WO2023119518A1 - Engine generator unit for flying body and flying body provided with same - Google Patents

Engine generator unit for flying body and flying body provided with same Download PDF

Info

Publication number
WO2023119518A1
WO2023119518A1 PCT/JP2021/047685 JP2021047685W WO2023119518A1 WO 2023119518 A1 WO2023119518 A1 WO 2023119518A1 JP 2021047685 W JP2021047685 W JP 2021047685W WO 2023119518 A1 WO2023119518 A1 WO 2023119518A1
Authority
WO
WIPO (PCT)
Prior art keywords
control unit
aircraft
generator
engine
target
Prior art date
Application number
PCT/JP2021/047685
Other languages
French (fr)
Japanese (ja)
Inventor
純 野口
義登 加藤
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Priority to PCT/JP2021/047685 priority Critical patent/WO2023119518A1/en
Priority to JP2022530872A priority patent/JP7092963B1/en
Publication of WO2023119518A1 publication Critical patent/WO2023119518A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/04Helicopters
    • B64C27/08Helicopters with two or more rotors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
    • B64D27/02Aircraft characterised by the type or position of power plants
    • B64D27/24Aircraft characterised by the type or position of power plants using steam or spring force
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the present invention relates to an aircraft engine generator unit and an aircraft equipped with the same.
  • Patent Document 1 discloses a micro-hybrid generator system drone that includes a plurality of propellers, an electric motor, and a micro-hybrid generator system that is an engine-generator unit. is disclosed.
  • the micro-hybrid generator system includes a small engine, a generator coupled to the small engine to produce AC power from mechanical power produced by the small engine, and a DC power produced by the generator. It has a battery that can be converted to electrical power and is rechargeable, a bridge rectifier that provides DC power to at least one electric motor, and a control unit that controls the throttle of the small engine based on the power demand of at least one load.
  • electric power is supplied to the electric motor from the battery of the micro hybrid generator system.
  • the micro hybrid power generator system performs feedback control to generate power after the voltage of the battery drops by driving at least one rotor motor.
  • the generator charges the main battery with electric power obtained by converting power from the engine when the remaining amount of the main battery is less than a threshold.
  • the micro-hybrid generator system detects a voltage drop due to an increase in load, and then controls the throttle opening of the small engine. Furthermore, the ability to follow commands of a small engine that drives the generator is lower than that of a motor due to the structure of the engine. Therefore, when the micro hybrid power generator system supplies power after the load is generated on the drone, there is a difference in the timing of supplying power to the load generated on the drone and the amount of power to be supplied, and the drone could affect the control of
  • an engine generator unit that supplies power to the drone motor as an engine generator unit that can be attached to various types of drones.
  • An object of the present invention is to provide an aircraft engine-generator unit that can be attached to various types of aircraft while enhancing power generation responsiveness to load fluctuations of the aircraft.
  • the present inventor has studied the configuration of an engine-generator unit for an aircraft that can be attached to various types of aircraft while increasing power generation responsiveness to load fluctuations when supplying power to the motor of the aircraft. As a result of intensive studies, the inventors came up with the following configuration.
  • An engine generator unit for an aircraft includes a motor that is a driving source of an aircraft, a motor control section that controls the driving of the motor, and an aircraft control signal that is input to the motor control section.
  • an engine generator unit for an aircraft that supplies electric power to an aircraft having an aircraft control section;
  • This aircraft engine-generator unit includes an engine, a generator that generates power by driving force generated by the engine, an engine control section that controls the rotation speed or output torque of the engine, and a power generation amount of the generator. It has a generator control section for controlling, and an integrated control section for calculating a target rotation speed and a target torque of the engine generator unit.
  • the integrated control unit When the integrated control unit calculates the target rotation speed and the target torque based on the target power generation amount determined by the load of the aircraft, the integrated control unit controls either one of the engine control unit and the generator control unit to perform the A target rotational speed and the target torque are output, and the target torque is output to the other. Further, when the integrated control unit calculates the target rotation speed and the target torque based on the target power generation amount and the required power generation amount required for driving the motor output from the aircraft control unit, the At least the target rotation speed out of the target rotation speed and the target torque is output to one of the engine control unit and the generator control unit, and the target torque is output to the other.
  • the integrated control unit controls either the engine control unit or the generator control unit. On the other hand, it outputs the target rotational speed and the target torque, which is a signal for feedforward control inside the aircraft engine generator unit. Further, when the target rotation speed and the target torque are calculated based on the target generated power amount and the target required power amount which is a signal for feedforward control outside the aircraft engine generator unit, the integrated The control unit is a signal for feedforward control inside the aircraft engine generator unit with the target rotation speed or the target rotation speed to either one of the engine control unit and the generator control unit. Input the target torque.
  • the signal for feedforward control from the outside of the aircraft engine generator unit and the signal for feedforward control inside the aircraft engine generator unit are At least one is used to control the engine and the generator.
  • the flying object engine generator unit quickly supplies power to the flying object by feedforward control simply by connecting a power line to the motor control section of the flying object. is possible. As a result, it can be easily attached to various types of flying objects while enhancing power generation responsiveness to load fluctuations of the flying object.
  • the aircraft engine generator unit of the present invention preferably includes the following configuration.
  • the integrated control section calculates a target power generation amount in accordance with a voltage of a connecting portion between the aircraft engine generator unit and a load of the aircraft.
  • the integrated control unit calculates the target power generation amount based on the amount of power used according to the load of the aircraft connected to the aircraft engine generator unit. That is, the integrated control section can calculate the target rotational speed and the target torque based on the information that can be detected in the aircraft engine generator unit. As a result, it is possible to easily realize a configuration in which the amount of power generated by the generator can be controlled simply by connecting a power line to the motor control unit of the aircraft. That is, it is possible to improve the versatility of the aircraft engine generator unit.
  • the aircraft engine generator unit of the present invention preferably includes the following configuration.
  • the vehicle load includes the motor control unit and a power storage unit that stores a portion of the power supplied to the vehicle.
  • the integrated control unit calculates a target power generation amount according to at least one of a voltage of a power line connecting the generator control unit and the motor control unit or information regarding a storage state obtained in the power storage unit.
  • the integrated control unit calculates the target power generation amount based on at least one of the bus voltage electrically connected to the aircraft and information on the storage state obtained in the power storage unit. Accordingly, it is possible to easily realize a configuration in which the power generation amount of the generator can be controlled simply by connecting at least one of the power line and the signal line of the power storage unit to the motor control unit of the flying object. That is, it is possible to improve the versatility of the aircraft engine generator unit.
  • the aircraft engine generator unit of the present invention preferably includes the following configuration.
  • the integrated control section, the generator control section, and the engine control section are configured as separate members from the aircraft control section.
  • the aircraft engine-generator unit is mounted on the aircraft with the integrated control section, the generator control section, and the engine control section separated from the aircraft control section of the aircraft. That is, the aircraft engine-generator connection unit can be separated from the aircraft while the aircraft control section is fixed to the fuselage of the aircraft. As a result, the versatility of the aircraft engine generator unit can be improved.
  • An aircraft includes a plurality of propellers, a plurality of motors for driving the plurality of propellers, a motor control section for controlling the driving of the motors, and an aircraft control signal to the motor control section. and the aircraft engine-generator unit for supplying electric power to the motor.
  • attachment As used herein, “attached,” “connected,” “coupled,” and/or equivalents thereof are used broadly and include “direct and indirect” attachment, It includes both connection and coupling. Furthermore, “connected” and “coupled” are not limited to physical or mechanical connections or couplings, but can include direct or indirect electrical connections or couplings.
  • This specification describes an embodiment of an aircraft engine generator unit and an aircraft according to the present invention.
  • the flying object is a moving object that can move in the air by a driving force obtained by a driving source such as a motor.
  • a driving source such as a motor.
  • An aircraft has, for example, a plurality of propellers that are rotated by a drive source such as a motor.
  • Air vehicles include both unmanned and manned air vehicles.
  • the load of the aircraft means a component that consumes power in the aircraft.
  • the parts that consume the power supplied to the aircraft from the engine generator unit for the aircraft are the loads of the aircraft.
  • the loads in the flying object include, for example, a motor control unit, a motor, a power storage unit, an flying object control unit, and the like.
  • an aircraft engine-generator unit that can be attached to various types of aircraft while enhancing power generation responsiveness to load fluctuations of the aircraft.
  • FIG. 1 is a functional block diagram showing a configuration in which a target rotational speed and a target torque are input to an engine control unit in a schematic configuration of an aircraft including an aircraft engine generator unit according to the embodiment.
  • FIG. 2 is a diagram showing a schematic configuration of a flying object and schematically showing how an engine-generator unit for the flying object supplies power to the flying object.
  • FIG. 3 is a functional block diagram showing a configuration in which a target rotation speed and a target torque are input to a generator control unit in a schematic configuration of an aircraft including an aircraft engine generator unit according to another embodiment. .
  • FIG. 1 is a functional block diagram showing a configuration in which a target rotational speed and a target torque are input to an engine control unit in a schematic configuration of an aircraft including an aircraft engine generator unit according to the embodiment.
  • FIG. 2 is a diagram showing a schematic configuration of a flying object and schematically showing how an engine-generator unit for the flying object supplies power to the flying object.
  • FIG. 3 is a
  • FIG. 4 shows a schematic configuration of an aircraft including an engine generator unit for an aircraft according to another embodiment, in which only the target power generation amount out of the target power generation amount and the required power generation amount is input to the integrated control unit. It is a functional block diagram showing the configuration of.
  • FIG. 5 is a functional block diagram showing a configuration in which only the target rotation speed out of the target rotation speed and the target torque is input to the engine control unit in the schematic configuration of the aircraft including the aircraft engine generator unit according to another embodiment. It is a diagram.
  • FIG. 6 is a diagram schematically showing how DC power is supplied from an aircraft engine generator unit to a load other than an aircraft.
  • FIG. 1 is a functional block diagram for explaining a schematic configuration of an aircraft 1 including an engine generator unit 10 for an aircraft according to an embodiment.
  • FIG. 2 is a diagram showing a schematic configuration of the flying object 1 and schematically showing how the flying object engine-generator unit 10 supplies electric power to the flying object 1.
  • the flying object 1 is, for example, a multicopter having a plurality of propellers.
  • the flying object 1 may be an unmanned flying object having one propeller or a manned flying object having one or more propellers. Further, the aircraft 1 may be provided with a propulsion device other than a propeller, which is driven by electric power generated by the aircraft engine generator unit 10 .
  • the configuration other than the aircraft engine generator unit 10 is the same as the configuration in the conventional aircraft. Therefore, the configuration of the aircraft 1 other than the aircraft engine generator unit 10 will be briefly described below.
  • the aircraft 1 includes a plurality of motors 2, a plurality of propellers 3, a plurality of motor control units 4, a power storage unit 5, an aircraft control unit 6, a plurality of types of sensors 7, a body frame 8, a plurality of arms 9;
  • the base ends of a plurality of arms 9 are connected to the body frame 8 .
  • a plurality of arms 9 are provided with motors 2 and propellers 3, respectively.
  • Electric power is supplied to the plurality of motors 2 from the aircraft engine generator unit 10 .
  • a plurality of motors 2 are driving sources for the flying object 1 .
  • a plurality of motors 2 drive a plurality of propellers 3 .
  • the plurality of motors 2 are driven by electric power output from the motor controller 4 . That is, the motor control unit 4 controls driving of the plurality of motors 2 .
  • a plurality of propellers 3 are rotated by a motor 2 driven by electric power to generate lift.
  • the plurality of motors 2 includes, for example, six motors.
  • the multiple propellers 3 include, for example, six propellers.
  • the number of motors may be five or less, or seven or more.
  • the number of propellers may be five or less, or seven or more.
  • Electric power is supplied to the motor control unit 4 from the aircraft engine generator unit 10 and the electric power storage unit 5, which will be described later.
  • the motor control unit 4 supplies electric power to the plurality of motors 2 based on flight commands output from the aircraft control unit 6 .
  • the power storage unit 5 stores surplus power in the aircraft 1 and supplies power to the motor control unit 4 when the power is insufficient in the motor control unit 4 .
  • Power storage unit 5 is, for example, a capacitor.
  • the power storage unit 5 may be a member having a configuration capable of storing power, such as a battery.
  • the motor control unit 4 is electrically connected to the generator control unit 14 of the aircraft engine generator unit 10 described later by a power line. That is, the motor control unit 4, the power storage unit 5, and the generator control unit 14 are electrically connected by power lines.
  • the power storage unit 5 stores at least part of the power supplied to the aircraft 1 .
  • the flying object control unit 6 generates and outputs a flight command for driving and controlling the motor control unit 4 based on the detection values output from the multiple types of sensors 7 .
  • the multiple types of sensors 7 include an acceleration sensor 7a, an orientation sensor 7b, and an altitude sensor 7c. That is, the multiple types of sensors 7 acquire information related to the attitude, flight state, position, altitude, and the like of the aircraft 1 .
  • the flying object control unit 6 generates the flight command from information related to the attitude, flight state, position, altitude, etc. of the flying object 1 acquired by multiple types of sensors 7 .
  • a flight command generated by the aircraft controller 6 is input to the motor controller 4 .
  • the aircraft control unit 6 calculates a required power generation amount Wr, which is a power command indicating the amount of power required to drive the motor 2 according to the flight command.
  • the required power generation amount Wr calculated by the aircraft control unit 6 is input to the integrated control unit 15 of the aircraft engine generator unit 10 .
  • the aircraft engine generator unit 10 supplies electric power to the motor control unit 4 of the aircraft 1 .
  • the aircraft engine generator unit 10 has an engine 11 , an engine control section 12 , a generator 13 , a generator control section 14 and an integrated control section 15 .
  • the driving force of the engine 11 causes the generator 13 to generate electric power.
  • Electric power generated by the generator 13 is supplied to the motor control unit 4 of the flying object 1 via the power line.
  • the engine 11 is, for example, an internal combustion engine that generates rotational driving force on a crankshaft by burning fuel such as gasoline or light oil in a cylinder.
  • the engine 11 has a cylinder (not shown), a piston that can reciprocate within the cylinder, and a crankshaft that converts the reciprocating movement of the piston into rotary motion.
  • the engine 11 also has an intake pipe for drawing gas into the cylinder and an exhaust pipe for discharging gas after combustion in the cylinder.
  • the engine 11 may be a single-cylinder engine having one cylinder and one piston, or may be a multi-cylinder engine having a plurality of cylinders and pistons.
  • the engine 11 operates according to the ignition control signal, the fuel injection control signal, the throttle opening signal, etc. output from the engine control unit 12 . That is, the engine 11 includes a fuel injection device (not shown) driven by a fuel injection control signal, a spark plug for igniting a fuel mixture in a cylinder by an ignition control signal, and a throttle opening signal provided in the intake pipe. and a throttle for adjusting the amount of gas flowing into the cylinder.
  • a fuel injection device (not shown) driven by a fuel injection control signal
  • a spark plug for igniting a fuel mixture in a cylinder by an ignition control signal
  • a throttle opening signal provided in the intake pipe.
  • a throttle for adjusting the amount of gas flowing into the cylinder.
  • the rotational driving force as the output obtained from the crankshaft is controlled.
  • the rotation angle of the crankshaft is detected as the crank angle by the crank angle detector 11a.
  • the crank angle detected by the crank angle detector 11a is input to the engine controller 12 as a crank angle detection signal.
  • the crank angle detection signal is used when the engine control unit 12 generates an ignition control signal, a fuel injection control signal, and the like. Further, the crank angle detector 11 a can detect the actual rotation speed Rr of the engine 11 .
  • the rotational driving force of the crankshaft as the output of the engine 11 is transmitted to the generator 13. That is, the rotor of the generator 13 rotates as the crankshaft of the engine 11 rotates. As a result, the generator 13 generates AC power.
  • the rotation angle of the rotor of the generator 13 is detected by a rotation angle sensor 13a.
  • the rotation angle detected by the rotation angle sensor 13 a is input to the generator control section 14 .
  • the AC power generated by the generator 13 is input to the generator control section 14 .
  • the generator control unit 14 converts the input AC power into DC power and outputs the DC power. At this time, the generator control unit 14 uses the rotation angle of the rotor detected by the rotation angle sensor 13a.
  • the generator control unit 14 includes a power conversion device having a plurality of switching elements.
  • the generator control unit 14 outputs power to the motor control unit 4 and power storage unit 5 of the aircraft 1 .
  • the motor control unit 4 drives the motor 2 of the aircraft 1 using the electric power output from the generator control unit 14 .
  • the propeller 3 of the flying object 1 rotates, so that the flying object 1 can fly.
  • the electric power storage unit 5 of the aircraft 1 stores electric power that is not used by the motor control unit 4 out of the electric power output from the generator control unit 14 .
  • the generator control unit 14 outputs electric power to the motor 2 of the aircraft 1. Therefore, the flying object engine generator unit 10 functions as a power supply source that supplies electric power to the flying object 1 .
  • the aircraft engine generator unit 10 is detachably attached to the aircraft 1 .
  • the integrated control section 15 , the generator control section 14 and the engine control section 12 of the aircraft engine-generator unit 10 are configured as separate members from the aircraft control section 6 of the aircraft 1 . Therefore, the flying object engine-generator unit 10 can be separated from the main body frame 8 of the flying object 1 in a state in which the flying object control section 6 is fixed to the main body frame 8 .
  • the generator control unit 14 controls the power generation amount of the generator 13 based on the output voltage of the aircraft engine generator unit 10 . That is, the generator control unit 14 controls the power generation amount of the generator 13 based on the load voltage Vl between the generator control unit 14 and the load of the aircraft 1 .
  • the load voltage Vl is, for example, the voltage of the power line connecting the motor control unit 4 and the power storage unit 5 to the generator control unit 14, which is the bus voltage connected to the input of the motor control unit 4 of the aircraft 1.
  • the load includes a motor controller 4 and a power storage 5 .
  • the load voltage Vl which is the voltage between the generator control unit 14 and the load of the aircraft 1, changes according to the power required by the load. Therefore, the generator control unit 14 can supply electric power to the aircraft 1 according to fluctuations in the load on the aircraft 1 by controlling the amount of power generated by the generator 13 based on the voltage. That is, the generator control unit 14 controls the power generation amount of the generator 13 according to the load of the aircraft 1 .
  • the generator control unit 14 controls the power generation amount of the generator 13 according to the load fluctuation of the entire load of the aircraft 1, not the load fluctuation of each of the motor control unit 4 and the power storage unit 5. As a result, the aircraft 1 as a whole can supply the necessary electric power without causing large fluctuations in the amount of power generated due to fluctuations in the loads of the aircraft 1 .
  • the integrated control unit 15 is a higher control unit than the engine control unit 12 and the generator control unit 14.
  • the integrated control unit 15 controls the engine 11 and the generator 13 based on the amount of electric power that the aircraft engine generator unit 10 should output.
  • the integrated control unit 15 calculates the target power generation amount Wt based on the load voltage Vl.
  • the target generated power amount Wt is the amount of power required to compensate for the power used by the load of the aircraft 1 .
  • the integrated control unit 15 calculates the target rotation speed Rt and the target torque Tt based on the calculated target power generation amount Wt and the required power generation amount Wr input from the aircraft control unit 6 of the aircraft 1 .
  • the integrated control unit 15 controls the engine 11 and the generator 13 based on the calculated target rotation speed Rt and target torque Tt.
  • the integrated control unit 15 is electrically connected to the engine control unit 12 and the generator control unit 14.
  • the integrated control unit 15 is electrically connected to a power line that supplies electric power to the motor control unit 4 of the flying object 1 and the flying object control unit 6 .
  • the engine control unit 12 is electrically connected to the engine 11 and the integrated control unit 15.
  • the engine control section 12 is electrically connected to the crank angle detection section 11a.
  • the generator control unit 14 is electrically connected to the generator 13 and the integrated control unit 15.
  • the aircraft control unit 6 is electrically connected to the motor control unit 4 and the integrated control unit 15 .
  • the motor controller 4 is electrically connected to the aircraft controller 6 and the motor 2 .
  • the aircraft controller 6 receives a flight command from the outside, and outputs the flight command to the motor controller 4.
  • the requested power generation amount Wr calculated from the flight command is output to the integrated control unit 15 .
  • the integrated control unit 15 receives the requested power generation amount Wr from the aircraft control unit 6 . Also, the integrated control unit 15 receives a load voltage Vl from a power line that supplies power to the motor control unit 4 . Based on the load voltage Vl and a predetermined target voltage Vt, the integrated control unit 15 calculates a target power generation amount Wt required to bring the load voltage Vl closer to the target voltage Vt. That is, the integrated control unit 15 performs feedback control for maintaining the load voltage Vl at the target voltage Vt.
  • the integrated control unit 15 determines the target rotation speed from the map M indicating the efficient operating points of the engine 11 and the generator 13 in order to generate the power amount that is the sum of the target power generation amount Wt and the required power generation amount Wr.
  • a number Rt and a target torque Tt are calculated. That is, the integrated control unit 15 calculates the required power generation required by the aircraft 1 from now on based on the target power generation amount Wt and the required power generation amount Wr, which is a signal input from the outside of the aircraft engine generator unit 10 . Feedforward control is performed to generate the electric energy Wr. Therefore, the engine control unit 12 to which the target rotation speed Rt is input and the generator control unit 14 to which the target torque Tt is input are subjected to feedforward control.
  • the integrated control unit 15 outputs at least the target rotation speed Rt out of the target rotation speed Rt and the target torque Tt to one of the engine control unit 12 and the generator control unit 14, and outputs the target torque Tt to the other. Output.
  • the integrated control section 15 outputs the target rotation speed Rt to the engine control section 12 .
  • the integrated control unit 15 also outputs the target torque Tt to the generator control unit 14 .
  • the integrated control section 15 outputs the target torque Tt to the engine control section 12 .
  • the engine control unit 12 receives the actual rotation speed Rr of the engine 11 from the crank angle detection unit 11a. Further, the target rotation speed Rt is input from the integrated control unit 15 to the engine control unit 12 . Based on the actual rotation speed Rr and the target rotation speed Rt, the engine control unit 12 adjusts the throttle opening of the engine 11 so that the actual rotation speed Rr approaches the target rotation speed Rt. That is, the engine control unit 12 performs feedforward control based on the target rotation speed Rt and feedback control for maintaining the actual rotation speed Rr at the target rotation speed Rt.
  • the engine control unit 12 adjusts the throttle opening of the engine 11 so that the engine 11 outputs the target torque Tt.
  • the engine control unit 12 rotates the engine 11 at the target rotation speed Rt based on the target torque Tt and the target rotation speed Rt, which are the signals inside the aircraft engine generator unit 10, and sets the target torque Tt. Perform feedforward control for output.
  • the generator control unit 14 receives the target torque Tt from the integrated control unit 15 .
  • the generator control unit 14 adjusts the output voltage of the generator 13 so that the generator 13 operates at the target torque Tt. That is, the generator control unit 14 performs feedforward control based on the target torque Tt and feedback control for maintaining the load voltage Vl at the target voltage Vt.
  • the aircraft engine-generator unit 10 configured as described above includes an engine 11, a generator 13 that generates power by driving force generated by the engine 11, and an engine control section 12 that controls the rotation speed or torque of the engine 11. , a generator control unit 14 for controlling the amount of power generated by the generator 13, and an integrated control unit 15 for calculating the target rotational speed Rt and the target torque Tt of the engine generator unit 10 for aircraft.
  • the integrated control unit 15 calculates the target rotation speed Rt and the target torque Tt based on the target power generation amount Wt and the required power generation amount Wr required to drive the motor 2 output from the aircraft control unit 6 , the target rotation speed Rt or the target rotation speed Rt and the target torque Tt are input to either one of the engine control unit 12 and the generator control unit 14 .
  • the integrated control unit 15 calculates the target power generation amount Wt according to the load voltage Vl, which is the voltage between the generator control unit 14 and the load of the aircraft 1 .
  • the load of the air vehicle 1 includes a motor controller 4 . Therefore, the integrated control unit 15 calculates the target power generation amount Wt according to the voltage of the power line connecting the generator control unit 14 and the motor control unit 4 .
  • the integrated control unit 15 calculates a target power generation amount Wt, which is a feedback signal calculated according to the load voltage Vl, and a required power generation amount, which is a feedforward control signal from the outside of the aircraft engine generator unit 10. Wr, the target rotational speed Rt and the target torque Tt are calculated. The integrated control unit 15 also outputs the target torque Tt as a signal for feedforward control inside the aircraft engine generator unit 10 to the engine control unit 12 to which the target rotation speed Rt is input.
  • the engine-generator unit 10 for an aircraft uses a target rotational speed Rt and a target torque Tt, which are signals for feedforward control from the outside of the engine-generator unit 10 for an aircraft, and the internal power of the engine-generator unit 10 for an aircraft.
  • the throttle opening of the engine 11 and the power generation amount of the generator 13 are controlled according to the target torque Tt, which is a signal for feedforward control.
  • the aircraft engine generator unit 10 does not acquire the required power generation amount Wr, power can be quickly supplied to the aircraft 1 by feedforward control simply by connecting the power line to the motor control unit 4 of the aircraft 1. is. As a result, it can be easily attached to various types of flying objects while improving power generation responsiveness to load fluctuations of the flying object 1 .
  • the flying object 1 including the flying object engine generator unit 10 that performs feedforward control has an increased instantaneous output compared to the flying object 1 including the flying object engine generator unit 10 that does not perform feedforward control. Therefore, the flying object 1 including the flying object engine generator unit 10 into which the feedforward control is introduced is more likely than the flying object 1 including the flying object engine generator unit 10 into which the feedforward control is not introduced in the same operation. Also, the capacity of the power storage unit 5 can be reduced.
  • the aircraft 1 also includes a plurality of propellers 3, a plurality of motors 2 for driving the plurality of propellers 3, a motor control section 4 for controlling the driving of the motors 2, and an aircraft control signal input to the motor control section 4. and the aircraft engine-generator unit 10 for supplying electric power to the motor 2 .
  • the aircraft 1 having the aircraft engine-generator unit 10 having the configuration described above is obtained.
  • the integrated control unit 15, the generator control unit 14, and the engine control unit 12 are configured as separate members from the aircraft control unit 6. That is, the aircraft engine-generator unit 10 is mounted on the aircraft 1 in a state in which the integrated control section 15, the generator control section 14, and the engine control section 12 are separated from the aircraft control section 6 of the aircraft 1. there is That is, the aircraft engine-generator unit 10 can be separated from the aircraft 1 while the aircraft control section 6 is fixed to the body frame 8 of the aircraft 1 . As a result, the versatility of the aircraft engine generator unit 10 can be improved.
  • the output of the power storage unit 5 is preferably equal to or less than the continuous rated output of the engine 11 of the engine generator unit 10 for aircraft.
  • the flying object 1 when the flying object 1 is large, it is preferable that the power of the flying object is obtained from the output of the engine 11 and that the electric power storage unit 5 is used to make up for the shortage of the output of the engine 11 .
  • the weight of the aircraft 1 can be reduced. Therefore, it is possible to realize a large drone that is lightweight and can fly for a long time.
  • the output of the engine 11 of the flying object engine generator unit 10 is preferably equal to or less than the continuous rated output of the power storage unit 5. That is, when the flying object 1 is small, it is preferable that the power of the flying object is obtained from the output of the power storage unit 5 and that the engine 11 is used to charge the power storage unit 5 . As a result, the weight of the aircraft engine generator unit 10 can be reduced. Therefore, it is possible to realize a small drone that is lightweight and can fly for a long time.
  • the integrated control unit 15 of the aircraft engine generator unit 10 is based on the required power generation amount Wr necessary for driving the motor 2 and the target power generation amount Wt, which are output from the aircraft control unit 6. to calculate the target rotational speed Rt and the target torque Tt.
  • the integrated control unit 15 outputs a target rotation speed Rt to the engine control unit 12 and outputs a target torque Tt to the generator control unit 14 .
  • the integrated control section may output the target rotation speed to the generator control section and output the target torque to the engine control section.
  • FIG. 3 shows an example in which the integrated control unit 15 outputs the target torque Tt to the engine control unit 12 and outputs the target rotation speed Rt to the generator control unit 14 in this way.
  • FIG. 3 is a functional block diagram showing a configuration for outputting the target rotational speed Rt and the target torque Tt to the generator control section 14 in the schematic configuration of the aircraft 1 including the aircraft engine generator unit 10. As shown in FIG.
  • the generator control section 14 is electrically connected to the crank angle detection section 11a.
  • the integrated control unit 15 receives the requested power generation amount Wr from the aircraft control unit 6 . Further, the load voltage Vl, which is the voltage of the power line connecting the aircraft engine generator unit 10 and the load of the aircraft 1 , is input to the integrated control unit 15 . That is, the integrated control unit 15 receives the load voltage Vl from the power line that supplies power from the generator control unit 14 to the motor control unit 4 that is the load of the aircraft 1 . Based on the load voltage Vl and a predetermined target voltage Vt, the integrated control unit 15 calculates a target power generation amount Wt required to bring the load voltage Vl closer to the target voltage Vt. Further, the integrated control unit 15 calculates, from the map M, the target rotational speed Rt and the target torque Tt required to generate the power amount obtained by adding the target power generation amount Wt and the required power generation amount Wr.
  • the integrated control unit 15 outputs the target torque Tt to the engine control unit 12.
  • the integrated control unit 15 also outputs the target rotation speed Rt to the generator control unit 14 .
  • the integrated control section 15 outputs the target torque Tt to the generator control section 14 .
  • the target torque Tt is input from the integrated control unit 15 to the engine control unit 12 .
  • the engine control unit 12 adjusts the throttle opening so that the crankshaft of the engine 11 rotates at the target torque Tt. That is, the engine control unit 12 performs feedforward control using the target torque Tt.
  • the generator control unit 14 receives the actual rotation speed Rr of the engine 11 from the crank angle detection unit 11 a and the target rotation speed Rt from the integrated control unit 15 . Based on the actual rotation speed Rr and the target rotation speed Rt, the generator control unit 14 controls the voltage output from the generator 13 in order to make the actual rotation speed Rr closer to the target rotation speed Rt. That is, the generator control unit 14 performs feedforward control based on the target rotation speed Rt and feedback control for maintaining the actual rotation speed Rr at the target rotation speed Rt.
  • the generator control unit 14 controls the voltage output from the generator 13 based on the target torque Tt so that the engine 11 outputs the target torque Tt. That is, the generator control unit 14 causes the crankshaft of the engine 11 to rotate at the target rotation speed Rt based on the target torque Tt and the target rotation speed Rt, which are signals inside the aircraft engine generator unit 10. Feedforward control of the generator 13 is performed to output the target torque Tt.
  • the integrated control section 15 of the aircraft engine generator unit 10 configured in this way outputs the target torque Tt to the engine control section 12 and outputs the target rotation speed Rt to the generator control section 14. . Further, the aircraft engine generator unit 10 inputs the target torque Tt as a signal for feedforward control inside the aircraft engine generator unit 10 to the generator control section 14 to which the target rotation speed Rt is input. do. As a result, power generation responsiveness of the flying object engine generator unit 10 to the load fluctuation of the flying object 1 is enhanced, and electric power can be quickly supplied from the flying object engine generator unit 10 to the flying object 1 .
  • FIG. 4 shows a functional block diagram showing an input configuration
  • the integrated control unit 15 receives the load voltage Vl from the power line that supplies power to the motor control unit 4 . Based on the load voltage Vl and a predetermined target voltage Vt, the integrated control unit 15 calculates a target power generation amount Wt required to bring the load voltage Vl closer to the target voltage Vt. Further, the integrated control unit 15 calculates from the map M the target rotation speed Rt and the target torque Tt required to generate the target power generation amount Wt.
  • the integrated control unit 15 outputs the target rotation speed Rt to the engine control unit 12.
  • the integrated control unit 15 also outputs the target torque Tt to the generator control unit 14 .
  • the integrated control section 15 outputs the target torque Tt to the engine control section 12 .
  • the engine control unit 12 receives the actual rotation speed Rr of the engine 11 from the crank angle detection unit 11 a and the target rotation speed Rt from the integrated control unit 15 . Based on the actual rotation speed Rr and the target rotation speed Rt, the engine control unit 12 adjusts the throttle opening of the engine 11 so that the actual rotation speed Rr approaches the target rotation speed Rt. That is, the engine control unit 12 performs feedback control for maintaining the actual rotation speed Rr at the target rotation speed Rt.
  • the engine control unit 12 adjusts the throttle opening of the engine 11 so that the engine 11 outputs the target torque Tt. That is, the engine control unit 12 performs feedforward control for the engine 11 to output the target torque Tt based on the target torque Tt, which is the signal inside the aircraft engine generator unit 10 .
  • the generator control unit 14 receives the target torque Tt from the integrated control unit 15 .
  • the generator control unit 14 controls the output voltage from the generator 13 so that the generator 13 operates at the target torque Tt. That is, the generator control unit 14 performs feedback control for maintaining the load voltage Vl at the target voltage Vt based on the target torque Tt.
  • the integrated control unit 15 calculates the target rotation speed Rt and the target torque Tt based on the target power generation amount Wt determined by the load of the aircraft 1, the engine control unit 12 and the generator control unit 14 A target rotational speed Rt and a target torque Tt are input to either one of them.
  • the aircraft engine generator unit 10 controls the engine 11 and the generator 13 by the feedforward control signal inside the aircraft engine generator unit 10 .
  • the aircraft engine generator unit 10 can quickly supply power to the aircraft 1 by feedforward control simply by connecting a power line to the motor control section 4 of the aircraft 1 . Therefore, the power generation responsiveness of the aircraft engine generator unit 10 can be improved.
  • the aircraft engine generator unit 10 can operate without exchanging the required power generation amount Wr other than the voltage with the aircraft 1 . Therefore, the aircraft engine generator unit 10 can be attached to various types of aircraft. As a result, the flying object engine generator unit 10 can easily realize a configuration in which the amount of power generated by the generator 13 can be controlled simply by connecting the power line to the motor control unit 4 of the flying object 1 . Therefore, the versatility of the aircraft engine generator unit 10 can be improved.
  • the integrated control unit 15 may output the target torque Tt to the engine control unit 12 and output the target rotation speed Rt to the generator control unit 14 .
  • the integrated control section 15 outputs the target torque Tt to the generator control section 14 as a feedforward signal inside the aircraft engine generator unit 10 .
  • FIG. 5 shows a configuration in which only the target rotation speed Rt of the target rotation speed Rt and the target torque Tt is input to the engine control unit 12 in the schematic configuration of the aircraft 1 including the aircraft engine generator unit 10. It is a functional block diagram. At this time, the required power generation amount Wr is input from the aircraft controller 6 of the aircraft 1 to the integrated controller 15 .
  • the integrated control unit 15 receives the requested power generation amount Wr from the aircraft control unit 6 and receives the load voltage Vl from the power line that supplies power to the motor control unit 4 . Based on the load voltage Vl and a predetermined target voltage Vt, the integrated control unit 15 calculates a target power generation amount Wt required to bring the load voltage Vl closer to the target voltage Vt. Further, the integrated control unit 15 calculates, from the map M, the target rotational speed Rt and the target torque Tt required to generate the power amount obtained by adding the target power generation amount Wt and the required power generation amount Wr.
  • the integrated control unit 15 outputs the target rotation speed Rt to the engine control unit 12.
  • the integrated control unit 15 also outputs the target torque Tt to the generator control unit 14 .
  • the engine control unit 12 receives the actual rotation speed Rr of the engine 11 from the crank angle detection unit 11 a and the target rotation speed Rt from the integrated control unit 15 . Based on the actual rotation speed Rr and the target rotation speed Rt, the engine control unit 12 adjusts the throttle opening of the engine 11 so that the actual rotation speed Rr approaches the target rotation speed Rt. That is, the engine control unit 12 performs feedforward control based on the target rotation speed Rt and feedback control for maintaining the actual rotation speed Rr at the target rotation speed Rt.
  • the generator control unit 14 receives the target torque Tt from the integrated control unit 15 .
  • the generator control unit 14 controls the output voltage of the generator 13 so that the generator 13 operates at the target torque Tt. That is, the generator control unit 14 performs feedforward control based on the target torque Tt and feedback control for maintaining the load voltage Vl at the target voltage Vt.
  • the aircraft engine generator unit 10 controls the engine 11 and the generator 13 by feedforward control signals from the outside of the aircraft engine generator unit 10 . Further, the aircraft engine generator unit 10 can quickly supply power to the aircraft 1 by feedforward control simply by connecting a power line to the motor control section 4 of the aircraft 1 . As a result, it can be easily attached to various types of flying objects while improving power generation responsiveness to load fluctuations of the flying object 1 .
  • the integrated control unit 15 may output the target torque Tt to the engine control unit 12 and output the target rotation speed Rt to the generator control unit 14 .
  • the aircraft controller 6 of the aircraft 1 may be converted into a power generation command.
  • the aircraft control unit 6 converts the flight command into a power generation command and outputs it to the integrated control unit 15 of the aircraft engine generator unit 10 .
  • the aircraft control unit 6 generates a power generation command using the power consumption data for the flight command stored in advance and the flight command.
  • a power generation command can be input from the aircraft control section 6 of the aircraft 1 to the aircraft engine generator unit 10, so that the aircraft engine generator unit 10 can control the efficiency of the engine 11 and the generator 13. power can be generated at a reasonable operating point. Further, since the aircraft engine generator unit 10 can quickly generate power according to the power command, the aircraft engine generator unit 10 can quickly supply power to the aircraft 1. .
  • the integrated control section 15 acquires the load voltage Vl and the required power generation amount Wr, and controls the engine control section 12 and the generator control section 14.
  • the engine control section and the generator control section may each acquire the required power generation voltage amount from the aircraft control section of the aircraft.
  • the engine control section and the generator control section respectively calculate a target rotational speed and a target torque from the required power generation voltage amount.
  • the aircraft engine generator unit 10 supplies electric power to the motor control section 4 and the power storage section 5 of the aircraft 1 .
  • the aircraft engine generator unit 10 may supply power only to the power storage section.
  • the aircraft engine generator unit 10 may supply power only to the motor control section. That is, the aircraft engine generator unit 10 and the aircraft including the aircraft engine generator unit 10 may have a configuration that does not include the power storage section.
  • the configuration may be such that the aircraft engine generator unit includes a power storage section.
  • the integrated control unit 15 calculates the target rotation speed Rt and the target torque Tt based on the load voltage Vl between the generator control unit 14 and the load of the aircraft 1 .
  • the integrated control unit may calculate the target rotation speed and target torque using at least one of the load voltage and the storage state information (for example, SOC: State of Charge) obtained by the power storage unit.
  • the aircraft engine generator unit 10 supplies DC power to the motor 2 of the aircraft 1 .
  • the DC output engine generator unit may also power loads other than mobiles.
  • FIG. 6 is a diagram schematically showing how DC power is supplied from the aircraft engine generator unit 10 to a load 100 other than the aircraft 1.
  • FIG. 6 is a diagram schematically showing how DC power is supplied from the aircraft engine generator unit 10 to a load 100 other than the aircraft 1.
  • DC power is supplied to the load 100 from the aircraft engine generator unit 10 .
  • the load 100 can be driven by the DC power output from the aircraft engine generator unit 10 .
  • the load 100 may have any configuration, such as a lighting device, a display device, or a motor device, as long as it is configured to be driven by DC power.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

Provided is an engine generator unit which is for flying bodies and can be attached to various types of flying bodies while improving power generation responsiveness to load fluctuations of the flying bodies. When a target rotation speed Rt and a target torque Tt are calculated on the basis of target power generation energy Wt that is determined by the load of a flying body 1, an integration control unit 15 of the engine generator unit 10 for flying bodies outputs the target rotation speed Rt and the target torque Tt to one among an engine control unit 12 and a generator control unit 14 and outputs the target torque Tt to the other. When the target rotation speed Rt and the target torque Tt are calculated on the basis of requested power generation energy Wr that is output from a flying body control unit 6 and the target power generation amount W and is required for driving a motor 2, the integration control unit 15 outputs at least the target rotation speed Rt among the target rotation speed Rt and the target torque Tt to one among the engine control unit 12 and the generator control unit 14 and outputs the target torque Tt to the other.

Description

飛行体用エンジン発電機ユニット及びそれを備えた飛行体Aircraft engine-generator unit and aircraft equipped with the same
 本発明は、飛行体用エンジン発電機ユニット及びそれを備えた飛行体に関する。 The present invention relates to an aircraft engine generator unit and an aircraft equipped with the same.
 飛行体の駆動源であるモータに電力を供給するエンジン発電機ユニットが知られている。このようなエンジン発電機ユニットを備えた飛行体として、例えば特許文献1には、複数のプロペラと、電動モータと、エンジン発電機ユニットであるマイクロハイブリッド発電機システムとを備えるマイクロハイブリッド発電機システムドローンが開示されている。 An engine-generator unit that supplies power to the motor that is the driving source of the aircraft is known. As an aircraft equipped with such an engine-generator unit, for example, Patent Document 1 discloses a micro-hybrid generator system drone that includes a plurality of propellers, an electric motor, and a micro-hybrid generator system that is an engine-generator unit. is disclosed.
 前記マイクロハイブリッド発電機システムは、小型エンジンと、前記小型エンジンに結合され、前記小型エンジンによって生成される機械的動力によってAC電力を生成する発電機と、前記発電機によって生成されるAC電力をDC電力に変換して充電可能なバッテリと、少なくとも1つの電動モータにDC電力を供給するブリッジ整流器と、少なくとも1つの負荷の電力要求に基づいて小型エンジンのスロットルを制御する制御ユニットと、を有する。 The micro-hybrid generator system includes a small engine, a generator coupled to the small engine to produce AC power from mechanical power produced by the small engine, and a DC power produced by the generator. It has a battery that can be converted to electrical power and is rechargeable, a bridge rectifier that provides DC power to at least one electric motor, and a control unit that controls the throttle of the small engine based on the power demand of at least one load.
 前記特許文献1に開示されているドローンは、前記マイクロハイブリッド発電機システムのバッテリから電力が前記電動モータに供給される。前記マイクロハイブリッド発電機システムは、少なくとも一つのロータモータの駆動により前記バッテリの電圧が低下してから発電を行うフィードバック制御を行っている。前記発電機は、前記メインバッテリの残量が閾値より少なくなると、前記エンジンからの動力を変換した電力で前記メインバッテリを充電する。 In the drone disclosed in Patent Document 1, electric power is supplied to the electric motor from the battery of the micro hybrid generator system. The micro hybrid power generator system performs feedback control to generate power after the voltage of the battery drops by driving at least one rotor motor. The generator charges the main battery with electric power obtained by converting power from the engine when the remaining amount of the main battery is less than a threshold.
特表2019-501057号公報Japanese Patent Publication No. 2019-501057
 前記マイクロハイブリッド発電機システムは、負荷の増大による電圧の低下を検出してから、前記小型エンジンのスロットル開度を制御する。更に、前記発電機を駆動する小型エンジンの指令に対する追従性は、エンジンの構造上、モータの指令に対する追従性に比べて低い。したがって、前記マイクロハイブリッド発電機システムは、前記ドローンに負荷が発生してから電力を供給すると、前記ドローンに生じた負荷に対して電力を供給するタイミング、供給する電力量に差が生じ、前記ドローンの制御に影響を与える場合があった。 The micro-hybrid generator system detects a voltage drop due to an increase in load, and then controls the throttle opening of the small engine. Furthermore, the ability to follow commands of a small engine that drives the generator is lower than that of a motor due to the structure of the engine. Therefore, when the micro hybrid power generator system supplies power after the load is generated on the drone, there is a difference in the timing of supplying power to the load generated on the drone and the amount of power to be supplied, and the drone could affect the control of
 一方、汎用性の観点から、ドローンのモータに電力を供給するエンジン発電機ユニットを、様々な種類のドローンに取り付け可能なエンジン発電機ユニットとして提供することが望まれている。 On the other hand, from the perspective of versatility, it is desirable to provide an engine generator unit that supplies power to the drone motor as an engine generator unit that can be attached to various types of drones.
 本発明は、飛行体の負荷変動に対する発電応答性を高めつつ、様々な種類の飛行体に取り付け可能な飛行体用エンジン発電機ユニットを提供することを目的とする。 An object of the present invention is to provide an aircraft engine-generator unit that can be attached to various types of aircraft while enhancing power generation responsiveness to load fluctuations of the aircraft.
 本発明者は、飛行体のモータに電力を供給する際の負荷変動に対する発電応答性を高め、且つ、様々な種類の飛行体に取り付け可能な飛行体用エンジン発電機ユニットの構成について検討した。鋭意検討の結果、本発明者らは、以下のような構成に想到した。 The present inventor has studied the configuration of an engine-generator unit for an aircraft that can be attached to various types of aircraft while increasing power generation responsiveness to load fluctuations when supplying power to the motor of the aircraft. As a result of intensive studies, the inventors came up with the following configuration.
 本発明の一実施形態に係る飛行体用エンジン発電機ユニットは、飛行体の駆動源であるモータと、前記モータの駆動を制御するモータ制御部、前記モータ制御部に飛行体制御信号を入力する飛行体制御部とを有する飛行体に電力を供給する飛行体用エンジン発電機ユニットである。この飛行体用エンジン発電機ユニットは、エンジンと、前記エンジンで生じる駆動力によって発電を行う発電機と、前記エンジンの回転数または出力トルクを制御するエンジン制御部と、前記発電機の発電量を制御する発電機制御部と、前記エンジン発電機ユニットの目標回転数及び目標トルクを演算する統合制御部と、を有する。 An engine generator unit for an aircraft according to one embodiment of the present invention includes a motor that is a driving source of an aircraft, a motor control section that controls the driving of the motor, and an aircraft control signal that is input to the motor control section. an engine generator unit for an aircraft that supplies electric power to an aircraft having an aircraft control section; This aircraft engine-generator unit includes an engine, a generator that generates power by driving force generated by the engine, an engine control section that controls the rotation speed or output torque of the engine, and a power generation amount of the generator. It has a generator control section for controlling, and an integrated control section for calculating a target rotation speed and a target torque of the engine generator unit.
 前記統合制御部は、前記飛行体の負荷によって定まる目標発電電力量に基づいて目標回転数及び目標トルクを算出した場合、前記エンジン制御部及び前記発電機制御部のうちいずれか一方に対して前記目標回転数及び前記目標トルクを出力し、他方に対して前記目標トルクを出力する。また、前記統合制御部は、前記目標発電電力量と前記飛行体制御部から出力される前記モータの駆動に必要な要求発電電力量とに基づいて目標回転数及び目標トルクを算出した場合、前記エンジン制御部及び前記発電機制御部のうちいずれか一方に対して、前記目標回転数及び前記目標トルクのうち少なくとも前記目標回転数を出力し、他方に対して前記目標トルクを出力する。 When the integrated control unit calculates the target rotation speed and the target torque based on the target power generation amount determined by the load of the aircraft, the integrated control unit controls either one of the engine control unit and the generator control unit to perform the A target rotational speed and the target torque are output, and the target torque is output to the other. Further, when the integrated control unit calculates the target rotation speed and the target torque based on the target power generation amount and the required power generation amount required for driving the motor output from the aircraft control unit, the At least the target rotation speed out of the target rotation speed and the target torque is output to one of the engine control unit and the generator control unit, and the target torque is output to the other.
 上述のように、目標回転数及び目標トルクが飛行体の負荷によって定まる目標発電電力量に基づいて算出されている場合、統合制御部は、エンジン制御部及び発電機制御部のうちいずれか一方に対して前記目標回転数及び飛行体用エンジン発電機ユニットの内部のフィードフォワード制御用の信号である前記目標トルクを出力する。また、前記目標回転数及び前記目標トルクが目標発電電力量と飛行体用エンジン発電機ユニットの外部のフィードフォワード制御用の信号である目標要求電力量とに基づいて算出されている場合、前記統合制御部は、前記エンジン制御部及び発電機制御部のうちいずれか一方に対して、前記目標回転数または前記目標回転数と飛行体用エンジン発電機ユニットの内部のフィードフォワード制御用の信号である前記目標トルクとを入力する。 As described above, when the target rotation speed and target torque are calculated based on the target power generation amount determined by the load of the aircraft, the integrated control unit controls either the engine control unit or the generator control unit. On the other hand, it outputs the target rotational speed and the target torque, which is a signal for feedforward control inside the aircraft engine generator unit. Further, when the target rotation speed and the target torque are calculated based on the target generated power amount and the target required power amount which is a signal for feedforward control outside the aircraft engine generator unit, the integrated The control unit is a signal for feedforward control inside the aircraft engine generator unit with the target rotation speed or the target rotation speed to either one of the engine control unit and the generator control unit. Input the target torque.
 よって、前記飛行体用エンジン発電機ユニットは、飛行体用エンジン発電機ユニットの外部からのフィードフォワード制御用の信号と前記飛行体用エンジン発電機ユニットの内部のフィードフォワード制御用の信号とのうち少なくとも一方を用いて、エンジン及び発電機を制御する。また、前記飛行体用エンジン発電機ユニットは、内部のフィードフォワード制御用の信号を使用する場合、前記飛行体のモータ制御部に電力線を接続するだけで前記飛行体にフィードフォワード制御による素早い電力供給が可能である。これにより、飛行体の負荷変動に対する発電応答性を高めつつ、様々な種類の飛行体に容易に取り付けることができる。 Therefore, in the aircraft engine generator unit, the signal for feedforward control from the outside of the aircraft engine generator unit and the signal for feedforward control inside the aircraft engine generator unit are At least one is used to control the engine and the generator. Further, when the internal feedforward control signal is used, the flying object engine generator unit quickly supplies power to the flying object by feedforward control simply by connecting a power line to the motor control section of the flying object. is possible. As a result, it can be easily attached to various types of flying objects while enhancing power generation responsiveness to load fluctuations of the flying object.
 他の観点によれば、本発明の飛行体用エンジン発電機ユニットは、以下の構成を含むことが好ましい。前記統合制御部は、前記飛行体用エンジン発電機ユニットと前記飛行体の負荷との接続部の電圧に応じて目標発電電力量を算出する。 From another point of view, the aircraft engine generator unit of the present invention preferably includes the following configuration. The integrated control section calculates a target power generation amount in accordance with a voltage of a connecting portion between the aircraft engine generator unit and a load of the aircraft.
 上述のように、統合制御部は、前記飛行体用エンジン発電機ユニットに接続されている飛行体の負荷に応じて使用された電力量に基づいて目標発電電力量を算出する。つまり、前記統合制御部は、飛行体用エンジン発電機ユニットの内において検出可能な情報に基づいて目標回転数及び目標トルクを算出することができる。これにより、前記飛行体のモータ制御部に電力線を接続するだけで前記発電機の発電量を制御可能な構成を、容易に実現することができる。すなわち、飛行体用エンジン発電機ユニットの汎用性を向上することができる。 As described above, the integrated control unit calculates the target power generation amount based on the amount of power used according to the load of the aircraft connected to the aircraft engine generator unit. That is, the integrated control section can calculate the target rotational speed and the target torque based on the information that can be detected in the aircraft engine generator unit. As a result, it is possible to easily realize a configuration in which the amount of power generated by the generator can be controlled simply by connecting a power line to the motor control unit of the aircraft. That is, it is possible to improve the versatility of the aircraft engine generator unit.
 他の観点によれば、本発明の飛行体用エンジン発電機ユニットは、以下の構成を含むことが好ましい。前記飛行体の負荷は、前記モータ制御部と前記飛行体に供給される電力の一部を蓄える電力貯留部とを含む。前記統合制御部は、前記発電機制御部と前記モータ制御部とを結ぶ電力線の電圧または前記電力貯留部で得られる貯留状態に関する情報の少なくとも一つに応じて目標発電電力量を算出する。 From another point of view, the aircraft engine generator unit of the present invention preferably includes the following configuration. The vehicle load includes the motor control unit and a power storage unit that stores a portion of the power supplied to the vehicle. The integrated control unit calculates a target power generation amount according to at least one of a voltage of a power line connecting the generator control unit and the motor control unit or information regarding a storage state obtained in the power storage unit.
 上述のように、統合制御部は、飛行体と電気的に接続されている母線電圧または前記電力貯留部で得られる貯留状態に関する情報の少なくとも一つに基づいて、目標発電電力量を算出する。これにより、前記飛行体のモータ制御部に電力線または前記電力貯留部の信号線の少なくとも一方を接続するだけで発電機の発電量を制御可能な構成を、容易に実現することができる。すなわち、飛行体用エンジン発電機ユニットの汎用性を向上することができる。 As described above, the integrated control unit calculates the target power generation amount based on at least one of the bus voltage electrically connected to the aircraft and information on the storage state obtained in the power storage unit. Accordingly, it is possible to easily realize a configuration in which the power generation amount of the generator can be controlled simply by connecting at least one of the power line and the signal line of the power storage unit to the motor control unit of the flying object. That is, it is possible to improve the versatility of the aircraft engine generator unit.
 他の観点によれば、本発明の飛行体用エンジン発電機ユニットは、以下の構成を含むことが好ましい。前記統合制御部、前記発電機制御部及び前記エンジン制御部は、前記飛行体制御部と別の部材として構成されている。 From another point of view, the aircraft engine generator unit of the present invention preferably includes the following configuration. The integrated control section, the generator control section, and the engine control section are configured as separate members from the aircraft control section.
 上述のように、飛行体用エンジン発電機ユニットは、統合制御部、発電機制御部及びエンジン制御部が飛行体の飛行体制御部と分離した状態で飛行体に搭載される。つまり、前記飛行体用エンジン発電機結ニットは、前記飛行体制御部が前記飛行体の機体に固定された状態で、前記飛行体から分離することができる。これにより、飛行体用エンジン発電機ユニットの汎用性を向上することができる。 As described above, the aircraft engine-generator unit is mounted on the aircraft with the integrated control section, the generator control section, and the engine control section separated from the aircraft control section of the aircraft. That is, the aircraft engine-generator connection unit can be separated from the aircraft while the aircraft control section is fixed to the fuselage of the aircraft. As a result, the versatility of the aircraft engine generator unit can be improved.
 本発明の一実施形態に係る飛行体は、複数のプロペラと、前記複数のプロペラを駆動する複数のモータと、前記モータの駆動を制御するモータ制御部と、前記モータ制御部に飛行体制御信号を入力する飛行体制御部と、前記モータに電力を供給する、既述の飛行体用エンジン発電機ユニットと、を有する。 An aircraft according to an embodiment of the present invention includes a plurality of propellers, a plurality of motors for driving the plurality of propellers, a motor control section for controlling the driving of the motors, and an aircraft control signal to the motor control section. and the aircraft engine-generator unit for supplying electric power to the motor.
 これにより、既述の構成を有する飛行体用エンジン発電機ユニットを備えた飛行体が得られる。 As a result, an aircraft equipped with an engine-generator unit for an aircraft having the configuration described above is obtained.
 本明細書で使用される専門用語は、特定の実施例のみを定義する目的で使用されるのであって、前記専門用語によって発明を制限する意図はない。 The technical terms used in this specification are used for the purpose of defining specific examples only, and are not intended to limit the invention by the technical terms.
 本明細書で使用される「及び/または」は、一つまたは複数の関連して列挙された構成物のすべての組み合わせを含む。 As used herein, "and/or" includes all combinations of one or more of the associated listed constructs.
 本明細書において、「含む、備える(including)」「含む、備える(comprising)」または「有する(having)」及びそれらの変形の使用は、記載された特徴、工程、操作、要素、成分、及び/または、それらの等価物の存在を特定するが、ステップ、動作、要素、コンポーネント、及び/または、それらのグループのうちの1つまたは複数を含むことができる。 As used herein, the use of "including," "comprising," or "having," and variations thereof, refers to the features, steps, operations, elements, components, and /or may include one or more of steps, acts, elements, components and/or groups thereof, although specifying the presence of equivalents thereof.
 本明細書において、「取り付けられた」、「接続された」、「結合された」、及び/または、それらの等価物は、広義の意味で使用され、“直接的及び間接的な”取り付け、接続及び結合の両方を包含する。さらに、「接続された」及び「結合された」は、物理的または機械的な接続または結合に限定されず、直接的または間接的な電気的な接続または結合を含むことができる。 As used herein, "attached," "connected," "coupled," and/or equivalents thereof are used broadly and include "direct and indirect" attachment, It includes both connection and coupling. Furthermore, "connected" and "coupled" are not limited to physical or mechanical connections or couplings, but can include direct or indirect electrical connections or couplings.
 他に定義されない限り、本明細書で使用される全ての用語(技術用語及び科学用語を含む)は、本発明が属する技術分野の当業者によって一般的に理解される意味と同じ意味を有する。 Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by a person skilled in the art to which this invention belongs.
 一般的に使用される辞書に定義された用語は、関連する技術及び本開示の文脈における意味と一致する意味を有すると解釈されるべきであり、本明細書で明示的に定義されていない限り、理想的または過度に形式的な意味で解釈されることはない。 Terms defined in commonly used dictionaries are to be construed to have a meaning consistent with their meaning in the context of the relevant art and this disclosure, unless explicitly defined herein. , is not to be interpreted in an idealized or overly formal sense.
 本発明の説明においては、いくつもの技術および工程が開示されていると理解される。これらの各々は、個別の利益を有し、他に開示された技術の1つ以上、または、場合によっては全てと共に使用することもできる。 It is understood that a number of techniques and processes are disclosed in the description of the present invention. Each of these has individual benefits and can also be used in conjunction with one or more, or possibly all, of the other disclosed techniques.
 したがって、明確にするために、本発明の説明では、不要に個々のステップの可能な組み合わせをすべて繰り返すことを控える。しかしながら、本明細書及び特許請求の範囲は、そのような組み合わせがすべて本発明の範囲内であることを理解して読まれるべきである。 Therefore, for the sake of clarity, the description of the present invention refrains from unnecessarily repeating all possible combinations of individual steps. However, the specification and claims should be read with the understanding that all such combinations are within the scope of the present invention.
 本明細書では、本発明に係る飛行体用エンジン発電機ユニット及び飛行体の実施形態について説明する。 This specification describes an embodiment of an aircraft engine generator unit and an aircraft according to the present invention.
 以下の説明では、本発明の完全な理解を提供するために多数の具体的な例を述べる。しかしながら、当業者は、これらの具体的な例がなくても本発明を実施できることが明らかである。 In the following description, a number of specific examples are set forth to provide a thorough understanding of the invention. However, it will be obvious to one skilled in the art that the invention may be practiced without these specific examples.
 よって、以下の開示は、本発明の例示として考慮されるべきであり、本発明を以下の図面または説明によって示される特定の実施形態に限定することを意図するものではない。 Accordingly, the following disclosure should be considered illustrative of the invention and is not intended to limit the invention to the specific embodiments illustrated by the following drawings or description.
 [飛行体]
 本明細書において、飛行体とは、モータなどの駆動源によって得られる駆動力により空中を移動可能な移動体である。飛行体は、例えば、モータなどの駆動源によって回転する複数のプロペラを有する。飛行体は、無人飛行体及び有人飛行体の両方を含む。
[Aircraft]
In this specification, the flying object is a moving object that can move in the air by a driving force obtained by a driving source such as a motor. An aircraft has, for example, a plurality of propellers that are rotated by a drive source such as a motor. Air vehicles include both unmanned and manned air vehicles.
 [飛行体の負荷]
 本明細書において、飛行体の負荷とは、飛行体において、電力を消費する部品を意味する。すなわち、飛行体用エンジン発電機ユニットから飛行体に供給された電力を消費する部品が、飛行体の負荷である。飛行体における負荷は、例えば、モータ制御部、モータ、電力貯留部、飛行体制御部などを含む。
[Load of flying object]
As used herein, the load of the aircraft means a component that consumes power in the aircraft. In other words, the parts that consume the power supplied to the aircraft from the engine generator unit for the aircraft are the loads of the aircraft. The loads in the flying object include, for example, a motor control unit, a motor, a power storage unit, an flying object control unit, and the like.
 本発明の一実施形態によれば、飛行体の負荷変動に対する発電応答性を高めつつ、様々な種類の飛行体に取り付け可能な飛行体用エンジン発電機ユニットを提供することができる。 According to one embodiment of the present invention, it is possible to provide an aircraft engine-generator unit that can be attached to various types of aircraft while enhancing power generation responsiveness to load fluctuations of the aircraft.
図1は、実施形態に係る飛行体用エンジン発電機ユニットを含む飛行体の概略構成においてエンジン制御部に対して目標回転数及び目標トルクが入力される構成を示す機能ブロック図である。FIG. 1 is a functional block diagram showing a configuration in which a target rotational speed and a target torque are input to an engine control unit in a schematic configuration of an aircraft including an aircraft engine generator unit according to the embodiment. 図2は、飛行体の概略構成を示すとともに、飛行体用エンジン発電機ユニットが飛行体に対して電力を供給する様子を模式的に示す図である。FIG. 2 is a diagram showing a schematic configuration of a flying object and schematically showing how an engine-generator unit for the flying object supplies power to the flying object. 図3は、その他の実施形態に係る飛行体用エンジン発電機ユニットを含む飛行体の概略構成において発電機制御部に対して目標回転数及び目標トルクが入力される構成を示す機能ブロック図である。FIG. 3 is a functional block diagram showing a configuration in which a target rotation speed and a target torque are input to a generator control unit in a schematic configuration of an aircraft including an aircraft engine generator unit according to another embodiment. . 図4は、その他の実施形態に係る飛行体用エンジン発電機ユニットを含む飛行体の概略構成において統合制御部に対して目標発電電力量及び要求発電電力量のうち目標発電電力量だけが入力される構成を示す機能ブロック図である。FIG. 4 shows a schematic configuration of an aircraft including an engine generator unit for an aircraft according to another embodiment, in which only the target power generation amount out of the target power generation amount and the required power generation amount is input to the integrated control unit. It is a functional block diagram showing the configuration of. 図5は、その他の実施形態に係る飛行体用エンジン発電機ユニットを含む飛行体の概略構成においてエンジン制御部に目標回転数及び目標トルクのうち目標回転数だけが入力される構成を示す機能ブロック図である。FIG. 5 is a functional block diagram showing a configuration in which only the target rotation speed out of the target rotation speed and the target torque is input to the engine control unit in the schematic configuration of the aircraft including the aircraft engine generator unit according to another embodiment. It is a diagram. 図6は、飛行体用エンジン発電機ユニットから飛行体以外の負荷に直流電力を供給する様子を模式的に示す図である。FIG. 6 is a diagram schematically showing how DC power is supplied from an aircraft engine generator unit to a load other than an aircraft.
 以下で、実施形態について、図面を参照しながら説明する。各図において、同一部分には同一の符号を付して、その同一部分の説明は繰り返さない。なお、各図中の構成部材の寸法は、実際の構成部材の寸法及び各構成部材の寸法比率等を忠実に表したものではない。 The embodiments will be described below with reference to the drawings. In each figure, the same parts are denoted by the same reference numerals, and the description of the same parts will not be repeated. Note that the dimensions of the constituent members in each drawing do not faithfully represent the actual dimensions of the constituent members, the dimensional ratios of the respective constituent members, and the like.
 (飛行体)
 図1は、実施形態に係る飛行体用エンジン発電機ユニット10を含む飛行体1の概略構成を説明するための機能ブロック図である。図2は、飛行体1の概略構成を示すとともに、飛行体用エンジン発電機ユニット10が飛行体1に対して電力を供給する様子を模式的に示す図である。飛行体1は、例えば、複数のプロペラを有するマルチコプタ―である。
(aircraft)
FIG. 1 is a functional block diagram for explaining a schematic configuration of an aircraft 1 including an engine generator unit 10 for an aircraft according to an embodiment. FIG. 2 is a diagram showing a schematic configuration of the flying object 1 and schematically showing how the flying object engine-generator unit 10 supplies electric power to the flying object 1. As shown in FIG. The flying object 1 is, for example, a multicopter having a plurality of propellers.
 なお、飛行体1は、1つのプロペラを有する無人飛行体であってもよいし、1つまたは複数のプロペラを有する有人飛行体であってもよい。また、飛行体1は、飛行体用エンジン発電機ユニット10で生じる電力によって駆動される、プロペラ以外の推進装置を備えていてもよい。 The flying object 1 may be an unmanned flying object having one propeller or a manned flying object having one or more propellers. Further, the aircraft 1 may be provided with a propulsion device other than a propeller, which is driven by electric power generated by the aircraft engine generator unit 10 .
 飛行体1において、飛行体用エンジン発電機ユニット10以外の構成は、従来の飛行体における構成と同様である。よって、以下では、飛行体1における飛行体用エンジン発電機ユニット10以外の構成を簡単に説明する。 In the aircraft 1, the configuration other than the aircraft engine generator unit 10 is the same as the configuration in the conventional aircraft. Therefore, the configuration of the aircraft 1 other than the aircraft engine generator unit 10 will be briefly described below.
 飛行体1は、複数のモータ2と、複数のプロペラ3と、複数のモータ制御部4と、電力貯留部5と、飛行体制御部6と、複数種類のセンサ7と、本体フレーム8と、複数のアーム9とを有する。 The aircraft 1 includes a plurality of motors 2, a plurality of propellers 3, a plurality of motor control units 4, a power storage unit 5, an aircraft control unit 6, a plurality of types of sensors 7, a body frame 8, a plurality of arms 9;
 本体フレーム8には、複数のアーム9の基端部が接続されている。複数のアーム9には、それぞれ、モータ2及びプロペラ3が設けられている。 The base ends of a plurality of arms 9 are connected to the body frame 8 . A plurality of arms 9 are provided with motors 2 and propellers 3, respectively.
 複数のモータ2には、飛行体用エンジン発電機ユニット10から電力が供給される。複数のモータ2は、飛行体1の駆動源である。複数のモータ2は、複数のプロペラ3を駆動する。複数のモータ2は、モータ制御部4から出力される電力によって駆動される。すなわち、モータ制御部4は、複数のモータ2の駆動を制御する。 Electric power is supplied to the plurality of motors 2 from the aircraft engine generator unit 10 . A plurality of motors 2 are driving sources for the flying object 1 . A plurality of motors 2 drive a plurality of propellers 3 . The plurality of motors 2 are driven by electric power output from the motor controller 4 . That is, the motor control unit 4 controls driving of the plurality of motors 2 .
 複数のプロペラ3は、電力によって駆動するモータ2によって回転し、揚力を発生する。 A plurality of propellers 3 are rotated by a motor 2 driven by electric power to generate lift.
 なお、複数のモータ2は、例えば、6つのモータを含む。複数のプロペラ3は、例えば、6つのプロペラを含む。モータは、5つ以下であってもよいし、7つ以上であってもよい。プロペラは、5つ以下であってもよいし、7つ以上であってもよい。 It should be noted that the plurality of motors 2 includes, for example, six motors. The multiple propellers 3 include, for example, six propellers. The number of motors may be five or less, or seven or more. The number of propellers may be five or less, or seven or more.
 モータ制御部4には、後述の飛行体用エンジン発電機ユニット10及び電力貯留部5から、電力が供給される。モータ制御部4は、飛行体制御部6から出力される飛行指令に基づいて、複数のモータ2に電力を供給する。 Electric power is supplied to the motor control unit 4 from the aircraft engine generator unit 10 and the electric power storage unit 5, which will be described later. The motor control unit 4 supplies electric power to the plurality of motors 2 based on flight commands output from the aircraft control unit 6 .
 電力貯留部5は、飛行体1内の余剰電力を貯留するとともにモータ制御部4において電力が不足する場合には、モータ制御部4に電力を供給する。電力貯留部5は、例えば、コンデンサである。電力貯留部5は、バッテリのように、電力を貯留可能な構成を有する部材であってもよい。 The power storage unit 5 stores surplus power in the aircraft 1 and supplies power to the motor control unit 4 when the power is insufficient in the motor control unit 4 . Power storage unit 5 is, for example, a capacitor. The power storage unit 5 may be a member having a configuration capable of storing power, such as a battery.
 モータ制御部4は、後述の飛行体用エンジン発電機ユニット10の発電機制御部14に電力線によって電気的に接続されている。すなわち、モータ制御部4、電力貯留部5及び発電機制御部14は、電力線によって、電気的に接続されている。電力貯留部5は、飛行体1に供給される電力の少なくとも一部を蓄える。 The motor control unit 4 is electrically connected to the generator control unit 14 of the aircraft engine generator unit 10 described later by a power line. That is, the motor control unit 4, the power storage unit 5, and the generator control unit 14 are electrically connected by power lines. The power storage unit 5 stores at least part of the power supplied to the aircraft 1 .
 飛行体制御部6は、複数種類のセンサ7から出力される検出値に基づいて、モータ制御部4を駆動制御する飛行指令を生成して、出力する。複数種類のセンサ7は、加速度センサ7aと、方位センサ7bと、高度センサ7cとを含む。すなわち、複数種類のセンサ7は、飛行体1の姿勢、飛行状態、位置及び高度などに関連する情報を取得する。 The flying object control unit 6 generates and outputs a flight command for driving and controlling the motor control unit 4 based on the detection values output from the multiple types of sensors 7 . The multiple types of sensors 7 include an acceleration sensor 7a, an orientation sensor 7b, and an altitude sensor 7c. That is, the multiple types of sensors 7 acquire information related to the attitude, flight state, position, altitude, and the like of the aircraft 1 .
 飛行体制御部6は、複数種類のセンサ7によって取得された飛行体1の姿勢、飛行状態、位置及び高度などに関連する情報から、前記飛行指令を生成する。飛行体制御部6で生成された飛行指令は、モータ制御部4に入力される。 The flying object control unit 6 generates the flight command from information related to the attitude, flight state, position, altitude, etc. of the flying object 1 acquired by multiple types of sensors 7 . A flight command generated by the aircraft controller 6 is input to the motor controller 4 .
 また、飛行体制御部6は、飛行指令にしたがってモータ2を駆動させるために必要な電力量を示す電力指令である要求発電電力量Wrを算出する。飛行体制御部6で算出された要求発電電力量Wrは、飛行体用エンジン発電機ユニット10の統合制御部15に入力される。 In addition, the aircraft control unit 6 calculates a required power generation amount Wr, which is a power command indicating the amount of power required to drive the motor 2 according to the flight command. The required power generation amount Wr calculated by the aircraft control unit 6 is input to the integrated control unit 15 of the aircraft engine generator unit 10 .
 飛行体用エンジン発電機ユニット10は、飛行体1のモータ制御部4に電力を供給する。飛行体用エンジン発電機ユニット10は、エンジン11と、エンジン制御部12と、発電機13と、発電機制御部14と、統合制御部15と、を有する。飛行体用エンジン発電機ユニット10では、エンジン11の駆動力によって発電機13が電力を生じる。発電機13で生じた電力は、飛行体1のモータ制御部4に電力線を介して供給される。 The aircraft engine generator unit 10 supplies electric power to the motor control unit 4 of the aircraft 1 . The aircraft engine generator unit 10 has an engine 11 , an engine control section 12 , a generator 13 , a generator control section 14 and an integrated control section 15 . In the aircraft engine generator unit 10 , the driving force of the engine 11 causes the generator 13 to generate electric power. Electric power generated by the generator 13 is supplied to the motor control unit 4 of the flying object 1 via the power line.
 エンジン11は、例えば、ガソリンや軽油などの燃料をシリンダ内で燃焼させることによって、クランク軸に回転駆動力を生じる内燃機関である。エンジン11は、図示しないシリンダと、該シリンダ内を往復移動可能なピストンと、前記ピストンの往復移動を回転運動に変えるクランク軸とを有する。また、エンジン11は、前記シリンダ内に気体を吸入するための吸気管と、前記シリンダ内の燃焼後の気体を排気するための排気管とを有する。 The engine 11 is, for example, an internal combustion engine that generates rotational driving force on a crankshaft by burning fuel such as gasoline or light oil in a cylinder. The engine 11 has a cylinder (not shown), a piston that can reciprocate within the cylinder, and a crankshaft that converts the reciprocating movement of the piston into rotary motion. The engine 11 also has an intake pipe for drawing gas into the cylinder and an exhaust pipe for discharging gas after combustion in the cylinder.
 なお、エンジン11は、シリンダ及びピストンをそれぞれ一つずつ有する単気筒エンジンであってもよいし、シリンダ及びピストンをそれぞれ複数有する多気筒エンジンであってもよい。 Note that the engine 11 may be a single-cylinder engine having one cylinder and one piston, or may be a multi-cylinder engine having a plurality of cylinders and pistons.
 エンジン11は、エンジン制御部12から出力される点火制御信号、燃料噴射制御信号及びスロットル開度信号などに応じて動作する。すなわち、エンジン11は、燃料噴射制御信号によって駆動する図示しない燃料噴射装置と、点火制御信号によってシリンダ内の燃料混合気体に点火する点火プラグと、前記吸気管に設けられ、スロットル開度信号によって前記シリンダ内に流入する気体の量を調整するスロットルとを有する。 The engine 11 operates according to the ignition control signal, the fuel injection control signal, the throttle opening signal, etc. output from the engine control unit 12 . That is, the engine 11 includes a fuel injection device (not shown) driven by a fuel injection control signal, a spark plug for igniting a fuel mixture in a cylinder by an ignition control signal, and a throttle opening signal provided in the intake pipe. and a throttle for adjusting the amount of gas flowing into the cylinder.
 よって、エンジン11では、エンジン制御部12から出力される点火制御信号、燃料噴射制御信号及びスロットル開度信号などに基づいて、前記クランク軸で得られる出力としての回転駆動力が制御される。 Therefore, in the engine 11, based on the ignition control signal, the fuel injection control signal, the throttle opening signal, etc. output from the engine control section 12, the rotational driving force as the output obtained from the crankshaft is controlled.
 前記クランク軸の回転角度は、クランク角度として、クランク角度検出部11aによって検出される。クランク角度検出部11aで検出されたクランク角度は、クランク角度検出信号として、エンジン制御部12に入力される。前記クランク角度検出信号は、エンジン制御部12で点火制御信号及び燃料噴射制御信号などを生成する際に用いられる。また、クランク角度検出部11aは、エンジン11の実回転数Rrを検出することができる。 The rotation angle of the crankshaft is detected as the crank angle by the crank angle detector 11a. The crank angle detected by the crank angle detector 11a is input to the engine controller 12 as a crank angle detection signal. The crank angle detection signal is used when the engine control unit 12 generates an ignition control signal, a fuel injection control signal, and the like. Further, the crank angle detector 11 a can detect the actual rotation speed Rr of the engine 11 .
 エンジン11の出力としてのクランク軸の回転駆動力は、発電機13に伝達される。すなわち、発電機13のロータは、エンジン11のクランク軸の回転によって、回転する。これにより、発電機13では、交流電力を生じる。 The rotational driving force of the crankshaft as the output of the engine 11 is transmitted to the generator 13. That is, the rotor of the generator 13 rotates as the crankshaft of the engine 11 rotates. As a result, the generator 13 generates AC power.
 なお、発電機13のロータの回転角度は、回転角センサ13aによって検出される。回転角センサ13aによって検出された回転角度は、発電機制御部14に入力される。 The rotation angle of the rotor of the generator 13 is detected by a rotation angle sensor 13a. The rotation angle detected by the rotation angle sensor 13 a is input to the generator control section 14 .
 発電機13で生じた交流電力は、発電機制御部14に入力される。発電機制御部14は、入力された交流電力を直流電力に変換して、出力する。この際、発電機制御部14は、回転角センサ13aによって検出されたロータの回転角度を用いる。なお、発電機制御部14は、複数のスイッチング素子を有する電力変換装置を含む。 The AC power generated by the generator 13 is input to the generator control section 14 . The generator control unit 14 converts the input AC power into DC power and outputs the DC power. At this time, the generator control unit 14 uses the rotation angle of the rotor detected by the rotation angle sensor 13a. In addition, the generator control unit 14 includes a power conversion device having a plurality of switching elements.
 発電機制御部14は、飛行体1のモータ制御部4及び電力貯留部5に対して電力を出力する。モータ制御部4は、発電機制御部14から出力された電力を用いて、飛行体1のモータ2を駆動する。これにより、飛行体1のプロペラ3が回転するため、飛行体1は飛行することができる。また、飛行体1の電力貯留部5は、発電機制御部14から出力された電力のうちモータ制御部4によって使用されない電力を貯留する。 The generator control unit 14 outputs power to the motor control unit 4 and power storage unit 5 of the aircraft 1 . The motor control unit 4 drives the motor 2 of the aircraft 1 using the electric power output from the generator control unit 14 . As a result, the propeller 3 of the flying object 1 rotates, so that the flying object 1 can fly. Further, the electric power storage unit 5 of the aircraft 1 stores electric power that is not used by the motor control unit 4 out of the electric power output from the generator control unit 14 .
 このように、発電機制御部14は、飛行体1のモータ2に対して電力を出力する。よって、飛行体用エンジン発電機ユニット10は、飛行体1に対して電力を供給する電力供給源として機能する。なお、特に図示しないが、飛行体用エンジン発電機ユニット10は、飛行体1に対して、着脱可能に配置されている。飛行体用エンジン発電機ユニット10の統合制御部15、発電機制御部14及びエンジン制御部12は、飛行体1の飛行体制御部6と別の部材として構成されている。よって、飛行体用エンジン発電機ユニット10は、飛行体1の本体フレーム8に飛行体制御部6が固定された状態で本体フレーム8から分離することができる。 Thus, the generator control unit 14 outputs electric power to the motor 2 of the aircraft 1. Therefore, the flying object engine generator unit 10 functions as a power supply source that supplies electric power to the flying object 1 . Although not shown, the aircraft engine generator unit 10 is detachably attached to the aircraft 1 . The integrated control section 15 , the generator control section 14 and the engine control section 12 of the aircraft engine-generator unit 10 are configured as separate members from the aircraft control section 6 of the aircraft 1 . Therefore, the flying object engine-generator unit 10 can be separated from the main body frame 8 of the flying object 1 in a state in which the flying object control section 6 is fixed to the main body frame 8 .
 発電機制御部14は、飛行体用エンジン発電機ユニット10の出力電圧に基づいて発電機13の発電量を制御する。すなわち、発電機制御部14は、発電機制御部14と飛行体1の負荷との間の負荷電圧Vlに基づいて、発電機13の発電量を制御する。負荷電圧Vlは、例えば、モータ制御部4及び電力貯留部5と、発電機制御部14とを結ぶ電力線の電圧である、飛行体1のモータ制御部4の入力に接続される母線電圧である。前記負荷は、モータ制御部4及び電力貯留部5を含む。 The generator control unit 14 controls the power generation amount of the generator 13 based on the output voltage of the aircraft engine generator unit 10 . That is, the generator control unit 14 controls the power generation amount of the generator 13 based on the load voltage Vl between the generator control unit 14 and the load of the aircraft 1 . The load voltage Vl is, for example, the voltage of the power line connecting the motor control unit 4 and the power storage unit 5 to the generator control unit 14, which is the bus voltage connected to the input of the motor control unit 4 of the aircraft 1. . The load includes a motor controller 4 and a power storage 5 .
 発電機制御部14と飛行体1の負荷との間の電圧である負荷電圧Vlは、前記負荷で必要とする電力に応じて変化する。よって、発電機制御部14は、前記電圧に基づいて発電機13の発電量を制御することにより、飛行体1の負荷の変動に応じて、飛行体1に電力を供給することができる。すなわち、発電機制御部14は、飛行体1の負荷に応じて、発電機13の発電量を制御する。 The load voltage Vl, which is the voltage between the generator control unit 14 and the load of the aircraft 1, changes according to the power required by the load. Therefore, the generator control unit 14 can supply electric power to the aircraft 1 according to fluctuations in the load on the aircraft 1 by controlling the amount of power generated by the generator 13 based on the voltage. That is, the generator control unit 14 controls the power generation amount of the generator 13 according to the load of the aircraft 1 .
 発電機制御部14は、モータ制御部4及び電力貯留部5のそれぞれの負荷変動ではなく、飛行体1の負荷全体の負荷変動に応じて、発電機13の発電量を制御する。これにより、飛行体1の各負荷の変動によって、発電量が大きく変動することなく、飛行体1全体で必要な電力を供給することができる。 The generator control unit 14 controls the power generation amount of the generator 13 according to the load fluctuation of the entire load of the aircraft 1, not the load fluctuation of each of the motor control unit 4 and the power storage unit 5. As a result, the aircraft 1 as a whole can supply the necessary electric power without causing large fluctuations in the amount of power generated due to fluctuations in the loads of the aircraft 1 .
 統合制御部15は、エンジン制御部12及び発電機制御部14に対して上位の制御部である。統合制御部15は、飛行体用エンジン発電機ユニット10が出力しなければならない電力量に基づいて、エンジン11と発電機13とを制御する。統合制御部15は、負荷電圧Vlに基づいて目標発電電力量Wtを算出する。目標発電電力量Wtは、飛行体1の負荷により使用した電力を補うために必要な電力量である。更に、統合制御部15は、算出した目標発電電力量Wtと飛行体1の飛行体制御部6から入力された要求発電電力量Wrとに基づいて目標回転数Rt及び目標トルクTtを算出する。統合制御部15は、算出した目標回転数Rt及び目標トルクTtによってエンジン11と発電機13とを制御する。 The integrated control unit 15 is a higher control unit than the engine control unit 12 and the generator control unit 14. The integrated control unit 15 controls the engine 11 and the generator 13 based on the amount of electric power that the aircraft engine generator unit 10 should output. The integrated control unit 15 calculates the target power generation amount Wt based on the load voltage Vl. The target generated power amount Wt is the amount of power required to compensate for the power used by the load of the aircraft 1 . Further, the integrated control unit 15 calculates the target rotation speed Rt and the target torque Tt based on the calculated target power generation amount Wt and the required power generation amount Wr input from the aircraft control unit 6 of the aircraft 1 . The integrated control unit 15 controls the engine 11 and the generator 13 based on the calculated target rotation speed Rt and target torque Tt.
 次に、エンジン11のスロットル開度を目標回転数Rtに応じて制御し、発電機13の発電量を目標トルクTtに応じて制御する飛行体用エンジン発電機ユニット10を含む飛行体1の制御構成を説明する。 Next, control of the aircraft 1 including the aircraft engine-generator unit 10 that controls the throttle opening of the engine 11 according to the target rotation speed Rt and controls the power generation amount of the generator 13 according to the target torque Tt. Describe the configuration.
 図1に示すように、統合制御部15は、エンジン制御部12と発電機制御部14とに電気的に接続されている。統合制御部15は、飛行体1のモータ制御部4に電力を供給する電力線と飛行体制御部6とに電気的に接続されている。 As shown in FIG. 1, the integrated control unit 15 is electrically connected to the engine control unit 12 and the generator control unit 14. The integrated control unit 15 is electrically connected to a power line that supplies electric power to the motor control unit 4 of the flying object 1 and the flying object control unit 6 .
 エンジン制御部12は、エンジン11と統合制御部15とに電気的に接続されている。エンジン制御部12は、クランク角度検出部11aと電気的に接続されている。 The engine control unit 12 is electrically connected to the engine 11 and the integrated control unit 15. The engine control section 12 is electrically connected to the crank angle detection section 11a.
 発電機制御部14は、発電機13と統合制御部15とに電気的に接続されている。 The generator control unit 14 is electrically connected to the generator 13 and the integrated control unit 15.
 飛行体制御部6は、モータ制御部4と統合制御部15とに電気的に接続されている。モータ制御部4は、飛行体制御部6とモータ2とに電気的に接続されている。 The aircraft control unit 6 is electrically connected to the motor control unit 4 and the integrated control unit 15 . The motor controller 4 is electrically connected to the aircraft controller 6 and the motor 2 .
 このように構成される飛行体用エンジン発電機ユニット10を含む飛行体1において、飛行体制御部6は、外部から飛行指令を取得すると、モータ制御部4に対して飛行指令を出力するとともに、統合制御部15に対して飛行指令から算出した要求発電電力量Wrを出力する。 In the aircraft 1 including the aircraft engine generator unit 10 configured as described above, the aircraft controller 6 receives a flight command from the outside, and outputs the flight command to the motor controller 4. The requested power generation amount Wr calculated from the flight command is output to the integrated control unit 15 .
 統合制御部15は、飛行体制御部6から要求発電電力量Wrが入力される。また、統合制御部15は、モータ制御部4に電力を供給する電力線から負荷電圧Vlが入力される。統合制御部15は、負荷電圧Vlと予め定められている目標電圧Vtとに基づいて、負荷電圧Vlを目標電圧Vtに近づけるために必要な目標発電電力量Wtを算出する。つまり、統合制御部15は、負荷電圧Vlを目標電圧Vtに維持するためのフィードバック制御を行う。 The integrated control unit 15 receives the requested power generation amount Wr from the aircraft control unit 6 . Also, the integrated control unit 15 receives a load voltage Vl from a power line that supplies power to the motor control unit 4 . Based on the load voltage Vl and a predetermined target voltage Vt, the integrated control unit 15 calculates a target power generation amount Wt required to bring the load voltage Vl closer to the target voltage Vt. That is, the integrated control unit 15 performs feedback control for maintaining the load voltage Vl at the target voltage Vt.
 さらに、統合制御部15は、目標発電電力量Wtと要求発電電力量Wrとを足し合わせた電力量を発電するためにエンジン11及び発電機13の効率的な動作点を示すマップMから目標回転数Rt及び目標トルクTtを算出する。つまり、統合制御部15は、目標発電電力量Wtと飛行体用エンジン発電機ユニット10の外部から入力された信号である要求発電電力量Wrに基づいて、飛行体1がこれから必要とする要求発電電力量Wrを発電するためのフィードフォワード制御を行う。したがって、目標回転数Rtが入力されるエンジン制御部12及び目標トルクTtが入力される発電機制御部14は、フィードフォワード制御が行われる。 Further, the integrated control unit 15 determines the target rotation speed from the map M indicating the efficient operating points of the engine 11 and the generator 13 in order to generate the power amount that is the sum of the target power generation amount Wt and the required power generation amount Wr. A number Rt and a target torque Tt are calculated. That is, the integrated control unit 15 calculates the required power generation required by the aircraft 1 from now on based on the target power generation amount Wt and the required power generation amount Wr, which is a signal input from the outside of the aircraft engine generator unit 10 . Feedforward control is performed to generate the electric energy Wr. Therefore, the engine control unit 12 to which the target rotation speed Rt is input and the generator control unit 14 to which the target torque Tt is input are subjected to feedforward control.
 統合制御部15は、エンジン制御部12及び発電機制御部14のうち一方に対して、目標回転数Rt及び目標トルクTtのうち少なくとも目標回転数Rtを出力し、他方に対して目標トルクTtを出力する。本実施形態において、統合制御部15は、エンジン制御部12に対して目標回転数Rtを出力する。また、統合制御部15は、発電機制御部14に対して目標トルクTtを出力する。更に、統合制御部15は、エンジン制御部12に対して目標トルクTtを出力する。 The integrated control unit 15 outputs at least the target rotation speed Rt out of the target rotation speed Rt and the target torque Tt to one of the engine control unit 12 and the generator control unit 14, and outputs the target torque Tt to the other. Output. In this embodiment, the integrated control section 15 outputs the target rotation speed Rt to the engine control section 12 . The integrated control unit 15 also outputs the target torque Tt to the generator control unit 14 . Furthermore, the integrated control section 15 outputs the target torque Tt to the engine control section 12 .
 エンジン制御部12は、クランク角度検出部11aからエンジン11の実回転数Rrが入力される。また、エンジン制御部12は、統合制御部15から目標回転数Rtが入力される。エンジン制御部12は、実回転数Rrと目標回転数Rtとに基づいて、実回転数Rrを目標回転数Rtに近づけるためにエンジン11のスロットル開度を調整する。つまり、エンジン制御部12は、目標回転数Rtによるフィードフォワード制御と実回転数Rrを目標回転数Rtに維持するためのフィードバック制御とを行う。 The engine control unit 12 receives the actual rotation speed Rr of the engine 11 from the crank angle detection unit 11a. Further, the target rotation speed Rt is input from the integrated control unit 15 to the engine control unit 12 . Based on the actual rotation speed Rr and the target rotation speed Rt, the engine control unit 12 adjusts the throttle opening of the engine 11 so that the actual rotation speed Rr approaches the target rotation speed Rt. That is, the engine control unit 12 performs feedforward control based on the target rotation speed Rt and feedback control for maintaining the actual rotation speed Rr at the target rotation speed Rt.
 これに加えて、エンジン制御部12は、目標トルクTtに基づいて、エンジン11が目標トルクTtを出力するようにエンジン11のスロットル開度を調整する。つまり、エンジン制御部12は、飛行体用エンジン発電機ユニット10の内部の信号である目標トルクTtと目標回転数Rtとに基づいて、エンジン11を目標回転数Rtで回転させ、目標トルクTtを出力させるためのフィードフォワード制御を行う。 In addition, based on the target torque Tt, the engine control unit 12 adjusts the throttle opening of the engine 11 so that the engine 11 outputs the target torque Tt. In other words, the engine control unit 12 rotates the engine 11 at the target rotation speed Rt based on the target torque Tt and the target rotation speed Rt, which are the signals inside the aircraft engine generator unit 10, and sets the target torque Tt. Perform feedforward control for output.
 発電機制御部14は、統合制御部15から目標トルクTtが入力される。発電機制御部14は、目標トルクTtで発電機13が稼働するように発電機13の出力電圧を調整する。つまり、発電機制御部14は、目標トルクTtによるフィードフォワード制御と負荷電圧Vlを目標電圧Vtに維持するためのフィードバック制御とを行う。 The generator control unit 14 receives the target torque Tt from the integrated control unit 15 . The generator control unit 14 adjusts the output voltage of the generator 13 so that the generator 13 operates at the target torque Tt. That is, the generator control unit 14 performs feedforward control based on the target torque Tt and feedback control for maintaining the load voltage Vl at the target voltage Vt.
 このように構成される飛行体用エンジン発電機ユニット10は、エンジン11と、エンジン11で生じる駆動力によって発電を行う発電機13と、エンジン11の回転数またはトルクを制御するエンジン制御部12と、発電機13の発電量を制御する発電機制御部14と、飛行体用エンジン発電機ユニット10の目標回転数Rtと目標トルクTtとを算出する統合制御部15と、を有している。統合制御部15は、目標発電電力量Wtと飛行体制御部6から出力されるモータ2の駆動に必要な要求発電電力量Wrとに基づいて目標回転数Rtと目標トルクTtとを算出した場合、エンジン制御部12及び発電機制御部14のうちいずれか一方に対して目標回転数Rtまたは目標回転数Rtと目標トルクTtとを入力する。 The aircraft engine-generator unit 10 configured as described above includes an engine 11, a generator 13 that generates power by driving force generated by the engine 11, and an engine control section 12 that controls the rotation speed or torque of the engine 11. , a generator control unit 14 for controlling the amount of power generated by the generator 13, and an integrated control unit 15 for calculating the target rotational speed Rt and the target torque Tt of the engine generator unit 10 for aircraft. When the integrated control unit 15 calculates the target rotation speed Rt and the target torque Tt based on the target power generation amount Wt and the required power generation amount Wr required to drive the motor 2 output from the aircraft control unit 6 , the target rotation speed Rt or the target rotation speed Rt and the target torque Tt are input to either one of the engine control unit 12 and the generator control unit 14 .
 統合制御部15は、発電機制御部14と飛行体1の負荷との間の電圧である負荷電圧Vlに応じて目標発電電力量Wtを算出する。飛行体1の負荷は、モータ制御部4を含む。よって、統合制御部15は、発電機制御部14とモータ制御部4とを結ぶ電力線の電圧に応じて目標発電電力量Wtを算出する。 The integrated control unit 15 calculates the target power generation amount Wt according to the load voltage Vl, which is the voltage between the generator control unit 14 and the load of the aircraft 1 . The load of the air vehicle 1 includes a motor controller 4 . Therefore, the integrated control unit 15 calculates the target power generation amount Wt according to the voltage of the power line connecting the generator control unit 14 and the motor control unit 4 .
 統合制御部15は、負荷電圧Vlに応じて算出したフィードバック用の信号である目標発電電力量Wtと飛行体用エンジン発電機ユニット10の外部からのフィードフォワード制御用の信号である要求発電電力量Wrとから目標回転数Rt及び目標トルクTtを算出する。また、統合制御部15は、目標回転数Rtが入力されるエンジン制御部12に対して、飛行体用エンジン発電機ユニット10の内部におけるフィードフォワード制御用の信号として目標トルクTtを出力する。 The integrated control unit 15 calculates a target power generation amount Wt, which is a feedback signal calculated according to the load voltage Vl, and a required power generation amount, which is a feedforward control signal from the outside of the aircraft engine generator unit 10. Wr, the target rotational speed Rt and the target torque Tt are calculated. The integrated control unit 15 also outputs the target torque Tt as a signal for feedforward control inside the aircraft engine generator unit 10 to the engine control unit 12 to which the target rotation speed Rt is input.
 飛行体用エンジン発電機ユニット10は、飛行体用エンジン発電機ユニット10の外部からのフィードフォワード制御用の信号である目標回転数Rt及び目標トルクTtと飛行体用エンジン発電機ユニット10の内部のフィードフォワード制御用の信号である目標トルクTtとに応じてエンジン11のスロットル開度と発電機13の発電量とを制御している。また、飛行体用エンジン発電機ユニット10は、要求発電電力量Wrを取得しない場合、飛行体1のモータ制御部4に電力線を接続するだけで飛行体1にフィードフォワード制御によって素早い電力供給が可能である。これにより、飛行体1の負荷変動に対する発電応答性を高めつつ、様々な種類の飛行体に容易に取り付けることができる。 The engine-generator unit 10 for an aircraft uses a target rotational speed Rt and a target torque Tt, which are signals for feedforward control from the outside of the engine-generator unit 10 for an aircraft, and the internal power of the engine-generator unit 10 for an aircraft. The throttle opening of the engine 11 and the power generation amount of the generator 13 are controlled according to the target torque Tt, which is a signal for feedforward control. Further, when the aircraft engine generator unit 10 does not acquire the required power generation amount Wr, power can be quickly supplied to the aircraft 1 by feedforward control simply by connecting the power line to the motor control unit 4 of the aircraft 1. is. As a result, it can be easily attached to various types of flying objects while improving power generation responsiveness to load fluctuations of the flying object 1 .
 フィードフォワード制御を行う飛行体用エンジン発電機ユニット10を含む飛行体1は、フィードフォワード制御を行わない飛行体用エンジン発電機ユニット10を含む飛行体1に比べて瞬間出力が増大する。よって、フィードフォワード制御を導入した飛行体用エンジン発電機ユニット10を含む飛行体1は、同じ動作であればフィードフォワード制御を導入していない飛行体用エンジン発電機ユニット10を含む飛行体1よりも電力貯留部5の容量を小さくすることができる。 The flying object 1 including the flying object engine generator unit 10 that performs feedforward control has an increased instantaneous output compared to the flying object 1 including the flying object engine generator unit 10 that does not perform feedforward control. Therefore, the flying object 1 including the flying object engine generator unit 10 into which the feedforward control is introduced is more likely than the flying object 1 including the flying object engine generator unit 10 into which the feedforward control is not introduced in the same operation. Also, the capacity of the power storage unit 5 can be reduced.
 また、飛行体1は、複数のプロペラ3と、複数のプロペラ3を駆動する複数のモータ2と、モータ2の駆動を制御するモータ制御部4と、モータ制御部4に飛行体制御信号を入力する飛行体制御部6と、モータ2に電力を供給する、上述の飛行体用エンジン発電機ユニット10と、を有する。これにより、既述の構成を有する飛行体用エンジン発電機ユニット10を有する飛行体1が得られる。 The aircraft 1 also includes a plurality of propellers 3, a plurality of motors 2 for driving the plurality of propellers 3, a motor control section 4 for controlling the driving of the motors 2, and an aircraft control signal input to the motor control section 4. and the aircraft engine-generator unit 10 for supplying electric power to the motor 2 . As a result, the aircraft 1 having the aircraft engine-generator unit 10 having the configuration described above is obtained.
 また、統合制御部15、発電機制御部14及びエンジン制御部12は、飛行体制御部6と別の部材として構成されている。つまり、飛行体用エンジン発電機ユニット10は、統合制御部15、発電機制御部14及びエンジン制御部12が飛行体1の飛行体制御部6と分離した状態で、飛行体1に搭載されている。つまり、飛行体用エンジン発電機ユニット10は、飛行体制御部6が飛行体1の本体フレーム8に固定された状態で、飛行体1から分離することができる。これにより、飛行体用エンジン発電機ユニット10の汎用性を向上することができる。 Also, the integrated control unit 15, the generator control unit 14, and the engine control unit 12 are configured as separate members from the aircraft control unit 6. That is, the aircraft engine-generator unit 10 is mounted on the aircraft 1 in a state in which the integrated control section 15, the generator control section 14, and the engine control section 12 are separated from the aircraft control section 6 of the aircraft 1. there is That is, the aircraft engine-generator unit 10 can be separated from the aircraft 1 while the aircraft control section 6 is fixed to the body frame 8 of the aircraft 1 . As a result, the versatility of the aircraft engine generator unit 10 can be improved.
 なお、大型の飛行体の場合、長時間、高ペイロードを実現するために、高出力大容量バッテリまたは高出力エンジン発電機を載せると、飛行体の重量が増大する。よって、この場合であっても、飛行体を効率良く飛行させることが望まれる。 In addition, in the case of a large flying object, if a high-output large-capacity battery or a high-output engine generator is mounted in order to achieve a high payload for a long time, the weight of the flying object will increase. Therefore, even in this case, it is desirable to fly the aircraft efficiently.
 そのため、飛行体1が大型の場合には、電力貯留部5の出力は、飛行体用エンジン発電機ユニット10のエンジン11の連続定格出力以下であるのが好ましい。つまり、飛行体1が大型の場合には、前記飛行体の動力を、エンジン11の出力によって得るとともに、電力貯留部5は、エンジン11の出力の不足分を補うために用いられるのが好ましい。これにより、飛行体1を軽量化することができる。したがって、軽量且つ長時間飛行可能な大型ドローンを実現することができる。 Therefore, when the aircraft 1 is large, the output of the power storage unit 5 is preferably equal to or less than the continuous rated output of the engine 11 of the engine generator unit 10 for aircraft. In other words, when the flying object 1 is large, it is preferable that the power of the flying object is obtained from the output of the engine 11 and that the electric power storage unit 5 is used to make up for the shortage of the output of the engine 11 . Thereby, the weight of the aircraft 1 can be reduced. Therefore, it is possible to realize a large drone that is lightweight and can fly for a long time.
 一方で、小型の飛行体の場合においても、長時間、高ペイロードを実現するために、飛行体に大容量バッテリまたはエンジン発電機を載せると、飛行体の重量が増大する。よって、この場合であっても、飛行体を効率良く飛行させることが望まれる。 On the other hand, even in the case of a small aircraft, if a large-capacity battery or an engine generator is mounted on the aircraft in order to achieve a high payload for a long time, the weight of the aircraft increases. Therefore, even in this case, it is desirable to fly the aircraft efficiently.
 そのため、飛行体1が小型の場合には、飛行体用エンジン発電機ユニット10のエンジン11の出力は、電力貯留部5の連続定格出力以下であるのが好ましい。つまり、飛行体1が小型の場合には、前記飛行体の動力を、電力貯留部5の出力で得るとともに、エンジン11は電力貯留部5の充電を行うために用いるのが好ましい。これにより、飛行体用エンジン発電機ユニット10を軽量化することができる。したがって、軽量且つ長時間飛行可能な小型ドローンを実現することができる。 Therefore, when the flying object 1 is small, the output of the engine 11 of the flying object engine generator unit 10 is preferably equal to or less than the continuous rated output of the power storage unit 5. That is, when the flying object 1 is small, it is preferable that the power of the flying object is obtained from the output of the power storage unit 5 and that the engine 11 is used to charge the power storage unit 5 . As a result, the weight of the aircraft engine generator unit 10 can be reduced. Therefore, it is possible to realize a small drone that is lightweight and can fly for a long time.
 (その他の実施形態)
 以上、本発明の実施の形態を説明したが、上述した実施の形態は本発明を実施するための例示に過ぎない。よって、本発明は上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施の形態を適宜変形して実施することが可能である。
(Other embodiments)
Although the embodiments of the present invention have been described above, the above-described embodiments are merely examples for carrying out the present invention. Therefore, the present invention is not limited to the above-described embodiment, and can be implemented by appropriately modifying the above-described embodiment without departing from the spirit of the present invention.
 前記実施形態では、飛行体用エンジン発電機ユニット10の統合制御部15は、飛行体制御部6から出力されるモータ2の駆動に必要な要求発電電力量Wrと目標発電電力量Wtとに基づいて目標回転数Rtと目標トルクTtとを算出する。統合制御部15は、エンジン制御部12に対して目標回転数Rtを出力し、発電機制御部14に対して目標トルクTtを出力する。しかしながら、統合制御部は、発電機制御部に対して目標回転数を出力し、エンジン制御部に対して目標トルクを出力してもよい。 In the above-described embodiment, the integrated control unit 15 of the aircraft engine generator unit 10 is based on the required power generation amount Wr necessary for driving the motor 2 and the target power generation amount Wt, which are output from the aircraft control unit 6. to calculate the target rotational speed Rt and the target torque Tt. The integrated control unit 15 outputs a target rotation speed Rt to the engine control unit 12 and outputs a target torque Tt to the generator control unit 14 . However, the integrated control section may output the target rotation speed to the generator control section and output the target torque to the engine control section.
 このように、統合制御部15がエンジン制御部12に対して目標トルクTtを出力し、発電機制御部14に対して目標回転数Rtを出力する例を、図3に示す。図3は、飛行体用エンジン発電機ユニット10を含む飛行体1の概略構成において発電機制御部14に対して目標回転数Rt及び目標トルクTtが出力される構成を示す機能ブロック図である。 FIG. 3 shows an example in which the integrated control unit 15 outputs the target torque Tt to the engine control unit 12 and outputs the target rotation speed Rt to the generator control unit 14 in this way. FIG. 3 is a functional block diagram showing a configuration for outputting the target rotational speed Rt and the target torque Tt to the generator control section 14 in the schematic configuration of the aircraft 1 including the aircraft engine generator unit 10. As shown in FIG.
 図3に示すように、発電機制御部14は、クランク角度検出部11aと電気的に接続されている。 As shown in FIG. 3, the generator control section 14 is electrically connected to the crank angle detection section 11a.
 統合制御部15は、飛行体制御部6から要求発電電力量Wrが入力される。また、統合制御部15は、飛行体用エンジン発電機ユニット10と飛行体1の負荷との接続部である電力線の電圧である負荷電圧Vlが入力される。つまり、統合制御部15は、発電機制御部14から飛行体1の負荷であるモータ制御部4に電力を供給する電力線から負荷電圧Vlが入力される。統合制御部15は、負荷電圧Vlと予め定められている目標電圧Vtとに基づいて、負荷電圧Vlを目標電圧Vtに近づけるために必要な目標発電電力量Wtを算出する。さらに、統合制御部15は、目標発電電力量Wtと要求発電電力量Wrとを足し合わせた電力量を発電するために必要な目標回転数Rt及び目標トルクTtをマップMから算出する。 The integrated control unit 15 receives the requested power generation amount Wr from the aircraft control unit 6 . Further, the load voltage Vl, which is the voltage of the power line connecting the aircraft engine generator unit 10 and the load of the aircraft 1 , is input to the integrated control unit 15 . That is, the integrated control unit 15 receives the load voltage Vl from the power line that supplies power from the generator control unit 14 to the motor control unit 4 that is the load of the aircraft 1 . Based on the load voltage Vl and a predetermined target voltage Vt, the integrated control unit 15 calculates a target power generation amount Wt required to bring the load voltage Vl closer to the target voltage Vt. Further, the integrated control unit 15 calculates, from the map M, the target rotational speed Rt and the target torque Tt required to generate the power amount obtained by adding the target power generation amount Wt and the required power generation amount Wr.
 統合制御部15は、エンジン制御部12に対して目標トルクTtを出力する。また、統合制御部15は、発電機制御部14に対して目標回転数Rtを出力する。更に、統合制御部15は、発電機制御部14に対して目標トルクTtを出力する。 The integrated control unit 15 outputs the target torque Tt to the engine control unit 12. The integrated control unit 15 also outputs the target rotation speed Rt to the generator control unit 14 . Furthermore, the integrated control section 15 outputs the target torque Tt to the generator control section 14 .
 エンジン制御部12は、統合制御部15から目標トルクTtが入力される。エンジン制御部12は、目標トルクTtでエンジン11のクランク軸が回転するようにスロットル開度を調整する。つまり、エンジン制御部12は、目標トルクTtによるフィードフォワード制御を行う。 The target torque Tt is input from the integrated control unit 15 to the engine control unit 12 . The engine control unit 12 adjusts the throttle opening so that the crankshaft of the engine 11 rotates at the target torque Tt. That is, the engine control unit 12 performs feedforward control using the target torque Tt.
 発電機制御部14は、クランク角度検出部11aからエンジン11の実回転数Rrが入力され、統合制御部15から目標回転数Rtが入力される。発電機制御部14は、実回転数Rrと目標回転数Rtとに基づいて、実回転数Rrを目標回転数Rtに近づけるために発電機13から出力される電圧を制御する。つまり、発電機制御部14は、目標回転数Rtによるフィードフォワード制御と実回転数Rrを目標回転数Rtに維持するためのフィードバック制御とを行う。 The generator control unit 14 receives the actual rotation speed Rr of the engine 11 from the crank angle detection unit 11 a and the target rotation speed Rt from the integrated control unit 15 . Based on the actual rotation speed Rr and the target rotation speed Rt, the generator control unit 14 controls the voltage output from the generator 13 in order to make the actual rotation speed Rr closer to the target rotation speed Rt. That is, the generator control unit 14 performs feedforward control based on the target rotation speed Rt and feedback control for maintaining the actual rotation speed Rr at the target rotation speed Rt.
 これに加えて、発電機制御部14は、目標トルクTtに基づいて、エンジン11が目標トルクTtを出力するように発電機13から出力される電圧を制御する。つまり、発電機制御部14は、飛行体用エンジン発電機ユニット10の内部の信号である目標トルクTtと目標回転数Rtとに基づいて、エンジン11のクランク軸が目標回転数Rtで回転し、目標トルクTtを出力するために発電機13のフィードフォワード制御を行う。 In addition, the generator control unit 14 controls the voltage output from the generator 13 based on the target torque Tt so that the engine 11 outputs the target torque Tt. That is, the generator control unit 14 causes the crankshaft of the engine 11 to rotate at the target rotation speed Rt based on the target torque Tt and the target rotation speed Rt, which are signals inside the aircraft engine generator unit 10. Feedforward control of the generator 13 is performed to output the target torque Tt.
 このように構成される飛行体用エンジン発電機ユニット10の統合制御部15は、エンジン制御部12に対して目標トルクTtを出力し、発電機制御部14に対して目標回転数Rtを出力する。また、飛行体用エンジン発電機ユニット10は、目標回転数Rtが入力される発電機制御部14に、飛行体用エンジン発電機ユニット10の内部におけるフィードフォワード制御用の信号として目標トルクTtを入力する。これにより、飛行体用エンジン発電機ユニット10の飛行体1の負荷変動に対する発電応答性を高め、飛行体用エンジン発電機ユニット10から飛行体1に対して素早い電力供給が可能である。 The integrated control section 15 of the aircraft engine generator unit 10 configured in this way outputs the target torque Tt to the engine control section 12 and outputs the target rotation speed Rt to the generator control section 14. . Further, the aircraft engine generator unit 10 inputs the target torque Tt as a signal for feedforward control inside the aircraft engine generator unit 10 to the generator control section 14 to which the target rotation speed Rt is input. do. As a result, power generation responsiveness of the flying object engine generator unit 10 to the load fluctuation of the flying object 1 is enhanced, and electric power can be quickly supplied from the flying object engine generator unit 10 to the flying object 1 .
 上述のように、飛行体1の飛行体制御部6から、飛行体用エンジン発電機ユニット10の統合制御部15に対して負荷電圧Vl及び要求発電電力量Wrが入力されずに、負荷電圧Vlのみが入力されてもよい。図4に、飛行体用エンジン発電機ユニット10を含む飛行体1の概略構成において、統合制御部15に対して、目標発電電力量Wt及び要求発電電力量Wrのうち目標発電電力量Wtだけが入力される構成を示す機能ブロック図を示す。 As described above, without inputting the load voltage Vl and the required power generation amount Wr from the aircraft controller 6 of the aircraft 1 to the integrated controller 15 of the aircraft engine generator unit 10, the load voltage Vl may be entered. In FIG. 4, in the schematic configuration of the aircraft 1 including the aircraft engine generator unit 10, only the target power generation amount Wt of the target power generation amount Wt and the required power generation amount Wr is sent to the integrated control unit 15. FIG. 4 shows a functional block diagram showing an input configuration; FIG.
 統合制御部15は、モータ制御部4に電力を供給する電力線から負荷電圧Vlが入力される。統合制御部15は、負荷電圧Vlと予め定められている目標電圧Vtとに基づいて、負荷電圧Vlを目標電圧Vtに近づけるために必要な目標発電電力量Wtを算出する。さらに、統合制御部15は、目標発電電力量Wtを発電するために必要な目標回転数Rt及び目標トルクTtをマップMから算出する。 The integrated control unit 15 receives the load voltage Vl from the power line that supplies power to the motor control unit 4 . Based on the load voltage Vl and a predetermined target voltage Vt, the integrated control unit 15 calculates a target power generation amount Wt required to bring the load voltage Vl closer to the target voltage Vt. Further, the integrated control unit 15 calculates from the map M the target rotation speed Rt and the target torque Tt required to generate the target power generation amount Wt.
 統合制御部15は、エンジン制御部12に対して目標回転数Rtを出力する。また、統合制御部15は、発電機制御部14に対して目標トルクTtを出力する。更に、統合制御部15は、エンジン制御部12に対して目標トルクTtを出力する。 The integrated control unit 15 outputs the target rotation speed Rt to the engine control unit 12. The integrated control unit 15 also outputs the target torque Tt to the generator control unit 14 . Furthermore, the integrated control section 15 outputs the target torque Tt to the engine control section 12 .
 エンジン制御部12は、クランク角度検出部11aからエンジン11の実回転数Rrが入力され、統合制御部15から目標回転数Rtが入力される。エンジン制御部12は、実回転数Rrと目標回転数Rtとに基づいて、実回転数Rrを目標回転数Rtに近づけるためにエンジン11のスロットル開度を調整する。つまり、エンジン制御部12は、実回転数Rrを目標回転数Rtに維持するためのフィードバック制御を行う。 The engine control unit 12 receives the actual rotation speed Rr of the engine 11 from the crank angle detection unit 11 a and the target rotation speed Rt from the integrated control unit 15 . Based on the actual rotation speed Rr and the target rotation speed Rt, the engine control unit 12 adjusts the throttle opening of the engine 11 so that the actual rotation speed Rr approaches the target rotation speed Rt. That is, the engine control unit 12 performs feedback control for maintaining the actual rotation speed Rr at the target rotation speed Rt.
 これに加えて、エンジン制御部12は、目標トルクTtに基づいて、エンジン11が目標トルクTtを出力するようにエンジン11のスロットル開度を調整する。つまり、エンジン制御部12は、飛行体用エンジン発電機ユニット10の内部の信号である目標トルクTtに基づいて、エンジン11が目標トルクTtを出力するためのフィードフォワード制御を行う。 In addition, based on the target torque Tt, the engine control unit 12 adjusts the throttle opening of the engine 11 so that the engine 11 outputs the target torque Tt. That is, the engine control unit 12 performs feedforward control for the engine 11 to output the target torque Tt based on the target torque Tt, which is the signal inside the aircraft engine generator unit 10 .
 発電機制御部14は、統合制御部15から目標トルクTtが入力される。発電機制御部14は、目標トルクTtで発電機13が稼働するように発電機13からの出力電圧を制御する。つまり、発電機制御部14は、目標トルクTtに基づいて負荷電圧Vlを目標電圧Vtに維持するためのフィードバック制御を行う。 The generator control unit 14 receives the target torque Tt from the integrated control unit 15 . The generator control unit 14 controls the output voltage from the generator 13 so that the generator 13 operates at the target torque Tt. That is, the generator control unit 14 performs feedback control for maintaining the load voltage Vl at the target voltage Vt based on the target torque Tt.
 上述のように、統合制御部15は、飛行体1の負荷によって定まる目標発電電力量Wtに基づいて目標回転数Rtと目標トルクTtとを算出した場合、エンジン制御部12及び発電機制御部14のうちいずれか一方に対して目標回転数Rtと目標トルクTtを入力する。これにより、飛行体用エンジン発電機ユニット10は、飛行体用エンジン発電機ユニット10の内部のフィードフォワード制御用の信号によってエンジン11と発電機13とを制御している。また、飛行体用エンジン発電機ユニット10は、飛行体1のモータ制御部4に電力線を接続するだけで飛行体1にフィードフォワード制御によって素早い電力供給が可能である。よって、飛行体用エンジン発電機ユニット10の発電応答性を向上することができる。 As described above, when the integrated control unit 15 calculates the target rotation speed Rt and the target torque Tt based on the target power generation amount Wt determined by the load of the aircraft 1, the engine control unit 12 and the generator control unit 14 A target rotational speed Rt and a target torque Tt are input to either one of them. Thus, the aircraft engine generator unit 10 controls the engine 11 and the generator 13 by the feedforward control signal inside the aircraft engine generator unit 10 . Further, the aircraft engine generator unit 10 can quickly supply power to the aircraft 1 by feedforward control simply by connecting a power line to the motor control section 4 of the aircraft 1 . Therefore, the power generation responsiveness of the aircraft engine generator unit 10 can be improved.
 また、飛行体用エンジン発電機ユニット10は、飛行体1との間で電圧以外の要求発電電力量Wrを授受することなく、動作することができる。よって、飛行体用エンジン発電機ユニット10を、様々な種類の飛行体に取り付けることが可能になる。これにより、飛行体用エンジン発電機ユニット10は、飛行体1のモータ制御部4に電力線を接続するだけで発電機13の発電量を制御可能な構成を、容易に実現することができる。よって、飛行体用エンジン発電機ユニット10の汎用性を向上することができる。 In addition, the aircraft engine generator unit 10 can operate without exchanging the required power generation amount Wr other than the voltage with the aircraft 1 . Therefore, the aircraft engine generator unit 10 can be attached to various types of aircraft. As a result, the flying object engine generator unit 10 can easily realize a configuration in which the amount of power generated by the generator 13 can be controlled simply by connecting the power line to the motor control unit 4 of the flying object 1 . Therefore, the versatility of the aircraft engine generator unit 10 can be improved.
 なお、統合制御部15は、エンジン制御部12に対して目標トルクTtを出力し、発電機制御部14に対して目標回転数Rtを出力してもよい。この場合、統合制御部15は、発電機制御部14に対して目標トルクTtを飛行体用エンジン発電機ユニット10の内部のフィードフォワード用の信号として出力する。 Note that the integrated control unit 15 may output the target torque Tt to the engine control unit 12 and output the target rotation speed Rt to the generator control unit 14 . In this case, the integrated control section 15 outputs the target torque Tt to the generator control section 14 as a feedforward signal inside the aircraft engine generator unit 10 .
 上述のように目標回転数Rtが入力されるエンジン制御部12に対して目標トルクTtを入力するのではなく、目標回転数Rtが入力されるエンジン制御部12に対して目標トルクTtが入力されなくてもよい。図5は、飛行体用エンジン発電機ユニット10を含む飛行体1の概略構成において、エンジン制御部12に、目標回転数Rt及び目標トルクTtのうち目標回転数Rtだけが入力される構成を示す機能ブロック図である。この際、統合制御部15には、飛行体1の飛行体制御部6から要求発電電力量Wrが入力される。 Instead of inputting the target torque Tt to the engine control unit 12 to which the target rotation speed Rt is input as described above, the target torque Tt is input to the engine control unit 12 to which the target rotation speed Rt is input. It doesn't have to be. FIG. 5 shows a configuration in which only the target rotation speed Rt of the target rotation speed Rt and the target torque Tt is input to the engine control unit 12 in the schematic configuration of the aircraft 1 including the aircraft engine generator unit 10. It is a functional block diagram. At this time, the required power generation amount Wr is input from the aircraft controller 6 of the aircraft 1 to the integrated controller 15 .
 統合制御部15は、飛行体制御部6から要求発電電力量Wrが入力され、モータ制御部4に電力を供給する電力線から負荷電圧Vlが入力される。統合制御部15は、負荷電圧Vlと予め定められている目標電圧Vtとに基づいて、負荷電圧Vlを目標電圧Vtに近づけるために必要な目標発電電力量Wtを算出する。さらに、統合制御部15は、目標発電電力量Wtと要求発電電力量Wrとを足し合わせた電力量を発電するために必要な目標回転数Rt及び目標トルクTtをマップMから算出する。 The integrated control unit 15 receives the requested power generation amount Wr from the aircraft control unit 6 and receives the load voltage Vl from the power line that supplies power to the motor control unit 4 . Based on the load voltage Vl and a predetermined target voltage Vt, the integrated control unit 15 calculates a target power generation amount Wt required to bring the load voltage Vl closer to the target voltage Vt. Further, the integrated control unit 15 calculates, from the map M, the target rotational speed Rt and the target torque Tt required to generate the power amount obtained by adding the target power generation amount Wt and the required power generation amount Wr.
 統合制御部15は、エンジン制御部12に対して目標回転数Rtを出力する。また、統合制御部15は、発電機制御部14に対して目標トルクTtを出力する。 The integrated control unit 15 outputs the target rotation speed Rt to the engine control unit 12. The integrated control unit 15 also outputs the target torque Tt to the generator control unit 14 .
 エンジン制御部12は、クランク角度検出部11aからエンジン11の実回転数Rrが入力され、統合制御部15から目標回転数Rtが入力される。エンジン制御部12は、実回転数Rrと目標回転数Rtとに基づいて、実回転数Rrを目標回転数Rtに近づけるためにエンジン11のスロットル開度を調整する。つまり、エンジン制御部12は、目標回転数Rtによるフィードフォワード制御と実回転数Rrを目標回転数Rtに維持するためのフィードバック制御とを行う。 The engine control unit 12 receives the actual rotation speed Rr of the engine 11 from the crank angle detection unit 11 a and the target rotation speed Rt from the integrated control unit 15 . Based on the actual rotation speed Rr and the target rotation speed Rt, the engine control unit 12 adjusts the throttle opening of the engine 11 so that the actual rotation speed Rr approaches the target rotation speed Rt. That is, the engine control unit 12 performs feedforward control based on the target rotation speed Rt and feedback control for maintaining the actual rotation speed Rr at the target rotation speed Rt.
 発電機制御部14は、統合制御部15から目標トルクTtが入力される。発電機制御部14は、目標トルクTtで発電機13が稼働するように発電機13の出力電圧を制御する。つまり、発電機制御部14は、目標トルクTtによるフィードフォワード制御と負荷電圧Vlを目標電圧Vtに維持するためのフィードバック制御とを行う。 The generator control unit 14 receives the target torque Tt from the integrated control unit 15 . The generator control unit 14 controls the output voltage of the generator 13 so that the generator 13 operates at the target torque Tt. That is, the generator control unit 14 performs feedforward control based on the target torque Tt and feedback control for maintaining the load voltage Vl at the target voltage Vt.
 飛行体用エンジン発電機ユニット10は、飛行体用エンジン発電機ユニット10の外部からのフィードフォワード制御用の信号によってエンジン11と発電機13とを制御している。また、飛行体用エンジン発電機ユニット10は、飛行体1のモータ制御部4に電力線を接続するだけで飛行体1にフィードフォワード制御によって素早い電力供給が可能である。これにより、飛行体1の負荷変動に対する発電応答性を高めつつ、様々な種類の飛行体に容易に取り付けることができる。 The aircraft engine generator unit 10 controls the engine 11 and the generator 13 by feedforward control signals from the outside of the aircraft engine generator unit 10 . Further, the aircraft engine generator unit 10 can quickly supply power to the aircraft 1 by feedforward control simply by connecting a power line to the motor control section 4 of the aircraft 1 . As a result, it can be easily attached to various types of flying objects while improving power generation responsiveness to load fluctuations of the flying object 1 .
 なお、統合制御部15は、エンジン制御部12に対して目標トルクTtを出力し、発電機制御部14に対して目標回転数Rtを出力してもよい。 Note that the integrated control unit 15 may output the target torque Tt to the engine control unit 12 and output the target rotation speed Rt to the generator control unit 14 .
 上述のように、飛行体1の飛行体制御部6から、飛行体用エンジン発電機ユニット10の統合制御部15にそれぞれ要求発電電力量Wrを入力するのではなく、飛行体制御部6において飛行指令を発電指令に変換してもよい。 As described above, instead of inputting the requested power generation amount Wr from the aircraft controller 6 of the aircraft 1 to the integrated controller 15 of the aircraft engine generator unit 10, the aircraft controller 6 The command may be converted into a power generation command.
 飛行体制御部6は、飛行指令を発電指令に変換して、飛行体用エンジン発電機ユニット10の統合制御部15に出力する。飛行体制御部6は、予め記憶されている飛行指令に対する消費電力のデータと、飛行指令とを用いて、発電指令を生成する。 The aircraft control unit 6 converts the flight command into a power generation command and outputs it to the integrated control unit 15 of the aircraft engine generator unit 10 . The aircraft control unit 6 generates a power generation command using the power consumption data for the flight command stored in advance and the flight command.
 これにより、飛行体1の飛行体制御部6から飛行体用エンジン発電機ユニット10に対して、発電指令を入力できるため、飛行体用エンジン発電機ユニット10では、エンジン11及び発電機13の効率的な動作点で発電することができる。また、飛行体用エンジン発電機ユニット10では、前記電力指令に応じて迅速に発電を行うことができるため、飛行体用エンジン発電機ユニット10から飛行体1に対して素早い電力供給が可能である。 As a result, a power generation command can be input from the aircraft control section 6 of the aircraft 1 to the aircraft engine generator unit 10, so that the aircraft engine generator unit 10 can control the efficiency of the engine 11 and the generator 13. power can be generated at a reasonable operating point. Further, since the aircraft engine generator unit 10 can quickly generate power according to the power command, the aircraft engine generator unit 10 can quickly supply power to the aircraft 1. .
 前記実施形態では、飛行体用エンジン発電機ユニット10は、統合制御部15が負荷電圧Vl及び要求発電電力量Wrを取得し、エンジン制御部12と発電機制御部14とを制御している。しかしながら、飛行体用エンジン発電機ユニットは、エンジン制御部と発電機制御部とがそれぞれ飛行体の飛行体制御部からの要求発電電圧量を取得してもよい。エンジン制御部と発電機制御部とは、要求発電電圧量から目標回転数と目標トルクとをそれぞれ算出する。 In the above embodiment, in the aircraft engine generator unit 10, the integrated control section 15 acquires the load voltage Vl and the required power generation amount Wr, and controls the engine control section 12 and the generator control section 14. However, in the aircraft engine-generator unit, the engine control section and the generator control section may each acquire the required power generation voltage amount from the aircraft control section of the aircraft. The engine control section and the generator control section respectively calculate a target rotational speed and a target torque from the required power generation voltage amount.
 前記実施形態では、飛行体用エンジン発電機ユニット10は、飛行体1のモータ制御部4及び電力貯留部5に電力を供給している。しかしながら、飛行体用エンジン発電機ユニット10は、電力貯留部のみに電力を供給してもよい。また、飛行体用エンジン発電機ユニット10は、モータ制御部のみに電力を供給してもよい。すなわち、飛行体用エンジン発電機ユニット10及び飛行体用エンジン発電機ユニット10を含む飛行体は、電力貯留部を含まない構成でもよい。また、飛行体用エンジン発電機ユニットが電力貯留部を含む構成でもよい。 In the above embodiment, the aircraft engine generator unit 10 supplies electric power to the motor control section 4 and the power storage section 5 of the aircraft 1 . However, the aircraft engine generator unit 10 may supply power only to the power storage section. Alternatively, the aircraft engine generator unit 10 may supply power only to the motor control section. That is, the aircraft engine generator unit 10 and the aircraft including the aircraft engine generator unit 10 may have a configuration that does not include the power storage section. Moreover, the configuration may be such that the aircraft engine generator unit includes a power storage section.
 前記実施形態では、統合制御部15は、発電機制御部14と飛行体1の負荷との間の負荷電圧Vlに基づいて、目標回転数Rtと目標トルクTtを算出する。しかしながら、統合制御部は、負荷電圧及び電力貯留部で得られる貯留状態に関する情報(例えばSOC:State of Chargeなど)のうち少なくとも一方を用いて、目標回転数と目標トルクを算出してもよい。 In the above embodiment, the integrated control unit 15 calculates the target rotation speed Rt and the target torque Tt based on the load voltage Vl between the generator control unit 14 and the load of the aircraft 1 . However, the integrated control unit may calculate the target rotation speed and target torque using at least one of the load voltage and the storage state information (for example, SOC: State of Charge) obtained by the power storage unit.
 前記各実施形態では、飛行体用エンジン発電機ユニット10は、飛行体1のモータ2に対して直流電力を供給している。しかしながら、DC出力エンジン発電機ユニットは、移動体以外の負荷に対して電力を供給してもよい。 In each of the above embodiments, the aircraft engine generator unit 10 supplies DC power to the motor 2 of the aircraft 1 . However, the DC output engine generator unit may also power loads other than mobiles.
 図6は、飛行体用エンジン発電機ユニット10から飛行体1以外の負荷100に直流電力を供給する様子を模式的に示す図である。 FIG. 6 is a diagram schematically showing how DC power is supplied from the aircraft engine generator unit 10 to a load 100 other than the aircraft 1. FIG.
 図6に示すように、飛行体用エンジン発電機ユニット10から、負荷100に直流電力が供給される。これにより、飛行体用エンジン発電機ユニット10から出力される直流電力によって、負荷100を駆動させることができる。なお、負荷100は、照明装置や表示装置、モータ装置など、直流電力によって駆動する構成であれば、どのような構成であってもよい。 As shown in FIG. 6, DC power is supplied to the load 100 from the aircraft engine generator unit 10 . As a result, the load 100 can be driven by the DC power output from the aircraft engine generator unit 10 . Note that the load 100 may have any configuration, such as a lighting device, a display device, or a motor device, as long as it is configured to be driven by DC power.
1 飛行体
2 モータ
3 プロペラ
4 モータ制御部
5 電力貯留部
6 飛行体制御部
7 センサ
10 飛行体用エンジン発電機ユニット
11 エンジン
11a クランク角度検出部
12 エンジン制御部
13 発電機
14 発電機制御部
15 統合制御部
Wt 目標発電電力量
Wr 要求発電電力量
Vl 負荷電圧
Rt 目標回転数
Tt 目標トルク
100 負荷
1 Aircraft 2 Motor 3 Propeller 4 Motor Control Unit 5 Power Storage Unit 6 Aircraft Control Unit 7 Sensor 10 Aircraft Engine Generator Unit 11 Engine 11a Crank Angle Detector 12 Engine Controller 13 Generator 14 Generator Controller 15 Integrated control unit Wt Target power generation amount Wr Requested power generation amount Vl Load voltage Rt Target rotation speed Tt Target torque 100 Load

Claims (5)

  1.  飛行体の駆動源であるモータと、前記モータの駆動を制御するモータ制御部と、前記モータ制御部に飛行体制御信号を入力する飛行体制御部とを有する飛行体に電力を供給する飛行体用エンジン発電機ユニットであって、
     エンジンと、
     前記エンジンで生じる駆動力によって発電を行う発電機と、
     前記エンジンの回転数またはトルクを制御するエンジン制御部と、
     前記発電機の発電量を制御する発電機制御部と、
     前記飛行体用エンジン発電機ユニットの目標回転数及び目標トルクを算出する統合制御部と、
    を有し、
     前記統合制御部は、
     前記飛行体の負荷によって定まる目標発電電力量に基づいて目標回転数及び目標トルクを算出した場合、前記エンジン制御部及び前記発電機制御部のうちいずれか一方に対して前記目標回転数及び前記目標トルクを出力し、他方に対して前記目標トルクを出力し、
     前記目標発電電力量と前記飛行体制御部から出力される前記モータの駆動に必要な要求発電電力量とに基づいて目標回転数及び目標トルクを算出した場合、前記エンジン制御部及び前記発電機制御部のうちいずれか一方に対して、前記目標回転数及び前記目標トルクのうち少なくとも前記目標回転数を出力し、他方に対して前記目標トルクを出力する、
    飛行体用エンジン発電機ユニット。
    A flying object that supplies electric power to the flying object, and has a motor that is a driving source of the flying object, a motor control unit that controls the driving of the motor, and a flying object control unit that inputs an flying object control signal to the motor control unit. an engine generator unit for
    engine and
    a generator that generates power by driving force generated by the engine;
    an engine control unit that controls the rotation speed or torque of the engine;
    a generator control unit that controls the amount of power generated by the generator;
    an integrated control unit that calculates a target rotation speed and a target torque of the aircraft engine generator unit;
    has
    The integrated control unit
    When the target rotation speed and the target torque are calculated based on the target power generation amount determined by the load of the aircraft, the target rotation speed and the target torque are calculated for one of the engine control unit and the generator control unit. outputting a torque and outputting the target torque to the other;
    When the target rotation speed and the target torque are calculated based on the target power generation amount and the required power generation amount required to drive the motor output from the aircraft control unit, the engine control unit and the generator control outputting at least the target rotation speed out of the target rotation speed and the target torque to one of the units, and outputting the target torque to the other;
    Aircraft engine generator unit.
  2.  請求項1に記載の飛行体用エンジン発電機ユニットにおいて、
     前記統合制御部は、
     前記飛行体用エンジン発電機ユニットと前記飛行体の負荷との接続部の電圧に応じて目標発電電力量を算出する、
    飛行体用エンジン発電機ユニット。
    In the aircraft engine generator unit according to claim 1,
    The integrated control unit
    calculating a target power generation amount according to the voltage of the connection between the aircraft engine generator unit and the load of the aircraft;
    Aircraft engine generator unit.
  3.  請求項1または2に記載の飛行体用エンジン発電機ユニットにおいて、
     前記飛行体の負荷は、
     前記モータ制御部と前記飛行体に供給される電力の一部を蓄える電力貯留部とを含み、
     前記統合制御部は、
     前記発電機制御部と前記モータ制御部とを結ぶ電力線の電圧または前記電力貯留部で得られる貯留状態に関する情報の少なくとも一つに応じて目標発電電力量を算出する、
    飛行体用エンジン発電機ユニット。
    3. In the aircraft engine generator unit according to claim 1 or 2,
    The load of the flying object is
    including the motor control unit and a power storage unit that stores a portion of the power supplied to the flying object;
    The integrated control unit
    calculating a target power generation amount according to at least one of the voltage of the power line connecting the generator control unit and the motor control unit or information regarding the storage state obtained in the power storage unit;
    Aircraft engine generator unit.
  4.  請求項1から3のいずれか一項に記載の飛行体用エンジン発電機ユニットにおいて、
     前記統合制御部、前記発電機制御部及び前記エンジン制御部は、前記飛行体制御部と別の部材として構成されている、
    飛行体用エンジン発電機ユニット。
    In the aircraft engine generator unit according to any one of claims 1 to 3,
    The integrated control unit, the generator control unit, and the engine control unit are configured as separate members from the aircraft control unit,
    Aircraft engine generator unit.
  5.  複数のプロペラと、
     前記複数のプロペラを駆動する複数のモータと、
     前記モータの駆動を制御するモータ制御部と、
     前記モータ制御部に飛行体制御信号を入力する飛行体制御部と、
     前記モータに電力を供給する、請求項1から4のいずれか一つに記載の飛行体用エンジン発電機ユニットと、
    を有する、飛行体。
    a plurality of propellers;
    a plurality of motors that drive the plurality of propellers;
    a motor control unit that controls driving of the motor;
    an aircraft control unit that inputs an aircraft control signal to the motor control unit;
    an aircraft engine-generator unit according to any one of claims 1 to 4, which supplies electric power to the motor;
    a flying object.
PCT/JP2021/047685 2021-12-22 2021-12-22 Engine generator unit for flying body and flying body provided with same WO2023119518A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/047685 WO2023119518A1 (en) 2021-12-22 2021-12-22 Engine generator unit for flying body and flying body provided with same
JP2022530872A JP7092963B1 (en) 2021-12-22 2021-12-22 Engine generator unit for air vehicle and air vehicle equipped with it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/047685 WO2023119518A1 (en) 2021-12-22 2021-12-22 Engine generator unit for flying body and flying body provided with same

Publications (1)

Publication Number Publication Date
WO2023119518A1 true WO2023119518A1 (en) 2023-06-29

Family

ID=82196198

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/047685 WO2023119518A1 (en) 2021-12-22 2021-12-22 Engine generator unit for flying body and flying body provided with same

Country Status (2)

Country Link
JP (1) JP7092963B1 (en)
WO (1) WO2023119518A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019501057A (en) * 2014-11-14 2019-01-17 トップ フライト テクノロジーズ, インコーポレイテッド Micro hybrid generator system drone
JP2020511350A (en) * 2017-03-10 2020-04-16 トップ フライト テクノロジーズ, インコーポレイテッド Power system cooling for unmanned aerial vehicles

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019501057A (en) * 2014-11-14 2019-01-17 トップ フライト テクノロジーズ, インコーポレイテッド Micro hybrid generator system drone
JP2020511350A (en) * 2017-03-10 2020-04-16 トップ フライト テクノロジーズ, インコーポレイテッド Power system cooling for unmanned aerial vehicles

Also Published As

Publication number Publication date
JP7092963B1 (en) 2022-06-28
JPWO2023119518A1 (en) 2023-06-29

Similar Documents

Publication Publication Date Title
EP3568354B1 (en) Vertical lift by series hybrid-propulsion
US10371066B2 (en) Unmanned aircraft and operation method for the same
CN102971216B (en) For hybrid electric drive system and the energy system of aircraft
RU2658212C2 (en) Hybrid electric power transmission for vertical take-off and landing unmanned aerial vehicles
CN110546069A (en) engine-mounted autonomous flight device
US20080184906A1 (en) Long range hybrid electric airplane
US20220258845A1 (en) Propulsion system
US11667391B2 (en) Dual engine hybrid-electric aircraft
US20220135241A1 (en) Systems and Methods for Controlling Torque for Aerial Vehicle
Recoskie et al. Experimental testing of a hybrid power plant for a dirigible UAV
WO2023119518A1 (en) Engine generator unit for flying body and flying body provided with same
CN102577088A (en) Internal combustion engine system and ship
US20240017846A1 (en) Aircraft
JP6979251B1 (en) Flight equipment
Hageman et al. Development and analysis of a group 1 UAV series hybrid power system with two engine options
US20230303274A1 (en) Systems and Methods for Controlling Engine Speed and/or Pitch of Propulsion Members for Aerial Vehicles
Orkisz et al. Analysis of the possibility of using an engine with a rotating piston as the propulsion of an electric generator in application to a motor glider propulsion
Gang et al. Performance evaluation of a compact designed electric power system composed of a two‐stroke gasoline engine, generator, and battery for high‐endurance unmanned aerial vehicles
JP7399521B2 (en) flight equipment
JP7512242B2 (en) Multicopter
WO2023079900A1 (en) Flight device
JP2023056106A (en) multicopter
JP6751537B2 (en) Hybrid manned aircraft
JP2023156106A (en) Flight device
Zabunov et al. Hybrid Multicopter Designs

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022530872

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21968955

Country of ref document: EP

Kind code of ref document: A1