WO2023119993A1 - Field working machine - Google Patents

Field working machine Download PDF

Info

Publication number
WO2023119993A1
WO2023119993A1 PCT/JP2022/042982 JP2022042982W WO2023119993A1 WO 2023119993 A1 WO2023119993 A1 WO 2023119993A1 JP 2022042982 W JP2022042982 W JP 2022042982W WO 2023119993 A1 WO2023119993 A1 WO 2023119993A1
Authority
WO
WIPO (PCT)
Prior art keywords
obstacle
unit
ridge
recognition
specific
Prior art date
Application number
PCT/JP2022/042982
Other languages
French (fr)
Japanese (ja)
Inventor
玉谷健二
鈴川めぐみ
宇谷直晃
Original Assignee
株式会社クボタ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クボタ filed Critical 株式会社クボタ
Publication of WO2023119993A1 publication Critical patent/WO2023119993A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B69/00Steering of agricultural machines or implements; Guiding agricultural machines or implements on a desired track

Definitions

  • the present invention relates to an automatically traveling field working machine that performs work in fields bounded by ridges.
  • the control for running control is placed at a position farther from the ridge than the actual boundary line. Boundaries are set.
  • a field working machine needs to approach a ridge during work on a field, such as replenishing seedlings and fertilizers, discharging harvested materials, and replenishing fuel.
  • a control boundary line is set in such a run approaching the ridge, it becomes impossible for the aircraft to approach the ridge to the very limit.
  • the boundary line for traveling control is automatically set. It has the function of extending to the shore side. This extension of the control boundary allows the rice planter to get as close as possible to the ridge.
  • An object of the present invention is to provide a field working machine that is more accessible to specific obstacles than other obstacles.
  • An automatically traveling agricultural field working machine is an automatically traveling agricultural field working machine that performs work in a field bounded by a ridge, the obstacle detection unit detecting an obstacle including the ridge;
  • An aircraft position calculation unit that calculates the aircraft position, a travel control unit that automatically or manually runs the aircraft, and a recognition unit that recognizes a specific recognition target registered in advance as a symbol that allows the aircraft to approach the obstacle.
  • an obstacle management unit that manages the prohibited distance of the aircraft to the obstacle detected by the obstacle detection unit, or the time in which the aircraft can approach the obstacle, The management unit determines whether the obstacle detected by the obstacle detection unit is the specific recognition target, or when the specific recognition target is recognized in an area near the obstacle detected by the obstacle detection unit. If so, reduce the no-access distance or extend the accessible time.
  • the distance from the aircraft to the obstacle or the distance of the aircraft to the obstacle is detected.
  • the obstacle management unit that manages the approachable time of is activated. In other words, if the detected obstacle itself is the recognized specific recognition target, or if there is a recognized specific recognition target in the vicinity of the detected obstacle, the detected obstacle It is determined that the aircraft is an object that should be approached as close as possible, and either the prohibited distance is shortened or the time during which the aircraft can approach the obstacle is extended. By shortening the no-approach distance, the aircraft can approach obstacles more. In addition, the approachable distance of the aircraft to the obstacle varies depending on the vehicle speed.
  • the specific recognition target is registered as a symbol that allows the aircraft to approach an obstacle, that is, as an approach determination material. In other words, based on the two determination conditions of obstacle detection and specific recognition target recognition, the aircraft is permitted to approach the obstacle closer, so safe and reliable approach travel control is realized.
  • the obstacle used by the obstacle management unit to determine whether to shorten the prohibited distance or extend the accessible time is the ridge.
  • the specific recognition target is a specific ridge that is a specific area of the ridge or a recognition target located in the vicinity of the specific ridge.
  • Ridges are frequently detected obstacles when field implements travel.
  • the implement should be approached as close as possible.
  • the word “ridge” here can be interpreted in a broad sense, and includes not only constituent materials such as concrete, wood, plastic, earthenware, but also walls rising from fields, artificial lawns, etc. Surfaces, naturally occurring slopes, etc. are also included.
  • the specific recognition target is a specific communication terminal registered in advance, and the recognition unit recognizes the communication terminal based on data transmitted from the communication terminal. .
  • the communication terminal has a remote control operation function for a control unit including the travel control section.
  • the field work machine has a function to be controlled by a remote control, it is convenient for the observer who monitors the work on the specific ridge to use the remote control to drive the field work machine closer to the ridge.
  • a synergistic effect is obtained when the communication terminal, which is the specific recognition target recognized by the recognition unit, and the remote controller are integrated.
  • the recognition unit has an image recognition function, and the specific recognition target is recognized by the image recognition function.
  • Inexpensive and high-performance image recognition devices are in circulation, so it is possible to recognize specific objects without any technical or cost burden. Furthermore, by setting an arbitrary object in advance as an object to be image-recognized, any object can be used as a specific recognition target of the present invention.
  • the specific recognition target recognized by the recognition unit is an observer who monitors the movement of the aircraft from a ridge.
  • a specific observer such as an observer wearing a specific costume, is registered in the recognition unit, so that a person unrelated to the work is recognized, and the field work machine mistakenly approaches the ridge. is avoided.
  • the image recognition function of the recognition unit includes a function of recognizing a gesture of a person on a ridge, and the obstacle management section changes the running state of the aircraft.
  • a running state change command is given to the running control unit.
  • the obstacle management section responds to this gesture by controlling the aircraft to stop, move forward or backward. can be instructed to As a result, it is possible to easily control not only the aircraft approaching the ridge, but also emergency flight control through gestures.
  • the recognition unit has a voice recognition function
  • the specific recognition target is voice emitted from the ridge
  • the obstacle management section recognizes Based on the received voice, a running state change command for changing the running state of the aircraft is given to the running control unit.
  • the recognition unit since inexpensive and high-performance speech recognition devices are on the market, it is possible to configure the recognition unit to recognize the speech adopted as the specific recognition target without any technical or cost burden.
  • the recognition unit by registering the voice of the observer as a specific recognition target, noise unrelated to the work or human voice is recognized as a specific recognition target. Avoided.
  • the speech recognition function of the recognition unit is configured to recognize simple words related to the flight control of the aircraft, the obstacle management unit can change the traveling state of the aircraft based on the voice recognized by the recognition unit. A state change command can be given to the cruise control unit. As a result, it is possible to easily control not only the approach of the aircraft to the ridge but also the control of the aircraft in case of an emergency.
  • the obstacle management unit is connectable to a farming management system so that data can be exchanged, and the obstacle management unit uses the specific recognition registered in advance in the farming management system. Manage the no-access distance or the accessible time with respect to the object.
  • a farming management system built on a computer installed at a cloud service center or at a farmer's home, etc. has a prohibitive distance to a specific recognition target, or an aircraft approaching a specific recognition target.
  • the obstacle management department can access the farming management system, acquire these data, and manage them.
  • the management of data such as the prohibition distance and accessible time for the specific recognition object in the obstacle management unit is decentralized, and the data management in the obstacle management unit is simplified.
  • the specific recognition target data detected by the image recognition function or voice recognition function of the recognition unit is automatically or selectively accumulated in the farming management system.
  • the farming management system as described above adopts a configuration for automatically or selectively accumulating specific recognition target data detected by the image recognition function or voice recognition function of the recognition unit, the detected specific recognition Information about the target is stored chronologically in the farming management system and can be used for various post-processing.
  • FIG. 4 is a data flow diagram showing the flow of data and commands between control function units in running along the edge of a ridge.
  • a rice transplanter will be described as an example of one of the embodiments of the field work machine capable of automatically traveling according to the present invention.
  • “front” (the direction of arrow F shown in FIG. 1) means the front in the longitudinal direction (running direction) of the aircraft
  • “rear” (the direction of arrow B shown in FIG. 1). ) means the rear in the longitudinal direction (running direction) of the fuselage.
  • the left-right direction or the lateral direction means the left-right direction (machine width direction) perpendicular to the front-back direction of the machine body. shall mean the direction of orientation.
  • the rice transplanter includes a ride-on, four-wheel-drive body 1 .
  • the machine body 1 includes a parallel quadruple link type link mechanism 13, a hydraulic elevating cylinder 13a, a seedling planting device 3A, a fertilizing device 3B, and the like.
  • the link mechanism 13 is connected to the rear portion of the fuselage 1 so as to be vertically swingable.
  • the lifting cylinder 13a drives the link mechanism 13 to swing.
  • 3 A of seedling planting apparatuses are connected with the rear-end part of the link mechanism 13 so that rolling is possible.
  • the fertilizing device 3B extends from the rear end of the machine body 1 to the seedling planting device 3A.
  • the seedling planting device 3A and the fertilizing device 3B are liftable working devices 3 provided in the field working machine of the present invention.
  • the work device 3 performs seedling planting work along a predetermined row direction.
  • the link mechanism 13 and the elevating cylinder 13a constitute an elevating mechanism for elevating the seedling planting device 3A and the fertilizing device 3B.
  • the machine body 1 includes a wheel-type traveling device 12, an engine 2A, and a hydraulic continuously variable transmission 2B.
  • the continuously variable transmission 2B is a main transmission.
  • the continuously variable transmission 2B is, for example, an HST (Hydro-Static Transmission).
  • the continuously variable transmission 2B changes the rotation speed of the power (rotational power) output from the engine 2A by adjusting the angles of the motor swash plate and the pump swash plate.
  • the traveling device 12 has left and right front wheels 12A and left and right rear wheels 12B.
  • the left and right front wheels 12A function as steering wheels for changing the orientation of the vehicle.
  • the left and right rear wheels 12B cannot be steered.
  • an operating section 14 is provided at the rear portion of the airframe 1.
  • the driving unit 14 includes a steering wheel 10 for steering the front wheels, a main shift lever 7A, an auxiliary shift lever 7B, a work operation lever 11, and a driver's seat 16 for passengers (drivers, workers, managers). , etc.
  • the main shift lever 7A adjusts the vehicle speed by shifting the continuously variable transmission 2B.
  • the sub-transmission lever 7B enables the shift operation of the sub-transmission.
  • the work operation lever 11 performs elevating operation of the seedling planting device 3A.
  • a preliminary seedling storage device 17A is supported by a preliminary seedling support frame 17 in front of the operating section 14. As shown in FIG.
  • the spare seedling storage device 17A stores spare seedlings.
  • the steering wheel 10 is connected to the front wheels 12A via a steering mechanism (not shown).
  • the steering angle of the front wheels 12A is adjusted by rotating the steering wheel 10.
  • FIG. A steering motor M1 is connected to the steering mechanism.
  • the steering motor M1 operates based on a steering signal to adjust the steering angle (steering degree) of the front wheels 12A.
  • a shift operation motor M2 is provided for automatically operating the main shift lever 7A.
  • the shift position of the continuously variable transmission 2B is adjusted by operating the shift operation motor M2 based on the shift signal.
  • the seedling planting device 3A is illustrated in an eight-row planting format as an example.
  • the seedling planting device 3A may be of other types such as a 6-row planting type or a 10-row planting type.
  • Power from the engine 2A is distributed to each planting mechanism 22 via the planting clutch C0 and each row clutch EC.
  • the planting clutch C0 switches the driving state of the seedling planting device 3A by switching on and off power transmission from the engine 2A.
  • Each row clutch EC is configured to be able to select driving or non-driving of each planting mechanism 22 every two rows in the seedling planting device 3A. By controlling each row clutch EC, the seedling planting device 3A can be changed to two-row planting, four-row planting, six-row planting, and eight-row planting.
  • the seedling planting device 3A includes a seedling platform 21, a planting mechanism 22, and the like.
  • the seedling mounting table 21 is a pedestal on which 8 rows of mat-like seedlings are mounted.
  • the seedling mounting table 21 reciprocates in the horizontal direction with a constant stroke amount corresponding to the lateral width of the mat-like seedling.
  • the eight planting mechanisms 22 are of a rotary type and are arranged in the left-right direction at regular intervals corresponding to the intervals between the planting rows. Power from the engine 2A is transmitted to each planting mechanism 22 .
  • Each planting mechanism 22 cuts off one seedling (planted seedling) from the lower end of each mat-like seedling placed on the seedling placement table 21 by the power from the engine 2A, and cuts off the mud part after leveling ( planted in the field).
  • the seedling planting apparatus 3A can take out seedlings from the mat-like seedlings placed on the seedling placement table 21 and plant them in the mud part of the paddy field in the operating state.
  • the fertilizing device 3B has a hopper 25, a delivery mechanism 26, and a fertilizing hose 28.
  • the hopper 25 stores granular or powdery fertilizers (chemicals and other agricultural materials).
  • a delivery mechanism 26 delivers fertilizer from the hopper 25 .
  • the fertilizing hose 28 conveys the fertilizer delivered by the delivery mechanism 26 and discharges the fertilizer to the field.
  • Fertilizer stored in the hopper 25 is delivered by a delivery mechanism 26 by a predetermined amount and sent to the fertilizing hose 28, conveyed through the fertilizing hose 28 by the carrying wind of the blower 27, and discharged from the ditching device 29 to the field. be.
  • the fertilizing device 3B supplies fertilizer to the field.
  • the grooving machine 29 is arranged on the leveling float 15 .
  • Each grooving device 29 ascends and descends together with each leveling float 15, forms a fertilizing groove in the muddy part of the paddy field, and guides the fertilizer into the fertilizing groove during work travel in which each leveling float 15 touches the ground.
  • the communication terminal 9 detachably attached to the operation unit 14 is configured by, for example, a tablet computer.
  • the communication terminal 9 can output various types of information to the operator as visual information and auditory information, and can accept inputs of various types of information.
  • the communication terminal 9 is wirelessly or wiredly connected to the control system of the rice transplanter so that data can be exchanged.
  • Various functions for automatic driving are installed in the communication terminal 9 .
  • it may be configured to have a remote control operation function for remotely controlling the control system (control unit 100) of the rice transplanter.
  • a positioning unit 8 is provided that outputs positioning data for calculating the position (aircraft position: represented by map coordinates, for example) and orientation (aircraft bearing) of the airframe 1 .
  • the positioning unit 8 includes a satellite positioning module 8A that receives radio waves from satellites of the global navigation satellite system (GNSS), and an inertial measurement module 8B that detects the three-axis tilt and acceleration of the airframe 1 ( See Figure 6).
  • the positioning unit 8 is supported on top of the preliminary seedling support frame 17 .
  • the rice transplanter is equipped with an obstacle detection unit 70 for obstacle detection.
  • the obstacle detection unit 70 comprises a camera unit 71 and a LiDAR unit 72 (Light Detection And Ranging).
  • the obstacle detection unit 70 detects an object by combining the image captured by the camera unit 71 and the point cloud image by the LiDAR unit 72 .
  • the obstacle detection unit 70 calculates the position and shape of the object, and sends this as detected object information to the control system of the rice transplanter.
  • object detection and object recognition are possible from images captured by the camera unit 71 .
  • object detection and object recognition are also possible from the point cloud data by the LiDAR unit 72 .
  • the obstacle detection unit 70 may consist of either one of the camera unit 71 and the LiDAR unit 72 .
  • an image captured by the camera unit 71 is used in a recognition unit 54 (see FIG. 4) that recognizes a specific recognition target, which will be described later. Therefore, in any case, the camera unit 71 is provided on the airframe 1 .
  • the rice transplanter in this embodiment can selectively execute manual running and automatic running.
  • manual traveling the driver manually operates (including remote control operation) the steering wheel 10, the main gearshift lever 7A, the sub gearshift lever 7B, the work operation lever 11, etc. to perform work traveling.
  • automatic travel the rice transplanter automatically travels and works along a preset target travel route.
  • a farm field map is generated in which the farm field is divided into an outer peripheral area OA and an inner area IA.
  • the driving route that the rice transplanter uses for automatic driving is also generated.
  • a plurality of linear running paths hereinafter referred to as straight running paths, but not necessarily limited to straight lines
  • the extending direction of the travel route is also called the row direction.
  • This straight travel route is a travel route for the rice transplanter to travel throughout the entire inner area IA for work.
  • Automatic steering in automatic driving is performed using this straight travel route as a target travel route.
  • Each straight travel route is connected by a U-shaped turning travel route (substantially a 180-degree turning route). Traveling along a straight travel route and travel along a turning travel route are performed by automatic travel control consisting of automatic steering and automatic transmission.
  • one or more round traveling routes are generated that go around the outer peripheral area OA along the outer periphery (outer edge) of the farm field.
  • the circular traveling route consists of two circular traveling routes, inner and outer.
  • the inner and outer circular travel routes can also be automatically traveled, but one or both of them may be manually traveled.
  • the machine body 1 When work travel is completed on one straight travel route, the machine body 1 turns 180 degrees toward the next straight travel route for work travel.
  • This 180-degree turning travel of the machine body 1 is a non-working travel.
  • the seedling planting device 3A which is the working device 3
  • the leveling float 15 is positioned above the surface of the paddy field. In this state, the seedling planting device 3A stops. Then, the body 1 changes direction by 180 degrees while running.
  • the seedling planting work in the outer peripheral area OA is performed by a combination of the straight travel, which is the working travel on the outer peripheral route, and the 90-degree turning travel, which is the non-working travel.
  • the seedling planting work in the inner area IA every time the work travel is completed in one straight travel route and the robot moves toward the next straight travel route, a 180-degree turning travel is performed. Since this 180-degree turning travel is performed in the outer peripheral area OA in an unworked state (a state in which seedlings are not planted), a sufficient turning space can be secured.
  • ridge edge special runs is the forward resupply run, which approaches the ridge by moving forward from straight running in the inner area IA to supply materials.
  • Forward resupply travel is designated SR2 in FIG.
  • Still another one is a backward replenishment run in which after turning 180 degrees from a straight run in the inner area IA, the vehicle approaches a ridge in reverse for material replenishment.
  • a reverse refueling run is designated SR3 in FIG.
  • traveling over a ridge is also performed.
  • an operation of placing the seedling planting device 3A on the upper surface of the ridge is also performed.
  • the control system shortens the prohibited access distance or extends the accessible time. and allow a closer approach to the ridge for Aircraft 1.
  • the detected ridge is a specific recognition target set in advance, or when the specific recognition target is recognized in the vicinity of the detected ridge, the approach to this special ridge is permitted. This specific recognition target recognition process will be described in detail later.
  • the control for changing the prohibited approach distance or approachable time for obstacles detected by the obstacle detection unit 70 may also be employed in travel other than the special railroad travel.
  • FIG. 4 is a control block diagram of the control system.
  • FIG. 5 is a flow chart showing the flow of data regarding recognition processing of a specific recognition target in the control system.
  • the control system of the rice transplanter includes a control unit 100 and a communication terminal 9.
  • the control unit 100 controls various operations of the rice transplanter.
  • the communication terminal 9 can exchange data with the control unit 100 .
  • Signals from the positioning unit 8 , the manual operation tool sensor group 31 , the travel sensor group 32 , and the work sensor group 33 are input to the control unit 100 .
  • a control signal from the control unit 100 is output to the traveling equipment group 1A and the work equipment group 1B.
  • the control unit 100 acquires positioning data from the satellite positioning module 8A of the positioning unit 8 for calculating the position and orientation of the aircraft 1 (orientation in the longitudinal direction of the vehicle body). In addition, the control unit 100 acquires inertial measurement data regarding the three-axis tilt and acceleration of the airframe 1 from the inertial measurement module 8B.
  • the control unit 100 acquires detected object information from an obstacle detection unit 70 that detects objects (obstacles) existing around the aircraft 1 . Also, an image captured by the camera unit 71 of the obstacle detection unit 70 is sent to the recognition unit 54 constructed in the control unit 100 in this embodiment, and used to recognize a specific recognition target.
  • the traveling device group 1A includes, for example, a steering motor M1 and a shift operation motor M2.
  • the steering angle is adjusted by controlling the steering motor M1 based on the control signal from the control unit 100 .
  • the vehicle speed is adjusted by controlling the speed change operation motor M2 based on the control signal from the control unit 100.
  • the work equipment group 1B includes, for example, an elevating cylinder 13a, a seedling amount adjusting device, a feeding amount adjusting device, and an on/off control device for the planting clutch C0 and each row clutch EC.
  • the elevating cylinder 13a elevates the seedling planting device 3A.
  • the seedling amount adjusting device adjusts the amount of seedlings taken by the planting mechanism 22 .
  • the delivery amount adjusting device changes the amount of fertilizer delivered by the delivery mechanism 26 .
  • the manual operating tool sensor group 31 includes sensors, switches, and the like that detect the operating states of various manual operating tools.
  • the traveling sensor group 32 includes various sensors for detecting conditions such as steering angle, vehicle speed, engine speed, and set values for them.
  • the work sensor group 33 includes various sensors for detecting the drive state of the seedling planting device 3A and the fertilizing device 3B.
  • Various sensors in the work sensor group 33 include a grounding sensor that detects the grounding of the leveling float 15, an elevation position sensor that detects the elevation position of the link mechanism 13, and the like.
  • the control unit 100 includes functional units such as an input signal processing unit 50, a travel control unit 6, a work control unit 51, an aircraft position calculation unit 52, a travel route setting unit 53, a recognition unit 54, an obstacle management unit 55, and the like. ing.
  • the input signal processing unit 50 receives data from external devices such as measuring devices, monitoring devices, and communication devices. The input signal processing unit 50 then performs necessary data conversion processing and the like, and supplies the data to the functional units of the control unit 100 .
  • the input signal processing unit 50 can receive speech recognition data obtained by speech recognition from a speech recognition device, data from a mobile terminal such as a smartphone, and Wi-Fi data and public line data from a remote management computer. .
  • a farming management system which will be described later, is built in this management computer.
  • the body position calculation unit 52 calculates the body position (map position) of the body 1 based on the satellite positioning data and inertial navigation data sequentially sent from the positioning unit 8 .
  • the map coordinates may be coordinates in a field coordinate system or a specific coordinate system as well as latitude and longitude.
  • the communication terminal 9 includes a touch panel IF 90, a field information storage unit 91, a travel route map generation unit 92, a travel route generation unit 93, a remote control unit 94, and the like.
  • the touch panel IF 90 is a graphic interface, and has a function of displaying and inputting information through the touch panel provided in the communication terminal 9 . Therefore, this communication terminal 9 functions as an input/output interface for the control unit 100 .
  • the farm field information storage unit 91 stores information about the farm field, such as the entrance (exit) position of the farm field and the positions where seedlings and fertilizer can be supplied.
  • the traveling route map generator 92 generates a map of the field based on the traveling locus obtained by causing the machine body 1 to travel along the outermost periphery of the outer peripheral area OA (see FIG. 3) of the field, that is, along the boundary line with the ridge. Calculate the external dimensions.
  • the travel route generation unit 93 divides the field into an outer peripheral area OA and an inner area IA based on the outer dimensions of the field, and generates a travel route for automatic travel.
  • the travel route as shown in FIG. 3, consists of a circular travel route for travel in the outer peripheral area OA and a straight travel route for travel in the inner area IA. The generated travel route is sent to the control unit 100 .
  • the remote control unit 94 has a program that causes the communication terminal 9 to function as a remote control for operating the rice transplanter.
  • the administrator can remote-control the rice transplanter using hardware switches attached to the communication terminal 9 or software switches displayed on the touch panel of the communication terminal 9 .
  • a travel route setting unit 53 built in the control unit 100 receives and manages the travel route generated by the travel route generation unit 93 from the communication terminal 9, and sets a target travel route for route following steering control.
  • the travel route is set in sequence.
  • the work control unit 51 automatically controls the work equipment group 1B based on a program given in advance during automatic travel, and controls the work equipment group 1B based on the driver's operation during manual travel.
  • the travel control unit 6 includes an automatic travel control unit 61, a manual travel control unit 62, and a control management unit 63.
  • This rice transplanter can be switched between an automatic running mode for automatic running and a manual running mode for manual running.
  • the control management unit 63 receives a signal from a manual operation tool sensor (one of the manual operation tool sensor group 31) that detects the state of the running mode switching operation tool (not shown), and a signal generated by the control unit 100 in a controlled manner. Either the automatic driving mode or the manual driving mode is selected based on the switching signal.
  • the manual travel control unit 62 operating in the manual travel mode controls the steering motor M1 based on the amount of operation of the steering wheel 10. Further, the manual travel control unit 62 controls the speed change operation motor M2 based on the operation of the manual operation tools such as the main shift lever 7A and the auxiliary shift lever 7B.
  • the automatic travel control unit 61 operating in the automatic travel mode uses the vehicle body position calculated by the aircraft position calculation unit 52 to calculate the positional deviation of the aircraft 1 with respect to the target travel route (lateral deviation with respect to the target travel route) and the azimuth deviation of the aircraft 1 with respect to the target travel route. (deviation angle of the vehicle azimuth with respect to the azimuth of the target travel route) is calculated. Then, the automatic travel control unit 61 steers the body 1 so as to reduce the positional deviation and the azimuth deviation.
  • the recognition unit 54 recognizes a pre-registered specific recognition target.
  • the specific recognition target is registered as a symbol that allows the aircraft to approach the obstacle.
  • a “symbol (approach determination material)” here is an object that can be recognized by the recognition unit 54, such as an object, human body, equipment, or behavior.
  • the recognition unit 54 has at least one recognition function such as an image recognition function, a speech recognizer, a symbol matching function, etc. for recognition of a specific recognition target.
  • the obstacle management unit 55 manages the prohibited distance or accessible time of the aircraft 1 to obstacles detected by the obstacle detection unit 70 .
  • this rice transplanter is provided with the prohibited access distance changing function or the accessible time changing function.
  • the no-approach distance change function prohibits the aircraft 1 from approaching the detected ridge or other obstacle when the detected ridge or other obstacle is an object in the specific area set as the specific area in the field. Shorten the distance and allow Aircraft 1 to approach the ridge.
  • the approachable time change function changes the approachability of the body 1 to the detected obstacle such as a ridge when the detected obstacle such as a ridge is an object in the specific area set as the specific area in the field. Extend the time and allow Aircraft 1 to approach the ridge.
  • the obstacle management unit 55 executes this prohibited distance change function or accessible time change function.
  • the obstacle detection unit 70 is the specific recognition target recognized by the recognition unit 54
  • the obstacle management unit 55 shortens the prohibited distance or extends the accessible time.
  • the specific recognition target recognized by the recognition unit 54 is recognized in the vicinity of the obstacle detected by the obstacle detection unit 70
  • the obstacle management unit 55 shortens the prohibited distance, or Extends reachable time. This allows the aircraft 1 to approach this obstacle.
  • the obstacle management unit 55 shortens the prohibited distance or extends the accessible time, from straight running in the inner area IA to forward replenishment traveling to approach the ridge in order to supply materials, and backward replenishment to approach the ridge in reverse. In running, it is done. That is, one of the obstacles used by the obstacle management unit 55 to determine whether to shorten the prohibited distance or extend the accessible time is the specific area of the ridge.
  • the recognition unit 54 preliminarily registers a specific ridge, which is a specific area of the ridge used for this supply of materials, as a specific recognition target. Upon recognizing that a specific ridge exists in the traveling direction of the aircraft, the obstacle management section 55 determines that the obstacle detected by the obstacle detection unit 70 is the specific ridge. At this time, the obstacle management unit 55 shortens the prohibited distance or extends the accessible time.
  • the recognition unit 54 has an image recognition function
  • image recognition is performed on the photographed image acquired by the camera unit 71, and the specific ridge is recognized.
  • the shape of the ridge used for material supply is similar to the shape of other ridges, it becomes difficult to recognize the specific ridge. Therefore, when an object other than a ridge is registered in the recognition unit 54 as a specific recognition target, and the recognition unit 54 recognizes the specific recognition target in the vicinity of the obstacle detected by the obstacle detection unit 70, the obstacle management unit A reference numeral 55 designates a ridge adjacent to the specific recognition target as a specific ridge. "Symbols" used as specific recognition targets instead of the ridges themselves are listed below.
  • a communication terminal 9 carried by an observer who monitors the movement of the field work machine from the ridge is also used as a remote control device and a work progress display device. Therefore, when replenishing materials, the supervisor brings the communication terminal 9 and positions it near the ridge for replenishing the materials. For this reason, it is convenient to set the communication terminal 9 carried by the monitor as a specific recognition target.
  • the recognition unit 54 can recognize the communication terminal 9 by image recognition processing.
  • the recognition unit 54 is provided with a code matching function.
  • the recognition unit 54 recognizes the communication terminal 9 by performing code collation of highly directional transmission data (including identification data) transmitted by the communication terminal 9. It is possible. Transmission data from an IC tag can also be used as transmission data whose code can be collated. In that case, an IC tag is attached to the ridge for material supply. If the code matching function has a function of reading the code image, a signboard or the like printed with the code image can be attached to the ridge for material supply.
  • a mobile phone installed with an application capable of exchanging data with the control system of the rice transplanter may be used. If the identification data of the mobile phone is registered in the recognition unit 54 from the application of the mobile phone via the cloud service computer, it is possible to designate a specific ridge that can shorten the approach distance in real time.
  • the recognition unit 54 is equipped with a gesture recognition function, which is a type of image recognition function, and if characteristic gestures of a person (hand waving, etc.) are registered, the gesture performed by the person located near the ridge can be identified. It can be recognized as a recognition target. Assuming that a specific recognition target is recognized in the vicinity of the ridge detected by the obstacle detection unit 70, the obstacle management section 55 can regard this ridge as the specific ridge.
  • the obstacle management unit 55 controls the running state change command for changing the running state of the body 1 based on the gesture recognized by the recognition unit 54. Part 6 can be given. In this configuration, gestures are used to stop, move forward, and reverse the body 1 .
  • the obstacle management unit 55 controls the running state change command to change the running state of the aircraft 1 based on the voice recognized by the recognition unit 54. Part 6 can be given. Also in this configuration, the machine body 1 is stopped, moved forward, or reversed by voice.
  • Control by the recognition unit 54 and the obstacle management unit 55 to shorten the prohibition distance to the aircraft 1 to obstacles such as ridges, or control to extend the accessible time, is performed by the trees, utility poles, etc. in the ridges and fields. limited to driving close to certain obstacles. For other obstacles, the normal no-access distance or accessible time is maintained. As a result, the shortening of the prohibited approach distance or the accessible time due to malfunction is suppressed.
  • the travel control unit 6 may be provided with a special travel management unit 64 that manages, as special travel, travel that approaches a specific obstacle that has been grasped in advance. Such a special travel management unit 64 sends a permission command to the recognition unit 54 and the obstacle management unit to permit the control to shorten the prohibited approach distance or the control to extend the accessible time only when the aircraft 1 performs special travel. Give to 55 and.
  • the obstacle management unit 55 can exchange data with the farming management system built in the management computer via the input signal processing unit 50.
  • a prohibition distance or an approachable time of the body 1 to the obstacle is registered in advance with respect to the specific recognition target.
  • the obstacle management unit 55 accesses the farming management system, and sets the prohibition distance to the specific recognition target (detected obstacle) registered in advance in the farming management system, or the specific recognition target (detected obstacle ) can be obtained and managed.
  • the farming management system can automatically or selectively accumulate data relating to specific recognition targets detected by the image recognition function or voice recognition function of the recognition unit 54 .
  • Data relating to the detected specific recognition target is converted into information and stored in the farming management system in chronological order.
  • the rice transplanter was taken as the field working machine of the present invention, but the present invention can also be applied to other field working machines such as tractors, harvesters, seeders, and the like. is.
  • the special traveling such as the special traveling on the edge of a furrow ascertained by the special traveling management section 64 can be registered in advance in the traveling route set by the traveling route setting section 53 .
  • the travel device 12 is of the steering wheel type, but may be of the crawler type.
  • each functional unit is integrated with other functional units, each functional unit is divided into a plurality of functional units, Various modifications are possible, such as the control unit 100 being distributed over multiple control subunits.
  • the present invention is applicable to field working machines that can automatically travel in fields bounded by ridges.
  • Airframe 1A Running equipment group 1B: Working equipment group 3: Working device 6: Traveling control unit 8: Positioning unit 8A: Satellite positioning module 8B: Inertial measurement module 9: Communication terminal 12: Traveling device 50: Input signal processing unit 52: Aircraft position calculation unit 54: Recognition unit 55: Obstacle management unit 70: Obstacle detection unit 71: Camera unit 72: LiDAR unit 100: Control unit

Abstract

This field working machine comprises: an obstacle detection unit 70 which detects an obstacle including a furrow; a machine body location calculation unit 52 which calculates the location of a machine body; a traveling control unit 6 which causes the machine body to travel automatically or manually; a recognition unit 54 which recognizes a specific object to be recognized that has been registered in advance; and an obstacle management unit 55 which manages an access prohibition distance of the machine body to the obstacle detected by the obstacle detection unit 70, or an accessible time of the machine body to the obstacle. The specific object to be recognized is registered as a symbol for allowing an access of the machine body to the obstacle, and when the obstacle is the specific object to be recognized or the specific object to be recognized is recognized in an area in the vicinity of the obstacle, the obstacle management unit 55 reduces the access prohibition distance or extends the accessible time of the machine body to the obstacle.

Description

圃場作業機field work machine
 本発明は、畦によって境界付けられた圃場で作業を行う自動走行可能な圃場作業機に関する。 The present invention relates to an automatically traveling field working machine that performs work in fields bounded by ridges.
 従来の田植機や収穫機などの圃場作業機の畦の近傍での走行において、機体と畦との不測の接触を回避するため、実際の境界線より畦から離れた位置に走行制御用の制御境界線が設定されている。圃場作業機は、圃場に対する作業の途中で、苗や肥料の補給、収穫物の排出、燃料補給など、畦に接近する必要がある。しかし、このような畦への接近走行において、制御境界線が設定されていると、機体を畦のぎりぎりまでに接近することが不可能となる。この問題を解決するため、日本国特開2021-108597号公報による田植機では、苗補給などのために機体が畔に向かう直進接近走行が検知されると、自動的に走行制御用の境界線を畔側に拡張する機能を有する。この制御境界線の拡張により、田植機は、畔に対してぎりぎりまで接近可能である。 In order to avoid accidental contact between the machine body and the ridge when running near the ridge, the control for running control is placed at a position farther from the ridge than the actual boundary line. Boundaries are set. A field working machine needs to approach a ridge during work on a field, such as replenishing seedlings and fertilizers, discharging harvested materials, and replenishing fuel. However, if a control boundary line is set in such a run approaching the ridge, it becomes impossible for the aircraft to approach the ridge to the very limit. In order to solve this problem, in the rice transplanter according to Japanese Patent Application Laid-Open No. 2021-108597, when the machine detects that the machine is traveling straight toward the ridge for seedling replenishment, etc., the boundary line for traveling control is automatically set. It has the function of extending to the shore side. This extension of the control boundary allows the rice planter to get as close as possible to the ridge.
日本国特開2021-108597号公報Japanese Patent Application Laid-Open No. 2021-108597
 日本国特開2021-108597号公報による田植機では、所定の走行状態に基づいて、境界線を越えた走行が許可されると、境界線が拡張され、田植機は畦ぎりぎりまで接近可能となる。しかし、境界線の拡張を許可する走行状態を誤って検知すると、不要に境界線が拡張され、ぎりぎりに接近する必要のない場所に対しても機体が接近するという不都合が生じる。これを避けるためには、境界線の拡張を許可する場所を正確に検知しなければならない。そのことは、日本国特開2021-108597号公報には開示されていない。 In the rice transplanter disclosed in Japanese Patent Application Laid-Open No. 2021-108597, when traveling beyond the boundary line is permitted based on a predetermined traveling state, the boundary line is extended, and the rice transplanter can approach the ridge as close as possible. . However, if a traveling state permitting extension of the boundary line is erroneously detected, the boundary line is unnecessarily extended, causing the inconvenience of the aircraft approaching even a place where it should not be close enough. To avoid this, it is necessary to detect exactly where the perimeter extension is allowed. That is not disclosed in Japanese Patent Application Laid-Open No. 2021-108597.
 本発明の目的は、特定の障害物に対して、他の障害物に比べてより接近可能な圃場作業機を提供することである。 An object of the present invention is to provide a field working machine that is more accessible to specific obstacles than other obstacles.
 本発明による自動走行可能な圃場作業機においては、畦によって境界付けられた圃場で作業を行う自動走行可能な圃場作業機であって、前記畦を含む障害物を検出する障害物検出ユニットと、機体位置を算出する機体位置算出部と、機体を自動走行または手動走行させる走行制御部と、前記機体の前記障害物への接近を許す象徴として事前に登録された特定認識対象を認識する認識ユニットと、前記障害物検出ユニットによって検出された前記障害物への前記機体の接近禁止距離、または当該障害物への前記機体の接近可能時間を管理する障害物管理部と、を備え、前記障害物管理部は、前記障害物検出ユニットによって検出された前記障害物が前記特定認識対象である場合、または前記障害物検出ユニットによって検出された前記障害物の近傍領域に前記特定認識対象が認識されている場合、前記接近禁止距離を短縮するか、または前記接近可能時間を延長する。 An automatically traveling agricultural field working machine according to the present invention is an automatically traveling agricultural field working machine that performs work in a field bounded by a ridge, the obstacle detection unit detecting an obstacle including the ridge; An aircraft position calculation unit that calculates the aircraft position, a travel control unit that automatically or manually runs the aircraft, and a recognition unit that recognizes a specific recognition target registered in advance as a symbol that allows the aircraft to approach the obstacle. and an obstacle management unit that manages the prohibited distance of the aircraft to the obstacle detected by the obstacle detection unit, or the time in which the aircraft can approach the obstacle, The management unit determines whether the obstacle detected by the obstacle detection unit is the specific recognition target, or when the specific recognition target is recognized in an area near the obstacle detected by the obstacle detection unit. If so, reduce the no-access distance or extend the accessible time.
 この構成によれば、障害物検出ユニットによって障害物が検出されるとともに、認識ユニットによって事前に登録された特定認識対象が認識された場合、機体の接近禁止距離、または当該障害物への前記機体の接近可能時間を管理する障害物管理部が起動する。つまり、検出された障害物自体が認識された特定認識対象であるか、あるいは検出された障害物の近傍領域に認識された特定認識対象が存在していると、この検出された障害物は、機体ができるだけ接近すべき対象であると判定し、接近禁止距離を短縮するか、または、当該障害物への機体の接近可能時間を延長する。接近禁止距離が短くなることで、機体は、より障害物に接近可能である。なお、障害物への機体の接近可能時間は、車速によって、障害物に接近できる距離が変動するが、障害物へ接近する機体の速度がほぼ一定であるとすれば、接近可能時間が長くなると、検出された障害物まで走行できる距離も長くなり、機体の障害物に対する接近距離が短くなる。特定認識対象は、機体の障害物への接近を許す象徴、つまり接近判定材料として登録されている。つまり、障害物の検出と特定認識対象の認識との2つの判定条件に基づいて、機体の障害物へのより近い接近が許されるので、安全かつ確実な接近走行制御が実現する。 According to this configuration, when an obstacle is detected by the obstacle detection unit and the specific recognition target registered in advance is recognized by the recognition unit, the distance from the aircraft to the obstacle or the distance of the aircraft to the obstacle is detected. The obstacle management unit that manages the approachable time of is activated. In other words, if the detected obstacle itself is the recognized specific recognition target, or if there is a recognized specific recognition target in the vicinity of the detected obstacle, the detected obstacle It is determined that the aircraft is an object that should be approached as close as possible, and either the prohibited distance is shortened or the time during which the aircraft can approach the obstacle is extended. By shortening the no-approach distance, the aircraft can approach obstacles more. In addition, the approachable distance of the aircraft to the obstacle varies depending on the vehicle speed. , the distance that can be traveled to the detected obstacle becomes longer, and the approach distance of the aircraft to the obstacle becomes shorter. The specific recognition target is registered as a symbol that allows the aircraft to approach an obstacle, that is, as an approach determination material. In other words, based on the two determination conditions of obstacle detection and specific recognition target recognition, the aircraft is permitted to approach the obstacle closer, so safe and reliable approach travel control is realized.
 本発明の好適な実施形態の1つでは、前記障害物管理部による前記接近禁止距離の短縮、または前記接近可能時間の延長のための判定に用いられる前記障害物は、前記畦であり、前記特定認識対象は、前記畦の特定区域である特定畦または前記特定畦の近傍に位置する認識対象である。 In one preferred embodiment of the present invention, the obstacle used by the obstacle management unit to determine whether to shorten the prohibited distance or extend the accessible time is the ridge. The specific recognition target is a specific ridge that is a specific area of the ridge or a recognition target located in the vicinity of the specific ridge.
 圃場作業機の走行において頻繁に検出される障害物は畦であるが、苗や肥料の補給、収穫物の排出、燃料補給などの作業目的で設定された畦の特定区域に対しては、圃場作業機はできるだけ近くに接近しなければならない。なお、ここでの「畦」なる語句は、広義に解釈可能であり、コンクリート製、木製、プラスチック製、土製などの構成材料を含むだけでなく、圃場から立ち上がっている壁体、人工的な法面、自然発生的な法面なども含まれる。 Ridges are frequently detected obstacles when field implements travel. The implement should be approached as close as possible. The word “ridge” here can be interpreted in a broad sense, and includes not only constituent materials such as concrete, wood, plastic, earthenware, but also walls rising from fields, artificial lawns, etc. Surfaces, naturally occurring slopes, etc. are also included.
 本発明の好適な実施形態の1つでは、前記特定認識対象が、予め登録された特定の通信端末であり、前記認識ユニットは、前記通信端末からの送信データに基づいて前記通信端末を認識する。 In one preferred embodiment of the present invention, the specific recognition target is a specific communication terminal registered in advance, and the recognition unit recognizes the communication terminal based on data transmitted from the communication terminal. .
 この構成では、圃場作業機がより近くまで接近してもよい区域に特定の通信端末を配置するだけで、圃場作業機は当該区域により接近可能である。例えば、苗や肥料の補給、収穫物の排出、燃料補給などの作業目的で設定された畦の特定区域(特定畦)には、その作業を行うかまたは監視する監視者が待機している。このため、そのような監視者に、この特手の通信端末を携帯させることで、監視者が待機している場所に対しては、圃場作業機は、できるだけ接近すること可能となる。 With this configuration, by simply arranging a specific communication terminal in an area where the field work machine can approach closer, the field work machine can be closer to the area. For example, in specific areas of ridges (specific ridges) set for work purposes such as replenishment of seedlings and fertilizers, discharge of harvested materials, replenishment of fuel, etc., an observer who performs or monitors the work is on standby. Therefore, by making such a supervisor carry this special communication terminal, the field work machine can be as close as possible to the place where the supervisor is waiting.
 本発明の好適な実施形態の1つでは、前記通信端末は、前記走行制御部を含む制御ユニットに対するリモコン操作機能を有する。 In one preferred embodiment of the present invention, the communication terminal has a remote control operation function for a control unit including the travel control section.
 圃場作業機がリモコンによって操縦される機能を備えている場合、特定畦での作業を監視する監視者がリモコンを用いて、圃場作業機の畦への接近走行を行うと好都合である。認識ユニットが認識する特定認識対象である通信端末とリモコンとが一体化されていると、相乗効果が得られる。 If the field work machine has a function to be controlled by a remote control, it is convenient for the observer who monitors the work on the specific ridge to use the remote control to drive the field work machine closer to the ridge. A synergistic effect is obtained when the communication terminal, which is the specific recognition target recognized by the recognition unit, and the remote controller are integrated.
 本発明の好適な実施形態の1つでは、前記認識ユニットは画像認識機能を有し、前記特定認識対象が、前記画像認識機能によって認識される。 In one preferred embodiment of the present invention, the recognition unit has an image recognition function, and the specific recognition target is recognized by the image recognition function.
 安価で高性能な画像認識装置が流通しているので、技術的、コスト的な負担なしに、特定の物体の認識が可能である。さらに、任意の物体を予め被画像認識体として設定することで、任意の物体が、本発明の特定認識対象として利用できる。 Inexpensive and high-performance image recognition devices are in circulation, so it is possible to recognize specific objects without any technical or cost burden. Furthermore, by setting an arbitrary object in advance as an object to be image-recognized, any object can be used as a specific recognition target of the present invention.
 さらに、本発明の好適な実施形態の1つでは、前記認識ユニットによって認識される前記特定認識対象が、前記機体の動きを畦から監視する監視者である。 Furthermore, in one of the preferred embodiments of the present invention, the specific recognition target recognized by the recognition unit is an observer who monitors the movement of the aircraft from a ridge.
 特定の監視者が、例えば特定の衣装を身にまとった監視者が、認識ユニットに登録されることで、作業とは関係のない人物が認識され、圃場作業機が誤って畦に近づくという問題は回避される。 A specific observer, such as an observer wearing a specific costume, is registered in the recognition unit, so that a person unrelated to the work is recognized, and the field work machine mistakenly approaches the ridge. is avoided.
 本発明の好適な実施形態の1つでは、前記認識ユニットの前記画像認識機能に畦に居る人物のジェスチャーを認識する機能が含まれ、前記障害物管理部は、前記機体の走行状態を変更する走行状態変更指令を前記走行制御部に与える。 In one preferred embodiment of the present invention, the image recognition function of the recognition unit includes a function of recognizing a gesture of a person on a ridge, and the obstacle management section changes the running state of the aircraft. A running state change command is given to the running control unit.
 前記認識ユニットの画像認識機能に畦に居る人物のジェスチャーを認識する機能が追加された場合、障害物管理部は、このジェスチャーに応答して、機体の停止、機体の前進や後進を走行制御部に指示することが可能となる。これにより、ジェスチャーを通じて、機体の畦への接近走行だけでなく、緊急時の走行制御も容易に行うことができる。 If the image recognition function of the recognition unit has a function of recognizing the gesture of a person on a ridge, the obstacle management section responds to this gesture by controlling the aircraft to stop, move forward or backward. can be instructed to As a result, it is possible to easily control not only the aircraft approaching the ridge, but also emergency flight control through gestures.
 本発明の好適な実施形態の1つでは、前記認識ユニットは音声認識機能を有し、前記特定認識対象が、前記畦から発せられる音声であり、前記障害物管理部は、前記認識ユニットによって認識された音声に基づいて、前記機体の走行状態を変更する走行状態変更指令を前記走行制御部に与える。 In one preferred embodiment of the present invention, the recognition unit has a voice recognition function, the specific recognition target is voice emitted from the ridge, and the obstacle management section recognizes Based on the received voice, a running state change command for changing the running state of the aircraft is given to the running control unit.
 この実施形態でも、安価で高性能な音声認識装置が流通しているので、技術的、コスト的な負担なしに、特定認識対象として採用された音声を認識ユニットが認識する構成が可能である。また、特定認識対象として、監視者の音声を登録しておくことで、作業とは関係のない雑音や人物の音声が特定認識対象として認識され、圃場作業機が誤って畦に近づくという問題は回避される。さらに、認識ユニットの音声認識機能を機体走行制御に関する簡単な単語を認識できるように構成すれば、障害物管理部は、認識ユニットによって認識された音声に基づいて、機体の走行状態を変更する走行状態変更指令を走行制御部に与えることができる。これにより、音声を通じて、機体の畦への接近走行だけでなく、緊急時の走行制御も容易に行うことができる。 In this embodiment as well, since inexpensive and high-performance speech recognition devices are on the market, it is possible to configure the recognition unit to recognize the speech adopted as the specific recognition target without any technical or cost burden. In addition, by registering the voice of the observer as a specific recognition target, noise unrelated to the work or human voice is recognized as a specific recognition target. Avoided. Furthermore, if the speech recognition function of the recognition unit is configured to recognize simple words related to the flight control of the aircraft, the obstacle management unit can change the traveling state of the aircraft based on the voice recognized by the recognition unit. A state change command can be given to the cruise control unit. As a result, it is possible to easily control not only the approach of the aircraft to the ridge but also the control of the aircraft in case of an emergency.
 さらに、好適な実施形態の1つでは、前記障害物管理部は、営農管理システムとデータ交換可能に接続可能であり、前記障害物管理部は、前記営農管理システムに予め登録された前記特定認識対象に対して前記接近禁止距離、または前記接近可能時間を管理する。 Further, in one preferred embodiment, the obstacle management unit is connectable to a farming management system so that data can be exchanged, and the obstacle management unit uses the specific recognition registered in advance in the farming management system. Manage the no-access distance or the accessible time with respect to the object.
 この構成では、例えば、クラウドサービスセンターや営農家の自宅等に配置されているコンピュータに構築されている営農管理システムに予め特定認識対象に対して接近禁止距離、または特定認識対象への機体の接近可能時間を登録しておけば、障害物管理部は、営農管理システムにアクセスして、これらのデータを取得し、管理可能である。これにより、障害物管理部における特定認識対象に対する接近禁止距離や接近可能時間などのデータ管理が分散され、障害物管理部でのデータ管理が簡素化される。 In this configuration, for example, a farming management system built on a computer installed at a cloud service center or at a farmer's home, etc., has a prohibitive distance to a specific recognition target, or an aircraft approaching a specific recognition target. By registering the available time, the obstacle management department can access the farming management system, acquire these data, and manage them. As a result, the management of data such as the prohibition distance and accessible time for the specific recognition object in the obstacle management unit is decentralized, and the data management in the obstacle management unit is simplified.
 好適な実施形態の1つでは、前記認識ユニットが有する画像認識機能または音声認識機能で検知された前記特定認識対象のデータは、前記営農管理システムに自動的または選択的に蓄積される。 In one preferred embodiment, the specific recognition target data detected by the image recognition function or voice recognition function of the recognition unit is automatically or selectively accumulated in the farming management system.
 上述したような営農管理システムに、認識ユニットが有する画像認識機能または音声認識機能で検知された特定認識対象のデータを、自動的または選択的に蓄積させる構成を採用すれば、検知された特定認識対象に関する情報が営農管理システムに時系列的に格納され、種々の後処理に利用可能となる。 If the farming management system as described above adopts a configuration for automatically or selectively accumulating specific recognition target data detected by the image recognition function or voice recognition function of the recognition unit, the detected specific recognition Information about the target is stored chronologically in the farming management system and can be used for various post-processing.
自動操舵システムを搭載した田植機の側面図である。It is a side view of a rice transplanter equipped with an automatic steering system. エンジンから植付機構への動力伝達を説明する模式図である。It is a schematic diagram explaining the power transmission from an engine to a planting mechanism. 田植機の自動走行のための走行経路を説明する模式図である。It is a mimetic diagram explaining a travel route for automatic travel of a rice transplanter. 田植機の制御系を示す機能ブロック図である。It is a functional block diagram which shows the control system of a rice transplanter. 畦際走行における制御機能部間のデータや指令の流れを示すデータ流れ図である。4 is a data flow diagram showing the flow of data and commands between control function units in running along the edge of a ridge. FIG.
 以下、本発明の自動走行可能な圃場作業機の実施形態の1つとして、田植機を例に説明する。本実施形態では、特に断りがない限り、「前」(図1に示す矢印Fの方向)は機体前後方向(走行方向)における前方を意味し、「後」(図1に示す矢印Bの方向)は機体前後方向(走行方向)における後方を意味するものとする。また、左右方向または横方向は、機体前後方向に直交する機体左右方向(機体幅方向)を意味し、「左」は図1における紙面の手前の方向、「右」は図1における紙面の奥向きの方向を意味するものとする。 In the following, a rice transplanter will be described as an example of one of the embodiments of the field work machine capable of automatically traveling according to the present invention. In this embodiment, unless otherwise specified, "front" (the direction of arrow F shown in FIG. 1) means the front in the longitudinal direction (running direction) of the aircraft, and "rear" (the direction of arrow B shown in FIG. 1). ) means the rear in the longitudinal direction (running direction) of the fuselage. In addition, the left-right direction or the lateral direction means the left-right direction (machine width direction) perpendicular to the front-back direction of the machine body. shall mean the direction of orientation.
〔全体構造〕
 図1に示すように、田植機は、乗用型で四輪駆動形式の機体1を備える。機体1は、平行四連リンク形式のリンク機構13と、油圧式の昇降シリンダ13aと、苗植付装置3Aと、施肥装置3Bと、等を備える。リンク機構13は、機体1の後部に昇降揺動可能に連結されている。昇降シリンダ13aは、リンク機構13を揺動駆動する。苗植付装置3Aは、リンク機構13の後端部にローリング可能に連結されている。施肥装置3Bは、機体1の後端部から苗植付装置3Aにわたって架設されている。この実施形態では、苗植付装置3A及び施肥装置3Bが、本発明の圃場作業機に備えられる昇降可能な作業装置3である。作業装置3は、予め決められた条方向に沿って苗植付作業を行う。リンク機構13と昇降シリンダ13aとによって、苗植付装置3A及び施肥装置3Bを昇降させる昇降機構が構成されている。
[Overall structure]
As shown in FIG. 1, the rice transplanter includes a ride-on, four-wheel-drive body 1 . The machine body 1 includes a parallel quadruple link type link mechanism 13, a hydraulic elevating cylinder 13a, a seedling planting device 3A, a fertilizing device 3B, and the like. The link mechanism 13 is connected to the rear portion of the fuselage 1 so as to be vertically swingable. The lifting cylinder 13a drives the link mechanism 13 to swing. 3 A of seedling planting apparatuses are connected with the rear-end part of the link mechanism 13 so that rolling is possible. The fertilizing device 3B extends from the rear end of the machine body 1 to the seedling planting device 3A. In this embodiment, the seedling planting device 3A and the fertilizing device 3B are liftable working devices 3 provided in the field working machine of the present invention. The work device 3 performs seedling planting work along a predetermined row direction. The link mechanism 13 and the elevating cylinder 13a constitute an elevating mechanism for elevating the seedling planting device 3A and the fertilizing device 3B.
 機体1は、車輪式の走行装置12、エンジン2A、及び油圧式の無段変速装置2Bを備える。無段変速装置2Bは主変速装置である。無段変速装置2Bは、例えばHST(Hydro-Static Transmission:静油圧式無段変速装置)である。無段変速装置2Bは、モータ斜板及びポンプ斜板の角度を調節することにより、エンジン2Aから出力される動力(回転動力)の回転数を変更する。走行装置12は、左右の前輪12Aと、左右の後輪12Bと、を有する。左右の前輪12Aは、車体方位を変更するための操舵輪として機能する。左右の後輪12Bは操舵不能である。 The machine body 1 includes a wheel-type traveling device 12, an engine 2A, and a hydraulic continuously variable transmission 2B. The continuously variable transmission 2B is a main transmission. The continuously variable transmission 2B is, for example, an HST (Hydro-Static Transmission). The continuously variable transmission 2B changes the rotation speed of the power (rotational power) output from the engine 2A by adjusting the angles of the motor swash plate and the pump swash plate. The traveling device 12 has left and right front wheels 12A and left and right rear wheels 12B. The left and right front wheels 12A function as steering wheels for changing the orientation of the vehicle. The left and right rear wheels 12B cannot be steered.
 図1に示すように、機体1の後部に運転部14が備えられている。運転部14は、前輪操舵用のステアリングホイール10と、主変速レバー7Aと、副変速レバー7Bと、作業操作レバー11と、搭乗者(運転者・作業者・管理者)用の運転座席16と、等を備える。主変速レバー7Aは、無段変速装置2Bの変速操作を行うことで車速を調節する。副変速レバー7Bは、副変速装置の変速操作を可能にする。作業操作レバー11は、苗植付装置3Aの昇降操作等を行う。さらに、運転部14の前方において、予備苗収納装置17Aが予備苗支持フレーム17に支持されている。予備苗収納装置17Aは予備苗を収容する。 As shown in FIG. 1, an operating section 14 is provided at the rear portion of the airframe 1. The driving unit 14 includes a steering wheel 10 for steering the front wheels, a main shift lever 7A, an auxiliary shift lever 7B, a work operation lever 11, and a driver's seat 16 for passengers (drivers, workers, managers). , etc. The main shift lever 7A adjusts the vehicle speed by shifting the continuously variable transmission 2B. The sub-transmission lever 7B enables the shift operation of the sub-transmission. The work operation lever 11 performs elevating operation of the seedling planting device 3A. Further, a preliminary seedling storage device 17A is supported by a preliminary seedling support frame 17 in front of the operating section 14. As shown in FIG. The spare seedling storage device 17A stores spare seedlings.
 ステアリングホイール10は、非図示の操舵機構を介して前輪12Aと連結されている。前輪12Aの操舵角は、ステアリングホイール10の回転操作によって調整される。操舵機構にステアリングモータM1が連結されている。自動操舵時には、操舵信号に基づいてステアリングモータM1が動作することによって、前輪12Aの操舵角(操舵度)が調整される。さらに、本実施形態では、主変速レバー7Aを自動操作するための変速操作用モータM2が備えられている。自動走行時には、変速信号に基づいて変速操作用モータM2が動作することにより、無段変速装置2Bの変速位置が調整される。 The steering wheel 10 is connected to the front wheels 12A via a steering mechanism (not shown). The steering angle of the front wheels 12A is adjusted by rotating the steering wheel 10. FIG. A steering motor M1 is connected to the steering mechanism. During automatic steering, the steering motor M1 operates based on a steering signal to adjust the steering angle (steering degree) of the front wheels 12A. Further, in the present embodiment, a shift operation motor M2 is provided for automatically operating the main shift lever 7A. During automatic running, the shift position of the continuously variable transmission 2B is adjusted by operating the shift operation motor M2 based on the shift signal.
 図2に示すように、苗植付装置3Aは、一例として8条植え形式で図示されている。なお、苗植付装置3Aは、6条植え形式や10条植え形式などの他の形式であってもよい。エンジン2Aからの動力は、植付クラッチC0及び各条クラッチECを介して各植付機構22に分配される。植付クラッチC0は、エンジン2Aからの動力伝達を入切することによって、苗植付装置3Aの駆動状態を切り替える。各条クラッチECは、苗植付装置3Aにおいて各植付機構22の駆動または非駆動を2条毎に選択可能に構成されている。各条クラッチECの制御によって、苗植付装置3Aは、2条植え、4条植え、6条植え、8条植えの形式に変更可能である。 As shown in FIG. 2, the seedling planting device 3A is illustrated in an eight-row planting format as an example. The seedling planting device 3A may be of other types such as a 6-row planting type or a 10-row planting type. Power from the engine 2A is distributed to each planting mechanism 22 via the planting clutch C0 and each row clutch EC. The planting clutch C0 switches the driving state of the seedling planting device 3A by switching on and off power transmission from the engine 2A. Each row clutch EC is configured to be able to select driving or non-driving of each planting mechanism 22 every two rows in the seedling planting device 3A. By controlling each row clutch EC, the seedling planting device 3A can be changed to two-row planting, four-row planting, six-row planting, and eight-row planting.
 図1に示すように、苗植付装置3Aは、苗載せ台21と、植付機構22と、等を備える。苗載せ台21は、8条分のマット状苗を載置する台座である。苗載せ台21は、マット状苗の左右幅に対応する一定ストローク量で左右方向に往復移動する。苗載せ台21が左右のストローク端に達するごとに、苗載せ台21上の各マット状苗が、苗載せ台21の下端に向けて所定ピッチで縦送りされる。8個の植付機構22は、ロータリ式で、植え付け条間に対応する一定間隔で左右方向に配置される。そして、各植付機構22には、エンジン2Aからの動力が伝達される。各植付機構22は、エンジン2Aからの動力によって、苗載せ台21に載置された各マット状苗の下端から一株分の苗(植付苗)を切り取って、整地後の泥土部(圃場面)に植え付ける。これにより、苗植付装置3Aは、作動状態において、苗載せ台21に載置されたマット状苗から苗を取り出して、水田の泥土部に植え付け可能である。 As shown in FIG. 1, the seedling planting device 3A includes a seedling platform 21, a planting mechanism 22, and the like. The seedling mounting table 21 is a pedestal on which 8 rows of mat-like seedlings are mounted. The seedling mounting table 21 reciprocates in the horizontal direction with a constant stroke amount corresponding to the lateral width of the mat-like seedling. Each time the seedling platform 21 reaches the left and right stroke ends, each mat-like seedling on the seedling platform 21 is longitudinally fed toward the lower end of the seedling platform 21 at a predetermined pitch. The eight planting mechanisms 22 are of a rotary type and are arranged in the left-right direction at regular intervals corresponding to the intervals between the planting rows. Power from the engine 2A is transmitted to each planting mechanism 22 . Each planting mechanism 22 cuts off one seedling (planted seedling) from the lower end of each mat-like seedling placed on the seedling placement table 21 by the power from the engine 2A, and cuts off the mud part after leveling ( planted in the field). As a result, the seedling planting apparatus 3A can take out seedlings from the mat-like seedlings placed on the seedling placement table 21 and plant them in the mud part of the paddy field in the operating state.
 施肥装置3Bは、ホッパ25と、繰出機構26と、施肥ホース28と、を有する。ホッパ25は、粒状または粉状の肥料(薬剤やその他の農用資材)を貯留する。繰出機構26は、ホッパ25から肥料を繰り出す。施肥ホース28は、繰出機構26によって繰出された肥料を搬送するとともに肥料を圃場に排出する。ホッパ25に貯留された肥料が、繰出機構26によって所定量ずつ繰り出されて施肥ホース28へ送られて、ブロワ27の搬送風によって施肥ホース28内を搬送され、作溝器29から圃場へ排出される。このように、施肥装置3Bは圃場に肥料を供給する。 The fertilizing device 3B has a hopper 25, a delivery mechanism 26, and a fertilizing hose 28. The hopper 25 stores granular or powdery fertilizers (chemicals and other agricultural materials). A delivery mechanism 26 delivers fertilizer from the hopper 25 . The fertilizing hose 28 conveys the fertilizer delivered by the delivery mechanism 26 and discharges the fertilizer to the field. Fertilizer stored in the hopper 25 is delivered by a delivery mechanism 26 by a predetermined amount and sent to the fertilizing hose 28, conveyed through the fertilizing hose 28 by the carrying wind of the blower 27, and discharged from the ditching device 29 to the field. be. Thus, the fertilizing device 3B supplies fertilizer to the field.
 作溝器29は、整地フロート15に配備される。そして、各作溝器29は、各整地フロート15とともに昇降し、各整地フロート15が接地する作業走行時に、水田の泥土部に施肥溝を形成して肥料を施肥溝内に案内する。 The grooving machine 29 is arranged on the leveling float 15 . Each grooving device 29 ascends and descends together with each leveling float 15, forms a fertilizing groove in the muddy part of the paddy field, and guides the fertilizer into the fertilizing groove during work travel in which each leveling float 15 touches the ground.
 図1に示すように、運転部14に取り外し可能に装着される通信端末9は、例えばタブレットコンピュータで構成されている。通信端末9は、各種の情報をオペレータに視覚情報や聴覚情報報として出力するとともに、各種の情報の入力を受け付け可能である。通信端末9は、無線または有線で、田植機の制御系とデータ交換可能に接続される。通信端末9には、自動走行のための種々の機能がインストールされている。例えば、田植機から離れた位置において、田植機の制御系(制御ユニット100)をリモコン操縦するリモコン操作機能を備える構成であっても良い。 As shown in FIG. 1, the communication terminal 9 detachably attached to the operation unit 14 is configured by, for example, a tablet computer. The communication terminal 9 can output various types of information to the operator as visual information and auditory information, and can accept inputs of various types of information. The communication terminal 9 is wirelessly or wiredly connected to the control system of the rice transplanter so that data can be exchanged. Various functions for automatic driving are installed in the communication terminal 9 . For example, at a position away from the rice transplanter, it may be configured to have a remote control operation function for remotely controlling the control system (control unit 100) of the rice transplanter.
 機体1の位置(機体位置:例えば地図座標で表される)及び方位(機体方位)を算出するための測位データを出力する測位ユニット8が備えられている。測位ユニット8には、全地球航法衛星システム(GNSS)の衛星からの電波を受信する衛星測位モジュール8Aと、機体1の三軸の傾きや加速度を検出する慣性計測モジュール8Bが含まれている(図6参照)。測位ユニット8は、予備苗支持フレーム17の上部に支持される。 A positioning unit 8 is provided that outputs positioning data for calculating the position (aircraft position: represented by map coordinates, for example) and orientation (aircraft bearing) of the airframe 1 . The positioning unit 8 includes a satellite positioning module 8A that receives radio waves from satellites of the global navigation satellite system (GNSS), and an inertial measurement module 8B that detects the three-axis tilt and acceleration of the airframe 1 ( See Figure 6). The positioning unit 8 is supported on top of the preliminary seedling support frame 17 .
 さらに、田植機は、障害物検出のために、障害物検出ユニット70を備える。この実施形態では、障害物検出ユニット70は、カメラユニット71と、LiDARユニット72(Light Detection And Ranging)と、を備える。障害物検出ユニット70は、カメラユニット71による撮影画像と、LiDARユニット72による点群画像と、を組み合わせて物体を検出する。そして障害物検出ユニット70は、当該物体の位置及び形状を算出し、これを検出物体情報として、田植機の制御系に送る。障害物検出ユニット70の構成であれば、カメラユニット71による撮影画像から物体検出や物体認識が可能である。さらには、障害物検出ユニット70の構成であれば、LiDARユニット72による点群データから物体検出や物体認識も可能である。したがって、障害物検出ユニット70は、カメラユニット71とLiDARユニット72いずれか1つから構成されてもよい。この実施形態では、カメラユニット71による撮影画像は、後述する特定認識対象を認識する認識ユニット54(図4参照)に用いられる。このため、いずれにせよ、カメラユニット71は、機体1に設けられている。 Furthermore, the rice transplanter is equipped with an obstacle detection unit 70 for obstacle detection. In this embodiment, the obstacle detection unit 70 comprises a camera unit 71 and a LiDAR unit 72 (Light Detection And Ranging). The obstacle detection unit 70 detects an object by combining the image captured by the camera unit 71 and the point cloud image by the LiDAR unit 72 . Then, the obstacle detection unit 70 calculates the position and shape of the object, and sends this as detected object information to the control system of the rice transplanter. With the configuration of the obstacle detection unit 70 , object detection and object recognition are possible from images captured by the camera unit 71 . Furthermore, with the configuration of the obstacle detection unit 70 , object detection and object recognition are also possible from the point cloud data by the LiDAR unit 72 . Therefore, the obstacle detection unit 70 may consist of either one of the camera unit 71 and the LiDAR unit 72 . In this embodiment, an image captured by the camera unit 71 is used in a recognition unit 54 (see FIG. 4) that recognizes a specific recognition target, which will be described later. Therefore, in any case, the camera unit 71 is provided on the airframe 1 .
〔走行経路〕
 自動走行により、田植機が圃場に苗植付作業を行う作業走行について、図3を用いて説明する。
[Travel route]
Working traveling in which the rice transplanter carries out seedling planting work in a field by automatic traveling will be described with reference to FIG. 3 .
 本実施形態における田植機は、手動走行と自動走行とを選択的に実行可能である。手動走行では、運転者が手動操作(リモコン操作を含む)で、ステアリングホイール10、主変速レバー7A、副変速レバー7B、作業操作レバー11等を操作して作業走行を行う。自動走行では、あらかじめ設定された目標走行経路に沿って、田植機が自動制御で走行及び作業を行う。 The rice transplanter in this embodiment can selectively execute manual running and automatic running. In manual traveling, the driver manually operates (including remote control operation) the steering wheel 10, the main gearshift lever 7A, the sub gearshift lever 7B, the work operation lever 11, etc. to perform work traveling. In automatic travel, the rice transplanter automatically travels and works along a preset target travel route.
 田植機が苗植付作業を行う際には、まず、圃場の外周(外縁)に沿って、運転者が手動操作で、作業を行わずに田植機を走行させる。このマッピング周回走行によって、圃場の外周形状が算出されると、図3に示すように、圃場を外周領域OAと内部領域IAに区分けされた圃場マップが生成される。 When the rice transplanter performs the seedling planting work, the driver first runs the rice transplanter manually along the outer circumference (outer edge) of the field without performing work. When the outer peripheral shape of the farm field is calculated by this mapping round trip, as shown in FIG. 3, a farm field map is generated in which the farm field is divided into an outer peripheral area OA and an inner area IA.
 圃場マップが生成されると、さらに、田植機が自動走行のために用いる走行経路が生成される。内部領域IAでは、圃場の一つの辺に略平行となるように延びた複数の直線状の走行経路(以下、これを直線走行経路と称するが、必ずしも直線には限定されない)が生成される。この走行経路の延び方向は条方向とも呼ばれる。この直線走行経路は、田植機が、内部領域IAの全体をくまなく作業走行するための走行経路である。自動走行における自動操舵は、この直線走行経路を目標走行経路として行われる。各直線走行経路は、U字状の旋回走行経路(実質的には180度旋回経路)によって繋がれる。直線走行経路に沿った走行及び旋回走行経路に沿った走行は、自動操舵と自動変速とからなる自動走行制御で行われる。 When the field map is generated, the driving route that the rice transplanter uses for automatic driving is also generated. In the inner area IA, a plurality of linear running paths (hereinafter referred to as straight running paths, but not necessarily limited to straight lines) extending substantially parallel to one side of the field are generated. The extending direction of the travel route is also called the row direction. This straight travel route is a travel route for the rice transplanter to travel throughout the entire inner area IA for work. Automatic steering in automatic driving is performed using this straight travel route as a target travel route. Each straight travel route is connected by a U-shaped turning travel route (substantially a 180-degree turning route). Traveling along a straight travel route and travel along a turning travel route are performed by automatic travel control consisting of automatic steering and automatic transmission.
 外周領域OAでは、圃場の外周(外縁)に沿って外周領域OA内を周回する1つまたは複数回の周回走行経路が生成される。例えば、図3の例では、周回走行経路は、内側と外側の2つの周回走行経路とからなる。内側及び外側の周回走行経路も自動走行が可能であるが、いずれか一方または両方が手動走行されてもよい。 In the outer peripheral area OA, one or more round traveling routes are generated that go around the outer peripheral area OA along the outer periphery (outer edge) of the farm field. For example, in the example of FIG. 3, the circular traveling route consists of two circular traveling routes, inner and outer. The inner and outer circular travel routes can also be automatically traveled, but one or both of them may be manually traveled.
 直線走行経路に沿った走行のほとんどは、作業走行である。作業走行では、苗植付装置3Aを下位置に下降させた状態で、作業装置3である苗植付装置3Aが動作しながら、機体1が走行する。これにより、直線状の苗植付作業が数条単位で行われる。 Most of the travel along the straight travel route is work travel. In the work traveling, the machine body 1 travels while the seedling planting device 3A, which is the working device 3, operates in a state where the seedling planting device 3A is lowered to the lower position. As a result, linear seedling planting work is performed in units of several rows.
 一つの直線走行経路において作業走行が終了すると、機体1は、次に作業走行すべき直線走行経路へ向けて180度の方向転換を行う。この機体1の180度旋回走行は非作業走行である。非作業走行において、作業装置3である苗植付装置3Aは上位置に上昇され、整地フロート15は水田面の上方に位置する。この状態で、苗植付装置3Aは停止する。そして、機体1は、走行しながら180度の方向転換を行う。 When work travel is completed on one straight travel route, the machine body 1 turns 180 degrees toward the next straight travel route for work travel. This 180-degree turning travel of the machine body 1 is a non-working travel. During the non-working travel, the seedling planting device 3A, which is the working device 3, is raised to the upper position, and the leveling float 15 is positioned above the surface of the paddy field. In this state, the seedling planting device 3A stops. Then, the body 1 changes direction by 180 degrees while running.
 図3で示されたような長方形の圃場に対する苗植付作業では、まず、作業走行である直線走行と非作業走行である180度旋回走行との組み合わせで、内部領域IAでの苗植付作業が行われる。次いで、外周経路での作業走行である直線走行と非作業走行である90度旋回走行との組み合わせで、外周領域OAでの苗植付作業が行われる。内部領域IAでの苗植付作業において、一つの直線走行経路において作業走行が終了して次の直線走行経路へ向けて移動するたびに、180度旋回走行が行われる。この180度旋回走行は、未作業状態(苗が植付られていない状態)の外周領域OAで行われるので、十分な旋回スペースの確保が可能である。 In the seedling planting work for a rectangular field as shown in FIG. is done. Next, the seedling planting work in the outer peripheral area OA is performed by a combination of the straight travel, which is the working travel on the outer peripheral route, and the 90-degree turning travel, which is the non-working travel. In the seedling planting work in the inner area IA, every time the work travel is completed in one straight travel route and the robot moves toward the next straight travel route, a 180-degree turning travel is performed. Since this 180-degree turning travel is performed in the outer peripheral area OA in an unworked state (a state in which seedlings are not planted), a sufficient turning space can be secured.
〔畦際特殊走行〕
 田植機は、上述した直進走行や180度旋回走行以外に、畦際での複雑な経路での特殊走行を行う。このような畦際特殊走行の1つが、マッピング周回走行でのコーナ部の旋回走行である。マッピング周回走行でのコーナ部の旋回走行が、図3において符号SR1で示されている。この90度旋回は畦に境界付けられたコーナ部で行われる。図3では簡単な経路で示されているが、実際には前進と後進とを何度か繰り返すことが少なくない。圃場マッピングのための基準位置は、苗植付装置3Aの上昇位置から下降位置に下降させたタイミングで算出される。このため、正確な基準位置を得るためには、苗植付装置3Aをできるだけ畦に接近させて、苗植付装置3Aを下降させる必要がある。また、畦の上方に苗植付装置3Aが上昇させた状態で、機体1を畦に接近させる畦越え走行も必要となる。
[Rough edge special driving]
The rice transplanter performs special traveling on a complicated route at the edge of a ridge in addition to the above-described straight traveling and 180-degree turning traveling. One of such special roadside runs is turning around corners in mapping round runs. Turning around corners in mapping round trips is indicated by SR1 in FIG. This 90 degree turn takes place at a corner bounded by a ridge. Although FIG. 3 shows a simple route, it is not uncommon for the vehicle to repeat forward and backward movements several times in practice. The reference position for field mapping is calculated at the timing when the seedling planting device 3A is lowered from the raised position to the lowered position. Therefore, in order to obtain an accurate reference position, it is necessary to bring the seedling planting apparatus 3A as close to the ridge as possible and lower the seedling planting apparatus 3A. In addition, it is necessary to travel over a ridge in which the machine body 1 approaches the ridge while the seedling planting device 3A is raised above the ridge.
 畦際特殊走行の他の1つが、内部領域IAでの直線走行から資材補給のために前進で畦に接近する前進補給走行である。前進補給走行が図3において符号SR2で示されている。さらに他の1つが、内部領域IAでの直線走行から180度旋回した後、資材補給のために後進で畦に接近する後進補給走行である。後進補給走行が図3において符号SR3で示されている。いずれの補給走行においても、スムーズな資材補給のために、機体1が畦に接近することが重要である。特に後進補給走行では、畦越え走行も行われる。さらに、場合によっては、畦の上面に苗植付装置3Aを載置する操作も行われる。 Another one of the ridge edge special runs is the forward resupply run, which approaches the ridge by moving forward from straight running in the inner area IA to supply materials. Forward resupply travel is designated SR2 in FIG. Still another one is a backward replenishment run in which after turning 180 degrees from a straight run in the inner area IA, the vehicle approaches a ridge in reverse for material replenishment. A reverse refueling run is designated SR3 in FIG. In any replenishment run, it is important for the aircraft 1 to approach the ridge for smooth material replenishment. Especially in the backward replenishment traveling, traveling over a ridge is also performed. Furthermore, in some cases, an operation of placing the seedling planting device 3A on the upper surface of the ridge is also performed.
 上述した畦際特殊走行では、機体1が畦に接近する。このため、畦が障害物として障害物検出ユニット70によって検出される。障害物が検出され、当該障害物の位置及び形状を含む検出物体情報が制御系に送られると、制御系は、検出された障害物と機体1との距離が、予め設定されている接近禁止距離以下にならないように走行制御を行う。または、障害物が検出され、当該障害物の位置及び形状を含む検出物体情報が制御系に送られると、制御系は、機体1が検出された障害物へ接近する際の接近可能時間を超えないように、走行制御を行う。しかし、畦際特殊走行では、できる限り畦に近づく必要がある。このため、検出された障害物(畦)がこの圃場における畦の特定区域として設定された特定畦と判定される場合には、制御系は、接近禁止距離を短くし、または接近可能時間を延長し、機体1の畦へのより近い接近を許す。つまり、検出された畦が前もって設定された特定認識対象である場合、または検出された畦の近傍領域に特定認識対象が認識されている場合、この特別な畦への接近が許される。この特定認識対象の認識処理は、後で詳説される。なお、畦際特殊走行以外での走行においても、この障害物検出ユニット70によって検出された障害物に対する接近禁止距離または接近可能時間を変更する制御を採用してもよい。 In the above-mentioned edge-of-ridge special run, Aircraft 1 approaches the edge of the ridge. Therefore, the ridge is detected by the obstacle detection unit 70 as an obstacle. When an obstacle is detected and detected object information including the position and shape of the obstacle is sent to the control system, the control system sets the distance between the detected obstacle and the airframe 1 to the preset prohibition of approach. Run control is performed so that the vehicle does not fall below the distance. Alternatively, when an obstacle is detected and the detected object information including the position and shape of the obstacle is sent to the control system, the control system controls the control system so that the approachable time for the aircraft 1 to approach the detected obstacle is exceeded. Run control to prevent it from happening. However, in ridge edge special driving, it is necessary to get as close to the ridge as possible. Therefore, when the detected obstacle (ridge) is determined to be a specific ridge set as a specific area of ridges in this field, the control system shortens the prohibited access distance or extends the accessible time. and allow a closer approach to the ridge for Aircraft 1. In other words, when the detected ridge is a specific recognition target set in advance, or when the specific recognition target is recognized in the vicinity of the detected ridge, the approach to this special ridge is permitted. This specific recognition target recognition process will be described in detail later. It should be noted that the control for changing the prohibited approach distance or approachable time for obstacles detected by the obstacle detection unit 70 may also be employed in travel other than the special railroad travel.
〔制御系〕
 次に、図4と図5とを用いて、この田植機の制御系を説明する。図4は、制御系の制御ブロック図である。図5は、制御系における特定認識対象の認識処理に関するデータの流れを示す流れ図である。
[Control system]
Next, the control system of this rice transplanter will be described with reference to FIGS. 4 and 5. FIG. FIG. 4 is a control block diagram of the control system. FIG. 5 is a flow chart showing the flow of data regarding recognition processing of a specific recognition target in the control system.
 田植機の制御系は、制御ユニット100と、通信端末9と、を含む。制御ユニット100は、田植機の各種動作を制御する。通信端末9は、制御ユニット100とのデータ交換が可能である。制御ユニット100には、測位ユニット8、手動操作具センサ群31、走行センサ群32、作業センサ群33からの信号が入力されている。制御ユニット100からの制御信号が、走行機器群1Aと作業機器群1Bとに出力される。 The control system of the rice transplanter includes a control unit 100 and a communication terminal 9. The control unit 100 controls various operations of the rice transplanter. The communication terminal 9 can exchange data with the control unit 100 . Signals from the positioning unit 8 , the manual operation tool sensor group 31 , the travel sensor group 32 , and the work sensor group 33 are input to the control unit 100 . A control signal from the control unit 100 is output to the traveling equipment group 1A and the work equipment group 1B.
 制御ユニット100は、測位ユニット8の衛星測位モジュール8Aから機体1の位置及び方位(車体前後方向の方位)を算出するための測位データを取得する。また、制御ユニット100は、慣性計測モジュール8Bから機体1の三軸の傾きや加速度に関する慣性計測データを取得する。 The control unit 100 acquires positioning data from the satellite positioning module 8A of the positioning unit 8 for calculating the position and orientation of the aircraft 1 (orientation in the longitudinal direction of the vehicle body). In addition, the control unit 100 acquires inertial measurement data regarding the three-axis tilt and acceleration of the airframe 1 from the inertial measurement module 8B.
 制御ユニット100は、機体1の周辺に存在する物体(障害物)を検出する障害物検出ユニット70から検出物体情報を取得する。また、この障害物検出ユニット70のカメラユニット71の撮影画像は、この実施形態では制御ユニット100に構築されている認識ユニット54に送られ、特定認識対象を認識するために用いられる。 The control unit 100 acquires detected object information from an obstacle detection unit 70 that detects objects (obstacles) existing around the aircraft 1 . Also, an image captured by the camera unit 71 of the obstacle detection unit 70 is sent to the recognition unit 54 constructed in the control unit 100 in this embodiment, and used to recognize a specific recognition target.
 走行機器群1Aには、例えば、ステアリングモータM1と変速操作用モータM2とが含まれている。制御ユニット100からの制御信号に基づいてステアリングモータM1が制御されることによって、操舵角が調節される。また、制御ユニット100からの制御信号に基づいて変速操作用モータM2が制御されることによって、車速が調節される。 The traveling device group 1A includes, for example, a steering motor M1 and a shift operation motor M2. The steering angle is adjusted by controlling the steering motor M1 based on the control signal from the control unit 100 . Further, the vehicle speed is adjusted by controlling the speed change operation motor M2 based on the control signal from the control unit 100. FIG.
 作業機器群1Bには、例えば、昇降シリンダ13a、苗取り量調節機器、繰出し量調節機器、及び、植付クラッチC0や各条クラッチECの入り切り制御機器等が含まれている。昇降シリンダ13aは苗植付装置3Aを昇降させる。苗取り量調節機器は植付機構22による苗取り量を調節する。繰出し量調節機器は繰出機構26による肥料の繰出し量を変更する。 The work equipment group 1B includes, for example, an elevating cylinder 13a, a seedling amount adjusting device, a feeding amount adjusting device, and an on/off control device for the planting clutch C0 and each row clutch EC. The elevating cylinder 13a elevates the seedling planting device 3A. The seedling amount adjusting device adjusts the amount of seedlings taken by the planting mechanism 22 . The delivery amount adjusting device changes the amount of fertilizer delivered by the delivery mechanism 26 .
 手動操作具センサ群31には、各種手動操作具の操作状態を検出するセンサやスイッチ等が含まれている。走行センサ群32には、操舵角、車速、エンジン回転数などの状態及びそれらに対する設定値を検出する各種センサが含まれている。作業センサ群33には、苗植付装置3Aや施肥装置3Bの駆動状態を検出する各種センサが含まれている。作業センサ群33における各種センサに、整地フロート15の接地を検出する接地センサ、リンク機構13による昇降位置を検出する昇降位置センサ等が含まれる。 The manual operating tool sensor group 31 includes sensors, switches, and the like that detect the operating states of various manual operating tools. The traveling sensor group 32 includes various sensors for detecting conditions such as steering angle, vehicle speed, engine speed, and set values for them. The work sensor group 33 includes various sensors for detecting the drive state of the seedling planting device 3A and the fertilizing device 3B. Various sensors in the work sensor group 33 include a grounding sensor that detects the grounding of the leveling float 15, an elevation position sensor that detects the elevation position of the link mechanism 13, and the like.
 制御ユニット100には、入力信号処理部50、走行制御部6、作業制御部51、機体位置算出部52、走行経路設定部53、認識ユニット54、障害物管理部55などの機能部が備えられている。 The control unit 100 includes functional units such as an input signal processing unit 50, a travel control unit 6, a work control unit 51, an aircraft position calculation unit 52, a travel route setting unit 53, a recognition unit 54, an obstacle management unit 55, and the like. ing.
 入力信号処理部50は、測定機器、監視機器、コミュニケーション機器などの外部機器からのデータを受け取る。そして入力信号処理部50は、必要なデータ変換処理等を行って、制御ユニット100の機能部に与える。例えば入力信号処理部50は、音声認識機器から音声認識された音声認識データ、スマートフォンなど携帯端末からのデータ、さらには、遠隔地の管理コンピュータからのWifiデータや公衆回線データの受け取りも可能である。なお、この管理コンピュータには、後述する営農管理システムが構築される。 The input signal processing unit 50 receives data from external devices such as measuring devices, monitoring devices, and communication devices. The input signal processing unit 50 then performs necessary data conversion processing and the like, and supplies the data to the functional units of the control unit 100 . For example, the input signal processing unit 50 can receive speech recognition data obtained by speech recognition from a speech recognition device, data from a mobile terminal such as a smartphone, and Wi-Fi data and public line data from a remote management computer. . A farming management system, which will be described later, is built in this management computer.
 機体位置算出部52は、測位ユニット8から逐次送られてくる衛星測位データや慣性航法データに基づいて、機体1の車体位置(地図位置)を算出する。この地図座標は、緯度経度だけでなく、圃場座標系、あるいは特定の座標系での座標であってよい。 The body position calculation unit 52 calculates the body position (map position) of the body 1 based on the satellite positioning data and inertial navigation data sequentially sent from the positioning unit 8 . The map coordinates may be coordinates in a field coordinate system or a specific coordinate system as well as latitude and longitude.
 この実施形態では、通信端末9に、タッチパネルIF90、圃場情報格納部91、走行経路マップ生成部92、走行経路生成部93、リモコン部94、などが備えられている。タッチパネルIF90は、グラフィックインタフェースであって、通信端末9に装備されているタッチパネルを通じて、情報の表示や入力を行う機能を有する。したがって、この通信端末9は、制御ユニット100の入力出力インターフェースとして機能する。 In this embodiment, the communication terminal 9 includes a touch panel IF 90, a field information storage unit 91, a travel route map generation unit 92, a travel route generation unit 93, a remote control unit 94, and the like. The touch panel IF 90 is a graphic interface, and has a function of displaying and inputting information through the touch panel provided in the communication terminal 9 . Therefore, this communication terminal 9 functions as an input/output interface for the control unit 100 .
 圃場情報格納部91は、圃場の入口(出口)位置や苗や肥料の補給可能位置など圃場に関する情報が格納されている。走行経路マップ生成部92は、圃場の外周領域OA(図3参照)の最外周部、つまり畦との境界線に沿って機体1を周回走行させることで得られる走行軌跡に基づいて、圃場の外形寸法を算出する。走行経路生成部93は、圃場の外形寸法に基づいて圃場を外周領域OAと内部領域IAとに区分けし、自動走行するための走行経路を生成する。走行経路は、図3に示されたように、外周領域OAを走行するための周回走行経路と、内部領域IAを走行するための直線走行経路と、からなる。生成された走行経路は、制御ユニット100に送られる。 The farm field information storage unit 91 stores information about the farm field, such as the entrance (exit) position of the farm field and the positions where seedlings and fertilizer can be supplied. The traveling route map generator 92 generates a map of the field based on the traveling locus obtained by causing the machine body 1 to travel along the outermost periphery of the outer peripheral area OA (see FIG. 3) of the field, that is, along the boundary line with the ridge. Calculate the external dimensions. The travel route generation unit 93 divides the field into an outer peripheral area OA and an inner area IA based on the outer dimensions of the field, and generates a travel route for automatic travel. The travel route, as shown in FIG. 3, consists of a circular travel route for travel in the outer peripheral area OA and a straight travel route for travel in the inner area IA. The generated travel route is sent to the control unit 100 .
 リモコン部94は、この通信端末9を田植機の操作のためのリモコンとして機能させるプログラムを有する。リモコン部94が動作すると、管理者は、通信端末9に付属するハードウエアスイッチや通信端末9のタッチパネルに表示されたソフトウエアスイッチを用いて、田植機をリモコン操作可能である。 The remote control unit 94 has a program that causes the communication terminal 9 to function as a remote control for operating the rice transplanter. When the remote controller 94 operates, the administrator can remote-control the rice transplanter using hardware switches attached to the communication terminal 9 or software switches displayed on the touch panel of the communication terminal 9 .
 制御ユニット100に構築されている走行経路設定部53は、通信端末9から走行経路生成部93によって生成された走行経路を受け取って管理し、経路追従操舵制御のための目標となる走行経路を目標走行経路として、順次設定する。 A travel route setting unit 53 built in the control unit 100 receives and manages the travel route generated by the travel route generation unit 93 from the communication terminal 9, and sets a target travel route for route following steering control. The travel route is set in sequence.
 作業制御部51は、自動走行では、前もって与えられているプログラムに基づいて自動的に作業機器群1Bを制御し、手動走行では、運転者の操作に基づいて、作業機器群1Bを制御する。 The work control unit 51 automatically controls the work equipment group 1B based on a program given in advance during automatic travel, and controls the work equipment group 1B based on the driver's operation during manual travel.
 走行制御部6には、自動走行制御部61と、手動走行制御部62と、制御管理部63と、が備えられている。この田植機は、自動走行を行う自動走行モードと、手動走行を行う手動走行モードと、に切替可能である。制御管理部63は、図示されていない走行モード切替操作具の状態を検出する手動操作具センサ(手動操作具センサ群31の1つ)からの信号、及び、制御ユニット100が制御的に生成する切替信号に基づいて、自動走行モードと手動走行モードのいずれかを選択する。 The travel control unit 6 includes an automatic travel control unit 61, a manual travel control unit 62, and a control management unit 63. This rice transplanter can be switched between an automatic running mode for automatic running and a manual running mode for manual running. The control management unit 63 receives a signal from a manual operation tool sensor (one of the manual operation tool sensor group 31) that detects the state of the running mode switching operation tool (not shown), and a signal generated by the control unit 100 in a controlled manner. Either the automatic driving mode or the manual driving mode is selected based on the switching signal.
 手動走行モードで動作する手動走行制御部62は、ステアリングホイール10の操作量に基づいて、ステアリングモータM1を制御する。また、手動走行制御部62は、主変速レバー7Aや副変速レバー7Bなどの手動操作具の操作に基づいて、変速操作用モータM2を制御する。 The manual travel control unit 62 operating in the manual travel mode controls the steering motor M1 based on the amount of operation of the steering wheel 10. Further, the manual travel control unit 62 controls the speed change operation motor M2 based on the operation of the manual operation tools such as the main shift lever 7A and the auxiliary shift lever 7B.
 自動走行モードで動作する自動走行制御部61は、機体位置算出部52で算出された車体位置を用いて、目標走行経路に対する機体1の位置ずれ(目標走行経路に対する横ずれ)と機体1の方位ずれ(目標走行経路の方位に対する車体方位のずれ角)を算出する。そして自動走行制御部61は、この位置ずれ及び方位ずれが小さくなるように機体1を操舵する。 The automatic travel control unit 61 operating in the automatic travel mode uses the vehicle body position calculated by the aircraft position calculation unit 52 to calculate the positional deviation of the aircraft 1 with respect to the target travel route (lateral deviation with respect to the target travel route) and the azimuth deviation of the aircraft 1 with respect to the target travel route. (deviation angle of the vehicle azimuth with respect to the azimuth of the target travel route) is calculated. Then, the automatic travel control unit 61 steers the body 1 so as to reduce the positional deviation and the azimuth deviation.
 認識ユニット54は、事前に登録された特定認識対象を認識する。特定認識対象は、前記機体の障害物への接近を許す象徴として登録されている。ここでの「象徴(接近判定材料)」とは、物体、人体、機器、挙動など、認識ユニット54によって認識可能な対象物である。認識ユニット54は、特定認識対象の認識のために、画像認識機能、音声認識機、符号照合機能などの認識機能のうち、少なくとも1つを備えている。 The recognition unit 54 recognizes a pre-registered specific recognition target. The specific recognition target is registered as a symbol that allows the aircraft to approach the obstacle. A “symbol (approach determination material)” here is an object that can be recognized by the recognition unit 54, such as an object, human body, equipment, or behavior. The recognition unit 54 has at least one recognition function such as an image recognition function, a speech recognizer, a symbol matching function, etc. for recognition of a specific recognition target.
 障害物管理部55は、障害物検出ユニット70によって検出された障害物への機体1の接近禁止距離または接近可能時間を管理する。
 
上述したように、この田植機には、接近禁止距離変更機能または接近可能時間変更機能が備えられている。接近禁止距離変更機能は、検出された畦などの障害物がこの圃場における特定区域として設定された特定区域での物体である場合には、検出された畦などの障害物に対する機体1の接近禁止距離を短くし、機体1の畦への接近を許す。接近可能時間変更機能は、検出された畦などの障害物がこの圃場における特定区域として設定された特定区域での物体である場合には、検出された畦などの障害物に対する機体1の接近可能時間を延長し、機体1の畦への接近を許す。障害物管理部55は、この接近禁止距離変更機能または接近可能時間変更機能を実行する。障害物管理部55は、障害物検出ユニット70によって検出された障害物が、認識ユニット54によって認識された特定認識対象である場合、接近禁止距離を短縮するか、または接近可能時間を延長する。または、障害物管理部55は、障害物検出ユニット70によって検出された障害物の近傍領域に認識ユニット54によって認識された特定認識対象が認識されている場合、接近禁止距離を短縮するか、または接近可能時間を延長する。これにより、機体1は、この障害物に接近可能である。
The obstacle management unit 55 manages the prohibited distance or accessible time of the aircraft 1 to obstacles detected by the obstacle detection unit 70 .

As described above, this rice transplanter is provided with the prohibited access distance changing function or the accessible time changing function. The no-approach distance change function prohibits the aircraft 1 from approaching the detected ridge or other obstacle when the detected ridge or other obstacle is an object in the specific area set as the specific area in the field. Shorten the distance and allow Aircraft 1 to approach the ridge. The approachable time change function changes the approachability of the body 1 to the detected obstacle such as a ridge when the detected obstacle such as a ridge is an object in the specific area set as the specific area in the field. Extend the time and allow Aircraft 1 to approach the ridge. The obstacle management unit 55 executes this prohibited distance change function or accessible time change function. When the obstacle detected by the obstacle detection unit 70 is the specific recognition target recognized by the recognition unit 54, the obstacle management unit 55 shortens the prohibited distance or extends the accessible time. Alternatively, when the specific recognition target recognized by the recognition unit 54 is recognized in the vicinity of the obstacle detected by the obstacle detection unit 70, the obstacle management unit 55 shortens the prohibited distance, or Extends reachable time. This allows the aircraft 1 to approach this obstacle.
 障害物管理部55による接近禁止距離の短縮または接近可能時間の延長は、内部領域IAでの直線走行から資材補給のために前進で畦に接近する前進補給走行や後進で畦に接近する後進補給走行において、行われる。つまり、障害物管理部55による接近禁止距離の短縮または接近可能時間の延長のための判定に用いられる障害物の1つは畦の特定区域である。認識ユニット54は、この資材補給のために用いられる畦の特定区域である特定畦を、特定認識対象として事前に登録しておく。特定畦が機体進行方向に存在することを認識すると、障害物管理部55は、障害物検出ユニット70によって検出された障害物が特定畦であるみなす。このとき、障害物管理部55は、接近禁止距離を短くするか、または接近可能時間を延長する。 The obstacle management unit 55 shortens the prohibited distance or extends the accessible time, from straight running in the inner area IA to forward replenishment traveling to approach the ridge in order to supply materials, and backward replenishment to approach the ridge in reverse. In running, it is done. That is, one of the obstacles used by the obstacle management unit 55 to determine whether to shorten the prohibited distance or extend the accessible time is the specific area of the ridge. The recognition unit 54 preliminarily registers a specific ridge, which is a specific area of the ridge used for this supply of materials, as a specific recognition target. Upon recognizing that a specific ridge exists in the traveling direction of the aircraft, the obstacle management section 55 determines that the obstacle detected by the obstacle detection unit 70 is the specific ridge. At this time, the obstacle management unit 55 shortens the prohibited distance or extends the accessible time.
 認識ユニット54が画像認識機能を備えている実施形態では、カメラユニット71によって取得された撮影画像に対して画像認識が行われ、特定畦が認識される。しかし、資材補給のために用いられる畦の形態と、その他の畦の形態が類似している場合、特定畦の認識は困難となる。このため、特定認識対象として畦以外のものが認識ユニット54に登録され、障害物検出ユニット70によって検出された障害物の近傍に認識ユニット54が当該特定認識対象を認識した場合、障害物管理部55は、当該特定認識対象に近傍する畦を特定畦とする。畦そのものの代わりに、特定認識対象として用いられる「象徴(シンボル)」を、以下に列挙する。 In an embodiment in which the recognition unit 54 has an image recognition function, image recognition is performed on the photographed image acquired by the camera unit 71, and the specific ridge is recognized. However, when the shape of the ridge used for material supply is similar to the shape of other ridges, it becomes difficult to recognize the specific ridge. Therefore, when an object other than a ridge is registered in the recognition unit 54 as a specific recognition target, and the recognition unit 54 recognizes the specific recognition target in the vicinity of the obstacle detected by the obstacle detection unit 70, the obstacle management unit A reference numeral 55 designates a ridge adjacent to the specific recognition target as a specific ridge. "Symbols" used as specific recognition targets instead of the ridges themselves are listed below.
〔1:通信端末9を「象徴」とする場合〕
 圃場作業機の動きを畦から監視する監視者が持参する通信端末9は、リモコン装置や作業進捗状態表示装置としても用いられる。したがって、資材補給の際には、監視者は通信端末9を持参して、資材補給するための畦の近傍に位置する。このことから、監視者が持参する通信端末9を特定認識対象とすることは好都合である。認識ユニット54に、通信端末9の色彩や形状を示す特徴データが登録されることによって、認識ユニット54は通信端末9を画像認識処理で認識可能である。また、認識ユニット54に、符号照合機能が備えられている。通信端末9が発信可能な識別データが登録されていると、認識ユニット54は、通信端末9が発する指向性の高い送信データ(識別データを含む)を符号照合することによって、通信端末9を認識可能である。符号照合可能な送信データとして、ICタグからの送信データも利用可能である。その場合、資材補給するための畦にICタグが取り付けられる。符号照合機能に符号画像を読み取る機能があれば、符号画像を印刷した看板等が、資材補給するための畦に取り付けられる。通信端末9に代えて、田植機の制御系とデータ交換可能に通信できるアプリをインストールした携帯電話を用いても良い。携帯電話のアプリから、クラウドサービスコンピュータを経由して、認識ユニット54に、当該携帯電話の識別データが登録される構成であれば、リアルタイムで、接近距離を短縮できる特定畦を指定可能である。
[1: When the communication terminal 9 is used as a “symbol”]
A communication terminal 9 carried by an observer who monitors the movement of the field work machine from the ridge is also used as a remote control device and a work progress display device. Therefore, when replenishing materials, the supervisor brings the communication terminal 9 and positions it near the ridge for replenishing the materials. For this reason, it is convenient to set the communication terminal 9 carried by the monitor as a specific recognition target. By registering feature data indicating the color and shape of the communication terminal 9 in the recognition unit 54, the recognition unit 54 can recognize the communication terminal 9 by image recognition processing. In addition, the recognition unit 54 is provided with a code matching function. When the identification data that can be transmitted by the communication terminal 9 is registered, the recognition unit 54 recognizes the communication terminal 9 by performing code collation of highly directional transmission data (including identification data) transmitted by the communication terminal 9. It is possible. Transmission data from an IC tag can also be used as transmission data whose code can be collated. In that case, an IC tag is attached to the ridge for material supply. If the code matching function has a function of reading the code image, a signboard or the like printed with the code image can be attached to the ridge for material supply. Instead of the communication terminal 9, a mobile phone installed with an application capable of exchanging data with the control system of the rice transplanter may be used. If the identification data of the mobile phone is registered in the recognition unit 54 from the application of the mobile phone via the cloud service computer, it is possible to designate a specific ridge that can shorten the approach distance in real time.
〔2:田植機の動きを畦から監視する監視者を「象徴」とする場合〕
 資材補給の際には、監視者は、資材補給するための畦の近傍に位置する。このことから、監視者を特定認識対象とすることは好都合である。認識ユニット54に、この監視者の顔写真が登録されることで、認識ユニット54は、この監視者を画像認識機能の一種である顔認識機能を用いて認識可能である。また、この監視者が特定の衣装(特徴的な形態の帽子やジャケットなど)を身に着け、その姿での写真を登録してことで、監視者を他の人物と区別して認識することも可能である。
[2: When the monitor who monitors the movement of the rice transplanter from the ridge is the “symbol”]
When resupplying, the observer is positioned near the ridge for resupplying materials. For this reason, it is convenient to set the observer as a specific recognition target. By registering the face photograph of the monitor in the recognition unit 54, the recognition unit 54 can recognize the monitor using a face recognition function, which is a type of image recognition function. In addition, by registering a photo of the observer wearing a specific costume (such as a distinctive hat or jacket), the observer can be distinguished from other people and recognized. It is possible.
〔3:人物のジェスチャーを「象徴」とする場合〕
 認識ユニット54に、画像認識機能の一種であるジェスチャー認識機能が備えられ、人物の特徴的なジェスチャー(手を振るなど)が登録されていると、畦の近傍に位置する人物が行うジェスチャーを特定認識対象として認識可能である。障害物検出ユニット70によって検出された畦の近傍に特定認識対象が認識されたとして、障害物管理部55は、この畦を特定畦とみなすことができる。
[3: When using a person's gesture as a "symbol"]
The recognition unit 54 is equipped with a gesture recognition function, which is a type of image recognition function, and if characteristic gestures of a person (hand waving, etc.) are registered, the gesture performed by the person located near the ridge can be identified. It can be recognized as a recognition target. Assuming that a specific recognition target is recognized in the vicinity of the ridge detected by the obstacle detection unit 70, the obstacle management section 55 can regard this ridge as the specific ridge.
〔4:人物が発する音声を「象徴」とする場合〕
 認識ユニット54に、音声認識機能が備えられ、入力信号処理部50にマイク(好ましくは指向性の良いマイク)が接続されている場合について説明する。畦から発せられた音声は、認識ユニット54によって認識される。障害物管理部55は、認識ユニット54によって認識された音声を通じて、障害物検出ユニット70によって検出された畦を適切に特定畦とみなすことができる。音声認識される語句を限られたものにすれば、音声認識機能は簡素となる。また、特定の人物の音声を認識するようにすれば、圃場周辺で遊んでいる子供などの音声に間違って反応することが回避される。
[4: When a person's voice is used as a "symbol"]
A case where the recognition unit 54 has a voice recognition function and the input signal processing section 50 is connected to a microphone (preferably a microphone with good directivity) will be described. A speech emitted from the ridge is recognized by the recognition unit 54 . The obstacle management section 55 can appropriately regard the ridge detected by the obstacle detection unit 70 as the specific ridge through the voice recognized by the recognition unit 54 . Restricting the phrases to be voice-recognized simplifies the voice-recognition function. Also, by recognizing the voice of a specific person, it is possible to avoid erroneously reacting to the voice of children playing around the field.
 認識ユニット54がジェスチャーを認識可能な機能を備えている場合、障害物管理部55は、認識ユニット54によって認識されたジェスチャーに基づいて、機体1の走行状態を変更する走行状態変更指令を走行制御部6に与えることができる。この構成では、ジェスチャーによって機体1の停止、前進、後進などが行われる。 If the recognition unit 54 has a function capable of recognizing gestures, the obstacle management unit 55 controls the running state change command for changing the running state of the body 1 based on the gesture recognized by the recognition unit 54. Part 6 can be given. In this configuration, gestures are used to stop, move forward, and reverse the body 1 .
 認識ユニット54が音声を認識可能な機能を備えている場合、障害物管理部55は、認識ユニット54によって認識された音声に基づいて、機体1の走行状態を変更する走行状態変更指令を走行制御部6に与えることができる。この構成でも、音声によって機体1の停止、前進、後進などが行われる。 If the recognition unit 54 has a function capable of recognizing voice, the obstacle management unit 55 controls the running state change command to change the running state of the aircraft 1 based on the voice recognized by the recognition unit 54. Part 6 can be given. Also in this configuration, the machine body 1 is stopped, moved forward, or reversed by voice.
 認識ユニット54と障害物管理部55とによる、畦などの障害物への機体1への接近禁止距離を短縮する制御、または接近可能時間を延長する制御は、畦及び圃場内の樹木や電柱などの特定の障害物に接近する走行に限定される。その以外の障害物に対しては、通常の接近禁止距離または接近可能時間が維持される。これにより、誤動作による接近禁止距離の短縮または接近可能時間が抑制される。このため、予め把握されている特定の障害物に接近する走行を特殊走行として管理する特殊走行管理部64が、走行制御部6に備えられてもよい。そのような特殊走行管理部64は、機体1が特殊走行する時のみ、接近禁止距離を短縮する制御、または接近可能時間を延長する制御を許可する許可指令を、認識ユニット54と障害物管理部55とに与える。 Control by the recognition unit 54 and the obstacle management unit 55 to shorten the prohibition distance to the aircraft 1 to obstacles such as ridges, or control to extend the accessible time, is performed by the trees, utility poles, etc. in the ridges and fields. limited to driving close to certain obstacles. For other obstacles, the normal no-access distance or accessible time is maintained. As a result, the shortening of the prohibited approach distance or the accessible time due to malfunction is suppressed. For this reason, the travel control unit 6 may be provided with a special travel management unit 64 that manages, as special travel, travel that approaches a specific obstacle that has been grasped in advance. Such a special travel management unit 64 sends a permission command to the recognition unit 54 and the obstacle management unit to permit the control to shorten the prohibited approach distance or the control to extend the accessible time only when the aircraft 1 performs special travel. Give to 55 and.
 さらにこの実施形態では、上述したように、障害物管理部55は、入力信号処理部50を介して、管理コンピュータに構築されている営農管理システムとデータ交換可能である。営農管理システムには、予め特定認識対象に対して接近禁止距離、または障害物への機体1の接近可能時間を登録しておく。障害物管理部55は、営農管理システムにアクセスして、営農管理システムに予め登録された特定認識対象(検出された障害物)に対して接近禁止距離、または特定認識対象(検出された障害物)への機体1の接近可能時間を取得し、管理可能である。 Furthermore, in this embodiment, as described above, the obstacle management unit 55 can exchange data with the farming management system built in the management computer via the input signal processing unit 50. In the farming management system, a prohibition distance or an approachable time of the body 1 to the obstacle is registered in advance with respect to the specific recognition target. The obstacle management unit 55 accesses the farming management system, and sets the prohibition distance to the specific recognition target (detected obstacle) registered in advance in the farming management system, or the specific recognition target (detected obstacle ) can be obtained and managed.
 さらに、営農管理システムは、認識ユニット54の画像認識機能または音声認識機能によって検知された特定認識対象に関するデータを、自動的または選択的に蓄積可能である。この検知された特定認識対象に関するデータは情報化され、営農管理システムに時系列的に格納される。 Furthermore, the farming management system can automatically or selectively accumulate data relating to specific recognition targets detected by the image recognition function or voice recognition function of the recognition unit 54 . Data relating to the detected specific recognition target is converted into information and stored in the farming management system in chronological order.
〔別実施形態〕
 本発明は、上述の実施形態に例示された構成に限定されるものではなく、以下、本発明の代表的な別実施形態を例示する。
[Another embodiment]
The present invention is not limited to the configurations exemplified in the above-described embodiments, and other representative embodiments of the present invention will be exemplified below.
(1)上述した実施形態では、本発明の圃場作業機として田植機が取り挙げられたが、その他の圃場作業機、例えば、トラクタ、収穫機、播種機、などにも、本発明は適用可能である。 (1) In the above-described embodiments, the rice transplanter was taken as the field working machine of the present invention, but the present invention can also be applied to other field working machines such as tractors, harvesters, seeders, and the like. is.
(2)特殊走行管理部64によって把握される畦際特殊走行などの特殊走行は、走行経路設定部53によって設定される走行経路に予め登録しておくことができる。 (2) The special traveling such as the special traveling on the edge of a furrow ascertained by the special traveling management section 64 can be registered in advance in the traveling route set by the traveling route setting section 53 .
(3)上述した実施形態では、走行装置12は、操舵輪タイプであったが、クローラタイプであってもよい。 (3) In the above-described embodiment, the travel device 12 is of the steering wheel type, but may be of the crawler type.
(4)図4と図5に示された機能部の区分けは、一例であり、各機能部が他の機能部と統合されること、各機能部が複数の機能部に分割されること、制御ユニット100が複数の制御サブユニットに分散されること、など、種々の改変が可能である。 (4) The division of functional units shown in FIGS. 4 and 5 is an example, and each functional unit is integrated with other functional units, each functional unit is divided into a plurality of functional units, Various modifications are possible, such as the control unit 100 being distributed over multiple control subunits.
 なお、上述の実施形態(別実施形態を含む、以下同じ)で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用可能である。また、本明細書において開示された実施形態は例示であって、本発明の実施形態はこれに限定されず、本発明の目的を逸脱しない範囲内で適宜改変可能である。 It should be noted that the configurations disclosed in the above-described embodiments (including other embodiments; the same shall apply hereinafter) can be applied in combination with configurations disclosed in other embodiments as long as there is no contradiction. Moreover, the embodiments disclosed in this specification are merely examples, and the embodiments of the present invention are not limited thereto, and can be modified as appropriate without departing from the scope of the present invention.
 本発明は、畦によって境界付けられた圃場を自動走行可能な圃場作業機に適用可能である。 The present invention is applicable to field working machines that can automatically travel in fields bounded by ridges.
 1    :機体
 1A   :走行機器群
 1B   :作業機器群
 3    :作業装置
 6    :走行制御部
 8    :測位ユニット
 8A   :衛星測位モジュール
 8B   :慣性計測モジュール
 9    :通信端末
 12   :走行装置
 50   :入力信号処理部
 52   :機体位置算出部
 54   :認識ユニット
 55   :障害物管理部
 70   :障害物検出ユニット
 71   :カメラユニット
 72   :LiDARユニット
 100  :制御ユニット
 
1: Airframe 1A: Running equipment group 1B: Working equipment group 3: Working device 6: Traveling control unit 8: Positioning unit 8A: Satellite positioning module 8B: Inertial measurement module 9: Communication terminal 12: Traveling device 50: Input signal processing unit 52: Aircraft position calculation unit 54: Recognition unit 55: Obstacle management unit 70: Obstacle detection unit 71: Camera unit 72: LiDAR unit 100: Control unit

Claims (10)

  1.  畦によって境界付けられた圃場で作業を行う自動走行可能な圃場作業機であって、
     前記畦を含む障害物を検出する障害物検出ユニットと、
     機体位置を算出する機体位置算出部と、
     機体を自動走行または手動走行させる走行制御部と、
     前記機体の前記障害物への接近を許す象徴として事前に登録された特定認識対象を認識する認識ユニットと、
     前記障害物検出ユニットによって検出された前記障害物への前記機体の接近禁止距離、または当該障害物への前記機体の接近可能時間を管理する障害物管理部と、を備え、
     前記障害物管理部は、前記障害物検出ユニットによって検出された前記障害物が前記特定認識対象である場合、または前記障害物検出ユニットによって検出された前記障害物の近傍領域に前記特定認識対象が認識されている場合、前記接近禁止距離を短縮するか、または前記接近可能時間を延長する圃場作業機。
    A field work machine capable of automatically traveling for working in a field bounded by a ridge,
    an obstacle detection unit that detects an obstacle including the ridge;
    a body position calculation unit that calculates the body position;
    A travel control unit that automatically travels or manually travels the aircraft,
    a recognition unit that recognizes a specific recognition target registered in advance as a symbol that allows the aircraft to approach the obstacle;
    an obstacle management unit that manages the prohibited distance of the aircraft to the obstacle detected by the obstacle detection unit, or the time in which the aircraft can approach the obstacle;
    When the obstacle detected by the obstacle detection unit is the specific recognition target, or when the specific recognition target is in an area near the obstacle detected by the obstacle detection unit, the obstacle management unit A field implement that, if known, reduces said no-access distance or extends said accessible time.
  2.  前記障害物管理部による前記接近禁止距離の短縮、または前記接近可能時間の延長のための判定に用いられる前記障害物は、前記畦であり、
     前記特定認識対象は、前記畦の特定区域である特定畦または前記特定畦の近傍に位置する認識対象である請求項1に記載の圃場作業機。
    The obstacle used by the obstacle management unit to determine whether to shorten the prohibited distance or extend the accessible time is the ridge,
    The field working machine according to claim 1, wherein the specific recognition target is a specific ridge that is a specific area of the ridge or a recognition target located in the vicinity of the specific ridge.
  3.  前記特定認識対象が、予め登録された特定の通信端末であり、
     前記認識ユニットは、前記通信端末からの送信データに基づいて前記通信端末を認識する請求項1または2に記載の圃場作業機。
    The specific recognition target is a specific communication terminal registered in advance,
    The agricultural machine according to claim 1 or 2, wherein the recognition unit recognizes the communication terminal based on data transmitted from the communication terminal.
  4.  前記通信端末は、前記走行制御部を含む制御ユニットに対するリモコン操作機能を有する請求項3に記載の圃場作業機。 The field working machine according to claim 3, wherein the communication terminal has a remote control function for a control unit including the travel control section.
  5.  前記認識ユニットは画像認識機能を有し、
     前記特定認識対象が、前記画像認識機能によって認識される請求項1~4のいずれか一項に記載の圃場作業機。
    The recognition unit has an image recognition function,
    The field working machine according to any one of claims 1 to 4, wherein the specific recognition target is recognized by the image recognition function.
  6.  前記認識ユニットによって認識される前記特定認識対象が、前記機体の動きを畦から監視する監視者である請求項5に記載の圃場作業機。 The field working machine according to claim 5, wherein the specific recognition target recognized by the recognition unit is an observer who monitors the movement of the machine body from a ridge.
  7.  前記認識ユニットの前記画像認識機能に畦に居る人物のジェスチャーを認識する機能が含まれ、
     前記障害物管理部は、前記機体の走行状態を変更する走行状態変更指令を前記走行制御部に与える請求項5または6に記載の圃場作業機。
    The image recognition function of the recognition unit includes a function of recognizing a gesture of a person on the ridge,
    The field work machine according to claim 5 or 6, wherein the obstacle management section gives a running state change command for changing the running state of the machine body to the running control section.
  8.  前記認識ユニットは音声認識機能を有し、
     前記特定認識対象が、前記畦から発せられる音声であり、
     前記障害物管理部は、前記認識ユニットによって認識された音声に基づいて、前記機体の走行状態を変更する走行状態変更指令を前記走行制御部に与える請求項1から7のいずれか一項に記載の圃場作業機。
    the recognition unit has a speech recognition function,
    the specific recognition target is a sound emitted from the ridge,
    8. The obstacle management unit according to any one of claims 1 to 7, wherein the obstacle management unit gives a running state change command for changing the running state of the aircraft to the running control unit based on the voice recognized by the recognition unit. field work machine.
  9.  前記障害物管理部は、営農管理システムとデータ交換可能に接続可能であり、
     前記障害物管理部は、前記営農管理システムに予め登録された前記特定認識対象に対して前記接近禁止距離、または前記接近可能時間を管理する請求項1から8のいずれか一項に記載の圃場作業機。
    The obstacle management unit is connectable to a farming management system so that data can be exchanged,
    9. The field according to any one of claims 1 to 8, wherein said obstacle management unit manages said prohibited distance or said accessible time with respect to said specific recognition target registered in advance in said farming management system. working machine.
  10.  前記認識ユニットが有する画像認識機能または音声認識機能で検知された前記特定認識対象のデータは、前記営農管理システムに自動的または選択的に蓄積される請求項9に記載の圃場作業機。
     
    10. The field working machine according to claim 9, wherein the specific recognition target data detected by the image recognition function or voice recognition function of the recognition unit is automatically or selectively stored in the farming management system.
PCT/JP2022/042982 2021-12-20 2022-11-21 Field working machine WO2023119993A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-206415 2021-12-20
JP2021206415A JP2023091597A (en) 2021-12-20 2021-12-20 Field work implement

Publications (1)

Publication Number Publication Date
WO2023119993A1 true WO2023119993A1 (en) 2023-06-29

Family

ID=86902147

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/042982 WO2023119993A1 (en) 2021-12-20 2022-11-21 Field working machine

Country Status (2)

Country Link
JP (1) JP2023091597A (en)
WO (1) WO2023119993A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018000039A (en) * 2016-06-28 2018-01-11 株式会社クボタ Work vehicle
JP2021090741A (en) * 2019-12-06 2021-06-17 ビッセル インク. Autonomous floor cleaner and docking station
JP2021108620A (en) * 2020-01-14 2021-08-02 株式会社クボタ Travel path management system for implement

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018000039A (en) * 2016-06-28 2018-01-11 株式会社クボタ Work vehicle
JP2021090741A (en) * 2019-12-06 2021-06-17 ビッセル インク. Autonomous floor cleaner and docking station
JP2021108620A (en) * 2020-01-14 2021-08-02 株式会社クボタ Travel path management system for implement

Also Published As

Publication number Publication date
JP2023091597A (en) 2023-06-30

Similar Documents

Publication Publication Date Title
JP6999221B2 (en) Automated work system
JP2022022285A (en) Control system
KR102140854B1 (en) Method for setting travel path of autonomous travel work vehicle
JP6312416B2 (en) Field work machine
KR102121646B1 (en) Field state detection system
JP2015112068A (en) Field work machine
KR20220039646A (en) Automated driving systems for work vehicles
JP7120878B2 (en) Work equipment lifting control device
WO2023119993A1 (en) Field working machine
JP7403432B2 (en) Work equipment and vehicle speed control system
JP7399070B2 (en) work equipment
WO2023119994A1 (en) Field work machine
WO2022114052A1 (en) Work machine and work travel system
JP7319243B2 (en) work machine
JP7344453B2 (en) work vehicle
JP7401422B2 (en) work equipment
WO2022114051A1 (en) Work machine and work travelling system
WO2023112610A1 (en) Field work vehicle
JP7462423B2 (en) Self-driving agricultural vehicle
JP7386781B2 (en) work equipment
JP6879156B2 (en) Work vehicle
JP2022085685A (en) Implement
JP2022010873A (en) Control system for work vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22910711

Country of ref document: EP

Kind code of ref document: A1