WO2023119576A1 - Communication path control system and communication path control method - Google Patents

Communication path control system and communication path control method Download PDF

Info

Publication number
WO2023119576A1
WO2023119576A1 PCT/JP2021/047945 JP2021047945W WO2023119576A1 WO 2023119576 A1 WO2023119576 A1 WO 2023119576A1 JP 2021047945 W JP2021047945 W JP 2021047945W WO 2023119576 A1 WO2023119576 A1 WO 2023119576A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication
communication path
slice
path control
alternative
Prior art date
Application number
PCT/JP2021/047945
Other languages
French (fr)
Japanese (ja)
Inventor
一成 竹内
誠 大野
Original Assignee
楽天モバイル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 楽天モバイル株式会社 filed Critical 楽天モバイル株式会社
Priority to PCT/JP2021/047945 priority Critical patent/WO2023119576A1/en
Publication of WO2023119576A1 publication Critical patent/WO2023119576A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/28Routing or path finding of packets in data switching networks using route fault recovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/50Routing or path finding of packets in data switching networks using label swapping, e.g. multi-protocol label switch [MPLS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/12Communication route or path selection, e.g. power-based or shortest path routing based on transmission quality or channel quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/34Modification of an existing route

Definitions

  • the present invention relates to a communication path control system and a communication path control method.
  • Patent Document 1 describes a technique for optimizing wireless parameters and network parameters in wireless stations based on KPI information.
  • Patent Document 1 when the communication performance of the network service being provided deteriorates, the communication performance of that network service cannot be recovered quickly.
  • the present invention has been made in view of the above circumstances, and one of its objects is to quickly restore the communication performance of a network service when the communication performance of the network service being provided deteriorates.
  • An object of the present invention is to provide a communication path control system and a communication path control method.
  • a communication path control system provides a plurality of communication paths that can be substituted for at least a part of a communication path being provided, which is a communication path connecting functional units included in a network service being provided.
  • monitoring means for monitoring the communication quality of the alternative communication path during provision of the network service; detection means for detecting that a predetermined deterioration in communication performance has occurred in the communication path during provision of the service; and and communication path control means for changing at least a portion of the communication path under service to any of the alternative communication paths determined based on communication quality monitoring results in response to detection of an occurrence.
  • the communication path control means selects at least a part of the service-provisioning communication path in accordance with the detection of the occurrence of the communication performance deterioration, and selects the communication path having the highest communication quality as a result of monitoring. Change to an alternate communication path.
  • the alternative communication path is a communication path that connects functional units included in a network service different from the network service being provided.
  • the detection means detects that a predetermined communication performance deterioration has occurred in a communication path between two functional units that are at least part of the communication path during service provision, and
  • the communication path control means in response to detecting that the communication performance deterioration has occurred, controls the communication path between the two functional units, which is at least part of the communication path under service provision, according to the communication quality monitoring result. change to any of the alternative communication paths determined based on
  • the communication route control means controls such that a packet having a source IP address that satisfies a predetermined condition passes through the communication route during service provision, and the communication route control means controls the communication route during service provision.
  • the communication path control means sets the segment identification information corresponding to the in-service communication path to the IP header of the packet in which the source IP address that satisfies the condition is set.
  • the communication path control means controls the IP address of a packet set with a source IP address that satisfies the conditions in communication in the segment routing area. Control may be performed so that segment identification information corresponding to any of the alternative communication paths determined based on the monitored communication quality is set in the header.
  • the communication path control method provides a plurality of alternative communication paths that can be substituted for at least part of a communication path under service provision, which is a communication path connecting a group of functional units included in a network service being provided, a step of monitoring communication quality during provision of said network service; a step of detecting that predetermined communication performance deterioration has occurred in said communication path during said service provision; and changing at least part of the in-service communication path to one of the alternative communication paths determined based on the communication quality monitoring result.
  • FIG. 4 is a diagram schematically showing an example of communication between regional data centers and a central data center;
  • FIG. 2 is a diagram schematically showing an example of communication paths whose communication quality is measured by a measurement agent;
  • FIG. 4 is a diagram showing an example of slice management data;
  • FIG. 4 is a diagram showing an example of source IP slice correspondence data;
  • FIG. 4 is a diagram showing an example of routing management data;
  • FIG. 4 is a diagram showing an example of slice management data;
  • FIG. 4 is a diagram schematically showing an example of communication between regional data centers and a central data center
  • FIG. 2 is a diagram schematically showing an example of communication paths whose communication quality is measured by a measurement agent
  • FIG. 4 is a diagram showing an example of slice management data
  • FIG. 4 is a diagram showing an example of source IP slice correspondence data
  • FIG. 4 is a diagram showing an example of routing management data
  • FIG. FIG. 4 is a diagram showing an example of slice management data
  • FIG. 4 is a diagram showing an example of source IP slice correspondence data
  • 1 is a functional block diagram showing an example of functions implemented in a platform system according to one embodiment of the present invention
  • FIG. 4 is a flow chart showing an example of the flow of processing performed by the platform system according to one embodiment of the present invention
  • FIG. 1 and 2 are diagrams showing an example of a communication system 1 according to an embodiment of the present invention.
  • FIG. 1 is a diagram focusing on the locations of the data centers included in the communication system 1.
  • FIG. 2 is a diagram focusing on various computer systems implemented in a group of data centers included in the communication system 1. As shown in FIG.
  • the data centers included in the communication system 1 are classified into a central data center 10, regional data centers 12, and edge data centers 14.
  • central data centers 10 are distributed within the area covered by the communication system 1 (for example, within Japan).
  • dozens of regional data centers 12 are distributed within the area covered by the communication system 1 .
  • the area covered by the communication system 1 is all over Japan, one or two regional data centers 12 may be arranged in each prefecture.
  • edge data centers 14 are distributed within the area covered by the communication system 1, for example. Also, each of the edge data centers 14 can communicate with a communication facility 18 having an antenna 16 . Here, as shown in FIG. 1, one edge data center 14 may be able to communicate with several communication facilities 18 . Communication facility 18 may include computers, such as server computers. A communication facility 18 according to this embodiment performs wireless communication with a UE (User Equipment) 20 via an antenna 16 .
  • UE User Equipment
  • a plurality of servers are arranged in each of the central data center 10, the regional data center 12, and the edge data center 14 according to this embodiment.
  • the central data center 10, the regional data center 12, and the edge data center 14 can communicate with each other. Also, the central data centers 10, the regional data centers 12, and the edge data centers 14 can communicate with each other.
  • the communication system 1 includes a platform system 30, multiple radio access networks (RAN) 32, multiple core network systems 34, and multiple UEs 20.
  • Core network system 34, RAN 32, and UE 20 cooperate with each other to realize a mobile communication network.
  • the RAN 32 is a computer system equipped with an antenna 16, which corresponds to eNB (eNodeB) in 4G and gNB (NR base station) in 5G.
  • the RAN 32 according to this embodiment is mainly implemented by a group of servers and communication equipment 18 located in the edge data center 14 .
  • part of the RAN 32 for example, vDU (virtual distributed unit) and vCU (virtual central unit) in 4G, DU (distributed unit) and CU (central unit) in 5G
  • vDU virtual distributed unit
  • vCU virtual central unit
  • DU distributed unit
  • CU central unit
  • the core network system 34 is an EPC (Evolved Packet Core) in the 4th generation mobile communication system (hereinafter referred to as 4G) and a 5G core (5GC) in the 5th generation mobile communication system (hereinafter referred to as 5G). This is the corresponding system.
  • the core network system 34 according to this embodiment is mainly implemented by a group of servers arranged in the central data center 10 and the regional data centers 12 .
  • the platform system 30 is configured on a cloud platform, for example, and includes a processor 30a, a storage unit 30b, and a communication unit 30c, as shown in FIG.
  • the processor 30 a is a program-controlled device such as a microprocessor that operates according to programs installed in the platform system 30 .
  • the storage unit 30b is, for example, a storage element such as ROM or RAM, a solid state drive (SSD), a hard disk drive (HDD), or the like.
  • the storage unit 30b stores programs and the like executed by the processor 30a.
  • the communication unit 30c is, for example, a communication interface such as a NIC or a wireless LAN module. Note that SDN (Software-Defined Networking) may be implemented in the communication unit 30c.
  • the communication unit 30 c exchanges data with the RAN 32 and the core network system 34 .
  • the platform system 30 is implemented by a group of servers located in the central data center 10. Note that the platform system 30 may be implemented by a group of servers arranged in the regional data center 12 .
  • the communication system 1 provides network services such as voice communication services and data communication services to users using the UE 20 .
  • the network services provided in this embodiment are not limited to voice communication services and data communication services.
  • the network service provided in this embodiment may be, for example, an IoT service.
  • a container-type application execution environment such as Docker is installed in the servers located in the central data center 10, the regional data center 12, and the edge data center 14. You can now deploy and run containers on your server.
  • a cluster Kernetes cluster
  • a container management tool such as Kubernetes may be constructed. Then, the processors on the constructed cluster may execute container-type applications.
  • the network services provided in this embodiment are implemented by CNFs (Containerized Network Functions), which are container-based functional units.
  • FIG. 3 is a diagram schematically showing an example of communication between the regional data center 12 and the central data center 10 in this embodiment. As shown in FIG. 3 , the regional data center 12 and the central data center 10 are communicable via a backhaul 40 .
  • FIG. 3 shows routers 42 (42a to 42d), SR source nodes 44, transit nodes 46 (46a to 46c), SR segment endpoint nodes 48 (48a to 48c) as an example of communication equipment that configures the backhaul 40. ,It is shown. Note that the configuration of the backhaul 40 is merely an example schematically shown for explaining the present embodiment.
  • FIG. 3 shows an SR area 50 as an example of the SR area.
  • the components of the RAN 32 such as the CU 52 are arranged in the regional data center 12 .
  • components of the core network system 34 such as a UPF (User Plane Function) 54 are arranged.
  • the CU 52 and UPF 54 shown in FIG. 3 serve as functional units (eg, network functions (NF)) included in network services such as voice communication services and data communication services being provided to users of the UE 20. bear.
  • the functional units according to the present embodiment may correspond to network nodes such as the CU 52 and the UPF 54, for example.
  • a plurality of measurement agents 56 are arranged in each of the regional data center 12 and the central data center 10 .
  • the measurement agent 56 located in the regional data center 12 and the measurement agent 56 located in the central data center 10 communicate with each other, so that the communication quality of the communication path between the measurement agents 56 (for example, jitter value, error rate, latency, etc.) can be measured.
  • the communication quality for example, jitter value, error rate, latency, etc.
  • the communication quality for example, jitter value, error rate, latency, etc.
  • the measurement agent 56 for example, software such as a TWAMP (A Two-Way Active Measurement Protocol) agent capable of measuring the communication quality of the communication path in communication from the regional data center 12 to the central data center 10 can be used.
  • TWAMP A Two-Way Active Measurement Protocol
  • FIG. 4 is a diagram schematically showing an example of a communication route whose communication quality is measured by the measurement agent 56. As shown in FIG. 4
  • At least three transport slices 58 are configured between the regional data center 12 and the central data center 10.
  • the communication quality of the transport slice 58a in communication from the regional data center 12 to the central data center 10 is measured.
  • a transport slice 58a is a communication path through router 42a, SR source node 44, transit node 46a, SR segment endpoint node 48a, and router 42b. Communication between the SR source node 44 and the SR segment endpoint node 48a is performed by transferring packets by segment routing.
  • the communication quality of the transport slice 58b in the direction of communication from the regional data center 12 to the central data center 10 is measured.
  • a transport slice 58b is a communication path passing through router 42a, SR source node 44, transit node 46b, SR segment endpoint node 48b, and router 42c. Communication between the SR source node 44 and the SR segment endpoint node 48b is performed by transferring packets by segment routing.
  • the measurement agent 56c located in the regional data center 12 and the measurement agent 56f located in the central data center 10 communicate with each other, thereby increasing the communication quality of the transport slice 58c. is measured.
  • the communication quality of the transport slice 58c in communication from the regional data center 12 to the central data center 10 is measured.
  • a transport slice 58c is a communication path passing through router 42a, SR source node 44, transit node 46c, SR segment endpoint node 48c, and router 42d. Communication between the SR source node 44 and the SR segment endpoint node 48c is performed by transferring packets by segment routing.
  • a communication path connecting functional units included in a network service being provided to a user of the UE 20 is hereinafter referred to as a service-provisioning communication path.
  • a communication route that can be substituted for at least part of the communication route during service provision is called an alternative communication route.
  • the communication path connecting the CU 52 and the UPF 54 corresponds to part of the communication path during service provision.
  • communication between the CU 52 and the UPF 54 uses one of the transport slices 58a, 58b, or 58c communication path. That is, either transport slice 58a, transport slice 58b, or transport slice 58c becomes part of the in-service communication path.
  • the transport slice 58a corresponds to part of the communication path in service.
  • the transport slice 58b and the transport slice 58c correspond to alternative communication paths for the transport slice 58a.
  • FIG. 5 is a diagram showing an example of slice management data according to this embodiment.
  • FIG. 6 is a diagram showing an example of source IP slice correspondence data according to the present embodiment.
  • FIG. 7 is a diagram showing an example of routing management data according to this embodiment.
  • communication between the regional data center 12 and the central data center 10 is controlled based on data such as slice management data, source IP slice correspondence data, and routing management data.
  • the slice management data includes S-NSSAI, SR area ID, and TR slice ID.
  • the slice management data indicates, for example, the transport slices 58 used in network slices in which network services are provided.
  • S-NSSAI is network slice identification information. As described above, network services including CU 52 and UPF 54 according to this embodiment are provided by network slices identified by S-NSSAI with a value of "I". As shown in FIG. 5, the slice management data according to the present embodiment also manages network slices other than this network slice.
  • SR area ID is identification information of the segment routing area (SR area). Assume that the SR area ID of the SR area 50 shown in FIG. 3 is "1". Note that the SR area identified by the value "2" shown in FIG. 5 indicates an SR area different from the SR area 50 shown in FIG. For example, the SR area between the edge data center 14 and the regional data center 12 may correspond to the SR area identified by the value "2".
  • the TR slice ID is identification information of the transport slice 58 .
  • the TR slice IDs of the transport slice 58a, the transport slice 58b, and the transport slice 58c are "A1", "A2", and "A3", respectively.
  • the transport slice 58 whose TR slice ID is "A1" is included in the SR area whose SR area ID is “1” in the network slice whose S-NSSAI is "I”. (ie, transport slice 58a) is shown assigned.
  • the source IP slice corresponding data according to the present embodiment includes source IP set data and TR slice ID.
  • the source IP slice correspondence data according to this embodiment is managed for each SR area.
  • FIG. 6 shows an example of source IP slice correspondence data for controlling the SR area 50 shown in FIG.
  • the source IP slice correspondence data is, for example, data indicating correspondence between the source IP address set in the packet and the transport slice 58 to which the packet is to be transferred.
  • the IP set to which the source IP address belongs (hereinafter referred to as the source IP set) is associated with the transport slice 58 .
  • the routing management data shown in FIG. 7 indicates routing information for each transport slice 58.
  • the transport slice 58a is associated with routing information indicating a communication route passing through the router 42a, the SR source node 44, the transit node 46a, the SR segment endpoint node 48a, and the router 42b.
  • the transport slice 58b is associated with routing information indicating a communication route passing through the router 42a, the SR source node 44, the transit node 46b, the SR segment endpoint node 48b, and the router 42c.
  • the transport slice 58c is associated with routing information indicating a communication route passing through the router 42a, the SR source node 44, the transit node 46c, the SR segment endpoint node 48c, and the router 42d.
  • packets are transferred by segment routing within the SR area.
  • the packet is forwarded based on the segment identification information (for example, SRv6 SID) set in the IP header of the packet.
  • segment identification information for example, SRv6 SID
  • the SR source node 44 receives from the router 42a a packet in which the IP address of the CU 52 is set as the source IP address and the IP address of the UPF 54 is set as the destination IP address.
  • the IP set to which the IP address of CU52 belongs is "SS".
  • the SR source node 44 sets "A1" in the IP header of this packet as segment identification information.
  • This packet then reaches SR segment endpoint node 48a via transit node 46a.
  • SR segment endpoint node 48 a then removes the segment identification information from the IP header of the packet and forwards the packet to router 42 b , which forwards the packet to central data center 10 .
  • the central data center 10 receives this packet, it outputs it to the UPF 54 .
  • the SR source node 44 receives from the router 42a a packet in which the IP address of the measurement agent 56a is set as the source IP address and the IP address of the measurement agent 56d is set as the destination IP address. Assume that the IP set to which the IP address of the measurement agent 56a belongs is "XX".
  • the SR source node 44 sets "A1" in the IP header of this packet as segment identification information.
  • This packet then reaches SR segment endpoint node 48a via transit node 46a.
  • SR segment endpoint node 48 a then removes the segment identification information from the IP header of the packet and forwards the packet to router 42 b , which forwards the packet to central data center 10 .
  • the central data center 10 receives this packet, it outputs it to the measurement agent 56d.
  • the SR source node 44 receives from the router 42a a packet in which the IP address of the measurement agent 56b is set as the source IP address and the IP address of the measurement agent 56e is set as the destination IP address. Assume that the IP set to which the IP address of the measurement agent 56b belongs is "YY".
  • the SR source node 44 sets "A2" in the IP header of this packet as segment identification information.
  • This packet then reaches SR segment endpoint node 48b via transit node 46b.
  • SR segment endpoint node 48 b then removes the segment identification information from the IP header of this packet and forwards this packet to router 42 c , which forwards this packet to central data center 10 .
  • the central data center 10 receives this packet, it outputs it to the measurement agent 56e.
  • the SR source node 44 receives from the router 42a a packet in which the IP address of the measurement agent 56c is set as the source IP address and the IP address of the measurement agent 56f is set as the destination IP address. Assume that the IP set to which the IP address of the measurement agent 56c belongs is "ZZ".
  • the SR source node 44 sets "A3" as segment identification information in the IP header of this packet. This packet then reaches SR segment endpoint node 48c via transit node 46c. SR segment endpoint node 48 c then removes the segment identification information from the IP header of this packet and forwards this packet to router 42 d , which forwards this packet to central data center 10 . When central data center 10 receives this packet, it outputs it to measurement agent 56f.
  • the communication performance of the communication path during service provision is monitored.
  • a performance index value indicating throughput per UE 20 may be monitored.
  • performance indicator values for performance indicators described in "TS 28.552, Management and orchestration; 5G performance measurements” or “TS 28.554, Management and orchestration; 5G end to end Key Performance Indicators (KPI)" are monitored. good too.
  • the communication performance of the communication path in the direction from the CU 52 to the UPF 54 may be monitored.
  • the communication quality of a plurality of communication paths including at least a plurality of alternative communication paths is measured during the provision of the network service described above.
  • the communication quality of the transport slice 58a, the transport slice 58b, and the transport slice 58c is measured during provision of the network service described above.
  • the communication quality of transport slice 58a, transport slice 58b, and transport slice 58c is monitored during the provision of the network service described above.
  • the communication quality in the direction of communication from the regional data center 12 to the central data center 10 may be monitored.
  • At least a part of the communication path under service provision is selected based on the result of monitoring the communication quality.
  • route is changed. For example, in response to detecting that a predetermined performance indicator value being monitored for the in-service communication path has fallen below a predetermined threshold, at least a portion of the in-service communication path is monitored for communication quality. Change to any alternative communication path determined.
  • a value indicating the latest communication quality of the transport slice 58a, the transport slice 58b, and the transport slice 58c may be specified.
  • an average value of values indicating the communication quality of the transport slice 58a, the transport slice 58b, and the transport slice 58c for the most recent predetermined time period may be specified.
  • the transport slice 58 with the highest communication quality measurement result indicated by the specified value is the transport slice 58b.
  • the slice management data shown in FIG. 5 is updated to the slice management data shown in FIG.
  • the transport slice 58 assigned to the SR area with the SR area ID of "1" in the network slice with the S-NSSAI of "I” is the transport slice with the TR slice ID of "A2". 58 (ie transport slice 58b).
  • the source IP slice correspondence data shown in FIG. 6 is updated to the source IP slice correspondence data shown in FIG.
  • packets whose source IP set to which the source IP address belongs are "SS" are transferred through the transport slice 58b. That is, a packet transmitted from CU 52 to UPF 54 reaches UPF 54 via router 42a, SR source node 44, transit node 46b, SR segment endpoint node 48b, and router 42c.
  • the communication performance of the network service being provided deteriorates, the communication performance of the network service can be quickly recovered.
  • FIG. 10 is a functional block diagram showing an example of functions implemented in the platform system 30 according to this embodiment. Note that the platform system 30 according to the present embodiment does not need to implement all the functions shown in FIG. 10, and functions other than the functions shown in FIG. 10 may be installed.
  • the platform system 30 functionally includes, for example, a monitoring management unit 60, a switching destination communication route determination unit 62, a slice manager unit 64, and a communication route control unit 66.
  • the monitoring management unit 60 is mainly implemented by the processor 30a and the communication unit 30c.
  • the switching destination communication path determining unit 62 is mainly implemented by the processor 30a.
  • the slice manager section 64 is mainly implemented with a processor 30a and a storage section 30b.
  • the communication path control unit 66 is mainly implemented with a processor 30a, a storage unit 30b, and a communication unit 30c.
  • the above functions may be implemented by causing the platform system 30 to execute a program installed on the platform system 30, which is a computer, and including commands corresponding to the above functions. Also, this program may be supplied to the platform system 30 via a computer-readable information storage medium such as an optical disk, magnetic disk, magnetic tape, or magneto-optical disk, or via the Internet or the like.
  • a program installed on the platform system 30, which is a computer, and including commands corresponding to the above functions.
  • this program may be supplied to the platform system 30 via a computer-readable information storage medium such as an optical disk, magnetic disk, magnetic tape, or magneto-optical disk, or via the Internet or the like.
  • the monitoring management unit 60 monitors the communication performance of the communication path during service provision. Then, in the present embodiment, the monitoring management unit 60 detects, for example, that predetermined deterioration in communication performance has occurred in the monitored communication path during service provision. For example, the monitoring management unit 60 detects that a predetermined deterioration in communication performance has occurred in the communication path during service provision when a predetermined performance index value monitored for the communication path during service provision falls below a predetermined threshold value. You may
  • the monitoring management unit 60 may monitor the communication performance of the communication path between two functional units that are at least part of the communication path during service provision. Then, the monitoring management unit 60 may detect that predetermined communication performance deterioration has occurred in the communication path between these two functional units.
  • the monitoring management unit 60 may monitor communication performance in communication from one functional unit to the other functional unit. Then, the monitoring management section 60 may detect that predetermined communication performance deterioration has occurred in communication from one functional unit to the other functional unit.
  • the monitoring management unit 60 may monitor communication performance in communication from the CU 52 to the UPF 54 . It may then detect that a predetermined performance index value for communications in the direction from CU 52 to UPF 54 has fallen below a predetermined threshold.
  • the monitoring management unit 60 monitors the communication quality during the provision of network services on a plurality of alternative communication paths.
  • the monitoring management unit 60 may monitor the communication quality of multiple network slices (for example, multiple transport slices 58).
  • measurement of the communication quality of the communication path by communication between the measurement agents 56 may be repeatedly performed at predetermined time intervals.
  • the measurement of the communication quality of the communication path in the direction of communication from one measurement agent 56 to another measurement agent 56 may be repeated at predetermined time intervals.
  • the measurement agent 56 may transmit communication quality data indicating the measurement result of the communication quality to the monitoring management unit 60 . Then, the monitoring management unit 60 may receive communication quality data transmitted from the measurement agent 56 .
  • the measurement agent 56d transmits to the monitoring management unit 60 measurement quality data indicating the measurement result of the communication quality of the transport slice 58a in communication from the measurement agent 56a to the measurement agent 56d.
  • the measurement agent 56e transmits to the monitoring management unit 60 measurement quality data indicating the measurement result of the communication quality of the transport slice 58b in communication in the direction from the measurement agent 56b to the measurement agent 56e.
  • the measurement agent 56f transmits to the monitoring management unit 60 measurement quality data indicating the measurement result of the communication quality of the transport slice 58c in communication in the direction from the measurement agent 56c to the measurement agent 56f.
  • the switching destination communication route determination unit 62 selects one of the alternative communication routes based on the monitoring result of the communication quality in response to the above-described detection, and selects one of the switching destinations of some of the communication routes during service provision. Decide as a communication route.
  • the alternative communication route determined in this manner will be referred to as a switching destination communication route.
  • the switching destination communication path determining unit 62 may determine the alternative communication path with the highest communication quality as the monitoring result as the switching destination communication path.
  • the slice manager unit 64 stores slice management data illustrated in FIGS. 5 and 8 in this embodiment, for example. Then, the slice manager unit 64 selects the transport slice 58 associated with the S-NSSAI and SR area ID of the network slice in which the above-described network service is provided in the slice management data according to the determination of the switching destination communication path. is changed to the TR slice ID of the transport slice 58, which is the communication path to switch to. In the above example, the value of TR slice ID of the slice management data with the value of S-NSSAI being "I" and the value of SR area ID being "1" is updated from "A1" to "A2".
  • the communication path control unit 66 selects at least a part of the service-provisioning communication path in accordance with the detection of communication performance deterioration, which is determined based on the communication quality monitoring result. change to an alternate communication route.
  • the communication path control unit 66 changes at least a part of the communication path under service provision to an alternative communication path with the highest communication quality as a result of monitoring, for example, in response to detection of occurrence of communication performance deterioration.
  • the communication path control unit 66 in response to detection of the occurrence of communication performance deterioration, changes the communication path between the two functional units, which is at least part of the communication path under service provision, to the communication quality monitoring result. may be changed to any alternate communication path determined based on For example, assume that it is detected that the transport slice 58a has deteriorated in communication performance. Assume that the communication quality of the transport slice 58b is higher than the communication quality of the transport slice 58c. In this case, the transmission path of packets transmitted from the CU 52 to the UPF 54 may be changed from the transport slice 58a to the transport slice 58b.
  • the communication path control unit 66 stores source IP slice correspondence data illustrated in FIGS. 6 and 9 in this embodiment, for example. In addition, the communication path control unit 66 stores, for example, routing management data illustrated in FIG. 7 in this embodiment. Then, the communication path control unit 66 changes the TR slice ID associated with the source IP set data related to the network service being provided in the source IP slice correspondence data according to the determination of the switching destination communication path. In the above example, the value of the TR slice ID associated with the source IP set data whose value is "SS" is updated from "A1" to "A2".
  • the communication route control unit 66 may control so that a packet with a source IP address that satisfies a predetermined condition passes through the communication route during service provision. Then, in response to the detection of the occurrence of communication performance deterioration, the communication path control unit 66 monitors the communication quality of at least a part of the communication path through which the packet having the source IP address that satisfies the predetermined condition passes. Any alternative communication path determined based on the results may be changed.
  • the communication path control unit 66 adds a segment corresponding to the communication path under service provision to the IP header of the packet in which the source IP address that satisfies the predetermined condition is set. You may control so that identification information may be set. Then, in response to the detection of the occurrence of communication performance degradation, the communication path control unit 66 monitors the IP header of the packet in which the source IP address that satisfies the above-described predetermined condition is set in the communication in the SR area 50 . It may be controlled to set the segment identification information corresponding to any of the alternative communication paths determined based on the determined communication quality.
  • the communication path control unit 66 when the communication path control unit 66 stores the source IP slice correspondence data shown in FIG. It may be controlled to pass through the transport slice 58a, which is a part. For example, the communication path control unit 66 may control so that "A1" is set as the segment identification information in the IP header of the packet whose source IP set is "SS".
  • the communication path control unit 66 determines that the packet whose source IP set is "SS" is transferred to the transport slice 58b, which is the switching destination communication path. You can control it to pass. For example, the communication path control unit 66 may control so that "A2" is set as the segment identification information in the IP header of the packet whose source IP set is "SS".
  • the alternative communication path may be a communication path that connects functional units included in a network service different from the network service being provided.
  • a network service may be being provided on the network slice to which transport slice 58a is assigned.
  • another network service may be being provided by the network slice to which the transport slice 58c is assigned.
  • the monitoring management unit 60 monitors the communication performance of the communication path during service provision (S101).
  • the switching destination communication path determination unit 62 determines whether each of the plurality of alternative communication paths , the communication quality monitoring result is specified (S102).
  • the switching destination communication route determination unit 62 determines a switching destination communication route from among a plurality of alternative communication routes based on the monitoring result of the communication quality specified in the processing shown in S102 (S103).
  • the switching destination communication path determination unit 62 outputs to the slice manager unit 64 a switching notification indicating that the communication path under service provision will be switched to the switching destination communication path determined in the processing shown in S103 (S104).
  • a switching notification is output indicating that the transport slice 58 of the SR area having the SR area ID of "1" of the network slice having the S-NSSAI of "I" is switched to the transport slice 58b.
  • the slice manager unit 64 updates the slice management data based on the switching notification received in the processing shown in S104 (S105).
  • the slice management data is updated from that shown in FIG. 5 to that shown in FIG.
  • the slice manager unit 64 outputs to the communication path control unit 66 a switching notification indicating that the communication path under service is switched to the switching destination communication path determined in the processing shown in S103 (S106).
  • the communication path control unit 66 updates the source IP slice correspondence data associated with the SR area whose communication path is switched, based on the switching notification received in the processing shown in S104 (S107).
  • the slice management data is updated from that shown in FIG. 6 to that shown in FIG.
  • the communication path control unit 66 executes communication path switching control based on the source IP slice correspondence data updated in the process shown in S107 (S108), and returns to the process shown in S101.
  • the communication path control unit 66 controls the SR source node 44 to change the transfer destination of packets whose IP set to which the source IP address belongs is "SS" from the transit node 46a to the transit node 46b. More specifically, for example, the communication path control unit 66 sets "A2" as the segment identification information to the IP header of the packet whose IP set to which the source IP address belongs is "SS" in the SR source node 44. to do so.
  • communication performance degradation in two-way communication may be detected.
  • the quality of two-way communication for multiple alternative communication paths may be monitored. Then, at least part of the communication path under service provision may be changed to a switching destination communication path determined based on the communication quality in two-way communication.
  • change control of the communication path in the communication in the backhaul 40 has been described above.
  • change control of communication paths in fronthaul and midhaul communications may be performed.
  • communication performance deterioration may be detected for communication routes in service provision that pass through multiple SR areas.
  • communication quality may be monitored for each combination of alternative communication paths for a plurality of SR areas. Then, a combination of alternative communication routes for multiple SR areas may be determined as the switching destination communication route. Then, the combination of communication routes for a plurality of SR areas included in the in-service communication route may be changed to a switching destination communication route that is a combination of alternative communication routes for a plurality of SR areas.
  • the functional units according to this embodiment are not limited to the CU52 and UPF54.
  • the functional unit according to the present embodiment may be a network node such as DU, AMF (Access and Mobility Management Function), SMF (Session Management Function).
  • the functional unit according to this embodiment does not have to be the NF in 5G.
  • functional units according to the present embodiment include eNodeB, vDU, vCU, P-GW (Packet Data Network Gateway), S-GW (Serving Gateway), MME (Mobility Management Entity), HSS (Home Subscriber Server), etc. , 4G.
  • the functional unit according to the present embodiment is not CNF but VNF (Virtual Machine) based functional unit using hypervisor type or host type virtualization technology. good.
  • the functional units according to the present embodiment need not be implemented by software, and may be implemented by hardware such as electronic circuits. Also, the functional units according to the present embodiment may be implemented by a combination of electronic circuits and software.

Abstract

Provided are a communication path control system and a communication path control method capable of quickly restoring communication performance of a network service that is being provided when the communication performance of the network service has degraded. A monitoring management unit (60) monitors communication quality in a network service that is being provided, in a plurality of alternative communication paths which can replace at least a portion of communication paths through which the service is being provided and which connect a group of functional units included in the network service that is being provided. The monitoring management unit (60) detects the occurrence of prescribed communication performance degradation in the communication paths through which the service is being provided. A communication path control unit (66) changes, upon detection of the occurrence of the prescribed communication performance degradation, at least a portion of the the communication paths through which the service is being provided, to one of the alternative communication paths determined on the basis of the monitoring result regarding the communication quality.

Description

通信経路制御システム及び通信経路制御方法Communication path control system and communication path control method
 本発明は、通信経路制御システム及び通信経路制御方法に関する。 The present invention relates to a communication path control system and a communication path control method.
 特許文献1には、KPIの情報を基に無線局における無線パラメータやネットワークパラメータの最適化を行う技術が記載されている。 Patent Document 1 describes a technique for optimizing wireless parameters and network parameters in wireless stations based on KPI information.
国際公開第2013/136812号WO2013/136812
 特許文献1に記載の技術では、提供中のネットワークサービスの通信性能が劣化した際に、そのネットワークサービスの通信性能を速やかに回復することができない。 With the technology described in Patent Document 1, when the communication performance of the network service being provided deteriorates, the communication performance of that network service cannot be recovered quickly.
 本発明は上記実情に鑑みてなされたものであって、その目的の一つは、提供中のネットワークサービスの通信性能が劣化した際に、そのネットワークサービスの通信性能を速やかに回復することができる通信経路制御システム及び通信経路制御方法を提供することにある。 SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and one of its objects is to quickly restore the communication performance of a network service when the communication performance of the network service being provided deteriorates. An object of the present invention is to provide a communication path control system and a communication path control method.
 上記課題を解決するために、本発明に係る通信経路制御システムは、提供中のネットワークサービスに含まれる機能ユニット群を接続する通信経路であるサービス提供中通信経路の少なくとも一部と代替可能な複数の代替通信経路の、前記ネットワークサービスの提供中における通信品質を監視する監視手段と、前記サービス提供中通信経路に所定の通信性能劣化が発生したことを検出する検出手段と、前記通信性能劣化が発生したことの検出に応じて、前記サービス提供中通信経路の少なくとも一部を、通信品質の監視結果に基づいて決定されるいずれかの前記代替通信経路に変更する通信経路制御手段と、を含む。 In order to solve the above problems, a communication path control system according to the present invention provides a plurality of communication paths that can be substituted for at least a part of a communication path being provided, which is a communication path connecting functional units included in a network service being provided. monitoring means for monitoring the communication quality of the alternative communication path during provision of the network service; detection means for detecting that a predetermined deterioration in communication performance has occurred in the communication path during provision of the service; and and communication path control means for changing at least a portion of the communication path under service to any of the alternative communication paths determined based on communication quality monitoring results in response to detection of an occurrence. .
 本発明の一態様では、前記通信経路制御手段は、前記通信性能劣化が発生したことの検出に応じて、前記サービス提供中通信経路の少なくとも一部を、監視結果である通信品質が最も高い前記代替通信経路に変更する。 In one aspect of the present invention, the communication path control means selects at least a part of the service-provisioning communication path in accordance with the detection of the occurrence of the communication performance deterioration, and selects the communication path having the highest communication quality as a result of monitoring. Change to an alternate communication path.
 また、本発明の一態様では、前記代替通信経路は、前記提供中の前記ネットワークサービスとは異なるネットワークサービスに含まれる機能ユニット群を接続する通信経路である。 Also, in one aspect of the present invention, the alternative communication path is a communication path that connects functional units included in a network service different from the network service being provided.
 また、本発明の一態様では、前記検出手段は、前記サービス提供中通信経路の少なくとも一部である2つの前記機能ユニット間の通信経路に所定の通信性能劣化が発生したことを検出し、前記通信経路制御手段は、前記通信性能劣化が発生したことの検出に応じて、前記サービス提供中通信経路の少なくとも一部である当該2つの前記機能ユニット間の通信経路を、通信品質の監視結果に基づいて決定されるいずれかの前記代替通信経路に変更する。 Further, in one aspect of the present invention, the detection means detects that a predetermined communication performance deterioration has occurred in a communication path between two functional units that are at least part of the communication path during service provision, and The communication path control means, in response to detecting that the communication performance deterioration has occurred, controls the communication path between the two functional units, which is at least part of the communication path under service provision, according to the communication quality monitoring result. change to any of the alternative communication paths determined based on
 また、本発明の一態様では、前記通信経路制御手段は、所定の条件を満たすソースIPアドレスが設定されたパケットが前記サービス提供中通信経路を通るよう制御し、前記通信経路制御手段は、前記通信性能劣化が発生したことの検出に応じて、前記条件を満たすソースIPアドレスが設定されたパケットが通る通信経路の少なくとも一部を、通信品質の監視結果に基づいて決定されるいずれかの前記代替通信経路に変更する。 Further, in one aspect of the present invention, the communication route control means controls such that a packet having a source IP address that satisfies a predetermined condition passes through the communication route during service provision, and the communication route control means controls the communication route during service provision. Any of the above-described methods for determining at least a part of a communication route through which a packet having a source IP address that satisfies the condition is passed, based on a result of communication quality monitoring, in response to detection of occurrence of communication performance degradation. Change to an alternate communication path.
 この態様では、前記通信経路制御手段は、セグメントルーティングエリアでの通信において、前記条件を満たすソースIPアドレスが設定されたパケットのIPヘッダに、前記サービス提供中通信経路に対応するセグメント識別情報が設定されるよう制御し、前記通信経路制御手段は、前記通信性能劣化が発生したことの検出に応じて、前記セグメントルーティングエリアでの通信において、前記条件を満たすソースIPアドレスが設定されたパケットのIPヘッダに、監視されている通信品質に基づいて決定されるいずれかの前記代替通信経路に対応するセグメント識別情報が設定されるよう制御してもよい。 In this aspect, in the communication in the segment routing area, the communication path control means sets the segment identification information corresponding to the in-service communication path to the IP header of the packet in which the source IP address that satisfies the condition is set. In response to detection of the occurrence of communication performance degradation, the communication path control means controls the IP address of a packet set with a source IP address that satisfies the conditions in communication in the segment routing area. Control may be performed so that segment identification information corresponding to any of the alternative communication paths determined based on the monitored communication quality is set in the header.
 また、本発明に係る通信経路制御方法は、提供中のネットワークサービスに含まれる機能ユニット群を接続する通信経路であるサービス提供中通信経路の少なくとも一部と代替可能な複数の代替通信経路の、前記ネットワークサービスの提供中における通信品質を監視するステップと、前記サービス提供中通信経路に所定の通信性能劣化が発生したことを検出するステップと、前記通信性能劣化が発生したことの検出に応じて、前記サービス提供中通信経路の少なくとも一部を、通信品質の監視結果に基づいて決定されるいずれかの前記代替通信経路に変更するステップと、を含む。 In addition, the communication path control method according to the present invention provides a plurality of alternative communication paths that can be substituted for at least part of a communication path under service provision, which is a communication path connecting a group of functional units included in a network service being provided, a step of monitoring communication quality during provision of said network service; a step of detecting that predetermined communication performance deterioration has occurred in said communication path during said service provision; and changing at least part of the in-service communication path to one of the alternative communication paths determined based on the communication quality monitoring result.
本発明の一実施形態に係る通信システムの一例を示す図である。It is a figure which shows an example of the communication system which concerns on one Embodiment of this invention. 本発明の一実施形態に係る通信システムの一例を示す図である。It is a figure which shows an example of the communication system which concerns on one Embodiment of this invention. リージョナルデータセンタとセントラルデータセンタとの間の通信の一例を模式的に示す図である。FIG. 4 is a diagram schematically showing an example of communication between regional data centers and a central data center; 測定エージェントにより通信品質が測定される通信経路の一例を模式的に示す図である。FIG. 2 is a diagram schematically showing an example of communication paths whose communication quality is measured by a measurement agent; FIG. スライス管理データの一例を示す図である。FIG. 4 is a diagram showing an example of slice management data; ソースIPスライス対応データの一例を示す図である。FIG. 4 is a diagram showing an example of source IP slice correspondence data; ルーティング管理データの一例を示す図である。FIG. 4 is a diagram showing an example of routing management data; FIG. スライス管理データの一例を示す図である。FIG. 4 is a diagram showing an example of slice management data; ソースIPスライス対応データの一例を示す図である。FIG. 4 is a diagram showing an example of source IP slice correspondence data; 本発明の一実施形態に係るプラットフォームシステムで実装される機能の一例を示す機能ブロック図である。1 is a functional block diagram showing an example of functions implemented in a platform system according to one embodiment of the present invention; FIG. 本発明の一実施形態に係るプラットフォームシステムで行われる処理の流れの一例を示すフロー図である。FIG. 4 is a flow chart showing an example of the flow of processing performed by the platform system according to one embodiment of the present invention;
 以下、本発明の一実施形態について図面に基づき詳細に説明する。 Hereinafter, one embodiment of the present invention will be described in detail based on the drawings.
 図1及び図2は、本発明の一実施形態に係る通信システム1の一例を示す図である。図1は、通信システム1に含まれるデータセンタ群のロケーションに着目した図となっている。図2は、通信システム1に含まれるデータセンタ群で実装されている各種のコンピュータシステムに着目した図となっている。 1 and 2 are diagrams showing an example of a communication system 1 according to an embodiment of the present invention. FIG. 1 is a diagram focusing on the locations of the data centers included in the communication system 1. As shown in FIG. FIG. 2 is a diagram focusing on various computer systems implemented in a group of data centers included in the communication system 1. As shown in FIG.
 図1に示すように、通信システム1に含まれるデータセンタ群は、セントラルデータセンタ10、リージョナルデータセンタ12、エッジデータセンタ14に分類される。 As shown in FIG. 1, the data centers included in the communication system 1 are classified into a central data center 10, regional data centers 12, and edge data centers 14.
 セントラルデータセンタ10は、例えば、通信システム1がカバーするエリア内(例えば、日本国内)に分散して数個配置されている。 For example, several central data centers 10 are distributed within the area covered by the communication system 1 (for example, within Japan).
 リージョナルデータセンタ12は、例えば、通信システム1がカバーするエリア内に分散して数十個配置されている。例えば、通信システム1がカバーするエリアが日本国内全域である場合に、リージョナルデータセンタ12が、各都道府県に1~2個ずつ配置されてもよい。 For example, dozens of regional data centers 12 are distributed within the area covered by the communication system 1 . For example, if the area covered by the communication system 1 is all over Japan, one or two regional data centers 12 may be arranged in each prefecture.
 エッジデータセンタ14は、例えば、通信システム1がカバーするエリア内に分散して数千個配置される。また、エッジデータセンタ14のそれぞれは、アンテナ16を備えた通信設備18と通信可能となっている。ここで図1に示すように、1つのエッジデータセンタ14が数個の通信設備18と通信可能になっていてもよい。通信設備18は、サーバコンピュータなどのコンピュータを含んでいてもよい。本実施形態に係る通信設備18は、アンテナ16を介してUE(User Equipment)20との間で無線通信を行う。 Thousands of edge data centers 14 are distributed within the area covered by the communication system 1, for example. Also, each of the edge data centers 14 can communicate with a communication facility 18 having an antenna 16 . Here, as shown in FIG. 1, one edge data center 14 may be able to communicate with several communication facilities 18 . Communication facility 18 may include computers, such as server computers. A communication facility 18 according to this embodiment performs wireless communication with a UE (User Equipment) 20 via an antenna 16 .
 本実施形態に係るセントラルデータセンタ10、リージョナルデータセンタ12、エッジデータセンタ14には、それぞれ、複数のサーバが配置されている。 A plurality of servers are arranged in each of the central data center 10, the regional data center 12, and the edge data center 14 according to this embodiment.
 本実施形態では例えば、セントラルデータセンタ10、リージョナルデータセンタ12、エッジデータセンタ14は、互いに通信可能となっている。また、セントラルデータセンタ10同士、リージョナルデータセンタ12同士、エッジデータセンタ14同士も互いに通信可能になっている。 In this embodiment, for example, the central data center 10, the regional data center 12, and the edge data center 14 can communicate with each other. Also, the central data centers 10, the regional data centers 12, and the edge data centers 14 can communicate with each other.
 図2に示すように、本実施形態に係る通信システム1には、プラットフォームシステム30、複数の無線アクセスネットワーク(RAN)32、複数のコアネットワークシステム34、複数のUE20が含まれている。コアネットワークシステム34、RAN32、UE20は、互いに連携して、移動通信ネットワークを実現する。 As shown in FIG. 2, the communication system 1 according to the present embodiment includes a platform system 30, multiple radio access networks (RAN) 32, multiple core network systems 34, and multiple UEs 20. Core network system 34, RAN 32, and UE 20 cooperate with each other to realize a mobile communication network.
 RAN32は、4GにおけるeNB(eNodeB)や、5GにおけるgNB(NR基地局)に相当する、アンテナ16を備えたコンピュータシステムである。本実施形態に係るRAN32は、主に、エッジデータセンタ14に配置されているサーバ群及び通信設備18によって実装される。なお、RAN32の一部(例えば、4GにおけるvDU(virtual Distributed Unit)やvCU(virtual Central Unit)、5GにおけるDU(Distributed Unit)やCU(Central Unit))は、エッジデータセンタ14ではなく、セントラルデータセンタ10やリージョナルデータセンタ12で実装されてもよい。 The RAN 32 is a computer system equipped with an antenna 16, which corresponds to eNB (eNodeB) in 4G and gNB (NR base station) in 5G. The RAN 32 according to this embodiment is mainly implemented by a group of servers and communication equipment 18 located in the edge data center 14 . Note that part of the RAN 32 (for example, vDU (virtual distributed unit) and vCU (virtual central unit) in 4G, DU (distributed unit) and CU (central unit) in 5G) is not the edge data center 14, but the central data It may be implemented at the center 10 or the regional data center 12 .
 コアネットワークシステム34は、第4世代移動通信システム(以下、4Gと呼ぶ。)におけるEPC(Evolved Packet Core)や、第5世代移動通信システム(以下、5Gと呼ぶ。)における5Gコア(5GC)に相当するシステムである。本実施形態に係るコアネットワークシステム34は、主に、セントラルデータセンタ10やリージョナルデータセンタ12に配置されているサーバ群によって実装される。 The core network system 34 is an EPC (Evolved Packet Core) in the 4th generation mobile communication system (hereinafter referred to as 4G) and a 5G core (5GC) in the 5th generation mobile communication system (hereinafter referred to as 5G). This is the corresponding system. The core network system 34 according to this embodiment is mainly implemented by a group of servers arranged in the central data center 10 and the regional data centers 12 .
 本実施形態に係るプラットフォームシステム30は、例えば、クラウド基盤上に構成されており、図2に示すように、プロセッサ30a、記憶部30b、通信部30c、が含まれる。プロセッサ30aは、プラットフォームシステム30にインストールされるプログラムに従って動作するマイクロプロセッサ等のプログラム制御デバイスである。記憶部30bは、例えばROMやRAM等の記憶素子や、ソリッドステートドライブ(SSD)、ハードディスクドライブ(HDD)などである。記憶部30bには、プロセッサ30aによって実行されるプログラムなどが記憶される。通信部30cは、例えば、NICや無線LANモジュールなどといった通信インタフェースである。なお、通信部30cにおいて、SDN(Software-Defined Networking)が実装されていてもよい。通信部30cは、RAN32、コアネットワークシステム34、との間でデータを授受する。 The platform system 30 according to this embodiment is configured on a cloud platform, for example, and includes a processor 30a, a storage unit 30b, and a communication unit 30c, as shown in FIG. The processor 30 a is a program-controlled device such as a microprocessor that operates according to programs installed in the platform system 30 . The storage unit 30b is, for example, a storage element such as ROM or RAM, a solid state drive (SSD), a hard disk drive (HDD), or the like. The storage unit 30b stores programs and the like executed by the processor 30a. The communication unit 30c is, for example, a communication interface such as a NIC or a wireless LAN module. Note that SDN (Software-Defined Networking) may be implemented in the communication unit 30c. The communication unit 30 c exchanges data with the RAN 32 and the core network system 34 .
 本実施形態では、プラットフォームシステム30は、セントラルデータセンタ10に配置されているサーバ群によって実装されている。なお、プラットフォームシステム30が、リージョナルデータセンタ12に配置されているサーバ群によって実装されていてもよい。 In this embodiment, the platform system 30 is implemented by a group of servers located in the central data center 10. Note that the platform system 30 may be implemented by a group of servers arranged in the regional data center 12 .
 本実施形態に係る通信システム1によって、音声通信サービスやデータ通信サービス等のネットワークサービスが、UE20を利用するユーザに提供される。 The communication system 1 according to the present embodiment provides network services such as voice communication services and data communication services to users using the UE 20 .
 なお、本実施形態において提供されるネットワークサービスは音声通信サービスやデータ通信サービスには限定されない。本実施形態において提供されるネットワークサービスは、例えば、IoTサービスであっても構わない。 Note that the network services provided in this embodiment are not limited to voice communication services and data communication services. The network service provided in this embodiment may be, for example, an IoT service.
 本実施形態では、セントラルデータセンタ10、リージョナルデータセンタ12、及び、エッジデータセンタ14に配置されているサーバには、ドッカー(Docker)などのコンテナ型のアプリケーション実行環境がインストールされており、これらのサーバにコンテナをデプロイして稼働させることができるようになっている。これらのサーバにおいて、クバネテス(Kubernetes)等のコンテナ管理ツールによって管理されるクラスタ(クバネテスクラスタ)が構築されていてもよい。そして、構築されたクラスタ上のプロセッサがコンテナ型のアプリケーションを実行してもよい。 In this embodiment, a container-type application execution environment such as Docker is installed in the servers located in the central data center 10, the regional data center 12, and the edge data center 14. You can now deploy and run containers on your server. In these servers, a cluster (Kubernetes cluster) managed by a container management tool such as Kubernetes may be constructed. Then, the processors on the constructed cluster may execute container-type applications.
 そして、本実施形態において提供されるネットワークサービスは、コンテナベースの機能ユニットであるCNF(Containerized Network Function)によって実装される。 The network services provided in this embodiment are implemented by CNFs (Containerized Network Functions), which are container-based functional units.
 図3は、本実施形態におけるリージョナルデータセンタ12とセントラルデータセンタ10との間の通信の一例を模式的に示す図である。図3に示すように、リージョナルデータセンタ12とセントラルデータセンタ10とは、バックホール40を介して通信可能になっている。 FIG. 3 is a diagram schematically showing an example of communication between the regional data center 12 and the central data center 10 in this embodiment. As shown in FIG. 3 , the regional data center 12 and the central data center 10 are communicable via a backhaul 40 .
 図3には、バックホール40を構成する通信機器の一例として、ルータ42(42a~42d)、SRソースノード44、トランジットノード46(46a~46c)、SRセグメントエンドポイントノード48(48a~48c)、が示されている。なお、このバックホール40の構成は、本実施形態の説明のために模式的に示した一例にすぎない。 FIG. 3 shows routers 42 (42a to 42d), SR source nodes 44, transit nodes 46 (46a to 46c), SR segment endpoint nodes 48 (48a to 48c) as an example of communication equipment that configures the backhaul 40. ,It is shown. Note that the configuration of the backhaul 40 is merely an example schematically shown for explaining the present embodiment.
 本実施形態に係る通信システム1には、セグメントルーティングによるパケットの転送が行われる複数のセグメントルーティングエリア(SRエリア)が設定されている。図3には、SRエリアの一例として、SRエリア50が示されている。 A plurality of segment routing areas (SR areas) in which packets are transferred by segment routing are set in the communication system 1 according to the present embodiment. FIG. 3 shows an SR area 50 as an example of the SR area.
 図3の例では、リージョナルデータセンタ12に、CU52などのRAN32の構成要素が配置されている。また、セントラルデータセンタ10には、UPF(User Plane Function)54などの、コアネットワークシステム34の構成要素が配置されている。図3に示すCU52やUPF54は、例えば、UE20を利用するユーザに提供中である音声通信サービスやデータ通信サービス等のネットワークサービスに含まれる機能ユニット(例えば、ネットワークファンクション(NF))としての役割を担う。また、このように、本実施形態に係る機能ユニットは、例えば、CU52やUPF54などといった、ネットワークノードに相当するものであってもよい。 In the example of FIG. 3, the components of the RAN 32 such as the CU 52 are arranged in the regional data center 12 . Also, in the central data center 10, components of the core network system 34 such as a UPF (User Plane Function) 54 are arranged. The CU 52 and UPF 54 shown in FIG. 3, for example, serve as functional units (eg, network functions (NF)) included in network services such as voice communication services and data communication services being provided to users of the UE 20. bear. Also, in this way, the functional units according to the present embodiment may correspond to network nodes such as the CU 52 and the UPF 54, for example.
 以下の説明では、値が「I」であるS-NSSAI(Single-Network Slice Selection Assistance Information)によって識別されるネットワークスライスによって、上述のネットワークサービスが提供されることとする。 In the following explanation, it is assumed that the above network service is provided by a network slice identified by S-NSSAI (Single-Network Slice Selection Assistance Information) whose value is "I".
 また、図3に示すように、リージョナルデータセンタ12とセントラルデータセンタ10には、それぞれ、測定エージェント56が複数配置されている。本実施形態では例えば、リージョナルデータセンタ12に配置されている測定エージェント56とセントラルデータセンタ10に配置されている測定エージェント56とが通信を行うことで、測定エージェント56間の通信経路の通信品質(例えば、ジッタ値、エラーレート、レイテンシなど)を測定できるようになっている。 Also, as shown in FIG. 3, a plurality of measurement agents 56 are arranged in each of the regional data center 12 and the central data center 10 . In the present embodiment, for example, the measurement agent 56 located in the regional data center 12 and the measurement agent 56 located in the central data center 10 communicate with each other, so that the communication quality of the communication path between the measurement agents 56 ( For example, jitter value, error rate, latency, etc.) can be measured.
 ここでは例えば、リージョナルデータセンタ12からセントラルデータセンタ10への通信における通信経路の通信品質(例えば、ジッタ値、エラーレート、レイテンシなど)が測定されることとする。 Here, for example, the communication quality (for example, jitter value, error rate, latency, etc.) of the communication path in communication from the regional data center 12 to the central data center 10 is measured.
 測定エージェント56としては、例えば、リージョナルデータセンタ12からセントラルデータセンタ10への通信における通信経路の通信品質が測定可能なTWAMP(A Two-Way Active Measurement Protocol)エージェントなどのソフトウェアが利用可能である。 As the measurement agent 56, for example, software such as a TWAMP (A Two-Way Active Measurement Protocol) agent capable of measuring the communication quality of the communication path in communication from the regional data center 12 to the central data center 10 can be used.
 図4は、測定エージェント56により通信品質が測定される通信経路の一例を模式的に示す図である。 FIG. 4 is a diagram schematically showing an example of a communication route whose communication quality is measured by the measurement agent 56. As shown in FIG.
 本実施形態では例えば、リージョナルデータセンタ12とセントラルデータセンタ10との間に、少なくとも3つのトランスポートスライス58(58a~58c)が構成されている。 In this embodiment, for example, at least three transport slices 58 (58a to 58c) are configured between the regional data center 12 and the central data center 10.
 図4に示すように、リージョナルデータセンタ12に配置されている測定エージェント56aと、セントラルデータセンタ10に配置されている測定エージェント56dと、が通信することで、トランスポートスライス58aの通信品質の測定が行われる。ここでは例えば、リージョナルデータセンタ12からセントラルデータセンタ10への方向の通信におけるトランスポートスライス58aの通信品質の測定が行われる。 As shown in FIG. 4, the measurement agent 56a located at the regional data center 12 and the measurement agent 56d located at the central data center 10 communicate to measure the communication quality of the transport slice 58a. is done. Here, for example, the communication quality of the transport slice 58a in communication from the regional data center 12 to the central data center 10 is measured.
 トランスポートスライス58aは、ルータ42a、SRソースノード44、トランジットノード46a、SRセグメントエンドポイントノード48a、ルータ42bを通る通信経路である。SRソースノード44とSRセグメントエンドポイントノード48aとの間の通信は、セグメントルーティングによるパケットの転送が行われる。 A transport slice 58a is a communication path through router 42a, SR source node 44, transit node 46a, SR segment endpoint node 48a, and router 42b. Communication between the SR source node 44 and the SR segment endpoint node 48a is performed by transferring packets by segment routing.
 また、図4に示すように、リージョナルデータセンタ12に配置されている測定エージェント56bと、セントラルデータセンタ10に配置されている測定エージェント56eと、が通信することで、トランスポートスライス58bの通信品質の測定が行われる。ここでは例えば、リージョナルデータセンタ12からセントラルデータセンタ10への方向の通信におけるトランスポートスライス58bの通信品質の測定が行われる。 Further, as shown in FIG. 4, the measurement agent 56b located in the regional data center 12 and the measurement agent 56e located in the central data center 10 communicate with each other, thereby increasing the communication quality of the transport slice 58b. is measured. Here, for example, the communication quality of the transport slice 58b in the direction of communication from the regional data center 12 to the central data center 10 is measured.
 トランスポートスライス58bは、ルータ42a、SRソースノード44、トランジットノード46b、SRセグメントエンドポイントノード48b、ルータ42cを通る通信経路である。SRソースノード44とSRセグメントエンドポイントノード48bとの間の通信は、セグメントルーティングによるパケットの転送が行われる。 A transport slice 58b is a communication path passing through router 42a, SR source node 44, transit node 46b, SR segment endpoint node 48b, and router 42c. Communication between the SR source node 44 and the SR segment endpoint node 48b is performed by transferring packets by segment routing.
 また、図4に示すように、リージョナルデータセンタ12に配置されている測定エージェント56cと、セントラルデータセンタ10に配置されている測定エージェント56fと、が通信することで、トランスポートスライス58cの通信品質の測定が行われる。ここでは例えば、リージョナルデータセンタ12からセントラルデータセンタ10への方向の通信におけるトランスポートスライス58cの通信品質の測定が行われる。 Further, as shown in FIG. 4, the measurement agent 56c located in the regional data center 12 and the measurement agent 56f located in the central data center 10 communicate with each other, thereby increasing the communication quality of the transport slice 58c. is measured. Here, for example, the communication quality of the transport slice 58c in communication from the regional data center 12 to the central data center 10 is measured.
 トランスポートスライス58cは、ルータ42a、SRソースノード44、トランジットノード46c、SRセグメントエンドポイントノード48c、ルータ42dを通る通信経路である。SRソースノード44とSRセグメントエンドポイントノード48cとの間の通信は、セグメントルーティングによるパケットの転送が行われる。 A transport slice 58c is a communication path passing through router 42a, SR source node 44, transit node 46c, SR segment endpoint node 48c, and router 42d. Communication between the SR source node 44 and the SR segment endpoint node 48c is performed by transferring packets by segment routing.
 以下、UE20を利用するユーザに提供中のネットワークサービスに含まれる機能ユニット群を接続する通信経路を、サービス提供中通信経路と呼ぶこととする。また、サービス提供中通信経路の少なくとも一部と代替可能な通信経路を代替通信経路と呼ぶこととする。 A communication path connecting functional units included in a network service being provided to a user of the UE 20 is hereinafter referred to as a service-provisioning communication path. Also, a communication route that can be substituted for at least part of the communication route during service provision is called an alternative communication route.
 本実施形態では例えば、CU52とUPF54を接続する通信経路は、サービス提供中通信経路の一部に相当する。本実施形態では、CU52とUPF54との間の通信において、トランスポートスライス58a、トランスポートスライス58b、又は、トランスポートスライス58cのいずれかの通信経路が用いられる。すなわち、トランスポートスライス58a、トランスポートスライス58b、又は、トランスポートスライス58cのいずれかが、サービス提供中通信経路の一部となる。 In this embodiment, for example, the communication path connecting the CU 52 and the UPF 54 corresponds to part of the communication path during service provision. In this embodiment, communication between the CU 52 and the UPF 54 uses one of the transport slices 58a, 58b, or 58c communication path. That is, either transport slice 58a, transport slice 58b, or transport slice 58c becomes part of the in-service communication path.
 ここで例えば、トランスポートスライス58aを介して、CU52とUPF54との間の通信が行われていることとする。この場合、トランスポートスライス58aが、サービス提供中通信経路の一部に相当する。そして、トランスポートスライス58b、及び、トランスポートスライス58cが、トランスポートスライス58aの代替通信経路に相当する。 Here, for example, it is assumed that communication between the CU 52 and the UPF 54 is being performed via the transport slice 58a. In this case, the transport slice 58a corresponds to part of the communication path in service. The transport slice 58b and the transport slice 58c correspond to alternative communication paths for the transport slice 58a.
 図5は、本実施形態に係るスライス管理データの一例を示す図である。図6は、本実施形態に係るソースIPスライス対応データの一例を示す図である。図7は、本実施形態に係るルーティング管理データの一例を示す図である。本実施形態では例えば、スライス管理データ、ソースIPスライス対応データ、ルーティング管理データ、などのデータに基づいて、リージョナルデータセンタ12とセントラルデータセンタ10との間の通信が制御される。 FIG. 5 is a diagram showing an example of slice management data according to this embodiment. FIG. 6 is a diagram showing an example of source IP slice correspondence data according to the present embodiment. FIG. 7 is a diagram showing an example of routing management data according to this embodiment. In this embodiment, communication between the regional data center 12 and the central data center 10 is controlled based on data such as slice management data, source IP slice correspondence data, and routing management data.
 図5に示すように、本実施形態に係るスライス管理データには、S-NSSAI、SRエリアID、TRスライスIDが含まれる。スライス管理データには、例えば、ネットワークサービスが提供されるネットワークスライスにおいて利用されるトランスポートスライス58が示される。 As shown in FIG. 5, the slice management data according to this embodiment includes S-NSSAI, SR area ID, and TR slice ID. The slice management data indicates, for example, the transport slices 58 used in network slices in which network services are provided.
 S-NSSAIは、ネットワークスライスの識別情報である。上述のように、本実施形態に係るCU52及びUPF54を含むネットワークサービスは、値が「I」であるS-NSSAIによって識別されるネットワークスライスによって提供される。図5に示すように、本実施形態に係るスライス管理データでは、このネットワークスライス以外のネットワークスライスについても管理される。  S-NSSAI is network slice identification information. As described above, network services including CU 52 and UPF 54 according to this embodiment are provided by network slices identified by S-NSSAI with a value of "I". As shown in FIG. 5, the slice management data according to the present embodiment also manages network slices other than this network slice.
 SRエリアIDは、セグメントルーティングエリア(SRエリア)の識別情報である。図3に示されているSRエリア50のSRエリアIDは「1」であることとする。なお、図5に示されている値「2」によって識別されるSRエリアは、図3に示されているSRエリア50とは異なるSRエリアを指す。例えば、エッジデータセンタ14とリージョナルデータセンタ12との間のSRエリアが、値「2」によって識別されるSRエリアに相当してもよい。  SR area ID is identification information of the segment routing area (SR area). Assume that the SR area ID of the SR area 50 shown in FIG. 3 is "1". Note that the SR area identified by the value "2" shown in FIG. 5 indicates an SR area different from the SR area 50 shown in FIG. For example, the SR area between the edge data center 14 and the regional data center 12 may correspond to the SR area identified by the value "2".
 TRスライスIDは、トランスポートスライス58の識別情報である。以下の説明では例えば、トランスポートスライス58a、トランスポートスライス58b、トランスポートスライス58cのTRスライスIDは、それぞれ、「A1」、「A2」、「A3」であることとする。 The TR slice ID is identification information of the transport slice 58 . In the following description, for example, it is assumed that the TR slice IDs of the transport slice 58a, the transport slice 58b, and the transport slice 58c are "A1", "A2", and "A3", respectively.
 図5に示すスライス管理データには、S-NSSAIが「I」であるネットワークスライスの、SRエリアIDが「1」であるSRエリアについては、TRスライスIDが「A1」であるトランスポートスライス58(すなわち、トランスポートスライス58a)が割り当てられていることが示されている。 In the slice management data shown in FIG. 5, the transport slice 58 whose TR slice ID is "A1" is included in the SR area whose SR area ID is "1" in the network slice whose S-NSSAI is "I". (ie, transport slice 58a) is shown assigned.
 図6に示すように、本実施形態に係るソースIPスライス対応データには、ソースIPセットデータと、TRスライスIDと、が含まれる。本実施形態に係るソースIPスライス対応データは、SRエリアごとに管理されている。図6には、図3に示されているSRエリア50を制御するためのソースIPスライス対応データの一例が示されている。ソースIPスライス対応データは、例えば、パケットに設定されているソースIPアドレスと、当該パケットが転送されるべきトランスポートスライス58と、の対応を示すデータである。図6に示すソースIPスライス対応データでは、ソースIPアドレスが属するIPセット(以下、ソースIPセットと呼ぶ。)が、トランスポートスライス58と対応付けられている。 As shown in FIG. 6, the source IP slice corresponding data according to the present embodiment includes source IP set data and TR slice ID. The source IP slice correspondence data according to this embodiment is managed for each SR area. FIG. 6 shows an example of source IP slice correspondence data for controlling the SR area 50 shown in FIG. The source IP slice correspondence data is, for example, data indicating correspondence between the source IP address set in the packet and the transport slice 58 to which the packet is to be transferred. In the source IP slice correspondence data shown in FIG. 6, the IP set to which the source IP address belongs (hereinafter referred to as the source IP set) is associated with the transport slice 58 .
 図7に示すルーティング管理データには、それぞれのトランスポートスライス58についてのルーティング情報が示されている。図7に示すルーティング管理データでは、例えば、トランスポートスライス58aが、ルータ42a、SRソースノード44、トランジットノード46a、SRセグメントエンドポイントノード48a、ルータ42bを通る通信経路を示すルーティング情報に対応付けられている。また、トランスポートスライス58bが、ルータ42a、SRソースノード44、トランジットノード46b、SRセグメントエンドポイントノード48b、ルータ42cを通る通信経路を示すルーティング情報に対応付けられている。また、トランスポートスライス58cが、ルータ42a、SRソースノード44、トランジットノード46c、SRセグメントエンドポイントノード48c、ルータ42dを通る通信経路を示すルーティング情報に対応付けられている。 The routing management data shown in FIG. 7 indicates routing information for each transport slice 58. FIG. In the routing management data shown in FIG. 7, for example, the transport slice 58a is associated with routing information indicating a communication route passing through the router 42a, the SR source node 44, the transit node 46a, the SR segment endpoint node 48a, and the router 42b. ing. Also, the transport slice 58b is associated with routing information indicating a communication route passing through the router 42a, the SR source node 44, the transit node 46b, the SR segment endpoint node 48b, and the router 42c. Also, the transport slice 58c is associated with routing information indicating a communication route passing through the router 42a, the SR source node 44, the transit node 46c, the SR segment endpoint node 48c, and the router 42d.
 本実施形態では例えば、SRエリア内ではセグメントルーティングによるパケットの転送が行われる。例えば、パケットのIPヘッダに設定された、セグメント識別情報(例えば、SRv6 SID)に基づいて、パケットの転送が行われる。 In this embodiment, for example, packets are transferred by segment routing within the SR area. For example, the packet is forwarded based on the segment identification information (for example, SRv6 SID) set in the IP header of the packet.
 ここで例えば、SRソースノード44が、CU52のIPアドレスがソースIPアドレスに設定され、UPF54のIPアドレスがデスティネーションIPアドレスに設定されたパケットをルータ42aから受信したとする。そして、CU52のIPアドレスが属するIPセットが「SS」であるとする。 Here, for example, assume that the SR source node 44 receives from the router 42a a packet in which the IP address of the CU 52 is set as the source IP address and the IP address of the UPF 54 is set as the destination IP address. Assume that the IP set to which the IP address of CU52 belongs is "SS".
 この場合、SRソースノード44は、このパケットのIPヘッダに「A1」をセグメント識別情報として設定する。そして、このパケットは、トランジットノード46aを経由して、SRセグメントエンドポイントノード48aに到達する。すると、SRセグメントエンドポイントノード48aが、このパケットのIPヘッダからセグメント識別情報を消去して、このパケットをルータ42bに転送し、ルータ42bがこのパケットをセントラルデータセンタ10に送信する。セントラルデータセンタ10は、このパケットを受信すると、UPF54に出力する。 In this case, the SR source node 44 sets "A1" in the IP header of this packet as segment identification information. This packet then reaches SR segment endpoint node 48a via transit node 46a. SR segment endpoint node 48 a then removes the segment identification information from the IP header of the packet and forwards the packet to router 42 b , which forwards the packet to central data center 10 . When the central data center 10 receives this packet, it outputs it to the UPF 54 .
 また例えば、SRソースノード44が、測定エージェント56aのIPアドレスがソースIPアドレスに設定され、測定エージェント56dのIPアドレスがデスティネーションIPアドレスに設定されたパケットをルータ42aから受信したとする。そして、測定エージェント56aのIPアドレスが属するIPセットが「XX」であるとする。 Also, for example, assume that the SR source node 44 receives from the router 42a a packet in which the IP address of the measurement agent 56a is set as the source IP address and the IP address of the measurement agent 56d is set as the destination IP address. Assume that the IP set to which the IP address of the measurement agent 56a belongs is "XX".
 この場合、SRソースノード44は、このパケットのIPヘッダに「A1」をセグメント識別情報として設定する。そして、このパケットは、トランジットノード46aを経由して、SRセグメントエンドポイントノード48aに到達する。すると、SRセグメントエンドポイントノード48aが、このパケットのIPヘッダからセグメント識別情報を消去して、このパケットをルータ42bに転送し、ルータ42bがこのパケットをセントラルデータセンタ10に送信する。セントラルデータセンタ10は、このパケットを受信すると、測定エージェント56dに出力する。 In this case, the SR source node 44 sets "A1" in the IP header of this packet as segment identification information. This packet then reaches SR segment endpoint node 48a via transit node 46a. SR segment endpoint node 48 a then removes the segment identification information from the IP header of the packet and forwards the packet to router 42 b , which forwards the packet to central data center 10 . When the central data center 10 receives this packet, it outputs it to the measurement agent 56d.
 また例えば、SRソースノード44が、測定エージェント56bのIPアドレスがソースIPアドレスに設定され、測定エージェント56eのIPアドレスがデスティネーションIPアドレスに設定されたパケットをルータ42aから受信したとする。そして、測定エージェント56bのIPアドレスが属するIPセットが「YY」であるとする。 Also, for example, assume that the SR source node 44 receives from the router 42a a packet in which the IP address of the measurement agent 56b is set as the source IP address and the IP address of the measurement agent 56e is set as the destination IP address. Assume that the IP set to which the IP address of the measurement agent 56b belongs is "YY".
 この場合、SRソースノード44は、このパケットのIPヘッダに「A2」をセグメント識別情報として設定する。そして、このパケットは、トランジットノード46bを経由して、SRセグメントエンドポイントノード48bに到達する。すると、SRセグメントエンドポイントノード48bが、このパケットのIPヘッダからセグメント識別情報を消去して、このパケットをルータ42cに転送し、ルータ42cがこのパケットをセントラルデータセンタ10に送信する。セントラルデータセンタ10は、このパケットを受信すると、測定エージェント56eに出力する。 In this case, the SR source node 44 sets "A2" in the IP header of this packet as segment identification information. This packet then reaches SR segment endpoint node 48b via transit node 46b. SR segment endpoint node 48 b then removes the segment identification information from the IP header of this packet and forwards this packet to router 42 c , which forwards this packet to central data center 10 . When the central data center 10 receives this packet, it outputs it to the measurement agent 56e.
 また例えば、SRソースノード44が、測定エージェント56cのIPアドレスがソースIPアドレスに設定され、測定エージェント56fのIPアドレスがデスティネーションIPアドレスに設定されたパケットをルータ42aから受信したとする。そして、測定エージェント56cのIPアドレスが属するIPセットが「ZZ」であるとする。 Also, for example, assume that the SR source node 44 receives from the router 42a a packet in which the IP address of the measurement agent 56c is set as the source IP address and the IP address of the measurement agent 56f is set as the destination IP address. Assume that the IP set to which the IP address of the measurement agent 56c belongs is "ZZ".
 この場合、SRソースノード44は、このパケットのIPヘッダに「A3」をセグメント識別情報として設定する。そして、このパケットは、トランジットノード46cを経由して、SRセグメントエンドポイントノード48cに到達する。すると、SRセグメントエンドポイントノード48cが、このパケットのIPヘッダからセグメント識別情報を消去して、このパケットをルータ42dに転送し、ルータ42dがこのパケットをセントラルデータセンタ10に送信する。セントラルデータセンタ10は、このパケットを受信すると、測定エージェント56fに出力する。 In this case, the SR source node 44 sets "A3" as segment identification information in the IP header of this packet. This packet then reaches SR segment endpoint node 48c via transit node 46c. SR segment endpoint node 48 c then removes the segment identification information from the IP header of this packet and forwards this packet to router 42 d , which forwards this packet to central data center 10 . When central data center 10 receives this packet, it outputs it to measurement agent 56f.
 そして、本実施形態では例えば、サービス提供中通信経路の通信性能が監視される。ここで例えば、UE20あたりのスループットなどを示す性能指標値が監視されてもよい。また例えば、「TS 28.552, Management and orchestration; 5G performance measurements」または「TS 28.554, Management and orchestration; 5G end to end Key Performance Indicators (KPI)」に記載された性能指標についての性能指標値が監視されてもよい。また例えば、CU52からUPF54への方向の通信経路の通信性能が監視されてもよい。 Then, in this embodiment, for example, the communication performance of the communication path during service provision is monitored. Here, for example, a performance index value indicating throughput per UE 20 may be monitored. Also, for example, performance indicator values for performance indicators described in "TS 28.552, Management and orchestration; 5G performance measurements" or "TS 28.554, Management and orchestration; 5G end to end Key Performance Indicators (KPI)" are monitored. good too. Also, for example, the communication performance of the communication path in the direction from the CU 52 to the UPF 54 may be monitored.
 また、本実施形態では、上述のネットワークサービスの提供中に、複数の代替通信経路を少なくとも含む複数の通信経路の通信品質の測定が行われる。ここでは例えば、上述のネットワークサービスの提供中に、トランスポートスライス58a、トランスポートスライス58b、及び、トランスポートスライス58cの通信品質の測定が行われる。このようにして、上述のネットワークサービスの提供中に、トランスポートスライス58a、トランスポートスライス58b、及び、トランスポートスライス58cの通信品質が監視される。ここで例えば、リージョナルデータセンタ12からセントラルデータセンタ10への方向の通信における通信品質が監視されてもよい。 Also, in this embodiment, the communication quality of a plurality of communication paths including at least a plurality of alternative communication paths is measured during the provision of the network service described above. Here, for example, the communication quality of the transport slice 58a, the transport slice 58b, and the transport slice 58c is measured during provision of the network service described above. In this manner, the communication quality of transport slice 58a, transport slice 58b, and transport slice 58c is monitored during the provision of the network service described above. Here, for example, the communication quality in the direction of communication from the regional data center 12 to the central data center 10 may be monitored.
 そして、サービス提供中通信経路に所定の通信性能劣化が発生したことが検出されると、サービス提供中通信経路の少なくとも一部が、通信品質の監視結果に基づいて決定されるいずれかの代替通信経路に変更される。例えば、サービス提供中通信経路について監視されている所定の性能指標値が所定の閾値を下回ったことの検出に応じて、サービス提供中通信経路の少なくとも一部が、通信品質の監視結果に基づいて決定されるいずれかの代替通信経路に変更される。 Then, when it is detected that a predetermined deterioration in communication performance has occurred in the communication path under service provision, at least a part of the communication path under service provision is selected based on the result of monitoring the communication quality. route is changed. For example, in response to detecting that a predetermined performance indicator value being monitored for the in-service communication path has fallen below a predetermined threshold, at least a portion of the in-service communication path is monitored for communication quality. Change to any alternative communication path determined.
 ここで例えば、トランスポートスライス58a、トランスポートスライス58b、及び、トランスポートスライス58cの最新の通信品質を示す値が特定されてもよい。あるいは、トランスポートスライス58a、トランスポートスライス58b、及び、トランスポートスライス58cの直近の所定時間の通信品質を示す値の平均値が特定されてもよい。 Here, for example, a value indicating the latest communication quality of the transport slice 58a, the transport slice 58b, and the transport slice 58c may be specified. Alternatively, an average value of values indicating the communication quality of the transport slice 58a, the transport slice 58b, and the transport slice 58c for the most recent predetermined time period may be specified.
 そして、サービス提供中通信経路の少なくとも一部が、トランスポートスライス58aから、特定される値が示す通信品質の測定結果が最も高いトランスポートスライス58に変更される。 Then, at least part of the communication path under service is changed from the transport slice 58a to the transport slice 58 with the highest communication quality measurement result indicated by the specified value.
 ここで例えば、特定される値が示す通信品質の測定結果が最も高いトランスポートスライス58が、トランスポートスライス58bであったとする。この場合、図5に示すスライス管理データは、図8に示すスライス管理データに更新される。このようにして、S-NSSAIが「I」であるネットワークスライスの、SRエリアIDが「1」であるSRエリアに割り当てられるトランスポートスライス58が、TRスライスIDが「A2」であるトランスポートスライス58(すなわち、トランスポートスライス58b)に変更されることとなる。 Here, for example, assume that the transport slice 58 with the highest communication quality measurement result indicated by the specified value is the transport slice 58b. In this case, the slice management data shown in FIG. 5 is updated to the slice management data shown in FIG. In this way, the transport slice 58 assigned to the SR area with the SR area ID of "1" in the network slice with the S-NSSAI of "I" is the transport slice with the TR slice ID of "A2". 58 (ie transport slice 58b).
 また、図6に示すソースIPスライス対応データは、図9に示すソースIPスライス対応データに更新される。ソースIPスライス対応データの更新後は、ソースIPアドレスが属するソースIPセットが「SS」であるパケットは、トランスポートスライス58bを通って転送されることとなる。すなわち、CU52からUPF54に送信されるパケットは、ルータ42a、SRソースノード44、トランジットノード46b、SRセグメントエンドポイントノード48b、ルータ42cを経由して、UPF54に到達することとなる。 Also, the source IP slice correspondence data shown in FIG. 6 is updated to the source IP slice correspondence data shown in FIG. After the source IP slice correspondence data is updated, packets whose source IP set to which the source IP address belongs are "SS" are transferred through the transport slice 58b. That is, a packet transmitted from CU 52 to UPF 54 reaches UPF 54 via router 42a, SR source node 44, transit node 46b, SR segment endpoint node 48b, and router 42c.
 本実施形態によれば、以上のようにして、提供中のネットワークサービスの通信性能が劣化した際に、そのネットワークサービスの通信性能を速やかに回復することができることとなる。 According to this embodiment, as described above, when the communication performance of the network service being provided deteriorates, the communication performance of the network service can be quickly recovered.
 以下、サービス提供中通信経路の変更制御を中心に、本実施形態に係るプラットフォームシステム30の機能、及び、本実施形態に係るプラットフォームシステム30で実行される処理について、さらに説明する。 The functions of the platform system 30 according to the present embodiment and the processing executed by the platform system 30 according to the present embodiment will be further described below, focusing on change control of the communication path during service provision.
 図10は、本実施形態に係るプラットフォームシステム30で実装される機能の一例を示す機能ブロック図である。なお、本実施形態に係るプラットフォームシステム30で、図10に示す機能のすべてが実装される必要はなく、また、図10に示す機能以外の機能が実装されていても構わない。 FIG. 10 is a functional block diagram showing an example of functions implemented in the platform system 30 according to this embodiment. Note that the platform system 30 according to the present embodiment does not need to implement all the functions shown in FIG. 10, and functions other than the functions shown in FIG. 10 may be installed.
 図10に示すように、本実施形態に係るプラットフォームシステム30には、機能的には例えば、監視管理部60、切替先通信経路決定部62、スライスマネージャ部64、通信経路制御部66、が含まれる。 As shown in FIG. 10, the platform system 30 according to this embodiment functionally includes, for example, a monitoring management unit 60, a switching destination communication route determination unit 62, a slice manager unit 64, and a communication route control unit 66. be
 監視管理部60は、プロセッサ30a及び通信部30cを主として実装される。切替先通信経路決定部62は、プロセッサ30aを主として実装される。スライスマネージャ部64は、プロセッサ30a及び記憶部30bを主として実装される。通信経路制御部66は、プロセッサ30a、記憶部30b、及び、通信部30cを主として実装される。 The monitoring management unit 60 is mainly implemented by the processor 30a and the communication unit 30c. The switching destination communication path determining unit 62 is mainly implemented by the processor 30a. The slice manager section 64 is mainly implemented with a processor 30a and a storage section 30b. The communication path control unit 66 is mainly implemented with a processor 30a, a storage unit 30b, and a communication unit 30c.
 以上の機能は、コンピュータであるプラットフォームシステム30にインストールされた、以上の機能に対応する指令を含むプログラムをプラットフォームシステム30で実行することにより実装されてもよい。また、このプログラムは、例えば、光ディスク、磁気ディスク、磁気テープ、光磁気ディスク等のコンピュータ読み取り可能な情報記憶媒体を介して、あるいは、インターネットなどを介してプラットフォームシステム30に供給されてもよい。 The above functions may be implemented by causing the platform system 30 to execute a program installed on the platform system 30, which is a computer, and including commands corresponding to the above functions. Also, this program may be supplied to the platform system 30 via a computer-readable information storage medium such as an optical disk, magnetic disk, magnetic tape, or magneto-optical disk, or via the Internet or the like.
 監視管理部60は、本実施形態では例えば、サービス提供中通信経路の通信性能を監視する。そして、監視管理部60は、本実施形態では例えば、監視しているサービス提供中通信経路に所定の通信性能劣化が発生したことを検出する。例えば、監視管理部60は、サービス提供中通信経路について監視されている所定の性能指標値が所定の閾値を下回った際に、サービス提供中通信経路に所定の通信性能劣化が発生したことを検出してもよい。 In this embodiment, for example, the monitoring management unit 60 monitors the communication performance of the communication path during service provision. Then, in the present embodiment, the monitoring management unit 60 detects, for example, that predetermined deterioration in communication performance has occurred in the monitored communication path during service provision. For example, the monitoring management unit 60 detects that a predetermined deterioration in communication performance has occurred in the communication path during service provision when a predetermined performance index value monitored for the communication path during service provision falls below a predetermined threshold value. You may
 また、監視管理部60は、サービス提供中通信経路の少なくとも一部である2つの機能ユニット間の通信経路の通信性能を監視してもよい。そして、監視管理部60は、これら2つの機能ユニット間の通信経路に所定の通信性能劣化が発生したことを検出してもよい。 In addition, the monitoring management unit 60 may monitor the communication performance of the communication path between two functional units that are at least part of the communication path during service provision. Then, the monitoring management unit 60 may detect that predetermined communication performance deterioration has occurred in the communication path between these two functional units.
 また、監視管理部60は、一方の機能ユニットから他方の機能ユニットへの方向の通信における通信性能を監視してもよい。そして、監視管理部60は、一方の機能ユニットから他方の機能ユニットへの方向の通信に所定の通信性能劣化が発生したことを検出してもよい。 Also, the monitoring management unit 60 may monitor communication performance in communication from one functional unit to the other functional unit. Then, the monitoring management section 60 may detect that predetermined communication performance deterioration has occurred in communication from one functional unit to the other functional unit.
 例えば監視管理部60は、CU52からUPF54への方向の通信における通信性能を監視してもよい。そして、CU52からUPF54への方向の通信についての所定の性能指標値が所定の閾値を下回ったことを検出してもよい。 For example, the monitoring management unit 60 may monitor communication performance in communication from the CU 52 to the UPF 54 . It may then detect that a predetermined performance index value for communications in the direction from CU 52 to UPF 54 has fallen below a predetermined threshold.
 また、監視管理部60は、本実施形態では例えば、複数の代替通信経路のネットワークサービスの提供中における通信品質を監視する。ここで、監視管理部60は、複数のネットワークスライス(例えば、複数のトランスポートスライス58)の通信品質を監視してもよい。 Also, in this embodiment, for example, the monitoring management unit 60 monitors the communication quality during the provision of network services on a plurality of alternative communication paths. Here, the monitoring management unit 60 may monitor the communication quality of multiple network slices (for example, multiple transport slices 58).
 例えば、測定エージェント56間通信による通信経路の通信品質の測定が所定の時間間隔で繰り返し実行されるようにしてもよい。また、ある測定エージェント56から他の測定エージェント56への方向の通信における通信経路の通信品質の測定が所定の時間間隔で繰り返し実行されるようにしてもよい。 For example, measurement of the communication quality of the communication path by communication between the measurement agents 56 may be repeatedly performed at predetermined time intervals. Also, the measurement of the communication quality of the communication path in the direction of communication from one measurement agent 56 to another measurement agent 56 may be repeated at predetermined time intervals.
 そして、通信経路の通信品質が測定される度に、当該通信品質の測定結果を示す通信品質データを、測定エージェント56が監視管理部60に送信してもよい。そして、監視管理部60が、測定エージェント56から送信される通信品質データを受信してもよい。 Then, each time the communication quality of the communication path is measured, the measurement agent 56 may transmit communication quality data indicating the measurement result of the communication quality to the monitoring management unit 60 . Then, the monitoring management unit 60 may receive communication quality data transmitted from the measurement agent 56 .
 本実施形態では例えば、測定エージェント56dが、測定エージェント56aから測定エージェント56dへの方向の通信におけるトランスポートスライス58aの通信品質の測定結果を示す測定品質データを監視管理部60に送信する。また例えば、測定エージェント56eが、測定エージェント56bから測定エージェント56eへの方向の通信におけるトランスポートスライス58bの通信品質の測定結果を示す測定品質データを監視管理部60に送信する。また例えば、測定エージェント56fが、測定エージェント56cから測定エージェント56fへの方向の通信におけるトランスポートスライス58cの通信品質の測定結果を示す測定品質データを監視管理部60に送信する。 In this embodiment, for example, the measurement agent 56d transmits to the monitoring management unit 60 measurement quality data indicating the measurement result of the communication quality of the transport slice 58a in communication from the measurement agent 56a to the measurement agent 56d. Also, for example, the measurement agent 56e transmits to the monitoring management unit 60 measurement quality data indicating the measurement result of the communication quality of the transport slice 58b in communication in the direction from the measurement agent 56b to the measurement agent 56e. Also, for example, the measurement agent 56f transmits to the monitoring management unit 60 measurement quality data indicating the measurement result of the communication quality of the transport slice 58c in communication in the direction from the measurement agent 56c to the measurement agent 56f.
 切替先通信経路決定部62は、本実施形態では例えば、上述の検出に応じて、通信品質の監視結果に基づいていずれかの代替通信経路を、サービス提供中通信経路の一部の切替先の通信経路として決定する。以下、このようにして決定される代替通信経路を切替先通信経路と呼ぶこととする。ここで例えば、切替先通信経路決定部62は、監視結果である通信品質が最も高い代替通信経路を、切替先通信経路として決定してもよい。 In the present embodiment, for example, the switching destination communication route determination unit 62 selects one of the alternative communication routes based on the monitoring result of the communication quality in response to the above-described detection, and selects one of the switching destinations of some of the communication routes during service provision. Decide as a communication route. Hereinafter, the alternative communication route determined in this manner will be referred to as a switching destination communication route. Here, for example, the switching destination communication path determining unit 62 may determine the alternative communication path with the highest communication quality as the monitoring result as the switching destination communication path.
 スライスマネージャ部64は、本実施形態では例えば、図5及び図8に例示されているスライス管理データを記憶する。そして、スライスマネージャ部64は、切替先通信経路の決定に応じて、スライス管理データにおいて、上述のネットワークサービスが提供されているネットワークスライスのS-NSSAIとSRエリアIDに対応付けられるトランスポートスライス58のTRスライスIDを、切替先通信経路であるトランスポートスライス58のTRスライスIDに変更する。上述の例では、S-NSSAIの値が「I」であり、SRエリアIDの値が「1」であるスライス管理データのTRスライスIDの値が「A1」から「A2」に更新される。 The slice manager unit 64 stores slice management data illustrated in FIGS. 5 and 8 in this embodiment, for example. Then, the slice manager unit 64 selects the transport slice 58 associated with the S-NSSAI and SR area ID of the network slice in which the above-described network service is provided in the slice management data according to the determination of the switching destination communication path. is changed to the TR slice ID of the transport slice 58, which is the communication path to switch to. In the above example, the value of TR slice ID of the slice management data with the value of S-NSSAI being "I" and the value of SR area ID being "1" is updated from "A1" to "A2".
 通信経路制御部66は、本実施形態では例えば、通信性能劣化が発生したことの検出に応じて、サービス提供中通信経路の少なくとも一部を、通信品質の監視結果に基づいて決定されるいずれかの代替通信経路に変更する。ここで通信経路制御部66は、例えば、通信性能劣化が発生したことの検出に応じて、サービス提供中通信経路の少なくとも一部を、監視結果である通信品質が最も高い代替通信経路に変更してもよい。 In this embodiment, for example, the communication path control unit 66 selects at least a part of the service-provisioning communication path in accordance with the detection of communication performance deterioration, which is determined based on the communication quality monitoring result. change to an alternate communication route. Here, the communication path control unit 66 changes at least a part of the communication path under service provision to an alternative communication path with the highest communication quality as a result of monitoring, for example, in response to detection of occurrence of communication performance deterioration. may
 例えば、サービス提供中通信経路の少なくとも一部である2つの機能ユニット間の通信経路に所定の通信性能劣化が発生したことが検出されたとする。この場合、通信経路制御部66は、通信性能劣化が発生したことの検出に応じて、サービス提供中通信経路の少なくとも一部である当該2つの機能ユニット間の通信経路を、通信品質の監視結果に基づいて決定されるいずれかの代替通信経路に変更してもよい。例えば、トランスポートスライス58aに通信性能劣化が発生したことが検出されたとする。そして、トランスポートスライス58bの通信品質が、トランスポートスライス58cの通信品質よりも高いとする。この場合、CU52からUPF54に送信されるパケットの送信経路が、トランスポートスライス58aからトランスポートスライス58bに変更されてもよい。 For example, suppose that it is detected that predetermined communication performance deterioration has occurred in the communication path between two functional units that are at least part of the communication path during service provision. In this case, the communication path control unit 66, in response to detection of the occurrence of communication performance deterioration, changes the communication path between the two functional units, which is at least part of the communication path under service provision, to the communication quality monitoring result. may be changed to any alternate communication path determined based on For example, assume that it is detected that the transport slice 58a has deteriorated in communication performance. Assume that the communication quality of the transport slice 58b is higher than the communication quality of the transport slice 58c. In this case, the transmission path of packets transmitted from the CU 52 to the UPF 54 may be changed from the transport slice 58a to the transport slice 58b.
 また、通信経路制御部66は、本実施形態では例えば、図6及び図9に例示されているソースIPスライス対応データを記憶する。また、通信経路制御部66は、本実施形態では例えば、図7に例示するルーティング管理データを記憶する。そして、通信経路制御部66は、切替先通信経路の決定に応じて、ソースIPスライス対応データにおいて、提供中のネットワークサービスに係るソースIPセットデータに対応付けられているTRスライスIDを変更する。上述の例では、ソースIPセットデータの値が「SS」であるソースIPセットデータに対応付けられるTRスライスIDの値が「A1」から「A2」に更新される。 In addition, the communication path control unit 66 stores source IP slice correspondence data illustrated in FIGS. 6 and 9 in this embodiment, for example. In addition, the communication path control unit 66 stores, for example, routing management data illustrated in FIG. 7 in this embodiment. Then, the communication path control unit 66 changes the TR slice ID associated with the source IP set data related to the network service being provided in the source IP slice correspondence data according to the determination of the switching destination communication path. In the above example, the value of the TR slice ID associated with the source IP set data whose value is "SS" is updated from "A1" to "A2".
 また、通信経路制御部66は、所定の条件を満たすソースIPアドレスが設定されたパケットがサービス提供中通信経路を通るよう制御してもよい。そして、通信経路制御部66は、通信性能劣化が発生したことの検出に応じて、上記所定の条件を満たすソースIPアドレスが設定されたパケットが通る通信経路の少なくとも一部を、通信品質の監視結果に基づいて決定されるいずれかの代替通信経路に変更してもよい。 In addition, the communication route control unit 66 may control so that a packet with a source IP address that satisfies a predetermined condition passes through the communication route during service provision. Then, in response to the detection of the occurrence of communication performance deterioration, the communication path control unit 66 monitors the communication quality of at least a part of the communication path through which the packet having the source IP address that satisfies the predetermined condition passes. Any alternative communication path determined based on the results may be changed.
 ここで、通信経路制御部66は、上述のように、SRエリア50での通信において、所定の条件を満たすソースIPアドレスが設定されたパケットのIPヘッダに、サービス提供中通信経路に対応するセグメント識別情報が設定されるよう制御してもよい。そして、通信経路制御部66は、通信性能劣化が発生したことの検出に応じて、SRエリア50での通信において、上記所定の条件を満たすソースIPアドレスが設定されたパケットのIPヘッダに、監視されている通信品質に基づいて決定されるいずれかの代替通信経路に対応するセグメント識別情報が設定されるよう制御してもよい。 Here, as described above, in communication in the SR area 50, the communication path control unit 66 adds a segment corresponding to the communication path under service provision to the IP header of the packet in which the source IP address that satisfies the predetermined condition is set. You may control so that identification information may be set. Then, in response to the detection of the occurrence of communication performance degradation, the communication path control unit 66 monitors the IP header of the packet in which the source IP address that satisfies the above-described predetermined condition is set in the communication in the SR area 50 . It may be controlled to set the segment identification information corresponding to any of the alternative communication paths determined based on the determined communication quality.
 例えば、通信経路制御部66は、図6に示すソースIPスライス対応データを記憶している際には、ソースIPセットが「SS」であるパケットが、この時点でのサービス提供中通信経路の一部であるトランスポートスライス58aを通るよう制御してもよい。例えば、通信経路制御部66は、ソースIPセットが「SS」であるパケットのIPヘッダにセグメント識別情報として「A1」が設定されるよう制御してもよい。 For example, when the communication path control unit 66 stores the source IP slice correspondence data shown in FIG. It may be controlled to pass through the transport slice 58a, which is a part. For example, the communication path control unit 66 may control so that "A1" is set as the segment identification information in the IP header of the packet whose source IP set is "SS".
 そして、ソースIPスライス対応データが図8に示すものに変更された後には、通信経路制御部66は、ソースIPセットが「SS」であるパケットが、切替先通信経路であるトランスポートスライス58bを通るよう制御してもよい。例えば、通信経路制御部66は、ソースIPセットが「SS」であるパケットのIPヘッダにセグメント識別情報として「A2」が設定されるよう制御してもよい。 Then, after the source IP slice correspondence data is changed to that shown in FIG. 8, the communication path control unit 66 determines that the packet whose source IP set is "SS" is transferred to the transport slice 58b, which is the switching destination communication path. You can control it to pass. For example, the communication path control unit 66 may control so that "A2" is set as the segment identification information in the IP header of the packet whose source IP set is "SS".
 また、本実施形態において、代替通信経路は、提供中のネットワークサービスとは異なるネットワークサービスに含まれる機能ユニット群を接続する通信経路であってもよい。例えば、トランスポートスライス58aが割り当てられたネットワークスライスで、あるネットワークサービスが提供中である状況において、トランスポートスライス58bが割り当てられたネットワークスライスで、別のネットワークサービスが提供中であってもよい。また例えば、トランスポートスライス58aが割り当てられたネットワークスライスで、あるネットワークサービスが提供中である状況において、トランスポートスライス58cが割り当てられたネットワークスライスで、別のネットワークサービスが提供中であってもよい。 Also, in this embodiment, the alternative communication path may be a communication path that connects functional units included in a network service different from the network service being provided. For example, in a situation where one network service is being provided on the network slice to which transport slice 58a is assigned, another network service may be being provided on the network slice to which transport slice 58b is assigned. Also, for example, in a situation where a certain network service is being provided by the network slice to which the transport slice 58a is assigned, another network service may be being provided by the network slice to which the transport slice 58c is assigned. .
 ここで、本実施形態に係るプラットフォームシステム30で行われるサービス提供中通信経路の変更制御に係る処理の流れの一例を、図11に例示するフロー図を参照しながら説明する。 Here, an example of the flow of processing related to change control of communication paths during service provision performed by the platform system 30 according to the present embodiment will be described with reference to the flowchart illustrated in FIG.
 本処理例では、監視管理部60が、サービス提供中通信経路の通信性能を監視している(S101)。 In this processing example, the monitoring management unit 60 monitors the communication performance of the communication path during service provision (S101).
 そして、監視管理部60が、サービス提供中通信経路に所定の通信性能劣化が発生したことを検出すると(S101:Y)、切替先通信経路決定部62が、複数の代替通信経路のそれぞれについての、通信品質の監視結果を特定する(S102)。 Then, when the monitoring management unit 60 detects that a predetermined communication performance deterioration has occurred in the communication path during service provision (S101: Y), the switching destination communication path determination unit 62 determines whether each of the plurality of alternative communication paths , the communication quality monitoring result is specified (S102).
 そして、切替先通信経路決定部62が、S102に示す処理で特定される通信品質の監視結果に基づいて、複数の代替通信経路のうちから、切替先通信経路を決定する(S103)。 Then, the switching destination communication route determination unit 62 determines a switching destination communication route from among a plurality of alternative communication routes based on the monitoring result of the communication quality specified in the processing shown in S102 (S103).
 そして、切替先通信経路決定部62は、スライスマネージャ部64に、サービス提供中通信経路がS103に示す処理で決定された切替先通信経路に切り替わることを示す切替通知を出力する(S104)。ここでは例えば、S-NSSAIが「I」であるネットワークスライスのSRエリアIDが「1」であるSRエリアのトランスポートスライス58が、トランスポートスライス58bに切り替わることを示す切替通知が出力される。 Then, the switching destination communication path determination unit 62 outputs to the slice manager unit 64 a switching notification indicating that the communication path under service provision will be switched to the switching destination communication path determined in the processing shown in S103 (S104). Here, for example, a switching notification is output indicating that the transport slice 58 of the SR area having the SR area ID of "1" of the network slice having the S-NSSAI of "I" is switched to the transport slice 58b.
 すると、スライスマネージャ部64は、S104に示す処理で受け付ける切替通知に基づいて、スライス管理データを更新する(S105)。ここでは、例えば、スライス管理データが、図5に示すものから図8に示すものに更新される。 Then, the slice manager unit 64 updates the slice management data based on the switching notification received in the processing shown in S104 (S105). Here, for example, the slice management data is updated from that shown in FIG. 5 to that shown in FIG.
 そして、スライスマネージャ部64は、通信経路制御部66に、サービス提供中通信経路がS103に示す処理で決定された切替先通信経路に切り替わることを示す切替通知を出力する(S106)。 Then, the slice manager unit 64 outputs to the communication path control unit 66 a switching notification indicating that the communication path under service is switched to the switching destination communication path determined in the processing shown in S103 (S106).
 すると、通信経路制御部66は、S104に示す処理で受け付ける切替通知に基づいて、通信経路が切り替わるSRエリアに対応付けられるソースIPスライス対応データを更新する(S107)。ここでは例えば、スライス管理データが、図6に示すものから図9に示すものに更新される。 Then, the communication path control unit 66 updates the source IP slice correspondence data associated with the SR area whose communication path is switched, based on the switching notification received in the processing shown in S104 (S107). Here, for example, the slice management data is updated from that shown in FIG. 6 to that shown in FIG.
 そして、通信経路制御部66が、S107に示す処理で更新されたソースIPスライス対応データに基づいて、通信経路の切替制御を実行して(S108)、S101に示す処理に戻る。ここでは例えば、通信経路制御部66が、SRソースノード44に、ソースIPアドレスが属するIPセットが「SS」であるパケットの転送先を、トランジットノード46aからトランジットノード46bに変更するよう制御する。より具体的には例えば、通信経路制御部66が、SRソースノード44に、ソースIPアドレスが属するIPセットが「SS」であるパケットのIPヘッダには、セグメント識別情報として「A2」を設定するよう指示する。 Then, the communication path control unit 66 executes communication path switching control based on the source IP slice correspondence data updated in the process shown in S107 (S108), and returns to the process shown in S101. Here, for example, the communication path control unit 66 controls the SR source node 44 to change the transfer destination of packets whose IP set to which the source IP address belongs is "SS" from the transit node 46a to the transit node 46b. More specifically, for example, the communication path control unit 66 sets "A2" as the segment identification information to the IP header of the packet whose IP set to which the source IP address belongs is "SS" in the SR source node 44. to do so.
 以上、一例として、CU52からUPF54への通信における通信経路の変更制御について説明した。同様にして、UPF54からCU52への通信における通信経路の変更制御が行われるようにしてもよい。 As an example, the change control of the communication path in communication from the CU 52 to the UPF 54 has been described above. Similarly, change control of the communication path in communication from the UPF 54 to the CU 52 may be performed.
 また、双方向の通信における通信性能劣化が検出されてもよい。また、複数の代替通信経路についての双方向の通信における品質が監視されてもよい。そして、サービス提供中通信経路の少なくとも一部が、双方向の通信における通信品質に基づいて決定される切替先通信経路に変更されてもよい。 Also, communication performance degradation in two-way communication may be detected. Also, the quality of two-way communication for multiple alternative communication paths may be monitored. Then, at least part of the communication path under service provision may be changed to a switching destination communication path determined based on the communication quality in two-way communication.
 また、以上、一例として、バックホール40での通信における通信経路の変更制御について説明した。同様にして、フロントホールやミッドホールでの通信における通信経路の変更制御が行われるようにしてもよい。 Also, as an example, the change control of the communication path in the communication in the backhaul 40 has been described above. Similarly, change control of communication paths in fronthaul and midhaul communications may be performed.
 また、複数のSRエリアを通るサービス提供中通信経路についての通信性能劣化が検出されてもよい。また、複数のSRエリアについての代替通信経路の組合せごとに、通信品質が監視されてもよい。そして、複数のSRエリアについての代替通信経路の組合せが、切替先通信経路として決定されてもよい。そして、サービス提供中通信経路に含まれる複数のSRエリアについての通信経路の組合せが、複数のSRエリアについての代替通信経路の組み合わせである切替先通信経路に変更されてもよい。 Also, communication performance deterioration may be detected for communication routes in service provision that pass through multiple SR areas. Also, communication quality may be monitored for each combination of alternative communication paths for a plurality of SR areas. Then, a combination of alternative communication routes for multiple SR areas may be determined as the switching destination communication route. Then, the combination of communication routes for a plurality of SR areas included in the in-service communication route may be changed to a switching destination communication route that is a combination of alternative communication routes for a plurality of SR areas.
 なお、本発明は上述の実施形態に限定されるものではない。 It should be noted that the present invention is not limited to the above-described embodiments.
 例えば、本実施形態に係る機能ユニットはCU52やUPF54には限定されない。例えば、本実施形態に係る機能ユニットが、DU、AMF(Access and Mobility Management Function)、SMF(Session Management Function)などといったネットワークノードであっても構わない。 For example, the functional units according to this embodiment are not limited to the CU52 and UPF54. For example, the functional unit according to the present embodiment may be a network node such as DU, AMF (Access and Mobility Management Function), SMF (Session Management Function).
 また、本実施形態に係る機能ユニットは、5GにおけるNFである必要はない。例えば、本実施形態に係る機能ユニットが、eNodeB、vDU、vCU、P-GW(Packet Data Network Gateway)、S-GW(Serving Gateway)、MME(Mobility Management Entity)、HSS(Home Subscriber Server)などといった、4Gにおけるネットワークノードであっても構わない。 Also, the functional unit according to this embodiment does not have to be the NF in 5G. For example, functional units according to the present embodiment include eNodeB, vDU, vCU, P-GW (Packet Data Network Gateway), S-GW (Serving Gateway), MME (Mobility Management Entity), HSS (Home Subscriber Server), etc. , 4G.
 また、本実施形態に係る機能ユニットが、CNFでなく、ハイパーバイザ型やホスト型の仮想化技術を用いた、VM(Virtual Machine)ベースの機能ユニットであるVNF(Virtualized Network Function)であってもよい。また、本実施形態に係る機能ユニットがソフトウェアによって実装されている必要はなく、電子回路等のハードウェアによって実装されていてもよい。また、本実施形態に係る機能ユニットが、電子回路とソフトウェアとの組合せによって実装されていてもよい。 Also, even if the functional unit according to the present embodiment is not CNF but VNF (Virtual Machine) based functional unit using hypervisor type or host type virtualization technology. good. Also, the functional units according to the present embodiment need not be implemented by software, and may be implemented by hardware such as electronic circuits. Also, the functional units according to the present embodiment may be implemented by a combination of electronic circuits and software.

Claims (7)

  1.  提供中のネットワークサービスに含まれる機能ユニット群を接続する通信経路であるサービス提供中通信経路の少なくとも一部と代替可能な複数の代替通信経路の、前記ネットワークサービスの提供中における通信品質を監視する監視手段と、
     前記サービス提供中通信経路に所定の通信性能劣化が発生したことを検出する検出手段と、
     前記通信性能劣化が発生したことの検出に応じて、前記サービス提供中通信経路の少なくとも一部を、通信品質の監視結果に基づいて決定されるいずれかの前記代替通信経路に変更する通信経路制御手段と、
     を含むことを特徴とする通信経路制御システム。
    monitoring the communication quality of a plurality of alternative communication paths that can be substituted for at least part of the communication path during service provision, which is a communication path connecting functional units included in the network service being provided, during the provision of the network service; monitoring means;
    detection means for detecting that predetermined communication performance deterioration has occurred in the communication path during service provision;
    Communication path control for changing at least part of the communication path under service provision to one of the alternative communication paths determined based on communication quality monitoring results in response to detection of the occurrence of the communication performance degradation. means and
    A communication path control system comprising:
  2.  前記通信経路制御手段は、前記通信性能劣化が発生したことの検出に応じて、前記サービス提供中通信経路の少なくとも一部を、監視結果である通信品質が最も高い前記代替通信経路に変更する、
     ことを特徴とする請求項1に記載の通信経路制御システム。
    The communication path control means, in response to detecting that the communication performance deterioration has occurred, changes at least a part of the communication path under service provision to the alternative communication path having the highest communication quality as a result of monitoring.
    2. The communication path control system according to claim 1, wherein:
  3.  前記代替通信経路は、前記提供中の前記ネットワークサービスとは異なるネットワークサービスに含まれる機能ユニット群を接続する通信経路である、
     ことを特徴とする請求項1又は2に記載の通信経路制御システム。
    The alternative communication path is a communication path connecting functional units included in a network service different from the network service being provided.
    3. The communication path control system according to claim 1 or 2, characterized in that:
  4.  前記検出手段は、前記サービス提供中通信経路の少なくとも一部である2つの前記機能ユニット間の通信経路に所定の通信性能劣化が発生したことを検出し、
     前記通信経路制御手段は、前記通信性能劣化が発生したことの検出に応じて、前記サービス提供中通信経路の少なくとも一部である当該2つの前記機能ユニット間の通信経路を、通信品質の監視結果に基づいて決定されるいずれかの前記代替通信経路に変更する、
     ことを特徴とする請求項1から3のいずれか一項に記載の通信経路制御システム。
    The detecting means detects that a predetermined deterioration in communication performance has occurred in a communication route between two functional units that are at least part of the communication route during service provision;
    The communication path control means, in response to detecting that the communication performance deterioration has occurred, controls the communication path between the two functional units, which is at least part of the communication path under service provision, as a result of communication quality monitoring. change to any of said alternate communication paths determined based on
    4. The communication path control system according to any one of claims 1 to 3, characterized in that:
  5.  前記通信経路制御手段は、所定の条件を満たすソースIPアドレスが設定されたパケットが前記サービス提供中通信経路を通るよう制御し、
     前記通信経路制御手段は、前記通信性能劣化が発生したことの検出に応じて、前記条件を満たすソースIPアドレスが設定されたパケットが通る通信経路の少なくとも一部を、通信品質の監視結果に基づいて決定されるいずれかの前記代替通信経路に変更する、
     ことを特徴とする請求項1から4のいずれか一項に記載の通信経路制御システム。
    The communication path control means controls so that packets set with source IP addresses satisfying predetermined conditions pass through the communication path during service provision,
    The communication path control means, in response to detecting that the communication performance deterioration has occurred, selects at least part of a communication path through which a packet having a source IP address that satisfies the condition is passed, based on a result of communication quality monitoring. change to any of said alternative communication paths determined by
    5. The communication path control system according to any one of claims 1 to 4, characterized in that:
  6.  前記通信経路制御手段は、セグメントルーティングエリアでの通信において、前記条件を満たすソースIPアドレスが設定されたパケットのIPヘッダに、前記サービス提供中通信経路に対応するセグメント識別情報が設定されるよう制御し、
     前記通信経路制御手段は、前記通信性能劣化が発生したことの検出に応じて、前記セグメントルーティングエリアでの通信において、前記条件を満たすソースIPアドレスが設定されたパケットのIPヘッダに、監視されている通信品質に基づいて決定されるいずれかの前記代替通信経路に対応するセグメント識別情報が設定されるよう制御する、
     ことを特徴とする請求項5に記載の通信経路制御システム。
    The communication route control means controls such that, in communication in the segment routing area, segment identification information corresponding to the communication route under service provision is set in an IP header of a packet in which a source IP address satisfying the condition is set. death,
    In response to the detection of the occurrence of the communication performance deterioration, the communication path control means monitors the IP header of the packet in which the source IP address satisfying the condition is set in the communication in the segment routing area. controlling to set segment identification information corresponding to one of the alternative communication paths determined based on the communication quality that is present;
    6. The communication path control system according to claim 5, characterized by:
  7.  提供中のネットワークサービスに含まれる機能ユニット群を接続する通信経路であるサービス提供中通信経路の少なくとも一部と代替可能な複数の代替通信経路の、前記ネットワークサービスの提供中における通信品質を監視するステップと、
     前記サービス提供中通信経路に所定の通信性能劣化が発生したことを検出するステップと、
     前記通信性能劣化が発生したことの検出に応じて、前記サービス提供中通信経路の少なくとも一部を、通信品質の監視結果に基づいて決定されるいずれかの前記代替通信経路に変更するステップと、
     を含むことを特徴とする通信経路制御方法。
    monitoring the communication quality of a plurality of alternative communication paths that can be substituted for at least part of the communication path during service provision, which is a communication path connecting functional units included in the network service being provided, during the provision of the network service; a step;
    a step of detecting that a predetermined deterioration in communication performance has occurred in the communication path during service provision;
    changing at least a portion of the communication path under service to one of the alternative communication paths determined based on communication quality monitoring results in response to detection of the occurrence of the communication performance degradation;
    A communication route control method comprising:
PCT/JP2021/047945 2021-12-23 2021-12-23 Communication path control system and communication path control method WO2023119576A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/047945 WO2023119576A1 (en) 2021-12-23 2021-12-23 Communication path control system and communication path control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/047945 WO2023119576A1 (en) 2021-12-23 2021-12-23 Communication path control system and communication path control method

Publications (1)

Publication Number Publication Date
WO2023119576A1 true WO2023119576A1 (en) 2023-06-29

Family

ID=86901789

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/047945 WO2023119576A1 (en) 2021-12-23 2021-12-23 Communication path control system and communication path control method

Country Status (1)

Country Link
WO (1) WO2023119576A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015159486A (en) * 2014-02-25 2015-09-03 日本電信電話株式会社 relay node and route control method
US20170063699A1 (en) * 2015-08-26 2017-03-02 Electronics And Telecommunications Research Institute Method and apparatus for configuring multi-paths using segment list
JP2018085585A (en) * 2016-11-21 2018-05-31 日本電信電話株式会社 Transmission path changing system, transmission path changing method, and communication quality control device and program
US20190081897A1 (en) * 2017-09-12 2019-03-14 Google Llc Mechanism and apparatus for path protection when using compressed segment routing label stacks
CN112039771A (en) * 2019-06-03 2020-12-04 华为技术有限公司 Processing method and device based on link error code
CN113810278A (en) * 2020-06-11 2021-12-17 中兴通讯股份有限公司 Tunnel path switching method, path configuration method, device, system and medium

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015159486A (en) * 2014-02-25 2015-09-03 日本電信電話株式会社 relay node and route control method
US20170063699A1 (en) * 2015-08-26 2017-03-02 Electronics And Telecommunications Research Institute Method and apparatus for configuring multi-paths using segment list
JP2018085585A (en) * 2016-11-21 2018-05-31 日本電信電話株式会社 Transmission path changing system, transmission path changing method, and communication quality control device and program
US20190081897A1 (en) * 2017-09-12 2019-03-14 Google Llc Mechanism and apparatus for path protection when using compressed segment routing label stacks
CN112039771A (en) * 2019-06-03 2020-12-04 华为技术有限公司 Processing method and device based on link error code
CN113810278A (en) * 2020-06-11 2021-12-17 中兴通讯股份有限公司 Tunnel path switching method, path configuration method, device, system and medium

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TSUYOSHI OGURA, TATSUYA FUJII: "Implementation of the inter-slice routing function using the Click Modular Router", IEICE TECHNICAL REPORT, NS, vol. 116, no. 44 (NS2016-20), 12 May 2016 (2016-05-12), JP, pages 35 - 40, XP009546544, Retrieved from the Internet <URL:https://ken.ieice.org/ken/paper/20160519fbiJ/eng/> *

Similar Documents

Publication Publication Date Title
JP7389305B2 (en) Enhanced SD-WAN path quality measurement and selection
US10454806B2 (en) SDN controller, data center system, and routing connection method
US10531351B2 (en) Method for in-network, dynamic radio access network functional split configuration by radio access network data plane forwarding nodes
JP5944537B2 (en) Communication path management method
KR102036056B1 (en) Delay-based traffic rate control in networks with central controllers
Moradi et al. SoftMoW: Recursive and reconfigurable cellular WAN architecture
EP4044514A1 (en) Method, device, and system for transmitting packet and receiving packet for performing oam
CN110771122A (en) Method and network node for enabling a content delivery network to handle unexpected traffic surges
US9112664B2 (en) System for and method of dynamic home agent allocation
Rettore et al. A handover mechanism for centralized/decentralized networks over disruptive scenarios
JP5870995B2 (en) COMMUNICATION SYSTEM, CONTROL DEVICE, COMPUTER, NODE CONTROL METHOD AND PROGRAM
WO2023119576A1 (en) Communication path control system and communication path control method
EP1506682B1 (en) Method and network node for selecting a combining point
EP4109844A1 (en) A method for use in routing
Cisco Internetworking Fundamentals
WO2023188186A1 (en) Communication path determining system and communication path determining method
WO2023188187A1 (en) Communication path determination system and communication path determination method
WO2024004102A1 (en) State determination of communication system based on performance index value data stored in queue
WO2023233470A1 (en) Estimating the cause of network abnormality
WO2023233471A1 (en) Cause inference of abnormality of network
WO2024024107A1 (en) Control of network load prediction start timing
WO2024047774A1 (en) Determination of machine learning model used for given predictive purpose relating to communication system
WO2024004103A1 (en) Execution of appropriate scale-out of elements included in communication system
WO2024004104A1 (en) Implementation of appropriate scaling out of elements included in communication system
WO2024024106A1 (en) Control of timing for starting prediction of network load

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21969011

Country of ref document: EP

Kind code of ref document: A1