WO2023120302A1 - Tactile sensor, robot using tactile sensor, medical device, and tactile feedback device - Google Patents

Tactile sensor, robot using tactile sensor, medical device, and tactile feedback device Download PDF

Info

Publication number
WO2023120302A1
WO2023120302A1 PCT/JP2022/045839 JP2022045839W WO2023120302A1 WO 2023120302 A1 WO2023120302 A1 WO 2023120302A1 JP 2022045839 W JP2022045839 W JP 2022045839W WO 2023120302 A1 WO2023120302 A1 WO 2023120302A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
tactile sensor
porous body
tactile
flexible porous
Prior art date
Application number
PCT/JP2022/045839
Other languages
French (fr)
Japanese (ja)
Inventor
元 早瀬
Original Assignee
国立研究開発法人物質・材料研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人物質・材料研究機構 filed Critical 国立研究開発法人物質・材料研究機構
Priority to JP2023569335A priority Critical patent/JPWO2023120302A1/ja
Publication of WO2023120302A1 publication Critical patent/WO2023120302A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/02Sensing devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/24Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet

Definitions

  • the present invention relates to a tactile sensor, a robot using the same, a medical device, and a tactile feedback device.
  • Patent document 1 includes a substrate, a light-emitting element and a light-receiving element fixed on the substrate, and a tactile part made of a light-transmitting elastic member provided on the substrate so as to cover the light-emitting element and the light-receiving element.
  • a flexible tactile sensor is disclosed.
  • the light-emitting element and the light-receiving element are embedded in the light-transmitting elastic member and are opposed to each other with the light-transmitting elastic member interposed therebetween.
  • Light emitted from the light emitting element is transmitted through a portion of the light-transmissive elastic member between the light emitting element and the light receiving element and is received by the light receiving element.
  • the amount of light received by the light-receiving element changes as the density of the light-transmitting elastic member changes when an external force is applied to the tactile portion.
  • the flexible tactile sensor acquires a change in the amount of light received by the light receiving element.
  • a pressure detector has been developed in which a light-receiving element receives the scattered/reflected light emitted by the light-emitting element and is covered with urethane foam to block light emission (for example, non-patented See Document 1 and Patent Document 2).
  • the light emitted by the light-emitting element is scattered/reflected in the light-scattering elastic material (urethane foam), and the light is scattered around the light-emitting portion in the light-scattering elastic material. Construct an intensity distribution. Since the light-receiving element passes a photocurrent correlated to the intensity of light at the location where it is arranged, the photocurrent can be extracted as a signal.
  • the light-scattering elastic material By applying pressure to the light-scattering elastic material, the light-scattering elastic material is deformed.
  • the light intensity distribution changes in the light-scattering elastic material. This changes the intensity of the light at the location where the light receiving element is arranged. Then, changes in light intensity are extracted as pressure information.
  • FIG. 1 of Non-Patent Document 1 in such a pressure sensor, the more the light scattering elastic material is compressed, the higher the density becomes, the more the reflected light increases, and the more the light intensity of the light receiving element increases. To increase.
  • the tactile sensor of Patent Document 1 has a problem that it is difficult to replace the light-transmitting elastic member because it is necessary to embed the light source and the light receiving section in the tactile section.
  • the tactile part is given a certain thickness. There is a limit to miniaturization and high density of sensors.
  • Non-Patent Document 1 and Patent Document 2 a certain degree of transparency is required on the optical path of the light emitting element, the scattered light/reflected light from the light scattering elastic material, and the light receiving element.
  • the skeletal structure of the elastic material for light scattering needs to be sparse. If the elastic material for light scattering represented by urethane foam becomes thinner than a certain amount, light leaks, so the detection accuracy decreases, or even detection may not be possible. Therefore, there is a limit to miniaturization due to restrictions on the arrangement of the elements and restrictions on the thickness of the light-scattering elastic material.
  • an object of the present invention is to provide a tactile sensor whose tactile part can be easily replaced and which can be miniaturized and increased in density, a robot, a medical device, and a tactile feedback device using the same. It is to be.
  • a tactile sensor of the present invention comprises a base material, a light source positioned on the base, a light receiving part positioned on the base, and a flexible porous body positioned on the light source and the light receiving part.
  • a tactile part wherein the flexible porous body has a network-type phase separation structure, the flexible porous body comprises a three-dimensional network skeleton and communicating pores formed by the skeleton, and the pores
  • the pore diameter satisfies the range of 1 to 100 times the skeleton diameter of the skeleton, the skeleton diameter satisfies the range of 100 nm to 50 ⁇ m
  • the light source unit has a wavelength satisfying the range of 380 nm to 3 ⁇ m
  • the flexible porous body scatters the light from the light source section, the light receiving section receives the scattered light scattered by the flexible porous body, and the intensity of the scattered light is equal to that of the flexible porous body becomes progressively smaller as is compressed, thereby solving the above problem.
  • the pore diameter may satisfy a range of 3 to 20 times the skeleton diameter.
  • the pore diameter may satisfy a range of 5 to 15 times the skeleton diameter.
  • a porosity of the flexible porous body may range from 60% to 99%.
  • a porosity of the flexible porous body may range from 85% to 95%.
  • the flexible porous body includes silicone, urethane resin, acrylic resin, rubber, polystyrene resin, polyester resin, polyvinyl chloride, polyvinylidene chloride, polyamide resin, polyimide resin, cellulose resin, polyolefin resin, aromatic polyether ketone, and It may be selected from the group consisting of epoxy resins.
  • the light source unit may be selected from the group consisting of a light emitting diode (LED), a laser diode (LD), an organic EL, and an optical fiber.
  • the light source section may emit light with a wavelength in the range of 400 nm or more and 1.4 ⁇ m or less.
  • the light source section may emit light with a wavelength in the range of 800 nm or more and 1.1 ⁇ m or less.
  • the light receiving unit may be selected from the group consisting of a photoresistor, a phototransistor, a photodiode, a photomultiplier tube, a photon counter, a CCD image sensor, a CMOS image sensor, an NMOS image sensor, and a solar cell.
  • the direction of the surface from which the light from the light source part is emitted is the same as the direction of the surface of the light receiving part that receives the scattered light, and the tactile part has a surface from which the light is emitted and a surface that receives the light.
  • the base material may be a flexible substrate.
  • the controller may further include a controller for controlling the operation of the light source and the light receiver, and the controller may include a memory storing data indicating the relationship between the potential and compressibility of the flexible porous body.
  • the pore diameter may satisfy a range of 100 nm or more and 200 ⁇ m or less.
  • the skeleton diameter may satisfy a range of 1 ⁇ m or more and 8 ⁇ m or less.
  • the bulk density of the flexible porous body may satisfy a range of 0.01 g/cm 3 or more and 0.4 g/cm 3 or less.
  • a robot according to the present invention includes the tactile sensor described above to solve the above problems.
  • a medical device of the present invention includes the tactile sensor described above, thereby solving the above problems.
  • a haptic feedback device according to the present invention includes the haptic sensor described above, thereby solving the above problems.
  • a tactile sensor includes a base material, a light source part and a light receiving part positioned on the base material, a network type phase separation structure positioned on the light source part and the light receiving part, and a three-dimensional mesh shape. and communicating pores formed by the skeleton, and the pore diameter satisfies the range of 1 to 100 times the skeleton diameter (the skeleton diameter satisfies the range of 100 nm to 50 ⁇ m). and a haptic portion comprising:
  • the wavelength of the light from the light source is set to satisfy the range of 380 nm or more and 3 ⁇ m or less, and the flexible porous body having a specific relationship between the pore diameter and the skeleton diameter generates scattered light based on the skeleton.
  • the light-receiving part that receives the scattered light can detect the deformation of the flexible porous body from the change in the intensity of the scattered light.
  • the intensity of the scattered light from the flexible porous body gradually decreases as the flexible porous body is compressed. deformation can be detected with high accuracy.
  • the tactile sensor of the present invention since it is not necessary to embed the light source part and the light receiving part in the tactile part, the tactile part can be easily replaced and the thickness of the tactile part can be reduced. Therefore, it is possible to miniaturize the tactile sensor. Furthermore, since the distance between the light source section and the light receiving section can be shortened, it is possible to increase the sensor density.
  • the tactile sensor of the present invention By applying the tactile sensor of the present invention to devices such as inner-ear earphones and packing, pressure can be used to detect whether these devices are correctly worn. Further, by using the tactile sensor according to the present invention, it is possible to provide a robot equipped with human skin sensation, a medical device such as an endoscope capable of palpation, and a tactile feedback device.
  • FIG. 10 is a diagram showing test results using a tactile sensor using the PMMA porous body P4 of Example 4.
  • a diagram showing the wavelength dependence of the scattered light intensity at 50% compression by the tactile sensor of Example 16 Schematic showing a robot arm with a gripper Schematic diagram showing an endoscope Schematic diagram showing a game controller Figure showing SEM image of marshmallow gel P7 Figure showing SEM image of marshmallow gel P8
  • FIG. 1 is a schematic diagram showing a tactile sensor according to the present invention.
  • FIG. 2 is a schematic diagram showing a flexible porous body.
  • the tactile sensor 100 of the present invention includes a base material 110, a light source section 120 positioned on the base material 110, a light receiving section 130 positioned on the base material 110, and a flexible sensor positioned on the light source section 120 and the light receiving section 130. and a tactile part 140 made of a porous body. With such a configuration, the tactile sensor 100 of the present invention can detect deformation of the flexible porous body.
  • the flexible porous body has a network-type phase separation structure.
  • a network-type phase-separated structure is a structure in which a so-called skeleton phase is phase-separated while maintaining continuity. If a continuous skeleton morphology composed of curved surfaces is observed with an electron microscope, it can be determined that the flexible porous material has a network-type phase separation structure.
  • the network-type phase-separated structure includes a spinodal decomposition-type phase-separated structure, a viscoelastic phase-separated structure, and the like depending on the manufacturing method. Both structures are known to have a skeletal form in which spherical particles are fused and matured. When the flexible porous body has such a network-type separation structure, Mie scattering easily occurs and can be detected with high accuracy.
  • the flexible porous body of the present invention has communicating pores 210 (Fig. 2) and a three-dimensional network skeleton 220 (Fig. 2), and has flexibility. Pores 210 are formed by a three-dimensional network skeleton 220 . It can also be said that the voids between the skeletons 220 are the pores 210 . As illustrated in FIG. 2, the scaffold 220 is a shape in which particles are continuously connected. Specifically, the pore diameter of the pores 210 in the flexible porous body applied in the present invention satisfies the range of 1 to 100 times the skeleton diameter of the skeleton 220 . Here, the skeleton diameter satisfies the range of 100 nm or more and 50 ⁇ m or less. As a result, in the flexible porous body, even when the external stress is removed, the scattered light can change according to the compressive strain.
  • the term "flexible porous material” refers to a material whose pore volume is reduced by application of an external stress, compressively deformed with a change in density, but returns to its original state when the external stress is removed.
  • the flexible porous body preferably has a Young's modulus of 10 MPa or less, more preferably 1 kPa or more and 100 kPa or less.
  • the skeleton diameter is the average value of the diameter d (Fig. 2) of 100 circles inscribed in the skeleton 220 in the electron microscope image.
  • the pore diameter is obtained by randomly drawing 20 lines on the electron microscope image and taking the mean value of the length of the section corresponding to the pore 210 in the 20 lines. Note that each line may have a plurality of sections corresponding to the pores 210 .
  • Skeletal diameter and pore diameter are determined by image analysis using ImageJ (ver. 1.52n; open source and public domain image processing software).
  • the light source unit 120 emits light with a wavelength that satisfies the range of 380 nm or more and 3 ⁇ m or less.
  • the flexible porous body having a specific relationship between the pore diameter and the skeleton diameter described above does not absorb light from the light source section 120 both when an external stress is applied and when the load is removed.
  • the light receiving section 130 receives scattered light scattered by the flexible porous body, and converts the intensity of the scattered light into an electric signal (for example, potential).
  • the light intensity of the scattered light from the flexible porous body gradually decreases as the flexible porous body is compressed. That is, the scattered light intensity is the highest when the flexible porous body is not compressed, and the scattered light intensity decreases depending on the degree of compression of the flexible porous body.
  • FIG. 3 is a diagram showing the mechanism of the tactile sensor of the present invention.
  • FIG. 4 is another diagram showing the mechanism of the tactile sensor of the present invention.
  • FIGS. 4A and 4B Changes in scattered light intensity and potential changes corresponding to states A to C in FIG. 3 are shown in FIGS. 4A and 4B, respectively.
  • the haptic part 140 flexible porous body
  • the light from the light source part 120 is scattered by the skeleton of the haptic part 140 and scattered light 410 is generated.
  • the scattered light 410 is received by the light receiving unit 130, and the intensity of the received scattered light 410 is converted into an electric signal (for example, potential).
  • the intensity I A of the scattered light in this case becomes high (large) and is converted into a small potential V A .
  • a change in scattered light intensity caused by a difference in density due to compression of the tactile part 140 is detected as a change in potential. Therefore, it is possible to detect whether or not there was compression, and furthermore, the degree of compression, from the change in potential.
  • three types of states A to C have been used for explanation, but since the degree of compression can be detected only by the magnitude of the potential, detailed detection is possible without being limited to these three types.
  • the light receiving section 130 can detect even a slight change in the scattered light intensity and convert it into an electrical signal, so that even a slight distortion of the tactile section 140 can be easily detected.
  • Mie scattering multiple scattering
  • the mechanism of the present invention will be explained in more detail.
  • Mie scattering multiple scattering
  • the deformation of the porous body could be detected by detecting the intensity of the light (Tyndall phenomenon) returning to the vicinity of the incident light caused by multiple scattering inside the porous body.
  • Compressing the monolithic porous body increases the volume ratio of the skeleton in the unit space. Since the macroscopic compression of the monolith does not change the diameter of the skeleton composing the porous material, the change in the skeleton volume ratio can be regarded as the density change of the Mie scattering source. As the density of scattering sources increases, the number of times incident light scatters before it reaches the light receiving section also increases. Repeated scattering causes light to attenuate due to interference. By observing this change in light intensity, tactile evaluation (that is, detection of deformation of the porous body) becomes possible.
  • the pressure detectors described in Non-Patent Document 1 and Patent Document 2 use urethane foam and utilize scattering/reflection within the urethane foam during compression.
  • the urethane skeleton becomes denser due to compression, the number of scattering/reflecting sources occupying a unit space increases, and the scattering/reflectance from the incident point to the nearby detection point increases. Therefore, the more compressed, the higher the detected light intensity. Therefore, it differs from the mechanism of the tactile sensor of the present invention in that it utilizes the improvement in recurrence due to compression.
  • Non-Patent Document 1 and Patent Document 2 differ from the tactile sensor of the present invention in terms of mechanism and light scattering elastic material employed.
  • a flexible porous body having a predetermined ratio of pore diameter to skeleton diameter produces scattered light regardless of whether the external stress is applied or when the external stress is removed.
  • the external appearance of the flexible porous body is preferably white.
  • the pore diameter of the pores 210 of the flexible porous body more preferably satisfies the range of 3 to 20 times the skeleton diameter of the skeleton 220, and more preferably satisfies the range of 5 to 15 times.
  • the pore diameter of the pores 210 of the flexible porous body is preferably in the range of 100 nm or more and 200 ⁇ m or less. As a result, in the flexible porous body, even when the external stress is removed, the scattered light can change according to the compressive strain.
  • the pore diameter of the pores 210 is more preferably in the range of 500 nm or more and 100 ⁇ m or less, and still more preferably in the range of 1 ⁇ m or more and 50 ⁇ m or less.
  • the skeleton diameter of the skeleton 220 of the flexible porous body is more preferably in the range of 300 nm or more and 20 ⁇ m or less, still more preferably in the range of 300 nm or more and 10 ⁇ m or less, and particularly preferably 1 ⁇ m, from the viewpoint of change in scattered light intensity. It is in the range of 8 ⁇ m or less.
  • the porosity of the flexible porous body preferably satisfies the range of 60% or more and 99% or less. As a result, it is possible to detect changes in the intensity of scattered light that is deformed by external stress.
  • the porosity of the flexible porous body more preferably satisfies the range of 75% or more and 99% or less, and further preferably satisfies the range of 85% or more and 95% or less.
  • porosity percentage is obtained by dividing the bulk density by the true density, multiplying by 100, and then subtracting from 100. The true density is measured by the helium pycnometry method.
  • the bulk density of the flexible porous body may preferably be in the range of 0.01 g/cm 3 or more and 0.4 g/cm 3 or less. If the bulk density is within this range, the porosity described above can be satisfied. More preferably, the bulk density may range from 0.05 g/cm 3 to 0.3 g/cm 3 .
  • the thickness of the flexible porous body is not limited, it is preferably in the range of 100 ⁇ m or more and 10 cm or less. If the thickness is less than 100 ⁇ m, the amount of transmitted light increases, which may lower the detection accuracy.
  • the upper limit of the thickness of the flexible porous body is not particularly limited, but if it exceeds 10 cm, the tactile sensor 100 becomes large, which may make handling difficult. More preferably, the thickness of the flexible porous body may be in the range of 500 ⁇ m or more and 3 cm or less.
  • Examples of flexible porous materials that can satisfy the above conditions include silicone, urethane resin, acrylic resin, rubber, polystyrene resin, polyester resin, polyvinyl chloride, polyvinylidene chloride, polyamide resin, and polyimide resin. , cellulose resins, polyolefin resins, aromatic polyether ketones, and epoxy resins.
  • silicones include hydrolysis of silicon alkoxides in compositions containing tetraalkoxysilane (TEAS), methylalkoxysilane (MTAS), and dimethyldialkoxysilane (DMDAS), and polycondensation of the hydrolysis products.
  • TEAS tetraalkoxysilane
  • MTAS methylalkoxysilane
  • DDAS dimethyldialkoxysilane
  • silicones for example, Gen Hayase, Bulletin of the Chemical Society of Japan, 94[9], 2021, 2210-2215, Gen Hayase et al., J. Am. Mater. Chem. A, 2014, 2, 6525-6531, Gen Hayase et al., ACS Appl. Polym. Mater. 2019, 1, 8, 2077-2082.
  • urethane resins for example, a curing reaction between a polyol having an alkyl side chain and a polyisocyanate compound is performed in an organic solvent to uniformly gel while controlling phase separation, followed by washing and solvent exchange, followed by drying.
  • acrylic resin for example, a mixed solution of water and alcohol in which polymethyl methacrylate (PMMA) is dissolved is cooled, phase-separated, washed with a solvent in which a small amount of plasticizer is dissolved, and then dried.
  • acrylic resin for example, a mixed solution of dimethyl sulfoxide (DMSO) in which polyacrylonitrile (PAN) is dissolved and water may be cooled to phase-separate and impregnated with a plasticizer.
  • DMSO dimethyl sulfoxide
  • PAN polyacrylonitrile
  • the rubber may be natural rubber, or synthetic rubber such as styrene-butadiene rubber, isoprene rubber, butadiene rubber, chloroprene rubber, acrylonitrile-butadiene rubber, butyl rubber, ethylene-propylene rubber, ethylene-propylene-diene rubber, and fluororubber.
  • styrene-butadiene rubber such as styrene-butadiene rubber, isoprene rubber, butadiene rubber, chloroprene rubber, acrylonitrile-butadiene rubber, butyl rubber, ethylene-propylene rubber, ethylene-propylene-diene rubber, and fluororubber.
  • the polystyrene resin is not particularly limited as long as it is a polymer mainly composed of styrene and its derivatives.
  • polyester resins include polyethylene terephthalate, polybutylene terephthalate, polytrimethylene terephthalate, and polyethylene naphthalate.
  • Polyvinyl chloride is a polymer mainly composed of vinyl chloride, and may be a homopolymer or a copolymer.
  • Polyvinylidene chloride is, for example, vinylidene.
  • the polyamide resin may be, for example, nylon, nylon 6, nylon 66, nylon 11, nylon 610, nylon 612, aromatic nylon, aramid, or the like.
  • a polyimide resin is, for example, a condensation polymer of tetracarboxylic dianhydride and diamine.
  • Cellulose resins include acetate, triacetate, acetate oxide, and the like.
  • Polyolefin resins are polymers mainly composed of olefins, such as polyethylene, polypropylene, and polybutene.
  • Aromatic polyetherketones are, for example, polyetheretherketone (PEEK), polyetherketone, polyetherketoneketone, and polyetheretherketoneketone.
  • Epoxy resins consist of an epoxy compound alone or this and a curing agent. , an alicyclic epoxy resin, and a dicyclopentadiene type epoxy resin.
  • the pores 210 of the flexible porous body are preferably filled only with gas (air), but they may contain a liquid or an elastomer having a refractive index different from that of the skeleton 220 as long as the deformability is not significantly impaired. good too. This allows use in liquids such as water.
  • the light source unit 120 more preferably emits a wavelength in the range of 400 nm or more and 1.4 ⁇ m or less. Within this range, a light source is readily available, and Mie scattering is likely to occur particularly in the case of a flexible porous material with high light transmittance such as silicone. Light source unit 120 more preferably emits a wavelength in the range of 800 nm or more and 1.1 ⁇ m or less.
  • the light source unit 120 is not limited as long as it emits light with a wavelength that satisfies the above range. selected from the group consisting of With these, light with a wavelength that satisfies the above conditions can be emitted.
  • a light guide plate using an LED, an LD, or the like, or a liquid crystal display can also be used as the light source section 120 .
  • the light receiving unit 130 is not particularly limited as long as it can receive scattered light and convert the intensity of the scattered light into an electrical signal.
  • the light receiving unit 130 is illustratively selected from the group consisting of a photoresistor, a phototransistor, a photodiode, a photomultiplier tube, a photon counter, a CCD image sensor, a CMOS image sensor, an NMOS image sensor, and a solar cell. All of these can receive light and convert it into electrical signals, and are readily available.
  • the light source unit 120 and the light receiving unit 130 are paired and three pairs are arranged on the substrate 110, but the present invention is not limited to such a configuration.
  • a photoreflector having both the light source section 120 and the light receiving section 130 may be used. If a photoreflector is used, the tactile sensor 100 can be easily constructed because it is only necessary to place the tactile part 140 on the photoreflector.
  • the direction of the surface from which the light from the light source unit 120 is emitted and the direction of the surface of the light receiving unit 130 that receives the scattered light are the same, and the surfaces from which the light is emitted are preferably the same.
  • the flexible porous body constituting the tactile part 140 is positioned on the light-receiving surface.
  • the direction of the surface from which the light from the light source unit 120 is emitted and the direction of the surface from which the light receiving unit 130 receives scattered light are the same means that the surface from which the light from the light source unit 120 is emitted and the scattered light from the light receiving unit 130 are the same. It can also be said that the light receiving surface is parallel.
  • the tactile section 140 can be made thin, enabling miniaturization.
  • the light receiving unit 130 can receive the scattered light from the tactile unit 140, the direction of the surface from which the light from the light source unit 120 is emitted and the direction of the surface from which the light receiving unit 130 receives the scattered light (for example, a configuration in which the light source unit 120 and the light receiving unit 130 are positioned with the tactile unit 140 interposed therebetween) may also be adopted.
  • the substrate 110 is not particularly limited as long as the light source unit 120, the light receiving unit 130, and the tactile unit 140 can be positioned thereon.
  • a plastic substrate or the like can be applied.
  • the base material 110 is not limited to a flat plate, and may be curved. If the direction of the surface from which the light from the light source unit 120 is emitted is not the same as the direction of the surface of the light receiving unit 130 that receives the scattered light, the substrate on which the light source unit 120 is installed and the light receiving unit 130 are installed. You may provide separately the base material which carries out.
  • the tactile sensor 100 of the present invention may preferably further include a control section (not shown) that controls the operations of the light source section 120 and the light receiving section 130 .
  • the control unit includes an arithmetic processing unit such as a CPU (Central Processing Unit) or FPGA (Field-Programmable Gate Array).
  • the control unit controls the light source unit 120 to emit light having a predetermined wavelength at a predetermined timing, and controls the light receiving unit 130 in parallel with the light emitted by the light source unit 120. may be controlled so as to convert the intensity of the received scattered light into an electrical signal (for example, potential).
  • the control unit may further include a memory (storage device) that stores data indicating the relationship between the potential and compressibility of various flexible porous bodies that can constitute the tactile unit 140 . Thereby, the control section can easily calculate the compressibility and the external stress of the flexible porous body based on the electric signal (for example, potential) from the light receiving section 130 .
  • a memory storage device that stores data indicating the relationship between the potential and compressibility of various flexible porous bodies that can constitute the tactile unit 140 .
  • the control section can easily calculate the compressibility and the external stress of the flexible porous body based on the electric signal (for example, potential) from the light receiving section 130 .
  • the tactile sensor 100 of the present invention unlike Patent Document 1, it is not necessary to detect the light transmitted through the flexible porous body from the light source. is unnecessary, and high density is possible. As a result, a tactile sensor capable of multi-point detection can be realized.
  • FIG. 16 is a schematic diagram showing a robot arm with a gripper.
  • FIG. 17 is a schematic diagram showing an endoscope.
  • FIG. 18 is a schematic diagram showing a game controller.
  • the tactile sensor 100 of the present invention can be applied to a robot gripper 1610 (Fig. 16), medical equipment such as an endoscope (Fig. 17), or tactile feedback devices such as smart phones and game controllers (Fig. 18). Since the tactile sensor 100 of the present invention has delicate sensations similar to those of human skin, if it is applied to the skin of a robot or a gripper, it enables detection similar to that of a human. If applied to the tip of an endoscope, the condition of the affected area can be detected by lightly touching the affected area without the hard body directly touching the affected area, making it easier to confirm lesions. By applying the tactile sensor 100 of the present invention to devices such as inner-ear earphones and packing, it is possible to detect whether these devices are properly worn by pressure.
  • composition is transferred to a PFA (tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer) sealed container (gel type), heated at 80 ° C. for 12 hours, reacted (gelling and aging), and a viscoelastic phase separation structure is formed.
  • PFA tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer
  • the resulting wet gel was removed from the mold and washed once with at least 5 times the amount of pure water and twice with industrial alcohol for at least 6 hours.
  • a porous body (sometimes called marshmallow gel) was obtained. Based on the amounts of acetic acid and urea shown in Table 1, the obtained silicone porous bodies are called marshmallow gels P1 to P3.
  • a PMMA porous body which is an acrylic resin
  • a mixed solvent of 80% ethanol and 20% water (volume ratio) was kept at 80° C., and 0.40 g of PMMA (average molecular weight 350,000, manufactured by Sigma-Aldrich (Merck)) was added while stirring well. Dissolved. After confirming that the PMMA was completely dissolved, the vial containing the sol was allowed to stand still at 20° C. and air-cooled to effect gelation. The obtained wet gel was immersed twice in a sufficient amount of water for 8 hours, washed, and then immersed in an aqueous solution containing 5% glycerin for solvent exchange. Vacuum drying was performed at room temperature to obtain a PMMA porous body P4.
  • FIG. 5 is a diagram showing an SEM image of marshmallow gel P1.
  • FIG. 6 is a diagram showing an SEM image of marshmallow gel P2.
  • FIG. 7 is a SEM image of marshmallow gel P3.
  • FIG. 8 is a SEM image of the PMMA porous body P4.
  • FIG. 9 is a SEM image of melamine foam P5.
  • FIG. 10 is a SEM image of the cosmetic cotton P6.
  • the marshmallow gels P1 to P3 have a viscoelastic phase-separated structure, a three-dimensional network skeleton in which particles containing silicone as a main component are connected, and through holes formed by the skeleton. (pores).
  • the PMMA porous material P4 has a viscoelastic phase-separated structure, and has a three-dimensional network skeleton in which acrylic resin particles are linked, and a porous body P4 having through holes formed by the skeleton. was the body.
  • melamine foam P5 also had a three-dimensional network skeleton, but no continuous particulate structure was observed.
  • the cosmetic cotton P6 was fibrous and not a flexible porous body having a particulate skeleton.
  • the pore diameter, skeleton diameter, porosity and Young's modulus of marshmallow gels P1 to P3, PMMA porous body P4 and melamine foam P5 were measured.
  • the pore diameter and skeleton diameter were calculated by image analysis using Image J according to the method described above for electron images observed with a scanning electron microscope.
  • the Young's modulus was obtained by dividing the compressive stress when compressed at a compressibility of 1 to 2% by the compressibility. These results are shown in Table 2.
  • the porosity (percentage) was obtained by dividing the bulk density obtained by measuring the volume and weight by the true density, multiplying by 100, and then subtracting from 100.
  • the cosmetic cotton P6 is fibrous, and it was difficult to measure the pore diameter, skeleton diameter, porosity and Young's modulus.
  • a tactile sensor was manufactured using the marshmallow gels P1 to P3, PMMA porous body P4, melamine foam P5 and cosmetic cotton P6 described above.
  • a photoreflector manufactured by ON Semiconductor, QRE1113GR having a light source (LED) and a light receiving portion (Ge phototransistor) is mounted on a base material.
  • MS1 to MS5 adjusted to the thicknesses shown in Fig. 2 were arranged to form tactile sensors of Examples 1 to 15.
  • the LED used was one that emits light with a wavelength of 940 nm and light with a wavelength of 525 nm.
  • FIG. 11 is a diagram showing measurement circuits of Examples 1 to 15.
  • the tactile sensors 100 of Examples 1 to 15 were connected to a DC stabilized power supply (PS30V5A01, manufactured by AS ONE), and changes in voltage and stress/strain were measured with a mechanical testing device (EZ-SX, manufactured by Shimadzu Corporation). The results are shown in FIGS. 12-14.
  • FIG. 12 is a diagram showing test results using a tactile sensor using marshmallow gel P2 of Example 1.
  • FIG. 13 is a diagram showing test results using a tactile sensor using the melamine foam P5 of Example 5.
  • FIG. 14 is a diagram showing test results using a tactile sensor using the PMMA porous body P4 of Example 4.
  • the tactile sensors of Examples 2 to 3 and Examples 7 to 15 also showed similar profiles, although the magnitudes of potentials were slightly different. The reason why hysteresis is observed in FIG. 12B is that the deformation speed of the marshmallow gel when the external stress is applied differs from the deformation speed of the marshmallow gel when the external stress is removed.
  • the tactile sensor of Example 5 using the melamine foam P5 did not change its compressive strain even when external stress was applied/unloaded. However, the potential change was slight, and it was insufficient for use as a tactile sensor. Although not shown, the tactile sensor of Example 6 using cosmetic cotton P6 also did not cause a change in potential.
  • the PMMA porous body P4 has a larger Young's modulus than marshmallow gel and melamine foam, but its shape recovery is slow. Therefore, as shown in FIG. 14A, a test was performed for one cycle in which an external stress (10% compression) was applied to the tactile sensor for 30 seconds and then the external stress was removed for 30 seconds. The reason why the external stress did not return to 0% after the unloading in FIG. The test was terminated at this point.
  • FIG. 14(B) shows the relationship between stress and potential in response to this cycle
  • FIG. 14(C) shows the relationship between compressive strain and potential in response to this cycle.
  • Example 16 produced another tactile sensor using marshmallow gel P2 described above.
  • a halogen light source (Kenko Tokina Co., Ltd., KTX-100E) as a light source and a mini-spectrometer (Hamamatsu Photonics Co., Ltd., C13555MA) as a light receiving unit are connected to the optical fiber tip, respectively, on the substrate with a distance of 5 mm.
  • a tactile sensor of Example 16 was obtained by placing a marshmallow gel P2 (a cylinder with a diameter of 24 mm and a height of 20 mm) thereon.
  • the halogen light source had a wider range than the 350 nm to 830 nm shown in FIG.
  • the ratio of the scattered light intensity when the marshmallow gel P2 was compressed by 50% to the scattered light intensity detected by the light receiving unit when the marshmallow gel P2 was not compressed was examined. The results are shown in FIG.
  • FIG. 15 is a diagram showing the wavelength dependence of the scattered light intensity when the tactile sensor of Example 16 is compressed by 50%.
  • the vertical axis is the percentage of the scattered light intensity ratio at 50% compression to the scattered light intensity at non-compression.
  • the flexible porous body absorbs incident light with a wavelength of less than 380 nm in its skeleton, and therefore changes in compression are detected by changes in scattered light intensity. could not. This indicates that it is necessary to use a light source section that emits light having a wavelength of 380 nm or more.
  • the tactile sensor of the present invention can use a light source unit that emits light having a wavelength in the range of 380 nm to 3 ⁇ m.
  • marshmallow gels P7 and P8, which are silicone monolithic porous bodies, were also manufactured.
  • Marshmallow Gel P7 was manufactured as follows. 3.0 mL of methyltriethoxysilane (MTES) and dimethyldiethoxysilane (DMDES ) was added and stirred for 10 minutes, 1.33 mL of 1 M aqueous ammonia was added, and the mixture was strongly stirred for 1 minute to prepare a composition.
  • MTES methyltriethoxysilane
  • DMDES dimethyldiethoxysilane
  • composition was immediately transferred to an airtight container and allowed to stand at room temperature for 15 minutes to gel, and then aged at 80°C for 1 day to prepare a wet gel.
  • Marshmallow Gel P8 was manufactured as follows. 2.6 mL of methyltrimethoxysilane (MTMS) and 2.6 mL of dimethyldimethoxysilane (DMDMS) were added to a mixed solution of 25 mL of a 5 mM acetic acid aqueous solution, 1.0 g of n-hexadecyltrimethylammonium chloride (CTAC), and 8.0 g of urea. A composition was prepared by adding 4 mL and stirring for 30 minutes. The composition was then transferred to a closed container.
  • MTMS methyltrimethoxysilane
  • DDMMS dimethyldimethoxysilane
  • CAC n-hexadecyltrimethylammonium chloride
  • the sealed container was allowed to react (gelling and aging) at 80°C for one day to prepare a wet gel.
  • the resulting wet gel was taken out of the container and immersed and washed for a total of 24 hours or more while exchanging ethanol at 80°C every few hours.
  • marshmallow gel P8 was obtained by evaporating and drying the wet gel after immersion and washing.
  • FIG. 19 is a diagram showing an SEM image of marshmallow gel P7
  • FIG. 20 is a diagram showing an SEM image of marshmallow gel P8.
  • the marshmallow gels P7 and P8 have a viscoelastic phase-separated structure, a three-dimensional network skeleton in which particles containing silicone as a main component are linked, and through-holes formed by the skeleton. (pores).
  • the tactile sensors using the marshmallow gels P7 and P8 exhibit potential increased continuously and the potential decreased continuously in response to the removal of the external stress. Further, in the tactile sensors using the marshmallow gels P7 and P8, similarly to the tactile sensor of Example 1, the potential continuously increases as the compressive strain increases, and the potential continuously increases as the compressive strain decreases. A decreasing trend was also observed.
  • the light source unit and the light receiving unit are provided on the base material, and the three-dimensional mesh-like skeleton and the communicating pores formed by the skeleton are provided on the light source unit and the light receiving unit, and the pore diameter is the skeleton
  • a tactile sensor provided with a tactile part made of a flexible porous body satisfying a range of 1 to 100 times, preferably 3 to 20 times the diameter, when emitting light with a wavelength in the range of 380 nm to 3 ⁇ m,
  • the flexible porous body scatters the light from the light source, and the light receiving part receives the scattered light scattered by the flexible porous body. rice field.
  • the tactile sensor of the present invention uses scattered light generated by a flexible porous body, even subtle pressure changes can be detected with high accuracy.
  • a tactile sensor By applying such a tactile sensor to the surface of a robot, it is possible to provide a robot having human-like movements and sensations.
  • a medical device and a tactile feedback device can be provided by applying such a tactile sensor to the tip of an endoscope.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

A tactile sensor according to the present invention comprises: a base material; a light source unit positioned on the base material; a light reception unit positioned on the base material; and a tactile unit composed of a flexible porous body and positioned on the light source unit and the light reception unit. The flexible porous body has a network-type phase separation structure, and is provided with a three-dimensional mesh-like skeleton and connected pores formed by the skeleton. The size of the pores is 1-100 times larger than the size of the skeleton. The size of the skeleton is 100 nm to 50 μm. The light source unit emits light having a wavelength of 380 nm to 3 μm. The flexible porous body scatters light emitted from the light source unit. The light reception unit receives the scattered light scattered by the flexible porous body. The intensity of the scattered light is gradually reduced as the flexible porous body is compressed.

Description

触覚センサ、それを用いたロボット、医療機器、および、触覚フィードバック装置Tactile sensors, robots, medical devices, and tactile feedback devices using them
 本発明は、触覚センサ、それを用いたロボット、医療機器、および、触覚フィードバック装置に関する。 The present invention relates to a tactile sensor, a robot using the same, a medical device, and a tactile feedback device.
 ロボティクス分野において、人間のような動作をロボットにより実現するために、触覚は重要であり、近年触覚センサの開発が盛んである(例えば、特許文献1を参照)。 In the field of robotics, the sense of touch is important in order to achieve human-like movements with robots, and in recent years, the development of tactile sensors has been active (see Patent Document 1, for example).
 特許文献1は、基板と、基板上に固定した発光素子及び受光素子と、基板上に、前記発光素子及び前記受光素子を覆うように設けられた光透過性弾性部材からなる触覚部とを備える柔軟触覚センサを開示する。前記発光素子と前記受光素子は、前記光透過性弾性部材の内部に埋め込まれていて、前記光透過性弾性部材の部分を介して離間対向している。前記発光素子から出射された光は、前記発光素子と前記受光素子との間の光透過性弾性部材の部分を透過して前記受光素子で受光される。前記触覚部に外力が加えられた時の前記光透過性弾性部材の部分の密度変化に伴って受光素子で受光される光量が変化する。そして、柔軟触覚センサは、前記受光素子で受光される光量の変化を取得する。 Patent document 1 includes a substrate, a light-emitting element and a light-receiving element fixed on the substrate, and a tactile part made of a light-transmitting elastic member provided on the substrate so as to cover the light-emitting element and the light-receiving element. A flexible tactile sensor is disclosed. The light-emitting element and the light-receiving element are embedded in the light-transmitting elastic member and are opposed to each other with the light-transmitting elastic member interposed therebetween. Light emitted from the light emitting element is transmitted through a portion of the light-transmissive elastic member between the light emitting element and the light receiving element and is received by the light receiving element. The amount of light received by the light-receiving element changes as the density of the light-transmitting elastic member changes when an external force is applied to the tactile portion. The flexible tactile sensor acquires a change in the amount of light received by the light receiving element.
 発光素子の発した光の散乱/反射光を、受光素子が受光するように構成されたものに対し、発光を遮るように発泡ウレタンで覆った圧力検知器が開発されている(例えば、非特許文献1および特許文献2を参照)。非特許文献1および特許文献2によれば、発光素子の発光した光が光散乱用弾性素材(発泡ウレタン)内で散乱/反射し、光散乱用弾性素材内に発光部を中心とした光の強度分布を構成する。受光素子は、配置された場所における光の強度に相関した光電流を流すので、その光電流を信号として取り出すことができる。光散乱用弾性素材に圧力をかけることにより、光散乱用弾性素材は変形を起こす。光散乱用弾性素材が変形すると、光散乱用弾性素材内において光の強度分布が変化する。このことにより受光素子の配置された場所における光の強度が変化する。そして、光の強度の変化が圧力情報として取り出される。特に、このような圧力検知器は、非特許文献1の図1に示されるように、光散乱用弾性素材が圧縮されるほど、密度が大きくなり、反射光が増加し、受光素子の光量が増加する。 A pressure detector has been developed in which a light-receiving element receives the scattered/reflected light emitted by the light-emitting element and is covered with urethane foam to block light emission (for example, non-patented See Document 1 and Patent Document 2). According to Non-Patent Document 1 and Patent Document 2, the light emitted by the light-emitting element is scattered/reflected in the light-scattering elastic material (urethane foam), and the light is scattered around the light-emitting portion in the light-scattering elastic material. Construct an intensity distribution. Since the light-receiving element passes a photocurrent correlated to the intensity of light at the location where it is arranged, the photocurrent can be extracted as a signal. By applying pressure to the light-scattering elastic material, the light-scattering elastic material is deformed. When the light-scattering elastic material is deformed, the light intensity distribution changes in the light-scattering elastic material. This changes the intensity of the light at the location where the light receiving element is arranged. Then, changes in light intensity are extracted as pressure information. In particular, as shown in FIG. 1 of Non-Patent Document 1, in such a pressure sensor, the more the light scattering elastic material is compressed, the higher the density becomes, the more the reflected light increases, and the more the light intensity of the light receiving element increases. To increase.
特開2013-101096号公報JP 2013-101096 A 特許第4868347号明細書Patent No. 4868347
 しかしながら、特許文献1の触覚センサは、触覚部内に光源部および受光部を埋め込む必要があることから、光透過性弾性部材を交換しにくいという問題があった。また、発光素子の厚みと受光素子の厚みとを加味する必要があることや、発光素子と受光素子との間の光路長を確保する必要があることから、触覚部に一定の厚さをもたせる必要があり、センサの小型化、高密度化に限界がある。 However, the tactile sensor of Patent Document 1 has a problem that it is difficult to replace the light-transmitting elastic member because it is necessary to embed the light source and the light receiving section in the tactile section. In addition, since it is necessary to consider the thickness of the light-emitting element and the thickness of the light-receiving element, and it is necessary to secure the optical path length between the light-emitting element and the light-receiving element, the tactile part is given a certain thickness. There is a limit to miniaturization and high density of sensors.
 また、非特許文献1および特許文献2の圧力検知器によれば、発光素子、光散乱用弾性素材からの散乱光/反射光、および、受光素子の光路上にある程度の透過性が求められるため、光散乱用弾性素材の骨格構造を疎にする必要がある。発泡ウレタンに代表される光散乱用弾性素材は、一定以上薄くなると光が漏れるため、検出精度が低下する、さらには検出できない場合がある。そのため、素子の配置の制限、および、光散乱用弾性素材の厚さの制限により、小型化には限界がある。 Further, according to the pressure detectors of Non-Patent Document 1 and Patent Document 2, a certain degree of transparency is required on the optical path of the light emitting element, the scattered light/reflected light from the light scattering elastic material, and the light receiving element. , the skeletal structure of the elastic material for light scattering needs to be sparse. If the elastic material for light scattering represented by urethane foam becomes thinner than a certain amount, light leaks, so the detection accuracy decreases, or even detection may not be possible. Therefore, there is a limit to miniaturization due to restrictions on the arrangement of the elements and restrictions on the thickness of the light-scattering elastic material.
 以上の事情を考慮して、本発明の課題は、触覚部の交換が用意であり、小型化および高密度化可能な触覚センサ、それを用いたロボット、医療機器、および、触覚フィードバック装置を提供することである。 In consideration of the above circumstances, an object of the present invention is to provide a tactile sensor whose tactile part can be easily replaced and which can be miniaturized and increased in density, a robot, a medical device, and a tactile feedback device using the same. It is to be.
 本発明の触覚センサは、基材と、前記基材上に位置する光源部と、前記基材上に位置する受光部と、前記光源部および前記受光部上に位置し、柔軟多孔体からなる触覚部とを備え、前記柔軟多孔体は、ネットワーク型相分離構造を有し、前記柔軟多孔体は、三次元網目状の骨格と、当該骨格により形成された連通する気孔とを備え、前記気孔の気孔径は、前記骨格の骨格径の1倍以上100倍以下の範囲を満たし、前記骨格径は、100nm以上50μm以下の範囲を満たし、前記光源部は、380nm以上3μm以下の範囲を満たす波長の光を発し、前記柔軟多孔体は、前記光源部からの光を散乱し、前記受光部は、前記柔軟多孔体で散乱した散乱光を受光し、前記散乱光の強度は、前記柔軟多孔体が圧縮されるにつれて、漸次的に小さくなり、これにより上記課題を解決する。
 前記気孔径は、前記骨格径の3倍以上20倍以下の範囲を満たしてもよい。
 前記気孔径は、前記骨格径の5倍以上15倍以下の範囲を満たしてもよい。
 前記柔軟多孔体の気孔率は、60%以上99%以下の範囲を有してもよい。
 前記柔軟多孔体の気孔率は、85%以上95%以下の範囲を有してもよい。
 前記柔軟多孔体は、シリコーン、ウレタン樹脂、アクリル樹脂、ゴム、ポリスチレン樹脂、ポリエステル樹脂、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリアミド樹脂、ポリイミド樹脂、セルロース樹脂、ポリオレフィン樹脂、芳香族ポリエーテルケトン、および、エポキシ樹脂からなる群から選択されてもよい。
 前記光源部は、発光ダイオード(LED)、レーザダイオード(LD)、有機EL、および、光ファイバからなる群から選択されてもよい。
 前記光源部は、400nm以上1.4μm以下の範囲の波長の光を発してもよい。
 前記光源部は、800nm以上1.1μm以下の範囲の波長の光を発してもよい。
 前記受光部は、フォトレジスタ、フォトトランジスタ、フォトダイオード、光電子倍増管、フォトンカウンタ、CCDイメージセンサ、CMOSイメージセンサ、NMOSイメージセンサ、および、太陽電池からなる群から選択されてもよい。
 前記光源部からの光が出射する面の方向と、前記受光部の前記散乱光を受光する面の方向とは、同一であり、前記触覚部は、前記光が出射する面および前記受光する面上に位置してもよい。
 前記基材は、フレキシブル基板であってもよい。
 前記光源部および前記受光部の動作を制御する制御部をさらに備え、前記制御部は、前記柔軟多孔体の電位と圧縮率との関係を示すデータを格納したメモリを備えてもよい。
 前記気孔径は、100nm以上200μm以下の範囲を満たしてもよい。
 前記骨格径は、1μm以上8μm以下の範囲を満たしてもよい。
 前記柔軟多孔体の嵩密度は、0.01g/cm以上0.4g/cm以下の範囲を満たしてもよい。
 本発明によるロボットは、上述の触覚センサを備え、これにより上記課題を解決する。
 本発明の医療機器は、上述の触覚センサを備え、これにより上記課題を解決する。
 本発明の触覚フィードバック装置は、上述の触覚センサを備え、これにより上記課題を解決する。
A tactile sensor of the present invention comprises a base material, a light source positioned on the base, a light receiving part positioned on the base, and a flexible porous body positioned on the light source and the light receiving part. a tactile part, wherein the flexible porous body has a network-type phase separation structure, the flexible porous body comprises a three-dimensional network skeleton and communicating pores formed by the skeleton, and the pores The pore diameter satisfies the range of 1 to 100 times the skeleton diameter of the skeleton, the skeleton diameter satisfies the range of 100 nm to 50 μm, and the light source unit has a wavelength satisfying the range of 380 nm to 3 μm The flexible porous body scatters the light from the light source section, the light receiving section receives the scattered light scattered by the flexible porous body, and the intensity of the scattered light is equal to that of the flexible porous body becomes progressively smaller as is compressed, thereby solving the above problem.
The pore diameter may satisfy a range of 3 to 20 times the skeleton diameter.
The pore diameter may satisfy a range of 5 to 15 times the skeleton diameter.
A porosity of the flexible porous body may range from 60% to 99%.
A porosity of the flexible porous body may range from 85% to 95%.
The flexible porous body includes silicone, urethane resin, acrylic resin, rubber, polystyrene resin, polyester resin, polyvinyl chloride, polyvinylidene chloride, polyamide resin, polyimide resin, cellulose resin, polyolefin resin, aromatic polyether ketone, and It may be selected from the group consisting of epoxy resins.
The light source unit may be selected from the group consisting of a light emitting diode (LED), a laser diode (LD), an organic EL, and an optical fiber.
The light source section may emit light with a wavelength in the range of 400 nm or more and 1.4 μm or less.
The light source section may emit light with a wavelength in the range of 800 nm or more and 1.1 μm or less.
The light receiving unit may be selected from the group consisting of a photoresistor, a phototransistor, a photodiode, a photomultiplier tube, a photon counter, a CCD image sensor, a CMOS image sensor, an NMOS image sensor, and a solar cell.
The direction of the surface from which the light from the light source part is emitted is the same as the direction of the surface of the light receiving part that receives the scattered light, and the tactile part has a surface from which the light is emitted and a surface that receives the light. may be located above.
The base material may be a flexible substrate.
The controller may further include a controller for controlling the operation of the light source and the light receiver, and the controller may include a memory storing data indicating the relationship between the potential and compressibility of the flexible porous body.
The pore diameter may satisfy a range of 100 nm or more and 200 μm or less.
The skeleton diameter may satisfy a range of 1 μm or more and 8 μm or less.
The bulk density of the flexible porous body may satisfy a range of 0.01 g/cm 3 or more and 0.4 g/cm 3 or less.
A robot according to the present invention includes the tactile sensor described above to solve the above problems.
A medical device of the present invention includes the tactile sensor described above, thereby solving the above problems.
A haptic feedback device according to the present invention includes the haptic sensor described above, thereby solving the above problems.
 本発明による触覚センサは、基材と、当該基材上に位置する光源部および受光部と、当該光源部および当該受光部上に位置し、ネットワーク型相分離構造を有し、三次元網目状の骨格と、当該骨格により形成された連通する気孔とを備え、気孔径が骨格径(骨格径は100nm以上50μm以下の範囲を満たす)の1倍以上100倍以下の範囲を満たす、柔軟多孔体を備える触覚部とを備える。光源部からの光の波長は、380nm以上3μm以下の範囲を満たすように設定されており、上述の気孔径と骨格径とが特定の関係を有する柔軟多孔体は、骨格に基づく散乱光を発生する。そして、当該散乱光を受光した受光部は、散乱光強度の変化により、柔軟多孔体の変形を検出できる。ここで、上述の柔軟多孔体を用いることにより、柔軟多孔体からの散乱光の強度は、柔軟多孔体が圧縮されるにつれて、漸次的に小さくなるように変化するため、このような変化に基づいて、変形を高精度に検出できる。 A tactile sensor according to the present invention includes a base material, a light source part and a light receiving part positioned on the base material, a network type phase separation structure positioned on the light source part and the light receiving part, and a three-dimensional mesh shape. and communicating pores formed by the skeleton, and the pore diameter satisfies the range of 1 to 100 times the skeleton diameter (the skeleton diameter satisfies the range of 100 nm to 50 μm). and a haptic portion comprising: The wavelength of the light from the light source is set to satisfy the range of 380 nm or more and 3 μm or less, and the flexible porous body having a specific relationship between the pore diameter and the skeleton diameter generates scattered light based on the skeleton. do. Then, the light-receiving part that receives the scattered light can detect the deformation of the flexible porous body from the change in the intensity of the scattered light. Here, by using the flexible porous body described above, the intensity of the scattered light from the flexible porous body gradually decreases as the flexible porous body is compressed. deformation can be detected with high accuracy.
 本発明による触覚センサによれば、触覚部は、触覚部内に光源部および受光部を埋め込む必要がないため、触覚部の交換が容易であり、触覚部の厚さも薄くできる。したがって、触覚センサの小型化を可能にする。さらに、光源部と受光部との間隔を短くすることができるため、センサの高密度化を可能とする。 According to the tactile sensor of the present invention, since it is not necessary to embed the light source part and the light receiving part in the tactile part, the tactile part can be easily replaced and the thickness of the tactile part can be reduced. Therefore, it is possible to miniaturize the tactile sensor. Furthermore, since the distance between the light source section and the light receiving section can be shortened, it is possible to increase the sensor density.
 本発明の触覚センサをインナーイヤー型イヤホン、パッキンなどの器具に適用すれば、圧力によってこれら器具が正しく装着されているか検出できる。また、本発明による触覚センサを用いれば、人間の皮膚感覚を備えるロボットや触診を可能にする内視鏡等の医療機器、触覚フィードバック装置を提供できる。 By applying the tactile sensor of the present invention to devices such as inner-ear earphones and packing, pressure can be used to detect whether these devices are correctly worn. Further, by using the tactile sensor according to the present invention, it is possible to provide a robot equipped with human skin sensation, a medical device such as an endoscope capable of palpation, and a tactile feedback device.
本発明による触覚センサを示す模式図Schematic diagram showing a tactile sensor according to the present invention 柔軟多孔体を示す模式図Schematic diagram showing a flexible porous body 本発明の触覚センサのメカニズムを示す図Diagram showing the mechanism of the tactile sensor of the present invention 本発明の触覚センサのメカニズムを示す別の図Another diagram showing the mechanism of the tactile sensor of the present invention マシュマロゲルP1のSEM像を示す図Figure showing SEM image of marshmallow gel P1 マシュマロゲルP2のSEM像を示す図Figure showing SEM image of marshmallow gel P2 マシュマロゲルP3のSEM像を示す図Figure showing SEM image of marshmallow gel P3 PMMA多孔体P4のSEM像を示す図The figure which shows the SEM image of the PMMA porous body P4. メラミンフォームP5のSEM像を示す図Figure showing SEM image of melamine foam P5 化粧用コットンP6のSEM像を示す図SEM image of cosmetic cotton P6 例1~例15の測定回路を示す図Diagram showing the measurement circuits of Examples 1 to 15 例1のマシュマロゲルP2を使用した触覚センサを用いた試験結果を示す図A diagram showing test results using a tactile sensor using marshmallow gel P2 of Example 1 例5のメラミンフォームP5を使用した触覚センサを用いた試験結果を示す図A diagram showing test results using a tactile sensor using melamine foam P5 of Example 5 例4のPMMA多孔体P4を使用した触覚センサを用いた試験結果を示す図FIG. 10 is a diagram showing test results using a tactile sensor using the PMMA porous body P4 of Example 4. 例16の触覚センサによる50%圧縮時の散乱光強度の波長依存性を示す図A diagram showing the wavelength dependence of the scattered light intensity at 50% compression by the tactile sensor of Example 16 グリッパを備えたロボットアームを示す模式図Schematic showing a robot arm with a gripper 内視鏡を示す模式図Schematic diagram showing an endoscope ゲーム用コントローラを示す模式図Schematic diagram showing a game controller マシュマロゲルP7のSEM像を示す図Figure showing SEM image of marshmallow gel P7 マシュマロゲルP8のSEM像を示す図Figure showing SEM image of marshmallow gel P8
 以下、図面を参照しながら本発明の実施の形態を説明する。なお、同様の要素には同様の番号を付し、その説明を省略する。 Embodiments of the present invention will be described below with reference to the drawings. In addition, the same number is given to the same element, and the description is omitted.
 図1は、本発明による触覚センサを示す模式図である。
 図2は、柔軟多孔体を示す模式図である。
FIG. 1 is a schematic diagram showing a tactile sensor according to the present invention.
FIG. 2 is a schematic diagram showing a flexible porous body.
 本発明の触覚センサ100は、基材110と、基材110上に位置する光源部120と、基材110上に位置する受光部130と、これら光源部120および受光部130上に位置する柔軟多孔体からなる触覚部140とを備える。このような構成により、本発明の触覚センサ100は、柔軟多孔体の変形を検出できる。 The tactile sensor 100 of the present invention includes a base material 110, a light source section 120 positioned on the base material 110, a light receiving section 130 positioned on the base material 110, and a flexible sensor positioned on the light source section 120 and the light receiving section 130. and a tactile part 140 made of a porous body. With such a configuration, the tactile sensor 100 of the present invention can detect deformation of the flexible porous body.
 柔軟多孔体は、ネットワーク型相分離構造を有する。ネットワーク型相分離構造とは、いわゆる骨格相が連続性を保ったまま相分離した構造である。電子顕微鏡により曲面から構成された連続骨格形態が観察されれば、柔軟多孔体がネットワーク型相分離構造を有すると判定できる。ネットワーク型相分離構造には、製造方法の違いによってスピノーダル分解型相分離構造、粘弾性相分離構造等がある。いずれの構造も、球状粒子が融合・熟成したような骨格形態をとることが知られている。このようなネットワーク型分離構造を柔軟多孔体が有することにより、ミー散乱が生じやすくなり、精度よく検出できる。 The flexible porous body has a network-type phase separation structure. A network-type phase-separated structure is a structure in which a so-called skeleton phase is phase-separated while maintaining continuity. If a continuous skeleton morphology composed of curved surfaces is observed with an electron microscope, it can be determined that the flexible porous material has a network-type phase separation structure. The network-type phase-separated structure includes a spinodal decomposition-type phase-separated structure, a viscoelastic phase-separated structure, and the like depending on the manufacturing method. Both structures are known to have a skeletal form in which spherical particles are fused and matured. When the flexible porous body has such a network-type separation structure, Mie scattering easily occurs and can be detected with high accuracy.
 本発明の柔軟多孔体は、連通する気孔210(図2)と、三次元網目状の骨格220(図2)とを備え、柔軟性を有する。気孔210は、三次元網目状の骨格220により形成される。骨格220の間の空隙が気孔210であるとも換言できる。図2に例示される通り、骨格220は、粒子が連続的に結合した形状である。詳細には、本発明で適用する柔軟多孔体における気孔210の気孔径は、骨格220の骨格径の1倍以上100倍以下の範囲を満たす。ここで、骨格径は、100nm以上50μm以下の範囲を満たす。これにより、柔軟多孔体において、外部応力の除荷時も、圧縮歪みに応じて散乱光変化を生じることができる。 The flexible porous body of the present invention has communicating pores 210 (Fig. 2) and a three-dimensional network skeleton 220 (Fig. 2), and has flexibility. Pores 210 are formed by a three-dimensional network skeleton 220 . It can also be said that the voids between the skeletons 220 are the pores 210 . As illustrated in FIG. 2, the scaffold 220 is a shape in which particles are continuously connected. Specifically, the pore diameter of the pores 210 in the flexible porous body applied in the present invention satisfies the range of 1 to 100 times the skeleton diameter of the skeleton 220 . Here, the skeleton diameter satisfies the range of 100 nm or more and 50 μm or less. As a result, in the flexible porous body, even when the external stress is removed, the scattered light can change according to the compressive strain.
 本願明細書において、柔軟多孔体とは、外部応力の印加によって気孔の体積が縮小し、密度の変化とともに圧縮変形するが、外部応力を除去すると、元に戻るものを意図する。柔軟多孔体としては、10MPa以下のヤング率を有するものが好ましいく、1kPa以上100kPa以下のヤング率を有するものがより好ましい。 In the present specification, the term "flexible porous material" refers to a material whose pore volume is reduced by application of an external stress, compressively deformed with a change in density, but returns to its original state when the external stress is removed. The flexible porous body preferably has a Young's modulus of 10 MPa or less, more preferably 1 kPa or more and 100 kPa or less.
 本願明細書において、骨格径とは、電子顕微鏡像において、骨格220に内接する円を100個配置し、その円の直径d(図2)の平均値とする。また、気孔径は、電子顕微鏡像上にランダムに20本の線を引き、当該20本の線における気孔210に相当する区間の長さの平均値とする。なお、各線において気孔210に相当する区間は複数存在し得る。骨格径と気孔径との特定は、ImageJ(ver. 1.52n;オープンソースでパブリックドメインの画像処理ソフトウェア)を用いた画像解析により行う。 In the specification of the present application, the skeleton diameter is the average value of the diameter d (Fig. 2) of 100 circles inscribed in the skeleton 220 in the electron microscope image. The pore diameter is obtained by randomly drawing 20 lines on the electron microscope image and taking the mean value of the length of the section corresponding to the pore 210 in the 20 lines. Note that each line may have a plurality of sections corresponding to the pores 210 . Skeletal diameter and pore diameter are determined by image analysis using ImageJ (ver. 1.52n; open source and public domain image processing software).
 光源部120は、380nm以上3μm以下の範囲を満たす波長の光を発する。これにより、上述の気孔径と骨格径とが特定の関係を有する柔軟多孔体は、外部応力の印加時、ならびに、除荷時のいずれにおいても、光源部120からの光を吸収することなく、散乱できる。受光部130は、柔軟多孔体で散乱した散乱光を受光し、その散乱光の強度を電気信号(例えば、電位)に変換する。ここで、柔軟多孔体からの散乱光の光強度は、柔軟多孔体が圧縮されるにつれて、漸次的に小さくなるよう変化する。すなわち、柔軟多孔体が非圧縮の際がもっとも散乱光強度が大きく、柔軟多孔体の圧縮の程度によって、散乱光強度は小さくなる。 The light source unit 120 emits light with a wavelength that satisfies the range of 380 nm or more and 3 μm or less. As a result, the flexible porous body having a specific relationship between the pore diameter and the skeleton diameter described above does not absorb light from the light source section 120 both when an external stress is applied and when the load is removed. Can scatter. The light receiving section 130 receives scattered light scattered by the flexible porous body, and converts the intensity of the scattered light into an electric signal (for example, potential). Here, the light intensity of the scattered light from the flexible porous body gradually decreases as the flexible porous body is compressed. That is, the scattered light intensity is the highest when the flexible porous body is not compressed, and the scattered light intensity decreases depending on the degree of compression of the flexible porous body.
 図3は、本発明の触覚センサのメカニズムを示す図である。
 図4は、本発明の触覚センサのメカニズムを示す別の図である。
FIG. 3 is a diagram showing the mechanism of the tactile sensor of the present invention.
FIG. 4 is another diagram showing the mechanism of the tactile sensor of the present invention.
 図3の状態A~状態Cに対応する散乱光強度の変化および電位の変化を、それぞれ、図4(A)および図4(B)に示す。外部応力がなく、触覚部140(柔軟多孔体)が圧縮されていない場合(図3の状態A)、光源部120からの光は、触覚部140の骨格によって散乱され、散乱光410が生じる。散乱光410は、受光部130で受光され、当該受光された散乱光410の強度は電気信号(例えば、電位)に変換される。この場合の散乱光の強度Iは、高く(大きく)なり、小さな電位Vに変換される。 Changes in scattered light intensity and potential changes corresponding to states A to C in FIG. 3 are shown in FIGS. 4A and 4B, respectively. When there is no external stress and the haptic part 140 (flexible porous body) is not compressed (state A in FIG. 3), the light from the light source part 120 is scattered by the skeleton of the haptic part 140 and scattered light 410 is generated. The scattered light 410 is received by the light receiving unit 130, and the intensity of the received scattered light 410 is converted into an electric signal (for example, potential). The intensity I A of the scattered light in this case becomes high (large) and is converted into a small potential V A .
 外部応力が印加され、触覚部140が圧縮されている場合(図3の状態B)、光源部120からの光は、同様に散乱される。ただし、触覚部140が圧縮されるため、骨格が密になり、散乱光410の強度Iは、強度Iよりも低く(小さく)なる。この場合の散乱光の強度Iは、電位Vより大きな電位Vに変換される。 When an external stress is applied and haptic portion 140 is compressed (state B in FIG. 3), light from light source portion 120 is similarly scattered. However, since the haptic part 140 is compressed, the skeleton becomes dense, and the intensity I B of the scattered light 410 becomes lower (smaller) than the intensity I A. The scattered light intensity I B in this case is converted to a potential V B greater than the potential V A .
 外部応力がさらに印加され、触覚部140がさらに圧縮されている場合(図3の状態C)、光源部120からの光は、同様に散乱されるただし、触覚部140がさらに圧縮されるため、骨格がさらに密になり、散乱光410の強度Iは、強度Iよりも低く(小さく)なる。この場合の散乱光の強度Iは、電位Vより大きな電位Vに変換される。 When more external stress is applied and haptic 140 is further compressed (state C in FIG. 3), light from light source 120 is similarly scattered, except that haptic 140 is further compressed. The skeleton becomes denser and the intensity IC of the scattered light 410 becomes lower (smaller) than the intensity IB . The scattered light intensity I C in this case is converted to a potential V C greater than the potential V B .
 このように触覚部140の圧縮による密度の違いによって生じる散乱光強度の変化が、電位の変化として検出される。したがって、電位の変化から、圧縮があったか否か、さらには、圧縮の程度を検出することができる。ここでは、簡単のため、状態A~Cの3種類を用いて説明したが、電位の大きさのみで圧縮の程度を検出できるため、これら3種類に限らず、細かい検出を可能にする。 A change in scattered light intensity caused by a difference in density due to compression of the tactile part 140 is detected as a change in potential. Therefore, it is possible to detect whether or not there was compression, and furthermore, the degree of compression, from the change in potential. Here, for the sake of simplicity, three types of states A to C have been used for explanation, but since the degree of compression can be detected only by the magnitude of the potential, detailed detection is possible without being limited to these three types.
 さらに、このような散乱光強度の変化は、圧縮による密度変化に追随して生じるため、タイムラグが生じることなく検出できる。さらに、受光部130は、散乱光強度のわずかな変化も検出し、電気信号に変換できるので、触覚部140のわずかな歪みも容易に検出できる。 Furthermore, since such changes in scattered light intensity follow density changes due to compression, they can be detected without a time lag. Furthermore, the light receiving section 130 can detect even a slight change in the scattered light intensity and convert it into an electrical signal, so that even a slight distortion of the tactile section 140 can be easily detected.
 より詳細に本発明のメカニズムを説明する。
 本発明では、触覚部140を構成する柔軟多孔体におけるミー散乱(多重散乱)を利用する。光の波長と同程度の大きさをもつ粒子は強いミー散乱を起こすことが一般的に知られている。ミー散乱は球状粒子で起こる現象としてとらえられることが多いが、スピノーダル分解型相分離や粘弾性相分離で作製されたモノリス型多孔体表面や内部においても、球状粒子が融合したような凹凸性のある骨格形態から、ミー散乱を生じやすい。本願発明者は、多孔体に入射した光が内部で多重散乱を起こし、入射光近傍に戻ってきた光(チンダル現象)の強度を検出することにより多孔体の変形を検出できると考えた。
The mechanism of the present invention will be explained in more detail.
In the present invention, Mie scattering (multiple scattering) in the flexible porous body forming the tactile part 140 is utilized. It is generally known that particles with a size comparable to the wavelength of light undergo strong Mie scattering. Mie scattering is often regarded as a phenomenon that occurs in spherical particles, but the surface and interior of monolithic porous materials prepared by spinodal decomposition-type phase separation and viscoelastic phase separation also exhibit irregularities such as the fusion of spherical particles. Certain skeletal morphologies are prone to Mie scattering. The inventor of the present application thought that the deformation of the porous body could be detected by detecting the intensity of the light (Tyndall phenomenon) returning to the vicinity of the incident light caused by multiple scattering inside the porous body.
 モノリス型多孔体を圧縮すると、単位空間における骨格の体積比が増加する。モノリスの巨視的な圧縮では多孔体を構成する骨格径はほとんど変わらないことから、骨格体積比の変化はミー散乱源の密度変化と見做すことができる。散乱源の密度が増加すれば、入射光が受光部に達するまでに起こる散乱回数も増加する。散乱を繰り返すと干渉などにより光が減衰していくため、多孔体を圧縮するほど受光部で検出される光強度は弱くなる。この光強度の変化を観測することで、触覚の評価(すなわち、多孔体の変形の検出)が可能になる。 Compressing the monolithic porous body increases the volume ratio of the skeleton in the unit space. Since the macroscopic compression of the monolith does not change the diameter of the skeleton composing the porous material, the change in the skeleton volume ratio can be regarded as the density change of the Mie scattering source. As the density of scattering sources increases, the number of times incident light scatters before it reaches the light receiving section also increases. Repeated scattering causes light to attenuate due to interference. By observing this change in light intensity, tactile evaluation (that is, detection of deformation of the porous body) becomes possible.
 ここで、非特許文献1および特許文献2に記載の圧力検知器と、本発明の触覚センサとの違いについて述べておく。上述したように、非特許文献1および特許文献2に記載の圧力検知器は、発泡ウレタンを用い、圧縮時の発泡ウレタン内の散乱/反射を利用する。詳細には、圧縮によりウレタン骨格が密になると単位空間に占める散乱/反射源が増加し、入射点からその近傍にある検出点に向かう散乱/反射率が増大する。そのため、圧縮するほど検出光強度が高くなる。したがって、圧縮による再帰性の向上を利用する点が、本発明の触覚センサのメカニズムと異なる。また、発泡ウレタンは、そもそも、相分離によって製造されないため、スピノーダル分解型相分離構造や粘弾性相分離構造を有さない。そのため、発泡ウレタンの圧縮時には、散乱光の強度が小さくなることはない。したがって、非特許文献1および特許文献2に記載の圧力検知器は、本発明の触覚センサとはメカニズムが異なるとともに、採用されている光散乱用弾性素材が異なる。 Here, the difference between the pressure detectors described in Non-Patent Document 1 and Patent Document 2 and the tactile sensor of the present invention will be described. As described above, the pressure detectors described in Non-Patent Document 1 and Patent Document 2 use urethane foam and utilize scattering/reflection within the urethane foam during compression. Specifically, when the urethane skeleton becomes denser due to compression, the number of scattering/reflecting sources occupying a unit space increases, and the scattering/reflectance from the incident point to the nearby detection point increases. Therefore, the more compressed, the higher the detected light intensity. Therefore, it differs from the mechanism of the tactile sensor of the present invention in that it utilizes the improvement in recurrence due to compression. In addition, since urethane foam is not produced by phase separation, it does not have a spinodal decomposition type phase separation structure or a viscoelastic phase separation structure. Therefore, the intensity of scattered light does not decrease when the urethane foam is compressed. Therefore, the pressure detectors described in Non-Patent Document 1 and Patent Document 2 differ from the tactile sensor of the present invention in terms of mechanism and light scattering elastic material employed.
 上述したように、所定の骨格径に対する気孔径の比を有する柔軟多孔体であれば、外部応力の除荷時、ならびに、外部応力の印加時に関わらず、散乱光を生じる。ただし、広い波長域で安定した散乱光を生じる観点から、柔軟多孔体外観は白色であることが好ましい。 As described above, a flexible porous body having a predetermined ratio of pore diameter to skeleton diameter produces scattered light regardless of whether the external stress is applied or when the external stress is removed. However, from the viewpoint of generating stable scattered light over a wide wavelength range, the external appearance of the flexible porous body is preferably white.
 柔軟多孔体の気孔210の気孔径は、より好ましくは、骨格220の骨格径の3倍以上20倍以下の範囲を満たし、さらに好ましくは、5倍以上15倍以下の範囲を満たす。これにより、柔軟多孔体において、外部応力の除荷時も、圧縮歪みに応じて散乱光変化を生じることができる。 The pore diameter of the pores 210 of the flexible porous body more preferably satisfies the range of 3 to 20 times the skeleton diameter of the skeleton 220, and more preferably satisfies the range of 5 to 15 times. As a result, in the flexible porous body, even when the external stress is removed, the scattered light can change according to the compressive strain.
 柔軟多孔体の気孔210の気孔径は、好ましくは、100nm以上200μm以下の範囲である。これにより、柔軟多孔体において、外部応力の除荷時も、圧縮歪みに応じて散乱光変化を生じることができる。気孔210の気孔径は、より好ましくは、500nm以上100μm以下の範囲であり、さらに好ましくは、1μm以上50μm以下の範囲である。 The pore diameter of the pores 210 of the flexible porous body is preferably in the range of 100 nm or more and 200 μm or less. As a result, in the flexible porous body, even when the external stress is removed, the scattered light can change according to the compressive strain. The pore diameter of the pores 210 is more preferably in the range of 500 nm or more and 100 μm or less, and still more preferably in the range of 1 μm or more and 50 μm or less.
 柔軟多孔体の骨格220の骨格径は、散乱光強度の変化の観点から、より好ましくは、300nm以上20μm以下の範囲であり、さらに好ましくは、300nm以上10μm以下の範囲であり、特に好ましくは1μm以上8μm以下の範囲である。 The skeleton diameter of the skeleton 220 of the flexible porous body is more preferably in the range of 300 nm or more and 20 μm or less, still more preferably in the range of 300 nm or more and 10 μm or less, and particularly preferably 1 μm, from the viewpoint of change in scattered light intensity. It is in the range of 8 μm or less.
 柔軟多孔体の気孔率は、好ましくは、60%以上99%以下の範囲を満たす。これにより、外部応力により変形し、散乱光の強度変化を検出できる。柔軟多孔体の気孔率は、より好ましくは、75%以上99%以下の範囲を満たし、さらに好ましくは85%以上95%以下の範囲を満たす。本願明細書において、気孔率(百分率)は、嵩密度を真密度で除した数を100倍した後、100から引くことによって得られる。なお、真密度は、ヘリウムピクノメトリー法によって測定される。 The porosity of the flexible porous body preferably satisfies the range of 60% or more and 99% or less. As a result, it is possible to detect changes in the intensity of scattered light that is deformed by external stress. The porosity of the flexible porous body more preferably satisfies the range of 75% or more and 99% or less, and further preferably satisfies the range of 85% or more and 95% or less. As used herein, porosity (percentage) is obtained by dividing the bulk density by the true density, multiplying by 100, and then subtracting from 100. The true density is measured by the helium pycnometry method.
 柔軟多孔体の嵩密度は、好ましくは、0.01g/cm以上0.4g/cm以下の範囲であってよい。嵩密度がこの範囲であれば、上述の気孔率を満たし得る。より好ましくは、嵩密度は、0.05g/cm以上0.3g/cm以下の範囲であってよい。 The bulk density of the flexible porous body may preferably be in the range of 0.01 g/cm 3 or more and 0.4 g/cm 3 or less. If the bulk density is within this range, the porosity described above can be satisfied. More preferably, the bulk density may range from 0.05 g/cm 3 to 0.3 g/cm 3 .
 柔軟多孔体の厚さに制限はないが、好ましくは、100μm以上10cm以下の範囲である。100μmより薄いと、透過光が多くなり、検出精度が低下する場合がある。柔軟多孔体の厚さの上限は特に制限はないが、10cmを超えると触覚センサ100が大型化するため、取り回しがよくない場合がある。柔軟多孔体の厚さは、より好ましくは、500μm以上3cm以下の範囲であってよい。 Although the thickness of the flexible porous body is not limited, it is preferably in the range of 100 µm or more and 10 cm or less. If the thickness is less than 100 μm, the amount of transmitted light increases, which may lower the detection accuracy. The upper limit of the thickness of the flexible porous body is not particularly limited, but if it exceeds 10 cm, the tactile sensor 100 becomes large, which may make handling difficult. More preferably, the thickness of the flexible porous body may be in the range of 500 µm or more and 3 cm or less.
 上述の条件を満たすことができる柔軟多孔体の材料としては、例示的には、シリコーン、ウレタン樹脂、アクリル樹脂、ゴム、ポリスチレン樹脂、ポリエステル樹脂、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリアミド樹脂、ポリイミド樹脂、セルロース樹脂、ポリオレフィン樹脂、芳香族ポリエーテルケトン、および、エポキシ樹脂からなる群から選択される。 Examples of flexible porous materials that can satisfy the above conditions include silicone, urethane resin, acrylic resin, rubber, polystyrene resin, polyester resin, polyvinyl chloride, polyvinylidene chloride, polyamide resin, and polyimide resin. , cellulose resins, polyolefin resins, aromatic polyether ketones, and epoxy resins.
 シリコーンとしては、例えば、テトラアルコキシシラン(TEAS)、メチルアルコキシシラン(MTAS)、および、ジメチルジアルコキシシラン(DMDAS)とを含む組成物において、これらケイ素アルコキシドの加水分解、加水分解生成物の重縮合により形成されたポリシロキサンであり、水溶液中において所定のケイ素アルコキシドの重縮合反応に伴う粘弾性相分離により骨格形成されるシリコーン組成である。このようなシリコーンについては、例えば、Gen Hayase,Bulletin of the Chemical Society of Japan,94[9],2021,2210-2215、Gen Hayaseら,J.Mater.Chem.A,2014,2,6525-6531、Gen Hayaseら,ACS Appl.Polym.Mater.2019,1,8,2077-2082等を参照できる。 Examples of silicones include hydrolysis of silicon alkoxides in compositions containing tetraalkoxysilane (TEAS), methylalkoxysilane (MTAS), and dimethyldialkoxysilane (DMDAS), and polycondensation of the hydrolysis products. It is a silicone composition formed by viscoelastic phase separation accompanying the polycondensation reaction of a given silicon alkoxide in an aqueous solution. For such silicones, for example, Gen Hayase, Bulletin of the Chemical Society of Japan, 94[9], 2021, 2210-2215, Gen Hayase et al., J. Am. Mater. Chem. A, 2014, 2, 6525-6531, Gen Hayase et al., ACS Appl. Polym. Mater. 2019, 1, 8, 2077-2082.
 ウレタン樹脂としては、例えば、有機溶媒中でアルキル側鎖を有するポリオールとポリイソシアネート化合物との硬化反応を行い、相分離を制御しながら均質にゲル化させ、洗浄・溶媒交換を行なった後、乾燥することにより得られる。 For urethane resins, for example, a curing reaction between a polyol having an alkyl side chain and a polyisocyanate compound is performed in an organic solvent to uniformly gel while controlling phase separation, followed by washing and solvent exchange, followed by drying. obtained by
 アクリル樹脂としては、例えば、ポリメタクリル酸メチル(PMMA)を溶解させた水・アルコールの混合溶液を冷却し、相分離させ、微量の可塑剤を溶解した溶媒で洗浄後、乾燥することにより得られる。別のアクリル樹脂としては、例えば、ポリアクリロニトリル(PAN)を溶解したジメチルスルホキシド(DMSO)と水との混合溶液を冷却し、相分離させ、可塑剤を含侵させてもよい。このようなアクリル樹脂については、例えば、Shinya Yonedaら,Polymer,55,2014,3212-3216等を参照できる。 As the acrylic resin, for example, a mixed solution of water and alcohol in which polymethyl methacrylate (PMMA) is dissolved is cooled, phase-separated, washed with a solvent in which a small amount of plasticizer is dissolved, and then dried. . As another acrylic resin, for example, a mixed solution of dimethyl sulfoxide (DMSO) in which polyacrylonitrile (PAN) is dissolved and water may be cooled to phase-separate and impregnated with a plasticizer. For such acrylic resins, see Shinya Yoneda et al., Polymer, 55, 2014, 3212-3216, for example.
 ゴムは、天然ゴムであってもよいし、スチレン・ブタジエンゴム、イソプレンゴム、ブタジエンゴム、クロロプレンゴム、アクリロニトリル・ブタジエンゴム、ブチルゴム、エチレン・プロピレンゴム、エチレン・プロピレン・ジエンゴム、フッ素ゴム等の合成ゴムであってもよい。 The rubber may be natural rubber, or synthetic rubber such as styrene-butadiene rubber, isoprene rubber, butadiene rubber, chloroprene rubber, acrylonitrile-butadiene rubber, butyl rubber, ethylene-propylene rubber, ethylene-propylene-diene rubber, and fluororubber. may be
 ポリスチレン樹脂は、スチレンおよびその誘導体を主体とする重合体であれば特に制限はない。 The polystyrene resin is not particularly limited as long as it is a polymer mainly composed of styrene and its derivatives.
 ポリエステル樹脂は、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリトリメチレンテレフタレート、ポリエチレンナフタレート等があり得る。 Examples of polyester resins include polyethylene terephthalate, polybutylene terephthalate, polytrimethylene terephthalate, and polyethylene naphthalate.
 ポリ塩化ビニルは、塩化ビニルを主体とする重合体であり、単独重合体であってもよいし、共重合体であってもよい。ポリ塩化ビニリデンは、例えば、ビニリデンである。 Polyvinyl chloride is a polymer mainly composed of vinyl chloride, and may be a homopolymer or a copolymer. Polyvinylidene chloride is, for example, vinylidene.
 ポリアミド樹脂は、例えば、ナイロン、ナイロン6、ナイロン66、ナイロン11、ナイロン610、ナイロン612、芳香族ナイロン、アラミド等であってよい。 The polyamide resin may be, for example, nylon, nylon 6, nylon 66, nylon 11, nylon 610, nylon 612, aromatic nylon, aramid, or the like.
 ポリイミド樹脂は、例えば、テトラカルボン酸二無水物とジアミンとの縮合重合体である。セルロース樹脂は、アセテート、トリアセテート、酸化アセテート等である。 A polyimide resin is, for example, a condensation polymer of tetracarboxylic dianhydride and diamine. Cellulose resins include acetate, triacetate, acetate oxide, and the like.
 ポリオレフィン樹脂は、オレフィン類を主体とする重合体であり、ポリエチレン、ポリプロピレン、ポリブテン等である。 Polyolefin resins are polymers mainly composed of olefins, such as polyethylene, polypropylene, and polybutene.
 芳香族ポリエーテルケトンは、例えば、ポリエーテルエーテルケトン(PEEK)、ポリエーテルケトン、ポリエーテルケトンケトン、ポリエーテルエーテルケトンケトンである。 Aromatic polyetherketones are, for example, polyetheretherketone (PEEK), polyetherketone, polyetherketoneketone, and polyetheretherketoneketone.
 エポキシ樹脂は、エポキシ化合物単体、または、これと硬化剤とからなるものであるが、例えば、ビフェニル型エポキシ樹脂、ナフタレン型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ノボラック型エポキシ樹脂、脂環式エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂である。 Epoxy resins consist of an epoxy compound alone or this and a curing agent. , an alicyclic epoxy resin, and a dicyclopentadiene type epoxy resin.
 柔軟多孔体の気孔210は、気体(空気)のみで充たされていることが好ましいが、変形性を大きく損なわない限り、骨格220の屈折率と異なる屈折率を有する液体やエラストマーを含んでいてもよい。これにより、水中などの液中での使用が可能になる。 The pores 210 of the flexible porous body are preferably filled only with gas (air), but they may contain a liquid or an elastomer having a refractive index different from that of the skeleton 220 as long as the deformability is not significantly impaired. good too. This allows use in liquids such as water.
 なお、以上のような柔軟多孔体の製造には、公知の製造技術が任意に採用される。例えば、「A. Surendran, J. Joy, J. Parameswaranpillai, S. Anas, S. Thomas, An overview of viscoelastic phase separation in epoxy based blends. Soft Matter. 16, 3363-3377 (2020).」に記載の方法や「Y. Xin, Q. Xiong, Q. Bai, M. Miyamoto, C. Li, Y. Shen, H. Uyama, A hierarchically porous cellulose monolith: A template-free fabricated, morphology-tunable, and easily functionalizable platform. Carbohydr. Polym. 157, 429-437 (2017).」に記載の方法において材料を適宜に変更して、本発明に係る柔軟多孔体を製造することが可能である。 It should be noted that a known manufacturing technique is arbitrarily adopted for the manufacture of the flexible porous body as described above. For example, "A. Surendran, J. Joy, J. Parameswaranpillai, S. Anas, S. Thomas, An overview of viscoelastic phase separation in epoxy based blends. Soft Matter. 16, 3363-3377 (2020)." methods and "Y. Xin, Q. Xiong, Q. Bai, M. Miyamoto, C. Li, Y. Shen, H. Uyama, A hierarchically porous cellulose monolith: A template-free fabricated, morphology-tunable, and easily functionalizable platform. Carbohydr. Polym. 157, 429-437 (2017).” By appropriately changing the materials, it is possible to produce the flexible porous body according to the present invention.
 光源部120は、より好ましくは、400nm以上1.4μm以下の範囲の波長を発する。この範囲であれば、光源の入手が容易であり、特にシリコーンなどの光透過率の高い柔軟多孔体の場合には、ミー散乱を生じやすい。光源部120は、より好ましくは、800nm以上1.1μm以下の範囲の波長を発する。 The light source unit 120 more preferably emits a wavelength in the range of 400 nm or more and 1.4 μm or less. Within this range, a light source is readily available, and Mie scattering is likely to occur particularly in the case of a flexible porous material with high light transmittance such as silicone. Light source unit 120 more preferably emits a wavelength in the range of 800 nm or more and 1.1 μm or less.
 光源部120は、上述の範囲を満たす波長の光を発するものであれば、制限はないが、例示的には、発光ダイオード(LED)、レーザダイオード(LD)、有機EL、および、光ファイバからなる群から選択される。これらであれば、上述の条件を満たす波長の光を出射できる。LEDやLD等を使った導光板、液晶ディスプレイも光源部120として使用できる。 The light source unit 120 is not limited as long as it emits light with a wavelength that satisfies the above range. selected from the group consisting of With these, light with a wavelength that satisfies the above conditions can be emitted. A light guide plate using an LED, an LD, or the like, or a liquid crystal display can also be used as the light source section 120 .
 受光部130は、散乱光を受光し、散乱光の強度を電気信号に変更できるものであれば特に制限はない。受光部130は、例示的には、フォトレジスタ、フォトトランジスタ、フォトダイオード、光電子倍増管、フォトンカウンタ、CCDイメージセンサ、CMOSイメージセンサ、NMOSイメージセンサ、および、太陽電池からなる群から選択される。これらはいずれも光を受光し、電気信号に変換でき、入手が容易である。 The light receiving unit 130 is not particularly limited as long as it can receive scattered light and convert the intensity of the scattered light into an electrical signal. The light receiving unit 130 is illustratively selected from the group consisting of a photoresistor, a phototransistor, a photodiode, a photomultiplier tube, a photon counter, a CCD image sensor, a CMOS image sensor, an NMOS image sensor, and a solar cell. All of these can receive light and convert it into electrical signals, and are readily available.
 図1では、光源部120と受光部130とが対となり、基材110上に3対配置されているが、本発明はこのような構成には限られない。例えば、光源部120は1つであり、その周りに多数の受光部130を配置してもよい。光源部120と受光部130とを兼ね備えたフォトリフレクタを用いてもよい。フォトリフレクタを用いれば、フォトリフレクタ上に触覚部140を配置するだけでよいので、触覚センサ100の構築が容易である。 In FIG. 1, the light source unit 120 and the light receiving unit 130 are paired and three pairs are arranged on the substrate 110, but the present invention is not limited to such a configuration. For example, there is one light source unit 120, and many light receiving units 130 may be arranged around it. A photoreflector having both the light source section 120 and the light receiving section 130 may be used. If a photoreflector is used, the tactile sensor 100 can be easily constructed because it is only necessary to place the tactile part 140 on the photoreflector.
 本発明の触覚センサ100によれば、好ましくは、光源部120からの光が出射する面の方向と、受光部130の散乱光を受光する面の方向とは同一となり、これら光が出射する面および受光する面上に触覚部140を構成する柔軟多孔体が位置するように配置される。光源部120からの光が出射する面の方向と、受光部130の散乱光を受光する面の方向とが同一とは、光源部120からの光が出射する面と、受光部130の散乱光を受光する面とが平行であるとも換言できる。このような構成により、触覚部140の配置・交換が容易であるばかりか、光源部120から出射された光のうち触覚部140にて散乱された散乱光は、180°戻ってくるので、受光部130において検出しやすい。また、触覚部140内に光源部120および受光部130を埋め込む必要がないため、触覚部140を薄くでき、小型化を可能にする。ただし、本発明は、受光部130が触覚部140からの散乱光を受光可能であれば、光源部120からの光が出射する面の方向と、受光部130の散乱光を受光する面の方向とが異なる構成(例えば光源部120と受光部130とが触覚部140を挟んで位置する構成)も採用され得る。 According to the tactile sensor 100 of the present invention, preferably, the direction of the surface from which the light from the light source unit 120 is emitted and the direction of the surface of the light receiving unit 130 that receives the scattered light are the same, and the surfaces from which the light is emitted are preferably the same. and the flexible porous body constituting the tactile part 140 is positioned on the light-receiving surface. The direction of the surface from which the light from the light source unit 120 is emitted and the direction of the surface from which the light receiving unit 130 receives scattered light are the same means that the surface from which the light from the light source unit 120 is emitted and the scattered light from the light receiving unit 130 are the same. It can also be said that the light receiving surface is parallel. With such a configuration, not only is it easy to dispose and replace the tactile part 140, but the scattered light scattered by the tactile part 140 out of the light emitted from the light source part 120 returns 180 degrees. Easy to detect in section 130 . In addition, since it is not necessary to embed the light source section 120 and the light receiving section 130 in the tactile section 140, the tactile section 140 can be made thin, enabling miniaturization. However, if the light receiving unit 130 can receive the scattered light from the tactile unit 140, the direction of the surface from which the light from the light source unit 120 is emitted and the direction of the surface from which the light receiving unit 130 receives the scattered light (for example, a configuration in which the light source unit 120 and the light receiving unit 130 are positioned with the tactile unit 140 interposed therebetween) may also be adopted.
 基材110は、光源部120、受光部130および触覚部140を位置させることができる限り特に制限はないが、金属基板、アルミナ等のセラミック基板、シリコン等の半導体基板、ガラス基板、ポリカーボネートなどのプラスチック基板などを適用できる。例えば、基材110としてフレキシブルなプラスチック基板を採用すれば、人間のような皮膚を持つロボットに適用できる。また、基材110は平板に限らず、湾曲していてもよい。なお、光源部120からの光が出射する面の方向と、受光部130の散乱光を受光する面の方向とが同一でない場合には、光源部120を設置する基材と受光部130を設置する基材とを別個に設けてもよい。 The substrate 110 is not particularly limited as long as the light source unit 120, the light receiving unit 130, and the tactile unit 140 can be positioned thereon. A plastic substrate or the like can be applied. For example, if a flexible plastic substrate is adopted as the base material 110, it can be applied to a robot having human-like skin. Moreover, the base material 110 is not limited to a flat plate, and may be curved. If the direction of the surface from which the light from the light source unit 120 is emitted is not the same as the direction of the surface of the light receiving unit 130 that receives the scattered light, the substrate on which the light source unit 120 is installed and the light receiving unit 130 are installed. You may provide separately the base material which carries out.
 本発明の触覚センサ100は、好ましくは、光源部120および受光部130の動作を制御する制御部(図示せず)をさらに備えてもよい。制御部は、CPU(Central Processing Unit)またはFPGA(Field-Programmable Gate Array)等の演算処理装置を具備する。例えば、制御部(演算処理装置)は、光源部120については、所定のタイミングにて所定の波長を有する光を発するように制御し、受光部130については、光源部120による光の出射に並行して、受光した散乱光の強度を電気信号(例えば、電位)に変換するように制御してもよい。 The tactile sensor 100 of the present invention may preferably further include a control section (not shown) that controls the operations of the light source section 120 and the light receiving section 130 . The control unit includes an arithmetic processing unit such as a CPU (Central Processing Unit) or FPGA (Field-Programmable Gate Array). For example, the control unit (arithmetic processing unit) controls the light source unit 120 to emit light having a predetermined wavelength at a predetermined timing, and controls the light receiving unit 130 in parallel with the light emitted by the light source unit 120. may be controlled so as to convert the intensity of the received scattered light into an electrical signal (for example, potential).
 制御部は、触覚部140を構成し得る種々の柔軟多孔体の電位と圧縮率との関係を示すデータを格納したメモリ(記憶装置)をさらに備えてもよい。これにより、制御部は、受光部130からの電気信号(例えば、電位)に基づいて、柔軟多孔体の圧縮率および外部応力を容易に算出できる。 The control unit may further include a memory (storage device) that stores data indicating the relationship between the potential and compressibility of various flexible porous bodies that can constitute the tactile unit 140 . Thereby, the control section can easily calculate the compressibility and the external stress of the flexible porous body based on the electric signal (for example, potential) from the light receiving section 130 .
 本発明の触覚センサ100によれば、特許文献1と異なり、光源からの光を柔軟多孔体に透過させた透過光を検出する必要がないため、光源部120と受光部130との間に隙間は不要であり、高密度化が可能である。この結果、多点検出の可能な触覚センサを実現できる。 According to the tactile sensor 100 of the present invention, unlike Patent Document 1, it is not necessary to detect the light transmitted through the flexible porous body from the light source. is unnecessary, and high density is possible. As a result, a tactile sensor capable of multi-point detection can be realized.
 図16は、グリッパを備えたロボットアームを示す模式図である。
 図17は、内視鏡を示す模式図である。
 図18は、ゲーム用コントローラを示す模式図である。
FIG. 16 is a schematic diagram showing a robot arm with a gripper.
FIG. 17 is a schematic diagram showing an endoscope.
FIG. 18 is a schematic diagram showing a game controller.
 本発明の触覚センサ100は、ロボットのグリッパ1610(図16)、内視鏡等の医療機器(図17)、または、スマートフォンおよびゲーム用コントローラ(図18)などの触覚フィードバック装置に適用できる。本発明の触覚センサ100は人間の皮膚のような繊細な感覚を有するため、ロボットの皮膚やグリッパに適用すれば、人間と同様の検出を可能にする。内視鏡の先端に適用すれば、硬い本体が直接患部に触ることなく、患部の状態を軽く触れるだけで検知でき、病変の確認が容易になる。本発明の触覚センサ100をインナーイヤー型イヤホン、パッキンなどの器具に適用すれば、圧力によってこれら器具が正しく装着されているか検出できる。 The tactile sensor 100 of the present invention can be applied to a robot gripper 1610 (Fig. 16), medical equipment such as an endoscope (Fig. 17), or tactile feedback devices such as smart phones and game controllers (Fig. 18). Since the tactile sensor 100 of the present invention has delicate sensations similar to those of human skin, if it is applied to the skin of a robot or a gripper, it enables detection similar to that of a human. If applied to the tip of an endoscope, the condition of the affected area can be detected by lightly touching the affected area without the hard body directly touching the affected area, making it easier to confirm lesions. By applying the tactile sensor 100 of the present invention to devices such as inner-ear earphones and packing, it is possible to detect whether these devices are properly worn by pressure.
 次に具体的な実施例を用いて本発明を詳述するが、本発明がこれらの実施例に限定されないことに留意されたい。 The present invention will now be described in detail using specific examples, but it should be noted that the present invention is not limited to these examples.
[柔軟多孔体]
 柔軟多孔体として、性状の異なるシリコーンモノリス型多孔体を製造した。表1に示すように、5mM酢酸に界面活性剤(CTAC、セチルトリメチルアンモニウムクロリド)1.0gと、尿素とを加え、室温で溶解させた。次いで、これにメチルトリメトキシシラン(MTMS)3.0mL、および、ジメチルジメトキシシラン(DMDMS)2.0mLを混ぜ、15分間攪拌し、組成物を調製した。
[Flexible porous material]
As flexible porous bodies, silicone monolithic porous bodies with different properties were produced. As shown in Table 1, 1.0 g of a surfactant (CTAC, cetyltrimethylammonium chloride) and urea were added to 5 mM acetic acid and dissolved at room temperature. Next, 3.0 mL of methyltrimethoxysilane (MTMS) and 2.0 mL of dimethyldimethoxysilane (DMDMS) were mixed with this and stirred for 15 minutes to prepare a composition.
 組成物をPFA(テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体)製密閉容器(ゲル型)に移し、80℃で12時間加熱し、反応(ゲル化・エージング)させ、粘弾性相分離構造をもつ湿潤ゲルを作製した。 The composition is transferred to a PFA (tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer) sealed container (gel type), heated at 80 ° C. for 12 hours, reacted (gelling and aging), and a viscoelastic phase separation structure is formed. Wet gels with
 得られた湿潤ゲルを型から外し、5倍量以上の純水で1回、工業アルコールで2回、それぞれ6時間以上の浸漬洗浄を行なった後、50℃で蒸発乾燥させ、乾燥状態のシリコーン多孔体(マシュマロゲルと呼ぶ場合がある)を得た。得られたシリコーン多孔体を、表1に示す酢酸量および尿素量に基づいて、マシュマロゲルP1~P3と称する。 The resulting wet gel was removed from the mold and washed once with at least 5 times the amount of pure water and twice with industrial alcohol for at least 6 hours. A porous body (sometimes called marshmallow gel) was obtained. Based on the amounts of acetic acid and urea shown in Table 1, the obtained silicone porous bodies are called marshmallow gels P1 to P3.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 柔軟多孔体として、アクリル樹脂であるPMMA多孔体を粘弾性相分離によって製造した。詳細には、エタノール80%および水20%(体積比)の混合溶媒10mLを80℃に保ち、よく攪拌しながらPMMA(平均分子量350,000、シグマアルドリッチ(メルク)製)0.40gを加えて溶解させた。PMMAが完全に溶解したのを確認した後、ゾルが入ったバイアルを20℃で静置・空冷してゲル化を行なった。得られた湿潤ゲルを十分量の水に8時間×2回浸漬して洗浄した後、5%のグリセリンを含む水溶液に浸漬して溶媒交換を行なった。室温で真空乾燥を行い、PMMA多孔体P4を得た。 As a flexible porous body, a PMMA porous body, which is an acrylic resin, was manufactured by viscoelastic phase separation. Specifically, 10 mL of a mixed solvent of 80% ethanol and 20% water (volume ratio) was kept at 80° C., and 0.40 g of PMMA (average molecular weight 350,000, manufactured by Sigma-Aldrich (Merck)) was added while stirring well. Dissolved. After confirming that the PMMA was completely dissolved, the vial containing the sol was allowed to stand still at 20° C. and air-cooled to effect gelation. The obtained wet gel was immersed twice in a sufficient amount of water for 8 hours, washed, and then immersed in an aqueous solution containing 5% glycerin for solvent exchange. Vacuum drying was performed at room temperature to obtain a PMMA porous body P4.
 このようにして得られたマシュマロゲルP1~P3、PMMA多孔体P4、メラミンフォームP5(レック株式会社製、S-691)および化粧用コットンP6について性状を調べた。P1~P6を、走査型電子顕微鏡(SEM、株式会社日立ハイテク製、Miniscope TM3000およびFE-SEM、株式会社日立ハイテク製、S-4800)により観察した。観察結果を図5~図10に示す。 The properties of marshmallow gels P1 to P3, PMMA porous body P4, melamine foam P5 (manufactured by LEC Co., Ltd., S-691), and cosmetic cotton P6 thus obtained were examined. P1 to P6 were observed with a scanning electron microscope (SEM, Miniscope TM3000, manufactured by Hitachi High-Tech Co., Ltd. and FE-SEM, S-4800, manufactured by Hitachi High-Tech Co., Ltd.). Observation results are shown in FIGS.
 図5は、マシュマロゲルP1のSEM像を示す図である。
 図6は、マシュマロゲルP2のSEM像を示す図である。
 図7は、マシュマロゲルP3のSEM像を示す図である。
 図8は、PMMA多孔体P4のSEM像を示す図である。
 図9は、メラミンフォームP5のSEM像を示す図である。
 図10は、化粧用コットンP6のSEM像を示す図である。
FIG. 5 is a diagram showing an SEM image of marshmallow gel P1.
FIG. 6 is a diagram showing an SEM image of marshmallow gel P2.
FIG. 7 is a SEM image of marshmallow gel P3.
FIG. 8 is a SEM image of the PMMA porous body P4.
FIG. 9 is a SEM image of melamine foam P5.
FIG. 10 is a SEM image of the cosmetic cotton P6.
 図5~図10には、各多孔体について種々の倍率のSEM像を示す。図5~図7によれば、マシュマロゲルP1~P3は、粘弾性相分離構造を有し、シリコーンを主成分とする粒子が連なった三次元網目状骨格と、その骨格によって形成された貫通孔(気孔)とを備える多孔体であることが分かった。同様に、図8によれば、PMMA多孔体P4は、粘弾性相分離構造を有し、アクリル樹脂の粒子が連なった三次元網目状骨格と、その骨格によって形成された貫通孔とを備える多孔体であった。一方、図9によれば、メラミンフォームP5も、三次元網目状骨格を有するが粒子状の連続構造は見られなかった。図10によれば、化粧用コットンP6は、繊維状であり、粒子状の骨格を有する柔軟多孔体ではなかった。 5 to 10 show SEM images at various magnifications for each porous body. According to FIGS. 5 to 7, the marshmallow gels P1 to P3 have a viscoelastic phase-separated structure, a three-dimensional network skeleton in which particles containing silicone as a main component are connected, and through holes formed by the skeleton. (pores). Similarly, according to FIG. 8, the PMMA porous material P4 has a viscoelastic phase-separated structure, and has a three-dimensional network skeleton in which acrylic resin particles are linked, and a porous body P4 having through holes formed by the skeleton. was the body. On the other hand, according to FIG. 9, melamine foam P5 also had a three-dimensional network skeleton, but no continuous particulate structure was observed. According to FIG. 10, the cosmetic cotton P6 was fibrous and not a flexible porous body having a particulate skeleton.
 マシュマロゲルP1~P3、PMMA多孔体P4およびメラミンフォームP5の気孔径、骨格径、気孔率およびヤング率を測定した。気孔径および骨格径は、走査型電子顕微鏡により観察した電子画像を上述の方法にしたがってImage Jによる画像解析により算出した。ヤング率は、圧縮率1~2%で圧縮したときの圧縮応力をその圧縮率で除した値とした。これらの結果を表2に示す。気孔率(百分率)は、体積・重量を計測して求めた嵩密度を真密度で除した数を100倍した後、100から引くことによって得た。 The pore diameter, skeleton diameter, porosity and Young's modulus of marshmallow gels P1 to P3, PMMA porous body P4 and melamine foam P5 were measured. The pore diameter and skeleton diameter were calculated by image analysis using Image J according to the method described above for electron images observed with a scanning electron microscope. The Young's modulus was obtained by dividing the compressive stress when compressed at a compressibility of 1 to 2% by the compressibility. These results are shown in Table 2. The porosity (percentage) was obtained by dividing the bulk density obtained by measuring the volume and weight by the true density, multiplying by 100, and then subtracting from 100.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 なお、化粧用コットンP6は、繊維質であり、気孔径、骨格径、気孔率およびヤング率を測定することは困難であった。 It should be noted that the cosmetic cotton P6 is fibrous, and it was difficult to measure the pore diameter, skeleton diameter, porosity and Young's modulus.
[例1~例15]
 上述のマシュマロゲルP1~P3、PMMA多孔体P4、メラミンフォームP5および化粧用コットンP6を用いて、触覚センサを製造した。光源部(LED)および受光部(Geフォトトランジスタ)を備えるフォトリフレクタ(オン・セミコンダクター社製、QRE1113GR)を基材に実装した反射センサ(Pololu社製、QTR-1A)等の上に、表3に示す厚さに調整したMS1~MS5を配置し、例1~例15の触覚センサとした。LEDは、波長940nmの光と波長525nmの光とを発するものを使用した。
[Examples 1 to 15]
A tactile sensor was manufactured using the marshmallow gels P1 to P3, PMMA porous body P4, melamine foam P5 and cosmetic cotton P6 described above. A photoreflector (manufactured by ON Semiconductor, QRE1113GR) having a light source (LED) and a light receiving portion (Ge phototransistor) is mounted on a base material. MS1 to MS5 adjusted to the thicknesses shown in Fig. 2 were arranged to form tactile sensors of Examples 1 to 15. The LED used was one that emits light with a wavelength of 940 nm and light with a wavelength of 525 nm.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 図11は、例1~例15の測定回路を示す図である。 FIG. 11 is a diagram showing measurement circuits of Examples 1 to 15.
 例1~例15の触覚センサ100を直流安定化電源(アズワン製、PS30V5A01)に接続し、電圧および応力・歪みの変化を力学試験装置(株式会社島津製作所製、EZ-SX)で測定した。結果を図12~図14に示す。 The tactile sensors 100 of Examples 1 to 15 were connected to a DC stabilized power supply (PS30V5A01, manufactured by AS ONE), and changes in voltage and stress/strain were measured with a mechanical testing device (EZ-SX, manufactured by Shimadzu Corporation). The results are shown in FIGS. 12-14.
 図12は、例1のマシュマロゲルP2を使用した触覚センサを用いた試験結果を示す図である。
 図13は、例5のメラミンフォームP5を使用した触覚センサを用いた試験結果を示す図である。
 図14は、例4のPMMA多孔体P4を使用した触覚センサを用いた試験結果を示す図である。
12 is a diagram showing test results using a tactile sensor using marshmallow gel P2 of Example 1. FIG.
13 is a diagram showing test results using a tactile sensor using the melamine foam P5 of Example 5. FIG.
14 is a diagram showing test results using a tactile sensor using the PMMA porous body P4 of Example 4. FIG.
 図12(A)および図13(A)は、それぞれ、各触覚センサに10秒かけて外部応力(50%圧縮)を印加した後、10秒かけて外部応力を除荷し、10秒レストさせるサイクル(全10サイクル)を示す。図12(B)および図13(B)は、このサイクルに応答した、応力と電位との関係を示す図である。図12(C)および図13(C)は、このサイクルに応答した、圧縮歪みと電位との関係を示す図である。 12(A) and 13(A) respectively apply an external stress (50% compression) to each tactile sensor for 10 seconds, then remove the external stress for 10 seconds and let it rest for 10 seconds. Cycles (10 total cycles) are shown. Figures 12B and 13B are plots of stress versus potential in response to this cycle. Figures 12(C) and 13(C) show the compressive strain versus potential in response to this cycle.
 図12(B)によれば、マシュマロゲルを用いた例1の触覚センサは、外部応力の印加に応じて、電位が連続的に増大し、外部応力の除荷に応じて、電位が連続的に減少した。同様に、図12(C)によれば、例1の触覚センサは、圧縮歪みの増大に応じて、電位が連続的に増大し、圧縮歪みの減少に応じて、電位が連続的に減少した。図示しないが、例2~例3、例7~例15の触覚センサも、電位の大きさに多少の違いはあるものの、同様のプロファイルを示した。なお、図12(B)において、ヒステリシスが見られるのは、外部応力印加時のマシュマロゲルの変形の速さと、外部応力を除荷時のマシュマロゲルの変形の速さとが異なるためである。 According to FIG. 12(B), in the tactile sensor of Example 1 using marshmallow gel, the potential continuously increases in response to the application of the external stress, and the potential continuously increases in response to the removal of the external stress. decreased to Similarly, according to FIG. 12(C), in the tactile sensor of Example 1, the potential continuously increased as the compressive strain increased, and the potential continuously decreased as the compressive strain decreased. . Although not shown, the tactile sensors of Examples 2 to 3 and Examples 7 to 15 also showed similar profiles, although the magnitudes of potentials were slightly different. The reason why hysteresis is observed in FIG. 12B is that the deformation speed of the marshmallow gel when the external stress is applied differs from the deformation speed of the marshmallow gel when the external stress is removed.
 一方、図13(B)および図13(C)によれば、メラミンフォームP5を用いた例5の触覚センサは、外部応力の印加・除荷をしても、すなわち、圧縮歪みを変化させても、電位変化はわずかであり、触覚センサとして用いるには不十分であった。図示しないが、化粧用コットンP6を用いた例6の触覚センサも、電位の変化を生じなかった。 On the other hand, according to FIGS. 13(B) and 13(C), the tactile sensor of Example 5 using the melamine foam P5 did not change its compressive strain even when external stress was applied/unloaded. However, the potential change was slight, and it was insufficient for use as a tactile sensor. Although not shown, the tactile sensor of Example 6 using cosmetic cotton P6 also did not cause a change in potential.
 PMMA多孔体P4は、マシュマロゲルやメラミンフォームと比べてヤング率が大きい一方、形状回復が遅い。そのため、図14(A)に示すように、触覚センサに30秒かけて外部応力(10%圧縮)を印加した後、30秒かけて外部応力を除荷した1サイクルについて試験した。図14(A)の除荷後、外部応力が0%に戻っていないのは、力学試験装置の治具がPMMA多孔体P4の上面から離れたためである。この時点で試験を打ち切った。 The PMMA porous body P4 has a larger Young's modulus than marshmallow gel and melamine foam, but its shape recovery is slow. Therefore, as shown in FIG. 14A, a test was performed for one cycle in which an external stress (10% compression) was applied to the tactile sensor for 30 seconds and then the external stress was removed for 30 seconds. The reason why the external stress did not return to 0% after the unloading in FIG. The test was terminated at this point.
 図14(B)は、このサイクルに応答した、応力と電位との関係を示す図であり、図14(C)は、このサイクルに応答した、圧縮歪みと電位との関係を示す図である。 FIG. 14(B) shows the relationship between stress and potential in response to this cycle, and FIG. 14(C) shows the relationship between compressive strain and potential in response to this cycle. .
 図14(B)によれば、PMMA多孔体P4を用いた例4の触覚センサは、外部応力の印加に応じて、電位が連続的に増大し、外部応力の除荷に応じて、電位が連続的に減少した。図12(B)と同様に、ヒステリシスが見られたが、これは、PMMA多孔体P4の変形が遅いため、応力0になった後も歪みが残ったためである。なお、時間をかけることにより歪みは解消するため、ヒステリシスは閉じ、元の電位に戻る。図14(C)によれば、例4の触覚センサは、圧縮歪みの増大に応じて、電位が連続的に増大し、圧縮歪みの減少に応じて、電位が連続的に減少した。 According to FIG. 14(B), in the tactile sensor of Example 4 using the PMMA porous body P4, the potential continuously increases in response to the application of the external stress, and the potential increases in response to the removal of the external stress. decreased continuously. Similar to FIG. 12(B), hysteresis was observed, but this is because deformation of the PMMA porous body P4 was slow and strain remained even after the stress became zero. Note that the distortion is eliminated over time, so the hysteresis is closed and the original potential is restored. According to FIG. 14(C), in the tactile sensor of Example 4, the potential continuously increased as the compressive strain increased, and the potential continuously decreased as the compressive strain decreased.
[例16]
 例16は、上述のマシュマロゲルP2を用いて別の触覚センサを製造した。光源部としてハロゲン光源(株式会社ケンコー・トキナー製、KTX-100E)ならびに、受光部としてミニ分光器(株式会社浜松ホトニクス製、C13555MA)をそれぞれ接続した光ファイバ先端を基材上に5mm離間して配置し、その上にマシュマロゲルP2(直径24mm高さ20mmの円柱)を配置し、例16の触覚センサとした。ハロゲン光源は、図15で示された350nm~830nmよりも広範囲であった。上述の力学試験装置を用い、マシュマロゲルP2が非圧縮の際に受光部で検出する散乱光強度に対する、50%圧縮した際の散乱光強度の比を調べた。結果を図15に示す。
[Example 16]
Example 16 produced another tactile sensor using marshmallow gel P2 described above. A halogen light source (Kenko Tokina Co., Ltd., KTX-100E) as a light source and a mini-spectrometer (Hamamatsu Photonics Co., Ltd., C13555MA) as a light receiving unit are connected to the optical fiber tip, respectively, on the substrate with a distance of 5 mm. A tactile sensor of Example 16 was obtained by placing a marshmallow gel P2 (a cylinder with a diameter of 24 mm and a height of 20 mm) thereon. The halogen light source had a wider range than the 350 nm to 830 nm shown in FIG. Using the above-described mechanical testing apparatus, the ratio of the scattered light intensity when the marshmallow gel P2 was compressed by 50% to the scattered light intensity detected by the light receiving unit when the marshmallow gel P2 was not compressed was examined. The results are shown in FIG.
 図15は、例16の触覚センサによる50%圧縮時の散乱光強度の波長依存性を示す図である。 FIG. 15 is a diagram showing the wavelength dependence of the scattered light intensity when the tactile sensor of Example 16 is compressed by 50%.
 図15において縦軸は、非圧縮時の散乱光強度に対する50%圧縮時の散乱光強度比の百分率である。図15によれば、触覚部としてシリコーンである柔軟多孔体を用いた場合には、柔軟多孔体は、380nm未満の波長の入射光を骨格吸収するため、圧縮変化を散乱光強度の変化で検出できなかった。このことから、380nm以上の波長を有する光を発する光源部を用いる必要があることが示された。 In FIG. 15, the vertical axis is the percentage of the scattered light intensity ratio at 50% compression to the scattered light intensity at non-compression. According to FIG. 15, when a flexible porous body made of silicone is used as the tactile part, the flexible porous body absorbs incident light with a wavelength of less than 380 nm in its skeleton, and therefore changes in compression are detected by changes in scattered light intensity. could not. This indicates that it is necessary to use a light source section that emits light having a wavelength of 380 nm or more.
 図15によれば、入射光の波長400nm~850nmの範囲において、散乱光強度比は約30%を維持することが分かった。図15では、波長850nmまでしか示さないが、3μmの波長まで散乱光強度比約30%を維持することを確認した。このことから、本発明の触覚センサは、380nm以上3μm以下の範囲の波長を有する光を発する光源部を使用できることが示された。 According to FIG. 15, it was found that the scattered light intensity ratio was maintained at about 30% in the wavelength range of incident light from 400 nm to 850 nm. Although FIG. 15 shows only a wavelength up to 850 nm, it was confirmed that the scattered light intensity ratio of about 30% was maintained up to a wavelength of 3 μm. From this, it was shown that the tactile sensor of the present invention can use a light source unit that emits light having a wavelength in the range of 380 nm to 3 μm.
 柔軟多孔体として、シリコーンモノリス型多孔体であるマシュマロゲルP7,P8も製造した。 As flexible porous bodies, marshmallow gels P7 and P8, which are silicone monolithic porous bodies, were also manufactured.
 マシュマロゲルP7は、以下の通りに製造した。イオン交換水10mL、塩化n-ヘキサデシルトリメチルアンモニウム(CTAC)1.0g、および、1M酢酸水溶液0.67mLの混合溶液に、メチルトリエトキシシラン(MTES)3.0mLと、ジメチルジエトキシシラン(DMDES)2.0mLとを加えて10分間撹拌後に、さらに1Mアンモニア水1.33mLを加えて1分間、強撹拌することで、組成物を調整した。 Marshmallow Gel P7 was manufactured as follows. 3.0 mL of methyltriethoxysilane (MTES) and dimethyldiethoxysilane (DMDES ) was added and stirred for 10 minutes, 1.33 mL of 1 M aqueous ammonia was added, and the mixture was strongly stirred for 1 minute to prepare a composition.
 そして、組成物を密閉容器にすぐ移して15分室温で静置してゲル化させた後、80℃で1日間かけてエージングさせて、湿潤ゲルを作製した。 Then, the composition was immediately transferred to an airtight container and allowed to stand at room temperature for 15 minutes to gel, and then aged at 80°C for 1 day to prepare a wet gel.
 得られた湿潤ゲルを容器から取り出し、80℃のエタノールを数時間おきに交換しながら計24時間以上にわたり浸漬洗浄した。最後に、浸漬洗浄後の湿潤ゲルを蒸発乾燥することで、マシュマロゲルP7を得た。 The resulting wet gel was taken out of the container and immersed and washed for a total of 24 hours or more while exchanging ethanol at 80°C every few hours. Finally, marshmallow gel P7 was obtained by evaporating and drying the wet gel after immersion and washing.
 マシュマロゲルP8は、以下の通りに製造した。5mM酢酸水溶液25mL、塩化n-ヘキサデシルトリメチルアンモニウム(CTAC)1.0g、および、尿素8.0gの混合溶液に、メチルトリメトキシシラン(MTMS)2.6mLと、ジメチルジメトキシシラン(DMDMS)2.4mLとを加えて30分撹拌することで、組成物を調整した。そして、組成物を密閉容器に移した。 Marshmallow Gel P8 was manufactured as follows. 2.6 mL of methyltrimethoxysilane (MTMS) and 2.6 mL of dimethyldimethoxysilane (DMDMS) were added to a mixed solution of 25 mL of a 5 mM acetic acid aqueous solution, 1.0 g of n-hexadecyltrimethylammonium chloride (CTAC), and 8.0 g of urea. A composition was prepared by adding 4 mL and stirring for 30 minutes. The composition was then transferred to a closed container.
 密閉容器を80℃で1日かけて反応(ゲル化・エージング)させて、湿潤ゲルを作製した。得られた湿潤ゲルを容器から取り出し、80℃のエタノールを数時間おきに交換しながら計24時間以上にわたり浸漬洗浄した。最後に、浸漬洗浄後の湿潤ゲルを蒸発乾燥することで、マシュマロゲルP8を得た。 The sealed container was allowed to react (gelling and aging) at 80°C for one day to prepare a wet gel. The resulting wet gel was taken out of the container and immersed and washed for a total of 24 hours or more while exchanging ethanol at 80°C every few hours. Finally, marshmallow gel P8 was obtained by evaporating and drying the wet gel after immersion and washing.
 図19は、マシュマロゲルP7のSEM像を示す図であり、図20は、マシュマロゲルP8のSEM像を示す図である。図19および図20によれば、マシュマロゲルP7,P8は、粘弾性相分離構造を有し、シリコーンを主成分とする粒子が連なった三次元網目状骨格と、その骨格によって形成された貫通孔(気孔)とを備える多孔体であることが分かった。 FIG. 19 is a diagram showing an SEM image of marshmallow gel P7, and FIG. 20 is a diagram showing an SEM image of marshmallow gel P8. According to FIGS. 19 and 20, the marshmallow gels P7 and P8 have a viscoelastic phase-separated structure, a three-dimensional network skeleton in which particles containing silicone as a main component are linked, and through-holes formed by the skeleton. (pores).
 マシュマロゲルP7,P8の気孔径、骨格径、気孔率、ヤング率および嵩密度を、P1~P5と同様の方法で、測定した。これらの結果を表4に示す。 The pore diameter, skeleton diameter, porosity, Young's modulus and bulk density of marshmallow gels P7 and P8 were measured in the same manner as P1 to P5. These results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 マシュマロゲルP7,P8を用いた触覚センサは、例1の触覚センサと同様に、380nm以上3μm以下の範囲の波長の光を発する光源部を用いた場合に、外部応力の印加に応じて、電位が連続的に増大し、外部応力の除荷に応じて、電位が連続的に減少した。また、マシュマロゲルP7,P8を用いた触覚センサは、例1の触覚センサと同様に、圧縮歪みの増大に応じて、電位が連続的に増大し、圧縮歪みの減少に応じて、電位が連続的に減少するという傾向も確認された。 As with the tactile sensor of Example 1, the tactile sensors using the marshmallow gels P7 and P8 exhibit potential increased continuously and the potential decreased continuously in response to the removal of the external stress. Further, in the tactile sensors using the marshmallow gels P7 and P8, similarly to the tactile sensor of Example 1, the potential continuously increases as the compressive strain increases, and the potential continuously increases as the compressive strain decreases. A decreasing trend was also observed.
 以上から、基材上に光源部と受光部とを備え、光源部および受光部の上に、三次元網目状の骨格と当該骨格により形成された連通する気孔と、を備え、気孔径が骨格径の1倍以上100倍以下、好ましくは3倍以上20倍以下の範囲を満たす柔軟多孔体からなる触覚部を備えた触覚センサにおいて、380nm以上3μm以下の範囲の波長の光を発する場合に、柔軟多孔体は、光源部からの光を散乱し、受光部は、柔軟多孔体で散乱した散乱光を受光することによって、触覚部の外部応力の印加による変化を電気信号によって検出できることが示された。 From the above, the light source unit and the light receiving unit are provided on the base material, and the three-dimensional mesh-like skeleton and the communicating pores formed by the skeleton are provided on the light source unit and the light receiving unit, and the pore diameter is the skeleton In a tactile sensor provided with a tactile part made of a flexible porous body satisfying a range of 1 to 100 times, preferably 3 to 20 times the diameter, when emitting light with a wavelength in the range of 380 nm to 3 μm, The flexible porous body scatters the light from the light source, and the light receiving part receives the scattered light scattered by the flexible porous body. rice field.
 本発明の触覚センサは、柔軟多孔体で生じる散乱光を利用するため、微妙な圧力変化に対しても高精度に検出できる。このような触覚センサをロボットの表面に適用すれば、人間のような動作・感覚を有するロボットを提供できる。このような触覚センサを内視鏡の先端に適用した医療機器、触覚フィードバック装置を提供できる。 Because the tactile sensor of the present invention uses scattered light generated by a flexible porous body, even subtle pressure changes can be detected with high accuracy. By applying such a tactile sensor to the surface of a robot, it is possible to provide a robot having human-like movements and sensations. A medical device and a tactile feedback device can be provided by applying such a tactile sensor to the tip of an endoscope.
 100 触覚センサ
 110 基材
 120 光源部
 130 受光部
 140 触覚部
 210 気孔
 220 骨格
 410 散乱光
 1610 グリッパ
REFERENCE SIGNS LIST 100 tactile sensor 110 base material 120 light source section 130 light receiving section 140 tactile section 210 pore 220 skeleton 410 scattered light 1610 gripper

Claims (19)

  1.  基材と、
     前記基材上に位置する光源部と、
     前記基材上に位置する受光部と、
     前記光源部および前記受光部上に位置し、柔軟多孔体からなる触覚部と
     を備え、
     前記柔軟多孔体は、ネットワーク型相分離構造を有し、
     前記柔軟多孔体は、三次元網目状の骨格と、当該骨格により形成された連通する気孔とを備え、
     前記気孔の気孔径は、前記骨格の骨格径の1倍以上100倍以下の範囲を満たし、
     前記骨格径は、100nm以上50μm以下の範囲を満たし、
     前記光源部は、380nm以上3μm以下の範囲を満たす波長の光を発し、
     前記柔軟多孔体は、前記光源部からの光を散乱し、
     前記受光部は、前記柔軟多孔体で散乱した散乱光を受光し、
     前記散乱光の強度は、前記柔軟多孔体が圧縮されるにつれて、漸次的に小さくなる、触覚センサ。
    a substrate;
    a light source unit located on the base material;
    a light receiving portion positioned on the base material;
    a tactile part positioned on the light source part and the light receiving part and made of a flexible porous body,
    The flexible porous body has a network-type phase separation structure,
    The flexible porous body comprises a three-dimensional network skeleton and communicating pores formed by the skeleton,
    The pore diameter of the pores satisfies the range of 1 to 100 times the skeleton diameter of the skeleton,
    The skeleton diameter satisfies the range of 100 nm or more and 50 μm or less,
    The light source unit emits light with a wavelength that satisfies a range of 380 nm or more and 3 μm or less,
    The flexible porous body scatters light from the light source,
    The light receiving unit receives scattered light scattered by the flexible porous body,
    The tactile sensor, wherein the intensity of the scattered light gradually decreases as the flexible porous body is compressed.
  2.  前記気孔径は、前記骨格径の3倍以上20倍以下の範囲を満たす、請求項1に記載の触覚センサ。 The tactile sensor according to claim 1, wherein the pore diameter satisfies a range of 3 to 20 times the skeleton diameter.
  3.  前記気孔径は、前記骨格径の5倍以上15倍以下の範囲を満たす、請求項2に記載の触覚センサ。 The tactile sensor according to claim 2, wherein the pore diameter satisfies a range of 5 to 15 times the skeleton diameter.
  4.  前記柔軟多孔体の気孔率は、60%以上99%以下の範囲を有する、請求項1~3のいずれかに記載の触覚センサ。 The tactile sensor according to any one of claims 1 to 3, wherein said flexible porous body has a porosity in the range of 60% or more and 99% or less.
  5.  前記柔軟多孔体の気孔率は、85%以上95%以下の範囲を有する、請求項4に記載の触覚センサ。 The tactile sensor according to claim 4, wherein said flexible porous body has a porosity in the range of 85% or more and 95% or less.
  6.  前記柔軟多孔体は、シリコーン、ウレタン樹脂、アクリル樹脂、ゴム、ポリスチレン樹脂、ポリエステル樹脂、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリアミド樹脂、ポリイミド樹脂、セルロース樹脂、ポリオレフィン樹脂、芳香族ポリエーテルケトン、および、エポキシ樹脂からなる群から選択される、請求項1~5のいずれかに記載の触覚センサ。 The flexible porous body includes silicone, urethane resin, acrylic resin, rubber, polystyrene resin, polyester resin, polyvinyl chloride, polyvinylidene chloride, polyamide resin, polyimide resin, cellulose resin, polyolefin resin, aromatic polyether ketone, and The tactile sensor according to any one of claims 1 to 5, which is selected from the group consisting of epoxy resins.
  7.  前記光源部は、発光ダイオード(LED)、レーザダイオード(LD)、有機EL、および、光ファイバからなる群から選択される、請求項1~6のいずれかに記載の触覚センサ。 The tactile sensor according to any one of claims 1 to 6, wherein the light source unit is selected from the group consisting of light emitting diodes (LED), laser diodes (LD), organic EL, and optical fibers.
  8.  前記光源部は、400nm以上1.4μm以下の範囲の波長の光を発する、請求項1~7のいずれかに記載の触覚センサ。 The tactile sensor according to any one of claims 1 to 7, wherein the light source unit emits light with a wavelength in the range of 400 nm or more and 1.4 µm or less.
  9.  前記光源部は、800nm以上1.1μm以下の範囲の波長の光を発する、請求項8に記載の触覚センサ。 The tactile sensor according to claim 8, wherein the light source unit emits light with a wavelength in the range of 800 nm or more and 1.1 µm or less.
  10.  前記受光部は、フォトレジスタ、フォトトランジスタ、フォトダイオード、光電子倍増管、フォトンカウンタ、CCDイメージセンサ、CMOSイメージセンサ、NMOSイメージセンサ、および、太陽電池からなる群から選択される、請求項1~9のいずれかに記載の触覚センサ。 10. The light receiving unit is selected from the group consisting of a photoresistor, a phototransistor, a photodiode, a photomultiplier tube, a photon counter, a CCD image sensor, a CMOS image sensor, an NMOS image sensor, and a solar cell. The tactile sensor according to any one of 1.
  11.  前記光源部からの光が出射する面の方向と、前記受光部の前記散乱光を受光する面の方向とは、同一であり、
     前記触覚部は、前記光が出射する面および前記受光する面上に位置する、請求項1~10のいずれかに記載の触覚センサ。
    the direction of the surface from which the light from the light source unit is emitted is the same as the direction of the surface of the light receiving unit that receives the scattered light;
    The tactile sensor according to any one of claims 1 to 10, wherein the tactile portion is positioned on the light emitting surface and the light receiving surface.
  12.  前記基材は、フレキシブル基板である、請求項1~11のいずれかに記載の触覚センサ。 The tactile sensor according to any one of claims 1 to 11, wherein the base material is a flexible substrate.
  13.  前記光源部および前記受光部の動作を制御する制御部をさらに備え、
     前記制御部は、前記柔軟多孔体の電位と圧縮率との関係を示すデータを格納したメモリを備える、請求項1~12のいずれかに記載の触覚センサ。
    Further comprising a control unit for controlling the operation of the light source unit and the light receiving unit,
    13. The tactile sensor according to any one of claims 1 to 12, wherein said control unit comprises a memory storing data indicating the relationship between the potential and compressibility of said flexible porous body.
  14.  前記気孔径は、100nm以上200μm以下の範囲を満たす、請求項1~13のいずれかに記載の触覚センサ。 The tactile sensor according to any one of claims 1 to 13, wherein the pore diameter satisfies the range of 100 nm or more and 200 µm or less.
  15.  前記骨格径は、1μm以上8μm以下の範囲を満たす、請求項1~14のいずれかに記載の触覚センサ。 The tactile sensor according to any one of claims 1 to 14, wherein the skeleton diameter satisfies a range of 1 µm or more and 8 µm or less.
  16.  前記柔軟多孔体の嵩密度は、0.01g/cm以上0.4g/cm以下の範囲を満たす、請求項1~15のいずれかに記載の触覚センサ。 The tactile sensor according to any one of claims 1 to 15, wherein the flexible porous body has a bulk density in the range of 0.01 g/cm 3 to 0.4 g/cm 3 .
  17.  請求項1~16のいずれかに記載の触覚センサを備えたロボット。 A robot equipped with the tactile sensor according to any one of claims 1 to 16.
  18.  請求項1~16のいずれかに記載の触覚センサを備えた医療機器。 A medical device comprising the tactile sensor according to any one of claims 1 to 16.
  19.  請求項1~16のいずれかに記載の触覚センサを備えた触覚フィードバック装置。 A tactile feedback device comprising the tactile sensor according to any one of claims 1 to 16.
PCT/JP2022/045839 2021-12-21 2022-12-13 Tactile sensor, robot using tactile sensor, medical device, and tactile feedback device WO2023120302A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023569335A JPWO2023120302A1 (en) 2021-12-21 2022-12-13

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-206749 2021-12-21
JP2021206749 2021-12-21
JP2022-017583 2022-02-08
JP2022017583 2022-02-08

Publications (1)

Publication Number Publication Date
WO2023120302A1 true WO2023120302A1 (en) 2023-06-29

Family

ID=86902384

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/045839 WO2023120302A1 (en) 2021-12-21 2022-12-13 Tactile sensor, robot using tactile sensor, medical device, and tactile feedback device

Country Status (2)

Country Link
JP (1) JPWO2023120302A1 (en)
WO (1) WO2023120302A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010011480A1 (en) * 1999-05-28 2001-08-09 Reimer Ernest M. Pressure sensor
JP2003073497A (en) * 2001-09-03 2003-03-12 Inoac Corp Fluorine-based resin porous body and method for producing the same
JP2003534542A (en) * 2000-05-26 2003-11-18 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Strain sensor
JP2013101096A (en) * 2011-10-11 2013-05-23 Touchence Inc Flexible tactile sensor
KR20180136190A (en) * 2017-06-14 2018-12-24 한국과학기술원 Apparatus for measuring pressure using solar cell
US20190383678A1 (en) * 2017-01-10 2019-12-19 Cornell University Sensors with elastomeric foams and uses thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010011480A1 (en) * 1999-05-28 2001-08-09 Reimer Ernest M. Pressure sensor
JP2003534542A (en) * 2000-05-26 2003-11-18 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Strain sensor
JP2003073497A (en) * 2001-09-03 2003-03-12 Inoac Corp Fluorine-based resin porous body and method for producing the same
JP2013101096A (en) * 2011-10-11 2013-05-23 Touchence Inc Flexible tactile sensor
US20190383678A1 (en) * 2017-01-10 2019-12-19 Cornell University Sensors with elastomeric foams and uses thereof
KR20180136190A (en) * 2017-06-14 2018-12-24 한국과학기술원 Apparatus for measuring pressure using solar cell

Also Published As

Publication number Publication date
JPWO2023120302A1 (en) 2023-06-29

Similar Documents

Publication Publication Date Title
Lee et al. Wireless powered wearable micro light-emitting diodes
Wang et al. Interactively full‐color changeable electronic fiber sensor with high stretchability and rapid response
Li et al. Engineered microstructure derived hierarchical deformation of flexible pressure sensor induces a supersensitive piezoresistive property in broad pressure range
Zhang et al. Highly stretchable and self‐healable MXene/polyvinyl alcohol hydrogel electrode for wearable capacitive electronic skin
Atalay et al. A highly sensitive capacitive‐based soft pressure sensor based on a conductive fabric and a microporous dielectric layer
Le Floch et al. Wearable and washable conductors for active textiles
Kwon et al. Highly sensitive, flexible, and wearable pressure sensor based on a giant piezocapacitive effect of three-dimensional microporous elastomeric dielectric layer
Massaro et al. Design and characterization of a nanocomposite pressure sensor implemented in a tactile robotic system
Choi et al. Wearable self-powered pressure sensor by integration of piezo-transmittance microporous elastomer with organic solar cell
Shu et al. Surface-modified piezoresistive nanocomposite flexible pressure sensors with high sensitivity and wide linearity
Yang et al. A flexible highly sensitive capacitive pressure sensor
Yu et al. Biomimetic porous fluoropolymer films with brilliant whiteness by using polymerization‐induced phase separation
Chang et al. Protein Gel Phase Transition: Toward Superiorly Transparent and Hysteresis‐Free Wearable Electronics
Huang et al. Interface Engineering of Flexible Piezoresistive Sensors via near‐Field Electrospinning Processed Spacer Layers
Nakamaru et al. FoamSense: Design of three dimensional soft sensors with porous materials
Kim et al. Hollow polydimethylsiloxane (PDMS) foam with a 3D interconnected network for highly sensitive capacitive pressure sensors
WO2023120302A1 (en) Tactile sensor, robot using tactile sensor, medical device, and tactile feedback device
Bui et al. High-temperature operatable triboelectric nanogenerator using microdome-patterned polyimide for self-powered sensors
Li et al. A multiscale flexible pressure sensor based on nanovesicle-like hollow microspheres for micro-vibration detection in non-contact mode
Hu et al. A flexible capacitive tactile sensor array with micro structure for robotic application
Liu et al. Thin, soft, garment‐integrated triboelectric nanogenerators for energy harvesting and human machine interfaces
Huang et al. A unique, flexible, and porous pressure sensor with enhanced sensitivity and durability by synergy of surface microstructure and supercritical fluid foaming
Tripathy et al. Polymer matrix composite engineering for PDMS based capacitive sensors to achieve high-performance and broad-range pressure sensing
Ding et al. Flexible superamphiphobic film with a 3D conductive network for wearable strain sensors in humid conditions
Karmakar et al. PVA tactile sensors based on Electrical Contact Resistance (ECR) change mechanism for subtle pressure detection

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22911010

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023569335

Country of ref document: JP