WO2023119185A2 - Harmonic deceleration system, and power transmission system and robot system including same - Google Patents

Harmonic deceleration system, and power transmission system and robot system including same Download PDF

Info

Publication number
WO2023119185A2
WO2023119185A2 PCT/IB2022/062612 IB2022062612W WO2023119185A2 WO 2023119185 A2 WO2023119185 A2 WO 2023119185A2 IB 2022062612 W IB2022062612 W IB 2022062612W WO 2023119185 A2 WO2023119185 A2 WO 2023119185A2
Authority
WO
WIPO (PCT)
Prior art keywords
power transmission
transmission member
power
wave generator
deceleration system
Prior art date
Application number
PCT/IB2022/062612
Other languages
French (fr)
Korean (ko)
Other versions
WO2023119185A3 (en
Inventor
박재흥
유승빈
김승연
심재훈
성은호
Original Assignee
서울대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교 산학협력단 filed Critical 서울대학교 산학협력단
Publication of WO2023119185A2 publication Critical patent/WO2023119185A2/en
Publication of WO2023119185A3 publication Critical patent/WO2023119185A3/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H49/00Other gearings
    • F16H49/001Wave gearings, e.g. harmonic drive transmissions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/106Programme-controlled manipulators characterised by positioning means for manipulator elements with articulated links
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H49/00Other gearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H7/00Gearings for conveying rotary motion by endless flexible members
    • F16H7/02Gearings for conveying rotary motion by endless flexible members with belts; with V-belts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H7/00Gearings for conveying rotary motion by endless flexible members
    • F16H7/06Gearings for conveying rotary motion by endless flexible members with chains
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H49/00Other gearings
    • F16H49/001Wave gearings, e.g. harmonic drive transmissions
    • F16H2049/003Features of the flexsplines therefor

Definitions

  • Embodiments of the present disclosure relate to a harmonic deceleration system and a power transmission system and a robot system including the same. More specifically, by including a power transmission member extending through an opening formed between the wave generator and the circular spline, a harmonic deceleration system that can easily transmit power to an axis different from the rotational axis of the wave generator, and a power transmission system including the same and robotic systems.
  • harmonic reducer As a reducer used in a conventional power transmission system or robot system, a harmonic reducer is used together with an RV reducer and a planetary gear.
  • the harmonic reducer can obtain a reduced output by using the elasticity of metal, and can be smaller and lighter than conventional reducers (eg, gears). Based on these properties, harmonic reducers can be used in power systems with size and weight limitations.
  • the harmonic reducer can have the advantages of a high reduction ratio, high rotational precision, and zero backlash, so that it can be used in a precise power transmission system or robot joint system that requires a high reduction ratio, high rotational precision, and zero backlash.
  • the harmonic reducer is widely used not only in industrial robot systems but also in walking robot systems.
  • the harmonic reducer is used in the robot system, excessive costs may be consumed, and the power input and output axes are the same. This may result in difficulty in controlling the moment of inertia of the robot link (eg, an arm joint and a leg joint among robot joints) in which the harmonic reducer is used.
  • the flexible metal flex spline is relatively vulnerable to impact, there is a risk of breakage or damage. The risk of breaking or damaging the flex spline may lead to problems with the durability of the harmonic reducer.
  • the harmonic reducer In order to be applied to the power transmission system that has recently been lightened and refined, the harmonic reducer has disadvantages such as difficulty in controlling the moment of inertia of the robot link, the same power input shaft and output, and easy damage and breakage of the flex spline. There is a need to solve them.
  • the present disclosure provides a harmonic deceleration system according to an embodiment.
  • the harmonic speed reduction system aims to solve the disadvantages of the conventional harmonic speed reducer. More specifically, the harmonic reduction system according to one embodiment replaces a metal flex spline, which is one of the components of an existing harmonic reduction gear, with a flexible power transmission member.
  • the flexible power transmission member may extend from a power input shaft to a power output shaft. Due to the characteristics of the power transmission member, the harmonic deceleration system according to an embodiment can solve the disadvantages of the conventional harmonic decelerator in which the power input shaft and the power output shaft are the same.
  • the power transmission member of the harmonic reduction gearbox according to an embodiment is relatively stronger against external impact than the flex spline of the existing harmonic reduction gearbox, and is easy to replace. Therefore, it is possible to solve the disadvantage of the conventional harmonic reducer having low durability.
  • a commercially available chain or belt may be used as the power transmission member of the harmonic deceleration system according to one embodiment. It can solve the disadvantage that the flex spline of the existing harmonic reducer is difficult to design and manufacture.
  • the harmonic deceleration system according to an embodiment can greatly reduce manufacturing cost by replacing the flex spline as a power transmission member.
  • the present disclosure provides a power transmission system according to an embodiment and a robot system according to an embodiment.
  • a power transmission system according to an embodiment and a robot system according to an embodiment include a harmonic deceleration system according to an embodiment. Accordingly, the power transmission system according to one embodiment and the robot system according to one embodiment have a task to solve the disadvantages that may occur by including a conventional harmonic reducer. Since the disadvantages of the conventional harmonic reducer are as described above, a detailed description in the overlapping range will be omitted.
  • a harmonic deceleration system As a means for solving the problem, a harmonic deceleration system according to an embodiment of the present disclosure is provided.
  • a harmonic deceleration system includes a wave generator rotating about a first axis; a flexible power transmission member that contacts at least a portion of an outer circumferential surface of the wave generator, is configured to be rotatable by rotation of the wave generator, and is flexible; and circular splines having an inner circumferential surface contacting at least a portion of an outer circumferential surface of the power transmission member, wherein an opening through which the power transmission member can pass is formed between the wave generator and the circular splines, and wherein the power transmission member is formed. is configured to extend through the opening and transmit power to a second shaft different from the first shaft.
  • the circular spline includes a depression formed along an inner circumferential surface of the circular spline
  • the power transmission member includes a protrusion formed along an outer circumferential surface of the power transmission member
  • the wave generator rotates, one of the power transmission members The part is rotated while being pressed by the wave generator, and a part of the recessed part and a part of the protruding part may be engaged with each other at a variable point.
  • the number of first gears of the depression part and the number of second gears of the protrusion part may be different from each other.
  • the power transmission member may have a belt or chain shape.
  • the power transmission member may be configured to transmit power by contacting an output unit disposed on the second shaft.
  • a cross section of the circular spline in a direction transverse to the first axis may be semicircular.
  • the opening portion may include a first opening portion and a second opening portion, and the power transmission member may extend through the first opening portion and the second opening portion.
  • At least one of the wave generator, the power transmission member, and the circular spline of the harmonic deceleration system may be manufactured using a 3D printer.
  • a power transmission system includes a harmonic deceleration system according to an embodiment; a power unit configured to generate power and transmit the generated power to the harmonic deceleration system; and an output unit configured to receive power decelerated by the harmonic deceleration system.
  • a robot system includes a power transmission system and a robot link according to an embodiment.
  • a power input shaft and a power output shaft may be separated.
  • the power transmission member of the harmonic reduction gearbox according to an embodiment is relatively stronger against external impact than the flex spline of the existing harmonic reduction gearbox and can be easily replaced, thereby improving durability.
  • the power transmission member of the harmonic deceleration system according to an embodiment is easy to design and manufacture, and thus manufacturing cost can be reduced.
  • FIG. 1 is an exploded perspective view of a harmonic deceleration system according to an embodiment.
  • FIG. 2 is a combined perspective view of the harmonic deceleration system shown in FIG. 1;
  • FIG. 3 is a schematic diagram of one aspect of the harmonic deceleration system shown in FIG. 1;
  • Fig. 4 is a schematic diagram of another aspect of the harmonic deceleration system shown in Fig. 1;
  • FIG. 5 is a schematic diagram of a power transmission system according to an embodiment.
  • FIG. 6 is a schematic diagram of a robot system according to an embodiment.
  • Embodiments of the present disclosure are illustrated for the purpose of explaining the technical idea of the present disclosure.
  • the scope of rights according to the present disclosure is not limited to the specific description of the embodiments or these embodiments presented below.
  • FIG. 1 is an exploded perspective view of a harmonic deceleration system 100 according to one embodiment.
  • FIG. 2 is a combined perspective view of the harmonic deceleration system 100 shown in FIG. 1 .
  • the harmonic deceleration system 100 may include a wave generator 110 .
  • the wave generator 110 may be connected to the power unit 220 (FIG. 4).
  • the wave generator 110 may rotate by power generated by the power unit 220 .
  • the power unit 220 may be, for example, a motor.
  • the wave generator 110 may rotate around a predetermined axis. A predetermined axis around which the wave generator 110 rotates will be described below as a first axis A1.
  • the first shaft A1 may be the same as the shaft to which the power generated by the power unit 220 is transmitted.
  • the wave generator 110 may include an elliptical cam (not shown).
  • the wave generator 110 may include a ball bearing (not shown) positioned on an outer circumference of an elliptical cam.
  • the wave generator 110 can convert power generated by the power unit 220, that is, power in a circular shape, into power in the form of an elliptical wave and transmit the elastically deformed motion.
  • the harmonic deceleration system 100 may include a power transmission member 120 contacting at least a portion of an outer circumferential surface of the wave generator 110 .
  • the power transmission member 120 may contact at least a part of a ball bearing (not shown) of the wave generator 110 .
  • the power transmission member 120 may be configured to be rotatable by rotation of the wave generator 110 .
  • the power transmission member 120 may rotate in the same direction as the rotation direction of the wave generator 110 while being in contact with the wave generator 110 .
  • the power transmission member 120 may also rotate in the R1 direction.
  • the power transmission member 120 may also rotate in the R2 direction.
  • the power transmission member 120 may be flexible. That is, the power transmission member 120 may include a flexible material whose shape is partially changed by an external force.
  • the wave generator 110 may transmit wave-shaped power to the power transmission member 120 . As the wave generator 110 transmits wave-shaped power, a portion of the power transmission member 120 that contacts the wave generator 110 may move in an elliptical wave shape. That is, the portion of the power transmission member 120 that contacts the outer circumferential surface of the wave generator 110 is displaced to correspond to the rotation of the outer circumferential surface of the wave generator 110, and the entire wave generator 110 can rotate.
  • the harmonic deceleration system 100 includes circular splines 130 contacting the outer circumferential surface of the power transmission member 120 .
  • the circular spline 130 may have an inner circumferential surface contacting an outer circumferential surface of the power transmission member 120 . That is, at least a part of the inner circumferential surface of the circular spline 130 may contact the outer circumferential surface of the power transmission member 120 .
  • the circular splines 130 may cover at least a portion of the power transmission member 120 .
  • a cross section of the circular spline 130 in a direction transverse to the first axis A1 may be semicircular.
  • the first axis A1 may be a central axis around which the wave generator 110 rotates. That is, the circular spline 130 may have a shape of a predetermined portion of a cylinder. As long as the circular splines 130 surround at least a portion of the power transmission member 120, the shape of the circular splines 130 is not limited thereto and may be changed.
  • the circular spline 130 may be a rigid body.
  • the circular spline 130 is a part of the power transmission member 120 in contact with the outer circumferential surface of the wave generator 110, that is, a part of the power transmission member 120 that is displaced to correspond to the rotation of the outer circumferential surface of the wave generator 110. can come into contact with A reduction ratio may be determined based on contact between the circular spline 130 and the power transmission member 120 .
  • a detailed description of the power transmission mechanism of the harmonic deceleration system 100 will be described in more detail below.
  • the power transmission member 120 may be maintained between the wave generator 110 and the circular spline 130 .
  • An opening 125 may be formed between the wave generator 110 and the circular spline 130 .
  • the power transmission member 120 may extend through the opening 125 .
  • the power transmission member 120 may have an elliptical ring shape extending through an opening 125 formed between the wave generator 110 and the circular spline 130 .
  • the shape formed by extending the power transmission member 120 is not limited thereto and may be changed as needed.
  • the power transmission member 120 may extend through the opening 125 and contact the idler 140 .
  • the power transmission member 120 may extend to contact the wave generator 110 and the idler 140 , respectively.
  • One end of the power transmission member 120 may contact the wave generator 110 and the other end of the power transmission member 120 may extend to contact the idler 140 .
  • the wave generator 110 and the idler 140 may be spaced apart from each other and positioned at a predetermined distance.
  • the power transmission member 120 may have a belt or chain shape on which gears are formed on an outer surface.
  • the gear 121 may be, for example, a protrusion that protrudes a predetermined distance from the outer surface, but may be a concave portion in which the protrusion is accommodated when the corresponding portion is a protrusion.
  • the power transmission member 120 may have a shape of a timing belt passing through an opening 125 formed between the wave generator 110 and the circular spline 130 .
  • the length of the power transmitting member 120 may be changed according to a distance between an input shaft through which power is input and an output shaft through which power is output.
  • the power transmitting member 120 may be configured to extend through the opening 125 and transmit power to a shaft other than the first shaft A1.
  • the other axis will be described below as the second axis A2, and the second axis A2 may be any one axis different from the first axis A1.
  • a power unit 220 generating power may be located on the first shaft A1.
  • An output unit 210 receiving power may be located on the second shaft A2.
  • the output unit 210 may be, for example, an output gear.
  • the output unit 210 may be one component of the power transmission system 200 to be described in detail with reference to FIG. 5 below.
  • the output unit 210 may be located near the idler 140 .
  • the power transmission member 120 may contact the output unit 210 positioned on the second shaft A2.
  • the power transmission member 120 may receive power generated from the power unit 220 located on the first shaft A1 and transmit the power to the output unit 210 located on the second shaft A2.
  • FIG. 3 is a schematic diagram of one aspect of the harmonic deceleration system 100 shown in FIG. 1 .
  • FIG. 4 is a schematic diagram of another aspect of the harmonic deceleration system 100 shown in FIG. 1 .
  • the circular spline 130 of the harmonic deceleration system 100 includes a depression 131 formed along an inner circumferential surface of the circular spline 130 .
  • the power transmission member 120 of the harmonic deceleration system 100 includes a protrusion 121 formed along an outer circumferential surface of the power transmission member 120 .
  • the depression 131 and the protrusion 121 are formed to correspond to each other.
  • the power transmission member 120 may have a depression and a protrusion may be formed on the circular spline 130 .
  • the total number of teeth of the recessed portion 131 (the first number of teeth) and the total number of teeth of the protrusion 121 (the second number of teeth) are different from each other.
  • a reduced output can be delivered due to a difference between the number of first gears and the number of second gears.
  • a portion of the power transmission member 120 is pressed by the wave generator 110 and rotates.
  • a portion of the recessed portion 131 and a portion of the protruding portion 121 may be engaged with each other at a variable point. That is, the point where the depression 131 and the protrusion 121 meet may change according to the rotation of the wave generator 110 .
  • the long axis X1 of the wave generator 110 may be aligned in the longitudinal direction in the drawing.
  • the power transmission member 120 contacts the wave generator 110 and is elastically deformed into an elliptical shape in the same direction as the direction in which the wave generator 110 is aligned (the direction in which the long axis X1 is vertically aligned).
  • the first part 120a of the power transmission member 120 and the first part 130a of the circular spline 130 come into contact with each other.
  • the first part 120a of the power transmission member 120 and the first part 130a of the circular spline 130 may be plural.
  • a portion 131a of the depression 131 formed on the first portion 130a of the circular spline 130 and a portion 121a of the protrusion 121 formed on the first portion 120a of the power transmission member 120 ) can be meshed with each other.
  • the second part 120b of the power transmission member 120 and the second part 130b of the circular spline 130 may be spaced apart from each other.
  • the long axis X1 of the wave generator 110 may be aligned in the transverse direction in the drawing. That is, in one aspect of the harmonic deceleration system 100, the wave generator 110 may have a shape rotated at a substantially right angle.
  • the power transmission member 120 comes into contact with the wave generator 110 and is elastically deformed into an elliptical shape in the same direction as the direction in which the wave generator 110 is aligned (a direction in which the long axes X1 are aligned in the transverse direction).
  • the second portion 120b of the power transmission member 120 and the second portion 130b of the circular spline 130 come into contact with each other.
  • the second part 120b of the power transmission member 120 and the second part 130b of the circular spline 130 may be singular.
  • Another part 131b of the depression 131 formed on the second part 130b of the circular spline 130 and another part of the protrusion 121 formed on the second part 120b of the power transmission member 120 (121b) may be meshed with each other.
  • the first part 120a of the power transmission member 120 and the first part 130a of the circular spline 130 may be spaced apart from each other.
  • the circular splines 130 may provide a reduction ratio by mutual contact with the power transmission member 120 .
  • the power transmission member 120 is pressed by the wave generator 110 and deformed into an elliptical shape.
  • a desired reduction ratio may be provided as a portion of the recessed portion 131 and a portion of the protruding portion 121 are engaged with each other at a variable point.
  • At least one of the wave generator 110, the power transmission member 120, and the circular spline 130 of the harmonic deceleration system 100 may be manufactured using a 3D printer.
  • the wave generator 110 may be manufactured using a 3D printer, and at least a part of the wave generator 110 manufactured using the 3D printer may include a resin material.
  • the power transmission member 120 of the harmonic deceleration system 100 may perform both functions for deceleration and power transmission. Accordingly, power can be effectively transmitted with a sufficient reduction ratio.
  • the power transmission member 120 of the harmonic deceleration system 100 may include a part such as a belt or a chain, manufacturing cost reduction can be expected.
  • the power transmission member 120 of the harmonic deceleration system 100 is stronger against external impact than a corresponding component (eg, a flex spline) of an existing harmonic decelerator, and is easy to replace.
  • a corresponding component eg, a flex spline
  • the durability of the harmonic deceleration system 100 can be increased.
  • FIG. 5 is a schematic diagram of a power transmission system 200 according to an embodiment.
  • the power transmission system 200 includes the harmonic deceleration system 100 according to the above-described embodiment.
  • the power transmission system 200 includes a power unit 220 configured to generate power and transmit the generated power to the harmonic deceleration system 100 .
  • the power unit 220 may be connected to the harmonic deceleration system 100 .
  • the power unit 220 may be, for example, a motor.
  • the power unit 220 may generate rotational power and transmit it to the harmonic deceleration system 100 .
  • the power unit may generate rotational power rotating around the first axis A1 and transmit it to the harmonic deceleration system 100 .
  • the power transmission system 200 includes an output unit 210 configured to receive power decelerated by the harmonic deceleration system 100 .
  • the output unit 210 may be connected to the harmonic deceleration system 100 .
  • the output unit 210 may be, for example, an output gear.
  • the output unit 210 may be arranged to rotate around the second axis A2.
  • power generated in the power unit 220 connected to one end of the harmonic deceleration system 100 may be transmitted to the harmonic deceleration system 100 .
  • the power generated by the power unit 220 may be rotational power rotating about the first axis A1.
  • Power transmitted to the harmonic deceleration system 100 may be reduced by the harmonic deceleration system 100 .
  • the reduced power may be transmitted to the output unit 210 connected to the other end side of the harmonic deceleration system 100 .
  • the output unit 210 may be arranged to output power by rotating about the second axis A2.
  • the output (decelerated power) output through the output unit 210 may be, for example, movement of a robot arm or a robot leg.
  • FIG. 6 is a schematic diagram of a robot system 300 according to an embodiment.
  • the robot system 300 may include the power transmission system 200 according to an embodiment.
  • the robot system 300 includes the power transmission system 200 according to the above-described embodiment.
  • the robot transmission system includes a robot link 310 connected to the power transmission system 200 .
  • the robot link 310 may move by receiving power from the power transmission system 200 .
  • the robot link 310 may be one of the robot joints.
  • the robot system 300 when it is a walking robot, it may be a leg joint.
  • the leg joints may be configured to move using power transmitted from the power transmission system 200 and allow the walking robot to walk.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Manipulator (AREA)
  • Retarders (AREA)

Abstract

A harmonic deceleration system according to one embodiment comprises: a wave generator rotating around a first shaft; a flexible power transmission member which is in contact with at least a portion of the outer peripheral surface of the wave generator, and which can rotate by means of the rotation of the wave generator; and a circular spline having an inner peripheral surface in contact with at least a portion of the outer peripheral surface of the power transmission member, wherein an opening enabling the power transmission member to pass therethrough is formed between the wave generator and the circular spline, and the power transmission member passes through the opening and extends so that power can be transmitted to a second shaft differing from the first shaft.

Description

조화 감속 시스템 및 이를 포함하는 동력 전달 시스템 및 로봇 시스템{HARMONIC REDUCING SYSTEM, AND POWER TRANSMISSION SYSTEM AND ROBOT SYSTEM INCLUDING THE SAME}Harmonic deceleration system and power transmission system and robot system including the same
본 개시의 실시예들은 조화 감속 시스템 및 이를 포함하는 동력 전달 시스템과 로봇 시스템에 관한 것이다. 보다 상세하게 웨이브 제네레이터와 서큘러 스플라인 사이에 형성된 개방부를 통과해 연장되는 동력 전달 부재를 포함함으로써, 웨이브 제네레이터의 회전 축과 다른 축으로 용이하게 동력을 전달할 수 있는 조화 감속 시스템 및 이를 포함하는 동력 전달 시스템과 로봇 시스템에 관한 것이다.Embodiments of the present disclosure relate to a harmonic deceleration system and a power transmission system and a robot system including the same. More specifically, by including a power transmission member extending through an opening formed between the wave generator and the circular spline, a harmonic deceleration system that can easily transmit power to an axis different from the rotational axis of the wave generator, and a power transmission system including the same and robotic systems.
종래의 동력 전달 시스템이나 로봇 시스템에 사용되는 감속기로서, RV 감속기, 유성 기어와 함께 조화 감속기가 사용된다. 특히, 조화 감속기는 금속의 탄성을 이용함으로써 감속된 출력을 획득할 수 있는데, 기존의 감속기(예를 들어, 기어)에 비해 소형, 경량화될 수 있다. 이러한 성질에 기초하여, 조화 감속기는 크기, 무게에 대한 제한이 있는 동력 시스템에 사용될 수 있다.As a reducer used in a conventional power transmission system or robot system, a harmonic reducer is used together with an RV reducer and a planetary gear. In particular, the harmonic reducer can obtain a reduced output by using the elasticity of metal, and can be smaller and lighter than conventional reducers (eg, gears). Based on these properties, harmonic reducers can be used in power systems with size and weight limitations.
또한, 조화 감속기는 고 감속비, 높은 회전 정밀도, 제로(zero) 백래쉬의 장점을 가질 수 있어, 고 감속비, 높은 회전 정밀도 및 제로 백래쉬가 필요로 하는 정밀한 동력 전달 시스템이나 로봇 관절 시스템에 사용될 수 있다.In addition, the harmonic reducer can have the advantages of a high reduction ratio, high rotational precision, and zero backlash, so that it can be used in a precise power transmission system or robot joint system that requires a high reduction ratio, high rotational precision, and zero backlash.
상술한 조화 감속기의 특성으로 인해, 조화 감속기는 산업용 로봇 시스템 뿐 아니라 보행이 가능한 로봇 시스템에서도 많이 사용된다. 다만, 조화 감속기를 로봇 시스템에 사용할 경우 과다한 비용이 소모될 수 있으며, 동력의 입력 축과 출력 축이 동일하다. 이는 조화 감속기가 사용되는 로봇 링크(예를 들어, 로봇 관절 중 팔 관절 및 다리 관절)의 관성 모멘트를 조절하기 어려운 결과를 초래할 수 있다. 또한, 조화 감속기의 구성 요소 중, 가요성의 금속 플렉스 스플라인은 충격에 상대적으로 취약하기 때문에 파손 또는 손상의 위험이 있다. 플렉스 스플라인의 파손 또는 손상의 위험은 조화 감속기의 내구성에 대한 문제점으로 이어질 수 있다. Due to the characteristics of the above-described harmonic reducer, the harmonic reducer is widely used not only in industrial robot systems but also in walking robot systems. However, if the harmonic reducer is used in the robot system, excessive costs may be consumed, and the power input and output axes are the same. This may result in difficulty in controlling the moment of inertia of the robot link (eg, an arm joint and a leg joint among robot joints) in which the harmonic reducer is used. In addition, among the components of the harmonic reducer, since the flexible metal flex spline is relatively vulnerable to impact, there is a risk of breakage or damage. The risk of breaking or damaging the flex spline may lead to problems with the durability of the harmonic reducer.
최근의 경량화, 정밀화되고 있는 동력 전달 시스템에 적용되기 위해서 조화 감속기는 로봇 링크의 관성 모멘트를 조절하기 어려운 점 및 동력의 입력 축과 출력이 동일한 점 및 플렉스 스플라인이 손상 및 파손되기 쉬운 점 등과 같은 단점들을 해결할 필요성이 있다. In order to be applied to the power transmission system that has recently been lightened and refined, the harmonic reducer has disadvantages such as difficulty in controlling the moment of inertia of the robot link, the same power input shaft and output, and easy damage and breakage of the flex spline. There is a need to solve them.
본 개시는 일 실시예에 따른 조화 감속 시스템을 제공한다.The present disclosure provides a harmonic deceleration system according to an embodiment.
일 실시예에 따른 조화 감속 시스템은 종래의 조화 감속기의 단점들을 해결하는 것을 과제로 한다. 보다 상세하게, 일 실시예들에 따른 조화 감속 시스템은 기존 조화 감속기의 구성 요소 중 하나인 금속 플렉스 스플라인을 가요성의 동력 전달 부재로 대체한다. 가요성의 동력 전달 부재는 동력의 입력 축으로부터 동력의 출력 축까지 연장될 수 있다. 동력 전달 부재의 특징에 의해 일 실시예에 따른 조화 감속 시스템은 동력의 입력 축과 동력의 출력 축이 동일한 기존 조화 감속기의 단점을 해결할 수 있다.The harmonic speed reduction system according to an embodiment aims to solve the disadvantages of the conventional harmonic speed reducer. More specifically, the harmonic reduction system according to one embodiment replaces a metal flex spline, which is one of the components of an existing harmonic reduction gear, with a flexible power transmission member. The flexible power transmission member may extend from a power input shaft to a power output shaft. Due to the characteristics of the power transmission member, the harmonic deceleration system according to an embodiment can solve the disadvantages of the conventional harmonic decelerator in which the power input shaft and the power output shaft are the same.
또한, 일 실시예에 따른 조화 감속 시스템의 동력 전달 부재는 기존 조화 감속기의 플렉스 스플라인보다 외부 충격에 상대적으로 강하고, 교체가 용이하다. 따라서, 내구성이 약한 종래의 조화 감속기의 단점을 해결할 수 있다.In addition, the power transmission member of the harmonic reduction gearbox according to an embodiment is relatively stronger against external impact than the flex spline of the existing harmonic reduction gearbox, and is easy to replace. Therefore, it is possible to solve the disadvantage of the conventional harmonic reducer having low durability.
또한, 일 실시예에 따른 조화 감속 시스템의 동력 전달 부재는 상용품으로 존재하는 체인이나 벨트를 사용할 수 있다. 기존 조화 감속기의 플렉스 스플라인이 설계 및 제조 과정이 어렵다는 단점을 해결할 수 있다. 일 실시예에 따른 조화 감속 시스템은 동력 전달 부재로 플렉스 스플라인을 대체함으로써 제조원가를 크게 낮출 수 있다.In addition, a commercially available chain or belt may be used as the power transmission member of the harmonic deceleration system according to one embodiment. It can solve the disadvantage that the flex spline of the existing harmonic reducer is difficult to design and manufacture. The harmonic deceleration system according to an embodiment can greatly reduce manufacturing cost by replacing the flex spline as a power transmission member.
본 개시는 일 실시예에 따른 동력 전달 시스템 및 일 실시예에 따른 로봇 시스템을 제공한다.The present disclosure provides a power transmission system according to an embodiment and a robot system according to an embodiment.
일 실시예에 따른 동력 전달 시스템 및 일 실시예에 따른 로봇 시스템은 실시예에 따른 조화 감속 시스템을 포함한다. 이에 따라, 일 실시예에 따른 동력 전달 시스템 및 일 실시예에 따른 로봇 시스템은 종래의 조화 감속기를 포함함으로써 발생할 수 있는 단점들을 해결하는 것을 과제로 한다. 종래의 조화 감속기의 단점들은 상술한 바와 같으므로, 중복되는 범위에서의 상세한 설명은 생략한다.A power transmission system according to an embodiment and a robot system according to an embodiment include a harmonic deceleration system according to an embodiment. Accordingly, the power transmission system according to one embodiment and the robot system according to one embodiment have a task to solve the disadvantages that may occur by including a conventional harmonic reducer. Since the disadvantages of the conventional harmonic reducer are as described above, a detailed description in the overlapping range will be omitted.
과제 해결 수단으로서 본 개시의 일 실시예에 따른 조화 감속 시스템이 제공된다.As a means for solving the problem, a harmonic deceleration system according to an embodiment of the present disclosure is provided.
일 실시예에 따른 조화 감속 시스템은, 제 1 축을 중심으로 회전하는 웨이브 제네레이터; 상기 웨이브 제네레이터의 외주면의 적어도 일부와 접촉하며, 상기 웨이브 제네레이터의 회전에 의해 회전 가능하도록 구성되고, 가요성인 동력 전달 부재; 및 상기 동력 전달 부재의 외주면의 적어도 일부와 접촉하는 내주면을 갖는 서큘러 스플라인;을 포함하고, 상기 웨이브 제네레이터와 상기 서큘러 스플라인 사이에는 상기 동력 전달 부재가 통과할 수 있는 개방부가 형성되고, 상기 동력 전달 부재는 상기 개방부를 통과해 연장되어 상기 제 1 축과는 다른 제 2 축에 동력을 전달 가능하도록 구성된다.A harmonic deceleration system according to an embodiment includes a wave generator rotating about a first axis; a flexible power transmission member that contacts at least a portion of an outer circumferential surface of the wave generator, is configured to be rotatable by rotation of the wave generator, and is flexible; and circular splines having an inner circumferential surface contacting at least a portion of an outer circumferential surface of the power transmission member, wherein an opening through which the power transmission member can pass is formed between the wave generator and the circular splines, and wherein the power transmission member is formed. is configured to extend through the opening and transmit power to a second shaft different from the first shaft.
상기 서큘러 스플라인은 상기 서큘러 스플라인의 내주면을 따라 형성된 함몰부를 포함하고, 상기 동력 전달 부재는 상기 동력 전달 부재의 외주면을 따라 형성된 돌기부를 포함하고, 상기 웨이브 제네레이터가 회전함에 따라, 상기 동력 전달 부재의 일 부분은 상기 웨이브 제네레이터에 의해 가압되며 회전하고, 상기 함몰부의 일 부분과 상기 돌기부의 일 부분은 가변하는 지점에서 서로 치합될 수 있다.The circular spline includes a depression formed along an inner circumferential surface of the circular spline, the power transmission member includes a protrusion formed along an outer circumferential surface of the power transmission member, and as the wave generator rotates, one of the power transmission members The part is rotated while being pressed by the wave generator, and a part of the recessed part and a part of the protruding part may be engaged with each other at a variable point.
상기 함몰부의 제 1 치차 수와 상기 돌기부의 제 2 치차 수는 서로 상이할 수 있다.The number of first gears of the depression part and the number of second gears of the protrusion part may be different from each other.
상기 동력 전달 부재는 벨트(belt) 혹은 체인(chain) 형상일 수 있다.The power transmission member may have a belt or chain shape.
상기 동력 전달 부재는 상기 제 2 축에 배치된 출력부와 접촉함으로써 동력 전달이 가능하도록 구성될 수 있다.The power transmission member may be configured to transmit power by contacting an output unit disposed on the second shaft.
상기 서큘러 스플라인의 상기 제 1 축을 가로지르는 방향의 단면은 반원형일 수 있다.A cross section of the circular spline in a direction transverse to the first axis may be semicircular.
상기 개방부는 제 1 개방부와 제 2 개방부를 포함하고, 상기 동력 전달 부재는 상기 제 1 개방부 및 상기 제 2 개방부를 통과하며 연장될 수 있다.The opening portion may include a first opening portion and a second opening portion, and the power transmission member may extend through the first opening portion and the second opening portion.
상기 조화 감속 시스템의 상기 웨이브 제네레이터, 상기 동력 전달 부재 및 상기 서큘러 스플라인 중 적어도 하나는 3D 프린터를 이용해 제조될 수 있다.At least one of the wave generator, the power transmission member, and the circular spline of the harmonic deceleration system may be manufactured using a 3D printer.
과제 해결 수단으로서 본 개시의 일 실시예에 따른 동력 전달 시스템이 제공된다.As a means for solving the problems, a power transmission system according to an embodiment of the present disclosure is provided.
일 실시예에 따른 동력 전달 시스템은 일 실시예에 따른 조화 감속 시스템; 동력을 생성하고, 생성된 동력을 상기 조화 감속 시스템에 전달하도록 구성된 동력부; 및 상기 조화 감속 시스템에 의해 감속된 동력을 전달받도록 구성된 출력부;를 포함한다.A power transmission system according to an embodiment includes a harmonic deceleration system according to an embodiment; a power unit configured to generate power and transmit the generated power to the harmonic deceleration system; and an output unit configured to receive power decelerated by the harmonic deceleration system.
과제 해결 수단으로서 본 개시의 일 실시예에 따른 로봇 시스템이 제공된다.As a means for solving the problem, a robot system according to an embodiment of the present disclosure is provided.
일 실시예에 따른 로봇 시스템은 일 실시예에 따른 동력 전달 시스템 및 로봇 링크를 포함한다.A robot system according to an embodiment includes a power transmission system and a robot link according to an embodiment.
일 실시예에 따른 조화 감속 시스템은 동력의 입력 축과 동력의 출력 축을 분리할 수 있다.In the harmonic deceleration system according to an embodiment, a power input shaft and a power output shaft may be separated.
일 실시예에 따른 조화 감속 시스템의 동력 전달 부재는 기존 조화 감속기의 플렉스 스플라인보다 외부 충격에 상대적으로 강하고, 교체가 용이함에 따라, 내구성을 향상시킬 수 있다.The power transmission member of the harmonic reduction gearbox according to an embodiment is relatively stronger against external impact than the flex spline of the existing harmonic reduction gearbox and can be easily replaced, thereby improving durability.
일 실시예에 따른 조화 감속 시스템의 동력 전달 부재는 설계 및 제조과정이 용이하며, 이에 따라 제조원가를 감소시킬 수 있다.The power transmission member of the harmonic deceleration system according to an embodiment is easy to design and manufacture, and thus manufacturing cost can be reduced.
도 1은 일 실시예에 따른 조화 감속 시스템의 분해 사시도이다.1 is an exploded perspective view of a harmonic deceleration system according to an embodiment.
도 2는 도 1에 도시된 조화 감속 시스템의 결합 사시도이다.2 is a combined perspective view of the harmonic deceleration system shown in FIG. 1;
도 3은 도 1에 도시된 조화 감속 시스템의 일 양태에서의 모식도이다.3 is a schematic diagram of one aspect of the harmonic deceleration system shown in FIG. 1;
도 4는 도 1에 도시된 조화 감속 시스템의 다른 양태에서의 모식도이다.Fig. 4 is a schematic diagram of another aspect of the harmonic deceleration system shown in Fig. 1;
도 5는 일 실시예에 따른 동력 전달 시스템의 모식도이다.5 is a schematic diagram of a power transmission system according to an embodiment.
도 6은 일 실시예에 따른 로봇 시스템의 모식도이다.6 is a schematic diagram of a robot system according to an embodiment.
본 개시의 실시예들은 본 개시의 기술적 사상을 설명하기 위한 목적으로 예시된 것이다. 본 개시에 따른 권리범위가 이하에 제시되는 실시예들이나 이들 실시예들에 대한 구체적 설명으로 한정되는 것은 아니다.Embodiments of the present disclosure are illustrated for the purpose of explaining the technical idea of the present disclosure. The scope of rights according to the present disclosure is not limited to the specific description of the embodiments or these embodiments presented below.
본 개시에 사용되는 모든 기술적 용어들 및 과학적 용어들은, 달리 정의되지 않는 한, 본 개시가 속하는 기술 분야에서 통상의 지식을 가진 자에게 일반적으로 이해되는 의미를 갖는다. 본 개시에 사용되는 모든 용어들은 본 개시를 더욱 명확히 설명하기 위한 목적으로 선택된 것이며 본 개시에 따른 권리범위를 제한하기 위해 선택된 것이 아니다.All technical terms and scientific terms used in this disclosure have meanings commonly understood by those of ordinary skill in the art to which this disclosure belongs, unless otherwise defined. All terms used in this disclosure are selected for the purpose of more clearly describing the disclosure and are not selected to limit the scope of rights according to the disclosure.
본 개시에서 사용되는 "포함하는", "구비하는", "갖는" 등과 같은 표현은, 해당 표현이 포함되는 어구 또는 문장에서 달리 언급되지 않는 한, 다른 실시예를 포함할 가능성을 내포하는 개방형 용어(open-ended terms)로 이해되어야 한다.Expressions such as "comprising", "including", "having", etc. used in this disclosure are open-ended terms that imply the possibility of including other embodiments, unless otherwise stated in the phrase or sentence in which the expression is included. (open-ended terms).
본 개시에서 기술된 단수형의 표현은 달리 언급하지 않는 한 복수형의 의미를 포함할 수 있으며, 이는 청구범위에 기재된 단수형의 표현에도 마찬가지로 적용된다.Expressions in the singular form described in this disclosure may include plural meanings unless otherwise stated, and this applies equally to expressions in the singular form described in the claims.
이하, 첨부한 도면들을 참조하여, 본 개시의 실시예들을 설명한다. 첨부된 도면에서, 동일하거나 대응하는 구성요소에는 동일한 참조부호가 부여되어 있다. 또한, 이하의 실시예들의 설명에 있어서, 동일하거나 대응하는 구성요소를 중복하여 기술하는 것이 생략될 수 있다. 그러나, 구성요소에 관한 기술이 생략되어도, 그러한 구성요소가 어떤 실시예에 포함되지 않는 것으로 의도되지는 않는다.Hereinafter, embodiments of the present disclosure will be described with reference to the accompanying drawings. In the accompanying drawings, identical or corresponding elements are given the same reference numerals. In addition, in the description of the following embodiments, overlapping descriptions of the same or corresponding components may be omitted. However, omission of a description of a component does not intend that such a component is not included in an embodiment.
도 1은 일 실시예에 따른 조화 감속 시스템(100)의 분해 사시도이다. 도 2는 도 1에 도시된 조화 감속 시스템(100)의 결합 사시도이다.1 is an exploded perspective view of a harmonic deceleration system 100 according to one embodiment. FIG. 2 is a combined perspective view of the harmonic deceleration system 100 shown in FIG. 1 .
일 실시예에 따른 조화 감속 시스템(100)은 웨이브 제네레이터(110)를 포함할 수 있다.The harmonic deceleration system 100 according to an embodiment may include a wave generator 110 .
웨이브 제네레이터(110)는 동력부(220; 도 4)에 연결될 수 있다. 웨이브 제네레이터(110)는 동력부(220)에서 생성된 동력에 의해 회전할 수 있다. 동력부(220)는 예를 들어 모터일 수 있다. 웨이브 제네레이터(110)는 소정의 축을 중심으로 회전할 수 있다. 웨이브 제네레이터(110)가 회전하는 소정의 축을 제 1 축(A1)으로 하여 이하에서 설명한다. 제 1 축(A1)은, 동력부(220)에 의해 생성된 동력이 전달되는 축과 동일할 수 있다.The wave generator 110 may be connected to the power unit 220 (FIG. 4). The wave generator 110 may rotate by power generated by the power unit 220 . The power unit 220 may be, for example, a motor. The wave generator 110 may rotate around a predetermined axis. A predetermined axis around which the wave generator 110 rotates will be described below as a first axis A1. The first shaft A1 may be the same as the shaft to which the power generated by the power unit 220 is transmitted.
웨이브 제네레이터(110)는 타원 형상의 캠(미도시)을 포함할 수 있다. 웨이브 제네레이터(110)는 타원 형상의 캠 외주에 위치하는 볼 베어링(미도시)을 포함할 수 있다. 웨이브 제네레이터(110)는 탄성 변형 운동함으로써 동력부(220)에 의해 생성된 동력, 즉 원형의 동력을 타원의 웨이브 형태의 동력으로 바꾸어 전달할 수 있다.The wave generator 110 may include an elliptical cam (not shown). The wave generator 110 may include a ball bearing (not shown) positioned on an outer circumference of an elliptical cam. The wave generator 110 can convert power generated by the power unit 220, that is, power in a circular shape, into power in the form of an elliptical wave and transmit the elastically deformed motion.
일 실시예에 따른 조화 감속 시스템(100)은 웨이브 제네레이터(110)의 외주면의 적어도 일부와 접촉하는 동력 전달 부재(120)를 포함할 수 있다. 예를 들어, 동력 전달 부재(120)는 웨이브 제네레이터(110)의 볼 베어링(미도시)의 적어도 일부와 접촉할 수 있다. The harmonic deceleration system 100 according to an exemplary embodiment may include a power transmission member 120 contacting at least a portion of an outer circumferential surface of the wave generator 110 . For example, the power transmission member 120 may contact at least a part of a ball bearing (not shown) of the wave generator 110 .
동력 전달 부재(120)는 웨이브 제네레이터(110)의 회전에 의해 회전 가능하도록 구성될 수 있다. 동력 전달 부재(120)는 웨이브 제네레이터(110)와 접촉한 채, 웨이브 제네레이터(110)의 회전 방향과 동일한 방향으로 회전할 수 있다. 예를 들어, 웨이브 제네레이터(110)가 R1 방향으로 회전할 때, 동력 전달 부재(120) 또한 R1 방향으로 회전할 수 있다. 다른 예시로서, 웨이브 제네레이터가 R2 방향으로 회전하면, 동력 전달 부재(120) 또한 R2 방향으로 회전할 수 있음은 자명한 사실이다.The power transmission member 120 may be configured to be rotatable by rotation of the wave generator 110 . The power transmission member 120 may rotate in the same direction as the rotation direction of the wave generator 110 while being in contact with the wave generator 110 . For example, when the wave generator 110 rotates in the R1 direction, the power transmission member 120 may also rotate in the R1 direction. As another example, it is obvious that when the wave generator rotates in the R2 direction, the power transmission member 120 may also rotate in the R2 direction.
동력 전달 부재(120)는 가요성일 수 있다. 즉, 동력 전달 부재(120)는 외력에 의해 일부 형상이 변하는 플렉서블(flexible)한 재질을 포함할 수 있다. 웨이브 제네레이터(110)는 웨이브 형태의 동력을 동력 전달 부재(120)로 전달할 수 있다. 웨이브 제네레이터(110)가 웨이브 형태의 동력을 전달함에 따라, 동력 전달 부재(120) 중 웨이브 제네레이터(110)와 접촉하는 부분은 타원의 웨이브 형태로 움직일 수 있다. 즉, 동력 전달 부재(120) 중 웨이브 제네레이터(110)의 외주면과 접촉하는 부분은 웨이브 제네레이터(110)의 외주면이 회전하는 형태에 대응되도록 변위되며, 웨이브 제네레이터(110) 전체가 회전할 수 있다.The power transmission member 120 may be flexible. That is, the power transmission member 120 may include a flexible material whose shape is partially changed by an external force. The wave generator 110 may transmit wave-shaped power to the power transmission member 120 . As the wave generator 110 transmits wave-shaped power, a portion of the power transmission member 120 that contacts the wave generator 110 may move in an elliptical wave shape. That is, the portion of the power transmission member 120 that contacts the outer circumferential surface of the wave generator 110 is displaced to correspond to the rotation of the outer circumferential surface of the wave generator 110, and the entire wave generator 110 can rotate.
일 실시예에 따른 조화 감속 시스템(100)은 동력 전달 부재(120)의 외주면과 접촉하는 서큘러 스플라인(130)을 포함한다. 서큘러 스플라인(130)은 동력 전달 부재(120)의 외주면과 접촉하는 내주면을 가질 수 있다. 즉, 서큘러 스플라인(130)의 내주면 중 적어도 일부는 동력 전달 부재(120)의 외주면과 접촉할 수 있다.The harmonic deceleration system 100 according to one embodiment includes circular splines 130 contacting the outer circumferential surface of the power transmission member 120 . The circular spline 130 may have an inner circumferential surface contacting an outer circumferential surface of the power transmission member 120 . That is, at least a part of the inner circumferential surface of the circular spline 130 may contact the outer circumferential surface of the power transmission member 120 .
서큘러 스플라인(130)은 동력 전달 부재(120)의 적어도 일부를 감쌀 수 있다. 서큘러 스플라인(130)의 제 1 축(A1)을 가로지르는 방향의 단면은 반원형일 수 있다. 여기서, 제 1 축(A1)은 웨이브 제네레이터(110)가 회전하는 중심 축일 수 있다. 즉, 서큘러 스플라인(130)은 실린더의 소정 부분 형상일 수 있다. 서큘러 스플라인(130)은 동력 전달 부재(120)의 적어도 일부를 감싸는 한, 서큘러 스플라인(130)의 형상은 이에 제한되지 않고 변경될 수 있다.The circular splines 130 may cover at least a portion of the power transmission member 120 . A cross section of the circular spline 130 in a direction transverse to the first axis A1 may be semicircular. Here, the first axis A1 may be a central axis around which the wave generator 110 rotates. That is, the circular spline 130 may have a shape of a predetermined portion of a cylinder. As long as the circular splines 130 surround at least a portion of the power transmission member 120, the shape of the circular splines 130 is not limited thereto and may be changed.
서큘러 스플라인(130)은 강체일 수 있다. 서큘러 스플라인(130)은 동력 전달 부재(120) 중 웨이브 제네레이터(110)의 외주면과 접촉하는 부분, 즉 동력 전달 부재(120) 중 웨이브 제네레이터(110)의 외주면이 회전하는 형태에 대응되도록 변위되는 부분과 접촉할 수 있다. 서큘러 스플라인(130)과 동력 전달 부재(120)와의 접촉에 기초하여 감속비가 결정될 수 있다. 조화 감속 시스템(100)의 동력 전달 메커니즘에 대한 상세한 설명은 이하에서 보다 상세히 서술한다.The circular spline 130 may be a rigid body. The circular spline 130 is a part of the power transmission member 120 in contact with the outer circumferential surface of the wave generator 110, that is, a part of the power transmission member 120 that is displaced to correspond to the rotation of the outer circumferential surface of the wave generator 110. can come into contact with A reduction ratio may be determined based on contact between the circular spline 130 and the power transmission member 120 . A detailed description of the power transmission mechanism of the harmonic deceleration system 100 will be described in more detail below.
동력 전달 부재(120)는 웨이브 제네레이터(110)와 서큘러 스플라인(130) 사이에 유지될 수 있다. 웨이브 제네레이터(110)와 서큘러 스플라인(130) 사이에는 개방부(125)가 형성될 수 있다. 동력 전달 부재(120)는 개방부(125)를 통과하여 연장될 수 있다. 예를 들어, 동력 전달 부재(120)는 웨이브 제네레이터(110)와 서큘러 스플라인(130) 사이에 형성된 개방부(125)를 통과하여 연장되는 타원의 링(ring) 형상일 수 있다. 다만 동력 전달 부재(120)가 연장됨으로써 형성하는 형상은 이에 제한되지 않고 필요에 따라 변경될 수 있다.The power transmission member 120 may be maintained between the wave generator 110 and the circular spline 130 . An opening 125 may be formed between the wave generator 110 and the circular spline 130 . The power transmission member 120 may extend through the opening 125 . For example, the power transmission member 120 may have an elliptical ring shape extending through an opening 125 formed between the wave generator 110 and the circular spline 130 . However, the shape formed by extending the power transmission member 120 is not limited thereto and may be changed as needed.
동력 전달 부재(120)는 개방부(125)를 통과하여 연장되어 아이들러(140)와 접촉할 수 있다. 동력 전달 부재(120)는 웨이브 제네레이터(110) 및 아이들러(140)와 각각 접촉하도록 연장될 수 있다. 동력 전달 부재(120)의 일 측 단부는 웨이브 제네레이터(110)와 접촉하고 동력 전달 부재(120)의 타 측 단부는 아이들러(140)와 접촉하도록 연장될 수 있다. 웨이브 제네레이터(110)와 아이들러(140)는 서로 이격되어 소정 거리를 두고 위치할 수 있다.The power transmission member 120 may extend through the opening 125 and contact the idler 140 . The power transmission member 120 may extend to contact the wave generator 110 and the idler 140 , respectively. One end of the power transmission member 120 may contact the wave generator 110 and the other end of the power transmission member 120 may extend to contact the idler 140 . The wave generator 110 and the idler 140 may be spaced apart from each other and positioned at a predetermined distance.
동력 전달 부재(120)는 외측면 상에 치차가 형성된 벨트(belt) 혹은 체인(chain) 형상일 수 있다. 치차(121)는 예를 들어 외측면으로부터 소정 거리 돌출되는 돌기부일 수 있으나, 대응되는 부분이 돌기일 경우 돌기가 수용되는 오목부일 수 있다. 동력 전달 부재(120)는 웨이브 제네레이터(110)와 서큘러 스플라인(130) 사이에 형성된 개방부(125)를 통과하는 타이밍 벨트(timing belt)의 형상일 수 있다. 동력 전달 부재(120)의 길이는 동력이 입력되는 입력 축과 동력을 출력하기 위한 출력 축의 거리에 따라 변경될 수 있다.The power transmission member 120 may have a belt or chain shape on which gears are formed on an outer surface. The gear 121 may be, for example, a protrusion that protrudes a predetermined distance from the outer surface, but may be a concave portion in which the protrusion is accommodated when the corresponding portion is a protrusion. The power transmission member 120 may have a shape of a timing belt passing through an opening 125 formed between the wave generator 110 and the circular spline 130 . The length of the power transmitting member 120 may be changed according to a distance between an input shaft through which power is input and an output shaft through which power is output.
동력 전달 부재(120)는 개방부(125)를 통과해 연장되어 제 1 축(A1)과 다른 축에 동력을 전달 가능하도록 구성될 수 있다. 여기서 다른 축을 제 2 축(A2)으로 하여 이하에서 설명하며, 제 2 축(A2)은 제 1 축(A1)과 다른 임의의 어느 한 축일 수 있다.The power transmitting member 120 may be configured to extend through the opening 125 and transmit power to a shaft other than the first shaft A1. The other axis will be described below as the second axis A2, and the second axis A2 may be any one axis different from the first axis A1.
도 5를 함께 참조하면, 제 1 축(A1)에는 동력을 생성하는 동력부(220)가 위치할 수 있다. 제 2 축(A2)에는 동력을 전달받는 출력부(210)가 위치할 수 있다. 출력부(210)는 예를 들어 출력 기어일 수 있다. 출력부(210)는 이하에서 도 5를 참조하여 상세히 설명할 동력 전달 시스템(200)의 일 구성요소일 수 있다. 출력부(210)는 아이들러(140)의 인근에 위치할 수 있다. 동력 전달 부재(120)는 제 2 축(A2)에 위치하는 출력부(210)와 접촉할 수 있다. 동력 전달 부재(120)는 제 1 축(A1)에 위치하는 동력부(220)로부터 생성된 동력을 전달받아, 제 2 축(A2)에 위치하는 출력부(210)로 동력을 전달할 수 있다.Referring to FIG. 5 together, a power unit 220 generating power may be located on the first shaft A1. An output unit 210 receiving power may be located on the second shaft A2. The output unit 210 may be, for example, an output gear. The output unit 210 may be one component of the power transmission system 200 to be described in detail with reference to FIG. 5 below. The output unit 210 may be located near the idler 140 . The power transmission member 120 may contact the output unit 210 positioned on the second shaft A2. The power transmission member 120 may receive power generated from the power unit 220 located on the first shaft A1 and transmit the power to the output unit 210 located on the second shaft A2.
도 3은 도 1에 도시된 조화 감속 시스템(100)의 일 양태에서의 모식도이다. 도 4는 도 1에 도시된 조화 감속 시스템(100)의 다른 양태에서의 모식도이다.FIG. 3 is a schematic diagram of one aspect of the harmonic deceleration system 100 shown in FIG. 1 . FIG. 4 is a schematic diagram of another aspect of the harmonic deceleration system 100 shown in FIG. 1 .
일 실시예에 따른 조화 감속 시스템(100)의 서큘러 스플라인(130)은 서큘러 스플라인(130)의 내주면을 따라 형성된 함몰부(131)를 포함한다. 일 실시예에 따른 조화 감속 시스템(100)의 동력 전달 부재(120)는 동력 전달 부재(120)의 외주면을 따라 형성된 돌기부(121)를 포함한다. 여기서, 함몰부(131) 및 돌기부(121)는 서로 대응되도록 형성된다. 한편, 동력 전달 부재(120)에 함몰부가, 서큘러 스플라인(130)에 돌기부가 형성될 수도 있음은 물론이다.The circular spline 130 of the harmonic deceleration system 100 according to an embodiment includes a depression 131 formed along an inner circumferential surface of the circular spline 130 . The power transmission member 120 of the harmonic deceleration system 100 according to an embodiment includes a protrusion 121 formed along an outer circumferential surface of the power transmission member 120 . Here, the depression 131 and the protrusion 121 are formed to correspond to each other. Meanwhile, it goes without saying that the power transmission member 120 may have a depression and a protrusion may be formed on the circular spline 130 .
함몰부(131)의 총 치차 수(제 1 치차 수)와 돌기부(121)의 총 치차 수(제 2 치차 수)는 서로 상이하다. 제 1 치차 수와 제 2 치차 수의 차이로 인해 감속된 출력이 전달될 수 있다.The total number of teeth of the recessed portion 131 (the first number of teeth) and the total number of teeth of the protrusion 121 (the second number of teeth) are different from each other. A reduced output can be delivered due to a difference between the number of first gears and the number of second gears.
웨이브 제네레이터(110)가 회전함에 따라, 동력 전달 부재(120)의 일 부분은 웨이브 제네레이터(110)에 의해 가압되며 회전한다. 여기서, 함몰부(131)의 일 부분과 돌기부(121)의 일 부분은 가변하는 지점에서 서로 치합될 수 있다. 즉, 함몰부(131)와 돌기부(121)가 만나는 지점이 웨이브 제네레이터(110)의 회전에 따라 변경될 수 있다.As the wave generator 110 rotates, a portion of the power transmission member 120 is pressed by the wave generator 110 and rotates. Here, a portion of the recessed portion 131 and a portion of the protruding portion 121 may be engaged with each other at a variable point. That is, the point where the depression 131 and the protrusion 121 meet may change according to the rotation of the wave generator 110 .
보다 상세히, 도 3에 도시된 바와 같이, 조화 감속 시스템(100)이 일 양태일 때, 웨이브 제네레이터(110)는 장 축(X1)이 도면에서의 세로 방향으로 정렬될 수 있다. 동력 전달 부재(120)는 웨이브 제네레이터(110)에 접촉하여 웨이브 제네레이터(110)가 정렬된 방향(장 축(X1)이 세로 방향으로 정렬된 방향)과 동일한 방향의 타원 형상으로 탄성 변형된다.More specifically, as shown in FIG. 3 , when the harmonic deceleration system 100 is one aspect, the long axis X1 of the wave generator 110 may be aligned in the longitudinal direction in the drawing. The power transmission member 120 contacts the wave generator 110 and is elastically deformed into an elliptical shape in the same direction as the direction in which the wave generator 110 is aligned (the direction in which the long axis X1 is vertically aligned).
동력 전달 부재(120)가 타원 형상으로 탄성 변형됨에 따라, 동력 전달 부재(120)의 제 1 부분(120a)과 서큘러 스플라인(130)의 제 1 부분(130a)은 서로 접촉하게 된다. 여기서 동력 전달 부재(120)의 제 1 부분(120a)과 서큘러 스플라인(130)의 제 1 부분(130a)은 복수 일 수 있다. 서큘러 스플라인(130)의 제 1 부분(130a)에 형성된 함몰부(131)의 일 부분(131a)과 동력 전달 부재(120)의 제 1 부분(120a)에 형성된 돌기부(121) 의 일 부분(121a)은 서로 치합될 수 있다. 반면, 동력 전달 부재(120)의 제 2 부분(120b)과 서큘러 스플라인(130)의 제 2 부분(130b)은 서로 이격된 상태일 수 있다.As the power transmission member 120 is elastically deformed into an elliptical shape, the first part 120a of the power transmission member 120 and the first part 130a of the circular spline 130 come into contact with each other. Here, the first part 120a of the power transmission member 120 and the first part 130a of the circular spline 130 may be plural. A portion 131a of the depression 131 formed on the first portion 130a of the circular spline 130 and a portion 121a of the protrusion 121 formed on the first portion 120a of the power transmission member 120 ) can be meshed with each other. On the other hand, the second part 120b of the power transmission member 120 and the second part 130b of the circular spline 130 may be spaced apart from each other.
도 4에 도시된 바와 같이, 조화 감속 시스템(100)이 다른 양태일 때, 웨이브 제네레이터(110)는 장 축(X1)이 도면에서의 가로 방향으로 정렬될 수 있다. 즉, 웨이브 제네레이터(110)는 조화 감속 시스템(100)의 일 양태에서 대략 직각으로 회전한 형상일 수 있다. 동력 전달 부재(120)는 웨이브 제네레이터(110)에 접촉하여 웨이브 제네레이터(110)가 정렬된 방향과 동일한 방향의 타원 형상(장 축(X1)이 가로 방향으로 정렬된 방향)으로 탄성 변형된다.As shown in FIG. 4 , when the harmonic deceleration system 100 is in another aspect, the long axis X1 of the wave generator 110 may be aligned in the transverse direction in the drawing. That is, in one aspect of the harmonic deceleration system 100, the wave generator 110 may have a shape rotated at a substantially right angle. The power transmission member 120 comes into contact with the wave generator 110 and is elastically deformed into an elliptical shape in the same direction as the direction in which the wave generator 110 is aligned (a direction in which the long axes X1 are aligned in the transverse direction).
동력 전달 부재(120)가 타원 형상으로 탄성 변형됨에 따라, 동력 전달 부재(120)의 제 2 부분(120b)과 서큘러 스플라인(130)의 제 2 부분(130b)은 서로 접촉하게 된다. 여기서 동력 전달 부재(120)의 제 2 부분(120b)과 서큘러 스플라인(130)의 제 2 부분(130b)은 단수 일 수 있다. 서큘러 스플라인(130)의 제 2 부분(130b)에 형성된 함몰부(131)의 다른 일 부분(131b)과 동력 전달 부재(120)의 제 2 부분(120b)에 형성된 돌기부(121)의 다른 일 부분(121b)은 서로 치합될 수 있다. 반면, 동력 전달 부재(120)의 제 1 부분(120a)과 서큘러 스플라인(130)의 제 1 부분(130a)은 서로 이격된 상태일 수 있다.As the power transmission member 120 is elastically deformed into an elliptical shape, the second portion 120b of the power transmission member 120 and the second portion 130b of the circular spline 130 come into contact with each other. Here, the second part 120b of the power transmission member 120 and the second part 130b of the circular spline 130 may be singular. Another part 131b of the depression 131 formed on the second part 130b of the circular spline 130 and another part of the protrusion 121 formed on the second part 120b of the power transmission member 120 (121b) may be meshed with each other. On the other hand, the first part 120a of the power transmission member 120 and the first part 130a of the circular spline 130 may be spaced apart from each other.
서큘러 스플라인(130)은 동력 전달 부재(120)와의 상호 접촉에 의해 감속비를 제공할 수 있다. 상술한 바와 같이, 동력 전달 부재(120)는 웨이브 제네레이터(110)에 의해 가압되어, 타원 형상으로 변형된다. 함몰부(131)의 일 부분과 돌기부(121)의 일 부분이 가변하는 지점에서 서로 치합됨에 따라 원하는 감속비를 제공할 수 있다. The circular splines 130 may provide a reduction ratio by mutual contact with the power transmission member 120 . As described above, the power transmission member 120 is pressed by the wave generator 110 and deformed into an elliptical shape. A desired reduction ratio may be provided as a portion of the recessed portion 131 and a portion of the protruding portion 121 are engaged with each other at a variable point.
조화 감속 시스템(100)의 웨이브 제네레이터(110), 동력 전달 부재(120) 및 서큘러 스플라인(130) 중 적어도 하나는 3D 프린터를 이용해 제조될 수 있다. 예를 들어, 웨이브 제네레이터(110)는 3D 프린터를 이용해 제조될 수 있으며, 3D 프린터를 이용해 제조된 웨이브 제네레이터(110)의 적어도 일부는 레진 재료를 포함할 수 있다.At least one of the wave generator 110, the power transmission member 120, and the circular spline 130 of the harmonic deceleration system 100 may be manufactured using a 3D printer. For example, the wave generator 110 may be manufactured using a 3D printer, and at least a part of the wave generator 110 manufactured using the 3D printer may include a resin material.
일 실시예에 따른 조화 감속 시스템(100)의 동력 전달 부재(120)는 감속을 위한 기능 및 동력 전달을 위한 기능을 함께 수행할 수 있다. 이에 따라, 충분한 감속비와 함께 효과적으로 동력을 전달할 수 있다. 또한, 조화 감속 시스템(100)의 동력 전달 부재(120)는 벨트 또는 체인과 같은 부품을 포함할 수 있어, 제조 원가 절감 효과를 기대할 수 있다.The power transmission member 120 of the harmonic deceleration system 100 according to an embodiment may perform both functions for deceleration and power transmission. Accordingly, power can be effectively transmitted with a sufficient reduction ratio. In addition, since the power transmission member 120 of the harmonic deceleration system 100 may include a part such as a belt or a chain, manufacturing cost reduction can be expected.
또한, 일 실시예에 따른 조화 감속 시스템(100)의 동력 전달 부재(120)는 기존 조화 감속기의 대응 구성 요소(예를 들어, 플렉스 스플라인)보다 외부 충격에 강하고, 교체가 용이하다. 따라서, 조화 감속 시스템(100)의 내구성이 증대될 수 있다.In addition, the power transmission member 120 of the harmonic deceleration system 100 according to an embodiment is stronger against external impact than a corresponding component (eg, a flex spline) of an existing harmonic decelerator, and is easy to replace. Thus, the durability of the harmonic deceleration system 100 can be increased.
도 5는 일 실시예에 따른 동력 전달 시스템(200)의 모식도이다. 5 is a schematic diagram of a power transmission system 200 according to an embodiment.
동력 전달 시스템(200)은 상술한 일 실시예에 따른 조화 감속 시스템(100)을 포함한다. 동력 전달 시스템(200)은 동력을 생성하고, 생성된 동력을 조화 감속 시스템(100)에 전달하도록 구성된 동력부(220)를 포함한다. 동력부(220)는 조화 감속 시스템(100)과 연결될 수 있다. 동력부(220)는 예를 들어 모터일 수 있다. 동력부(220)는 회전 동력을 생성하여 조화 감속 시스템(100)에 전달할 수 있다. 동력부는 제 1 축(A1)을 중심으로 회전하는 회전 동력을 생성하여 조화 감속 시스템(100)에 전달할 수 있다.The power transmission system 200 includes the harmonic deceleration system 100 according to the above-described embodiment. The power transmission system 200 includes a power unit 220 configured to generate power and transmit the generated power to the harmonic deceleration system 100 . The power unit 220 may be connected to the harmonic deceleration system 100 . The power unit 220 may be, for example, a motor. The power unit 220 may generate rotational power and transmit it to the harmonic deceleration system 100 . The power unit may generate rotational power rotating around the first axis A1 and transmit it to the harmonic deceleration system 100 .
동력 전달 시스템(200)은 조화 감속 시스템(100)에 의해 감속된 동력을 전달받도록 구성된 출력부(210)를 포함한다. 출력부(210)는 조화 감속 시스템(100)과 연결될 수 있다. 출력부(210)는 예를 들어 출력 기어일 수 있다. 예를 들어, 동력부(220)가 조화 감속 시스템(100)의 일 단부 측에 연결될 때, 출력부(210)는 조화 감속 시스템(100)의 타 단부 측에 연결될 수 있다. 출력부(210)는 제 2 축(A2)을 중심으로 회전하도록 배치될 수 있다.The power transmission system 200 includes an output unit 210 configured to receive power decelerated by the harmonic deceleration system 100 . The output unit 210 may be connected to the harmonic deceleration system 100 . The output unit 210 may be, for example, an output gear. For example, when the power unit 220 is connected to one end side of the harmonic deceleration system 100, the output unit 210 may be connected to the other end side of the harmonic deceleration system 100. The output unit 210 may be arranged to rotate around the second axis A2.
동력 전달 메커니즘을 설명하면, 조화 감속 시스템(100)의 일 단부 측에 연결된 동력부(220)에서 생성된 동력은 조화 감속 시스템(100)으로 전달될 수 있다. 여기서 동력부(220)에서 생성된 동력은 제 1 축(A1)을 중심으로 회전하는 회전 동력일 수 있다. 조화 감속 시스템(100)으로 전달된 동력은 조화 감속 시스템(100)에 의해 감속될 수 있다. 감속된 동력은 조화 감속 시스템(100)의 타 단부 측에 연결된 출력부(210)에 전달될 수 있다. 여기서 출력부(210)는 제 2 축(A2)을 중심으로 회전하여 동력을 출력하도록 배치될 수 있다. 출력부(210)를 통하여 출력되는 출력(감속된 동력)은 예를 들어 로봇 팔 또는 로봇 다리의 움짐임일 수 있다.Describing the power transmission mechanism, power generated in the power unit 220 connected to one end of the harmonic deceleration system 100 may be transmitted to the harmonic deceleration system 100 . Here, the power generated by the power unit 220 may be rotational power rotating about the first axis A1. Power transmitted to the harmonic deceleration system 100 may be reduced by the harmonic deceleration system 100 . The reduced power may be transmitted to the output unit 210 connected to the other end side of the harmonic deceleration system 100 . Here, the output unit 210 may be arranged to output power by rotating about the second axis A2. The output (decelerated power) output through the output unit 210 may be, for example, movement of a robot arm or a robot leg.
도 6은 일 실시예에 따른 로봇 시스템(300)의 모식도이다.6 is a schematic diagram of a robot system 300 according to an embodiment.
일 실시예에 따른 로봇 시스템(300)은 일 실시예에 따른 동력 전달 시스템(200)을 포함할 수 있다.The robot system 300 according to an embodiment may include the power transmission system 200 according to an embodiment.
로봇 시스템(300)은 상술한 일 실시예에 따른 동력 전달 시스템(200)을 포함한다. 로봇 전달 시스템은 동력 전달 시스템(200)과 연결된 로봇 링크(310)를 포함한다. 로봇 링크(310)는 동력 전달 시스템(200)으로부터 동력을 전달받음으로써 움직일 수 있다.The robot system 300 includes the power transmission system 200 according to the above-described embodiment. The robot transmission system includes a robot link 310 connected to the power transmission system 200 . The robot link 310 may move by receiving power from the power transmission system 200 .
예를 들어, 로봇 링크(310)는 로봇 관절 중 하나일 수 있다. 일 예시로서 로봇 시스템(300)이 보행 로봇일 경우 다리 관절일 수 있다. 다리 관절은 동력 전달 시스템(200)으로부터 전달받은 동력을 이용하여 움직이고, 보행 로봇이 보행할 수 있도록 구성될 수 있다.For example, the robot link 310 may be one of the robot joints. As an example, when the robot system 300 is a walking robot, it may be a leg joint. The leg joints may be configured to move using power transmitted from the power transmission system 200 and allow the walking robot to walk.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양하게 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The above description is merely an example of the technical idea of the present invention, and various modifications and variations can be made by those skilled in the art without departing from the essential characteristics of the present invention. Therefore, the embodiments disclosed in the present invention are not intended to limit the technical spirit of the present invention, but to explain, and the scope of the technical spirit of the present invention is not limited by these embodiments. The protection scope of the present invention should be construed according to the claims below, and all technical ideas within the equivalent range should be construed as being included in the scope of the present invention.
<부호의 설명><Description of codes>
100: 조화 감속 시스템100: harmonic deceleration system
110: 웨이브 제네레이터110: wave generator
120: 동력 전달 부재120: power transmission member
120a: 동력 전달 부재의 일 부분120a: part of power transmission member
120b: 동력 전달 부재의 다른 일 부분120b: another part of the power transmission member
121: 돌기부121: protrusion
121a: 돌기부의 일 부분121a: part of the protrusion
121b: 돌기부의 다른 일 부분121b: another part of the protrusion
125: 개방부125: opening
130: 서큘러 스플라인130: circular spline
130a: 서큘러 스플라인의 일 부분130a: part of circular spline
130b: 서큘러 스플라인의 다른 일 부분130b: another part of the circular spline
131: 함몰부131: depression
131a: 함몰부의 일 부분131a: part of the depression
131b: 함몰부의 다른 일 부분131b: another part of the depression
140: 아이들러140: idler
200: 동력 전달 시스템200: power transmission system
210: 출력부210: output unit
220: 동력부220: power unit
300: 로봇 시스템300: robot system
310: 로봇 링크310: robot link

Claims (10)

  1. 제 1 축을 중심으로 회전하는 웨이브 제네레이터;a wave generator rotating about a first axis;
    상기 웨이브 제네레이터의 외주면의 적어도 일부와 접촉하며, 상기 웨이브 제네레이터의 회전에 의해 회전 가능하도록 구성되고, 가요성인 동력 전달 부재; 및a flexible power transmission member that contacts at least a portion of an outer circumferential surface of the wave generator, is configured to be rotatable by rotation of the wave generator, and is flexible; and
    상기 동력 전달 부재의 외주면의 적어도 일부와 접촉하는 내주면을 갖는 서큘러 스플라인;을 포함하고,A circular spline having an inner circumferential surface in contact with at least a portion of an outer circumferential surface of the power transmission member,
    상기 웨이브 제네레이터와 상기 서큘러 스플라인 사이에는 상기 동력 전달 부재가 통과할 수 있는 개방부가 형성되고,An opening through which the power transmission member can pass is formed between the wave generator and the circular spline;
    상기 동력 전달 부재는 상기 개방부를 통과해 연장되어 상기 제 1 축과는 다른 제 2 축에 동력을 전달 가능하도록 구성되는,The power transmission member extends through the opening and is configured to transmit power to a second shaft different from the first shaft.
    조화 감속 시스템.Harmonized deceleration system.
  2. 제 1 항에 있어서,According to claim 1,
    상기 서큘러 스플라인은 상기 서큘러 스플라인의 내주면을 따라 형성된 함몰부를 포함하고,The circular spline includes a depression formed along an inner circumferential surface of the circular spline,
    상기 동력 전달 부재는 상기 동력 전달 부재의 외주면을 따라 형성된 돌기부를 포함하고,The power transmission member includes a protrusion formed along an outer circumferential surface of the power transmission member,
    상기 웨이브 제네레이터가 회전함에 따라,As the wave generator rotates,
    상기 동력 전달 부재의 일 부분은 상기 웨이브 제네레이터에 의해 가압되며 회전하고,A portion of the power transmission member rotates while being pressed by the wave generator;
    상기 함몰부의 일 부분과 상기 돌기부의 일 부분은 가변하는 지점에서 서로 치합되는,A portion of the depression and a portion of the protrusion are engaged with each other at a variable point.
    조화 감속 시스템.Harmonized deceleration system.
  3. 제 2 항에 있어서,According to claim 2,
    상기 함몰부의 제 1 치차 수와 상기 돌기부의 제 2 치차 수는 서로 상이한,The first number of teeth of the depression and the second number of teeth of the protrusion are different from each other.
    조화 감속 시스템.Harmonized deceleration system.
  4. 제 1 항에 있어서,According to claim 1,
    상기 동력 전달 부재는 벨트(belt) 혹은 체인(chain) 형상인,The power transmission member is a belt or chain shape,
    조화 감속 시스템.Harmonized deceleration system.
  5. 제 4 항에 있어서,According to claim 4,
    상기 동력 전달 부재는 상기 제 2 축에 배치된 출력부와 접촉함으로써 동력 전달이 가능하도록 구성되는,The power transmission member is configured to transmit power by contacting an output unit disposed on the second shaft.
    조화 감속 시스템.Harmonized deceleration system.
  6. 제 1 항에 있어서,According to claim 1,
    상기 서큘러 스플라인의 상기 제 1 축을 가로지르는 방향의 단면은 반원형인,The cross section of the circular spline in a direction transverse to the first axis is semicircular,
    조화 감속 시스템.Harmonized deceleration system.
  7. 제 1 항에 있어서,According to claim 1,
    상기 개방부는 제 1 개방부와 제 2 개방부를 포함하고,The opening includes a first opening and a second opening,
    상기 동력 전달 부재는 상기 제 1 개방부 및 상기 제 2 개방부를 통과하며 연장되는,The power transmission member extends through the first opening and the second opening,
    조화 감속 시스템.Harmonized deceleration system.
  8. 제 1 항에 있어서,According to claim 1,
    상기 조화 감속 시스템의 상기 웨이브 제네레이터, 상기 동력 전달 부재 및 상기 서큘러 스플라인 중 적어도 하나는 3D 프린터를 이용해 제조되는, 조화 감속 시스템.At least one of the wave generator, the power transmission member, and the circular spline of the harmonic deceleration system is manufactured using a 3D printer.
  9. 제 1 항 내지 제 8 항 중 어느 한 항에 따른 조화 감속 시스템;a harmonic deceleration system according to any one of claims 1 to 8;
    동력을 생성하고, 생성된 동력을 상기 조화 감속 시스템에 전달하도록 구성된 동력부; 및a power unit configured to generate power and transmit the generated power to the harmonic deceleration system; and
    상기 조화 감속 시스템에 의해 감속된 동력을 전달받도록 구성된 출력부;를 포함하는, 동력 전달 시스템.A power transmission system comprising: an output unit configured to receive power decelerated by the harmonic deceleration system.
  10. 제 9 항에 따른 동력 전달 시스템; 및 a power transmission system according to claim 9; and
    상기 동력 전달 시스템에 연결된 로봇 링크를 포함하는,Including a robot link connected to the power transmission system,
    로봇 시스템.robot system.
PCT/IB2022/062612 2021-12-20 2022-12-21 Harmonic deceleration system, and power transmission system and robot system including same WO2023119185A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210182330A KR102565634B1 (en) 2021-12-20 2021-12-20 Harmonic reducing system, and power transmission system and robot system including the same
KR10-2021-0182330 2021-12-20

Publications (2)

Publication Number Publication Date
WO2023119185A2 true WO2023119185A2 (en) 2023-06-29
WO2023119185A3 WO2023119185A3 (en) 2023-08-31

Family

ID=86901463

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2022/062612 WO2023119185A2 (en) 2021-12-20 2022-12-21 Harmonic deceleration system, and power transmission system and robot system including same

Country Status (2)

Country Link
KR (1) KR102565634B1 (en)
WO (1) WO2023119185A2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2224466B1 (en) * 1973-04-04 1978-12-01 Basf Ag
JPS5154706A (en) * 1974-11-09 1976-05-14 Fujitsu Kiden SHOZAIHYOJI HOSHIKI
JPH0569378A (en) * 1991-09-11 1993-03-23 Hitachi Ltd Gravitation balancing device, articulated robot, and wrist device for robot
JP3292202B2 (en) * 1991-12-06 2002-06-17 株式会社デンソー Chuck unit
DE102006050918A1 (en) * 2006-10-28 2008-04-30 Röhm Gmbh Electro-tensioner for machine tool, has electric actuating motor with rotor in driving connection with drive wheel
JP2009061836A (en) * 2007-09-05 2009-03-26 Nsk Ltd Steering angle variable type steering device
KR102133443B1 (en) 2016-11-29 2020-07-14 주식회사 에스비비테크 Harmonic reducer

Also Published As

Publication number Publication date
WO2023119185A3 (en) 2023-08-31
KR20230093580A (en) 2023-06-27
KR102565634B1 (en) 2023-08-11

Similar Documents

Publication Publication Date Title
WO2013062376A2 (en) Separable actuator
WO2021110060A1 (en) 32-degree of freedom bionic supple endoskeleton dexterous hand
WO2013036054A2 (en) Torque-free robot arm
WO2012060610A2 (en) Hybrid reducer
WO2014069709A1 (en) Flexspline having toothed gear coupled to elastic bodies and fins, and harmonic drive having same
WO2012057410A1 (en) Power transmission device
WO2016117874A1 (en) Robot joint apparatus utilizing wires and modular robot joint system utilizing wires
WO2013062375A2 (en) Cycloid decelerator enabled with location feedback
WO2017209420A1 (en) Adaptive driving module
WO2020032390A1 (en) Cable guide device of articulated robot
WO2019054651A1 (en) Backlash preventing cycloidal speed reducer
WO2023119185A2 (en) Harmonic deceleration system, and power transmission system and robot system including same
WO2017057946A1 (en) Speed reducer
WO2023054900A1 (en) Decelerator
WO2014069696A1 (en) Actuator assembly
WO2015111883A1 (en) Power transmission apparatus and built-up type toy including same
WO2018169161A1 (en) Twisted string-based dual-mode transmission mechanism
WO2011062368A2 (en) Driving body acceleration device using elasticity
WO2015156598A1 (en) Input synthesis apparatus
WO2022173235A1 (en) Cycloidal reducer
WO2016068371A1 (en) Transmission
WO2013062378A2 (en) Separable actuator comprising belt
WO2022065584A1 (en) Cycloidal speed reducer
WO2020204234A1 (en) Elastic body having variable rigidity, and actuator module including same
WO2023153870A1 (en) Harmonic reducer and power transmission system comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22910333

Country of ref document: EP

Kind code of ref document: A2