(2-methylcyclohexylamine) , carvonediamine, limonenediamine, isophoronediamine, norbornanediamine, bis(aminomethyl)tricyclo[5.2.1.0 2,6 ]decane, 3,3′-dimethyl-4,4′-diaminodicyclohexylmethane, 4,4'-Diaminodicyclohexylpropane and the like are preferred. These compounds may be used alone, or two or more compounds selected from these may be used in combination. Among these, 1,3-bis(aminomethyl)cyclohexane can be preferably used. Diamines containing an alicyclic hydrocarbon structure generally have structural isomers, but the ratio of cis/trans isomers is not limited.
 鎖状脂肪族ジアミンは、直鎖状であっても分岐状であってもよく、炭素数は5~16が好ましく、6~14がより好ましく、7~12が更に好ましい。また、鎖部分の炭素数が5~16であれば、その間にエーテル結合を含んでいてもよい。鎖状脂肪族ジアミンとして例えば1,5-ペンタメチレンジアミン、2-メチルペンタン-1,5-ジアミン、3-メチルペンタン-1,5-ジアミン、1,6-ヘキサメチレンジアミン、1,7-ヘプタメチレンジアミン、1,8-オクタメチレンジアミン、1,9-ノナメチレンジアミン、1,10-デカメチレンジアミン、1,11-ウンデカメチレンジアミン、1,12-ドデカメチレンジアミン、1,13-トリデカメチレンジアミン、1,14-テトラデカメチレンジアミン、1,16-ヘキサデカメチレンジアミン、2,2’-(エチレンジオキシ)ビス(エチレンアミン)等が好ましい。
 鎖状脂肪族ジアミンは1種類あるいは複数を混合して使用してもよい。これらのうち、炭素数が8~10の鎖状脂肪族ジアミンが好適に使用でき、特に1,8-オクタメチレンジアミン及び1,10-デカメチレンジアミンからなる群から選択される1種以上が好適に使用できる。
The chain aliphatic diamine may be linear or branched, and preferably has 5 to 16 carbon atoms, more preferably 6 to 14 carbon atoms, and still more preferably 7 to 12 carbon atoms. In addition, if the chain portion has 5 to 16 carbon atoms, an ether bond may be included therebetween. Chain aliphatic diamines such as 1,5-pentamethylenediamine, 2-methylpentane-1,5-diamine, 3-methylpentane-1,5-diamine, 1,6-hexamethylenediamine, 1,7-hepta methylenediamine, 1,8-octamethylenediamine, 1,9-nonamethylenediamine, 1,10-decamethylenediamine, 1,11-undecamethylenediamine, 1,12-dodecamethylenediamine, 1,13-trideca Methylenediamine, 1,14-tetradecamethylenediamine, 1,16-hexadecamethylenediamine, 2,2'-(ethylenedioxy)bis(ethyleneamine) and the like are preferred.
Chain aliphatic diamines may be used singly or in combination. Among these, chain aliphatic diamines having 8 to 10 carbon atoms can be preferably used, and one or more selected from the group consisting of 1,8-octamethylenediamine and 1,10-decamethylenediamine is particularly preferable. can be used for
 ポリイミド樹脂(A)を製造する際、少なくとも1つの脂環式炭化水素構造を含むジアミンと鎖状脂肪族ジアミンの合計量に対する、少なくとも1つの脂環式炭化水素構造を含むジアミンの仕込み量のモル比は20~70モル%であることが好ましい。該モル量は、好ましくは25モル%以上、より好ましくは30モル%以上、更に好ましくは32モル%以上であり、高い結晶性を発現する観点から、好ましくは60モル%以下、より好ましくは50モル%以下、更に好ましくは40モル%未満、更に好ましくは35モル%以下である。 When producing the polyimide resin (A), the molar amount of the diamine charged containing at least one alicyclic hydrocarbon structure with respect to the total amount of the diamine containing at least one alicyclic hydrocarbon structure and the chain aliphatic diamine The ratio is preferably 20-70 mol %. The molar amount is preferably 25 mol% or more, more preferably 30 mol% or more, still more preferably 32 mol% or more, and from the viewpoint of expressing high crystallinity, preferably 60 mol% or less, more preferably 50 mol% or more. mol % or less, more preferably less than 40 mol %, more preferably 35 mol % or less.
 また、上記ジアミン成分中に、少なくとも1つの芳香環を含むジアミンを含有してもよい。少なくとも1つの芳香環を含むジアミンの炭素数は6~22が好ましく、例えば、オルトキシリレンジアミン、メタキシリレンジアミン、パラキシリレンジアミン、1,2-ジエチニルベンゼンジアミン、1,3-ジエチニルベンゼンジアミン、1,4-ジエチニルベンゼンジアミン、1,2-ジアミノベンゼン、1,3-ジアミノベンゼン、1,4-ジアミノベンゼン、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルメタン、α,α’-ビス(4-アミノフェニル)1,4-ジイソプロピルベンゼン、α,α’-ビス(3-アミノフェニル)-1,4-ジイソプロピルベンゼン、2,2-ビス〔4-(4-アミノフェノキシ)フェニル〕プロパン、2,6-ジアミノナフタレン、1,5-ジアミノナフタレン等が挙げられる。 In addition, the diamine component may contain a diamine containing at least one aromatic ring. The diamine containing at least one aromatic ring preferably has 6 to 22 carbon atoms, such as orthoxylylenediamine, metaxylylenediamine, paraxylylenediamine, 1,2-diethynylbenzenediamine, 1,3-diethynyl. Benzenediamine, 1,4-diethynylbenzenediamine, 1,2-diaminobenzene, 1,3-diaminobenzene, 1,4-diaminobenzene, 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 4 ,4'-diaminodiphenylmethane, α,α'-bis(4-aminophenyl)1,4-diisopropylbenzene, α,α'-bis(3-aminophenyl)-1,4-diisopropylbenzene, 2,2- bis[4-(4-aminophenoxy)phenyl]propane, 2,6-diaminonaphthalene, 1,5-diaminonaphthalene and the like.
 上記において、少なくとも1つの脂環式炭化水素構造を含むジアミンと鎖状脂肪族ジアミンの合計量に対する、少なくとも1つの芳香環を含むジアミンの仕込み量のモル比は、25モル%以下であることが好ましく、より好ましくは20モル%以下、更に好ましくは15モル%以下である。
 前記モル比の下限は特に限定されないが、耐熱性の向上という観点からは、好ましくは5モル%以上、より好ましくは10モル%以上である。
 一方で、ポリイミド樹脂の着色を少なくする観点からは、前記モル比は、より更に好ましくは12モル%以下、より更に好ましくは10モル%以下、より更に好ましくは5モル%以下、より更に好ましくは0モル%である。
In the above, the molar ratio of the charged amount of the diamine containing at least one aromatic ring to the total amount of the diamine containing at least one alicyclic hydrocarbon structure and the chain aliphatic diamine is 25 mol% or less. It is preferably 20 mol % or less, still more preferably 15 mol % or less.
Although the lower limit of the molar ratio is not particularly limited, it is preferably 5 mol % or more, more preferably 10 mol % or more, from the viewpoint of improving heat resistance.
On the other hand, from the viewpoint of reducing the coloring of the polyimide resin, the molar ratio is more preferably 12 mol% or less, even more preferably 10 mol% or less, even more preferably 5 mol% or less, and even more preferably 0 mol %.
 ポリイミド樹脂(A)を製造する際、前記テトラカルボン酸成分と前記ジアミン成分の仕込み量比は、テトラカルボン酸成分1モルに対してジアミン成分が0.9~1.1モルであることが好ましい。 When producing the polyimide resin (A), the charged amount ratio of the tetracarboxylic acid component and the diamine component is preferably 0.9 to 1.1 mol of the diamine component with respect to 1 mol of the tetracarboxylic acid component. .
 またポリイミド樹脂(A)を製造する際、前記テトラカルボン酸成分、前記ジアミン成分の他に、末端封止剤を混合してもよい。末端封止剤としては、モノアミン類及びジカルボン酸類からなる群から選択される1種以上が好ましい。末端封止剤の使用量は、ポリイミド樹脂(A)中に所望量の末端基を導入できる量であればよく、前記テトラカルボン酸及び/又はその誘導体1モルに対して0.0001~0.1モルが好ましく、0.001~0.06モルがより好ましく、0.002~0.035モルが更に好ましく、0.002~0.020モルがより更に好ましく、0.002~0.012モルがより更に好ましい。
 中でも、末端封止剤としてはモノアミン類末端封止剤が好ましく、ポリイミド樹脂(A)の末端に前述した炭素数5~14の鎖状脂肪族基を導入して耐熱老化性を向上させる観点から、炭素数5~14の鎖状脂肪族基を有するモノアミンがより好ましく、炭素数5~14の飽和直鎖状脂肪族基を有するモノアミンが更に好ましい。
 末端封止剤は、特に好ましくはn-オクチルアミン、イソオクチルアミン、2-エチルヘキシルアミン、n-ノニルアミン、イソノニルアミン、n-デシルアミン、及びイソデシルアミンからなる群から選択される1種以上であり、更に好ましくはn-オクチルアミン、イソオクチルアミン、2-エチルヘキシルアミン、n-ノニルアミン、及びイソノニルアミンからなる群から選択される1種以上であり、最も好ましくはn-オクチルアミン、イソオクチルアミン、及び2-エチルヘキシルアミンからなる群から選択される1種以上である。
Moreover, when producing the polyimide resin (A), a terminal blocking agent may be mixed in addition to the tetracarboxylic acid component and the diamine component. As the terminal blocking agent, one or more selected from the group consisting of monoamines and dicarboxylic acids is preferable. The amount of the terminal blocking agent used may be an amount that can introduce a desired amount of terminal groups into the polyimide resin (A), and is 0.0001 to 0.001 to 0.001 to 1 mol of the tetracarboxylic acid and/or derivative thereof. 1 mol is preferable, 0.001 to 0.06 mol is more preferable, 0.002 to 0.035 mol is more preferable, 0.002 to 0.020 mol is even more preferable, 0.002 to 0.012 mol is even more preferred.
Among them, a monoamine terminal blocking agent is preferable as the terminal blocking agent, and from the viewpoint of improving heat aging resistance by introducing the chain aliphatic group having 5 to 14 carbon atoms described above at the end of the polyimide resin (A). , monoamines having a chain aliphatic group of 5 to 14 carbon atoms are more preferred, and monoamines having a saturated linear aliphatic group of 5 to 14 carbon atoms are even more preferred.
The terminal blocking agent is particularly preferably one or more selected from the group consisting of n-octylamine, isooctylamine, 2-ethylhexylamine, n-nonylamine, isononylamine, n-decylamine, and isodecylamine. more preferably one or more selected from the group consisting of n-octylamine, isooctylamine, 2-ethylhexylamine, n-nonylamine, and isononylamine, and most preferably n-octylamine and isooctyl One or more selected from the group consisting of amines and 2-ethylhexylamine.
 ポリイミド樹脂(A)を製造するための重合方法としては、公知の重合方法が適用でき、国際公開第2016/147996号に記載の方法を用いることができる。 As a polymerization method for producing the polyimide resin (A), a known polymerization method can be applied, and the method described in International Publication No. 2016/147996 can be used.
 本発明の発光成形体は、例えば圧縮成形により形成することができる。より具体的には、ポリイミド樹脂(A)を含む粉末を圧縮成形してなることが好ましい。
 また、成形体は、ポリイミド樹脂(A)のみからなることが好ましく、このような成形体は、ポリイミド樹脂(A)のみからなる粉末を、圧縮成形してなることが好ましい。
The luminescent molded article of the present invention can be formed, for example, by compression molding. More specifically, it is preferable to compress and mold a powder containing the polyimide resin (A).
Moreover, the molded article preferably consists of the polyimide resin (A) only, and such a molded article is preferably formed by compression-molding a powder consisting of the polyimide resin (A) only.
 また。本発明の発光成形体は、更に、必要に応じてポリイミド樹脂(A)以外の、他の樹脂を含んでもよい。
 他の樹脂としては、例えば非晶性熱可塑性樹脂、結晶性熱可塑性樹脂、熱硬化性樹脂等が挙げられる。
 非晶性熱可塑性樹脂としては、例えば、ポリスチレン樹脂;ポリ塩化ビニル;ポリ塩化ビニリデン;ポリメタクリル酸メチル;アクリロニトリル-ブタジエン-スチレン樹脂;ポリカーボネート樹脂;ポリスルホン樹脂;ポリフェニルスルホン樹脂;ポリアリレート樹脂;ポリフェニレンエーテル樹脂;ポリエーテルスルホン樹脂;ポリエーテルイミド樹脂;ポリアミドイミド樹脂;ポリウレタン樹脂;等であってガラス転移温度がポリイミド樹脂(A)の融点未満である樹脂が挙げられる。これらは1種を単独で、又は2種以上を組み合わせて用いることができる。
 結晶性熱可塑性樹脂としては、例えば、ポリエチレン、ポリプロピレン、環状ポリオレフィン等のポリオレフィン樹脂;ポリアミド樹脂;ポリアセタール樹脂;ポリフェニレンサルファイド樹脂;ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリシクロへキシレンジメチレンテレフタレート、ポリグリコール酸等のポリエステル樹脂;液晶ポリマー;ポリテトラフルオロエチレン、ポリフッ化ビニリデン等のフッ素樹脂;ポリメチルペンテン樹脂;ポリウレタン樹脂;等であって、ガラス転移温度がポリイミド樹脂(A)のガラス転移温度未満であるか、又は融点がポリイミド樹脂(A)の融点未満である樹脂が挙げられる。これらは1種を単独で、又は2種以上を組み合わせて用いることができる。
 熱硬化性樹脂としては、ポリイミド樹脂(A)を分散しうる熱硬化性樹脂であれば特に制限はなく、例えば、エポキシ樹脂、フェノール樹脂、ユリア樹脂、メラミン樹脂、不飽和ポリイミド樹脂、ケイ素樹脂、ウレタン樹脂、カゼイン樹脂、フラン樹脂、アルキド樹脂、及びキシレン樹脂からなる群から選択される1種以上が挙げられる。これらの中でも、使用するポリイミド樹脂(A)の形状を維持した状態で成形体に含有させる観点、及びポリイミド樹脂(A)の分散性の観点から、熱硬化性樹脂はエポキシ樹脂及びウレタン樹脂からなる群から選択される1種以上が好ましく、エポキシ樹脂がより好ましい。
 また、発光特性に優れた成形体を得る観点から、他の樹脂としては、ポリイミド樹脂(A)に対して外部活性プロトンを供給し得る樹脂が好ましい。具体的には、構造中に活性水素を有する樹脂であり、より具体的には、ポリアミド樹脂、ポリアミドイミド樹脂、エポキシ樹脂、ウレタン樹脂、ウレア樹脂、フェノール樹脂及びシアネート樹脂等が挙げられる。ここで、樹脂が構造中に有する活性水素としては、樹脂そのもの(樹脂骨格)に由来する活性水素、樹脂中に残存する未反応原料に由来する活性水素、樹脂が劣化したことにより発生した活性水素等が挙げられる。例えば、ポリアミド樹脂の場合、その構造中に含まれるアミド基の水素であり、フェノール樹脂の場合、その構造中に含まれる水酸基の水素である。
again. The luminescent molded article of the present invention may further contain other resins than the polyimide resin (A), if necessary.
Other resins include, for example, amorphous thermoplastic resins, crystalline thermoplastic resins, and thermosetting resins.
Examples of amorphous thermoplastic resins include polystyrene resin; polyvinyl chloride; polyvinylidene chloride; polymethyl methacrylate; acrylonitrile-butadiene-styrene resin; polycarbonate resin; Ether resins; polyethersulfone resins; polyetherimide resins; polyamideimide resins; polyurethane resins; These can be used individually by 1 type or in combination of 2 or more types.
Examples of crystalline thermoplastic resins include polyolefin resins such as polyethylene, polypropylene, and cyclic polyolefins; polyamide resins; polyacetal resins; polyphenylene sulfide resins; polyester resin; liquid crystal polymer; fluorine resin such as polytetrafluoroethylene and polyvinylidene fluoride; polymethylpentene resin; polyurethane resin; Alternatively, a resin having a melting point lower than the melting point of the polyimide resin (A) may be used. These can be used individually by 1 type or in combination of 2 or more types.
The thermosetting resin is not particularly limited as long as it is a thermosetting resin capable of dispersing the polyimide resin (A). Examples include epoxy resin, phenol resin, urea resin, melamine resin, unsaturated polyimide resin, silicone resin, One or more selected from the group consisting of urethane resins, casein resins, furan resins, alkyd resins, and xylene resins can be used. Among these, the thermosetting resin is composed of epoxy resin and urethane resin from the viewpoint of containing the polyimide resin (A) to be used in the molded body while maintaining the shape thereof, and from the viewpoint of the dispersibility of the polyimide resin (A). One or more selected from the group are preferred, and epoxy resins are more preferred.
Moreover, from the viewpoint of obtaining a molded article having excellent light emitting properties, the other resin is preferably a resin capable of supplying external active protons to the polyimide resin (A). Specifically, it is a resin having active hydrogen in its structure, and more specifically, it includes polyamide resin, polyamideimide resin, epoxy resin, urethane resin, urea resin, phenol resin, cyanate resin, and the like. Here, the active hydrogen that the resin has in the structure includes active hydrogen derived from the resin itself (resin skeleton), active hydrogen derived from unreacted raw materials remaining in the resin, and active hydrogen generated due to deterioration of the resin. etc. For example, in the case of polyamide resin, it is the hydrogen of the amide group contained in the structure, and in the case of phenol resin, it is the hydrogen of the hydroxyl group contained in the structure.
<樹脂(B)>
 本発明の成形体は、発光特性に優れた成形体を得る観点から、更にポリアミド樹脂、ポリアミドイミド樹脂、エポキシ樹脂、ウレタン樹脂、ウレア樹脂、フェノール樹脂及びシアネート樹脂からなる群から選択される1種以上の樹脂(B)を含むことが好ましい。上記樹脂(B)は、構造中に活性水素を有する樹脂であり、所定の構造を有するポリイミド樹脂(A)とコンパウンドすることにより、得られる成形体中の活性プロトン量を高めることができ、発光特性を向上させることができる。また、樹脂(B)を加えた場合には、圧縮成形のみならず、射出成形でも成形体を得ることができ、成形品の形状設計の自由度が向上する。
<Resin (B)>
The molded article of the present invention is one selected from the group consisting of polyamide resins, polyamideimide resins, epoxy resins, urethane resins, urea resins, phenol resins and cyanate resins, from the viewpoint of obtaining molded articles having excellent light emitting properties. It is preferable that the above resin (B) is included. The resin (B) is a resin having active hydrogen in its structure, and by compounding with a polyimide resin (A) having a predetermined structure, the amount of active protons in the resulting molded product can be increased, and light emission can be achieved. characteristics can be improved. Moreover, when the resin (B) is added, a molded product can be obtained not only by compression molding but also by injection molding, and the degree of freedom in designing the shape of the molded product is improved.
 樹脂(B)は、ポリアミド樹脂、ポリアミドイミド樹脂、エポキシ樹脂、ウレタン樹脂、ウレア樹脂、フェノール樹脂及びシアネート樹脂からなる群から選択される1種以上であり、中でもポリアミド樹脂及びエポキシ樹脂からなる群から選択される1種以上が好ましく、より好ましくはポリアミド樹脂である。
 ポリアミド樹脂としては、ポリアミド6(PA6)、ポリアミド66、ポリアミド66/6、ポリアミド46、ポリアミド11、ポリアミド12、MXD6、ポリアミド9T等が挙げられ、ポリアミドイミド樹脂としては、Torlon(Solvay社製)等が挙げられ、エポキシ樹脂としては、ビスフェノールA型エポキシ樹脂等が挙げられ、ウレタン樹脂としては、熱可塑性ウレタン樹脂等が挙げられ、ウレア樹脂としては、ピュアポリウレア、ハイブリットポリウレア、ウレアウレタン等が挙げられ、フェノール樹脂としては、ノボラック型フェノール樹脂、レゾール型フェノール樹脂等が挙げられ、シアネート樹脂としては、CYTESTER(三菱ガス化学株式会社製)等が挙げられる。
 樹脂(B)は、上記のうち1種を単独で用いてもよく、2種以上を併用してもよい。
Resin (B) is one or more selected from the group consisting of polyamide resins, polyamideimide resins, epoxy resins, urethane resins, urea resins, phenol resins and cyanate resins, and among them from the group consisting of polyamide resins and epoxy resins. One or more selected are preferred, and polyamide resins are more preferred.
Polyamide resins include polyamide 6 (PA6), polyamide 66, polyamide 66/6, polyamide 46, polyamide 11, polyamide 12, MXD6, polyamide 9T and the like, and polyamideimide resins include Torlon (manufactured by Solvay) and the like. Epoxy resins include bisphenol A type epoxy resins, urethane resins include thermoplastic urethane resins, and urea resins include pure polyurea, hybrid polyurea, urea urethane, and the like. Phenolic resins include novolac type phenolic resins and resol type phenolic resins, and cyanate resins include CYTESTER (manufactured by Mitsubishi Gas Chemical Company, Inc.).
One of the above resins (B) may be used alone, or two or more thereof may be used in combination.
 樹脂(B)は、構造中に活性水素を有する樹脂であるため、樹脂(B)を含有する成形体は、ポリイミド樹脂(A)のみからなる成形体に比べて、活性プロトン量を高めることができ、発光特性を向上させることができる。
 成形体が樹脂(B)を含有する場合、成形体中の活性プロトン量は、上記式(1)の繰り返し構成単位と上記式(2)の繰り返し構成単位の合計を100モル%としたときに、好ましくは0.01~100000モル%、より好ましくは1~10000モル%、更に好ましくは100~2000モル%である。
Since the resin (B) is a resin having active hydrogen in its structure, a molded body containing the resin (B) can have an increased amount of active protons compared to a molded body made of only the polyimide resin (A). It is possible to improve the light emission characteristics.
When the molded body contains the resin (B), the amount of active protons in the molded body is 100 mol% of the repeating structural unit of the above formula (1) and the repeating structural unit of the above formula (2). , preferably 0.01 to 100,000 mol %, more preferably 1 to 10,000 mol %, still more preferably 100 to 2,000 mol %.
 成形体が樹脂(B)を含有する場合、成形体中のポリイミド樹脂(A)と樹脂(B)との質量比(A/B)は、好ましくは1/99~99/1、より好ましくは5/95~95/5、更に好ましくは10/90~90/10、より更に好ましくは10/90~85/15の範囲である。上記範囲であると、樹脂間の分散性が良くなり、成形体の機械強度低下を抑制することができる。 When the molded article contains the resin (B), the mass ratio (A/B) of the polyimide resin (A) and the resin (B) in the molded article is preferably 1/99 to 99/1, more preferably It is in the range of 5/95 to 95/5, more preferably 10/90 to 90/10, still more preferably 10/90 to 85/15. Within the above range, the dispersibility between the resins is improved, and a decrease in the mechanical strength of the molded article can be suppressed.
 また成形体中、ポリイミド樹脂(A)及び樹脂(B)の合計含有量は、本発明の効果を得る観点から、好ましくは70質量%以上、より好ましくは80質量%以上、更に好ましくは90質量%以上である。また、上限は100質量%である。 In addition, the total content of the polyimide resin (A) and the resin (B) in the molded body is preferably 70% by mass or more, more preferably 80% by mass or more, and still more preferably 90% by mass, from the viewpoint of obtaining the effects of the present invention. % or more. Moreover, an upper limit is 100 mass %.
<添加剤>
 本発明の発光成形体は、充填材、艶消剤、核剤、可塑剤、帯電防止剤、着色防止剤、ゲル化防止剤、難燃剤、着色剤、摺動性改良剤、酸化防止剤、導電剤、樹脂改質剤等の添加剤を、必要に応じて含有していてもよい。
 成形体が添加剤を含有する場合、成形体中の添加剤の含有量は、特に限定されないが、ポリイミド樹脂(A)由来の物性を維持しつつ添加剤の効果を発現させる観点から、通常50質量%以下であり、好ましくは0.0001~30質量%、より好ましくは0.0001~15質量%、更に好ましくは0.001~10質量%、より更に好ましくは0.01~8質量%である。
<Additive>
The luminescent molded article of the present invention contains a filler, a delustering agent, a nucleating agent, a plasticizer, an antistatic agent, an anti-coloring agent, an anti-gelling agent, a flame retardant, a coloring agent, a slidability improver, an antioxidant, Additives such as a conductive agent and a resin modifier may be contained as necessary.
When the molded article contains an additive, the content of the additive in the molded article is not particularly limited, but from the viewpoint of expressing the effect of the additive while maintaining the physical properties derived from the polyimide resin (A), it is usually 50 % by mass or less, preferably 0.0001 to 30% by mass, more preferably 0.0001 to 15% by mass, still more preferably 0.001 to 10% by mass, still more preferably 0.01 to 8% by mass be.
[発光成形体の製造方法]
 本発明の発光成形体に含有されるポリイミド樹脂(A)は熱可塑性を有するため、ポリイミド樹脂(A)を含有する樹脂組成物を熱成形することにより容易に発光成形体を製造できる。
 熱成形方法としては圧縮成形、射出成形、押出成形、ブロー成形、レーザー成形、超音波加熱成形、溶接、溶着等が挙げられ、熱溶融工程を経る成形方法であればいずれの方法でも成形が可能である。熱成形は、成形温度を例えば400℃を超える高温に設定することなく成形可能であるため好ましい。中でも圧縮成形や射出成形を行う場合には、成形温度及び成形時の金型温度を高温に設定することなく成形可能であるため好ましい。
[Method for producing light-emitting molding]
Since the polyimide resin (A) contained in the luminescent molded article of the present invention has thermoplasticity, the luminescent molded article can be easily produced by thermoforming a resin composition containing the polyimide resin (A).
Thermoforming methods include compression molding, injection molding, extrusion molding, blow molding, laser molding, ultrasonic thermoforming, welding, and welding. is. Thermoforming is preferred because molding can be performed without setting the molding temperature to a high temperature exceeding, for example, 400°C. Among them, when performing compression molding or injection molding, molding is possible without setting the molding temperature and the mold temperature at the time of molding to a high temperature, which is preferable.
 特に、本発明の発光成形体を製造する方法としては、<1>ポリイミド樹脂(A)のみからなる成形体を作製する場合は、ポリイミド樹脂(A)の粉末を圧縮成形することが好ましく、<2>ポリイミド樹脂(A)及び上記樹脂(B)を含む成形体を作製する場合は、下記の方法により射出成形することが好ましい。以下、詳しく説明する。 In particular, as a method for producing the light-emitting molded article of the present invention, <1> when producing a molded article consisting only of the polyimide resin (A), it is preferable to compress the powder of the polyimide resin (A). 2> When producing a molded article containing the polyimide resin (A) and the resin (B), it is preferable to carry out injection molding by the following method. A detailed description will be given below.
<1>圧縮成形
 ポリイミド樹脂(A)のみからなる成形体を作製する場合は、成形体中の活性プロトンを所定量以上とする観点から、圧縮成形を行うことがより好ましい。
 ポリイミド樹脂(A)のみからなる成形体の場合、活性プロトン量は、ポリイミド樹脂(A)の構造中に含まれる末端アミノ基の水素の量で決定する。通常、ポリイミド樹脂(A)の構造中に含まれる末端アミノ基の量は、合成直後の粉末の状態が最も多く、その後の処理工程でポリイミド樹脂(A)が高温に晒されるほど低減する傾向にある。そのため、成形体中に、適度にポリイミド樹脂(A)の末端アミノ基を残存させる観点では、射出成形と比較して、溶融を伴う熱処理の回数や処理時間が少ない圧縮成形により成形体を作製することが好ましい。
<1> Compression molding In the case of producing a molded body consisting only of the polyimide resin (A), it is more preferable to carry out compression molding from the viewpoint of increasing the amount of active protons in the molded body to a predetermined amount or more.
In the case of a molded article made of only polyimide resin (A), the amount of active protons is determined by the amount of hydrogen in terminal amino groups contained in the structure of polyimide resin (A). Normally, the amount of terminal amino groups contained in the structure of the polyimide resin (A) is the largest in the powder state immediately after synthesis, and tends to decrease as the polyimide resin (A) is exposed to higher temperatures in subsequent processing steps. be. Therefore, from the viewpoint of appropriately leaving the terminal amino groups of the polyimide resin (A) in the molded body, the molded body is produced by compression molding, which has a smaller number of heat treatments involving melting and less processing time than injection molding. is preferred.
 圧縮成形により成形体を作製する方法としては、公知の方法を用いることができるが、例えば以下のような方法により行うことが好ましい。 As a method for producing a molded body by compression molding, a known method can be used, but it is preferable to use, for example, the following method.
(予備成形)
 まず、ポリイミド樹脂(A)の粉末を、金型に入れ圧縮し、予備成形を行う。
(preforming)
First, powder of polyimide resin (A) is put into a mold and compressed to perform preforming.
 ポリイミド樹脂(A)の粉末は、樹脂合成後、適宜洗浄、乾燥されていることが好ましい。
 乾燥は、熱風乾燥機、除湿乾燥機等を用いて公知の方法により行うことができる。乾燥温度は、好ましくは80~160℃であり、より好ましくは120~150℃である。また、乾燥時間は、好ましくは6~24時間であり、より好ましくは8~16時間である。ポリイミド樹脂(A)の粉末の前処理として、乾燥処理を行うことで、曲げ強度及び耐熱性に優れた成形体を得ることができる。
The powder of the polyimide resin (A) is preferably washed and dried as appropriate after synthesizing the resin.
Drying can be performed by a known method using a hot air dryer, a dehumidifying dryer, or the like. The drying temperature is preferably 80-160°C, more preferably 120-150°C. Also, the drying time is preferably 6 to 24 hours, more preferably 8 to 16 hours. By performing a drying treatment as a pretreatment of the polyimide resin (A) powder, it is possible to obtain a molded article having excellent bending strength and heat resistance.
 ポリイミド樹脂(A)の粉末の体積平均粒径(D50)は、好ましくは10~100μmである。上記範囲であれば、ポリイミド樹脂(A)の粉末の取り扱い性が良好となり、作業性及び成形性が良好となる。そのため、ポリイミド樹脂(A)は、必要に応じて、上記体積平均粒径となるように、成形前に粉砕又は造粒されてもよい。
 ポリイミド樹脂(A)の粉末の体積平均粒径(D50)は、実施例に記載の方法により測定することができる。
The volume average particle diameter (D50) of the polyimide resin (A) powder is preferably 10 to 100 μm. Within the above range, the polyimide resin (A) powder can be easily handled, and workability and moldability are improved. Therefore, the polyimide resin (A) may be pulverized or granulated before molding so as to have the above volume average particle size, if necessary.
The volume average particle diameter (D50) of the polyimide resin (A) powder can be measured by the method described in Examples.
 金型は、成形体の形状や成形条件に応じて適宜選択すればよく、公知の金型を使用することができる。また、金型には、予め離型剤を塗布しておくことが好ましい。 The mold may be appropriately selected according to the shape of the molded body and molding conditions, and known molds can be used. Moreover, it is preferable to apply a release agent to the mold in advance.
 予備成形を行う装置としては、例えば、冷却プレス装置等が挙げられる。
 予備成形の条件としては、例えばゲージ圧力20~25MPa、常温(15~25℃)、不活性ガス雰囲気下の成形が好ましい。
A device for preforming includes, for example, a cooling press device.
Preferred conditions for preforming include, for example, gauge pressure of 20 to 25 MPa, normal temperature (15 to 25° C.), and forming in an inert gas atmosphere.
(熱成形)
 予備成形の後、圧縮しながら熱成形を行い、成形体を得る。
 熱成形を行う装置としては、例えば、真空プレス装置、オートクレーブ装置、ダブルベルトプレス装置等が挙げられる。
(thermoforming)
After preforming, thermoforming is performed while compressing to obtain a molded body.
Apparatus for thermoforming includes, for example, a vacuum press apparatus, an autoclave apparatus, a double belt press apparatus, and the like.
 熱成形時の温度は、好ましくは335~385℃、より好ましくは350~370℃である。上記範囲とすることにより、活性プロトンを所定量以上に制御しつつ、良好な成形品が得られる。
 熱成形時の雰囲気は、例えば、大気雰囲気、不活性ガス雰囲気、真空雰囲気等が挙げられる。中でも、加熱による成形体の着色を防止し、良好な発光特性を発揮させる観点から、真空雰囲気(-0.1bar以下)での熱成形が好ましい。
 熱成形時の圧力は、好ましくは5~30MPaであり、処理時間は、好ましくは10~20分である。
The temperature during thermoforming is preferably 335-385°C, more preferably 350-370°C. By setting the amount within the above range, a good molded product can be obtained while controlling the active protons to a predetermined amount or more.
The atmosphere during thermoforming includes, for example, an air atmosphere, an inert gas atmosphere, a vacuum atmosphere, and the like. Among them, thermoforming in a vacuum atmosphere (-0.1 bar or less) is preferable from the viewpoint of preventing coloration of the molded body due to heating and exhibiting good light emitting properties.
The pressure during thermoforming is preferably 5-30 MPa, and the treatment time is preferably 10-20 minutes.
(冷却)
 熱処理後の成形体を、金型から取り出し、圧縮冷却する。
 圧縮冷却を行う装置としては、例えば、冷却プレス装置等が挙げられる。
 圧縮冷却の条件としては、例えば、常温(15~25℃)、大気雰囲気下で、熱成形時と同じ圧力及び処理時間で行うことが好ましい。
(cooling)
After the heat treatment, the compact is removed from the mold and compressed and cooled.
As an apparatus for compressing and cooling, for example, a cooling press apparatus and the like can be mentioned.
As conditions for compression cooling, for example, it is preferable to carry out at normal temperature (15 to 25° C.) in an atmospheric atmosphere under the same pressure and processing time as in thermoforming.
<2>射出成形
 ポリイミド樹脂(A)及び上記樹脂(B)を含む成形体を作製する場合は、均一な組成の成形体を得る観点から、射出成形を行うことがより好ましい。
<2> Injection molding When producing a molded article containing the polyimide resin (A) and the resin (B), it is more preferable to perform injection molding from the viewpoint of obtaining a molded article having a uniform composition.
 また、射出成形の場合、樹脂を一度溶融してペレット化し、該ペレットを各種成形機に導入して成形体を作製するため、ペレット化及び成形時の加熱により、ポリイミド樹脂(A)の末端アミノ基量が低下してしまう傾向がある。しかしながら、上記樹脂(B)を配合する場合は、樹脂(B)が外部活性プロトンの供給源となるため、成形体中の活性プロトン量を所定量以上とすることができ、優れた発光特性を有する成形体を得ることができる。 In the case of injection molding, the resin is once melted and pelletized, and the pellets are introduced into various molding machines to produce a molded body. There is a tendency for the base amount to decrease. However, when the resin (B) is blended, the resin (B) serves as a source of externally active protons, so the amount of active protons in the molded body can be increased to a predetermined amount or more, and excellent light emission characteristics can be achieved. It is possible to obtain a molded body having.
 射出成形により成形体を作製する方法としては、公知の方法を用いることができるが、例えば以下のような方法により行うことが好ましい。 As a method for producing a molded body by injection molding, a known method can be used, but it is preferable to use, for example, the following method.
 まず、ポリイミド樹脂(A)、樹脂(B)、及び、必要に応じて各種任意成分を添加してドライブレンドした後、これを押出機内に導入して、好ましくは290~350℃で溶融して押出機内で溶融混練及び押出し、押し出されたストランドを冷却後、ペレタイザーによりペレットを作製する。あるいは、ポリイミド樹脂(A)を押出機内に導入して、好ましくは290~350℃で溶融し、ここに樹脂(B)及び必要に応じて各種任意成分を導入して押出機内でポリイミド樹脂(A)と溶融混練し、押出し、押し出されたストランドを冷却後、ペレタイザーによりペレットを作製してもよい。 First, the polyimide resin (A), the resin (B), and, if necessary, after adding and dry blending various optional components, this is introduced into an extruder, preferably melted at 290 to 350 ° C. After melt-kneading and extruding in an extruder and cooling the extruded strand, pellets are produced by a pelletizer. Alternatively, the polyimide resin (A) is introduced into the extruder, preferably melted at 290 to 350 ° C., and the resin (B) and various optional components are introduced here, and the polyimide resin (A ), extruded, and after cooling the extruded strand, pellets may be produced by a pelletizer.
 上記ペレットを乾燥させた後、各種成形機に導入して好ましくは290~350℃で熱成形し、所望の形状を有する樹脂成形体を製造することができる。熱成形時の温度は、より好ましくは310~350℃である。 After drying the pellets, they can be introduced into various molding machines and thermoformed preferably at 290 to 350°C to produce a resin molded body having a desired shape. The temperature during thermoforming is more preferably 310 to 350°C.
[用途]
 本発明の発光成形体は、発光特性と耐熱性に優れることから、例えば波長変換部材、蛍光インク、白色発光材料等の用途に適用できる。中でも、波長変換部材として好適に用いることができる。
[Use]
INDUSTRIAL APPLICABILITY The luminescent molded article of the present invention is excellent in luminescent properties and heat resistance, and thus can be applied to applications such as wavelength conversion members, fluorescent inks, and white luminescent materials. Among them, it can be suitably used as a wavelength conversion member.
<波長変換部材>
 波長変換部材は、本発明の発光成形体からなることが好ましい。波長変換部材としては、各種用途の波長変換膜等が挙げられる。
 本発明の発光成形体からなる波長変換部材は、有機材料で構成されているので、コストを気にせず、多量な使用もできるため、広範囲に良好な発光スペースを確保することが可能となる。また、本発明の発光成形体からなる波長変換部材は、成形時の形状設計の自由度が高く、無機材料では難しかったシート形状や膜形状への成形も可能であり、特に波長変換膜として好適である。また、本発明の発光成形体からなる波長変換部材は、耐熱性にも優れることから、野外などの過酷な使用環境が想定される、農業、園芸用波長変換膜や、SI系太陽電池用の波長変換膜として好適である。
<Wavelength conversion member>
The wavelength conversion member is preferably made of the luminescent molded article of the present invention. Examples of the wavelength conversion member include wavelength conversion films for various uses.
Since the wavelength conversion member made of the luminescent molded article of the present invention is made of an organic material, it can be used in large quantities without worrying about the cost, so it is possible to secure a good luminescent space over a wide range. In addition, the wavelength conversion member made of the luminescent molded article of the present invention has a high degree of freedom in shape design at the time of molding, and can be molded into a sheet shape or a film shape, which is difficult with inorganic materials, and is particularly suitable as a wavelength conversion film. is. In addition, since the wavelength conversion member made of the luminescent molded article of the present invention is excellent in heat resistance, it is expected to be used in a harsh environment such as outdoors, and is used as a wavelength conversion film for agriculture and gardening, and for SI solar cells. It is suitable as a wavelength conversion film.
 次に実施例を挙げて本発明をより詳しく説明するが、本発明はこれに限定されるものではない。また、各製造例、実施例、比較例及び参考例における各種測定及び評価は以下のように行った。 Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these. In addition, various measurements and evaluations in each Production Example, Example, Comparative Example and Reference Example were carried out as follows.
<赤外線分光分析(IR測定)>
 ポリイミド樹脂のIR測定は日本電子株式会社製「JIR-WINSPEC50」を用いて行った。
<Infrared spectroscopic analysis (IR measurement)>
The IR measurement of the polyimide resin was performed using "JIR-WINSPEC50" manufactured by JEOL Ltd.
<対数粘度μ>
 ポリイミド樹脂を190~200℃で2時間乾燥した後、該ポリイミド樹脂0.100gを濃硫酸(96%、関東化学株式会社製)20mLに溶解したポリイミド樹脂溶液を測定試料とし、キャノンフェンスケ粘度計を使用して30℃において測定を行った。対数粘度μは下記式により求めた。
μ=ln(ts/t)/C
:濃硫酸の流れる時間
ts:ポリイミド樹脂溶液の流れる時間
C:0.5g/dL
<Logarithmic Viscosity μ>
After drying the polyimide resin at 190 to 200 ° C. for 2 hours, the polyimide resin 0.100 g was dissolved in 20 mL of concentrated sulfuric acid (96%, manufactured by Kanto Chemical Co., Ltd.) as a measurement sample, Canon Fenske viscometer. was used at 30°C. The logarithmic viscosity μ was determined by the following formula.
μ=ln(ts/ t0 )/C
t 0 : Flow time of concentrated sulfuric acid ts: Flow time of polyimide resin solution C: 0.5 g/dL
<融点、ガラス転移温度、結晶化温度、結晶化発熱量>
 ポリイミド樹脂の融点Tm、ガラス転移温度Tg、結晶化温度Tc、及び結晶化発熱量ΔHcは、示差走査熱量計装置(エスアイアイ・ナノテクノロジー株式会社製「DSC-6220」)を用いて測定した。
 窒素雰囲気下、ポリイミド樹脂に下記条件の熱履歴を課した。熱履歴の条件は、昇温1度目(380℃まで、昇温速度10℃/分)、その後冷却(40℃まで、降温速度20℃/分)、その後昇温2度目(380℃まで、昇温速度10℃/分)である。
 融点Tmは昇温2度目で観測された吸熱ピークのピークトップ値を読み取り決定した。ガラス転移温度Tgは昇温2度目で観測された値を読み取り決定した。結晶化温度Tcは冷却時に観測された発熱ピークのピークトップ値を読み取り決定した。なおTm、Tg及びTcに関して、ピークが複数観測されたものについては各ピークのピークトップ値を読み取った。
 また結晶化発熱量ΔHc(mJ/mg)は冷却時に観測された発熱ピークの面積から算出した。
<Melting point, glass transition temperature, crystallization temperature, crystallization heat value>
The melting point Tm, glass transition temperature Tg, crystallization temperature Tc, and crystallization heat value ΔHc of the polyimide resin were measured using a differential scanning calorimeter (“DSC-6220” manufactured by SII Nano Technology Co., Ltd.).
A polyimide resin was subjected to a thermal history under the following conditions in a nitrogen atmosphere. The conditions for the thermal history were as follows: first temperature rise (up to 380°C, temperature increase rate 10°C/min), then cooling (up to 40°C, temperature decrease rate 20°C/min), and then temperature increase second time (up to 380°C, temperature increase rate 10°C/min) temperature rate of 10° C./min).
The melting point Tm was determined by reading the peak top value of the endothermic peak observed the second time the temperature was raised. The glass transition temperature Tg was determined by reading the value observed at the second heating. The crystallization temperature Tc was determined by reading the peak top value of the exothermic peak observed during cooling. For Tm, Tg and Tc, when multiple peaks were observed, the peak top value of each peak was read.
The crystallization heat value ΔHc (mJ/mg) was calculated from the area of the exothermic peak observed during cooling.
<半結晶化時間>
 ポリイミド樹脂の半結晶化時間は、示差走査熱量計装置(エスアイアイ・ナノテクノロジー株式会社製「DSC-6220」)を用いて測定した。
 半結晶化時間の測定条件は、窒素雰囲気下、420℃で10分保持し、ポリイミド樹脂を完全に溶融させたのち、冷却速度70℃/分の急冷操作を行った際に、観測される結晶化ピークの出現時からピークトップに達するまでにかかった時間を計算し、決定した。なお、表1中、半結晶化時間が20秒以下である場合は「<20」と表記した。
<Semi-crystallization time>
The semi-crystallization time of the polyimide resin was measured using a differential scanning calorimeter ("DSC-6220" manufactured by SII Nanotechnology Co., Ltd.).
The semi-crystallization time was measured under nitrogen atmosphere at 420°C for 10 minutes to completely melt the polyimide resin, followed by rapid cooling at a cooling rate of 70°C/min. The time taken from the appearance of the peak to the peak top was calculated and determined. In addition, in Table 1, when the semi-crystallization time was 20 seconds or less, it was described as "<20".
<重量平均分子量>
 ポリイミド樹脂の重量平均分子量(Mw)は、ゲルろ過クロマトグラフィー(GPC)測定装置(昭和電工株式会社製「Shodex GPC-101」)を用いて下記条件にて測定した。
 カラム:Shodex HFIP-806M
 移動相溶媒:トリフルオロ酢酸ナトリウム2mM含有HFIP
 カラム温度:40℃
 移動相流速:1.0mL/min
 試料濃度:約0.1質量%
 検出器:IR検出器
 注入量:100μm
 検量線:標準PMMA
<Weight average molecular weight>
The weight average molecular weight (Mw) of the polyimide resin was measured under the following conditions using a gel permeation chromatography (GPC) measuring device ("Shodex GPC-101" manufactured by Showa Denko KK).
Column: Shodex HFIP-806M
Mobile phase solvent: HFIP containing 2 mM sodium trifluoroacetate
Column temperature: 40°C
Mobile phase flow rate: 1.0 mL/min
Sample concentration: about 0.1% by mass
Detector: IR detector Injection volume: 100 μm
Calibration curve: standard PMMA
<体積平均粒径(D50)>
 ポリイミド樹脂粒子のD50は、レーザー回折式粒度分布測定により求めた。
 測定装置としてレーザー回折光散乱式粒度分布測定器(マルバーン社製「LMS-2000e」)を使用した。樹脂粒子のD50測定においては分散媒として水を使用し、超音波条件下により樹脂粒子が十分に分散する条件で行った。測定範囲は0.02~2000μmとした。
<Volume average particle size (D50)>
The D50 of the polyimide resin particles was determined by laser diffraction particle size distribution measurement.
A laser diffraction light scattering type particle size distribution analyzer (“LMS-2000e” manufactured by Malvern) was used as a measuring device. The D50 measurement of the resin particles was carried out using water as a dispersing medium under ultrasonic conditions so that the resin particles are sufficiently dispersed. The measurement range was 0.02 to 2000 μm.
<活性プロトン量>
 試料40mgをバイアル瓶に採取し、HFIP(ヘキサフルオロイソプロパノール)5mLを加えて1晩放置し、溶解させた。溶解後の試料に、重クロロホルム0.2mLを加えて混合し、混合した液をNMR測定用試料とした。
 NMR測定は、核磁気共鳴装置(NMR、Bruker社製「Avance-5003」)を用いて、室温(23℃)にて行った。プローブは、5mmΦ BBO Cryo Probeを使用した。
 HFIP/重クロロホルムが、約7/3の試料では、6.1~7.1ppmに微小シグナルが検出された。これらのシグナルは、重HFIPを用いた際には観測されないことから、活性プロトンと帰属した。
<Amount of active protons>
A 40 mg sample was collected in a vial, 5 mL of HFIP (hexafluoroisopropanol) was added, and the sample was allowed to stand overnight for dissolution. 0.2 mL of heavy chloroform was added to the sample after dissolution and mixed, and the mixed liquid was used as a sample for NMR measurement.
NMR measurement was performed at room temperature (23° C.) using a nuclear magnetic resonance apparatus (NMR, “Avance-5003” manufactured by Bruker). A 5 mmΦ BBO Cryo Probe was used as the probe.
A faint signal was detected between 6.1 and 7.1 ppm in approximately 7/3 samples of HFIP/deuterochloroform. These signals were assigned to active protons since they were not observed with heavy HFIP.
<末端アミノ基量>
 末端アミノ基量は、上記NMR測定で測定された活性プロトン量から算出した。
 実施例1及び比較例1で作製した成形体、並びに参考例1の粉体は、ポリイミド樹脂(A)以外の樹脂を含まないため、観測された活性プロトンは、ポリイミド樹脂(A)の構造内に含まれる末端アミノ基の水素に対応すると推察される。
<Amount of terminal amino groups>
The amount of terminal amino groups was calculated from the amount of active protons measured by the NMR measurement.
Since the molded bodies produced in Example 1 and Comparative Example 1 and the powder of Reference Example 1 do not contain a resin other than the polyimide resin (A), the observed active protons are within the structure of the polyimide resin (A). It is speculated that it corresponds to the hydrogen of the terminal amino group contained in.
<発光特性>
 実施例1~6及び比較例1で作製した成形体、並びに参考例1の粉体について、発光の有無を目視で評価した。評価基準は下記のとおりとした。
(評価基準)
A:十分な発光があった
B:発光した
C:発光しなかった
<Luminous characteristics>
The molded bodies produced in Examples 1 to 6 and Comparative Example 1, and the powder of Reference Example 1 were visually evaluated for the presence or absence of light emission. The evaluation criteria were as follows.
(Evaluation criteria)
A: Sufficient light emission B: Light emission C: No light emission
<励起-蛍光マトリクス(EEM)測定>
 実施例1及び比較例1で作製した成形体、並びに参考例1の粉体について、EEM測定を行った。
 測定用試料は、実施例1及び比較例1の成形体については、各成形体をそのまま使用し、直径100mmの面に対して測定を行った。また、参考例1の粉体については、装置付帯の粉体ホルダに試料を詰め、固体用ホルダにセットして、測定用試料を準備した。
 測定は、蛍光分光光度計(株式会社堀場製作所社製、「Duetta,Fluorolog-3」)を用い、以下の条件で行った。
(励起側)
 励起測定波長:250~850nm
 スリッド幅:2mm(バンドパス)
 送り波長:5nm
 励起側フィルタ:なし
(発光側)
 発光測定波長:250~850nm
 スリッド幅:2mm(バンドパス)
 送り波長:5nm
 発光側フィルタ:なし
 検出器 積算時間:0.1sec/step
 試料取付角度:0deg FF
<Excitation-Emission Matrix (EEM) Measurement>
EEM measurement was performed on the compacts produced in Example 1 and Comparative Example 1 and the powder of Reference Example 1.
For the samples for measurement, the molded bodies of Example 1 and Comparative Example 1 were used as they were, and measurements were made on a surface with a diameter of 100 mm. As for the powder of Reference Example 1, a sample was packed in a powder holder attached to the apparatus and set in a holder for solids to prepare a sample for measurement.
The measurement was performed using a fluorescence spectrophotometer (manufactured by Horiba, Ltd., "Duetta, Fluorolog-3") under the following conditions.
(excitation side)
Excitation measurement wavelength: 250-850 nm
Slit width: 2 mm (band pass)
Send wavelength: 5 nm
Excitation side filter: none (emission side)
Emission measurement wavelength: 250-850 nm
Slit width: 2 mm (band pass)
Send wavelength: 5 nm
Emission side filter: None Detector Integration time: 0.1 sec/step
Sample mounting angle: 0deg FF
<成形体の外観>
 実施例1~5で作製した成形体について、成形体の外観を目視で評価した。評価基準は下記のとおりとした。
(評価基準)
A:黄変なし
B:わずかな黄変はあるが、実用上の問題なし
C:著しい黄変があり、実用上の問題あり
<Appearance of compact>
The external appearance of the molded bodies produced in Examples 1 to 5 was visually evaluated. The evaluation criteria were as follows.
(Evaluation criteria)
A: No yellowing B: Slight yellowing, no practical problem C: Significant yellowing, practical problem
<曲げ強度及び曲げ弾性率>
 実施例1~5で作製した成形体から、ISO316で規定される80mm×10mm×厚さ4mmの試験片を3本切り出し、測定に使用した。曲げ試験機「ベンドグラフ」(株式会社東洋精機製作所製)を用い、ISO178に準拠して、温度23℃、試験速度2mm/分で曲げ試験を行い、曲げ強度及び曲げ弾性率を測定した。各成形体の曲げ強度及び曲げ弾性率は、3本の試験片の測定値から算出される平均値とした。
<Bending strength and bending elastic modulus>
Three specimens of 80 mm × 10 mm × thickness 4 mm defined by ISO 316 were cut out from the compacts produced in Examples 1 to 5 and used for measurement. Using a bending tester “Bendgraph” (manufactured by Toyo Seiki Seisakusho Co., Ltd.), a bending test was performed at a temperature of 23° C. and a test speed of 2 mm/min according to ISO178 to measure bending strength and bending elastic modulus. The flexural strength and flexural modulus of each compact were average values calculated from the measured values of three test pieces.
<熱変形温度(HDT)>
 実施例1~5で作製した成形体から、ISO316で規定される80mm×10mm×厚さ4mmの試験片を3本切り出し、測定に使用した。
 測定はJIS K7191-1,2:2015に準拠して、フラットワイズでの試験を実施した。具体的には、HDT試験装置「Auto-HDT3D-2」(株式会社東洋精機製作所製)を用いて、支点間距離64mm、荷重1.80MPa、昇温速度120℃/時間の条件にて熱変形温度を測定した。各成形体の熱変形温度は、3本の試験片の測定値から算出される平均値とした。
<Heat distortion temperature (HDT)>
Three specimens of 80 mm × 10 mm × thickness 4 mm defined by ISO 316 were cut out from the compacts produced in Examples 1 to 5 and used for measurement.
The measurement was carried out flatwise in accordance with JIS K7191-1,2:2015. Specifically, using an HDT tester "Auto-HDT3D-2" (manufactured by Toyo Seiki Seisakusho Co., Ltd.), thermal deformation was performed under the conditions of a distance between fulcrums of 64 mm, a load of 1.80 MPa, and a heating rate of 120 ° C./hour. Temperature was measured. The heat distortion temperature of each compact was the average value calculated from the measured values of three test pieces.
<圧縮強度測定>
 実施例1~5で作製した成形体から、10mm×10mm×厚さ4mmのMD方向用試験片5本と、10mm×10mm×厚さ4mmのTD方向用試験片5本とを、それぞれ切り出し、測定に使用した。
 測定はJIS K7181:2011に準拠して、万能材料試験機59R5582型(インストロン社製)を用いて、温度23±1℃、湿度50±5%RHの雰囲気下で、試験速度1mm/minの条件にて、圧縮応力-ひずみ曲線を作成することにより行った。
 一般に、圧縮強度とは、材料が圧縮を受けて破壊するときの最大の強さを意味する。しかしながら、本実施例の成形片は破壊されなかったため、本測定においては、圧縮応力-ひずみ曲線から、勾配閾値2%の値を「見かけの降伏点」として読み取り、圧縮ひずみ20%の値を「圧縮降伏応力」として読み取った。
 なお、MD方向及びTD方向の各値は、それぞれ5本の試験片の測定値から算出される平均値とした。
<Compressive strength measurement>
Five MD test pieces of 10 mm × 10 mm × 4 mm thickness and five TD direction test specimens of 10 mm × 10 mm × 4 mm thickness are cut out from the molded bodies produced in Examples 1 to 5, used for the measurements.
Measurement was performed in accordance with JIS K7181: 2011 using a universal material testing machine 59R5582 (manufactured by Instron) at a temperature of 23 ± 1 ° C and a humidity of 50 ± 5% RH at a test speed of 1 mm / min. It was carried out by creating a compressive stress-strain curve under the conditions.
Compressive strength generally refers to the maximum strength of a material at which it fails under compression. However, since the molded piece of this example was not destroyed, in this measurement, the value of the gradient threshold value of 2% was read as the "apparent yield point" from the compressive stress-strain curve, and the value of the compressive strain of 20% was ""compressive yield stress".
Each value in the MD direction and the TD direction was the average value calculated from the measured values of five test pieces.
[製造例1]ポリイミド樹脂1の製造
 ディーンスターク装置、リービッヒ冷却管、熱電対、4枚パドル翼を設置した2Lセパラブルフラスコ中に2-(2-メトキシエトキシ)エタノール(日本乳化剤株式会社製)500gとピロメリット酸二無水物(三菱ガス化学株式会社製)218.12g(1.00mol)を導入し、窒素フローした後、均一な懸濁溶液になるように150rpmで撹拌した。一方で、500mLビーカーを用いて、1,3-ビス(アミノメチル)シクロヘキサン(三菱ガス化学株式会社製、シス/トランス比=7/3)49.79g(0.35mol)、1,8-オクタメチレンジアミン(関東化学株式会社製)93.77g(0.65mol)を2-(2-メトキシエトキシ)エタノール250gに溶解させ、混合ジアミン溶液を調製した。この混合ジアミン溶液を、プランジャーポンプを使用して徐々に加えた。滴下により発熱が起こるが、内温は40~80℃に収まるよう調整した。混合ジアミン溶液の滴下中はすべて窒素フロー状態とし、撹拌翼回転数は250rpmとした。滴下が終わったのちに、2-(2-メトキシエトキシ)エタノール130gと、末端封止剤であるn-オクチルアミン(関東化学株式会社製)1.284g(0.0100mol)を加えさらに撹拌した。この段階で、淡黄色のポリアミド酸溶液が得られた。次に、撹拌速度を200rpmとした後に、2Lセパラブルフラスコ中のポリアミド酸溶液を190℃まで昇温した。昇温を行っていく過程において、液温度が120~140℃の間にポリイミド樹脂粉末の析出と、イミド化に伴う脱水が確認された。190℃で30分保持した後、室温(23℃)まで放冷を行い、濾過を行った。得られたポリイミド樹脂粉末は2-(2-メトキシエトキシ)エタノール300gとメタノール300gにより洗浄、濾過を行った後、乾燥機で150℃、12時間乾燥を行い、317gのポリイミド樹脂1の粉末を得た。
 ポリイミド樹脂1のIRスペクトルを測定したところ、ν(C=O)1768、1697(cm-1)にイミド環の特性吸収が認められた。対数粘度μは1.30dL/g、融点Tmは323℃、ガラス転移温度Tgは184℃、結晶化温度Tcは266℃、結晶化発熱量ΔHcは21.0mJ/mg、半結晶化時間は20秒以下、重量平均分子量(Mw)は55,000、体積平均粒径(D50)は17μmであった。
[Production Example 1] Production of polyimide resin 1 Dean-Stark apparatus, Liebig condenser, thermocouple, 2-(2-methoxyethoxy) ethanol (manufactured by Nippon Nyukazai Co., Ltd.) in a 2 L separable flask equipped with four paddle blades. 500 g and 218.12 g (1.00 mol) of pyromellitic dianhydride (manufactured by Mitsubishi Gas Chemical Company, Inc.) were introduced, nitrogen flowed, and then stirred at 150 rpm to form a uniform suspension solution. On the other hand, using a 500 mL beaker, 49.79 g (0.35 mol) of 1,3-bis(aminomethyl)cyclohexane (manufactured by Mitsubishi Gas Chemical Company, cis/trans ratio = 7/3), 1,8-octa A mixed diamine solution was prepared by dissolving 93.77 g (0.65 mol) of methylenediamine (manufactured by Kanto Kagaku Co., Ltd.) in 250 g of 2-(2-methoxyethoxy)ethanol. The mixed diamine solution was added slowly using a plunger pump. Heat was generated by the dropwise addition, but the internal temperature was adjusted to be within the range of 40 to 80°C. During the dropwise addition of the mixed diamine solution, nitrogen flow was maintained and the rotation speed of the stirring blade was 250 rpm. After the dropwise addition was completed, 130 g of 2-(2-methoxyethoxy)ethanol and 1.284 g (0.0100 mol) of n-octylamine (manufactured by Kanto Kagaku Co., Ltd.) as a terminal blocker were added and further stirred. At this stage, a pale yellow polyamic acid solution was obtained. Next, after setting the stirring speed to 200 rpm, the polyamic acid solution in the 2-L separable flask was heated to 190°C. In the process of increasing the temperature, deposition of polyimide resin powder and dehydration due to imidization were confirmed when the liquid temperature was 120 to 140°C. After holding at 190° C. for 30 minutes, it was allowed to cool to room temperature (23° C.) and filtered. The obtained polyimide resin powder was washed with 300 g of 2-(2-methoxyethoxy)ethanol and 300 g of methanol, filtered, and then dried in a dryer at 150° C. for 12 hours to obtain 317 g of polyimide resin 1 powder. rice field.
When the IR spectrum of polyimide resin 1 was measured, characteristic absorption of the imide ring was observed at ν(C═O) 1768, 1697 (cm −1 ). The logarithmic viscosity μ is 1.30 dL/g, the melting point Tm is 323° C., the glass transition temperature Tg is 184° C., the crystallization temperature Tc is 266° C., the heat of crystallization ΔHc is 21.0 mJ/mg, and the half-crystallization time is 20. Seconds or less, the weight average molecular weight (Mw) was 55,000, and the volume average particle diameter (D50) was 17 μm.
 製造例1におけるポリイミド樹脂の組成及び評価結果を表1に示す。なお、表1中のテトラカルボン酸成分及びジアミン成分のモル%は、ポリイミド樹脂製造時の各成分の仕込み量から算出した値である。 Table 1 shows the composition and evaluation results of the polyimide resin in Production Example 1. The mol % of the tetracarboxylic acid component and the diamine component in Table 1 are values calculated from the amount of each component charged during the production of the polyimide resin.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 表1中の略号は下記の通りである。
・PMDA;ピロメリット酸二無水物
・1,3-BAC;1,3-ビス(アミノメチル)シクロヘキサン
・OMDA;1,8-オクタメチレンジアミン
Abbreviations in Table 1 are as follows.
・PMDA; pyromellitic dianhydride ・1,3-BAC; 1,3-bis(aminomethyl)cyclohexane ・OMDA; 1,8-octamethylenediamine
(参考例1)
 製造例1で得られたポリイミド樹脂1の粉体を用いて、前記方法により発光特性の評価を行った。結果を表2に示す。
(Reference example 1)
Using the powder of polyimide resin 1 obtained in Production Example 1, the luminous properties were evaluated by the method described above. Table 2 shows the results.
(実施例1)
 製造例1で得られたポリイミド樹脂1の粉末100gを、予め離型剤を塗布しておいた押し込み金型内(φ100mm)に導入した。冷却プレスを用いて、金型内の粉体を圧縮し、予備成形を行った。次いで、手動油圧真空プレス装置(IMC-1AEA型、井元製作所株式会社製)を用いて、真空雰囲気(-0.1bar)、350℃で、プレス上板に7分間接触させ(予熱過程)、徐々に昇圧し、10MPaで、10分間保持し(加圧過程)、金型から取り出して冷却プレスにて、室温(23℃)、大気雰囲気中、10MPaで、10分間保持して冷却し(冷却過程)、ポリイミド樹脂からなる成形体1(直径100mm、厚さ10mm)を製造した。製造した成形体1を用いて、前記方法により発光特性の評価を行った。結果を表2に示す。
(Example 1)
100 g of the polyimide resin 1 powder obtained in Production Example 1 was introduced into a pressing mold (φ100 mm) previously coated with a release agent. A cold press was used to compress and preform the powder in the mold. Then, using a manual hydraulic vacuum press device (IMC-1AEA type, manufactured by Imoto Seisakusho Co., Ltd.), in a vacuum atmosphere (-0.1 bar), at 350 ° C., contact the press upper plate for 7 minutes (preheating process), gradually and held at 10 MPa for 10 minutes (pressurization process), removed from the mold and cooled with a cooling press at room temperature (23 ° C.) in an air atmosphere at 10 MPa for 10 minutes and cooled (cooling process ), and a molded body 1 (diameter: 100 mm, thickness: 10 mm) made of polyimide resin was manufactured. Using the molded article 1 thus produced, the emission characteristics were evaluated by the method described above. Table 2 shows the results.
(比較例1)
 製造例1で得られたポリイミド樹脂1の粉末を、押出機内に導入して、350℃で溶融して押出し、ペレットを作製した。得られたペレットを射出成形機(ファナック株式会社製「ロボショットα-S30iA」)に導入して、バレル温度350℃、金型温度195℃にて射出成形し、ポリイミド樹脂からなる比較成形体1を製造した。製造した比較成形体1を用いて、前記方法により発光特性の評価を行った。結果を表2に示す。
(Comparative example 1)
The powder of polyimide resin 1 obtained in Production Example 1 was introduced into an extruder, melted at 350° C. and extruded to prepare pellets. The obtained pellets were introduced into an injection molding machine (“Roboshot α-S30iA” manufactured by FANUC CORPORATION) and injection molded at a barrel temperature of 350° C. and a mold temperature of 195° C. to obtain Comparative molded product 1 made of polyimide resin. manufactured. Using the manufactured comparative molded article 1, the emission characteristics were evaluated by the method described above. Table 2 shows the results.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 表2に示すように、所定のポリイミド樹脂(A)を含有する成形体であっても、活性プロトン量が検出限界以下であった比較例1の成形体では、発光がほとんど観察されなかった。一方、所定のポリイミド樹脂(A)を含有し、所定の活性プロトン量を有する実施例1の成形体は、十分な発光が観察され、粉体である参考例1よりも発光特性が向上することが確認された。このような結果から、熱成形を行う前のポリイミド樹脂(A)中の活性プロトン量を維持しつつ、粉体よりも分子骨格が硬い構造の成形体とすることで、光吸収した後の熱失活を効果的に抑制でき、発光特性を向上できると推察される。 As shown in Table 2, even with the molded body containing the predetermined polyimide resin (A), the molded body of Comparative Example 1, in which the amount of active protons was below the detection limit, hardly emitted light. On the other hand, the molded article of Example 1, which contains a predetermined polyimide resin (A) and has a predetermined amount of active protons, was observed to emit sufficient light, and had better light emission characteristics than Reference Example 1, which is a powder. was confirmed. From these results, while maintaining the amount of active protons in the polyimide resin (A) before thermoforming, by forming a molded body having a structure with a harder molecular skeleton than the powder, the heat after absorbing light It is presumed that the deactivation can be effectively suppressed and the luminous properties can be improved.
 上記のような結果は、図1~3に示す励起-蛍光マトリクス(EEM)測定の結果とも対応する。図1は参考例1の粉体について、図2は比較例1の比較成形体1について、図3は実施例1の成形体1について、それぞれEEM測定を行って作成した励起波長vs.発光波長vs.蛍光強度の3次元データである。
 図2に示されるように、比較例1の成形体では発光ピークがほとんど観測されなかった。一方、図1及び図3に示されるように、参考例1の粉体及び実施例1の成形体では、300nmと、500nmの異なる励起波長(λEX)の励起光の照射によって、それぞれ約430nmと約550nmの発光波長(λEX)の発光ピークが確認された。特に、約550nmの発光波長(λEX)の発光ピークは、参考例1の粉体に比べて、実施例1の成形体の方が強く、目視による発光特性の差と対応していた。
The above results also correspond to the excitation-emission matrix (EEM) measurements shown in FIGS. FIG. 1 shows the powder of Reference Example 1, FIG. 2 shows the comparative compact 1 of Comparative Example 1, and FIG. 3 shows the compact 1 of Example 1, respectively. 3D data of vs. fluorescence intensity.
As shown in FIG. 2, almost no emission peak was observed in the molded article of Comparative Example 1. On the other hand, as shown in FIGS. 1 and 3, the powder of Reference Example 1 and the molded body of Example 1 were irradiated with excitation light of different excitation wavelengths (λ EX ) of 300 nm and 500 nm, respectively, to obtain a wavelength of about 430 nm. and an emission peak at an emission wavelength (λ EX ) of about 550 nm was confirmed. In particular, the emission peak at an emission wavelength (λ EX ) of about 550 nm was stronger in the molded article of Example 1 than in the powder of Reference Example 1, corresponding to the difference in emission characteristics visually observed.
(実施例2~4)
 実施例2~4は、圧縮成形の条件を、表3に示す通りに変更した以外は、実施例1と同様の方法で成形体を作製し、上記方法で各種評価を行った。結果を表3に示す。
(Examples 2-4)
In Examples 2 to 4, compacts were produced in the same manner as in Example 1, except that the compression molding conditions were changed as shown in Table 3, and various evaluations were performed by the above methods. Table 3 shows the results.
(実施例5)
 実施例5は、製造例1において洗浄、濾過したポリイミド樹脂粉を乾燥させずに、未乾燥の状態で、押し込み金型内に導入した以外は、実施例1と同様の方法で成形体を作製し、上記方法で各種評価を行った。結果を表3に示す。
(Example 5)
In Example 5, a molded body was produced in the same manner as in Example 1, except that the polyimide resin powder washed and filtered in Production Example 1 was not dried and was introduced into the pressing mold in an undried state. Then, various evaluations were performed by the above methods. Table 3 shows the results.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 表3に示すように、所定のポリイミド樹脂(A)を含有し、所定の活性プロトン量を有する実施例2~5の成形体も、十分な発光が観察された。特に、実施例1、3及び4の成形体は、曲げ強度が100MPa以上、HDTが160℃以上であり、外観も良好で、圧縮時に破壊され難い材料であることから、高強度で、耐熱性、柔軟性及び圧縮特性にも優れていることが確認された。 As shown in Table 3, the molded bodies of Examples 2 to 5 containing the predetermined polyimide resin (A) and having the predetermined amount of active protons were also observed to emit sufficient light. In particular, the molded bodies of Examples 1, 3 and 4 have a bending strength of 100 MPa or more, an HDT of 160° C. or more, a good appearance, and are materials that are difficult to break during compression, so they have high strength and heat resistance. , flexibility and compression characteristics were also confirmed to be excellent.
(実施例6)
 製造例1で得られたポリイミド樹脂1と、ポリアミド樹脂PA6(宇部興産株式会社製「UBEナイロン 1030B」、融点215~225℃、ガラス転移温度50℃)とが、質量比で10:90の割合となるように準備した。次に、同方向回転二軸混練押出機(株式会社パーカーコーポレーション製「HK-25D」)の根元側のホッパーからPA6を導入し、ポリイミド樹脂1の粉末をサイドフィーダーから押出機内に導入して、シリンダー設定温度260℃、フィード量6kg/h、スクリュー回転数200rpmの条件で混練し、ストランドを押し出した。
 押出機より押し出されたストランドを水冷後、ペレタイザー(株式会社星プラスチック製「ファンカッターFC-Mini-4/N」)によってペレット化し、射出成形に使用した。
 得られたペレットを80℃の乾燥器内で6時間乾燥させた後、射出成形機(ファナック株式会社製「ロボショットα-S30iA」)を使用して、シリンダー設定温度250℃、金型温度80℃、射出速度62.5mm/sの条件で射出成形し、成形体(直径100mm、厚さ10mm)を作製した。製造した成形体を用いて、前記方法により活性プロトン量の測定と、発光特性の評価を行った。活性プロトン量は、式(1)の繰り返し構成単位と式(2)の繰り返し構成単位の合計を100モル%としたときに、812モル%であり、発光特性はAであった。
(Example 6)
The polyimide resin 1 obtained in Production Example 1 and the polyamide resin PA6 ("UBE nylon 1030B" manufactured by Ube Industries, Ltd., melting point 215 to 225 ° C., glass transition temperature 50 ° C.) are in a mass ratio of 10:90. prepared to be Next, PA6 is introduced from the hopper on the root side of a co-rotating twin-screw kneading extruder ("HK-25D" manufactured by Parker Corporation), and the powder of polyimide resin 1 is introduced into the extruder from the side feeder, The mixture was kneaded under conditions of a set cylinder temperature of 260° C., a feed amount of 6 kg/h, and a screw rotation speed of 200 rpm, and the strand was extruded.
The strand extruded from the extruder was cooled with water, pelletized by a pelletizer ("Fan Cutter FC-Mini-4/N" manufactured by Hoshi Plastics Co., Ltd.), and used for injection molding.
After drying the obtained pellets in a dryer at 80 ° C. for 6 hours, an injection molding machine ("Roboshot α-S30iA" manufactured by Fanuc Co., Ltd.) was used to set the cylinder temperature to 250 ° C. and the mold temperature to 80. °C and an injection speed of 62.5 mm/s to produce a molded body (diameter: 100 mm, thickness: 10 mm). Using the produced compact, the amount of active protons was measured and the emission characteristics were evaluated by the methods described above. The amount of active protons was 812 mol % when the sum of the repeating structural units of formula (1) and the repeating structural units of formula (2) was taken as 100 mol %, and the emission characteristic was A.
 実施例6の結果から、樹脂(B)として構造中に活性水素を有する樹脂であるポリアミド樹脂PA6と、所定のポリイミド樹脂(A)とをコンパウンドすることにより、得られる成形体中の活性プロトン量を高めることができ、該成形体は良好な発光を示すことが確認された。 From the results of Example 6, the amount of active protons in the molded product obtained by compounding the polyamide resin PA6, which is a resin having active hydrogen in the structure as the resin (B), and a predetermined polyimide resin (A) can be increased, and it was confirmed that the molded product exhibits good luminescence.
 本発明の発光成形体は、有機系材料で構成され、且つ発光特性及び耐熱性に優れるため、波長変換部材等の用途に適用できる。 The light-emitting molded article of the present invention is composed of an organic material and has excellent light-emitting properties and heat resistance, so it can be applied to applications such as wavelength conversion members.

Claims (5)

  1.  下記式(1)で示される繰り返し構成単位及び下記式(2)で示される繰り返し構成単位:
    Figure JPOXMLDOC01-appb-C000001

    (Rは少なくとも1つの脂環式炭化水素構造を含む炭素数6~22の2価の基である。Rは炭素数5~16の2価の鎖状脂肪族基である。X及びXは、それぞれ独立に、少なくとも1つの芳香環を含む炭素数6~22の4価の基である。)
    を含み、該式(1)の繰り返し構成単位と該式(2)の繰り返し構成単位の合計に対する該式(1)の繰り返し構成単位の含有比が20~70モル%であるポリイミド樹脂(A)を含む発光成形体であって、
     前記発光成形体中の活性プロトン量が、前記式(1)の繰り返し構成単位と前記式(2)の繰り返し構成単位の合計を100モル%としたときに、0.01モル%以上である、発光成形体。
    A repeating structural unit represented by the following formula (1) and a repeating structural unit represented by the following formula (2):
    Figure JPOXMLDOC01-appb-C000001

    (R 1 is a C 6-22 divalent group containing at least one alicyclic hydrocarbon structure. R 2 is a C 5-16 divalent chain aliphatic group. X 1 and X 2 are each independently a tetravalent group having 6 to 22 carbon atoms containing at least one aromatic ring.)
    and the content ratio of the repeating structural unit of the formula (1) to the total of the repeating structural units of the formula (1) and the repeating structural unit of the formula (2) is 20 to 70 mol%. Polyimide resin (A) A luminescent molded article comprising
    The amount of active protons in the luminescent molded product is 0.01 mol% or more when the total of the repeating structural unit of the formula (1) and the repeating structural unit of the formula (2) is 100 mol%. Luminous molding.
  2.  前記成形体が、更にポリアミド樹脂、ポリアミドイミド樹脂、エポキシ樹脂、ウレタン樹脂、ウレア樹脂、フェノール樹脂及びシアネート樹脂からなる群から選択される1種以上の樹脂(B)を含む、請求項1に記載の発光成形体。 2. The molded article according to claim 1, further comprising one or more resins (B) selected from the group consisting of polyamide resins, polyamideimide resins, epoxy resins, urethane resins, urea resins, phenol resins and cyanate resins. luminescent molding.
  3.  前記成形体が、前記ポリイミド樹脂(A)のみからなる、請求項1に記載の発光成形体。 The luminescent molded article according to claim 1, wherein the molded article consists of the polyimide resin (A) only.
  4.  前記ポリイミド樹脂(A)を含む粉末を圧縮成形してなる、請求項1~3のいずれか1項に記載の発光成形体。 The luminescent molded article according to any one of claims 1 to 3, which is obtained by compression-molding a powder containing the polyimide resin (A).
  5.  請求項1~4のいずれか1項に記載の発光成形体からなる、波長変換部材。 A wavelength conversion member comprising the luminescent molding according to any one of claims 1 to 4.
PCT/JP2022/045854 2021-12-22 2022-12-13 Light-emitting molded body and wavelength conversion member WO2023120303A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021208594 2021-12-22
JP2021-208594 2021-12-22

Publications (1)

Publication Number Publication Date
WO2023120303A1 true WO2023120303A1 (en) 2023-06-29

Family

ID=86902394

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/045854 WO2023120303A1 (en) 2021-12-22 2022-12-13 Light-emitting molded body and wavelength conversion member

Country Status (2)

Country Link
TW (1) TW202337962A (en)
WO (1) WO2023120303A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04109199U (en) * 1991-03-05 1992-09-21 浩文 森山 luminescent molded body
JPH07330949A (en) * 1994-06-13 1995-12-19 Tigers Polymer Corp Luminescent molding and its production
JPH09291155A (en) * 1996-03-01 1997-11-11 Masayoshi Takei Phosphorescent resin molding
JP2006307068A (en) * 2005-04-28 2006-11-09 Fuji Photo Film Co Ltd Luminous alicyclic polyimide
JP2007173758A (en) * 2005-11-24 2007-07-05 Jfe Chemical Corp Blue light-emitting device containing polyimide
JP2008297354A (en) * 2007-05-29 2008-12-11 Nippon Steel Chem Co Ltd Blue light-emitting polyimide
JP2009114278A (en) * 2007-11-05 2009-05-28 Nippon Steel Chem Co Ltd Blue-light emitting polyimide (blue-light emitting)
JP2015044972A (en) * 2013-07-29 2015-03-12 上野製薬株式会社 Liquid crystal polymer
JP2016065228A (en) * 2014-09-19 2016-04-28 上野製薬株式会社 Liquid crystal polymer
JP2017186490A (en) * 2016-04-01 2017-10-12 国立大学法人東京工業大学 Organic luminescent material exhibiting room temperature phosphorescence and optical device using the same
WO2018117074A1 (en) * 2016-12-19 2018-06-28 富士フイルム株式会社 Luminescent resin composition for wavelength conversion, method for producing same, wavelength conversion member and light emitting element

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04109199U (en) * 1991-03-05 1992-09-21 浩文 森山 luminescent molded body
JPH07330949A (en) * 1994-06-13 1995-12-19 Tigers Polymer Corp Luminescent molding and its production
JPH09291155A (en) * 1996-03-01 1997-11-11 Masayoshi Takei Phosphorescent resin molding
JP2006307068A (en) * 2005-04-28 2006-11-09 Fuji Photo Film Co Ltd Luminous alicyclic polyimide
JP2007173758A (en) * 2005-11-24 2007-07-05 Jfe Chemical Corp Blue light-emitting device containing polyimide
JP2008297354A (en) * 2007-05-29 2008-12-11 Nippon Steel Chem Co Ltd Blue light-emitting polyimide
JP2009114278A (en) * 2007-11-05 2009-05-28 Nippon Steel Chem Co Ltd Blue-light emitting polyimide (blue-light emitting)
JP2015044972A (en) * 2013-07-29 2015-03-12 上野製薬株式会社 Liquid crystal polymer
JP2016065228A (en) * 2014-09-19 2016-04-28 上野製薬株式会社 Liquid crystal polymer
JP2017186490A (en) * 2016-04-01 2017-10-12 国立大学法人東京工業大学 Organic luminescent material exhibiting room temperature phosphorescence and optical device using the same
WO2018117074A1 (en) * 2016-12-19 2018-06-28 富士フイルム株式会社 Luminescent resin composition for wavelength conversion, method for producing same, wavelength conversion member and light emitting element

Also Published As

Publication number Publication date
TW202337962A (en) 2023-10-01

Similar Documents

Publication Publication Date Title
JPWO2019220969A1 (en) Resin molded body
WO2020179391A1 (en) Polyimide resin composition
WO2021024624A1 (en) Flame-retardant polyimide shaping material and shaped body
JP6927458B1 (en) Polyimide resin composition and molded product
TWI794491B (en) Polyimide resin composition
WO2023120303A1 (en) Light-emitting molded body and wavelength conversion member
JP7040692B1 (en) Polyimide resin composition and molded product
JP6879438B1 (en) Polyimide resin composition and molded product
JP6856173B2 (en) Flame-retardant polyimide molding material and molded product
WO2021100716A1 (en) Resin composition, resin molded article and method for producing same
JP6766986B1 (en) Polyimide resin composition
WO2022004471A1 (en) Resin composition and molded article
JP7497721B2 (en) Polyimide resin composition
WO2023105969A1 (en) Polyimide resin composition and molded body
JP7464050B2 (en) Polyimide resin composition
WO2024004602A1 (en) Thermoplastic resin composition, molded body, and constituting member of ic socket for inspection
WO2023120304A1 (en) Semiconductor resin material, molded article thereof, use thereof, and flexible printed material
TW202409207A (en) Thermoplastic resin composition, molded product, and constituting member of ic socket for tests
CN117178025A (en) Thermoplastic polyimide resin composition and molded article

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22911011

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023569336

Country of ref document: JP