WO2023119914A1 - Method for manufacturing spectacle lens, device for designing spectacle lens, and measurement module - Google Patents

Method for manufacturing spectacle lens, device for designing spectacle lens, and measurement module Download PDF

Info

Publication number
WO2023119914A1
WO2023119914A1 PCT/JP2022/041511 JP2022041511W WO2023119914A1 WO 2023119914 A1 WO2023119914 A1 WO 2023119914A1 JP 2022041511 W JP2022041511 W JP 2022041511W WO 2023119914 A1 WO2023119914 A1 WO 2023119914A1
Authority
WO
WIPO (PCT)
Prior art keywords
distance
sight
spectacle lens
line
measurement data
Prior art date
Application number
PCT/JP2022/041511
Other languages
French (fr)
Japanese (ja)
Inventor
幸男 本間
Original Assignee
株式会社ニコン・エシロール
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン・エシロール filed Critical 株式会社ニコン・エシロール
Publication of WO2023119914A1 publication Critical patent/WO2023119914A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C13/00Assembling; Repairing; Cleaning
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/06Lenses; Lens systems ; Methods of designing lenses bifocal; multifocal ; progressive

Definitions

  • the present invention relates to a spectacle lens manufacturing method, a spectacle lens design device, and a measurement module.
  • spectacle lenses designed and manufactured as described in Patent Document 1 and Patent Document 2, for example are known.
  • a first aspect of the present invention is a spectacle lens manufacturing method for designing a spectacle lens using measurement data transmitted from a measurement module and manufacturing the spectacle lens based on the design, wherein the measurement module a spectacle frame, a lens portion held by the spectacle frame, and a distance measuring device provided in the spectacle frame for acquiring measurement data relating to a distance to an object to be measured while the spectacle frame is worn by a wearer. and a line-of-sight measuring device provided in the lens unit for acquiring measurement data relating to the direction of the line of sight of the wearer wearing the spectacle frame, measurement data relating to the distance acquired by the distance measuring device, and the line-of-sight measurement.
  • a processing unit that transmits measurement data related to the direction of the line of sight acquired by the device, and designing the spectacle lens using the measurement data related to the distance and the measurement data related to the direction of the line of sight transmitted from the processing unit. It is a manufacturing method of a spectacle lens that performs
  • a second aspect of the present invention is a spectacle lens designing device comprising a design module for designing a spectacle lens and a measurement module capable of transmitting measurement data to the design module, wherein the measurement module comprises a spectacle frame. a lens portion held by the spectacle frame; a distance measuring device provided in the spectacle frame for acquiring measurement data regarding a distance to a measurement object while the spectacle frame is worn by a wearer; A line-of-sight measuring device provided in the lens unit for acquiring measurement data relating to the direction of the line of sight of the wearer wearing the spectacle frame; a spectacle lens designing device including a processing unit that transmits measurement data related to the direction of the line of sight that has been obtained.
  • a third aspect of the present invention is a measurement module capable of transmitting measurement data to a design module for designing a spectacle lens, comprising a spectacle frame, a lens portion held by the spectacle frame, and a lens portion provided in the spectacle frame.
  • a distance measuring device that acquires measurement data relating to a distance to an object to be measured while the spectacle frame is worn by the wearer;
  • a line-of-sight measuring device that acquires measurement data relating to the line-of-sight measurement device; is a module.
  • FIG. 1 is a block diagram showing a spectacle lens manufacturing system;
  • FIG. It is a front view of a measurement module. It is a top view which shows the measurable range of a distance measuring device.
  • FIG. It is a schematic diagram which shows the image showing the schematic shape of a measurement target.
  • It is a flowchart which shows the flow of the manufacturing method of a spectacle lens.
  • FIG. 4 is a flow chart showing the flow of processing for calculating distance data in a region of interest; 10 is a flow chart showing the flow of processing for setting distance data used in designing spectacle lenses.
  • FIG. 14A is a graph showing a first example of the addition curve, and
  • FIG. 14B is a graph showing a second example of the addition curve.
  • FIG. 3 is a diagram showing a first example of addition distribution and astigmatism distribution in a spectacle lens;
  • FIG. 3 is a diagram showing a first example of addition distribution and astigmatism distribution in a spectacle lens;
  • FIG. 10 is a diagram showing a second example of addition distribution and astigmatism distribution in a spectacle lens
  • 4 is a flow chart showing the flow of processing for setting a far-use weighted distance and a near-use weighted distance.
  • 4A to 4C are schematic diagrams showing the process of setting a far-use weighted distance and a near-use weighted distance in the order of (A) to (C);
  • FIG. 10 is a diagram showing a second example of addition distribution and astigmatism distribution in a spectacle lens
  • 4 is a flow chart showing the flow of processing for setting a far-use weighted distance and a near-use weighted distance.
  • 4A to 4C are schematic diagrams showing the process of setting a far-use weighted distance and a near-use weighted distance in the order of (A) to (C);
  • FIG. 10 is a schematic diagram showing a result of setting a far-use weighted distance and a near-use weighted distance; 4 is a flow chart showing the flow of processing for setting a distance-use weighted passing point and a near-use weighted passing point; 4A to 4C are schematic diagrams showing the process of setting a distance-use weighted passing point and a near-use weighted passing point in the order of (A) to (C); FIG. 10 is a schematic diagram showing a result of setting a distance-use weighted passing point and a near-use weighted passing point; 10 is a flow chart showing the upstream side of the flow of processing for designing spectacle lenses. 10 is a flow chart showing the downstream side of the flow of processing for designing spectacle lenses. FIG. 10 is a schematic diagram showing an example of a simulation regarding the usability of the spectacle lens;
  • FIG. 1 schematically shows a pair of spectacle lenses 1 according to this embodiment.
  • the pair of spectacle lenses 1 includes a right eye spectacle lens 10R and a left eye spectacle lens 10L.
  • the right-eye spectacle lens 10R and the left-eye spectacle lens 10L may be simply referred to as the spectacle lens 10 as a generic term.
  • the spectacle lens 10 is also called a progressive power lens.
  • the positional relationships such as "upper” and "lower” in the spectacle lens 10 indicate the positional relationship when spectacles are worn when the spectacle lens 10 is processed for spectacles.
  • the vertical positional relationship in the spectacle lens 10 is assumed to match the vertical positional relationship in the paper planes of FIGS. 1 to 3 and the like.
  • the right-eye spectacle lens 10R includes, as shown in FIG. It has a right eye progressive portion 13R formed between the distance portion 11R and the right eye near portion 12R.
  • the right eye distance portion 11R has a refractive power suitable for distant vision.
  • the right eye near vision portion 12R has a refractive power suitable for near vision.
  • the right-eye progressive portion 13R has a refractive power suitable for far vision to a refractive power suitable for near vision as it goes from near the right eye distance portion 11R to near the right eye near vision portion 12R. and refracting power change continuously.
  • FIG. 2 schematically shows the spectacle lens 10R for the right eye before processing (before edging) to match the shape of the spectacle frame.
  • the right-eye spectacle lens 10R before edging is circular in front view.
  • the right-eye spectacle lens 10R has a right-eye far-distance portion 11R formed in the upper portion thereof before edging, and a right-eye near-distance portion 12R formed in the lower portion of the right-eye spectacle lens 10R.
  • a right-eye progressive portion 13R is formed in the intermediate portion of the eyeglass lens 10R.
  • the left eye spectacle lens 10L includes, as shown in FIG. It has a left eye progressive portion 13L formed between the distance portion 11L and the left eye near portion 12L.
  • the left eye distance portion 11L has a refractive power suitable for distant vision.
  • the left eye near vision portion 12L has refractive power suitable for near vision.
  • the left-eye progressive portion 13L has a refractive power suitable for far vision to a refractive power suitable for near vision as it goes from the left eye distance portion 11L to the left eye near vision portion 12L. and refracting power change continuously.
  • FIG. 3 schematically shows the left-eye spectacle lens 10L before processing (before edging) to match the shape of the spectacle frame.
  • the left-eye spectacle lens 10L before edging is circular in front view.
  • a left eye spectacle lens 10L has a left eye long distance part 11L formed in the upper part of the left eye spectacle lens 10L before edging, and a left eye near vision part 12L is formed in the lower part of the left eye spectacle lens 10L.
  • a left-eye progressive portion 13L is formed in the intermediate portion of the ophthalmic spectacle lens 10L.
  • a plurality of reference points are set on the right-eye spectacle lens 10R.
  • Such reference points include, for example, an optical center CR, a distance reference point FR, and a near reference point NR, as shown in FIG.
  • the optical center CR is the design center reference point.
  • the distance reference point FR is a measurement reference point for measuring the distance power (refractive power suitable for distance vision) in the right eye distance portion 11R.
  • the near reference point NR is a measurement reference point for measuring the near dioptric power (refractive power suitable for near vision) in the right eye near vision portion 12R.
  • the left eye spectacle lens 10L is provided with a plurality of reference points such as an optical center CL, a distance reference point FL, and a near reference point NL (see FIG. 3). reference).
  • a “diopter” (unit: diopter (D)) may be used as a numerical value representing refractive power.
  • the power specified by the prescription value is called “prescription power”
  • the power change with respect to the distance power is called “addition power”.
  • FIG. 4 shows a manufacturing system 50 for the spectacle lens 10 .
  • the manufacturing system 50 includes a spectacle lens 10 design device 60 , a processing machine control device 80 , and a spectacle lens processing machine 85 , as shown in FIG. 4 .
  • the arrows in FIG. 4 indicate the flow of the design data of the spectacle lens 10. As shown in FIG. Also, the dashed arrows in FIG. 4 indicate that measurement data can be transmitted.
  • the spectacle lens 10 design device 60 includes a measurement module 100 and a design module 61 that designs the spectacle lens 10 using the measurement data transmitted from the measurement module 100 .
  • the design module 61 includes an input section 62 , a display section 63 , a communication section 64 , a storage section 65 and a control section 71 .
  • the input unit 62 is configured using an input device such as a keyboard.
  • the input unit 62 receives input of input data such as prescription data of the wearer required for processing in the control unit 71 .
  • the input unit 62 outputs the received input data to the control unit 71 and outputs the data to the storage unit 65 for storage.
  • the input data may be configured to be received by the communication section 64 and output to the control section 71 .
  • the display unit 63 is configured using an image display device such as a liquid crystal monitor.
  • the display unit 63 displays various numerical values of the input data (prescription data of the wearer, etc.) input to the input unit 62, design data of the spectacle lens 10 obtained by the processing in the control unit 71, and the like.
  • the communication unit 64 is configured using a communication device capable of communicating via the Internet or the like.
  • the communication unit 64 transmits design data of the spectacle lens 10 obtained by processing in the control unit 71, receives measurement data transmitted from the measurement module 100, and transmits and receives necessary data as appropriate.
  • the storage unit 65 is configured using a storage device such as a memory or hard disk.
  • the storage unit 65 exchanges data with the control unit 71 , and stores input data input to the input unit 62 , design data of the spectacle lens 10 obtained by processing in the control unit 71 , and data transmitted from the measurement module 100 .
  • Various data such as various measurement data are stored.
  • the control unit 71 is configured using a processing device such as a CPU (Central Processing Unit).
  • the control unit 71 functions as an entity that controls the design module 61, and executes a program stored in the storage unit 65 or a non-volatile memory provided in the control unit 71 to analyze prescription values of the wearer and , various processing including design processing.
  • a processing device such as a CPU (Central Processing Unit).
  • the control unit 71 functions as an entity that controls the design module 61, and executes a program stored in the storage unit 65 or a non-volatile memory provided in the control unit 71 to analyze prescription values of the wearer and , various processing including design processing.
  • the control unit 71 includes a setting unit 72 and an eyeglass lens designing unit 73.
  • the setting unit 72 sets various parameters used in the processing in the spectacle lens design unit 73 based on various measurement data transmitted from the measurement module 100 .
  • Various parameters used in the processing by the spectacle lens designing unit 73 include a distance-use weighted distance, a near-use weighted distance, a distance-use weighted passing point, a near-use weighted passing point, and the like, which will be described later in detail.
  • the spectacle lens design unit 73 designs the spectacle lens 10 by optimization design based on the wearer's prescription data input to the input unit 62 and various parameters set by the setting unit 72 .
  • the processing machine control device 80 controls the spectacle lens processing machine 85 based on the design data of the spectacle lens 10 transmitted from the communication unit 64 of the design device 60 (design module 61).
  • the spectacle lens processing machine 85 manufactures the spectacle lens 10 under the control of the processing machine control device 80 .
  • FIG. 5 is a front view of the measurement module 100.
  • FIG. Measurement module 100 includes spectacle frame 110, right eye lens unit 115R and left eye lens unit 115L, right eye distance measuring device 120R and left eye distance measuring device 120L, right eye sight line measuring device 130R and It includes a left-eye visual axis measuring device 130L, a data processing section 140, a data storage section 145, and a power source (not shown).
  • the rim of the spectacle frame 110 holds the right eye lens portion 115R and the left eye lens portion 115L.
  • a right-eye rangefinder 120R is provided at the upper center of the right rim of the spectacle frame 110 .
  • a left eye distance measuring device 120L is provided at the upper center of the left rim of the spectacle frame 110 .
  • a data processing unit 140, a data storage unit 145, a power source (not shown), and the like are built in the side portion of the spectacle frame 110.
  • the right-eye lens unit 115R may be configured using a prescription lens or may be configured using a non-prescription lens. When a prescription lens is used, a temporary right-eye spectacle lens manufactured based on the prescription power of the right-eye spectacle lens 10R may be used. A right-eye line-of-sight measuring device 130R is provided in the vicinity of the outer peripheral portion of the right-eye lens portion 115R.
  • the left eye lens unit 115L may be configured using a lens with prescription or may be configured using a lens without prescription.
  • a temporary left-eye spectacle lens manufactured based on the prescription power of the left-eye spectacle lens 10L may be used.
  • a left eye line-of-sight measuring device 130L is provided in the vicinity of the outer peripheral portion of the left eye lens portion 115L.
  • the right eye distance measuring device 120R measures the distance to the measurement target while the spectacle frame 110 is worn by the wearer. By providing the right-eye distance measuring device 120R in the upper center of the right rim of the spectacle frame 110, the right-eye distance measuring device 120R can be arranged near the wearer's right eye. It is possible to improve the accuracy of the measurement data used for designing the spectacle lens 10R.
  • the right eye rangefinder 120R is configured using a LiDAR (Light Detection and Ranging) sensor.
  • the right-eye distance measuring instrument 120R has a light irradiation section 121R that irradiates a measurement target with a pulsed laser beam, and a light detection section 123R that detects reflected light from the measurement target.
  • the photodetector 123R may be configured to include an imaging optical system and a TOF (Time Of Flight) image sensor.
  • a TOF image sensor can acquire, as two-dimensional image information, pixel values corresponding to the distance to a reflecting object (measurement object) in the object-side space.
  • the right-eye distance measuring instrument 120R includes a data processing section 140 that obtains the distance to the measurement object based on the reflected light detected by the light detecting section 123R.
  • the data processing unit 140 is included in the right-eye distance measuring device 120R, it is not limited to this. may be made available. Alternatively, the data processing unit may be integrated as part of the TOF image sensor using semiconductor technology or wafer bonding technology, and the TOF image sensor may directly output the two-dimensional distance information.
  • the left-eye distance measuring device 120L measures the distance to the object to be measured while the spectacle frame 110 is worn by the wearer. By providing the left-eye distance measuring device 120L at the upper center of the left rim of the spectacle frame 110, the left-eye distance measuring device 120L can be arranged near the wearer's left eye. The accuracy of measurement data used for designing the spectacle lens 10L can be increased.
  • the left-eye rangefinder 120L is configured in the same manner as the right-eye rangefinder 120R, and has a light irradiation section 121L and a light detection section 123L.
  • the photodetector 123L may be configured to include an imaging optical system and a TOF image sensor.
  • a TOF image sensor can acquire, as two-dimensional image information, pixel values corresponding to the distance to a reflecting object (measurement object) in the object-side space.
  • the left eye distance measuring device 120L includes a data processing unit 140 that obtains the distance to the measurement object based on the reflected light detected by the light detection unit 123L.
  • the data processing unit 140 is included in the left-eye distance measuring device 120L, the configuration is not limited to this. may be made available. Alternatively, the data processing unit may be integrated as part of the TOF image sensor using semiconductor technology or wafer bonding technology, and the TOF image sensor may directly output the two-dimensional distance information.
  • the right-eye line-of-sight measuring device 130R measures the line-of-sight direction of the right eye of the wearer wearing the spectacle frame 110 .
  • the right-eye line-of-sight measuring device 130R has a plurality of light-emitting units 131R made up of LED (Light Emitting Diode) lamps, etc., and an eye camera unit 133R that captures the pupil of the right eye illuminated by the light-emitting units 131R.
  • the right-eye sight line measuring device 130R includes a data processing unit 140 that obtains the direction of the sight line of the right eye based on the image data captured by the eye camera unit 133R.
  • the data processing unit 140 is included in the right-eye line-of-sight measuring device 130R, the present invention is not limited to this. may be made available.
  • the left eye line-of-sight measuring device 130L measures the line-of-sight direction of the left eye of the wearer wearing the spectacle frame 110 .
  • the left-eye sightline measuring device 130L has a plurality of light-emitting units 131L made up of LED lamps or the like, and an eye camera unit 133L that captures the pupil of the left eye illuminated by the light-emitting units 131L.
  • the left-eye sight line measuring device 130L includes a data processing unit 140 that obtains the direction of the sight line of the left eye based on the image data captured by the eye camera unit 133L.
  • the data processing unit 140 is configured to be included in the left-eye line-of-sight measuring device 130L, it is not limited to this, and a processing unit (line-of-sight calculation unit) for obtaining the line-of-sight direction of the left eye is provided separately. may be made available.
  • the data processing unit 140 is configured using a processing device such as a CPU.
  • the data processing unit 140 executes a program stored in a non-volatile memory provided in the data storage unit 145 or the data processing unit 140 to perform processing such as processing for obtaining the distance to the measurement object, processing for obtaining the direction of the line of sight, and the like. I do.
  • the data storage unit 145 is configured using a storage device such as a memory.
  • the data storage unit 145 exchanges data with the data processing unit 140, and stores distance measurement data related to the distance to the measurement object and line-of-sight measurement data related to the line-of-sight direction obtained by the processing in the data processing unit 140. Stores various measurement data.
  • a power source (not shown) is configured using, for example, a lithium ion battery, and includes a right-eye distance measuring device 120R, a left-eye distance measuring device 120L, a right-eye visual-axis measuring device 130R, and a left-eye visual-axis measuring device 130L. , supplies power to the data processing unit 140 and the like.
  • the data processing unit 140 can transmit various measurement data stored in the data storage unit 145 to the communication unit 64 of the design module 61 via the communication cable 150 .
  • the communication cable 150 is configured using, for example, a USB (Universal Serial Bus) cable or the like, and a terminal 151 of the communication cable 150 is detachably engaged with a terminal (not shown) of the communication section 64 of the design module 61. It is designed to be electrically connected.
  • USB Universal Serial Bus
  • FIG. 6 is a plan view showing the measurable range of the left-eye distance measuring device 120L.
  • the measurable range of the right-eye distance measuring device 120R is set in the same manner as the measurable range of the left-eye distance measuring device 120L. Therefore, the measurable range of the left-eye distance measuring device 120L will be described in detail, and the detailed description of the measurable range of the right-eye distance measuring device 120R will be omitted.
  • the measurable range of the left-eye distance measuring device 120L is the left end starting from the position L0 of the left-eye distance measuring device 120L. It is a fan-shaped range from the measurable position L1 to the measurable position L2 on the right end.
  • the measurable range of the left-eye distance measuring device 120L is not limited to the left-right direction and the front-rear direction in FIG. As a result, the left-eye distance measuring instrument 120L can acquire three-dimensional distance measurement data regarding the distance to the object to be measured OB.
  • the object to be measured It is treated as if the distance to the object OB is infinite (infinity).
  • the measurable range of the distance measuring device 120L for the left eye includes the range in which the line of sight of the wearer wearing the spectacle frame 110 extends.
  • the measurement range required for designing an actual spectacle lens is determined by rotating the eyeball of the left eye EL within the measurable range of the left eye distance measuring device 120L. 10L).
  • a line of sight S1 indicates a line of sight when the left eye EL looks at the left end of the left eye lens unit 115L.
  • the line of sight S1a after being refracted by the left eye lens unit 115L is between the left end position S11 of the left eye lens unit 115L and the measurable range of the left eye distance measuring device 120L. It passes through position S12 on the boundary line.
  • a line of sight S2 indicates a line of sight when the left eye EL looks at the right end of the left eye lens unit 115L.
  • the line of sight S2 of the left eye EL is between the right end position S21 of the left eye lens unit 115L and the measurable range of the left eye distance measuring device 120L. It passes through position S22 on the boundary line.
  • the measurement range necessary for designing an actual spectacle lens is divided by the lines of sight S1a and S2a after being refracted by the left-eye lens unit 115L in the measurable range of the left-eye distance measuring device 120L. can be a range. Note that the measurement range required for designing an actual spectacle lens is not limited to the left-right direction and front-rear direction in FIG.
  • the left eye distance measuring device 120L measures only the range delimited by the above-described lines of sight S1a and S2a in the measurable range of the left eye distance measuring device 120L. Thereby, it is possible to shorten the measurement time by the left-eye distance measuring device 120L.
  • the range that can be seen through the left eye lens portion 115L by rotating the eyeball of the left eye EL varies depending on the outer peripheral shape (frame shape) of the left eye lens portion 115L and the design details of the left eye lens portion 115L.
  • the left-eye line-of-sight measuring device 130L (and the right-eye line-of-sight measuring device 130R) measures the direction of the wearer's line of sight, thereby specifying the measurement object OB visually recognized by the wearer, and determining the specified measurement object.
  • Three-dimensional distance measurement data regarding the distance to the OB can be used in the design of spectacle lenses.
  • a line of sight S3 indicates a line of sight when the left eye EL looks at the measurement object OB through the left eye lens unit 115L.
  • the direction of the line of sight S3 of the left eye EL is measured by the left eye line of sight measuring device 130L.
  • the direction of the wearer's line of sight may be measured as a three-dimensional direction vector.
  • the left-eye sight line measuring device 130L can acquire sight line measurement data in three-dimensional directions regarding the direction of the sight line.
  • the line of sight S3 of the left eye EL Of the line of sight S3 of the left eye EL, the line of sight S3a after being refracted by the left eye lens section 115L passes through the intermediate position S31 of the left eye lens section 115L and the position S32 on the measurement object OB. Therefore, it is preferable that the three-dimensional line-of-sight measurement data acquired by the left-eye line-of-sight measuring device 130L be corrected according to the power of the left-eye lens unit 115L. Based on lens data relating to the surface shape, back surface shape, thickness, and outer peripheral shape (frame shape) of the left eye lens portion 115L, the line-of-sight measurement data in the three-dimensional direction may be accurately corrected by ray tracing. Note that the distance between the position S31 of the intermediate portion of the left-eye lens unit 115L and the position S32 on the measurement object OB is the distance to the measurement object OB measured by the left-eye distance measuring device 120L. Become.
  • the measurement module 100 configured as described above is used while the spectacle frame 110 is worn by the wearer. At this time, by disconnecting the terminal 151 of the communication cable 150 from the terminal of the communication unit 64 of the design module 61, the measurement module 100 can be moved to a desired location, for example, a location where the spectacle lens designed by the design module 61 is used ( Specifically, it can be used at the home or workplace of the spectacle lens wearer.
  • the right-eye distance measuring device 120R measures the distance to the measurement object while the spectacle frame 110 is worn by the wearer.
  • the left-eye distance measuring device 120L measures the distance to the measurement target while the spectacle frame 110 is worn by the wearer.
  • the right-eye line-of-sight measuring device 130R measures the line-of-sight direction of the right eye of the wearer wearing the spectacle frame 110 .
  • the left-eye sight line measuring device 130L measures the direction of the sight line of the left eye of the wearer wearing the spectacle frame 110 .
  • Three-dimensional distance measurement data relating to the distance to the measurement object measured by the right-eye distance measuring device 120R and three-dimensional direction distance relating to the distance to the measurement object measured by the left-eye distance measuring device 120L The measurement data is stored in the data storage unit 145 as a plurality of pieces of distance measurement data in chronological order.
  • the three-dimensional line-of-sight measurement data regarding the direction of the line of sight measured by the line-of-sight measuring device 130R for the right eye and the three-dimensional direction of line-of-sight measurement data regarding the direction of the line of sight measured by the line-of-sight measuring device 130L for the left eye are It is stored in the data storage unit 145 as a plurality of line-of-sight measurement data along time series.
  • the terminal 151 of the communication cable 150 is engaged with the terminal of the communication section 64 of the design module 61 for connection.
  • the measurement module 100 is electrically connected to the communication unit 64 of the design module 61 and can transmit measurement data to the design module 61 .
  • the data processing section 140 of the measurement module 100 transmits various measurement data stored in the data storage section 145 to the communication section 64 of the design module 61 via the communication cable 150 .
  • the data processing unit 140 outputs three-dimensional distance measurement data regarding the distance to the measurement object measured by the right-eye distance measuring device 120R and the measurement object measured by the left-eye distance measuring device 120L.
  • the three-dimensional distance measurement data relating to the distance to the design module 61 is transmitted to the communication unit 64 of the design module 61 as a plurality of time-series distance measurement data.
  • the data processing unit 140 also generates three-dimensional line-of-sight measurement data related to the direction of the line of sight measured by the right-eye line-of-sight measuring device 130R and three-dimensional direction related to the direction of the line of sight measured by the left-eye line-of-sight measuring device 130L. is transmitted to the communication unit 64 of the design module 61 as a plurality of pieces of line-of-sight measurement data in chronological order.
  • the spectacle lens 10 is measured by the design module 61 using the distance measurement data regarding the distance (to the object to be measured) and the line-of-sight measurement data regarding the line-of-sight direction transmitted from the data processing unit 140 of the measurement module 100 .
  • the design module 61 By designing , it is possible to design the spectacle lens 10 appropriately according to the usage environment.
  • FIG. 7 is a schematic diagram showing an image representing the schematic shape of the object to be measured OB generated by converting distance measurement data (point cloud data) in three-dimensional directions into mesh data.
  • a right-eye sight line measuring device 130R is provided in the right-eye lens unit 115R
  • a left-eye sight line measuring device 130L is provided in the left-eye lens unit 115L. Therefore, when the distance to the object to be measured is measured by the right-eye distance measuring device 120R and the left-eye distance measuring device 120L, the wearer wearing the spectacle frame 110 uses the right-eye lens unit 115R and the left-eye lens unit 115R. It is possible to know through which part of the lens unit 115L the object to be measured is viewed.
  • a right-eye rangefinder 120R is provided at the upper center of the right rim of the spectacle frame 110
  • a left-eye rangefinder 120L is provided at the upper center of the left rim of the spectacle frame 110.
  • a right-eye rangefinder 120R is provided at the upper center of the right rim of the spectacle frame 110
  • a left-eye rangefinder 120L is provided at the upper center of the left rim of the spectacle frame 110.
  • a left-eye distance measuring device 120L like the measurement module 100a shown in FIG.
  • the right-eye distance measuring device 120R and the left-eye distance measuring device 120L can be easily arranged in a relatively wide portion of the spectacle frame 110 .
  • FIG. 9 is a flow chart showing the flow of the method for manufacturing the spectacle lens 10.
  • the measurement module 100 is used to acquire three-dimensional distance measurement data and line-of-sight measurement data in the usage environment of the spectacle lens 10 (step ST1).
  • step ST2 the setting unit 72 of the design module 61 calculates distance data in the gaze region, which will be described later.
  • the processing for calculating the distance data in the region of interest will be described later in detail.
  • the setting unit 72 of the design module 61 sets the distance data used in designing the spectacle lens 10 (step ST3). Processing for setting distance data used in designing the spectacle lens 10 will be described in detail later.
  • the setting unit 72 of the design module 61 sets the distance focus distance and the near focus distance used in designing the spectacle lens 10 (step ST4).
  • the processing for setting the far-use weighted distance and the near-use weighted distance will be described later in detail.
  • the setting unit 72 of the design module 61 sets the distance-focused passing point and the near-focused passing point used in the design of the spectacle lens 10 (step ST5). Processing for setting the distance-use weighted passage point and the near-use weighted passage point will be described later in detail.
  • the spectacle lens designing section 73 of the design module 61 uses the distance focus distance, the near focus distance, the distance focus passing point, and the near focus passing point set in the previous steps ST4 and ST5 to design the spectacle lens. 10 are designed (step ST6).
  • the processing for designing the spectacle lens 10 will be described later in detail.
  • the spectacle lens processing machine 85 manufactures the spectacle lens 10 under the control of the processing machine control device 80 based on the design data of the spectacle lens 10 designed in step ST6, and ends the process (step ST7).
  • the spectacle lens processing machine 85 manufactures the spectacle lens 10 under the control of the processing machine control device 80 based on the design data of the spectacle lens 10 designed in step ST6, and ends the process (step ST7).
  • each of the above processes is performed on each of the right eye spectacle lens 10R and the left eye spectacle lens 10L.
  • FIG. 10 is a flow chart showing the flow of processing for calculating distance data in the region of interest.
  • distance measurement data at an arbitrary time is acquired from a plurality of (three-dimensional) distance measurement data in time series (step ST201).
  • line-of-sight measurement data at the same time as the above-described arbitrary time is acquired from among a plurality of (three-dimensional direction) line-of-sight measurement data in time series (step ST202).
  • step ST203 Data regarding whether or not a prescription lens is used may be transmitted from the data processing unit 140 of the measurement module 100 to the communication unit 64 of the design module 61 or input from the input unit 62 of the design module 61 . If the determination is YES, that is, if a prescription lens is used, the process proceeds to step ST204.
  • step ST204 it is determined whether or not lens data for correction capable of correcting the line-of-sight measurement data is stored in the storage unit 65.
  • the lens data for correction is lens data relating to the surface shape, back surface shape, thickness, and outer peripheral shape (frame shape) of the left eye lens portion 115L and the right eye lens portion 115R. If the determination is NO, that is, if the lens data for correction is not stored in the storage unit 65, the process proceeds to step ST205.
  • step ST205 based on the prescription power of the spectacle lens 10, the approximate surface shape, back surface shape, thickness, etc. are obtained, and lens data for correction is generated. Then, the generated correction lens data is stored in the storage unit 65, and the process proceeds to step ST206.
  • step ST204 determines whether the lens data for correction is stored in the storage unit 65. If the determination in step ST204 is YES, that is, if the lens data for correction is stored in the storage unit 65, the process proceeds to step ST206.
  • step ST206 based on the correction lens data stored in the storage unit 65, the line-of-sight measurement data acquired in step ST202 is corrected, and the process proceeds to step ST207.
  • step ST207 based on the distance measurement data and line-of-sight measurement data at an arbitrary time, the position of the gaze point P (see FIG. 7) with respect to the measurement object at that time is specified.
  • the gaze point P is a point where the line of sight of the wearer wearing the spectacle frame 110 of the measurement module 100 overlaps with the object to be measured.
  • x is the horizontal coordinate
  • y is the vertical coordinate
  • z is the distance to the measurement object at the position corresponding to the coordinates (x, y).
  • the coordinates (x, y) of the gaze point P and the distance z to the gaze point P are specified based on the three-dimensional distance measurement data and line-of-sight measurement data.
  • a gaze area PA (see FIG. 7) centered on the gaze point P is set (step ST208).
  • the gaze area PA is a circular area centered on the gaze point P on the plane coordinates of coordinates (x, y).
  • the radius of the gaze area PA can be set arbitrarily, it is set, for example, within a range of 2 mm to 8 mm on the plane coordinates of coordinates (x, y).
  • the range of 2 mm to 8 mm corresponds to the range in which the radius of the human pupil (pupil diameter) changes.
  • the gaze A radius of the area PA may be set.
  • the average value of the distance z to the measurement object in the gaze area PA is calculated (step ST209). This makes it possible to reduce the measurement error of the distance z to the measurement object, even if the position of the gaze point P is at a location where the shape of the measurement object greatly changes (for example, the edge of the measurement object). .
  • the distance measurement data corresponding to the position in the gaze area PA is extracted, and the average value of the distance z in the extracted distance measurement data is calculated.
  • the data of the average value of the calculated distances z is held as the distance data in the gaze area, and the process ends.
  • the distance data in the region of interest is calculated based on a plurality of time-series distance measurement data and the distance measurement data, and is stored in the data storage unit 145 as a plurality of time-series distance data.
  • FIG. 11 is a flow chart showing the flow of processing for setting distance data used in designing the spectacle lens 10 .
  • time-series distance data is obtained based on the distance data in the region of interest calculated in step ST2 (step ST301).
  • the value (average value) of the distance z in the region of interest is plotted in time series, and each plot is connected by linear interpolation.
  • the data of each plot arranged in time series is held as time-series distance data.
  • step ST302 Fourier transform is performed on the time-series distance data obtained in step ST301 (step ST302).
  • step ST303 based on the time-series distance data subjected to the Fourier transform, the high-frequency component of the distance z that changes in time series is identified (step ST303).
  • step ST304 time-series distance data from which the high-frequency components specified in step ST303 are removed is generated (step ST304).
  • the distance data used in designing the spectacle lens 10 is set by, for example, data analysis processing in the setting unit 72, and the processing ends.
  • FIG. 12 is a graph showing an example of time-series distance data.
  • the horizontal axis of the graph in FIG. 12 indicates the elapsed time t after the measurement using the measurement module 100 started.
  • the vertical axis of the graph in FIG. 12 indicates the value (average value) of the distance z in the gaze area.
  • the elapsed time t is around 1500 ms (the portion surrounded by the circle C1 in FIG. 12) and when the elapsed time t is around 11000 ms (the portion surrounded by the circle C2 in FIG. 12)
  • the value of the distance z is not used in the design of the spectacle lens 10 due to the short gaze time. Filtering is performed on the time series distance data by removing the high frequency component of the distance z that changes in time series.
  • FIG. 13 is a graph showing an example of time-series distance data with high-frequency components removed.
  • the horizontal and vertical axes of the graph in FIG. 13 are the same as the horizontal and vertical axes of the graph in FIG.
  • the numerical data of 500 cm and the numerical data of 50 cm are held as the distance data used in designing the spectacle lens 10 .
  • two types of numerical data are held as distance data used in designing the spectacle lens 10, but more types of numerical data are used in designing the spectacle lens 10. It may be held as distance data to be used.
  • the spectacle lens 10 is also called a progressive power lens.
  • progressive-power lenses such as a near-far type, a middle-near type, and a near-near type.
  • Types of progressive addition lenses are classified according to which position in the lens makes any given short distance appear clear.
  • the near-term type is used when looking at a book, smartphone, laptop computer, etc. within a distance range of 30 cm to 1 m.
  • the medium-near type is used when viewing laptop computers, desktop computer monitors, televisions, etc., within a distance range of 1 m to 2 m.
  • the perspective type is used for viewing desktop computer monitors, televisions, landscapes, etc., within a distance range of 2m to infinity.
  • FIG. 14A is a graph showing a first example of an addition curve in a near-far type spectacle lens (addition: +2.00 [D]).
  • the horizontal axis of the graph in FIG. 14A indicates the coordinate (y) with reference to the optical center of the spectacle lens.
  • the vertical axis of the graph in FIG. 14(A) indicates addition.
  • FIG. 14B is a graph showing a second example of an addition curve in a near-far type spectacle lens (addition: +2.00 [D]).
  • the horizontal and vertical axes of the graph in FIG. 14(B) are the same as the horizontal and vertical axes of the graph in FIG. 14(A). From FIGS. 14(A) and 14(B), it can be seen that there is a difference in the characteristics of the addition power even with the same distance type spectacle lens design.
  • the optimum spectacle lens for the wearer by selecting the optimum design type from a plurality of spectacle lens design types. For example, based on the line-of-sight measurement data in the three-dimensional direction, it is possible to determine which position of the spectacle lens the line of sight (a light ray passing through the line of sight) passes through, that is, the position of the passing point of the line of sight on the spectacle lens. As a result, the required addition at the position of the line-of-sight passage point on the spectacle lens can be obtained based on the distance data and the line-of-sight measurement data set in the previous step ST3.
  • a curve plotting the required addition (hereinafter sometimes referred to as a required addition curve) is compared with the addition curves of a plurality of design types, and the addition curve that overlaps with the required addition curve in many places can be selected as the optimal design type. It should be noted that the determination of whether or not there are many points that overlap with the required addition curve is based on the required addition at the position of the passing point of a certain line of sight on the required addition curve and the addition at the position of the passing point on the addition curve. It is possible to make a determination based on the cumulative total of the difference from the degree.
  • FIGS. 15 and 16 show examples of addition power distribution and astigmatism distribution in near-far type spectacle lenses with the same prescription power.
  • FIG. 15 shows addition distribution and astigmatism distribution in the left-eye spectacle lens 10L when designed by a design type called soft design.
  • soft design When designing by a design type called soft design, the area clearly visible in the distance portion and the near portion of the spectacle lens is narrow, but the density of astigmatism contour lines on the left and right of the spectacle lens is low. Therefore, when an object is viewed through the left or right portion of the spectacle lens, distortion is relatively small, resulting in a mild appearance.
  • FIG. 16 shows the addition distribution and the astigmatism distribution in the left-eye spectacle lens 10L when designed by a design type called hard design.
  • a design type called hard design the area clearly visible is wide in the distance portion and the near portion of the spectacle lens, but the density of contour lines of astigmatism is high on the left and right sides of the spectacle lens. Therefore, the distortion when viewing an object through the left or right portion of the spectacle lens is relatively large.
  • the required addition at the position of the line-of-sight passage point on the spectacle lens can be obtained based on the distance data and the line-of-sight measurement data set in the previous step ST3.
  • the distribution obtained by plotting the required addition of the spectacle lens is compared with the distribution of the addition of the spectacle lenses of a plurality of design types to determine the required addition.
  • the optimum design type it is possible to select the optimum design type to have a distribution of additions with many points of overlap with the distribution. As to whether or not there are many places where the required addition distribution overlaps, the required addition at the position of the passing point of the line of sight in the spectacle lens and the position of the passing point in the spectacle lens of each design type It is possible to make the determination based on the accumulated difference from the degree of addition.
  • a region surrounded by a trapezoid C3 shown in FIGS. 15 and 16 is a region where there is a passing point of the line of sight when gazing at a point in the vicinity of the distance z value of 50 cm in the spectacle lens.
  • the difference between the necessary addition at the position of a passing point of a certain line of sight in the spectacle lens and the addition at the position of the passing point in the spectacle lens of each design type in the region surrounded by the trapezoid C3 in the spectacle lens may be calculated, and it may be determined whether or not there are many points that overlap with the distribution of the required addition based on the accumulated difference in the area surrounded by the trapezoid C3 in the spectacle lens. .
  • the distribution of astigmatism in spectacle lenses of a plurality of design types the sum of the astigmatism values at the positions of the passage points of each line of sight in the spectacle lenses is calculated, and the distribution of the spectacle lenses of a plurality of design types is obtained. From among them, it is possible to select the optimum design type that has an astigmatism distribution with a small cumulative value of astigmatism.
  • a region surrounded by a rectangle C4 shown in FIGS. 15 and 16 is a region in which there is a line-of-sight passing point when gazing at a point in the vicinity of a distance z value of 500 cm in the spectacle lens.
  • the sum of the astigmatism values at the positions of the passage points of each line of sight in the area surrounded by the rectangle C4 in the spectacle lens is obtained, and the sum of the astigmatism values is obtained from spectacle lenses of a plurality of design types. You may choose the thing which has distribution of little astigmatism. As a result, it is possible to reduce the burden of the process of obtaining the cumulative value of the astigmatism.
  • FIG. 17 is a flow chart showing the flow of processing for setting the far-use weighted distance and the near-use weighted distance.
  • the values of the distance z included in the distance data set in step ST3 are plotted in order of distance (step ST401).
  • the range centered on the value of the distance z plotted in step ST401 (hereinafter referred to as the set distance range) is expanded by 1 cm vertically (step ST402).
  • step ST403 it is determined whether or not all the set distance ranges centered on the value of the distance z plotted in step ST401 overlap, or whether or not each set distance range reaches 25 cm above and below (step ST403). If the determination is NO, that is, if the set distance ranges do not all overlap and the set distance ranges do not reach 25 cm vertically, the process of step ST402 is repeated.
  • step ST404 the first weighted distance is set based on each set distance range, and the process proceeds to step ST405.
  • the distance range in which the set distance ranges overlap the most is specified, and the median value (distance z) in the specified distance range is set as the first weighted distance.
  • step ST405 it is determined whether or not there is a distance range that is 25 cm or more away from the first weighted distance and overlaps each set distance range. If the determination is YES, that is, if there is a distance range that is 25 cm or more away from the first weighted distance and the set distance ranges overlap, the process proceeds to step ST406.
  • step ST406 a second weighted distance is set based on a distance range that is 25 cm or more away from the first weighted distance and the set distance ranges overlap, and the process proceeds to step ST407.
  • the median value (distance z) in the distance range that is 25 cm or more away from the first weighted distance and where the set distance ranges overlap is set as the second weighted distance.
  • step ST405 determines whether there is no distance range that is 25 cm or more away from the first weighted distance and the set distance ranges overlap.
  • step ST407 of the first weighted distance and the second weighted distance, the far weighted distance is held as the far weighted distance, and the short weighted distance is held as the short weighted distance, and the process ends.
  • FIG. 20 shows the result of setting the far-use weighted distance and the near-use weighted distance in the example shown in FIG. 18(C). Note that when the second weighted distance is not set, the first weighted distance is held as the distance weighted distance.
  • FIG. 21 is a flow chart showing the flow of processing for setting the distance-use weighted passing point and the near-use weighted passing point.
  • step ST501 it is determined whether or not there is distance data of the same distance as the weighted distance for far use and the weighted distance for near use set in step ST4 (step ST501). If the determination is NO, that is, if there is no distance data of the same distance as the far-use weighted distance and the near-use weighted distance, the process proceeds to step ST502.
  • step ST502 the ranges of the distance focus distance and the focus distance for near focus are expanded by 1 cm each above and below, and the process returns to step ST501.
  • step ST501 determines whether there is distance data of the same distance as the distance focus distance and the focus distance for near use.
  • the process proceeds to step ST503.
  • a line-of-sight passing point (hereinafter referred to as a far-use passing point T1) in the spectacle lens when the same distance as the distance-use weighted distance is measured
  • a line-of-sight passing point on the spectacle lens when the same distance as the distance is measured (hereinafter referred to as a near passing point T2) is plotted on the plane coordinates of the spectacle lens.
  • step ST504 it is determined whether or not there are a plurality of at least one of the far-use passing point T1 and the near-use passing point T2. If the determination is YES, that is, if there are a plurality of at least one of the far-use passing point T1 and the near-use passing point T2, the process proceeds to step ST505. In step ST505, if there are a plurality of distance passing points T1, as shown in FIG. Set on the plane coordinates of the lens. When there are a plurality of near passing points T2, a near passing area TA2 centered on the near passing points T2 is set on the plane coordinates of the spectacle lens for the plurality of near passing points T2.
  • the distance passing area TA1 is a circular area centered on the distance passing point T1 on the plane coordinates of the spectacle lens.
  • the near vision passing area TA2 is a circular area centered at the near vision passing point T2 on the plane coordinates of the spectacle lens.
  • the radii of the far-use passing area TA1 and the near-use passing area TA2 are set to values corresponding to the radius of the human pupil (pupil diameter).
  • step ST506 it is determined whether or not there is an overlapping area in each of the distance passing area TA1 and the near passing area TA2. If the determination is NO, that is, if the distance passing area TA1 and the near passing area TA2 do not overlap each other, the process proceeds to step ST507. In step ST507, the radius of the distance passing area TA1 and the radius of the near passing area TA2 are increased by 1 cm, and the process returns to step ST506.
  • step ST506 determines whether the distance passing area TA1 and the near passing area TA2 overlap each other as shown in FIG. 21C.
  • step ST508 a distance-use weighted passing point T1* is set based on the overlapping area of the plurality of distance-use passing areas TA1
  • a near-use weighted passing point T2* is set based on the overlapping area of the plurality of near-use passing areas TA2.
  • step ST509 At this time, for example, as shown in FIG.
  • the center point (for example, corresponding to the centroid of the area) is obtained by connecting the centers of the overlapping distance passing areas TA1 (that is, the distance passing point T1) with a straight line. point) is set as the distance-use weighted passing point T1*.
  • the central point (for example, the point corresponding to the centroid of the area) obtained by connecting the centers (that is, the near passing point T2) of the overlapping near passing areas TA2 with a straight line is defined as the near focused passing point T2.
  • step ST504 determines whether there is only one distance passing point T1 and only one near passing point T2 are set as the distance-use weighted passing points. and the near-focused passing point, and the process proceeds to step ST509.
  • step ST509 the distance-focused passing point, the near-focused passing point, multiple overlapping distance-use passing areas TA1, and multiple overlapping near-use passing areas TA2 are retained, and the process ends.
  • FIG. 23 is a flow chart showing the upstream side of the flow of processing for designing the spectacle lens 10 .
  • FIG. 24 is a flow chart showing the downstream side of the flow of processing for designing the spectacle lens 10 .
  • step ST601 determines whether the far use weighted distance is not infinity. If the determination in step ST601 is NO, that is, if the far use weighted distance is not infinity, the process proceeds to step ST603.
  • step ST603 a predetermined power is added to the prescribed power so that the power of the distance-focused passing point can be clearly seen at a distance other than infinity, that is, the power can be clearly seen at a distance other than infinity. to set the design parameters, and proceed to step ST604.
  • step ST604 it is determined whether or not a near-focused distance is set. If the determination is YES, that is, if the near focus distance is set, the process proceeds to step ST605. In step ST605, design is made so that the power of the near-focused passing point is a power that can be clearly seen at the near-focused distance, that is, by adding a predetermined power to the prescribed power so that it can be clearly seen at the near-focused distance. A parameter is set, and it progresses to step ST606.
  • step ST606 if there is a line-of-sight passage point in the progressive portion (right eye progressive portion 13R, left eye progressive portion 13L) between the distance-use weighted passage point and the near-use weighted passage point, Find the frequency that can be seen clearly at the distance from the line of sight passage point in the part.
  • next step ST607 from the powers obtained in the previous steps ST602, ST603, ST605, and ST606, the necessary addition power at the position of the distance-focused passing point, the near-focused passing point, and the line-of-sight passing point in the progressive portion is calculated.
  • the plots of the required additions obtained are connected by linear interpolation to generate a required addition curve.
  • next step ST608 designing to obtain the power of the distance-focused passing point and the power of the near-focused passing point obtained in the previous steps ST602, ST603, and ST605 in the combination of the spectacle lens product type and surface shape.
  • For the type generate an addition curve.
  • the required addition curve generated in the previous step ST607 is compared with the addition curve of each design type generated in the previous step ST608, and points are assigned to each design type. proceed to At this time, a high score is given to a design type having an addition curve that overlaps with the required addition curve in many places.
  • step ST604 determines whether the near focus distance is set. If the determination in step ST604 is NO, that is, if the near focus distance is not set, the process proceeds to step ST610.
  • step ST610 in a plurality of overlapping distance passing areas TA1 and a plurality of overlapping near passing areas TA2 held when setting the distance-use weighted passing points, Find the frequency clearly visible at a distance. Then, from the determined power, the required addition at the position of the line of sight passage point in the multiple overlapping distance passing areas TA1 and the multiple overlapping near vision passing areas TA2 is found. generates the distribution of .
  • the design is such that the power of the distance-focused passing point and the power of the near-focused passing point obtained in the previous steps ST602, ST603, and ST605 are obtained in the combination of the spectacle lens product type and surface shape. Generate a distribution of additions for the type.
  • the required addition distribution generated in the previous step ST610 is compared with the addition distribution of each design type generated in the previous step ST611 to give points to each design type.
  • a high score is given to a design type having a distribution of addition that overlaps the distribution of required addition in many places.
  • a high score may be given to a design type having an addition distribution that overlaps with the necessary addition distribution in a plurality of overlapping near-use passing areas TA2.
  • a high score is given to a design type that has a distribution of additions that overlaps the required addition distribution in many areas of the multiple overlapping distance passing areas TA1 and the multiple overlapping near-use passing areas TA2. may be given.
  • next step ST613 a design that obtains the power of the distance-focused passing point and the power of the near-focused passing point obtained in the previous steps ST602, ST603, and ST605 in the combination of the spectacle lens product type and surface shape. Generate a distribution of astigmatism for the type.
  • points are given to each design type based on the astigmatism distribution of each design type generated in the previous step ST613.
  • a high score is given to a design type having an astigmatism distribution in which the cumulative total of astigmatism values at the positions of the passage points of each line of sight in the multiple overlapping distance pass areas TA1 is small. give it. It is to be noted that in the multiple overlapping distance passing areas TA1 and the multiple overlapping near vision passing areas TA2, the total astigmatism value at the position of the passing point of each line of sight is small.
  • a higher score may be given to a design type that has a distribution.
  • a design type to be used in designing the spectacle lens 10 is selected from among a plurality of design types, and the process ends. do.
  • the design type with the highest total points given in steps ST609, ST612, and ST614 may be selected as the design type used in designing the spectacle lens 10.
  • FIG. 1 data related to each design type (for example, distribution of addition power, distribution of astigmatism, etc.) and points given to the design type are presented to the wearer of the spectacle lens 10, and the spectacle lens 10 wearer and The design type used in designing the spectacle lens 10 may be selected through communication.
  • the present embodiment using the distance measurement data regarding the distance (to the object to be measured) and the line-of-sight measurement data regarding the line-of-sight direction transmitted from the data processing unit 140 of the measurement module 100, It is possible to design an appropriate spectacle lens 10 accordingly.
  • the distance measurement data and line-of-sight measurement data transmitted from the data processing unit 140 of the measurement module 100 are used to determine the distance portion (area TA1 of a plurality of mutually overlapping distance passage areas) or the near portion of the spectacle lens. It is possible to obtain the necessary addition power in each part (regions of the plurality of near vision passing regions TA2 overlapping each other), and to design the spectacle lens 10 appropriately according to the use environment.
  • the spectacle lens 10 can be appropriately designed according to the use environment.
  • the setting unit 72 of the design module 61 specifies the position of the gaze point, but it is not limited to this.
  • the position of the gaze point may be specified by communicating with the wearer of the spectacle lens 10 using the distance measurement data and line-of-sight measurement data at any given time. This makes it possible to appropriately identify the position of the gaze point that reflects the desire of the wearer of the spectacle lens 10 .
  • the setting unit 72 of the design module 61 sets the distance data used in designing the spectacle lens 10, but it is not limited to this.
  • distance data used in designing the spectacle lens 10 may be set by communicating with the wearer of the spectacle lens 10 using the aforementioned time-series distance data. This makes it possible to appropriately set the distance data used in the design of the spectacle lens 10 that reflects the desires of the wearer of the spectacle lens 10 .
  • three-dimensional distance measurement data and line-of-sight measurement data are acquired in the actual spectacle lens usage environment. Therefore, if a designed spectacle lens is used without manufacturing a prototype spectacle lens, how will the outline shape of the object to be measured OB generated by converting it into the above-mentioned mesh data be distorted or blurred? It is possible to perform a simulation regarding the feeling of use of the spectacle lens, such as whether the eyeglass lens is used. This makes it possible to perform simulations for a plurality of design types of spectacle lenses and visually evaluate the results of the simulations together with spectacle lens wearers.
  • FIG. 25 schematically shows the result of a simulation on the usability of the right-eye spectacle lens 10R and the left-eye spectacle lens 10L designed according to a certain design type.
  • a plurality of design types that can obtain the power of the distance-focused passing point and the power of the near-focused passing point obtained in the above-described steps ST602, ST603, and ST605 among combinations of product types and surface shapes of spectacle lenses. It is possible to check how the outline shape of the object to be measured OB is distorted or blurred for each of the spectacle lenses designed in . Then, it becomes possible to select a design type that matches the actual usage environment from among the plurality of design types that have been confirmed.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Health & Medical Sciences (AREA)
  • Eyeglasses (AREA)

Abstract

A measurement module (100) capable of transmitting measurement data to a design module for designing a spectacle lens comprises: a spectacle frame (110); a lens part (115L, 115R) held by the spectacle frame (110); a distance measuring instrument (120L, 120R) that is provided on the spectacle frame (110) and acquires measurement data relating to the distance to an object to be measured in a state where the spectacle frame (110) is worn by a wearer; a line-of-sight measuring instrument (130L, 130R) that is provided on the lens part (115L, 115R), and acquires measurement data relating to the direction of the line of sight of the wearer wearing the spectacle frame (110); and a processing unit (140) that transmits the measurement data relating to the distance acquired by the distance measuring instrument (120L, 120R) and the measurement data relating to the direction of the line of sight acquired by the line-of-sight measuring instrument (130L, 130R).

Description

眼鏡レンズの製造方法、眼鏡レンズの設計装置、および計測モジュールSpectacle lens manufacturing method, spectacle lens design device, and measurement module
 本発明は、眼鏡レンズの製造方法、眼鏡レンズの設計装置、および計測モジュールに関する。 The present invention relates to a spectacle lens manufacturing method, a spectacle lens design device, and a measurement module.
 従来から、例えば特許文献1や特許文献2に記載されているような設計および製造が行われる眼鏡レンズが知られている。このような眼鏡レンズにおいては、使用環境に応じて適切な眼鏡レンズの設計を行うことが求められている。 Conventionally, spectacle lenses designed and manufactured as described in Patent Document 1 and Patent Document 2, for example, are known. For such spectacle lenses, it is required to appropriately design the spectacle lenses according to the use environment.
特開2013-50556号公報JP 2013-50556 A 国際公開第2016/190392号パンフレットInternational Publication No. 2016/190392 pamphlet
 本発明の第一の態様は、計測モジュールから送信された計測データを用いて眼鏡レンズの設計を行い、前記設計に基づいて眼鏡レンズを製造する眼鏡レンズの製造方法であって、前記計測モジュールは、眼鏡フレームと、前記眼鏡フレームに保持されたレンズ部と、前記眼鏡フレームに設けられ、前記眼鏡フレームが装用者に装用された状態で計測対象物までの距離に関する計測データを取得する距離計測器と、前記レンズ部に設けられ、前記眼鏡フレームを装用した装用者の視線の方向に関する計測データを取得する視線計測器と、前記距離計測器により取得された前記距離に関する計測データおよび、前記視線計測器により取得された前記視線の方向に関する計測データを送信する処理部とを備え、前記処理部から送信された前記距離に関する計測データおよび前記視線の方向に関する計測データを用いて、前記眼鏡レンズの設計を行う眼鏡レンズの製造方法である。 A first aspect of the present invention is a spectacle lens manufacturing method for designing a spectacle lens using measurement data transmitted from a measurement module and manufacturing the spectacle lens based on the design, wherein the measurement module a spectacle frame, a lens portion held by the spectacle frame, and a distance measuring device provided in the spectacle frame for acquiring measurement data relating to a distance to an object to be measured while the spectacle frame is worn by a wearer. and a line-of-sight measuring device provided in the lens unit for acquiring measurement data relating to the direction of the line of sight of the wearer wearing the spectacle frame, measurement data relating to the distance acquired by the distance measuring device, and the line-of-sight measurement. and a processing unit that transmits measurement data related to the direction of the line of sight acquired by the device, and designing the spectacle lens using the measurement data related to the distance and the measurement data related to the direction of the line of sight transmitted from the processing unit. It is a manufacturing method of a spectacle lens that performs
 本発明の第二の態様は、眼鏡レンズの設計を行う設計モジュールと、前記設計モジュールに計測データを送信可能な計測モジュールとを備える眼鏡レンズの設計装置であって、前記計測モジュールは、眼鏡フレームと、前記眼鏡フレームに保持されたレンズ部と、前記眼鏡フレームに設けられ、前記眼鏡フレームが装用者に装用された状態で計測対象物までの距離に関する計測データを取得する距離計測器と、前記レンズ部に設けられ、前記眼鏡フレームを装用した装用者の視線の方向に関する計測データを取得する視線計測器と、前記距離計測器により取得された前記距離に関する計測データおよび、前記視線計測器により取得された前記視線の方向に関する計測データを送信する処理部とを備える眼鏡レンズの設計装置である。 A second aspect of the present invention is a spectacle lens designing device comprising a design module for designing a spectacle lens and a measurement module capable of transmitting measurement data to the design module, wherein the measurement module comprises a spectacle frame. a lens portion held by the spectacle frame; a distance measuring device provided in the spectacle frame for acquiring measurement data regarding a distance to a measurement object while the spectacle frame is worn by a wearer; A line-of-sight measuring device provided in the lens unit for acquiring measurement data relating to the direction of the line of sight of the wearer wearing the spectacle frame; a spectacle lens designing device including a processing unit that transmits measurement data related to the direction of the line of sight that has been obtained.
 本発明の第三の態様は、眼鏡レンズの設計を行う設計モジュールに計測データを送信可能な計測モジュールであって、眼鏡フレームと、前記眼鏡フレームに保持されたレンズ部と、前記眼鏡フレームに設けられ、前記眼鏡フレームが装用者に装用された状態で計測対象物までの距離に関する計測データを取得する距離計測器と、前記レンズ部に設けられ、前記眼鏡フレームを装用した装用者の視線の方向に関する計測データを取得する視線計測器と、前記距離計測器により取得された前記距離に関する計測データおよび、前記視線計測器により取得された前記視線の方向に関する計測データを送信する処理部とを備える計測モジュールである。 A third aspect of the present invention is a measurement module capable of transmitting measurement data to a design module for designing a spectacle lens, comprising a spectacle frame, a lens portion held by the spectacle frame, and a lens portion provided in the spectacle frame. a distance measuring device that acquires measurement data relating to a distance to an object to be measured while the spectacle frame is worn by the wearer; a line-of-sight measuring device that acquires measurement data relating to the line-of-sight measurement device; is a module.
本実施形態に係る一対の眼鏡レンズを示す模式図である。It is a schematic diagram showing a pair of spectacle lenses according to the present embodiment. 右眼用眼鏡レンズを示す模式図である。It is a schematic diagram which shows the spectacle lens for right eyes. 左眼用眼鏡レンズを示す模式図である。It is a schematic diagram which shows the spectacle lens for left eyes. 眼鏡レンズの製造システムを示すブロック図である。1 is a block diagram showing a spectacle lens manufacturing system; FIG. 計測モジュールの正面図である。It is a front view of a measurement module. 距離計測器の計測可能範囲を示す平面図である。It is a top view which shows the measurable range of a distance measuring device. 計測対象物の概略形状を表す画像を示す模式図である。It is a schematic diagram which shows the image showing the schematic shape of a measurement target. 計測モジュールの変形例を示す正面図である。It is a front view which shows the modification of a measurement module. 眼鏡レンズの製造方法の流れを示すフローチャートである。It is a flowchart which shows the flow of the manufacturing method of a spectacle lens. 注視領域における距離データの算出を行う処理の流れを示すフローチャートである。4 is a flow chart showing the flow of processing for calculating distance data in a region of interest; 眼鏡レンズの設計で用いる距離データの設定を行う処理の流れを示すフローチャートである。10 is a flow chart showing the flow of processing for setting distance data used in designing spectacle lenses. 時系列の距離データの一例を示すグラフである。7 is a graph showing an example of time-series distance data; 高周波成分を除去した時系列の距離データの一例を示すグラフである。7 is a graph showing an example of time-series distance data from which high-frequency components are removed; 図14(A)は加入度曲線の第1の例を示すグラフであり、図14(B)は加入度曲線の第2の例を示すグラフである。FIG. 14A is a graph showing a first example of the addition curve, and FIG. 14B is a graph showing a second example of the addition curve. 眼鏡レンズにおける加入度の分布および非点収差の分布の第1の例を示す図である。FIG. 3 is a diagram showing a first example of addition distribution and astigmatism distribution in a spectacle lens; 眼鏡レンズにおける加入度の分布および非点収差の分布の第2の例を示す図である。FIG. 10 is a diagram showing a second example of addition distribution and astigmatism distribution in a spectacle lens; 遠用重点距離および近用重点距離の設定を行う処理の流れを示すフローチャートである。4 is a flow chart showing the flow of processing for setting a far-use weighted distance and a near-use weighted distance. 遠用重点距離および近用重点距離を設定する過程を(A)~(C)の順に示す模式図である。4A to 4C are schematic diagrams showing the process of setting a far-use weighted distance and a near-use weighted distance in the order of (A) to (C); 遠用重点距離および近用重点距離を設定した結果を示す模式図である。FIG. 10 is a schematic diagram showing a result of setting a far-use weighted distance and a near-use weighted distance; 遠用重点通過点および近用重点通過点の設定を行う処理の流れを示すフローチャートである。4 is a flow chart showing the flow of processing for setting a distance-use weighted passing point and a near-use weighted passing point; 遠用重点通過点および近用重点通過点を設定する過程を(A)~(C)の順に示す模式図である。4A to 4C are schematic diagrams showing the process of setting a distance-use weighted passing point and a near-use weighted passing point in the order of (A) to (C); 遠用重点通過点および近用重点通過点を設定した結果を示す模式図である。FIG. 10 is a schematic diagram showing a result of setting a distance-use weighted passing point and a near-use weighted passing point; 眼鏡レンズの設計を行う処理の流れの上流側を示すフローチャートである。10 is a flow chart showing the upstream side of the flow of processing for designing spectacle lenses. 眼鏡レンズの設計を行う処理の流れの下流側を示すフローチャートである。10 is a flow chart showing the downstream side of the flow of processing for designing spectacle lenses. 眼鏡レンズの使用感に関するシミュレーションの一例を示す模式図である。FIG. 10 is a schematic diagram showing an example of a simulation regarding the usability of the spectacle lens;
 以下、本発明に係る好ましい実施形態について説明する。図1に、本実施形態に係る一対の眼鏡レンズ1を模式的に示す。図1に示すように、一対の眼鏡レンズ1は、右眼用眼鏡レンズ10Rと、左眼用眼鏡レンズ10Lとからなる。本実施形態において、右眼用眼鏡レンズ10Rおよび左眼用眼鏡レンズ10Lの総称として単に眼鏡レンズ10と称する場合がある。眼鏡レンズ10は、累進屈折力レンズとも称される。また、眼鏡レンズ10における「上部」、「下部」等の位置関係は、眼鏡レンズ10が眼鏡用に加工される場合において眼鏡を装用したときの位置関係を示すものとする。また、眼鏡レンズ10における上下の位置関係は、図1~図3等の紙面における上下の位置関係と一致するものとする。 Preferred embodiments according to the present invention will be described below. FIG. 1 schematically shows a pair of spectacle lenses 1 according to this embodiment. As shown in FIG. 1, the pair of spectacle lenses 1 includes a right eye spectacle lens 10R and a left eye spectacle lens 10L. In this embodiment, the right-eye spectacle lens 10R and the left-eye spectacle lens 10L may be simply referred to as the spectacle lens 10 as a generic term. The spectacle lens 10 is also called a progressive power lens. Further, the positional relationships such as "upper" and "lower" in the spectacle lens 10 indicate the positional relationship when spectacles are worn when the spectacle lens 10 is processed for spectacles. Also, the vertical positional relationship in the spectacle lens 10 is assumed to match the vertical positional relationship in the paper planes of FIGS. 1 to 3 and the like.
 右眼用眼鏡レンズ10Rは、図1に示すように、右眼用遠用部11Rと、右眼用遠用部11Rと異なる位置に形成される右眼用近用部12Rと、右眼用遠用部11Rと右眼用近用部12Rとの間に形成される右眼用累進部13Rとを有している。右眼用遠用部11Rは、遠方視に適した屈折力を有している。右眼用近用部12Rは、近方視に適した屈折力を有している。右眼用累進部13Rは、右眼用遠用部11Rに近い方から右眼用近用部12Rに近い方へ向かうにつれて、遠方視に適した屈折力から近方視に適した屈折力へと屈折力が連続的に変化するようになっている。 The right-eye spectacle lens 10R includes, as shown in FIG. It has a right eye progressive portion 13R formed between the distance portion 11R and the right eye near portion 12R. The right eye distance portion 11R has a refractive power suitable for distant vision. The right eye near vision portion 12R has a refractive power suitable for near vision. The right-eye progressive portion 13R has a refractive power suitable for far vision to a refractive power suitable for near vision as it goes from near the right eye distance portion 11R to near the right eye near vision portion 12R. and refracting power change continuously.
 図2に、眼鏡用フレームの形状に合わせて加工する前の状態(玉摺り加工前の状態)の右眼用眼鏡レンズ10Rを模式的に示す。図2に示すように、玉摺り加工前の状態の右眼用眼鏡レンズ10Rは、正面視で円形に形成されている。玉摺り加工前の状態の右眼用眼鏡レンズ10Rの上部に右眼用遠用部11Rが形成され、当該右眼用眼鏡レンズ10Rの下部に右眼用近用部12Rが形成され、当該右眼用眼鏡レンズ10Rの中間部に右眼用累進部13Rが形成される。 FIG. 2 schematically shows the spectacle lens 10R for the right eye before processing (before edging) to match the shape of the spectacle frame. As shown in FIG. 2, the right-eye spectacle lens 10R before edging is circular in front view. The right-eye spectacle lens 10R has a right-eye far-distance portion 11R formed in the upper portion thereof before edging, and a right-eye near-distance portion 12R formed in the lower portion of the right-eye spectacle lens 10R. A right-eye progressive portion 13R is formed in the intermediate portion of the eyeglass lens 10R.
 左眼用眼鏡レンズ10Lは、図1に示すように、左眼用遠用部11Lと、左眼用遠用部11Lと異なる位置に形成される左眼用近用部12Lと、左眼用遠用部11Lと左眼用近用部12Lとの間に形成される左眼用累進部13Lとを有している。左眼用遠用部11Lは、遠方視に適した屈折力を有している。左眼用近用部12Lは、近方視に適した屈折力を有している。左眼用累進部13Lは、左眼用遠用部11Lに近い方から左眼用近用部12Lに近い方へ向かうにつれて、遠方視に適した屈折力から近方視に適した屈折力へと屈折力が連続的に変化するようになっている。 The left eye spectacle lens 10L includes, as shown in FIG. It has a left eye progressive portion 13L formed between the distance portion 11L and the left eye near portion 12L. The left eye distance portion 11L has a refractive power suitable for distant vision. The left eye near vision portion 12L has refractive power suitable for near vision. The left-eye progressive portion 13L has a refractive power suitable for far vision to a refractive power suitable for near vision as it goes from the left eye distance portion 11L to the left eye near vision portion 12L. and refracting power change continuously.
 図3に、眼鏡用フレームの形状に合わせて加工する前の状態(玉摺り加工前の状態)の左眼用眼鏡レンズ10Lを模式的に示す。図3に示すように、玉摺り加工前の状態の左眼用眼鏡レンズ10Lは、正面視で円形に形成されている。玉摺り加工前の状態の左眼用眼鏡レンズ10Lの上部に左眼用遠用部11Lが形成され、当該左眼用眼鏡レンズ10Lの下部に左眼用近用部12Lが形成され、当該左眼用眼鏡レンズ10Lの中間部に左眼用累進部13Lが形成される。 FIG. 3 schematically shows the left-eye spectacle lens 10L before processing (before edging) to match the shape of the spectacle frame. As shown in FIG. 3, the left-eye spectacle lens 10L before edging is circular in front view. A left eye spectacle lens 10L has a left eye long distance part 11L formed in the upper part of the left eye spectacle lens 10L before edging, and a left eye near vision part 12L is formed in the lower part of the left eye spectacle lens 10L. A left-eye progressive portion 13L is formed in the intermediate portion of the ophthalmic spectacle lens 10L.
 また、右眼用眼鏡レンズ10Rには、複数の参照点が設定される。このような参照点として、例えば図2に示すように、光学中心CRと、遠用参照点FRと、近用参照点NR等が挙げられる。光学中心CRは、設計上の中心となる参照点である。遠用参照点FRは、右眼用遠用部11Rにおける遠用度数(遠方視に適した屈折力)を測定する際の測定参照点である。近用参照点NRは、右眼用近用部12Rにおける近用度数(近方視に適した屈折力)を測定する際の測定参照点である。左眼用眼鏡レンズ10Lには、右眼用眼鏡レンズ10Rと同様に、光学中心CLと、遠用参照点FLと、近用参照点NL等の複数の参照点が設定される(図3を参照)。本実施形態において、屈折力を表す数値として「度数」(単位:ディオプター(D))を用いる場合がある。また、処方値で指定される度数を「処方度数」と称し、遠用度数に対する度数変化を「加入度」と称する。 Also, a plurality of reference points are set on the right-eye spectacle lens 10R. Such reference points include, for example, an optical center CR, a distance reference point FR, and a near reference point NR, as shown in FIG. The optical center CR is the design center reference point. The distance reference point FR is a measurement reference point for measuring the distance power (refractive power suitable for distance vision) in the right eye distance portion 11R. The near reference point NR is a measurement reference point for measuring the near dioptric power (refractive power suitable for near vision) in the right eye near vision portion 12R. Like the right eye spectacle lens 10R, the left eye spectacle lens 10L is provided with a plurality of reference points such as an optical center CL, a distance reference point FL, and a near reference point NL (see FIG. 3). reference). In this embodiment, a “diopter” (unit: diopter (D)) may be used as a numerical value representing refractive power. Further, the power specified by the prescription value is called "prescription power", and the power change with respect to the distance power is called "addition power".
 次に、眼鏡レンズ10を製造する製造システムについて説明する。図4に、眼鏡レンズ10の製造システム50を示す。この製造システム50は、図4に示すように、眼鏡レンズ10の設計装置60と、加工機制御装置80と、眼鏡レンズ加工機85とを備える。なお、図4中の矢印は、眼鏡レンズ10の設計データの流れを示す。また、図4中の破線の矢印は、計測データの送信が可能であることを示す。 Next, a manufacturing system for manufacturing the spectacle lens 10 will be described. FIG. 4 shows a manufacturing system 50 for the spectacle lens 10 . The manufacturing system 50 includes a spectacle lens 10 design device 60 , a processing machine control device 80 , and a spectacle lens processing machine 85 , as shown in FIG. 4 . The arrows in FIG. 4 indicate the flow of the design data of the spectacle lens 10. As shown in FIG. Also, the dashed arrows in FIG. 4 indicate that measurement data can be transmitted.
 眼鏡レンズ10の設計装置60は、計測モジュール100と、計測モジュール100から送信された計測データを用いて眼鏡レンズ10の設計を行う設計モジュール61とを備える。設計モジュール61は、入力部62と、表示部63と、通信部64と、記憶部65と、制御部71とを備える。入力部62は、キーボード等の入力装置を用いて構成される。入力部62は、制御部71での処理に必要な装用者の処方データ等の入力データの入力を受け付ける。入力部62は、受け付けた入力データを制御部71に出力するとともに、記憶部65に出力して記憶させる。なお、入力データは、通信部64により受信されて制御部71に出力されるように構成されてもよい。 The spectacle lens 10 design device 60 includes a measurement module 100 and a design module 61 that designs the spectacle lens 10 using the measurement data transmitted from the measurement module 100 . The design module 61 includes an input section 62 , a display section 63 , a communication section 64 , a storage section 65 and a control section 71 . The input unit 62 is configured using an input device such as a keyboard. The input unit 62 receives input of input data such as prescription data of the wearer required for processing in the control unit 71 . The input unit 62 outputs the received input data to the control unit 71 and outputs the data to the storage unit 65 for storage. The input data may be configured to be received by the communication section 64 and output to the control section 71 .
 表示部63は、液晶モニタ等の画像表示装置を用いて構成される。表示部63は、入力部62に入力された入力データ(装用者の処方データ等)の各種数値や、制御部71での処理により得られた眼鏡レンズ10の設計データ等を表示する。 The display unit 63 is configured using an image display device such as a liquid crystal monitor. The display unit 63 displays various numerical values of the input data (prescription data of the wearer, etc.) input to the input unit 62, design data of the spectacle lens 10 obtained by the processing in the control unit 71, and the like.
 通信部64は、インターネット等により通信可能な通信装置を用いて構成される。通信部64は、制御部71での処理により得られた眼鏡レンズ10の設計データを送信したり、計測モジュール100から送信された計測データを受信したり、適宜必要なデータを送受信したりする。 The communication unit 64 is configured using a communication device capable of communicating via the Internet or the like. The communication unit 64 transmits design data of the spectacle lens 10 obtained by processing in the control unit 71, receives measurement data transmitted from the measurement module 100, and transmits and receives necessary data as appropriate.
 記憶部65は、メモリやハードディスク等の記憶装置を用いて構成される。記憶部65は、制御部71とデータの授受を行い、入力部62に入力された入力データや、制御部71での処理により得られた眼鏡レンズ10の設計データ、計測モジュール100から送信された各種計測データ等の各種データを記憶する。 The storage unit 65 is configured using a storage device such as a memory or hard disk. The storage unit 65 exchanges data with the control unit 71 , and stores input data input to the input unit 62 , design data of the spectacle lens 10 obtained by processing in the control unit 71 , and data transmitted from the measurement module 100 . Various data such as various measurement data are stored.
 制御部71は、CPU(Central Processing Unit)等の処理装置を用いて構成される。制御部71は、設計モジュール61を制御する動作の主体として機能し、記憶部65または制御部71に設けられる不揮発性メモリに記憶されたプログラムを実行することにより、装用者の処方値の解析や、設計処理を含む各種処理を行う。 The control unit 71 is configured using a processing device such as a CPU (Central Processing Unit). The control unit 71 functions as an entity that controls the design module 61, and executes a program stored in the storage unit 65 or a non-volatile memory provided in the control unit 71 to analyze prescription values of the wearer and , various processing including design processing.
 制御部71は、設定部72と、眼鏡レンズ設計部73とを備える。設定部72は、計測モジュール100から送信された各種計測データに基づいて、眼鏡レンズ設計部73での処理で用いる各種パラメータを設定する。眼鏡レンズ設計部73での処理で用いる各種パラメータは、詳細は後述する遠用重点距離、近用重点距離、遠用重点通過点、近用重点通過点等である。眼鏡レンズ設計部73は、入力部62に入力された装用者の処方データや、設定部72により設定された各種パラメータ等に基づいて、最適化設計により眼鏡レンズ10の設計を行う。 The control unit 71 includes a setting unit 72 and an eyeglass lens designing unit 73. The setting unit 72 sets various parameters used in the processing in the spectacle lens design unit 73 based on various measurement data transmitted from the measurement module 100 . Various parameters used in the processing by the spectacle lens designing unit 73 include a distance-use weighted distance, a near-use weighted distance, a distance-use weighted passing point, a near-use weighted passing point, and the like, which will be described later in detail. The spectacle lens design unit 73 designs the spectacle lens 10 by optimization design based on the wearer's prescription data input to the input unit 62 and various parameters set by the setting unit 72 .
 加工機制御装置80は、設計装置60(設計モジュール61)の通信部64から送信された眼鏡レンズ10の設計データに基づいて、眼鏡レンズ加工機85を制御する。眼鏡レンズ加工機85は、加工機制御装置80の制御により眼鏡レンズ10を製造する。 The processing machine control device 80 controls the spectacle lens processing machine 85 based on the design data of the spectacle lens 10 transmitted from the communication unit 64 of the design device 60 (design module 61). The spectacle lens processing machine 85 manufactures the spectacle lens 10 under the control of the processing machine control device 80 .
 次に、図5を参照しながら、計測モジュール100について説明する。図5は、計測モジュール100の正面図である。計測モジュール100は、眼鏡フレーム110と、右眼用レンズ部115Rおよび左眼用レンズ部115Lと、右眼用距離計測器120Rおよび左眼用距離計測器120Lと、右眼用視線計測器130Rおよび左眼用視線計測器130Lと、データ処理部140と、データ記憶部145と、電源(図示せず)とを備える。 Next, the measurement module 100 will be described with reference to FIG. FIG. 5 is a front view of the measurement module 100. FIG. Measurement module 100 includes spectacle frame 110, right eye lens unit 115R and left eye lens unit 115L, right eye distance measuring device 120R and left eye distance measuring device 120L, right eye sight line measuring device 130R and It includes a left-eye visual axis measuring device 130L, a data processing section 140, a data storage section 145, and a power source (not shown).
 眼鏡フレーム110のリムに、右眼用レンズ部115Rおよび左眼用レンズ部115Lが保持される。眼鏡フレーム110における右側のリムの上部中央に、右眼用距離計測器120Rが設けられる。眼鏡フレーム110における左側のリムの上部中央に、左眼用距離計測器120Lが設けられる。眼鏡フレーム110の側部に、データ処理部140、データ記憶部145、電源(図示せず)等が内蔵される。 The rim of the spectacle frame 110 holds the right eye lens portion 115R and the left eye lens portion 115L. A right-eye rangefinder 120R is provided at the upper center of the right rim of the spectacle frame 110 . A left eye distance measuring device 120L is provided at the upper center of the left rim of the spectacle frame 110 . A data processing unit 140, a data storage unit 145, a power source (not shown), and the like are built in the side portion of the spectacle frame 110. FIG.
 右眼用レンズ部115Rは、度付きレンズを用いて構成されてもよく、度なしレンズを用いて構成されてもよい。度付きレンズを用いる場合、右眼用眼鏡レンズ10Rの処方度数等に基づいて製作した仮製作の右眼用眼鏡レンズを用いるようにしてもよい。右眼用レンズ部115Rの外周部近傍に、右眼用視線計測器130Rが設けられる。 The right-eye lens unit 115R may be configured using a prescription lens or may be configured using a non-prescription lens. When a prescription lens is used, a temporary right-eye spectacle lens manufactured based on the prescription power of the right-eye spectacle lens 10R may be used. A right-eye line-of-sight measuring device 130R is provided in the vicinity of the outer peripheral portion of the right-eye lens portion 115R.
 左眼用レンズ部115Lは、度付きレンズを用いて構成されてもよく、度なしレンズを用いて構成されてもよい。度付きレンズを用いる場合、左眼用眼鏡レンズ10Lの処方度数等に基づいて製作した仮製作の左眼用眼鏡レンズを用いるようにしてもよい。左眼用レンズ部115Lの外周部近傍に、左眼用視線計測器130Lが設けられる。 The left eye lens unit 115L may be configured using a lens with prescription or may be configured using a lens without prescription. When a prescription lens is used, a temporary left-eye spectacle lens manufactured based on the prescription power of the left-eye spectacle lens 10L may be used. A left eye line-of-sight measuring device 130L is provided in the vicinity of the outer peripheral portion of the left eye lens portion 115L.
 右眼用距離計測器120Rは、眼鏡フレーム110が装用者に装用された状態で計測対象物までの距離を計測する。眼鏡フレーム110における右側のリムの上部中央に、右眼用距離計測器120Rが設けられることで、右眼用距離計測器120Rを装用者の右眼の近くに配置することができ、右眼用眼鏡レンズ10Rの設計に利用する計測データの精度を高くすることができる。右眼用距離計測器120Rは、LiDAR(Light Detection and Ranging)センサを用いて構成される。右眼用距離計測器120Rは、計測対象物にパルスレーザ光を照射する光照射部121Rと、計測対象物からの反射光を検出する光検出部123Rとを有する。光検出部123Rは、撮像光学系とTOF(Time Of Flight)イメージセンサとを含む構成であってもよい。TOFイメージセンサは、物体側空間における反射物体(計測対象物)までの距離に対応するピクセル値を、2次元イメージ情報として取得することができる。右眼用距離計測器120Rは、光検出部123Rで検出される反射光に基づいて計測対象物までの距離を求めるデータ処理部140を含む。なお、データ処理部140が右眼用距離計測器120Rに含まれる構成としているが、これに限られるものではなく、計測対象物までの距離を求める処理部(距離演算部)が別体に設けられるようにしてもよい。また、データ処理部がTOFイメージセンサの一部として半導体技術やウェハ貼り合わせ技術を用いて一体に構成され、TOFイメージセンサが2次元距離情報を直接出力するようにしてもよい。 The right eye distance measuring device 120R measures the distance to the measurement target while the spectacle frame 110 is worn by the wearer. By providing the right-eye distance measuring device 120R in the upper center of the right rim of the spectacle frame 110, the right-eye distance measuring device 120R can be arranged near the wearer's right eye. It is possible to improve the accuracy of the measurement data used for designing the spectacle lens 10R. The right eye rangefinder 120R is configured using a LiDAR (Light Detection and Ranging) sensor. The right-eye distance measuring instrument 120R has a light irradiation section 121R that irradiates a measurement target with a pulsed laser beam, and a light detection section 123R that detects reflected light from the measurement target. The photodetector 123R may be configured to include an imaging optical system and a TOF (Time Of Flight) image sensor. A TOF image sensor can acquire, as two-dimensional image information, pixel values corresponding to the distance to a reflecting object (measurement object) in the object-side space. The right-eye distance measuring instrument 120R includes a data processing section 140 that obtains the distance to the measurement object based on the reflected light detected by the light detecting section 123R. Although the data processing unit 140 is included in the right-eye distance measuring device 120R, it is not limited to this. may be made available. Alternatively, the data processing unit may be integrated as part of the TOF image sensor using semiconductor technology or wafer bonding technology, and the TOF image sensor may directly output the two-dimensional distance information.
 左眼用距離計測器120Lは、眼鏡フレーム110が装用者に装用された状態で計測対象物までの距離を計測する。眼鏡フレーム110における左側のリムの上部中央に、左眼用距離計測器120Lが設けられることで、左眼用距離計測器120Lを装用者の左眼の近くに配置することができ、左眼用眼鏡レンズ10Lの設計に利用する計測データの精度を高くすることができる。左眼用距離計測器120Lは、右眼用距離計測器120Rと同様に構成され、光照射部121Lと、光検出部123Lとを有する。光検出部123Lは、撮像光学系とTOFイメージセンサとを含む構成であってもよい。TOFイメージセンサは、物体側空間における反射物体(計測対象物)までの距離に対応するピクセル値を、2次元イメージ情報として取得することができる。左眼用距離計測器120Lは、光検出部123Lで検出される反射光に基づいて計測対象物までの距離を求めるデータ処理部140を含む。なお、データ処理部140が左眼用距離計測器120Lに含まれる構成としているが、これに限られるものではなく、計測対象物までの距離を求める処理部(距離演算部)が別体に設けられるようにしてもよい。また、データ処理部がTOFイメージセンサの一部として半導体技術やウェハ貼り合わせ技術を用いて一体に構成され、TOFイメージセンサが2次元距離情報を直接出力するようにしてもよい。 The left-eye distance measuring device 120L measures the distance to the object to be measured while the spectacle frame 110 is worn by the wearer. By providing the left-eye distance measuring device 120L at the upper center of the left rim of the spectacle frame 110, the left-eye distance measuring device 120L can be arranged near the wearer's left eye. The accuracy of measurement data used for designing the spectacle lens 10L can be increased. The left-eye rangefinder 120L is configured in the same manner as the right-eye rangefinder 120R, and has a light irradiation section 121L and a light detection section 123L. The photodetector 123L may be configured to include an imaging optical system and a TOF image sensor. A TOF image sensor can acquire, as two-dimensional image information, pixel values corresponding to the distance to a reflecting object (measurement object) in the object-side space. The left eye distance measuring device 120L includes a data processing unit 140 that obtains the distance to the measurement object based on the reflected light detected by the light detection unit 123L. Although the data processing unit 140 is included in the left-eye distance measuring device 120L, the configuration is not limited to this. may be made available. Alternatively, the data processing unit may be integrated as part of the TOF image sensor using semiconductor technology or wafer bonding technology, and the TOF image sensor may directly output the two-dimensional distance information.
 右眼用視線計測器130Rは、眼鏡フレーム110を装用した装用者の右眼の視線の方向を計測する。右眼用視線計測器130Rは、LED(Light Emitting Diode)ランプ等からなる複数の発光部131Rと、発光部131Rに照らされた右眼の瞳孔を撮影するアイカメラ部133Rとを有する。右眼用視線計測器130Rは、アイカメラ部133Rで撮影された画像データに基づいて右眼の視線の方向を求めるデータ処理部140を含む。なお、データ処理部140が右眼用視線計測器130Rに含まれる構成としているが、これに限られるものではなく、右眼の視線の方向を求める処理部(視線演算部)が別体に設けられるようにしてもよい。 The right-eye line-of-sight measuring device 130R measures the line-of-sight direction of the right eye of the wearer wearing the spectacle frame 110 . The right-eye line-of-sight measuring device 130R has a plurality of light-emitting units 131R made up of LED (Light Emitting Diode) lamps, etc., and an eye camera unit 133R that captures the pupil of the right eye illuminated by the light-emitting units 131R. The right-eye sight line measuring device 130R includes a data processing unit 140 that obtains the direction of the sight line of the right eye based on the image data captured by the eye camera unit 133R. Although the data processing unit 140 is included in the right-eye line-of-sight measuring device 130R, the present invention is not limited to this. may be made available.
 左眼用視線計測器130Lは、眼鏡フレーム110を装用した装用者の左眼の視線の方向を計測する。左眼用視線計測器130Lは、LEDランプ等からなる複数の発光部131Lと、発光部131Lに照らされた左眼の瞳孔を撮影するアイカメラ部133Lとを有する。左眼用視線計測器130Lは、アイカメラ部133Lで撮影された画像データに基づいて左眼の視線の方向を求めるデータ処理部140を含む。なお、データ処理部140が左眼用視線計測器130Lに含まれる構成としているが、これに限られるものではなく、左眼の視線の方向を求める処理部(視線演算部)が別体に設けられるようにしてもよい。 The left eye line-of-sight measuring device 130L measures the line-of-sight direction of the left eye of the wearer wearing the spectacle frame 110 . The left-eye sightline measuring device 130L has a plurality of light-emitting units 131L made up of LED lamps or the like, and an eye camera unit 133L that captures the pupil of the left eye illuminated by the light-emitting units 131L. The left-eye sight line measuring device 130L includes a data processing unit 140 that obtains the direction of the sight line of the left eye based on the image data captured by the eye camera unit 133L. Although the data processing unit 140 is configured to be included in the left-eye line-of-sight measuring device 130L, it is not limited to this, and a processing unit (line-of-sight calculation unit) for obtaining the line-of-sight direction of the left eye is provided separately. may be made available.
 データ処理部140は、CPU等の処理装置を用いて構成される。データ処理部140は、データ記憶部145またはデータ処理部140に設けられる不揮発性メモリに記憶されたプログラムを実行することにより、計測対象物までの距離を求める処理や、視線の方向を求める処理等を行う。 The data processing unit 140 is configured using a processing device such as a CPU. The data processing unit 140 executes a program stored in a non-volatile memory provided in the data storage unit 145 or the data processing unit 140 to perform processing such as processing for obtaining the distance to the measurement object, processing for obtaining the direction of the line of sight, and the like. I do.
 データ記憶部145は、メモリ等の記憶装置を用いて構成される。データ記憶部145は、データ処理部140とデータの授受を行い、データ処理部140での処理により求められた、計測対象物までの距離に関する距離計測データや、視線の方向に関する視線計測データ等の各種計測データを記憶する。電源(図示せず)は、例えばリチウムイオン電池等を用いて構成され、右眼用距離計測器120R、左眼用距離計測器120L、右眼用視線計測器130R、左眼用視線計測器130L、データ処理部140等に電力を供給する。 The data storage unit 145 is configured using a storage device such as a memory. The data storage unit 145 exchanges data with the data processing unit 140, and stores distance measurement data related to the distance to the measurement object and line-of-sight measurement data related to the line-of-sight direction obtained by the processing in the data processing unit 140. Stores various measurement data. A power source (not shown) is configured using, for example, a lithium ion battery, and includes a right-eye distance measuring device 120R, a left-eye distance measuring device 120L, a right-eye visual-axis measuring device 130R, and a left-eye visual-axis measuring device 130L. , supplies power to the data processing unit 140 and the like.
 また、データ処理部140は、通信ケーブル150を介して、データ記憶部145に記憶された各種計測データを設計モジュール61の通信部64に送信することが可能である。通信ケーブル150は、例えばUSB(Universal Serial Bus)ケーブル等を用いて構成され、通信ケーブル150の端子151が設計モジュール61の通信部64の端子(図示せず)に係脱可能に係合して電気的に接続されるようになっている。 Also, the data processing unit 140 can transmit various measurement data stored in the data storage unit 145 to the communication unit 64 of the design module 61 via the communication cable 150 . The communication cable 150 is configured using, for example, a USB (Universal Serial Bus) cable or the like, and a terminal 151 of the communication cable 150 is detachably engaged with a terminal (not shown) of the communication section 64 of the design module 61. It is designed to be electrically connected.
 ここで、右眼用距離計測器120Rおよび左眼用距離計測器120Lの計測可能範囲について、図6を用いて説明する。図6は、左眼用距離計測器120Lの計測可能範囲を示す平面図である。なお、右眼用距離計測器120Rの計測可能範囲は、左眼用距離計測器120Lの計測可能範囲と同様に設定される。そのため、左眼用距離計測器120Lの計測可能範囲について詳細に説明し、右眼用距離計測器120Rの計測可能範囲についての詳細な説明を省略する。 Here, the measurable ranges of the right-eye distance measuring device 120R and the left-eye distance measuring device 120L will be described using FIG. FIG. 6 is a plan view showing the measurable range of the left-eye distance measuring device 120L. The measurable range of the right-eye distance measuring device 120R is set in the same manner as the measurable range of the left-eye distance measuring device 120L. Therefore, the measurable range of the left-eye distance measuring device 120L will be described in detail, and the detailed description of the measurable range of the right-eye distance measuring device 120R will be omitted.
 左眼用距離計測器120Lの光照射部121Lからレーザー光が照射される場合、左眼用距離計測器120Lの計測可能範囲は、左眼用距離計測器120Lの位置L0を起点とする左端の計測可能位置L1から右端の計測可能位置L2までの扇形の範囲となる。左眼用距離計測器120Lの計測可能範囲は、図6における左右方向および前後方向に限らず、上下方向を含む3次元方向に拡がる範囲となる。これにより、左眼用距離計測器120Lは、計測対象物OBまでの距離に関する3次元方向の距離計測データを取得することができる。なお、左眼用距離計測器120Lの光照射部121Lから照射されたレーザー光が届かない場合、すなわち左眼用距離計測器120Lの光検出部123Lが反射光を検出できない場合には、計測対象物OBまでの距離が無限大(無限遠)であるものとして取り扱う。 When laser light is emitted from the light irradiation unit 121L of the left-eye distance measuring device 120L, the measurable range of the left-eye distance measuring device 120L is the left end starting from the position L0 of the left-eye distance measuring device 120L. It is a fan-shaped range from the measurable position L1 to the measurable position L2 on the right end. The measurable range of the left-eye distance measuring device 120L is not limited to the left-right direction and the front-rear direction in FIG. As a result, the left-eye distance measuring instrument 120L can acquire three-dimensional distance measurement data regarding the distance to the object to be measured OB. When the laser light emitted from the light irradiation unit 121L of the distance measuring device 120L for left eye does not reach, that is, when the light detecting unit 123L of the distance measuring device 120L for left eye cannot detect the reflected light, the object to be measured It is treated as if the distance to the object OB is infinite (infinity).
 また、左眼用距離計測器120Lの計測可能範囲は、眼鏡フレーム110を装用した装用者の視線が延びる範囲を含むものとする。実際の眼鏡レンズの設計で必要な計測範囲は、左眼用距離計測器120Lの計測可能範囲のうち、左眼ELの眼球を回転させて左眼用レンズ部115L(すなわち、左眼用眼鏡レンズ10L)を通して見える範囲である。 Also, the measurable range of the distance measuring device 120L for the left eye includes the range in which the line of sight of the wearer wearing the spectacle frame 110 extends. The measurement range required for designing an actual spectacle lens is determined by rotating the eyeball of the left eye EL within the measurable range of the left eye distance measuring device 120L. 10L).
 視線S1は、左眼ELが左眼用レンズ部115Lの左端を見ているときの視線を示す。この左眼ELの視線S1のうち、左眼用レンズ部115Lにより屈折した後の視線S1aは、左眼用レンズ部115Lの左端の位置S11と、左眼用距離計測器120Lの計測可能範囲の境界線上の位置S12とを通る。視線S2は、左眼ELが左眼用レンズ部115Lの右端を見ているときの視線を示す。この左眼ELの視線S2のうち、左眼用レンズ部115Lにより屈折した後の視線S2aは、左眼用レンズ部115Lの右端の位置S21と、左眼用距離計測器120Lの計測可能範囲の境界線上の位置S22とを通る。これにより、実際の眼鏡レンズの設計で必要な計測範囲は、左眼用距離計測器120Lの計測可能範囲のうち、左眼用レンズ部115Lにより屈折した後の各視線S1a,S2aで区切られた範囲とすることができる。なお、実際の眼鏡レンズの設計で必要な計測範囲は、図6における左右方向および前後方向に限らず、上下方向を含む3次元方向に拡がる範囲となる。 A line of sight S1 indicates a line of sight when the left eye EL looks at the left end of the left eye lens unit 115L. Of the line of sight S1 of the left eye EL, the line of sight S1a after being refracted by the left eye lens unit 115L is between the left end position S11 of the left eye lens unit 115L and the measurable range of the left eye distance measuring device 120L. It passes through position S12 on the boundary line. A line of sight S2 indicates a line of sight when the left eye EL looks at the right end of the left eye lens unit 115L. Of the line of sight S2 of the left eye EL, the line of sight S2a after being refracted by the left eye lens unit 115L is between the right end position S21 of the left eye lens unit 115L and the measurable range of the left eye distance measuring device 120L. It passes through position S22 on the boundary line. As a result, the measurement range necessary for designing an actual spectacle lens is divided by the lines of sight S1a and S2a after being refracted by the left-eye lens unit 115L in the measurable range of the left-eye distance measuring device 120L. can be a range. Note that the measurement range required for designing an actual spectacle lens is not limited to the left-right direction and front-rear direction in FIG.
 なお予め、左眼用距離計測器120Lの計測可能範囲のうち、上述の視線S1a,S2aで区切られた範囲のみを左眼用距離計測器120Lが計測するように設定してもよい。これにより、左眼用距離計測器120Lによる計測時間を短縮することが可能である。 In addition, it may be set in advance so that the left eye distance measuring device 120L measures only the range delimited by the above-described lines of sight S1a and S2a in the measurable range of the left eye distance measuring device 120L. Thereby, it is possible to shorten the measurement time by the left-eye distance measuring device 120L.
 左眼ELの眼球を回転させて左眼用レンズ部115Lを通して見える範囲は、左眼用レンズ部115Lの外周形状(フレーム形状)や、左眼用レンズ部115Lの設計内容によって異なる。左眼用レンズ部115Lの設計内容が不明である場合、左眼用眼鏡レンズ10Lの処方度数、物体側のレンズ面の曲率半径、中心厚の位置で算出される眼球側のレンズ面のベース/クロスの曲率半径等に基づいて、左眼ELの眼球を回転させて左眼用レンズ部115L(すなわち、左眼用眼鏡レンズ10L)を通して見える範囲を推定するようにしてもよい。 The range that can be seen through the left eye lens portion 115L by rotating the eyeball of the left eye EL varies depending on the outer peripheral shape (frame shape) of the left eye lens portion 115L and the design details of the left eye lens portion 115L. When the design details of the left eye lens portion 115L are unknown, the eyeball side lens surface base/ Based on the radius of curvature of the cross and the like, the eyeball of the left eye EL may be rotated to estimate the range that can be seen through the left eye lens section 115L (that is, the left eye spectacle lens 10L).
 また、左眼用視線計測器130L(および右眼用視線計測器130R)が装用者の視線の方向を計測することで、装用者が視認する計測対象物OBを特定し、特定した計測対象物OBまでの距離に関する3次元方向の距離計測データを眼鏡レンズの設計に用いることができる。視線S3は、左眼ELが左眼用レンズ部115Lを介して計測対象物OBを見ているときの視線を示す。この左眼ELの視線S3の方向が、左眼用視線計測器130Lによって計測される。なお、装用者の視線の方向は、3次元の方向ベクトルとして計測されるようにしてもよい。これにより、左眼用視線計測器130Lは、視線の方向に関する3次元方向の視線計測データを取得することができる。 In addition, the left-eye line-of-sight measuring device 130L (and the right-eye line-of-sight measuring device 130R) measures the direction of the wearer's line of sight, thereby specifying the measurement object OB visually recognized by the wearer, and determining the specified measurement object. Three-dimensional distance measurement data regarding the distance to the OB can be used in the design of spectacle lenses. A line of sight S3 indicates a line of sight when the left eye EL looks at the measurement object OB through the left eye lens unit 115L. The direction of the line of sight S3 of the left eye EL is measured by the left eye line of sight measuring device 130L. Note that the direction of the wearer's line of sight may be measured as a three-dimensional direction vector. Thereby, the left-eye sight line measuring device 130L can acquire sight line measurement data in three-dimensional directions regarding the direction of the sight line.
 左眼ELの視線S3のうち、左眼用レンズ部115Lにより屈折した後の視線S3aは、左眼用レンズ部115Lの中間部分の位置S31と、計測対象物OB上の位置S32とを通る。そのため、左眼用視線計測器130Lにより取得される3次元方向の視線計測データは、左眼用レンズ部115Lの度数に応じて補正されることが好ましい。左眼用レンズ部115Lの表面形状、裏面形状、厚さ、外周形状(フレーム形状)に関するレンズデータに基づいて、光線追跡により正確に3次元方向の視線計測データを補正するようにしてもよい。なお、左眼用レンズ部115Lの中間部分の位置S31と、計測対象物OB上の位置S32との間の距離が、左眼用距離計測器120Lによって計測される計測対象物OBまでの距離となる。 Of the line of sight S3 of the left eye EL, the line of sight S3a after being refracted by the left eye lens section 115L passes through the intermediate position S31 of the left eye lens section 115L and the position S32 on the measurement object OB. Therefore, it is preferable that the three-dimensional line-of-sight measurement data acquired by the left-eye line-of-sight measuring device 130L be corrected according to the power of the left-eye lens unit 115L. Based on lens data relating to the surface shape, back surface shape, thickness, and outer peripheral shape (frame shape) of the left eye lens portion 115L, the line-of-sight measurement data in the three-dimensional direction may be accurately corrected by ray tracing. Note that the distance between the position S31 of the intermediate portion of the left-eye lens unit 115L and the position S32 on the measurement object OB is the distance to the measurement object OB measured by the left-eye distance measuring device 120L. Become.
 以上のように構成される計測モジュール100は、眼鏡フレーム110が装用者に装用された状態で使用される。なおこのとき、通信ケーブル150の端子151を設計モジュール61の通信部64の端子から離脱させることで、計測モジュール100を所望の場所、例えば設計モジュール61による設計が行われる眼鏡レンズが用いられる場所(具体的には、眼鏡レンズの装用者の自宅や職場等)で使用することが可能である。右眼用距離計測器120Rは、眼鏡フレーム110が装用者に装用された状態で計測対象物までの距離を計測する。また、左眼用距離計測器120Lは、眼鏡フレーム110が装用者に装用された状態で計測対象物までの距離を計測する。右眼用視線計測器130Rは、眼鏡フレーム110を装用した装用者の右眼の視線の方向を計測する。また、左眼用視線計測器130Lは、眼鏡フレーム110を装用した装用者の左眼の視線の方向を計測する。 The measurement module 100 configured as described above is used while the spectacle frame 110 is worn by the wearer. At this time, by disconnecting the terminal 151 of the communication cable 150 from the terminal of the communication unit 64 of the design module 61, the measurement module 100 can be moved to a desired location, for example, a location where the spectacle lens designed by the design module 61 is used ( Specifically, it can be used at the home or workplace of the spectacle lens wearer. The right-eye distance measuring device 120R measures the distance to the measurement object while the spectacle frame 110 is worn by the wearer. In addition, the left-eye distance measuring device 120L measures the distance to the measurement target while the spectacle frame 110 is worn by the wearer. The right-eye line-of-sight measuring device 130R measures the line-of-sight direction of the right eye of the wearer wearing the spectacle frame 110 . Also, the left-eye sight line measuring device 130L measures the direction of the sight line of the left eye of the wearer wearing the spectacle frame 110 .
 右眼用距離計測器120Rにより計測された計測対象物までの距離に関する3次元方向の距離計測データおよび、左眼用距離計測器120Lにより計測された計測対象物までの距離に関する3次元方向の距離計測データは、時系列に沿った複数の距離計測データとしてデータ記憶部145に記憶される。また、右眼用視線計測器130Rにより計測された視線の方向に関する3次元方向の視線計測データおよび、左眼用視線計測器130Lにより計測された視線の方向に関する3次元方向の視線計測データは、時系列に沿った複数の視線計測データとしてデータ記憶部145に記憶される。 Three-dimensional distance measurement data relating to the distance to the measurement object measured by the right-eye distance measuring device 120R and three-dimensional direction distance relating to the distance to the measurement object measured by the left-eye distance measuring device 120L The measurement data is stored in the data storage unit 145 as a plurality of pieces of distance measurement data in chronological order. In addition, the three-dimensional line-of-sight measurement data regarding the direction of the line of sight measured by the line-of-sight measuring device 130R for the right eye and the three-dimensional direction of line-of-sight measurement data regarding the direction of the line of sight measured by the line-of-sight measuring device 130L for the left eye are It is stored in the data storage unit 145 as a plurality of line-of-sight measurement data along time series.
 計測モジュール100を使用した計測が行われた後、通信ケーブル150の端子151を設計モジュール61の通信部64の端子と係合させて接続する。これにより、計測モジュール100は、設計モジュール61の通信部64と電気的に接続され、設計モジュール61に計測データを送信することが可能になる。 After the measurement using the measurement module 100 is performed, the terminal 151 of the communication cable 150 is engaged with the terminal of the communication section 64 of the design module 61 for connection. As a result, the measurement module 100 is electrically connected to the communication unit 64 of the design module 61 and can transmit measurement data to the design module 61 .
 そして、計測モジュール100のデータ処理部140は、通信ケーブル150を介して、データ記憶部145に記憶された各種計測データを設計モジュール61の通信部64に送信する。このとき、データ処理部140は、右眼用距離計測器120Rにより計測された計測対象物までの距離に関する3次元方向の距離計測データおよび、左眼用距離計測器120Lにより計測された計測対象物までの距離に関する3次元方向の距離計測データを、時系列に沿った複数の距離計測データとして設計モジュール61の通信部64に送信する。また、データ処理部140は、右眼用視線計測器130Rにより計測された視線の方向に関する3次元方向の視線計測データおよび、左眼用視線計測器130Lにより計測された視線の方向に関する3次元方向の視線計測データを、時系列に沿った複数の視線計測データとして設計モジュール61の通信部64に送信する。 Then, the data processing section 140 of the measurement module 100 transmits various measurement data stored in the data storage section 145 to the communication section 64 of the design module 61 via the communication cable 150 . At this time, the data processing unit 140 outputs three-dimensional distance measurement data regarding the distance to the measurement object measured by the right-eye distance measuring device 120R and the measurement object measured by the left-eye distance measuring device 120L. The three-dimensional distance measurement data relating to the distance to the design module 61 is transmitted to the communication unit 64 of the design module 61 as a plurality of time-series distance measurement data. The data processing unit 140 also generates three-dimensional line-of-sight measurement data related to the direction of the line of sight measured by the right-eye line-of-sight measuring device 130R and three-dimensional direction related to the direction of the line of sight measured by the left-eye line-of-sight measuring device 130L. is transmitted to the communication unit 64 of the design module 61 as a plurality of pieces of line-of-sight measurement data in chronological order.
 本実施形態によれば、計測モジュール100のデータ処理部140から送信された(計測対象物までの)距離に関する距離計測データおよび視線の方向に関する視線計測データを用いて、設計モジュール61により眼鏡レンズ10の設計を行うことで、使用環境に応じて適切な眼鏡レンズ10の設計を行うことが可能になる。 According to the present embodiment, the spectacle lens 10 is measured by the design module 61 using the distance measurement data regarding the distance (to the object to be measured) and the line-of-sight measurement data regarding the line-of-sight direction transmitted from the data processing unit 140 of the measurement module 100 . By designing , it is possible to design the spectacle lens 10 appropriately according to the usage environment.
 また、右眼用距離計測器120Rおよび左眼用距離計測器120Lが眼鏡フレーム110に設けられる。そのため、実際の眼鏡レンズの使用環境における3次元方向の距離計測データを取得することができる。この3次元方向の距離計測データに基づいて、例えば図7に示すように、計測対象物OBの概略形状を表す画像を生成することが可能である。図7は、3次元方向の距離計測データ(点群データ)をメッシュデータに変換して生成した計測対象物OBの概略形状を表す画像を示す模式図である。これにより、眼鏡レンズの装用者のプライバシーに配慮しつつ、実際の眼鏡レンズの使用環境を知ることができる。従って、眼鏡レンズの設計後に、眼鏡レンズの使用感に関するシミュレーションを行うことが容易になる。眼鏡レンズの使用感に関するシミュレーションを行うことにより、試作用の眼鏡レンズを製作することなく、眼鏡レンズの装用者とコミュニケーションを取りながら、より最適な眼鏡レンズの設計を行うことができる。 Also, a right-eye distance measuring device 120R and a left-eye distance measuring device 120L are provided on the spectacle frame 110. Therefore, it is possible to obtain distance measurement data in three-dimensional directions in the actual use environment of the spectacle lens. Based on this distance measurement data in the three-dimensional direction, it is possible to generate an image representing the schematic shape of the object to be measured OB, as shown in FIG. 7, for example. FIG. 7 is a schematic diagram showing an image representing the schematic shape of the object to be measured OB generated by converting distance measurement data (point cloud data) in three-dimensional directions into mesh data. As a result, it is possible to know the actual usage environment of the spectacle lens while considering the privacy of the spectacle lens wearer. Therefore, after designing the spectacle lens, it becomes easy to perform a simulation regarding the usability of the spectacle lens. By simulating the usability of spectacle lenses, it is possible to design more optimal spectacle lenses while communicating with spectacle lens wearers without producing trial spectacle lenses.
 また、右眼用視線計測器130Rが右眼用レンズ部115Rに設けられ、左眼用視線計測器130Lが左眼用レンズ部115Lに設けられる。そのため、右眼用距離計測器120Rおよび左眼用距離計測器120Lによって計測対象物までの距離が計測される際に、眼鏡フレーム110を装用した装用者が右眼用レンズ部115Rおよび左眼用レンズ部115Lにおけるどの部分を介して計測対象物を視認しているかを知ることができる。 Also, a right-eye sight line measuring device 130R is provided in the right-eye lens unit 115R, and a left-eye sight line measuring device 130L is provided in the left-eye lens unit 115L. Therefore, when the distance to the object to be measured is measured by the right-eye distance measuring device 120R and the left-eye distance measuring device 120L, the wearer wearing the spectacle frame 110 uses the right-eye lens unit 115R and the left-eye lens unit 115R. It is possible to know through which part of the lens unit 115L the object to be measured is viewed.
 上述の計測モジュール100において、眼鏡フレーム110における右側のリムの上部中央に、右眼用距離計測器120Rが設けられ、眼鏡フレーム110における左側のリムの上部中央に、左眼用距離計測器120Lが設けられているが、これに限られるものではない。例えば、図8に示す計測モジュール100aのように、眼鏡フレーム110における右側のリムの右上端部近傍に、右眼用距離計測器120Rが設けられ、眼鏡フレーム110における左側のリムの左上端部近傍に、左眼用距離計測器120Lが設けられてもよい。このようにすれば、眼鏡フレーム110における比較的広い部分に、右眼用距離計測器120Rおよび左眼用距離計測器120Lを容易に配置することができる。 In the measurement module 100 described above, a right-eye rangefinder 120R is provided at the upper center of the right rim of the spectacle frame 110, and a left-eye rangefinder 120L is provided at the upper center of the left rim of the spectacle frame 110. provided, but not limited to this. For example, like the measurement module 100a shown in FIG. may be provided with a left-eye distance measuring device 120L. In this way, the right-eye distance measuring device 120R and the left-eye distance measuring device 120L can be easily arranged in a relatively wide portion of the spectacle frame 110 .
 次に、図9を参照しながら、眼鏡レンズ10の製造システム50を用いた、眼鏡レンズ10の製造方法について説明する。図9は、眼鏡レンズ10の製造方法の流れを示すフローチャートである。まず、前述したように、計測モジュール100を用いて、眼鏡レンズ10の使用環境における3次元方向の距離計測データおよび視線計測データの取得を行う(ステップST1)。 Next, a method for manufacturing the spectacle lens 10 using the manufacturing system 50 for the spectacle lens 10 will be described with reference to FIG. FIG. 9 is a flow chart showing the flow of the method for manufacturing the spectacle lens 10. As shown in FIG. First, as described above, the measurement module 100 is used to acquire three-dimensional distance measurement data and line-of-sight measurement data in the usage environment of the spectacle lens 10 (step ST1).
 次に、設計モジュール61の設定部72により、後述の注視領域における距離データの算出を行う(ステップST2)。注視領域における距離データの算出を行う処理については、後で詳細に説明する。 Next, the setting unit 72 of the design module 61 calculates distance data in the gaze region, which will be described later (step ST2). The processing for calculating the distance data in the region of interest will be described later in detail.
 次に、設計モジュール61の設定部72により、眼鏡レンズ10の設計で用いる距離データの設定を行う(ステップST3)。眼鏡レンズ10の設計で用いる距離データの設定を行う処理については、後で詳細に説明する。 Next, the setting unit 72 of the design module 61 sets the distance data used in designing the spectacle lens 10 (step ST3). Processing for setting distance data used in designing the spectacle lens 10 will be described in detail later.
 次に、設計モジュール61の設定部72により、眼鏡レンズ10の設計で用いる遠用重点距離および近用重点距離の設定を行う(ステップST4)。遠用重点距離および近用重点距離の設定を行う処理については、後で詳細に説明する。 Next, the setting unit 72 of the design module 61 sets the distance focus distance and the near focus distance used in designing the spectacle lens 10 (step ST4). The processing for setting the far-use weighted distance and the near-use weighted distance will be described later in detail.
 次に、設計モジュール61の設定部72により、眼鏡レンズ10の設計で用いる遠用重点通過点および近用重点通過点の設定を行う(ステップST5)。遠用重点通過点および近用重点通過点の設定を行う処理については、後で詳細に説明する。 Next, the setting unit 72 of the design module 61 sets the distance-focused passing point and the near-focused passing point used in the design of the spectacle lens 10 (step ST5). Processing for setting the distance-use weighted passage point and the near-use weighted passage point will be described later in detail.
 次に、設計モジュール61の眼鏡レンズ設計部73により、先のステップST4,ST5で設定した遠用重点距離、近用重点距離、遠用重点通過点、近用重点通過点を用いて、眼鏡レンズ10の設計を行う(ステップST6)。眼鏡レンズ10の設計を行う処理については、後で詳細に説明する。 Next, the spectacle lens designing section 73 of the design module 61 uses the distance focus distance, the near focus distance, the distance focus passing point, and the near focus passing point set in the previous steps ST4 and ST5 to design the spectacle lens. 10 are designed (step ST6). The processing for designing the spectacle lens 10 will be described later in detail.
 そして、眼鏡レンズ加工機85は、先のステップST6で設計した眼鏡レンズ10の設計データに基づいて、加工機制御装置80の制御により眼鏡レンズ10を製造し、処理を終了する(ステップST7)。なお、一対の眼鏡レンズ1を製造する場合には、右眼用眼鏡レンズ10Rと左眼用眼鏡レンズ10Lのそれぞれに対して上述の各処理が行われる。 Then, the spectacle lens processing machine 85 manufactures the spectacle lens 10 under the control of the processing machine control device 80 based on the design data of the spectacle lens 10 designed in step ST6, and ends the process (step ST7). When manufacturing a pair of spectacle lenses 1, each of the above processes is performed on each of the right eye spectacle lens 10R and the left eye spectacle lens 10L.
 次に、図10を参照しながら、注視領域における距離データの算出を行う処理について説明する。図10は、注視領域における距離データの算出を行う処理の流れを示すフローチャートである。まず、時系列に沿った複数の(3次元方向の)距離計測データの中から、或る任意の時刻における距離計測データを取得する(ステップST201)。次に、時系列に沿った複数の(3次元方向の)視線計測データの中から、前述の任意の時刻と同じ時刻における視線計測データを取得する(ステップST202)。 Next, with reference to FIG. 10, the process of calculating the distance data in the region of interest will be described. FIG. 10 is a flow chart showing the flow of processing for calculating distance data in the region of interest. First, distance measurement data at an arbitrary time is acquired from a plurality of (three-dimensional) distance measurement data in time series (step ST201). Next, line-of-sight measurement data at the same time as the above-described arbitrary time is acquired from among a plurality of (three-dimensional direction) line-of-sight measurement data in time series (step ST202).
 次に、計測モジュール100を用いて距離計測データおよび視線計測データを取得する際、計測モジュール100の左眼用レンズ部115Lおよび右眼用レンズ部115Rとして、度付きレンズが使用されたか否かを判定する(ステップST203)。なお、度付きレンズの使用の有無に関するデータは、計測モジュール100のデータ処理部140から設計モジュール61の通信部64に送信されてもよく、設計モジュール61の入力部62から入力されてもよい。判定がYESの場合、すなわち、度付きレンズが使用された場合、ステップST204に進む。 Next, when acquiring the distance measurement data and the line-of-sight measurement data using the measurement module 100, it is determined whether or not prescription lenses are used as the left-eye lens unit 115L and the right-eye lens unit 115R of the measurement module 100. Determine (step ST203). Data regarding whether or not a prescription lens is used may be transmitted from the data processing unit 140 of the measurement module 100 to the communication unit 64 of the design module 61 or input from the input unit 62 of the design module 61 . If the determination is YES, that is, if a prescription lens is used, the process proceeds to step ST204.
 ステップST204において、視線計測データの補正を行うことが可能な補正用のレンズデータが記憶部65に記憶されているか否かを判定する。なお、補正用のレンズデータは、前述した左眼用レンズ部115Lおよび右眼用レンズ部115Rの表面形状、裏面形状、厚さ、外周形状(フレーム形状)に関するレンズデータである。判定がNOの場合、すなわち、補正用のレンズデータが記憶部65に記憶されていない場合、ステップST205に進む。ステップST205において、眼鏡レンズ10の処方度数に基づいて、凡その表面形状、裏面形状、厚さ等を求め、補正用のレンズデータを生成する。そして、生成した補正用のレンズデータを記憶部65に記憶させ、ステップST206に進む。 In step ST204, it is determined whether or not lens data for correction capable of correcting the line-of-sight measurement data is stored in the storage unit 65. The lens data for correction is lens data relating to the surface shape, back surface shape, thickness, and outer peripheral shape (frame shape) of the left eye lens portion 115L and the right eye lens portion 115R. If the determination is NO, that is, if the lens data for correction is not stored in the storage unit 65, the process proceeds to step ST205. In step ST205, based on the prescription power of the spectacle lens 10, the approximate surface shape, back surface shape, thickness, etc. are obtained, and lens data for correction is generated. Then, the generated correction lens data is stored in the storage unit 65, and the process proceeds to step ST206.
 一方、ステップST204における判定がYESの場合、すなわち、補正用のレンズデータが記憶部65に記憶されている場合、ステップST206に進む。ステップST206において、記憶部65に記憶された補正用のレンズデータに基づいて、先のステップST202で取得した視線計測データの補正を行い、ステップST207に進む。 On the other hand, if the determination in step ST204 is YES, that is, if the lens data for correction is stored in the storage unit 65, the process proceeds to step ST206. In step ST206, based on the correction lens data stored in the storage unit 65, the line-of-sight measurement data acquired in step ST202 is corrected, and the process proceeds to step ST207.
 また、ステップST203における判定がNOの場合、すなわち、度付きレンズが使用されなかった場合、ステップST207に進む。ステップST207において、或る任意の時刻における距離計測データおよび視線計測データに基づいて、当該時刻における計測対象物に対する注視点P(図7を参照)の位置を特定する。注視点Pは、計測モジュール100の眼鏡フレーム110を装用した装用者の視線が計測対象物と重なる点である。本実施形態において、左右方向の座標をxとし、上下方向の座標をyとし、座標(x,y)に対応する位置での計測対象物までの距離をzとする。これにより、3次元方向の距離計測データおよび視線計測データに基づいて、注視点Pの座標(x,y)を特定するとともに、注視点Pまでの距離zを特定する。 Also, if the determination in step ST203 is NO, that is, if a prescription lens is not used, the process proceeds to step ST207. In step ST207, based on the distance measurement data and line-of-sight measurement data at an arbitrary time, the position of the gaze point P (see FIG. 7) with respect to the measurement object at that time is specified. The gaze point P is a point where the line of sight of the wearer wearing the spectacle frame 110 of the measurement module 100 overlaps with the object to be measured. In this embodiment, x is the horizontal coordinate, y is the vertical coordinate, and z is the distance to the measurement object at the position corresponding to the coordinates (x, y). As a result, the coordinates (x, y) of the gaze point P and the distance z to the gaze point P are specified based on the three-dimensional distance measurement data and line-of-sight measurement data.
 次に、注視点Pを中心とする注視領域PA(図7を参照)を設定する(ステップST208)。注視領域PAは、座標(x,y)の平面座標上での注視点Pを中心とする円形の領域である。注視領域PAの半径は、任意に設定可能であるが、例えば、座標(x,y)の平面座標上で2mm~8mmの範囲に設定される。2mm~8mmの範囲は、人間の瞳孔の半径(瞳孔径)が変化する範囲に相当する。なお、明所では人間の瞳孔が収縮し、暗所では人間の瞳孔が拡大するため、計測モジュール100を用いて距離計測データおよび視線計測データを取得する際の周囲の明るさに応じて、注視領域PAの半径が設定されるようにしてもよい。 Next, a gaze area PA (see FIG. 7) centered on the gaze point P is set (step ST208). The gaze area PA is a circular area centered on the gaze point P on the plane coordinates of coordinates (x, y). Although the radius of the gaze area PA can be set arbitrarily, it is set, for example, within a range of 2 mm to 8 mm on the plane coordinates of coordinates (x, y). The range of 2 mm to 8 mm corresponds to the range in which the radius of the human pupil (pupil diameter) changes. In addition, since the human pupil constricts in a bright place and the human pupil expands in a dark place, depending on the brightness of the surroundings when the distance measurement data and the line-of-sight measurement data are acquired using the measurement module 100, the gaze A radius of the area PA may be set.
 そして、注視領域PAにおける計測対象物までの距離zの平均値を算出する(ステップST209)。これにより、注視点Pの位置が計測対象物の形状変化が大きい箇所(例えば、計測対象物の縁部等)であっても、計測対象物までの距離zの計測誤差を低減させることができる。このとき、注視領域PAに位置する場合に該当する距離計測データを抽出し、抽出した距離計測データにおける距離zの平均値を算出する。そして、算出した距離zの平均値のデータを、注視領域における距離データとして保持し、処理を終了する。なお、注視領域における距離データは、時系列に沿った複数の距離計測データおよび距離計測データに基づいて算出され、時系列に沿った複数の距離データとしてデータ記憶部145に記憶される。 Then, the average value of the distance z to the measurement object in the gaze area PA is calculated (step ST209). This makes it possible to reduce the measurement error of the distance z to the measurement object, even if the position of the gaze point P is at a location where the shape of the measurement object greatly changes (for example, the edge of the measurement object). . At this time, the distance measurement data corresponding to the position in the gaze area PA is extracted, and the average value of the distance z in the extracted distance measurement data is calculated. Then, the data of the average value of the calculated distances z is held as the distance data in the gaze area, and the process ends. Note that the distance data in the region of interest is calculated based on a plurality of time-series distance measurement data and the distance measurement data, and is stored in the data storage unit 145 as a plurality of time-series distance data.
 次に、図11を参照しながら、眼鏡レンズ10の設計で用いる距離データの設定を行う処理について説明する。図11は、眼鏡レンズ10の設計で用いる距離データの設定を行う処理の流れを示すフローチャートである。まず、先のステップST2で算出した注視領域における距離データに基づいて、時系列の距離データを求める(ステップST301)。このとき、注視領域における距離zの値(平均値)を時系列でプロットし、各プロットを線形補間により結ぶ。そして、時系列で並ぶ各プロットのデータを、時系列の距離データとして保持する。 Next, referring to FIG. 11, processing for setting distance data used in designing the spectacle lens 10 will be described. FIG. 11 is a flow chart showing the flow of processing for setting distance data used in designing the spectacle lens 10 . First, time-series distance data is obtained based on the distance data in the region of interest calculated in step ST2 (step ST301). At this time, the value (average value) of the distance z in the region of interest is plotted in time series, and each plot is connected by linear interpolation. Then, the data of each plot arranged in time series is held as time-series distance data.
 次に、先のステップST301で求めた時系列の距離データに対してフーリエ変換を行う(ステップST302)。次に、フーリエ変換を行った時系列の距離データに基づいて、時系列で変化する距離zの高周波成分を特定する(ステップST303)。次に、先のステップST303で特定した高周波成分を除去した時系列の距離データを生成する(ステップST304)。そして、高周波成分を除去した時系列の距離データに基づいて、例えば、設定部72でのデータ解析処理によって、眼鏡レンズ10の設計で用いる距離データを設定し、処理を終了する。 Next, Fourier transform is performed on the time-series distance data obtained in step ST301 (step ST302). Next, based on the time-series distance data subjected to the Fourier transform, the high-frequency component of the distance z that changes in time series is identified (step ST303). Next, time-series distance data from which the high-frequency components specified in step ST303 are removed is generated (step ST304). Then, based on the time-series distance data from which the high-frequency components have been removed, the distance data used in designing the spectacle lens 10 is set by, for example, data analysis processing in the setting unit 72, and the processing ends.
 図12は、時系列の距離データの一例を示すグラフである。図12におけるグラフの横軸は、計測モジュール100を用いた計測が開始してからの経過時間tを示す。図12におけるグラフの縦軸は、注視領域における距離zの値(平均値)を示す。図12に示す例では、経過時間tが1500ms前後の場合(図12の円C1で囲まれた部分)と、経過時間tが11000ms前後の場合(図12の円C2で囲まれた部分)における距離zの値は、注視している時間が短いため、眼鏡レンズ10の設計で使用されない。このような時系列で変化する距離zの高周波成分を除去することで、時系列の距離データに対してフィルタリングを行う。 FIG. 12 is a graph showing an example of time-series distance data. The horizontal axis of the graph in FIG. 12 indicates the elapsed time t after the measurement using the measurement module 100 started. The vertical axis of the graph in FIG. 12 indicates the value (average value) of the distance z in the gaze area. In the example shown in FIG. 12, when the elapsed time t is around 1500 ms (the portion surrounded by the circle C1 in FIG. 12) and when the elapsed time t is around 11000 ms (the portion surrounded by the circle C2 in FIG. 12) The value of the distance z is not used in the design of the spectacle lens 10 due to the short gaze time. Filtering is performed on the time series distance data by removing the high frequency component of the distance z that changes in time series.
 図13は、高周波成分を除去した時系列の距離データの一例を示すグラフである。図13におけるグラフの横軸および縦軸は、図12におけるグラフの横軸および縦軸と同様である。図13に示す例では、距離zの値が500cmの付近の箇所と、距離zの値が50cmの付近の箇所を比較的長時間に亘り注視していることが分かる。これにより、図13に示す例では、500cmの数値データおよび50cmの数値データを、眼鏡レンズ10の設計で用いる距離データとして保持する。なお、説明容易化のため、図13に示す例では、2種類の数値データが眼鏡レンズ10の設計で用いる距離データとして保持されるが、より多数の種類の数値データが眼鏡レンズ10の設計で用いる距離データとして保持される場合もある。 FIG. 13 is a graph showing an example of time-series distance data with high-frequency components removed. The horizontal and vertical axes of the graph in FIG. 13 are the same as the horizontal and vertical axes of the graph in FIG. In the example shown in FIG. 13, it can be seen that the user gazes at a point near the value of the distance z of 500 cm and a point near the value of the distance z of 50 cm for a relatively long period of time. As a result, in the example shown in FIG. 13, the numerical data of 500 cm and the numerical data of 50 cm are held as the distance data used in designing the spectacle lens 10 . For ease of explanation, in the example shown in FIG. 13, two types of numerical data are held as distance data used in designing the spectacle lens 10, but more types of numerical data are used in designing the spectacle lens 10. It may be held as distance data to be used.
 前述したように、眼鏡レンズ10は、累進屈折力レンズとも称される。累進屈折力レンズには、遠近タイプ、中近タイプ、近々タイプ等、複数のタイプがある。累進屈折力レンズのタイプは、レンズにおけるどの位置で、任意の近距離を明瞭に見せるかによって分類される。 As described above, the spectacle lens 10 is also called a progressive power lens. There are multiple types of progressive-power lenses, such as a near-far type, a middle-near type, and a near-near type. Types of progressive addition lenses are classified according to which position in the lens makes any given short distance appear clear.
 例えば、近々タイプは、30cm~1mの距離範囲で、本、スマートフォン、ラップトップパソコン等を見る場合に使用される。中近タイプは、1m~2mの距離範囲で、ラップトップパソコン、デスクトップパソコンモニター、テレビ等を見る場合に使用される。遠近タイプは、2m~無限遠の距離範囲で、デスクトップパソコンモニター、テレビ、風景等を見る場合に使用される。 For example, the near-term type is used when looking at a book, smartphone, laptop computer, etc. within a distance range of 30 cm to 1 m. The medium-near type is used when viewing laptop computers, desktop computer monitors, televisions, etc., within a distance range of 1 m to 2 m. The perspective type is used for viewing desktop computer monitors, televisions, landscapes, etc., within a distance range of 2m to infinity.
 また、加入度の一般的な算出式は、下記のように表される。
 加入度[D]=100[cm]/クリアに見せたい近距離[cm]
Also, a general calculation formula for the degree of addition is expressed as follows.
Addition [D] = 100 [cm] / Short distance [cm] to be seen clearly
 ここで、加入度とクリアに見せたい近距離の一例を下記に挙げる。
 加入度[D] 近距離[cm]      使用例
 +1.00   100    デスクトップパソコンモニター
 +2.00    50    ラップトップパソコンモニター
 +3.00    33    スマートフォン
Below is an example of an addition degree and a short distance to be shown clearly.
Addition [D] Short distance [cm] Usage example +1.00 100 Desktop computer monitor +2.00 50 Laptop computer monitor +3.00 33 Smartphone
 図13に示す例では、前述したように、距離zの値が500cmの付近の箇所と、距離zの値が50cmの付近の箇所を比較的長時間に亘り注視している。そのため、眼鏡レンズ(累進屈折力レンズ)のタイプを遠近タイプとし、加入度を+2.00[D]に設定することにより、装用者に適した眼鏡レンズ10の設計を行うことが可能である。 In the example shown in FIG. 13, as described above, the user gazes at a point near a distance z value of 500 cm and a point near a distance z value of 50 cm for a relatively long period of time. Therefore, by setting the type of the spectacle lens (progressive power lens) to the far-near type and setting the addition power to +2.00 [D], it is possible to design the spectacle lens 10 suitable for the wearer.
 加入度をプロットした曲線は、加入度曲線とも称される。図14(A)は、遠近タイプの眼鏡レンズ(加入度:+2.00[D])における加入度曲線の第1の例を示すグラフである。図14(A)におけるグラフの横軸は、眼鏡レンズの光学中心を基準とする座標(y)を示す。図14(A)におけるグラフの縦軸は、加入度を示す。図14(B)は、遠近タイプの眼鏡レンズ(加入度:+2.00[D])における加入度曲線の第2の例を示すグラフである。図14(B)におけるグラフの横軸および縦軸は、図14(A)におけるグラフの横軸および縦軸と同様である。図14(A)および図14(B)より、同じ遠近タイプの眼鏡レンズの設計であっても、加入度の特性に差があることが分かる。 A curve plotting the addition is also called an addition curve. FIG. 14A is a graph showing a first example of an addition curve in a near-far type spectacle lens (addition: +2.00 [D]). The horizontal axis of the graph in FIG. 14A indicates the coordinate (y) with reference to the optical center of the spectacle lens. The vertical axis of the graph in FIG. 14(A) indicates addition. FIG. 14B is a graph showing a second example of an addition curve in a near-far type spectacle lens (addition: +2.00 [D]). The horizontal and vertical axes of the graph in FIG. 14(B) are the same as the horizontal and vertical axes of the graph in FIG. 14(A). From FIGS. 14(A) and 14(B), it can be seen that there is a difference in the characteristics of the addition power even with the same distance type spectacle lens design.
 従って、眼鏡レンズの複数の設計タイプの中から最適なものを選択することにより、装用者に最適な眼鏡レンズの設計を行うことが可能である。例えば、3次元方向の視線計測データに基づいて、眼鏡レンズのどの位置を視線(視線を通る光線)が通過するのか、すなわち、眼鏡レンズにおける視線の通過点の位置を求めることができる。これにより、先のステップST3で設定した距離データおよび視線計測データに基づいて、眼鏡レンズにおける視線の通過点の位置での必要加入度を求めることができる。そして、必要加入度をプロットした曲線(以降、必要加入度曲線と称する場合がある)と、複数の設計タイプの加入度曲線とを比較して、必要加入度曲線と重なる箇所が多い加入度曲線を有するものを最適な設計タイプとして選択することが可能である。なお、必要加入度曲線と重なる箇所が多いか否かの判定は、必要加入度曲線における或る視線の通過点の位置での必要加入度と、加入度曲線における当該通過点の位置での加入度との差分の累計に基づいて判定することが可能である。 Therefore, it is possible to design the optimum spectacle lens for the wearer by selecting the optimum design type from a plurality of spectacle lens design types. For example, based on the line-of-sight measurement data in the three-dimensional direction, it is possible to determine which position of the spectacle lens the line of sight (a light ray passing through the line of sight) passes through, that is, the position of the passing point of the line of sight on the spectacle lens. As a result, the required addition at the position of the line-of-sight passage point on the spectacle lens can be obtained based on the distance data and the line-of-sight measurement data set in the previous step ST3. Then, a curve plotting the required addition (hereinafter sometimes referred to as a required addition curve) is compared with the addition curves of a plurality of design types, and the addition curve that overlaps with the required addition curve in many places can be selected as the optimal design type. It should be noted that the determination of whether or not there are many points that overlap with the required addition curve is based on the required addition at the position of the passing point of a certain line of sight on the required addition curve and the addition at the position of the passing point on the addition curve. It is possible to make a determination based on the cumulative total of the difference from the degree.
 図15および図16に、処方度数が同じ遠近タイプの眼鏡レンズにおける加入度の分布および非点収差の分布の例を示す。図15は、ソフト設計と称される設計タイプで設計する場合の左眼用眼鏡レンズ10Lにおける加入度の分布および非点収差の分布を示す。ソフト設計と称される設計タイプで設計する場合、眼鏡レンズの遠用部および近用部において明瞭に見える領域は狭いが、眼鏡レンズの左右において非点収差の等高線の密度が低くなっている。そのため、眼鏡レンズの左側または右側の部分を介して物体を見るときのゆがみが比較的小さく、マイルドな見え方になる。 FIGS. 15 and 16 show examples of addition power distribution and astigmatism distribution in near-far type spectacle lenses with the same prescription power. FIG. 15 shows addition distribution and astigmatism distribution in the left-eye spectacle lens 10L when designed by a design type called soft design. When designing by a design type called soft design, the area clearly visible in the distance portion and the near portion of the spectacle lens is narrow, but the density of astigmatism contour lines on the left and right of the spectacle lens is low. Therefore, when an object is viewed through the left or right portion of the spectacle lens, distortion is relatively small, resulting in a mild appearance.
 図16は、ハード設計と称される設計タイプで設計する場合の左眼用眼鏡レンズ10Lにおける加入度の分布および非点収差の分布を示す。ハード設計と称される設計タイプで設計する場合、眼鏡レンズの遠用部および近用部において明瞭に見える領域は広いが、眼鏡レンズの左右において非点収差の等高線の密度が高くなっている。そのため、眼鏡レンズの左側または右側の部分を介して物体を見るときのゆがみが比較的大きくなる。 FIG. 16 shows the addition distribution and the astigmatism distribution in the left-eye spectacle lens 10L when designed by a design type called hard design. In the case of designing by a design type called hard design, the area clearly visible is wide in the distance portion and the near portion of the spectacle lens, but the density of contour lines of astigmatism is high on the left and right sides of the spectacle lens. Therefore, the distortion when viewing an object through the left or right portion of the spectacle lens is relatively large.
 前述したように、3次元方向の視線計測データに基づいて、眼鏡レンズのどの位置を視線(視線を通る光線)が通過するのか、すなわち、眼鏡レンズにおける視線の通過点の位置を求めることができる。これにより、先のステップST3で設定した距離データおよび視線計測データに基づいて、眼鏡レンズにおける視線の通過点の位置での必要加入度を求めることができる。そして、眼鏡レンズにおける必要加入度をプロットした分布(以降、必要加入度の分布と称する場合がある)と、複数の設計タイプの眼鏡レンズにおける加入度の分布とを比較して、必要加入度の分布と重なる箇所が多い加入度の分布を有するものを最適な設計タイプとして選択することが可能である。なお、必要加入度の分布と重なる箇所が多いか否かについては、眼鏡レンズにおける或る視線の通過点の位置での必要加入度と、各設計タイプの眼鏡レンズにおける当該通過点の位置での加入度との差分の累計に基づいて判定することが可能である。 As described above, based on the line-of-sight measurement data in the three-dimensional direction, it is possible to determine which position of the spectacle lens the line of sight (a light ray passing through the line of sight) passes through, that is, the position of the passing point of the line of sight on the spectacle lens. . As a result, the required addition at the position of the line-of-sight passage point on the spectacle lens can be obtained based on the distance data and the line-of-sight measurement data set in the previous step ST3. Then, the distribution obtained by plotting the required addition of the spectacle lens (hereinafter sometimes referred to as the distribution of the required addition) is compared with the distribution of the addition of the spectacle lenses of a plurality of design types to determine the required addition. It is possible to select the optimum design type to have a distribution of additions with many points of overlap with the distribution. As to whether or not there are many places where the required addition distribution overlaps, the required addition at the position of the passing point of the line of sight in the spectacle lens and the position of the passing point in the spectacle lens of each design type It is possible to make the determination based on the accumulated difference from the degree of addition.
 図15および図16に示す台形C3で囲まれた領域は、眼鏡レンズにおいて、距離zの値が50cmの付近の箇所を注視していたときの視線の通過点が存在する領域である。眼鏡レンズにおいて台形C3で囲まれた領域内で、眼鏡レンズにおける或る視線の通過点の位置での必要加入度と、各設計タイプの眼鏡レンズにおける当該通過点の位置での加入度との差分の累計を求めてもよく、眼鏡レンズにおいて台形C3で囲まれた領域内での差分の累計に基づいて、必要加入度の分布と重なる箇所が多いか否かの判定を行うようにしてもよい。これにより、眼鏡レンズにおける或る視線の通過点の位置での必要加入度と、各設計タイプの眼鏡レンズにおける当該通過点の位置での加入度との差分の累計を求める処理の負担を低減させることができる。 A region surrounded by a trapezoid C3 shown in FIGS. 15 and 16 is a region where there is a passing point of the line of sight when gazing at a point in the vicinity of the distance z value of 50 cm in the spectacle lens. The difference between the necessary addition at the position of a passing point of a certain line of sight in the spectacle lens and the addition at the position of the passing point in the spectacle lens of each design type in the region surrounded by the trapezoid C3 in the spectacle lens may be calculated, and it may be determined whether or not there are many points that overlap with the distribution of the required addition based on the accumulated difference in the area surrounded by the trapezoid C3 in the spectacle lens. . As a result, the load of the process of calculating the sum of the difference between the necessary addition at the position of the passing point of the line of sight in the spectacle lens and the addition at the position of the passing point in the spectacle lens of each design type is reduced. be able to.
 視線の通過点の位置が左右方向に変位する範囲が広いか、または視線の通過点の位置が左右方向に変位する頻度が高い場合、眼鏡レンズにおける加入度の分布だけではなく、非点収差の分布にも配慮することで、より装用者に最適な眼鏡レンズの設計を行うことが可能である。また、眼鏡レンズの遠用部を介して無限遠を見ることが多く、眼鏡レンズの遠用部においては必要加入度の変化が少ない場合がある。この場合、眼鏡レンズにおける加入度の分布ではなく、非点収差の分布に配慮することで、装用者に最適な眼鏡レンズの設計を行うことが可能である。具体的には、複数の設計タイプの眼鏡レンズにおける非点収差の分布について、眼鏡レンズにおける各視線の通過点の位置での非点収差の値の累計を求め、複数の設計タイプの眼鏡レンズの中から、非点収差の値の累計が少ない非点収差の分布を有するものを最適な設計タイプとして選択することが可能である。 If the position of the line-of-sight passage point shifts in the horizontal direction in a wide range or if the position of the line-of-sight passage point shifts in the horizontal direction frequently, not only the addition power distribution in the spectacle lens but also the astigmatism By also considering the distribution, it is possible to design spectacle lenses that are more optimal for the wearer. In addition, infinity is often viewed through the distance portion of the spectacle lens, and there are cases where the change in the required addition is small in the distance portion of the spectacle lens. In this case, it is possible to design an optimum spectacle lens for the wearer by considering the distribution of astigmatism instead of the distribution of addition power in the spectacle lens. Specifically, regarding the distribution of astigmatism in spectacle lenses of a plurality of design types, the sum of the astigmatism values at the positions of the passage points of each line of sight in the spectacle lenses is calculated, and the distribution of the spectacle lenses of a plurality of design types is obtained. From among them, it is possible to select the optimum design type that has an astigmatism distribution with a small cumulative value of astigmatism.
 図15および図16に示す長方形C4で囲まれた領域は、眼鏡レンズにおいて、距離zの値が500cmの付近の箇所を注視していたときの視線の通過点が存在する領域である。眼鏡レンズにおいて長方形C4で囲まれた領域内における各視線の通過点の位置での非点収差の値の累計を求め、複数の設計タイプの眼鏡レンズの中から、非点収差の値の累計が少ない非点収差の分布を有するものを選択してもよい。これにより、非点収差の値の累計を求める処理の負担を低減させることができる。 A region surrounded by a rectangle C4 shown in FIGS. 15 and 16 is a region in which there is a line-of-sight passing point when gazing at a point in the vicinity of a distance z value of 500 cm in the spectacle lens. The sum of the astigmatism values at the positions of the passage points of each line of sight in the area surrounded by the rectangle C4 in the spectacle lens is obtained, and the sum of the astigmatism values is obtained from spectacle lenses of a plurality of design types. You may choose the thing which has distribution of little astigmatism. As a result, it is possible to reduce the burden of the process of obtaining the cumulative value of the astigmatism.
 次に、図17を参照しながら、眼鏡レンズ10の設計で用いる遠用重点距離および近用重点距離の設定を行う処理について説明する。図17は、遠用重点距離および近用重点距離の設定を行う処理の流れを示すフローチャートである。まず、図18(A)に示すように、先のステップST3で設定した距離データに含まれる距離zの値を距離順にプロットする(ステップST401)。次に、図18(B)に示すように、先のステップST401でプロットした距離zの値を中心とする範囲(以降、設定距離範囲と称する)を上下1cmずつ広げる(ステップST402)。 Next, with reference to FIG. 17, the process of setting the far-use weighted distance and the near-use weighted distance used in designing the spectacle lens 10 will be described. FIG. 17 is a flow chart showing the flow of processing for setting the far-use weighted distance and the near-use weighted distance. First, as shown in FIG. 18A, the values of the distance z included in the distance data set in step ST3 are plotted in order of distance (step ST401). Next, as shown in FIG. 18B, the range centered on the value of the distance z plotted in step ST401 (hereinafter referred to as the set distance range) is expanded by 1 cm vertically (step ST402).
 次に、先のステップST401でプロットした距離zの値を中心とする各設定距離範囲が全て重なっているか、または、各設定距離範囲が上下25cmに達しているか否かを判定する(ステップST403)。判定がNOの場合、すなわち、各設定距離範囲が全て重なっておらず、各設定距離範囲が上下25cmに達していない場合、ステップST402の処理を繰り返す。 Next, it is determined whether or not all the set distance ranges centered on the value of the distance z plotted in step ST401 overlap, or whether or not each set distance range reaches 25 cm above and below (step ST403). . If the determination is NO, that is, if the set distance ranges do not all overlap and the set distance ranges do not reach 25 cm vertically, the process of step ST402 is repeated.
 一方、ステップST403における判定がYESの場合、すなわち、各設定距離範囲が全て重なっているか、または、各設定距離範囲が上下25cmに達している場合、ステップST404に進む。ステップST404において、各設定距離範囲に基づいて第1重点距離を設定し、ステップST405に進む。このとき、例えば図18(C)に示すように、各設定距離範囲が最も重なっている距離範囲を特定し、特定した距離範囲における中央値(距離z)を第1重点距離に設定する。 On the other hand, if the determination in step ST403 is YES, that is, if all the set distance ranges overlap or each set distance range reaches 25 cm vertically, the process proceeds to step ST404. In step ST404, the first weighted distance is set based on each set distance range, and the process proceeds to step ST405. At this time, as shown in FIG. 18C, for example, the distance range in which the set distance ranges overlap the most is specified, and the median value (distance z) in the specified distance range is set as the first weighted distance.
 次のステップST405において、第1重点距離から25cm以上離れた、各設定距離範囲が重なる距離範囲が存在するか否かを判定する。判定がYESの場合、すなわち、第1重点距離から25cm以上離れた、各設定距離範囲が重なる距離範囲が存在する場合、ステップST406に進む。ステップST406において、第1重点距離から25cm以上離れた、各設定距離範囲が重なる距離範囲に基づいて第2重点距離を設定し、ステップST407に進む。このとき、第1重点距離から25cm以上離れた、各設定距離範囲が重なる距離範囲における中央値(距離z)を第2重点距離に設定する。 In the next step ST405, it is determined whether or not there is a distance range that is 25 cm or more away from the first weighted distance and overlaps each set distance range. If the determination is YES, that is, if there is a distance range that is 25 cm or more away from the first weighted distance and the set distance ranges overlap, the process proceeds to step ST406. In step ST406, a second weighted distance is set based on a distance range that is 25 cm or more away from the first weighted distance and the set distance ranges overlap, and the process proceeds to step ST407. At this time, the median value (distance z) in the distance range that is 25 cm or more away from the first weighted distance and where the set distance ranges overlap is set as the second weighted distance.
 一方、ステップST405における判定がNOの場合、すなわち、第1重点距離から25cm以上離れた、各設定距離範囲が重なる距離範囲が存在しない場合、ステップST407に進む。ステップST407において、第1重点距離および第2重点距離のうち、遠い方の重点距離を遠用重点距離として保持し、近い方の重点距離を近用重点距離として保持して、処理を終了する。図18(C)に示す例において遠用重点距離および近用重点距離を設定した結果を図20に示す。なお、第2重点距離を設定していない場合、第1重点距離を遠用重点距離として保持する。 On the other hand, if the determination in step ST405 is NO, that is, if there is no distance range that is 25 cm or more away from the first weighted distance and the set distance ranges overlap, the process proceeds to step ST407. At step ST407, of the first weighted distance and the second weighted distance, the far weighted distance is held as the far weighted distance, and the short weighted distance is held as the short weighted distance, and the process ends. FIG. 20 shows the result of setting the far-use weighted distance and the near-use weighted distance in the example shown in FIG. 18(C). Note that when the second weighted distance is not set, the first weighted distance is held as the distance weighted distance.
 次に、図21を参照しながら、眼鏡レンズ10の設計で用いる遠用重点通過点および近用重点通過点の設定を行う処理について説明する。図21は、遠用重点通過点および近用重点通過点の設定を行う処理の流れを示すフローチャートである。まず、先のステップST4で設定した、遠用重点距離および近用重点距離と同じ距離の距離データが存在するか否かを判定する(ステップST501)。判定がNOの場合、すなわち、遠用重点距離および近用重点距離と同じ距離の距離データが存在しない場合、ステップST502に進む。ステップST502において、遠用重点距離および近用重点距離の範囲を上下1cmずつ広げ、ステップST501に戻る。 Next, with reference to FIG. 21, the process of setting the distance-focused passing point and the near-focused passing point used in designing the spectacle lens 10 will be described. FIG. 21 is a flow chart showing the flow of processing for setting the distance-use weighted passing point and the near-use weighted passing point. First, it is determined whether or not there is distance data of the same distance as the weighted distance for far use and the weighted distance for near use set in step ST4 (step ST501). If the determination is NO, that is, if there is no distance data of the same distance as the far-use weighted distance and the near-use weighted distance, the process proceeds to step ST502. In step ST502, the ranges of the distance focus distance and the focus distance for near focus are expanded by 1 cm each above and below, and the process returns to step ST501.
 一方、ステップST501における判定がYESの場合、すなわち、遠用重点距離および近用重点距離と同じ距離の距離データが存在する場合、ステップST503に進む。ステップST503において、図21(A)に示すように、遠用重点距離と同じ距離が計測されるときの眼鏡レンズにおける視線の通過点(以降、遠用通過点T1と称する)および、近用重点距離と同じ距離が計測されるときの眼鏡レンズにおける視線の通過点(以降、近用通過点T2と称する)を、眼鏡レンズの平面座標上にプロットする。 On the other hand, if the determination in step ST501 is YES, that is, if there is distance data of the same distance as the distance focus distance and the focus distance for near use, the process proceeds to step ST503. In step ST503, as shown in FIG. 21(A), a line-of-sight passing point (hereinafter referred to as a far-use passing point T1) in the spectacle lens when the same distance as the distance-use weighted distance is measured, A line-of-sight passing point on the spectacle lens when the same distance as the distance is measured (hereinafter referred to as a near passing point T2) is plotted on the plane coordinates of the spectacle lens.
 次のステップST504において、遠用通過点T1および近用通過点T2のうち少なくとも一方が複数存在するか否かを判定する。判定がYESの場合、すなわち、遠用通過点T1および近用通過点T2のうち少なくとも一方が複数存在する場合、ステップST505に進む。ステップST505において、遠用通過点T1が複数存在する場合、図21(B)に示すように、複数の遠用通過点T1について、遠用通過点T1を中心とする遠用通過領域TA1を眼鏡レンズの平面座標上に設定する。近用通過点T2が複数存在する場合、複数の近用通過点T2について、近用通過点T2を中心とする近用通過領域TA2を眼鏡レンズの平面座標上に設定する。なお、遠用通過領域TA1は、眼鏡レンズの平面座標上での遠用通過点T1を中心とする円形の領域である。近用通過領域TA2は、眼鏡レンズの平面座標上での近用通過点T2を中心とする円形の領域である。遠用通過領域TA1および近用通過領域TA2の半径は、人間の瞳孔の半径(瞳孔径)に相当する値に設定される。 In the next step ST504, it is determined whether or not there are a plurality of at least one of the far-use passing point T1 and the near-use passing point T2. If the determination is YES, that is, if there are a plurality of at least one of the far-use passing point T1 and the near-use passing point T2, the process proceeds to step ST505. In step ST505, if there are a plurality of distance passing points T1, as shown in FIG. Set on the plane coordinates of the lens. When there are a plurality of near passing points T2, a near passing area TA2 centered on the near passing points T2 is set on the plane coordinates of the spectacle lens for the plurality of near passing points T2. The distance passing area TA1 is a circular area centered on the distance passing point T1 on the plane coordinates of the spectacle lens. The near vision passing area TA2 is a circular area centered at the near vision passing point T2 on the plane coordinates of the spectacle lens. The radii of the far-use passing area TA1 and the near-use passing area TA2 are set to values corresponding to the radius of the human pupil (pupil diameter).
 次のステップST506において、遠用通過領域TA1および近用通過領域TA2のそれぞれにおいて、互いに重なる領域があるか否かを判定する。判定がNOの場合、すなわち、遠用通過領域TA1および近用通過領域TA2のそれぞれにおいて、互いに重なる領域がない場合、ステップST507に進む。ステップST507において、遠用通過領域TA1および近用通過領域TA2の半径を1cmずつ広げ、ステップST506に戻る。 In the next step ST506, it is determined whether or not there is an overlapping area in each of the distance passing area TA1 and the near passing area TA2. If the determination is NO, that is, if the distance passing area TA1 and the near passing area TA2 do not overlap each other, the process proceeds to step ST507. In step ST507, the radius of the distance passing area TA1 and the radius of the near passing area TA2 are increased by 1 cm, and the process returns to step ST506.
 一方、ステップST506における判定がYESの場合、すなわち、例えば図21(C)に示すように、遠用通過領域TA1および近用通過領域TA2のそれぞれにおいて、互いに重なる領域がある場合、ステップST508に進む。ステップST508において、複数の遠用通過領域TA1の重なる領域に基づいて遠用重点通過点T1*を設定し、複数の近用通過領域TA2の重なる領域に基づいて近用重点通過点T2*を設定して、ステップST509に進む。このとき、例えば図22に示すように、互いに重なる複数の遠用通過領域TA1の中心(すなわち、遠用通過点T1)を直線で結んだ領域の中心点(例えば、領域の図心に相当する点)を遠用重点通過点T1*に設定する。また、互いに重なる複数の近用通過領域TA2の中心(すなわち、近用通過点T2)を直線で結んだ領域の中心点(例えば、領域の図心に相当する点)を近用重点通過点T2*に設定する。 On the other hand, if the determination in step ST506 is YES, that is, if the distance passing area TA1 and the near passing area TA2 overlap each other as shown in FIG. 21C, the process proceeds to step ST508. . In step ST508, a distance-use weighted passing point T1* is set based on the overlapping area of the plurality of distance-use passing areas TA1, and a near-use weighted passing point T2* is set based on the overlapping area of the plurality of near-use passing areas TA2. Then, the process proceeds to step ST509. At this time, for example, as shown in FIG. 22, the center point (for example, corresponding to the centroid of the area) is obtained by connecting the centers of the overlapping distance passing areas TA1 (that is, the distance passing point T1) with a straight line. point) is set as the distance-use weighted passing point T1*. Further, the central point (for example, the point corresponding to the centroid of the area) obtained by connecting the centers (that is, the near passing point T2) of the overlapping near passing areas TA2 with a straight line is defined as the near focused passing point T2. Set to *.
 また、ステップST504における判定がNOの場合、すなわち、遠用通過点T1および近用通過点T2が1つだけ存在する場合、この遠用通過点T1および近用通過点T2を遠用重点通過点および近用重点通過点に設定し、ステップST509に進む。ステップST509において、遠用重点通過点、近用重点通過点、互いに重なる複数の遠用通過領域TA1の領域、および互いに重なる複数の近用通過領域TA2の領域を保持し、処理を終了する。 If the determination in step ST504 is NO, that is, if there is only one distance passing point T1 and only one near passing point T2, the distance passing point T1 and near passing point T2 are set as the distance-use weighted passing points. and the near-focused passing point, and the process proceeds to step ST509. In step ST509, the distance-focused passing point, the near-focused passing point, multiple overlapping distance-use passing areas TA1, and multiple overlapping near-use passing areas TA2 are retained, and the process ends.
 次に、図23および図24を参照しながら、遠用重点距離、近用重点距離、遠用重点通過点、近用重点通過点を用いて、眼鏡レンズ10の設計を行う処理について説明する。図23は、眼鏡レンズ10の設計を行う処理の流れの上流側を示すフローチャートである。図24は、眼鏡レンズ10の設計を行う処理の流れの下流側を示すフローチャートである。まず、遠用重点距離が無限遠の距離であるか否かを判定する(ステップST601)。判定がYESの場合、すなわち、遠用重点距離が無限遠の距離である場合、ステップST602に進む。ステップST602において、遠用重点通過点の度数が処方度数と一致するように設計パラメータを設定し、ステップST604に進む。 Next, referring to FIGS. 23 and 24, the process of designing the spectacle lens 10 using the distance weighted distance, the near weighted distance, the far weighted passing point, and the near weighted passing point will be described. FIG. 23 is a flow chart showing the upstream side of the flow of processing for designing the spectacle lens 10 . FIG. 24 is a flow chart showing the downstream side of the flow of processing for designing the spectacle lens 10 . First, it is determined whether or not the distance of importance for long use is the distance of infinity (step ST601). If the determination is YES, that is, if the weighted distance for far use is a distance of infinity, the process proceeds to step ST602. In step ST602, design parameters are set so that the power of the distance-use weighted passing point matches the prescription power, and the process proceeds to step ST604.
 一方、ステップST601における判定がNOの場合、すなわち、遠用重点距離が無限遠でない距離である場合、ステップST603に進む。ステップST603において、遠用重点通過点の度数が当該無限遠でない距離で明瞭に見える度数となるように、すなわち、処方度数に対して当該無限遠でない距離で明瞭に見えるように所定の度数を加えて設計パラメータを設定し、ステップST604に進む。 On the other hand, if the determination in step ST601 is NO, that is, if the far use weighted distance is not infinity, the process proceeds to step ST603. In step ST603, a predetermined power is added to the prescribed power so that the power of the distance-focused passing point can be clearly seen at a distance other than infinity, that is, the power can be clearly seen at a distance other than infinity. to set the design parameters, and proceed to step ST604.
 ステップST604において、近用重点距離が設定されているか否かを判定する。判定がYESの場合、すなわち、近用重点距離が設定されている場合、ステップST605に進む。ステップST605において、近用重点通過点の度数が近用重点距離で明瞭に見える度数となるように、すなわち、処方度数に対して近用重点距離で明瞭に見えるように所定の度数を加えて設計パラメータを設定し、ステップST606に進む。 In step ST604, it is determined whether or not a near-focused distance is set. If the determination is YES, that is, if the near focus distance is set, the process proceeds to step ST605. In step ST605, design is made so that the power of the near-focused passing point is a power that can be clearly seen at the near-focused distance, that is, by adding a predetermined power to the prescribed power so that it can be clearly seen at the near-focused distance. A parameter is set, and it progresses to step ST606.
 ステップST606において、遠用重点通過点と近用重点通過点との間の累進部(前述の右眼用累進部13R、左眼用累進部13L)に視線の通過点が存在する場合、当該累進部における視線の通過点からの距離で明瞭に見える度数を求める。 In step ST606, if there is a line-of-sight passage point in the progressive portion (right eye progressive portion 13R, left eye progressive portion 13L) between the distance-use weighted passage point and the near-use weighted passage point, Find the frequency that can be seen clearly at the distance from the line of sight passage point in the part.
 次のステップST607において、先のステップST602,ST603,ST605,ST606で求めた度数から、遠用重点通過点、近用重点通過点、および累進部における視線の通過点の位置での必要加入度を求め、求めた必要加入度のプロットを線形補間により結び、必要加入度曲線を生成する。 In the next step ST607, from the powers obtained in the previous steps ST602, ST603, ST605, and ST606, the necessary addition power at the position of the distance-focused passing point, the near-focused passing point, and the line-of-sight passing point in the progressive portion is calculated. The plots of the required additions obtained are connected by linear interpolation to generate a required addition curve.
 次のステップST608において、眼鏡レンズの製品種類および表面形状の組み合わせの中で、先のステップST602,ST603,ST605で求めた遠用重点通過点の度数および近用重点通過点の度数が得られる設計タイプについて、加入度曲線を生成する。 In the next step ST608, designing to obtain the power of the distance-focused passing point and the power of the near-focused passing point obtained in the previous steps ST602, ST603, and ST605 in the combination of the spectacle lens product type and surface shape. For the type, generate an addition curve.
 次のステップST609において、先のステップST607で生成した必要加入度曲線と、先のステップST608で生成した各設計タイプの加入度曲線とを比較して、各設計タイプに点数を付与し、ステップST610に進む。このとき、必要加入度曲線と重なる箇所が多い加入度曲線を有する設計タイプに対して、高い点数を付与するようにする。 In the next step ST609, the required addition curve generated in the previous step ST607 is compared with the addition curve of each design type generated in the previous step ST608, and points are assigned to each design type. proceed to At this time, a high score is given to a design type having an addition curve that overlaps with the required addition curve in many places.
 また、ステップST604における判定がNOの場合、すなわち、近用重点距離が設定されていない場合、ステップST610に進む。 Also, if the determination in step ST604 is NO, that is, if the near focus distance is not set, the process proceeds to step ST610.
 ステップST610において、遠用重点通過点を設定する際に保持された、互いに重なる複数の遠用通過領域の領域TA1、および互いに重なる複数の近用通過領域TA2の領域における、視線の通過点からの距離で明瞭に見える度数を求める。そして、求めた度数から、互いに重なる複数の遠用通過領域の領域TA1、および互いに重なる複数の近用通過領域TA2の領域における、視線の通過点の位置での必要加入度を求め、必要加入度の分布を生成する。 In step ST610, in a plurality of overlapping distance passing areas TA1 and a plurality of overlapping near passing areas TA2 held when setting the distance-use weighted passing points, Find the frequency clearly visible at a distance. Then, from the determined power, the required addition at the position of the line of sight passage point in the multiple overlapping distance passing areas TA1 and the multiple overlapping near vision passing areas TA2 is found. generates the distribution of .
 次のステップST611において、眼鏡レンズの製品種類および表面形状の組み合わせの中で、先のステップST602,ST603,ST605で求めた遠用重点通過点の度数および近用重点通過点の度数が得られる設計タイプについて、加入度の分布を生成する。 In the next step ST611, the design is such that the power of the distance-focused passing point and the power of the near-focused passing point obtained in the previous steps ST602, ST603, and ST605 are obtained in the combination of the spectacle lens product type and surface shape. Generate a distribution of additions for the type.
 次のステップST612において、先のステップST610で生成した必要加入度の分布と、先のステップST611で生成した各設計タイプの加入度の分布とを比較して、各設計タイプに点数を付与する。このとき、必要加入度の分布と重なる箇所が多い加入度の分布を有する設計タイプに対して、高い点数を付与するようにする。なお、互いに重なる複数の近用通過領域TA2の領域における、必要加入度の分布と重なる箇所が多い加入度の分布を有する設計タイプに対して、高い点数を付与するようにしてもよい。互いに重なる複数の遠用通過領域の領域TA1、および互いに重なる複数の近用通過領域TA2の領域における、必要加入度の分布と重なる箇所が多い加入度の分布を有する設計タイプに対して、高い点数を付与するようにしてもよい。 In the next step ST612, the required addition distribution generated in the previous step ST610 is compared with the addition distribution of each design type generated in the previous step ST611 to give points to each design type. At this time, a high score is given to a design type having a distribution of addition that overlaps the distribution of required addition in many places. A high score may be given to a design type having an addition distribution that overlaps with the necessary addition distribution in a plurality of overlapping near-use passing areas TA2. A high score is given to a design type that has a distribution of additions that overlaps the required addition distribution in many areas of the multiple overlapping distance passing areas TA1 and the multiple overlapping near-use passing areas TA2. may be given.
 次のステップST613において、眼鏡レンズの製品種類および表面形状の組み合わせの中で、先のステップST602,ST603,ST605で求めた遠用重点通過点の度数および近用重点通過点の度数が得られる設計タイプについて、非点収差の分布を生成する。 In the next step ST613, a design that obtains the power of the distance-focused passing point and the power of the near-focused passing point obtained in the previous steps ST602, ST603, and ST605 in the combination of the spectacle lens product type and surface shape. Generate a distribution of astigmatism for the type.
 次のステップST614において、先のステップST613で生成した各設計タイプの非点収差の分布に基づいて、各設計タイプに点数を付与する。このとき、互いに重なる複数の遠用通過領域の領域TA1における、各視線の通過点の位置での非点収差の値の累計が少ない非点収差の分布を有する設計タイプに対して、高い点数を付与するようにする。なお、互いに重なる複数の遠用通過領域の領域TA1、および互いに重なる複数の近用通過領域TA2の領域における、各視線の通過点の位置での非点収差の値の累計が少ない非点収差の分布を有する設計タイプに対して、高い点数を付与するようにしてもよい。 In the next step ST614, points are given to each design type based on the astigmatism distribution of each design type generated in the previous step ST613. At this time, a high score is given to a design type having an astigmatism distribution in which the cumulative total of astigmatism values at the positions of the passage points of each line of sight in the multiple overlapping distance pass areas TA1 is small. give it. It is to be noted that in the multiple overlapping distance passing areas TA1 and the multiple overlapping near vision passing areas TA2, the total astigmatism value at the position of the passing point of each line of sight is small. A higher score may be given to a design type that has a distribution.
 次のステップST615において、先のステップST609,ST612,ST614で付与した各設計タイプの点数に基づいて、複数の設計タイプの中から、眼鏡レンズ10の設計で用いる設計タイプを選定し、処理を終了する。このとき、先のステップST609,ST612,ST614で付与した点数の合計が最も高い設計タイプを、眼鏡レンズ10の設計で用いる設計タイプとして選定するようにしてもよい。また、各設計タイプに関するデータ(例えば、加入度の分布や非点収差の分布等)および、当該設計タイプに付与した点数を眼鏡レンズ10の装用者に提示して、眼鏡レンズ10の装用者とコミュニケーションを行うことにより、眼鏡レンズ10の設計で用いる設計タイプを選定するようにしてもよい。 In the next step ST615, based on the points for each design type given in steps ST609, ST612, and ST614, a design type to be used in designing the spectacle lens 10 is selected from among a plurality of design types, and the process ends. do. At this time, the design type with the highest total points given in steps ST609, ST612, and ST614 may be selected as the design type used in designing the spectacle lens 10. FIG. In addition, data related to each design type (for example, distribution of addition power, distribution of astigmatism, etc.) and points given to the design type are presented to the wearer of the spectacle lens 10, and the spectacle lens 10 wearer and The design type used in designing the spectacle lens 10 may be selected through communication.
 このように、本実施形態によれば、計測モジュール100のデータ処理部140から送信された(計測対象物までの)距離に関する距離計測データおよび視線の方向に関する視線計測データを用いて、使用環境に応じて適切な眼鏡レンズ10の設計を行うことが可能である。 As described above, according to the present embodiment, using the distance measurement data regarding the distance (to the object to be measured) and the line-of-sight measurement data regarding the line-of-sight direction transmitted from the data processing unit 140 of the measurement module 100, It is possible to design an appropriate spectacle lens 10 accordingly.
 具体的には、計測モジュール100のデータ処理部140から送信された距離計測データおよび視線計測データを用いて、眼鏡レンズにおける遠用部(互いに重なる複数の遠用通過領域の領域TA1)または近用部(互いに重なる複数の近用通過領域TA2の領域)での必要加入度を求めることができ、使用環境に応じて適切な眼鏡レンズ10の設計を行うことができる。 Specifically, the distance measurement data and line-of-sight measurement data transmitted from the data processing unit 140 of the measurement module 100 are used to determine the distance portion (area TA1 of a plurality of mutually overlapping distance passage areas) or the near portion of the spectacle lens. It is possible to obtain the necessary addition power in each part (regions of the plurality of near vision passing regions TA2 overlapping each other), and to design the spectacle lens 10 appropriately according to the use environment.
 また、計測モジュール100のデータ処理部140から送信された距離計測データおよび視線計測データを用いて、遠用重点通過点、近用重点通過点、および累進部における必要加入度曲線を求めることができ、使用環境に応じて適切な眼鏡レンズ10の設計を行うことができる。 Further, using the distance measurement data and line-of-sight measurement data transmitted from the data processing unit 140 of the measurement module 100, the distance-use weighted passage point, the near-use weighted passage point, and the required addition curve at the progressive portion can be obtained. , the spectacle lens 10 can be appropriately designed according to the use environment.
 上述の実施形態において、設計モジュール61の設定部72により、注視点の位置を特定しているが、これに限られるものではない。例えば、前述した任意の時刻における距離計測データおよび視線計測データを用いて、眼鏡レンズ10の装用者とコミュニケーションを行うことにより、注視点の位置を特定するようにしてもよい。これにより、眼鏡レンズ10の装用者の要望が反映された、注視点の位置を適切に特定することができる。 In the above-described embodiment, the setting unit 72 of the design module 61 specifies the position of the gaze point, but it is not limited to this. For example, the position of the gaze point may be specified by communicating with the wearer of the spectacle lens 10 using the distance measurement data and line-of-sight measurement data at any given time. This makes it possible to appropriately identify the position of the gaze point that reflects the desire of the wearer of the spectacle lens 10 .
 上述の実施形態において、設計モジュール61の設定部72により、眼鏡レンズ10の設計で用いる距離データの設定を行っているが、これに限られるものではない。例えば、前述した時系列の距離データを用いて、眼鏡レンズ10の装用者とコミュニケーションを行うことにより、眼鏡レンズ10の設計で用いる距離データの設定を行うようにしてもよい。これにより、眼鏡レンズ10の装用者の要望が反映された、眼鏡レンズ10の設計で用いる距離データを適切に設定することができる。 In the above embodiment, the setting unit 72 of the design module 61 sets the distance data used in designing the spectacle lens 10, but it is not limited to this. For example, distance data used in designing the spectacle lens 10 may be set by communicating with the wearer of the spectacle lens 10 using the aforementioned time-series distance data. This makes it possible to appropriately set the distance data used in the design of the spectacle lens 10 that reflects the desires of the wearer of the spectacle lens 10 .
 上述の実施形態において、実際の眼鏡レンズの使用環境における3次元方向の距離計測データおよび視線計測データを取得する。そのため、試作用の眼鏡レンズを製作することなく、設計を行った眼鏡レンズを使用した場合に、前述のメッシュデータに変換して生成した計測対象物OBの概略形状がどのように歪んだりぼけたりするか等、眼鏡レンズの使用感に関するシミュレーションを行うことが可能である。これにより、複数の設計タイプの眼鏡レンズについてシミュレーションを行い、眼鏡レンズの装用者と一緒に、当該シミュレーションの結果を視覚的に評価することが可能になる。 In the above-described embodiment, three-dimensional distance measurement data and line-of-sight measurement data are acquired in the actual spectacle lens usage environment. Therefore, if a designed spectacle lens is used without manufacturing a prototype spectacle lens, how will the outline shape of the object to be measured OB generated by converting it into the above-mentioned mesh data be distorted or blurred? It is possible to perform a simulation regarding the feeling of use of the spectacle lens, such as whether the eyeglass lens is used. This makes it possible to perform simulations for a plurality of design types of spectacle lenses and visually evaluate the results of the simulations together with spectacle lens wearers.
 図25に、或る設計タイプで設計された右眼用眼鏡レンズ10Rおよび左眼用眼鏡レンズ10Lの使用感に関するシミュレーションを行った結果を模式的に示す。これにより、眼鏡レンズの製品種類および表面形状の組み合わせの中で、前述のステップST602,ST603,ST605で求めた遠用重点通過点の度数および近用重点通過点の度数が得られる複数の設計タイプで設計された眼鏡レンズについてそれぞれ、前述の計測対象物OBの概略形状がどのように歪んだりぼけたりするか等を確認することができる。そして、確認を行った複数の設計タイプの中から、実際の使用環境に合った設計タイプを選定することが可能になる。 FIG. 25 schematically shows the result of a simulation on the usability of the right-eye spectacle lens 10R and the left-eye spectacle lens 10L designed according to a certain design type. As a result, a plurality of design types that can obtain the power of the distance-focused passing point and the power of the near-focused passing point obtained in the above-described steps ST602, ST603, and ST605 among combinations of product types and surface shapes of spectacle lenses. It is possible to check how the outline shape of the object to be measured OB is distorted or blurred for each of the spectacle lenses designed in . Then, it becomes possible to select a design type that matches the actual usage environment from among the plurality of design types that have been confirmed.
  1  一対の眼鏡レンズ
 10R 右眼用眼鏡レンズ      10L 左眼用眼鏡レンズ
 11R 右眼用遠用部        11L 左眼用遠用部
 12R 右眼用近用部        12L 左眼用近用部
 13R 右眼用累進部        13L 左眼用累進部
 50  眼鏡レンズの製造システム
 60  眼鏡レンズの設計装置    61  設計モジュール
100  計測モジュール      110  眼鏡フレーム
115L 右眼用レンズ部      115L 左眼用レンズ部
120R 右眼用距離計測器     120L 左眼用距離計測器
130R 右眼用視線計測器     130L 左眼用視線計測器
140  データ処理部       145  データ記憶部
1 pair of spectacle lenses 10R spectacle lens for right eye 10L spectacle lens for left eye 11R distance portion for right eye 11L distance portion for left eye 12R near portion for right eye 12L near portion for left eye 13R progressive for right eye Section 13L Left eye progressive section 50 Spectacle lens manufacturing system 60 Spectacle lens design device 61 Design module 100 Measurement module 110 Spectacle frame 115L Right eye lens section 115L Left eye lens section 120R Right eye distance measuring instrument 120L Left eye distance measuring device 130R right eye sight line measuring device 130L left eye sight line measuring device 140 data processing unit 145 data storage unit

Claims (6)

  1.  計測モジュールから送信された計測データを用いて眼鏡レンズの設計を行い、前記設計に基づいて眼鏡レンズを製造する眼鏡レンズの製造方法であって、
     前記計測モジュールは、
     眼鏡フレームと、
     前記眼鏡フレームに保持されたレンズ部と、
     前記眼鏡フレームに設けられ、前記眼鏡フレームが装用者に装用された状態で計測対象物までの距離に関する計測データを取得する距離計測器と、
     前記レンズ部に設けられ、前記眼鏡フレームを装用した装用者の視線の方向に関する計測データを取得する視線計測器と、
     前記距離計測器により取得された前記距離に関する計測データおよび、前記視線計測器により取得された前記視線の方向に関する計測データを送信する処理部とを備え、
     前記処理部から送信された前記距離に関する計測データおよび前記視線の方向に関する計測データを用いて、前記眼鏡レンズの設計を行う眼鏡レンズの製造方法。
    A spectacle lens manufacturing method for designing a spectacle lens using measurement data transmitted from a measurement module and manufacturing a spectacle lens based on the design,
    The measurement module is
    spectacle frames and
    a lens portion held by the spectacle frame;
    a distance measuring device that is provided in the spectacle frame and acquires measurement data regarding a distance to an object to be measured while the spectacle frame is worn by a wearer;
    a line-of-sight measuring device that is provided in the lens unit and acquires measurement data regarding the line-of-sight direction of the wearer wearing the spectacle frame;
    a processing unit that transmits measurement data related to the distance acquired by the distance measuring device and measurement data related to the direction of the line of sight acquired by the sight line measuring device;
    A spectacle lens manufacturing method, wherein the spectacle lens is designed using the measurement data relating to the distance and the measurement data relating to the line-of-sight direction transmitted from the processing unit.
  2.  前記眼鏡レンズは、遠方視に適した屈折力を有する遠用部を有し、
     前記処理部から送信された前記距離に関する計測データおよび前記視線の方向に関する計測データを用いて、前記遠方視に適した屈折力を求め、前記眼鏡レンズの設計を行う請求項1に記載の眼鏡レンズの製造方法。
    The spectacle lens has a distance portion having a refractive power suitable for distant vision,
    2. The spectacle lens according to claim 1, wherein the spectacle lens is designed by obtaining a refractive power suitable for the distant vision using the measurement data regarding the distance and the measurement data regarding the direction of the line of sight transmitted from the processing unit. manufacturing method.
  3.  前記眼鏡レンズは、遠方視に適した屈折力を有する遠用部と、近方視に適した屈折力を有する近用部とを有し、
     前記処理部から送信された前記距離に関する計測データおよび前記視線の方向に関する計測データを用いて、前記近方視に適した屈折力を求め、前記眼鏡レンズの設計を行う請求項1または2に記載の眼鏡レンズの製造方法。
    The spectacle lens has a distance portion having a refractive power suitable for far vision and a near portion having a refractive power suitable for near vision,
    3. The spectacle lens according to claim 1, wherein the refractive power suitable for the near vision is calculated using the measurement data regarding the distance and the measurement data regarding the direction of the line of sight transmitted from the processing unit, and the spectacle lens is designed. manufacturing method of spectacle lenses.
  4.  前記眼鏡レンズは、前記遠用部と前記近用部との間に設けられ、前記遠用部と前記近用部との間の位置に応じて屈折力が変化する累進部を有し、
     前記処理部から送信された前記距離に関する計測データおよび前記視線の方向に関する計測データを用いて、前記累進部の前記屈折力の変化を求め、前記眼鏡レンズの設計を行う請求項3に記載の眼鏡レンズの製造方法。
    the spectacle lens has a progressive portion provided between the far-use portion and the near-use portion, the refractive power of which changes depending on the position between the far-use portion and the near-use portion;
    4. The spectacles according to claim 3, wherein the spectacle lens is designed by obtaining the change in the refractive power of the progressive section using the measurement data regarding the distance and the measurement data regarding the direction of the line of sight transmitted from the processing section. How the lens is made.
  5.  眼鏡レンズの設計を行う設計モジュールと、前記設計モジュールに計測データを送信可能な計測モジュールとを備える眼鏡レンズの設計装置であって、
     前記計測モジュールは、
     眼鏡フレームと、
     前記眼鏡フレームに保持されたレンズ部と、
     前記眼鏡フレームに設けられ、前記眼鏡フレームが装用者に装用された状態で計測対象物までの距離に関する計測データを取得する距離計測器と、
     前記レンズ部に設けられ、前記眼鏡フレームを装用した装用者の視線の方向に関する計測データを取得する視線計測器と、
     前記距離計測器により取得された前記距離に関する計測データおよび、前記視線計測器により取得された前記視線の方向に関する計測データを送信する処理部とを備える眼鏡レンズの設計装置。
    A spectacle lens designing device comprising a design module for designing a spectacle lens and a measurement module capable of transmitting measurement data to the design module,
    The measurement module is
    spectacle frames and
    a lens portion held by the spectacle frame;
    a distance measuring device provided in the spectacle frame for acquiring measurement data relating to a distance to a measurement object while the spectacle frame is worn by a wearer;
    a line-of-sight measuring device that is provided in the lens unit and acquires measurement data regarding the line-of-sight direction of the wearer wearing the spectacle frame;
    A spectacle lens designing device, comprising: a processing unit that transmits measurement data relating to the distance acquired by the distance measuring device and measurement data relating to the direction of the line of sight acquired by the sight line measuring device.
  6.  眼鏡レンズの設計を行う設計モジュールに計測データを送信可能な計測モジュールであって、
     眼鏡フレームと、
     前記眼鏡フレームに保持されたレンズ部と、
     前記眼鏡フレームに設けられ、前記眼鏡フレームが装用者に装用された状態で計測対象物までの距離に関する計測データを取得する距離計測器と、
     前記レンズ部に設けられ、前記眼鏡フレームを装用した装用者の視線の方向に関する計測データを取得する視線計測器と、
     前記距離計測器により取得された前記距離に関する計測データおよび、前記視線計測器により取得された前記視線の方向に関する計測データを送信する処理部とを備える計測モジュール。
    A measurement module capable of transmitting measurement data to a design module that designs spectacle lenses,
    spectacle frames and
    a lens portion held by the spectacle frame;
    a distance measuring device provided in the spectacle frame for acquiring measurement data relating to a distance to a measurement object while the spectacle frame is worn by a wearer;
    a line-of-sight measuring device that is provided in the lens unit and acquires measurement data regarding the line-of-sight direction of the wearer wearing the spectacle frame;
    A measurement module including a processing unit that transmits measurement data relating to the distance acquired by the distance measuring device and measurement data relating to the direction of the line of sight acquired by the sight line measuring device.
PCT/JP2022/041511 2021-12-21 2022-11-08 Method for manufacturing spectacle lens, device for designing spectacle lens, and measurement module WO2023119914A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-207118 2021-12-21
JP2021207118 2021-12-21

Publications (1)

Publication Number Publication Date
WO2023119914A1 true WO2023119914A1 (en) 2023-06-29

Family

ID=86902048

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/041511 WO2023119914A1 (en) 2021-12-21 2022-11-08 Method for manufacturing spectacle lens, device for designing spectacle lens, and measurement module

Country Status (1)

Country Link
WO (1) WO2023119914A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012022288A (en) * 2010-03-10 2012-02-02 Seiko Epson Corp Progressive refractive power lens design method, progressive refractive power lens design system, and progressive refractive power lens
JP2012103312A (en) * 2010-11-08 2012-05-31 Seiko Epson Corp Progressive refractive power lens and design method thereof
JP2012198257A (en) * 2011-03-18 2012-10-18 Seiko Epson Corp Method for designing progressive refractive power lens
WO2014133166A1 (en) * 2013-02-28 2014-09-04 Hoya株式会社 Spectacle lens design system, supply system, design method, and production method
JP2019513519A (en) * 2016-04-08 2019-05-30 ビビオール アクチェンゲゼルシャフト Apparatus and method for measuring viewing distance

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012022288A (en) * 2010-03-10 2012-02-02 Seiko Epson Corp Progressive refractive power lens design method, progressive refractive power lens design system, and progressive refractive power lens
JP2012103312A (en) * 2010-11-08 2012-05-31 Seiko Epson Corp Progressive refractive power lens and design method thereof
JP2012198257A (en) * 2011-03-18 2012-10-18 Seiko Epson Corp Method for designing progressive refractive power lens
WO2014133166A1 (en) * 2013-02-28 2014-09-04 Hoya株式会社 Spectacle lens design system, supply system, design method, and production method
JP2019513519A (en) * 2016-04-08 2019-05-30 ビビオール アクチェンゲゼルシャフト Apparatus and method for measuring viewing distance

Similar Documents

Publication Publication Date Title
JP6854647B2 (en) How to optimize your optical lens device for your wearer
JP5438036B2 (en) Spectacle lens evaluation method, spectacle lens design method, and spectacle lens manufacturing method
US10048750B2 (en) Content projection system and content projection method
US20190246889A1 (en) Method of determining an eye parameter of a user of a display device
US11333906B2 (en) Determination of at least one optical parameter of a spectacle lens
US9961335B2 (en) Pickup of objects in three-dimensional display
CN110235052B (en) Computer-implemented method for determining centering parameters
JPWO2012014810A1 (en) Spectacle lens evaluation method, spectacle lens design method, spectacle lens manufacturing method, spectacle lens manufacturing system, and spectacle lens
GB2559978A (en) Systems and methods for obtaining eyewear information
CA3127571A1 (en) Apparatus, system and method of determining one or more parameters of a refractive error of a tested eye
EP3908820A1 (en) Apparatus, system, and method of determining one or more parameters of a lens
CN110446967B (en) Computer-implemented method for determining a representation of an edge of a spectacle frame or a representation of an edge of a spectacle lens
US20200133022A1 (en) Method for designing eyeglass lens, method for manufacturing eyeglass lens, eyeglass lens, eyeglass lens ordering device, eyeglass lens order receiving device, and eyeglass lens ordering and order receiving system
WO2023119914A1 (en) Method for manufacturing spectacle lens, device for designing spectacle lens, and measurement module
JP2013226397A (en) Apparatus for measuring objective near field distance and method and system for manufacturing spectacle lens using the apparatus for measuring objective near field distance
US8777414B2 (en) Pupil dependent wavefront refraction
JP6298231B2 (en) Spectacle lens design method and spectacle lens manufacturing method
US10871658B2 (en) Method for modifying a non-dioptric parameter of an optical system
JP6030425B2 (en) Parameter measuring apparatus, parameter measuring method, spectacle lens design method, and spectacle lens manufacturing method
RU2823519C2 (en) Device, system and method for determining one or more lens parameters
JP6364517B2 (en) Spectacle lens design method and spectacle lens manufacturing method
EP4364642A1 (en) Computer-implemented methods and devices for determining refractive errors
EP4371469A1 (en) Computer-implemented method and devices for determining at least one astigmatism parameter of at least one eye of a person
RU2820013C2 (en) Device, system and method for determining one or more parameters of refractive anomaly of eye being examined
JP7186082B2 (en) Spectacle lens design and manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22910633

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE