WO2023119466A1 - 通信装置、ネットワーク管理装置、通信方法、およびプログラム - Google Patents

通信装置、ネットワーク管理装置、通信方法、およびプログラム Download PDF

Info

Publication number
WO2023119466A1
WO2023119466A1 PCT/JP2021/047495 JP2021047495W WO2023119466A1 WO 2023119466 A1 WO2023119466 A1 WO 2023119466A1 JP 2021047495 W JP2021047495 W JP 2021047495W WO 2023119466 A1 WO2023119466 A1 WO 2023119466A1
Authority
WO
WIPO (PCT)
Prior art keywords
packet
header
route
slice
communication
Prior art date
Application number
PCT/JP2021/047495
Other languages
English (en)
French (fr)
Inventor
嘉 岡田
Original Assignee
楽天モバイル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 楽天モバイル株式会社 filed Critical 楽天モバイル株式会社
Priority to PCT/JP2021/047495 priority Critical patent/WO2023119466A1/ja
Priority to US17/774,194 priority patent/US20240172034A1/en
Publication of WO2023119466A1 publication Critical patent/WO2023119466A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0252Traffic management, e.g. flow control or congestion control per individual bearer or channel
    • H04W28/0263Traffic management, e.g. flow control or congestion control per individual bearer or channel involving mapping traffic to individual bearers or channels, e.g. traffic flow template [TFT]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/24Traffic characterised by specific attributes, e.g. priority or QoS
    • H04L47/2475Traffic characterised by specific attributes, e.g. priority or QoS for supporting traffic characterised by the type of applications

Definitions

  • the present invention relates to communication control technology in communication systems to which network slicing is applied.
  • 5G 5th generation
  • NR New Radio
  • 5G a network slicing technology specification has been established that virtually divides a network into multiple network slices and provides communication services in each network slice.
  • the devices that make up the network are configured, for example, to be able to manage and transmit slice information.
  • the communication control device described in Patent Literature 1 associates transmission control information included in packets from communication terminals with slice types in advance and stores them.
  • the communication control device determines a slice based on the transmission control information included in the packet and performs communication control.
  • the present invention has been made in view of the above problems, and aims to provide a technique for improving the versatility of transmitting the type of network slice in a communication system to which network slicing is applied.
  • one aspect of the communication apparatus is a setting unit for setting slice information for identifying a type of network slice in a Flow Label field of a header of a packet conforming to the IPv6 protocol; a transmitting unit for transmitting packets including headers set by the unit.
  • one aspect of the network management apparatus includes a receiving unit that receives a packet conforming to the IPv6 protocol, and a determining unit that determines the route of the packet based on information included in the header of the packet. and a transfer unit that transfers the packet according to the determined route, slice information for identifying a type of network slice is set in the Flow Label field of the header, and the determination unit: The route is determined based on the slice information.
  • the determination unit can determine the route based on the slice information and the value of the DSCP (Differentiated Service Code Point) field in the TOS (Type of Service) field of the header.
  • DSCP Differentiated Service Code Point
  • TOS Type of Service
  • one aspect of the communication method is a setting step of setting slice information for identifying a type of network slice in a Flow Label field of a header of a packet conforming to the IPv6 protocol; and a transmitting step of transmitting the packet including the header set by the unit.
  • another aspect of the communication method includes a receiving step of receiving a packet conforming to the IPv6 protocol, and a determining step of determining a route of the packet based on information contained in a header of the packet. and a forwarding step of forwarding the packet along the determined route, wherein slice information for identifying a type of network slice is set in the Flow Label field of the header, and in the determining step, The route is determined based on the slice information.
  • one aspect of the control program according to the present invention is a control program for causing a computer to execute communication processing, the program instructing the computer to set the Flow Label of the header of a packet conforming to the IPv6 protocol.
  • This is for executing processing including setting processing for setting slice information for identifying the type of network slice in the field and transmission processing for transmitting a packet including the header set by the setting processing. .
  • another aspect of the control program according to the present invention is a control program for causing a computer to execute communication processing, the program instructing the computer to receive a packet conforming to the IPv6 protocol.
  • determination processing for determining the route of the packet based on information contained in the header of the packet; and forwarding processing for forwarding the packet along the determined route.
  • slice information for identifying the type of network slice is set in the Flow Label field of the header, and in the determination process, the route is determined based on the slice information.
  • FIG. 1 shows an example of the configuration of a communication system according to an embodiment.
  • FIG. 2 shows the format of the IPv6 header.
  • FIG. 3 is a diagram showing a functional configuration example of a base station according to the embodiment; 3 is a diagram illustrating an example of functional configuration of a node according to the embodiment; FIG. It is a figure which shows the hardware structural example of the communication apparatus by embodiment. 4 is a flowchart of processing performed by a base station according to an embodiment; 4 is a flowchart of processing performed by a node according to an embodiment;
  • FIG. 1 shows an example of the configuration of a communication system according to this embodiment.
  • this communication system comprises a terminal device 1, a base station 2, and nodes (network management devices) 3 and 4 such as routers.
  • the communication system according to this embodiment is configured to be capable of transmitting packets according to IPv6 (Internet Protocol Version 6) protocol.
  • a terminal device 1 is configured to be connectable to a base station 2
  • the base station 2 is configured to be connected to a node 3 .
  • a node 3 is a node located in a first area
  • a node 4 is a node located in a second area wider than the first area.
  • nodes 3 and one node 4 are shown as nodes in the configuration of the communication system shown in FIG. 1, the number of nodes 3 and 4 is not limited to a specific number. Further, another node (router) may be hierarchically configured in an area smaller or larger than the first area where the node 3 is located and the second area where the node 4 is located.
  • the terminal device 1 is a communication device that transmits a packet (traffic) containing data and a slice identifier for indicating the type of network slice requested for the packet.
  • the types of network slices will be described later.
  • the slice identifier can be an identifier such as S-NSSAI (Single-Network Slice Selection Assistance Information) defined by 3GPP (Third Generation Partnership Project).
  • the terminal device 1 is a mobile device such as a User Equipment (UE), a Mobile Station (MS), a mobile station device, a mobile terminal, a subscriber unit, a subscriber station, a wireless terminal, or a mobile device. or fixed-type user terminal equipment.
  • the terminal device 1 may be a device such as a cellular phone, smart phone, personal digital assistant (PDA), tablet, laptop, handheld communication device, handheld computing device, satellite radio, wireless modem card, CPE (Customer Premises Equipment).
  • PDA personal digital assistant
  • CPE Customer Premises Equipment
  • the base station 2 is a communication device that adds (sets) slice information for identifying the type of network slice described later to the header (header conforming to the IPv6 protocol) of a packet received from the terminal device 1, and transfers the slice information to the node 3. be.
  • the terminal device 1 may be configured to add slice information to the header of the packet.
  • FIG. 2 shows the format of a packet header (IPv6 header) conforming to the IPv6 protocol.
  • the Traffic Class field 21 consists of 8 bits and includes a DSCP (Differentiated Service Code Point) field 22 consisting of 6 bits.
  • the value (DSCP value) indicated by the DSCP field 22 is a value (priority information) indicating the priority of packet transfer.
  • a DSCP value can be set by a carrier that manages the base station 2 .
  • the Flow Label field 23 is a field introduced in IPv6, and it is assumed that it can be used to ensure the quality of communication paths.
  • the base station 2 (or the terminal device 1) includes slice information for identifying the type of network slice in the Flow Label field 23 (marks the slice information).
  • the slice information may be information corresponding to the network slice identifier described above.
  • the slice information may be information set by a communication carrier that manages the base station 2 in correspondence with the network slice identifier.
  • Types of network slices include, for example, mMTC, URLLC, and eMBB.
  • mMTC stands for Massive Machine Type Communications
  • URLLC stands for Ultra-Reliable and Low Latency Communications
  • eMBB stands for enhanced Mobile Broad Band.
  • mMTC is for logistics management, IoT (Internet of Things), smart city/smart home, smart meters, sensors, wearable terminals, and the like.
  • URLLLC is for smart factories, remote control of robots and drones, smart agriculture, remote surgery, traffic management, autonomous driving, etc.
  • eMBB is for high-definition video distribution, games, VR (virtual reality), AR (augmented reality), free-viewpoint video, ultra-high-density traffic at stadiums, high-definition video surveillance, and the like.
  • the node 3 analyzes the header of the packet received from the base station 2, determines the optimal communication route for transfer to the core network 5 based on the information contained in the header, and transfers the packet according to the determined communication route. do.
  • the node 3 may be configured to perform transfer processing using protocols such as SRv6 (Segment Routing IPv6) and SR-MPLS (Multi-Protocol Label Switching).
  • SRv6 Segment Routing IPv6
  • SR-MPLS Multi-Protocol Label Switching
  • the node 3 determines a communication path based on the slice information (slice type) indicated in the Flow Label field in the header of the received packet.
  • the node 3 that has received the packet from the base station 2 sends another node 3 (connected to the base station 2 in FIG.
  • the node 3 determines each link connecting each of the plurality of nodes according to the priority indicated by the DSCP value in the header of the received packet. For example, when traffic is congested (congested, overloaded), the node 3 decides which nodes to keep (use) and which nodes not to use for connecting to the core network 5 based on the DSCP value. can be determined.
  • FIG. 3 shows an example of the functional configuration of the base station 2.
  • the base station 2 has a receiving section 31, a setting section 32, and a transmitting section 33 as an example of its functional configuration.
  • the receiving unit 31 receives a packet including data from the terminal device 1 and a slice identifier for indicating the type of requested network slice.
  • the slice identifier can be S-NSSAI as described above.
  • the setting unit 32 sets slice information indicating the type of network slice in the Flow Label field (Flow Label field 23 in FIG. 2) in the header of the received packet according to the slice identifier. That is, the setting unit 32 includes slice information in the Flow Label field. Also, the setting unit 22 can set priority information in the DSCP value in the header.
  • the transmitting unit 33 transmits the packet with the header set by the setting unit 32 to the node 3 .
  • the functional configuration of the terminal device 1 may be configured to include the setting unit 32 and the transmission unit 33 described above.
  • FIG. 4 shows an example of the functional configuration of the node (network management device) 3.
  • the node 3 has a receiving unit 41, a route determining unit 42, and a transferring unit 43 as an example of its functional configuration.
  • the receiver 41 receives packets from the base station 2 . Slice information is set in the header of the packet.
  • the route determining unit 42 analyzes the header of the packet received by the receiving unit 41 and determines a communication route based on information (set information) included in the header. In this embodiment, the route determination unit 42 determines communication routes based on slice information.
  • the forwarding unit 43 forwards the packet through the route determined by the route determining unit 42 . Further, as described above, when traffic is congested, the route determination unit 42 determines the node to be used between each link based on the DSCP value included in the header of the received packet, and according to this, the transfer unit 43 performs packet forwarding.
  • FIG. 5 is a diagram showing a non-limiting example of the hardware configuration of the communication device (terminal device 1, base station 2, node 3) according to this embodiment.
  • a communication apparatus according to the present embodiments may be implemented on any computer or any other processing platform, single or multiple.
  • the communication device may be implemented in a general-purpose server device that constitutes a cloud, or may be implemented in a dedicated server device.
  • the communication device according to the present embodiment may be implemented in a computer system including multiple computers.
  • a plurality of computers may be interconnectably connected by a wired or wireless network.
  • the communication device may include a CPU 51 , a ROM 52 , a RAM 53 , an HDD 54 , an input section 55 , a display section 56 , a communication I/F 57 and a system bus 58 .
  • the communication device may also include external memory.
  • a CPU (Central Processing Unit) 51 comprehensively controls operations in the communication apparatus, and controls each component (52 to 57) via a system bus 58, which is a data transmission line.
  • a ROM (Read Only Memory) 52 is a non-volatile memory that stores control programs and the like necessary for the CPU 51 to execute processing.
  • the program may be stored in a non-volatile memory such as a HDD (Hard Disk Drive) 54 or an SSD (Solid State Drive) or an external memory such as a removable storage medium (not shown).
  • a RAM (Random Access Memory) 53 is a volatile memory and functions as a main memory, a work area, and the like of the CPU 51 . That is, the CPU 51 loads necessary programs and the like from the ROM 52 to the RAM 53 when executing processing, and executes various functional operations by executing the programs and the like.
  • the HDD 54 stores, for example, various data and information necessary for the CPU 51 to perform processing using programs.
  • the HDD 54 also stores various data, information, and the like obtained by the CPU 51 performing processing using programs and the like, for example.
  • the input unit 55 is composed of a pointing device such as a keyboard and a mouse.
  • the display unit 56 is configured by a monitor such as a liquid crystal display (LCD).
  • the display unit 56 may provide a GUI (Graphical User Interface) for instructing and inputting various parameters, communication parameters used in communication with other devices, etc. to the communication device.
  • Communication I/F 57 is an interface that controls communication between a communication device and an external device.
  • At least some of the functions of the elements of the base station 2 and node 3 shown in FIGS. 3 and 4 can be realized by the CPU 51 executing a program. However, at least some of the functions of the elements of the base station 2 and node 3 shown in FIGS. 3 and 4 may operate as dedicated hardware. In this case, the dedicated hardware operates under the control of the CPU 51 .
  • FIG. 6 shows a flowchart of processing executed by the base station 2 according to this embodiment.
  • the receiving unit 31 receives the packet transmitted from the terminal device 1 .
  • the setting unit 32 sets the header of the packet received by the receiving unit 31 .
  • the setting unit 32 sets slice information in the Flow Label field in the header of the packet.
  • the setting unit 32 can set the DSCP value in the header.
  • the setting unit 32 may perform filtering on the DSCP value (DSCP field) in order to classify the priority.
  • the transmission unit 33 transmits the packet with the header set by the setting unit 32 to the node 3 .
  • FIG. 7 shows a flow chart of the processing performed by the node 3 according to this embodiment.
  • the receiver 41 receives a packet from the base station 2 . At least slice information and a DSCP value are set in the header of the packet.
  • the route determining unit 42 analyzes the header of the packet received by the receiving unit 31 .
  • the route determination unit 42 determines a communication route based on the analysis result including slice information. That is, the route determination unit 42 determines a communication route so as to realize communication of the slice type indicated by the slice information.
  • the slice type is eMBB
  • a communication route capable of high-speed communication and large-capacity data transmission is determined based on information such as the communication capacity of the link held in advance.
  • the route determination unit 42 determines nodes to be used between links based on the DSCP value. Therefore, the route determination unit 42 may have a function of measuring the degree of traffic congestion.
  • the transfer unit 43 transfers the packet through the route determined by the route determination unit 42 . That is, the forwarding unit 43 designates the path determined by the route determining unit 42 and forwards the packet.
  • the base station sets slice information for identifying the type of network slice independently of the Flow Label field of the IPv6 header and transmits it to the node.
  • the node determines the optimum communication route for realizing communication of the slice type indicated by the slice information, based on the slice information obtained by referring to the Flow Label field set in the header. becomes possible.
  • the Flow Label field it is possible to notify the slice type using an independent header field without indicating the slice type in combination with the transmission control information such as the DSCP value. improves.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

通信装置(2)は、IPv6プロトコルに従うパケットのヘッダのFlow Labelフィールドに、ネットワークスライスの種別を識別するためのスライス情報を設定する設定部(32)と、前記設定部により設定されたヘッダを含むパケットを送信する送信部(33)と、を有する。

Description

通信装置、ネットワーク管理装置、通信方法、およびプログラム
 本発明は、ネットワークスライシングが適用される通信システムにおける通信制御技術に関する。
 3世代パートナーシッププロジェクト(3GPP)において、New  Radio(NR)と称される第5世代(5G)の移動通信システムの規格が策定されている。5Gでは、ネットワークを仮想的に複数ネットワークスライスに分割し、各ネットワークスライスにおいて通信サービスを提供するネットワークスライシングの技術の仕様が策定されている。ネットワークを構成する装置は例えば、スライスの情報を管理し伝達することが可能に構成されている。
 特許文献1に記載の通信制御装置は、通信端末からのパケットに含まれる送信制御情報と、スライス種別とを、予め対応させて記憶している。そして、当該通信制御装置は、通信端末からパケットを受信した際に、当該パケットに含まれる送信制御情報に基づいて、スライスを決定し通信制御を行っている。
特開2018-186450号公報
 送信制御情報とスライス種別の関係は固定的ではなく可変でありうる。よって、上記文献の手法では、当該情報とスライス種別との対応を予め設定することにより、スライス種別の伝達に関してシステムの汎用性が損なわれるといった課題があった。
 本発明は上記課題に鑑みてなされたものであり、ネットワークスライシングが適用される通信システムにおいて、ネットワークスライスの種別の伝達の汎用性を向上させるための技術を提供することを目的とする。
 上記課題を解決するために、本発明による通信装置の一態様は、IPv6プロトコルに従うパケットのヘッダのFlow Labelフィールドに、ネットワークスライスの種別を識別するためのスライス情報を設定する設定部と、前記設定部により設定されたヘッダを含むパケットを送信する送信部と、を有する。
 上記課題を解決するために、本発明によるネットワーク管理装置の一態様は、IPv6プロトコルに従うパケットを受信する受信部と、前記パケットのヘッダに含まれる情報に基づいて前記パケットの経路を決定する決定部と、前記決定された経路に従って前記パケットを転送する転送部と、を有し、前記ヘッダのFlow Labelフィールドには、ネットワークスライスの種別を識別するためのスライス情報が設定され、前記決定部は、前記スライス情報に基づいて前記経路を決定する。
 前記通信装置において、前記決定部は、前記スライス情報、および、前記ヘッダのTOS(Type of Service)フィールドにおけるDSCP(Differentiated Service Code Point)フィールドの値に基づいて、前記経路を決定しうる。
 上記課題を解決するために、本発明による通信方法の一態様は、IPv6プロトコルに従うパケットのヘッダのFlow Labelフィールドに、ネットワークスライスの種別を識別するためのスライス情報を設定する設定工程と、前記設定部により設定されたヘッダを含むパケットを送信する送信工程と、を有する。
 上記課題を解決するために、本発明による通信方法の別の態様は、IPv6プロトコルに従うパケットを受信する受信工程と、前記パケットのヘッダに含まれる情報に基づいて前記パケットの経路を決定する決定工程と、前記決定された経路に従って前記パケットを転送する転送工程と、を有し、前記ヘッダのFlow Labelフィールドには、ネットワークスライスの種別を識別するためのスライス情報が設定され、前記決定工程では、前記スライス情報に基づいて前記経路を決定する。
 上記課題を解決するために、本発明による制御プログラムの一態様は、通信処理をコンピュータに実行させるための制御プログラムであって、該プログラムは、前記コンピュータに、IPv6プロトコルに従うパケットのヘッダのFlow Labelフィールドに、ネットワークスライスの種別を識別するためのスライス情報を設定する設定処理と、前記設定処理により設定されたヘッダを含むパケットを送信する送信処理と、を含む処理を実行させるためのものである。
 上記課題を解決するために、本発明による制御プログラムの別の態様は、通信処理をコンピュータに実行させるための制御プログラムであって、該プログラムは、前記コンピュータに、IPv6プロトコルに従うパケットを受信する受信処理と、前記パケットのヘッダに含まれる情報に基づいて前記パケットの経路を決定する決定処理と、前記決定された経路に従って前記パケットを転送する転送処理と、を含む処理を実行させるためのものであり、前記ヘッダのFlow Labelフィールドには、ネットワークスライスの種別を識別するためのスライス情報が設定され、前記決定処理では、前記スライス情報に基づいて前記経路を決定する。
 本発明によれば、ネットワークスライシングが適用される通信システムにおいて、ネットワークスライスの種別の伝達の汎用性を向上させることが可能となる。
図1は、実施形態による通信システムの構成の一例を示す。 図2は、IPv6ヘッダのフォーマットを示す。 実施形態による基地局の機能構成例を示す図である。 実施形態によるノードの機能構成例を示す図である。 実施形態による通信装置のハードウェア構成例を示す図である。 実施形態による基地局により実行される処理のフローチャートである。 実施形態によるノードにより実行される処理のフローチャートである。
 以下、添付図面を参照して、本発明を実施するための実施形態について詳細に説明する。以下に開示される構成要素のうち、同一機能を有するものには同一の符号を付し、その説明を省略する。なお、以下に開示される実施形態は、本発明の実現手段としての一例であり、本発明が適用される装置の構成や各種条件によって適宜修正または変更されるべきものであり、本発明は以下の実施形態に限定されるものではない。また、本実施形態で説明されている特徴の組み合わせの全てが本発明の解決手段に必須のものとは限らない。
 (通信システムの構成)
 図1に、本実施形態による通信システムの構成の一例を示す。
 図1に示すように、本通信システムは、端末装置1、基地局2、ルータといったノード(ネットワーク管理装置)3、4から構成され、ノード4はコアネットワーク5に接続されている。本実施形態による通信システムは、IPv6(Internet Protocol Version 6)プロトコルに従うパケットの伝送が可能に構成される。
 端末装置1は、基地局2に接続可能に構成され、基地局2は、ノード3に接続されるように構成される。ノード3は第1のエリアに位置するノードであり、ノード4は第1のエリアよりも広域の第2のエリアに位置するノードである。
 なお、図1に示す通信システムの構成では、ノードについて、3台のノード3と1台のノード4が示されているが、ノード3やノード4の台数は特定の数に限定されない。また、ノード3が位置する第1のエリアやノード4が位置する第2のエリアより小さいもしくは大きいエリアに、他のノード(ルータ)が階層的に構成されてもよい。
 端末装置1は、データを含むパケット(トラフィック)や、当該パケットについて要求するネットワークスライスの種別を示すためのスライス識別子を送信する通信装置である。ネットワークスライスの種別については、後述する。当該スライス識別子は、3GPP(Third Generation Partnership Project)で規定されるS-NSSAI(Single-Network  Slice  Selection  Assistance  Information)といった識別子でありうる。端末装置1は、ユーザ装置(User Equipment(UE))、移動局(Mobile Station(MS))、移動局装置、移動端末、加入者ユニット、加入者局、ワイヤレス端末、移動体デバイスなどの移動型又は固定型のユーザ端機器を総称するものとする。また、端末装置1は、セルラ電話機、スマートフォン、パーソナルデジタルアシスタント(PDA)、タブレット、ラップトップ、ハンドヘルド通信デバイス、ハンドヘルドコンピューティングデバイス、衛星ラジオ、ワイヤレスモデムカード、CPE(Customer Premises Equipment)といったデバイスであってもよい。
 基地局2は、端末装置1から受信したパケットのヘッダ(IPv6プロトコルに従うヘッダ)に、後述するネットワークスライスの種別を識別するためのスライス情報を付与(設定)し、ノード3へ転送する通信装置である。なお、端末装置1が、パケットのヘッダにスライス情報を付与するように構成されてもよい。
 図2に、IPv6プロトコルに従うパケットのヘッダ(IPv6ヘッダ)のフォーマットを示す。ここで、Traffice Class(トラフィッククラス)フィールド21は8ビットで構成され、6ビットで構成されるDSCP(Differentiated Service Code Point)フィールド22を含む。DSCPフィールド22で示される値(DSCP値)は、パケット転送の優先度を示す値(優先度情報)である。DSCP値は、基地局2を管理する通信事業者により設定されうる。また、Flow Label(フローラベル)フィールド23は、IPv6で導入されたフィールドであり、通信経路の品質確保等のために使用することができることが想定されている。
 本実施形態では、基地局2(または端末装置1)は、Flow Labelフィールド23に、ネットワークスライスの種別を識別するためのスライス情報を含める(スライス情報をマーキングする)。当該スライス情報は、前述のネットワークスライス識別子に対応する情報でありうる。また、当該スライス情報は、当該ネットワークスライス識別子に対応して、基地局2を管理する通信事業者により設定される情報であってもよい。
 ここで、ネットワークスの種別について説明する。ネットワークスライスの種別としては、例えば、mMTC、URLLCおよびeMBBがある。mMTCは、massive Machine Type Communicationsの略であり、URLLCは、Ultra-Reliable and Low Latency Communicationsの略であり、eMBBは、enhanced Mobile Broad Bandの略である。
 mMTCは、物流管理、IoT(Internet of Things)、スマートシティ/スマートホーム、スマートメータ、センサ、ウェアラブル端末等のためのものである。
 URLLCは、スマート工場、ロボット・ドローンの遠隔制御、スマート農業、遠隔手術、交通管理、自動運転等のためのものである。
 eMBBは、高精細映像配信、ゲーム、VR(仮想現実)、AR(拡張現実)、自由視点映像、スタジアムでの超高密度トラフィック、高精細映像による監視等のためのものである。
 ノード3は、基地局2から受信したパケットのヘッダを解析し、当該ヘッダに含まれる情報に基づいて、コアネットワーク5へ転送する最適な信経路を決定し、決定した通信経路に従って、パケットを転送する。本実施形態では、ノード3は、SRv6(Segment Routing IPv6)、SR-MPLS(Multi-Protocol Label Switching)などのプロトコルを使用して転送処理を行うように構成されうる。
 本実施形態では、ノード3は、受信したパケットのヘッダにおけるFlow Labelフィールドに示されるスライス情報(スライスの種別)に基づいて、通信経路を決定する。図1の例では、基地局2からパケットを受信したノード3は、Flow Labelフィールドに示されるスライス情報に基づいて、コアネットワーク5への他のノード3(図1において基地局2と接続されていないノード3)やノード4を通る通信経路を決定する。
 また、ノード3は、受信したパケットのヘッダにおけるDSCP値に示される優先度に従って、複数のノードのそれぞれをつなぐ各リンクを決定する。例えば、トラフィックの混雑時(輻輳時、過負荷時)に、ノード3は、DSCP値に基づいて、コアネットワーク5へ接続するために、どのノードを残し(使用し)、どのノードを使用しないかを決定することができる。
 (基地局2の機能構成)
 図3に、基地局2の機能構成例を示す。
 基地局2は、その機能構成の一例として、受信部31、設定部32、および送信部33を有する。
 受信部31は、端末装置1からデータを含むパケットや要求するネットワークスライスの種別を示すためのスライス識別子を受信する。当該スライス識別子は、前述のようにS-NSSAIでありうる。
 設定部32は、スライス識別子に従って、ネットワークスライスの種別を示すスライス情報を、受信したパケットのヘッダにおけるFlow Labelフィールド(図2のFlow Labelフィールド23)に設定する。すなわち、設定部32は、Flow Labelフィールドにスライス情報を含める。また、設定部22は、ヘッダにおけるDSCP値に優先度情報を設定しうる。
 送信部33は、設定部32によりヘッダが設定されたパケットを、ノード3へ送信する。
 なお、端末装置1の機能構成は、前述の設定部32および送信部33を含んで構成されてもよい。
 (ノード3の機能構成)
 図4にノード(ネットワーク管理装置)3の機能構成例を示す。
 ノード3は、その機能構成の一例として、受信部41、経路決定部42、および転送部43を有する。
 受信部41は、基地局2からパケットを受信する。当該パケットのヘッダには、スライス情報が設定されている。
 経路決定部42は、受信部41により受信されたパケットのヘッダを解析し、当該ヘッダに含まれる情報(設定されている情報)に基づいて通信経路を決定する。本実施形態では、経路決定部42は、スライス情報に基づいて、通信経路を決定する。
 転送部43は、経路決定部42により決定された経路で、パケットを転送する。
 また、前述のように、トラフィックの混雑時には、経路決定部42は、受信されたパケットのヘッダに含まれるDSCP値に基づいて、各リンク間で使用するノードを決定し、これに従って、転送部43はパケットの転送を行う。
 (通信装置のハードウェア構成)
 図5は、本実施形態による通信装置(端末装置1、基地局2、ノード3)のハードウェア構成の非限定的一例を示す図である。
 本実施形態による通信装置は、単一または複数の、あらゆるコンピュータ、または他のいかなる処理プラットフォーム上にも実装することができる。通信装置は、クラウドを構成する汎用サーバ装置に実装されてもよく、専用のサーバ装置に実装されてもよい。
 図5を参照して、通信装置は、単一のコンピュータに実装される例が示されているが、本実施形態による通信装置は、複数のコンピュータを含むコンピュータシステムに実装されてよい。複数のコンピュータは、有線または無線のネットワークにより相互通信可能に接続されてよい。
 図5に示すように、通信装置は、CPU51と、ROM52と、RAM53と、HDD54と、入力部55と、表示部56と、通信I/F57と、システムバス58とを備えてよい。通信装置はまた、外部メモリを備えてよい。
 CPU(Central Processing Unit)51は、通信装置における動作を統括的に制御するものであり、データ伝送路であるシステムバス58を介して、各構成部(52~57)を制御する。
 ROM(Read Only Memory)52は、CPU51が処理を実行するために必要な制御プログラム等を記憶する不揮発性メモリである。なお、当該プログラムは、HDD(Hard Disk Drive)54、SSD(Solid State Drive)等の不揮発性メモリや着脱可能な記憶媒体(不図示)等の外部メモリに記憶されていてもよい。
 RAM(Random Access Memory)53は、揮発性メモリであり、CPU51の主メモリ、ワークエリア等として機能する。すなわち、CPU51は、処理の実行に際してROM52から必要なプログラム等をRAM53にロードし、当該プログラム等を実行することで各種の機能動作を実現する。
 HDD54は、例えば、CPU51がプログラムを用いた処理を行う際に必要な各種データや各種情報等を記憶している。また、HDD54には、例えば、CPU51がプログラム等を用いた処理を行うことにより得られた各種データや各種情報等が記憶される。
 入力部55は、キーボードやマウス等のポインティングデバイスにより構成される。
 表示部56は、液晶ディスプレイ(LCD)等のモニターにより構成される。表示部56は、各種パラメータや、他の装置との通信で使用される通信パラメータ等を通信装置へ指示入力するためのGUI(Graphical User Interface)を提供してよい。
 通信I/F57は、通信装置と外部装置との通信を制御するインタフェースである。
 図3や図4に示す基地局2やノード3の各要素のうち少なくとも一部の機能は、CPU51がプログラムを実行することで実現することができる。ただし、図3や図4に示す基地局2やノード3の各要素のうち少なくとも一部の機能が専用のハードウェアとして動作するようにしてもよい。この場合、専用のハードウェアは、CPU51の制御に基づいて動作する。
 (処理の流れ)
 図6に、本実施形態による基地局2により実行される処理のフローチャートを示す。
 S61において、受信部31は、端末装置1から送信されたパケットを受信する。
 S62において、設定部32は、受信部31により受信されたパケットのヘッダの設定を行う。ここで、設定部32は、パケットのヘッダにおけるFlow Labelフィールドに、スライス情報を設定する。また、設定部32は、当該ヘッダにおいてDSCP値を設定しうる。また、S62において、設定部32は、優先度のクラス分けを行うために、DSCP値(DSCPフィールド)に対してフィルタリングを行ってもよい。
 S63において、送信部33は、設定部32によりヘッダが設定されたパケットをノード3へ送信する。
 図7に、本実施形態によるノード3により実行される処理のフローチャートを示す。
 S71において、受信部41は、基地局2からパケットを受信する。当該パケットのヘッダには、少なくともスライス情報やDSCP値が設定されている。
 S72において、経路決定部42は、受信部31により受信されたパケットのヘッダを解析する。
 S73において、経路決定部42は、スライス情報を含む解析結果に基づいて、通信経路を決定する。すなわち、経路決定部42は、スライス情報が示すスライス種別の通信を実現できるように、通信経路を決定する。例えば、スライス種別がeMBBの場合は、予め保持しているリンクの通信容量等の情報に基づき、高速通信かつ大容量データ伝送が可能な通信経路を決定する。
 また、トラフィック混雑時には、経路決定部42は、DSCP値に基づいて、各リンク間で使用するノードを決定する。そのために、経路決定部42は、トラフィックの混雑度を測定する機能を有してもよい。
 S74において、転送部43は、経路決定部42により決定された経路で、パケットを転送する。すなわち、転送部43は、経路決定部42により決定されたパスを指定して、パケットを転送する。
 このように、本実施形態では、基地局は、IPv6ヘッダのFlow Labelフィールドに独立して、ネットワークスライスの種別を識別するためのスライス情報を設定してノードへ送信する。これにより、当該ノードは、当該ヘッダに設定されたFlow Labelフィールドを参照することにより取得したスライス情報に基づいて、スライス情報により示されるスライス種別の通信を実現するために最適な通信経路を決定することが可能となる。このように、Flow Labelフィールドを用いることにより、DSCP値といった送信制御情報と組み合わせてスライス種別を示さずに、独立したヘッダフィールド用いてスライス種別を通知することができ、結果として、システムの汎用性が向上する。
 なお、上記において特定の実施形態が説明されているが、当該実施形態は単なる例示であり、本発明の範囲を限定する意図はない。本明細書に記載された装置及び方法は上記した以外の形態において具現化することができる。また、本発明の範囲から離れることなく、上記した実施形態に対して適宜、省略、置換及び変更をなすこともできる。かかる省略、置換及び変更をなした形態は、請求の範囲に記載されたもの及びこれらの均等物の範疇に含まれ、本発明の技術的範囲に属する。
1:端末装置、2:基地局、3;4:ノード、5:コアネットワーク

Claims (7)

  1.  IPv6プロトコルに従うパケットのヘッダのFlow Labelフィールドに、ネットワークスライスの種別を識別するためのスライス情報を設定する設定部と、
     前記設定部により設定されたヘッダを含むパケットを送信する送信部と、
    を有することを特徴とする通信装置。
  2.  IPv6プロトコルに従うパケットを受信する受信部と、
     前記パケットのヘッダに含まれる情報に基づいて前記パケットの経路を決定する決定部と、
     前記決定された経路に従って前記パケットを転送する転送部と、を有し、
     前記ヘッダのFlow Labelフィールドには、ネットワークスライスの種別を識別するためのスライス情報が設定され、
     前記決定部は、前記スライス情報に基づいて前記経路を決定する
    ことを特徴とする通信装置。
  3.  前記決定部は、前記スライス情報、および、前記ヘッダのTraffice ClassフィールドにおけるDSCP(Differentiated Service Code Point)フィールドの値に基づいて、前記経路を決定することを特徴とする請求項2項に記載の通信装置。
  4.  IPv6プロトコルに従うパケットのヘッダのFlow Labelフィールドに、ネットワークスライスの種別を識別するためのスライス情報を設定する設定工程と、
     前記設定部により設定されたヘッダを含むパケットを送信する送信工程と、
    を有することを特徴とする通信方法。
  5.  IPv6プロトコルに従うパケットを受信する受信工程と、
     前記パケットのヘッダに含まれる情報に基づいて前記パケットの経路を決定する決定工程と、
     前記決定された経路に従って前記パケットを転送する転送工程と、を有し、
     前記ヘッダのFlow Labelフィールドには、ネットワークスライスの種別を識別するためのスライス情報が設定され、
     前記決定工程では、前記スライス情報に基づいて前記経路を決定する
    ことを特徴とする通信方法。
  6.  通信処理をコンピュータに実行させるための制御プログラムであって、該プログラムは、前記コンピュータに、
     IPv6プロトコルに従うパケットのヘッダのFlow Labelフィールドに、ネットワークスライスの種別を識別するためのスライス情報を設定する設定処理と、
     前記設定処理により設定されたヘッダを含むパケットを送信する送信処理と、
     を含む処理を実行させるためのものであることを特徴とする制御プログラム。
  7.  通信処理をコンピュータに実行させるための制御プログラムであって、該プログラムは、前記コンピュータに、
     IPv6プロトコルに従うパケットを受信する受信処理と、
     前記パケットのヘッダに含まれる情報に基づいて前記パケットの経路を決定する決定処理と、
     前記決定された経路に従って前記パケットを転送する転送処理と、を含む処理を実行させるためのものであり、
     前記ヘッダのFlow Labelフィールドには、ネットワークスライスの種別を識別するためのスライス情報が設定され、
     前記決定処理では、前記スライス情報に基づいて前記経路を決定する
    ことを特徴とする制御プログラム。
     
PCT/JP2021/047495 2021-12-22 2021-12-22 通信装置、ネットワーク管理装置、通信方法、およびプログラム WO2023119466A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/047495 WO2023119466A1 (ja) 2021-12-22 2021-12-22 通信装置、ネットワーク管理装置、通信方法、およびプログラム
US17/774,194 US20240172034A1 (en) 2021-12-22 2021-12-22 Communication apparatus, network management apparatus, and communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/047495 WO2023119466A1 (ja) 2021-12-22 2021-12-22 通信装置、ネットワーク管理装置、通信方法、およびプログラム

Publications (1)

Publication Number Publication Date
WO2023119466A1 true WO2023119466A1 (ja) 2023-06-29

Family

ID=86901564

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/047495 WO2023119466A1 (ja) 2021-12-22 2021-12-22 通信装置、ネットワーク管理装置、通信方法、およびプログラム

Country Status (2)

Country Link
US (1) US20240172034A1 (ja)
WO (1) WO2023119466A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019065059A1 (ja) * 2017-09-27 2019-04-04 ソニー株式会社 通信装置、通信方法及びコンピュータプログラム
US20210120484A1 (en) * 2019-10-16 2021-04-22 Samsung Electronics Co., Ltd. Method for user equipment initiated network slice registration and traffic forwarding in telecommunication networks

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019065059A1 (ja) * 2017-09-27 2019-04-04 ソニー株式会社 通信装置、通信方法及びコンピュータプログラム
US20210120484A1 (en) * 2019-10-16 2021-04-22 Samsung Electronics Co., Ltd. Method for user equipment initiated network slice registration and traffic forwarding in telecommunication networks

Also Published As

Publication number Publication date
US20240172034A1 (en) 2024-05-23

Similar Documents

Publication Publication Date Title
KR102519409B1 (ko) 다중 경로 미디어 전달을 위한 방법 및 장치
US10554538B2 (en) Dynamic link state routing protocol
TWI653855B (zh) 網路路線優化方法及軟體定義網路控制器
KR101844136B1 (ko) 분산 소프트웨어 정의 네트워킹 환경에서 네트워크 이상을 감지하는 방법, 장치 및 컴퓨터 프로그램
AU2020437137B2 (en) Application workload routing and interworking for network defined edge routing
JP6841918B2 (ja) フレキシブルイーサネットに基づいてサービスフローを送信するための方法および装置、ならびに通信システム
DE102013225692A1 (de) Netzwerkstatusabbildung
KR20080091131A (ko) 디지털 오브젝트 라우팅
US11100020B2 (en) Hybrid control plane data link agent and protocol
CN107454000A (zh) 网络数据传输装置及方法
JP5574944B2 (ja) 無線中継装置および無線中継方法
CN102821115B (zh) 一种点对点p2p传输资源的方法和装置
CN103067294B (zh) 多下一跳转发路由器中基于流保序的数据流均衡处理的方法
US20150026333A1 (en) Network system, network management apparatus and application management apparatus
US20170208529A1 (en) Packet processing method for software-defined network
WO2023119466A1 (ja) 通信装置、ネットワーク管理装置、通信方法、およびプログラム
Nguyen et al. An evolvable, scalable, and resilient control channel for software defined wireless access networks
CN116455817A (zh) 一种软件定义云网融合架构及路由实现方法
CN114710975A (zh) 多域间传输多传输网络上下文标识
CN116056149B (zh) 一种iab宿主节点的单工作业方法、装置、设备及介质
CN116390152B (zh) 用于通信核心网中atsss的数据传输方法、装置和介质
US20210218631A1 (en) System for implementing a data link layer protocol in a compute host
EP3534586B1 (en) Techniques for interaction between network protocols
CN117938744A (zh) 业务管理系统运行状态的调整方法、装置、设备及介质
CN116963171A (zh) 移动通信系统、信息交互方法、网元和确定性网络系统

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17774194

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21968903

Country of ref document: EP

Kind code of ref document: A1