WO2023118686A1 - Module de turbomachine equipe d'aubes a calage variable et d'une virole annulaire d'interface - Google Patents

Module de turbomachine equipe d'aubes a calage variable et d'une virole annulaire d'interface Download PDF

Info

Publication number
WO2023118686A1
WO2023118686A1 PCT/FR2022/052320 FR2022052320W WO2023118686A1 WO 2023118686 A1 WO2023118686 A1 WO 2023118686A1 FR 2022052320 W FR2022052320 W FR 2022052320W WO 2023118686 A1 WO2023118686 A1 WO 2023118686A1
Authority
WO
WIPO (PCT)
Prior art keywords
annular
fan
turbomachine
module according
control means
Prior art date
Application number
PCT/FR2022/052320
Other languages
English (en)
Inventor
Caroline Marie Frantz
Vincent François Georges MILLIER
Yves Roland CROCHEMORE
Original Assignee
Safran Aircraft Engines
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran Aircraft Engines filed Critical Safran Aircraft Engines
Publication of WO2023118686A1 publication Critical patent/WO2023118686A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/16Control of working fluid flow
    • F02C9/20Control of working fluid flow by throttling; by adjusting vanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C11/00Propellers, e.g. of ducted type; Features common to propellers and rotors for rotorcraft
    • B64C11/02Hub construction
    • B64C11/04Blade mountings
    • B64C11/06Blade mountings for variable-pitch blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C11/00Propellers, e.g. of ducted type; Features common to propellers and rotors for rotorcraft
    • B64C11/30Blade pitch-changing mechanisms
    • B64C11/38Blade pitch-changing mechanisms fluid, e.g. hydraulic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K1/00Plants characterised by the form or arrangement of the jet pipe or nozzle; Jet pipes or nozzles peculiar thereto
    • F02K1/54Nozzles having means for reversing jet thrust
    • F02K1/64Reversing fan flow
    • F02K1/66Reversing fan flow using reversing fan blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K1/00Plants characterised by the form or arrangement of the jet pipe or nozzle; Jet pipes or nozzles peculiar thereto
    • F02K1/54Nozzles having means for reversing jet thrust
    • F02K1/76Control or regulation of thrust reversers
    • F02K1/763Control or regulation of thrust reversers with actuating systems or actuating devices; Arrangement of actuators for thrust reversers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/30Retaining components in desired mutual position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/50Kinematic linkage, i.e. transmission of position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/70Adjusting of angle of incidence or attack of rotating blades

Definitions

  • TITLE TURBOMACHINE MODULE EQUIPPED WITH VARIABLE PITCH BLADES AND AN ANNULAR INTERFACE SHELL
  • the present invention relates to the field of aircraft turbine engines. It relates in particular to a turbomachine module comprising variable-pitch blades and a pitch-setting system. It also relates to the corresponding turbomachine as well as a method of assembly or disassembly of the module.
  • the prior art includes the following documents US-B2-10907486, FR-A1 -3087233, USAI -2020/141421, US-B2-10533436, US-A1 -2017/066524.
  • Turbomachines generally comprise a ducted fan or an unducted propeller fitted with variable-pitch moving blades.
  • a ducted fan fitted with pitched or variable-pitch blades makes it possible to adjust the pitch or the orientation of the blades of the blades according to the flight parameters so as to optimize the operation of the fan. This configuration makes it possible to optimize the module in which such a blower is integrated.
  • the pitch angle of a blade corresponds to the angle, in a longitudinal plane perpendicular to the axis of rotation of the blade, between the chord of the blade and the plane of rotation of the fan.
  • variable-pitch blades can occupy a so-called thrust reversal position (known by the English term "reverse") in which they make it possible to generate counter-thrust to participate in the slowing down of the aircraft and a flag in which, in the event of failure or breakdown, these make it possible to limit their resistance.
  • the fan blades are driven in rotation by a motor shaft. Such an example of a fan with variable-pitch blades is described in patent application FR-A1-3087233.
  • Turbomachines equipped with unducted propellers are known by the term “open rotor” or “unducted fan”.
  • the propeller or propellers forming the propulsion part can be placed at the rear of the gas generator (or engine) so as to be of the pusher type or at the front of the gas generator so as to be of the tractor type.
  • turbomachines are turboprops which are distinguished from turbojets by the use of a propeller outside the nacelle (not shrouded) instead of an internal fan presented above. This makes it possible to increase the dilution ratio very significantly without being penalized by the mass of the casings or nacelles intended to surround the blades of the propeller or fan.
  • the variable pitch makes it possible for the same purpose to slow down the aircraft or to limit the resistance in the event of a failure.
  • the pitch change system comprises a control means which is connected on the one hand, to a fan shaft which is typically driven by the motor shaft via a speed reducer and on the other hand, to a linkage mechanism coupled to the variable-pitch vanes.
  • the control means located in a rotating frame of the turbine engine, generally comprises a movable body which, by moving, acts on the position of the blades of the variable-pitch vanes.
  • it is necessary to disconnect the connecting means from the control means in order to inspect the latter. This is valid for other elements of the pitch change system and other components of the turbomachine such as an oil transfer device in order to check their correct operation and their state of wear.
  • This constraint induces a longer maintenance time, a new adjustment of the kinematics (linkage mechanism and control means), or even additional validation tests to ensure that they are correctly adjusted after each maintenance operation.
  • the dismantling of the control means is also complex, or even not possible due to its cooperation with the motor shaft, the restricted zone in which the latter is arranged and its cooperation also with the oil transfer device typically placed downstream of a speed reducer, in a fixed frame. Dismantling the oil transfer device would require dismantling the inlet casing or the low-pressure compressor of the turbomachine, for example.
  • the objective of the present invention is to provide a turbomachine module equipped with variable-pitch blades with easily removable members and/or equipment without penalizing the adjustment of the kinematics necessary for the pitching of the blades and while allowing a gain in compactness. .
  • a turbomachine module with a longitudinal axis X comprising: a fan intended to be driven in rotation around the longitudinal axis X by a fan shaft, the fan comprising a plurality of variable pitch fan blades, a system for changing the pitch of the fan blades comprising a link mechanism connected to the blades of the fan and a control means acting on the link mechanism, the control means comprising a fixed body integral with the fan shaft and a mobile body, with respect to said fixed body, which is connected to the link mechanism, the pitch change system comprising an annular part having a portion integral with the mobile body, the annular part having a shape generally bell-shaped and extending at least partly radially outside the fixed body, the module comprising an annular ferrule which is removably fixed to the annular part and which comprises means for attaching the link mechanism.
  • this solution achieves the above objective.
  • the fact of providing an annular interface ferrule between the annular bell-shaped part and the link mechanism makes it possible to guarantee the maintenance of the adjustment and the configuration of the link mechanism.
  • the annular shell fixed on the one hand, to the link mechanism and on the other hand, to the bell-shaped annular part avoids the dismantling of the link mechanism which reduces the intervention time. It also allows an operator to control the angle of the blades, or even to re-adjust them during reassembly.
  • the removable fixing to the bell-shaped annular part which is mounted on the movable body of the control means allows a visual inspection of the control means and its easy disassembly/reassembly if necessary as well as for other parts upstream and/or downstream thereof.
  • the time saved for a technology comprising between eight and twenty-five, preferably sixteen variable-pitch blades with kinematics for each blade and anti-rotation elements, the time saved on the intervention is several hours. Such a time saving also influences a significant economic gain including the hourly rate of operators and the immobilization of the aircraft at airports.
  • the module also includes one or more of the following features, taken alone or in combination:
  • the fixed body comprises a ferrule which extends radially outside the fixed body from an outer wall and which comprises a first flange having a free end defining an outer rim, the outer diameter of the outer rim being smaller than the inner diameter of the annular shroud.
  • the fixed body extends radially around the mobile body and the mobile body comprises an upstream end to which the annular part is removably fixed.
  • the annular ferrule is intended to be mounted at least partly radially on the outside of a cylindrical portion of the annular part, the annular ferrule comprising a radially inner surface of complementary shape at least partly with a radially outer surface of the portion cylindrical.
  • the connecting mechanism comprises connecting rods each having a first end secured to the annular shroud via the attachment means and a second end connected to the root of a fan blade.
  • the fan shaft is connected to a power shaft of the turbomachine via a mechanical speed reducer, the speed reducer comprising an outer ring integral in rotation with the fan shaft.
  • the turbomachine module comprises a fluid transfer device which is mounted upstream of the speed reducer and which is connected to a supply source upstream of the speed reducer, the transfer device comprising an annular stator part integral with a fixed structure of the turbomachine and a rotor part which is engaged in the stator part and which is integral in rotation with the control means, the stator part comprising an internal cylindrical surface and first pipes opening into the internal cylindrical surface, the part rotor comprising an outer cylindrical surface and second pipes opening into the outer cylindrical surface.
  • the fluid transfer device extends at least partly inside the fan shaft.
  • the fixed body comprises supply means which are coupled to the second pipes of the rotor part of the fluid transfer device.
  • the speed reducer comprises an inner sun gear coupled to the power shaft, satellites, a planet carrier which carries the satellites and an outer ring gear which is coupled to the fan shaft.
  • the speed reducer is housed in a lubrication enclosure.
  • the annular shell has a U-shaped axial section with a first branch and a second branch connected by a bottom.
  • the first branch of the ferrule has a surface of complementary shape with a surface of a radial flange of the annular part.
  • the annular ferrule is mounted on the annular part following a sliding fit at the level of a cylindrical surface of the annular part.
  • at least one rotational guide bearing of a blade root is housed in an internal housing of a ring.
  • the movable body and the annular part are integral in movement via coupling means arranged between the movable body and the annular part.
  • the rods are adjustable in length.
  • the second pipes of the rotor part are in fluid communication with the first pipes of the stator part.
  • the annular part comprises a central portion which has a first end connected to the proximal portion and which extends downstream while widening.
  • control means is mounted generally upstream of the fan shaft along the longitudinal axis.
  • the fasteners comprise threaded elements.
  • the invention further relates to an aircraft turbine engine comprising at least one module having any one of the preceding characteristics.
  • the invention further relates to an aircraft comprising at least one turbomachine as mentioned above.
  • the invention also relates to a method for assembling a turbomachine module according to any one of the aforementioned characteristics, the method comprising the following steps:
  • FIG. 1 is a schematic view, in axial and partial section, of an example of a turbomachine with a ducted fan to which the invention applies;
  • FIG. 2 schematically shows, in partial axial section, a moving blade with variable pitch and a system for changing the pitch thereof according to the invention;
  • FIG. 3 illustrates in perspective and upstream an annular bell-shaped piece mounted on a control means of the pitch change system and on an annular ferrule integral with a connecting mechanism of the pitch change system according to the invention
  • Figure 4 shows a detail view of a fluid transfer device according to Figure 2;
  • FIG. 5 schematically represents an axial sectional view of the upstream module of the turbomachine with all the components mounted/assembled according to the invention
  • FIG. 6 shows, according to FIG. 5, the bell-shaped annular part disassembled, the connecting mechanism being held in position according to the invention
  • FIG. 7 represents, according to FIG. 5, the extraction of the control means and of a fluid transfer device according to the invention.
  • FIG. 8 represents steps in a method for dismantling various components of a turbomachine module according to the invention.
  • the invention applies to a turbine engine intended to be mounted on an aircraft.
  • the aircraft comprises a fuselage and at least two wings extending on either side of the fuselage along the axis of the fuselage.
  • At least one turbomachine is mounted under each wing.
  • the turbomachine may be a turbojet, for example a turbomachine equipped with a ducted fan (turboblower) or a turboprop, for example a turbomachine equipped with a non-ducted propeller ("open rotor", "USF” for "Unducted Single Fan” or “UDF” for “Unducted Dual Fan”).
  • open rotor "USF” for "Unducted Single Fan” or “UDF” for “Unducted Dual Fan”.
  • UDF Unducted Dual Fan
  • fan is used to denote either a fan or a propeller.
  • turbomachine module a module which notably comprises a fan and a fan shaft for driving the fan.
  • the turbomachine 1 comprises a gas generator 2 upstream of which a fan 3 is mounted.
  • the gas generator 2 typically comprises, from upstream to downstream, a low pressure compressor 4, a high pressure compressor 5, a chamber combustion 6, a high pressure turbine 7 and a low pressure turbine 8.
  • the rotors of the low pressure compressor 4 and of the low pressure turbine 8 are mechanically connected by a low pressure shaft 9 so as to form a low pressure body.
  • the rotors of the high pressure compressor 5 and of the high pressure turbine 7 are mechanically connected by a high pressure shaft 10 so as to form a high pressure body.
  • the high-pressure body is guided in rotation around the longitudinal axis X by a first bearing 11 with rolling bearings upstream and a second bearing 12 with rolling bearings downstream.
  • the first bearing 11 is mounted radially between an inter-compressor casing 13 and an upstream end of the high-pressure shaft 10.
  • the inter-compressor casing 13 is arranged axially between the low-pressure compressor 4 and the high-pressure compressor 5.
  • the second bearing 12 is mounted radially between an inter-turbine casing 14 and a downstream end of the high-pressure shaft 10.
  • the inter-turbine casing 14 is arranged axially between the low-pressure 7 and high-pressure 8 turbines. rotation around the longitudinal axis X via a third bearing 15 with bearings and a fourth double bearing 16 with bearings.
  • the latter are mounted radially between an exhaust casing 17 and a downstream end of the low pressure shaft 9.
  • the exhaust casing 17 is located downstream of the low pressure turbine 8.
  • the third bearing 15 is mounted radially between a inlet casing 18 and an upstream end of the low pressure shaft 9.
  • the high pressure shaft 10 extends radially at least partly outside the low pressure shaft 9 and are coaxial.
  • the low pressure or low pressure body comprises the low pressure compressor which is connected to an intermediate pressure turbine.
  • a free power turbine is mounted downstream of the intermediate pressure turbine and is connected to the propeller described below via a power transmission shaft to drive it in rotation.
  • the fan 3 is here streamlined by a fan casing 19 which carries a nacelle 20.
  • the fan 3 compresses an air flow which enters the turbomachine by dividing into a primary air flow F1 and a secondary air flow F2 at a separation spout 21 .
  • the latter is carried by the inlet casing 18 centered on the longitudinal axis X.
  • the inlet casing 18 is extended downstream by an external casing or inter-vein casing 22.
  • the primary air flow F1 circulates in a primary stream 23 which crosses the gas generator 2 and escapes therefrom through a primary nozzle 24.
  • the secondary air flow F2 circulates in a secondary stream 25 and escapes therefrom through a secondary nozzle 26.
  • the primary stream 23 and the secondary vein 25 are separated by the inter-vein casing 22.
  • the fan 3 comprises a series of fan blades 30 extending radially around a fan rotor 31 .
  • the fan rotor 31 is crossed by a fan shaft 32, cylindrical, centered on the longitudinal axis X.
  • the fan shaft 32 drives the fan rotor 31 in rotation around the longitudinal axis X.
  • fan 32 is itself driven in rotation by a power transmission shaft with longitudinal axis X via a power transmission mechanism 33.
  • the power transmission shaft is the low pressure shaft 9.
  • Fan shaft 32 and low pressure shaft 9 are coaxial.
  • the power shaft is a power turbine shaft supplied with gas by the gas generator 2.
  • the power transmission mechanism 33 is a mechanical speed reducer 34 for reducing the rotational speed of the fan shaft 32 relative to the speed of the low pressure shaft 9.
  • the speed reducer 34 allows the arrangement of a fan with a large diameter so as to have a high dilution rate.
  • the reducer 34 is of the planetary gear train type. The latter is housed in a lubrication chamber 35 in which it is lubricated.
  • the speed reducer 34 comprises an inner (or sun) sun gear 36, satellites 37, a planet carrier 38 and an outer ring gear 39 (outer sun gear).
  • the inner sun gear 36 is centered on the longitudinal axis X and is coupled in rotation with the power shaft (here the low pressure shaft 9) along the longitudinal axis X.
  • the latter comprises first elements intended to cooperate with second complementary coupling elements carried by the sun gear 36 inside.
  • the satellites 37 are carried by the planet carrier 38 and each rotate around an axis substantially parallel to the longitudinal axis X.
  • Each of the planets 37 meshes with the inner sun gear 36 and the outer crown 39.
  • the planets 37 are arranged radially between the inner sun gear 36 and the crown exterior 39.
  • three satellites 37 are provided.
  • the speed reducer 34 may comprise a number of satellites greater than three.
  • the outer ring 39 is coupled in rotation with the fan shaft 32.
  • the ring 39 is centered on the longitudinal axis.
  • the inner sun gear 36 forms the input of the speed reducer 34 while the outer crown 39 forms the output thereof.
  • the planet carrier 38 is on the other hand fixed with respect to the crown 39.
  • the planet carrier 38 is in particular fixed to a fixed structure of the turbomachine via a support ring 40.
  • the latter is rigidly fixed to the inlet casing 18 of the turbomachine.
  • the support ring 40 is also fixed to a first bearing support 41, fixed, integral with the inlet casing 18.
  • the third bearing 15 is mounted downstream of the speed reducer 34 advantageously.
  • Guide bearings, with bearings, are also arranged upstream of the speed reducer 34 to guide the fan shaft 32 in rotation. These bearings are also arranged in the lubrication enclosure 35. More precisely, we can see a fifth bearing 42 with bearings (with balls) just upstream of the reducer 34 and a sixth bearing 43 with bearings (with roller) upstream of the bearing. 42.
  • the outer rings of these bearings are carried by a second bearing support 44, fixed, integral with the inlet casing 18.
  • the inner rings are integral with the fan shaft 32.
  • each fan blade 30 comprises a root 45 and a blade 46 extending radially outwards from the root 45.
  • the root 45 of each blade 30 is typically in the form of a shaft or sleeve which is pivotally mounted along a wedging axis C in an internal housing 47 of a ring 48.
  • the root 45 and the blade 46 are separated, the blade fitting into the root via a dovetail connection.
  • the ring 48 is integral with the fan rotor 31, is centered on the longitudinal axis and comprises several housings 47 evenly distributed around the axis X.
  • the wedge axis C is parallel to the radial axis.
  • the foot shaft 45 is pivotally mounted by means of two guide bearings 49 mounted in each housing 47 and superimposed along the radial axis Z.
  • These bearings 49 are preferably, but not limited to, rolling bearings.
  • the rolling elements of these two bearings 49 here respectively comprise balls.
  • the timing of the fan blades is achieved by means of a pitch change system 50 installed in the fan rotor 31 . This is arranged in particular upstream of the speed reducer 34.
  • the pitch change system 50 comprises at least one link mechanism 51 connected to the fan blades 30 and a control means 52 acting on the link mechanism 51 .
  • the control means 52 comprises a fixed body 53 and a movable body 54 with respect to the fixed body 53.
  • the control means 52 is a linear actuator with an axis coaxial with the axis longitudinal X.
  • the fixed body 53 is integral in rotation with the fan shaft 32.
  • the movable body 54 moves in a translation along the longitudinal axis X with respect to the fixed body 53.
  • the fixed body 53 is therefore rotating but not translating.
  • the fixed body 53 is cylindrical, centered on the longitudinal axis X, and of circular section. Such a configuration makes it possible to limit the size of the control means 52 in the fan rotor both axially and radially.
  • the fixed body 53 extends radially around the movable body 54.
  • the fixed body 53 comprises a ferrule 55 which extends radially outwards from an outer surface 53a of the fixed body 53.
  • the ferrule 55 comprises a first flange 56 which is fixed to a second flange 57 of a trunnion 58.
  • This trunnion 58 is fixed to the external wall of the fan shaft 32 by means of suitable fixing elements.
  • the ring 48 for holding the blades 30 is also fixed to a fan cone 59 which comprises a third radial flange 60.
  • the third radial flange 60 is fixed to the second flange 57. In this way, the fan shaft 32 is connected to ring 48.
  • Fan cone 59 transmits torque and radial loads.
  • the three flanges 56, 57 and 60 are fixed together by fasteners (not shown) such as screws, nuts, bolts, studs or the like.
  • control means 52 is a jack provided with a casing and a movable piston in a volume formed by the casing.
  • the movable body 54 is in the form of an axial rod 61 which extends between a first end 61a and a second end 61b.
  • Movable body 54 further includes an annular wall 62 which extends radially outward from an outer face and around stem 61 .
  • the annular wall 62 is located at the level of the second end 61b of the rod. This annular wall 62 makes it possible to delimit two chambers 63a, 63b of variable volume in the fixed body 53 and which are axially opposed.
  • the movable body 54 moves axially under the action of a command from the control means 52, and in particular of the pressure of a fluid circulating in each chamber 63a, 63b.
  • the pitch change system 50 comprises power supply means ensuring the control thereof and described later in the description.
  • the fluid received in the chambers 63a, 63b is for example hydraulic fluid under pressure, from a fluid supply system, so that the mobile body 54 occupies at least two positions. Of course, the mobile body 54 occupies several intermediate positions depending on the different flight phases of the aircraft. These two positions correspond respectively to the thrust reversal position known in English by the term “reverse” and to the feathering position of the variable-pitch blades.
  • the displacement of the movable body 54 along the longitudinal axis X causes the movement of the link mechanism 51, in such a way that the latter causes the pivoting and the setting of the blades of the blades around the setting axis C.
  • the pitch change system 50 comprises an annular part 70 (in a cross section at its axis of revolution) which has a general bell shape and which makes it possible to connect the link mechanism 51 to the control means 52
  • general bell shape means that the shape is substantially flared or substantially tapered.
  • the annular part 70 comprises a proximal portion 71 which is secured to the movable body 54 of the control means 52.
  • Coupling means 79 are arranged between the movable body 54 and the annular part 70 so that these are integral in movement, and in particular in translation.
  • Portion 71 is in the form of a disc centered on the longitudinal axis X.
  • Portion 71 comprises a central hole 72 which passes through its wall on either side along the longitudinal axis X.
  • the stem 61 of the body mobile 54 crosses at least partly the central hole 72 of the portion 71 which is fixed on the rod 61 .
  • the first end 61a of the rod 61 extends upstream from the portion 71 and outside the annular piece 70.
  • the coupling means 79 comprise first grooves 79a which are formed on a radially outer wall of the rod 61 and in the vicinity of the first end 61a. These first splines 79a engage with corresponding second splines 79b of portion 71 . These second grooves 79b are formed on a radially inner wall of the central hole 72.
  • a tightening member 73 such as a nut is mounted on the outer wall of the rod 61 . The clamping member 73 makes it possible to axially lock the portion 71 on the rod 61 .
  • the annular part 70 comprises a central portion 74 which has a first end connected to the proximal portion 71 and which extends downstream while widening.
  • annular part 70 extends radially outside the fixed body 54.
  • the central portion 74 has a substantially frustoconical axial section.
  • Annular piece 70 includes a fourth flange 75 which extends radially outward from an outer surface of central portion 74. Flange 75 is arranged near a second end of central portion 74.
  • the annular piece 70 comprises a distal cylindrical portion 76 which axially extends the central portion 74 at its second end.
  • the cylindrical portion 76 has an internal diameter D3 (measured on the internal surface 77 of said portion 76) (visible in FIG. 7) which is greater than the external diameter D4 (defined by the free end of the flange 56) (and visible in Figure 7) of the fixed body 53.
  • the flange 75 of the annular part 70 comprises an internal surface 78 which is defined in a plane perpendicular to the longitudinal axis X. This plane also passes substantially in the middle of the fixed body 53 (Along the axial length of the fixed body 53).
  • the cylindrical portion 76 and the flange 75 have a substantially L-shaped axial shape.
  • the pitch change system 50 comprises an annular interface ring 80 which is kinematically arranged between the annular part 70 and the link mechanism 51 .
  • the annular shell 80 is an added piece. That is to say that the annular ferrule 80 is distinct from the annular part 70. This additional ferrule 80 allows simple assembly/disassembly of the control means 52 without the kinematics produced by the link mechanism 51 being impacted.
  • the annular shell 80 is fixed in a removable manner to the annular part 70 and comprises attachment means 81, fixed, of the link mechanism 51.
  • the annular shell 80 and the annular part 70 are fixed together by means of fixing members which are removable. This makes it possible to assemble and disassemble the control means of the link mechanism with great ease.
  • the annular shell 80 has a U-shaped axial section with a first branch 82 and a second branch 83 which are connected by a bottom 84.
  • first branch 82 and the second branch 83 each extend radially outwards.
  • the bottom 84 extends along the longitudinal axis and is centered on the longitudinal axis X.
  • the ferrule ring 80 is intended to be mounted at least partially radially outside the cylindrical portion 76.
  • the ferrule 80 is intended to rest on the latter.
  • the shroud 80 comprises a radially inner surface of complementary shape at least in part with a radially outer surface of the annular part 70.
  • the first branch 82 comprises an outer surface 85 which has a shape complementary to the inner surface 78 of the flange 75. Outer surface 85 is defined in a plane parallel to the plane of inner surface 78. Inner and outer surfaces 78, 85 are planar in this example.
  • the bottom 84 has a radially inner surface 86 of which at least part is complementary with a radially outer surface 87 of the cylindrical portion 76.
  • the radially outer surface 87 of the cylindrical portion 76 forms a cylindrical bearing surface.
  • the cylindrical portion 76 allows for short centering.
  • the radially outer surface 87 is radially opposed to the inner surface 77.
  • the annular shroud 80 may comprise ribs (not shown) extending between the first branch and the bottom so as to stiffen the latter.
  • the flange 75 and the first branch 82 are fastened together via removable fasteners (not shown).
  • the flange 75 comprises a plurality of first orifices 88 which pass through the wall of the flange 75 on either side in a direction parallel to the longitudinal axis X. These first orifices 88 are regularly distributed around the longitudinal axis.
  • the first branch 82 also comprises second orifices 89 which pass through its wall on either side in a direction parallel to the longitudinal axis. In the installation situation, the first and second orifices 88, 89 are each facing each other and coaxial.
  • the fasteners may include screws, studs, nuts for mounting and dismounting these elements easily and quickly.
  • the fixing members are axial.
  • the members can be different and can be adapted to the configuration of the interface between the annular part and the annular shroud.
  • the ferrule 80 is mounted on the annular piece 70 according to a sliding fit at the level of the cylindrical surface 76 of the annular piece 70 to facilitate the dismantling of the annular piece 70 with respect to the annular ferrule 80.
  • the internal diameter D2 of the annular shell 80 (measured at the radially internal surface 86 of the bottom 84) is greater than the external diameter D1 (measured at the radially outer surface 87) of the cylindrical portion 76.
  • the inner diameter of the ferrule 80 is also greater than the outer diameter of the flange 56 (measured at the edge 90 thereof).
  • the annular ferrule is shrunk onto the annular part.
  • extraction holes are made in the flange 75 and for example between, circumferentially, the first orifices 88.
  • the extraction holes have axes parallel to those of the first orifices 88 and cross on both sides. the other flange 75 along the longitudinal axis X.
  • the extraction holes are advantageously, but not exclusively threaded.
  • a screw-type extraction element is screwed into at least one extraction hole so that the screw is in abutment and presses on the outer surface 85 of the first branch 82 of the ferrule 80 so as to separate the annular part 70 relative to the annular ferrule 80 once the fasteners have been removed.
  • the annular part 70 is perforated so as to lighten the mass thereof.
  • through slots, and having an elongated shape, are made in the central portion 74 of the annular part 70.
  • the link mechanism 51 comprises several links 91 .
  • One of the links 91 is shown for example in Figure 3.
  • Each link 91 comprises a first end 92a and a second end 92b opposite in the direction of elongation of the link 91.
  • the direction of elongation is here substantially parallel to the longitudinal axis (in the installation situation).
  • the first end 92a is connected to the attachment means 81 integral with the annular shell 80.
  • the attachment means 81 here comprise yokes each formed of two lugs 93a, 93b.
  • the two lugs 93a, 93b of each yoke are traversed by a hinge pin 94 substantially parallel to the radial axis and around which a rod 91 pivots.
  • each link 91 (shown in Figure 2) is hinged to a fork 95a provided at the free end of an arm 95 (see Figure 2) connected to the foot 45 of a fan blade.
  • the arm 95 forms an eccentric for each blade.
  • the links 91 are made of a metallic material.
  • each link 91 is each adjustable in length.
  • each link 91 includes a threaded intermediate pin (not shown) extending between a first end and a second end.
  • the first end of the intermediate shaft is screwed into a threaded hole in a first link portion (provided with one of the ends of the link).
  • the second end of the axis intermediate is also screwed into a tapped hole of a second link portion (with the other end of the link).
  • This configuration makes it possible to adjust the pitch of the blades with respect to each other.
  • the timings are thus finely adjusted despite manufacturing, tolerance and aging defects that may affect the various parts constituting the fan and the pitch change system.
  • the annular ring 80 makes it possible to maintain the setting despite the dismantling of the control means 52 (actuator).
  • the turbomachine 1 comprises a fluid supply system 100 making it possible to distribute a lubricating fluid to the various organs and/or equipment which need it, such as the means 52, bearings, etc.
  • the fluid is advantageously pressurized oil.
  • the supply system 100 comprises a supply source 101 (or a reservoir) (cf. FIG. 1) and a pump making it possible to circulate the oil to the organs and/or equipment.
  • the power source 101 is arranged in a fixed frame of the turbine engine and generally in the nacelle 20 as illustrated in Figure 1 or in the inter-vein housing 22.
  • the turbomachine comprises a fluid transfer device 103 (cf. FIG. 2) or oil transfer bearing.
  • This transfer device 103 is known by the acronym "OTB” for "Oil Transfer Bearing” and as its name suggests allows the transfer of oil from the fixed marker to the rotating marker.
  • the oil transfer device 103 is arranged upstream of the speed reducer 34 according to FIG. 2. The location of the oil transfer device is advantageous because it facilitates its disassembly/assembly without intervening on the reducer. of speed.
  • the supply system 100 also comprises several supply channels 104 for conveying the oil to the organs and/or equipment and which are shown in dotted lines in FIG. 1 and in FIG. 4. Some of these channels 104 cross the door -38 satellites which is fixed.
  • the transfer device 103 extends inside the fan shaft 32 (which is hollow) so as to reduce the axial and radial bulk. In particular, the size is advantageously reduced upstream where the control means 52 is located.
  • the control means 52 is generally mounted upstream of the fan shaft 32 along the longitudinal axis.
  • the device 103 comprises a stator part 105 which is centered on the longitudinal axis X.
  • the stator part 105 is mounted integral with a fixed structure of the turbomachine. In this example, the stator part 105 is attached to the planet carrier 38 via a tubular element 106.
  • the stator part 105 comprises a seventh radial flange 108 which extends radially outward from the outer surface of the stator part 105.
  • the flange 108 is fixed to an eighth radial flange 109 of the tubular element 106 via fasteners (here screws and nuts or other other similar elements).
  • the stator part 105 comprises an internal cylindrical surface 110 into which first pipes 111 open.
  • the device 103 also comprises a rotor part 112 which is engaged inside the stator part 105.
  • the rotor part 112 has a cylindrical shape and extends along the longitudinal axis X.
  • the rotor part 112 is rotatable at inside the stator part 105 along the longitudinal axis.
  • the rotor part 112 is integral in rotation with the control means 52, and here more particularly with the fixed body 53 thereof.
  • the rotor part 112 comprises an outer cylindrical surface 113 which faces the inner cylindrical surface 110 of the stator part 105.
  • the rotor part 112 further comprises second pipes 114 which each open into the outer cylindrical surface 113 via orifices 117.
  • the second pipes 114 are in fluid communication with the first pipes 111 of the stator part.
  • these second pipes 114 are fluidly connected with the supply means of the control means 52.
  • the second ducts 114 comprise an external duct 114a which extends in the thickness of the wall of the rotor part 112.
  • the orifice 117 of the external duct 114a is opposite one of the first ducts 111 (here the first upstream pipeline).
  • the second pipes 114 also include a central pipe 114b which extends for the most part along the central axis of the rotor part 112.
  • the orifice 117 of the central pipe 114b is opposite the other of the first pipes 111 (here the first pipeline downstream).
  • the external pipe 114a is coupled to a first pipe 115 which extends in the wall thickness of the fixed body 53.
  • the first pipe 115 comprises a substantially radial portion 115a which is arranged downstream of the chambers 63a and 63b and an axial portion 115b which extends along the chambers 63a, 63b of the fixed body.
  • the axial portion 115b opens into the chamber 63a.
  • the central pipe 114b is coupled to a second pipe 116 of the fixed body 53.
  • the central pipe 114b and the second pipe 116 are coaxial.
  • the second pipe 116 opens into the chamber 63b. In this way, the fluid, the oil, can circulate from the power source 101 to the control means 52 passing on the one hand through the speed reducer 34, and on the other hand through the transfer device 103 of fluid.
  • the rotor part 112 is rotatably mounted relative to the stator part 105 by means of bearings.
  • a first bearing 120 is mounted upstream of the orifices 117 formed in the external cylindrical surface 113 and through which the pipes 114 open.
  • the first bearing 120 is on bearings.
  • This comprises an inner ring 121 which is carried by the outer cylindrical surface and an outer ring 122 which is carried by the inner cylindrical surface of the stator part 105.
  • the outer ring 122 is axially blocked on the one hand, by a bearing surface cylindrical, and on the other hand, by a nut or a hoop 123.
  • the inner ring is carried by the outer cylindrical surface of the rotor part.
  • the inner ring 121 is blocked axially on the one hand, by a cylindrical seat, and on the other hand, by a cylindrical sleeve 124.
  • the cylindrical sleeve 124 is blocked upstream by a hoop or a nut 125.
  • the rolling elements are marbles.
  • Sleeve 124 includes a radial flange 126 which extends radially outward.
  • the flange 126 is attached to a flange 127 which extends radially outward from a proximal portion 128 of the fixed body 53.
  • annular seal 129 which is defined in a plane perpendicular to the longitudinal axis X.
  • the annular seal 126 comprises an inner edge fixed between the flanges via fasteners such as screws and nuts and an outer edge in contact with a cylindrical inner wall 130 of the fan shaft 32.
  • a second bearing 131 is also mounted between the rotor part 112 and the stator part 105.
  • the second bearing 131 is also a rolling bearing.
  • the rolling elements of this bearing 131 are rollers.
  • This bearing 131 is mounted downstream of the first bearing 120 and in particular downstream of the orifices 117 formed in the outer cylindrical surface 113.
  • the second bearing 131 comprises an inner ring 132 and an outer ring 133.
  • the outer ring 133 is carried by the surface inner cylindrical 110.
  • the outer ring 133 is blocked axially upstream by a cylindrical seat and downstream by a hoop or a nut 134.
  • the inner ring 132 is carried by the outer cylindrical surface 113. This is blocked upstream by a cylindrical bearing and downstream by a hoop one or a nut 135.
  • FIGS. 5 to 8 illustrate a method 200 for dismantling the turbomachine module as described previously.
  • the dismantling process makes it possible to intervene on the control means 52 and possibly on the oil transfer device 103 without intervening on the connecting rods 91, the adjustment of which must be precise for all the blades and is tedious.
  • the method includes a step 220 of extracting the annular part 70 from the fan rotor as shown in Figure 6. During this step 220, the fasteners on the annular shroud 80 and on the rod 61 of the moving , withdrawn. The annular shell 80 remains fixed to the connecting rods 91 .
  • the method includes a step 230 of extracting the control means 52 as illustrated in FIG. 7.
  • step 230 the attachments between the fixed body and the fan shaft 32 are removed.
  • the control means 52 is moved upstream without obstacle because the diameter of the flange 56 is smaller than the diameter of the annular shroud 80.
  • the control means 52 passes through the annular shroud 80.
  • the oil transfer device 103 can also be extracted. For this, the fasteners between the flanges 108 and 109 are removed.
  • the method Prior to step 220, the method includes a step of extracting the nose 210 which is fixed to the fan rotor 31 so as to be able to access the annular part 70.
  • the reassembly of these elements is carried out by reversing the steps of the dismantling process set out above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

L'invention concerne un module de turbomachine, comportant : - une soufflante (3) destinée à être entrainée en rotation par un arbre de soufflante (32) et comprenant une pluralité d'aubes (30) à calage variable, et - un système de changement de pas comprenant un moyen de commande (52) relié aux aubes via un mécanisme de liaison (51), le moyen de commande comportant un corps fixe solidaire de l'arbre de soufflante (32) et un corps mobile (54) relié au mécanisme de liaison (51), le système de changement de pas comprenant une pièce annulaire (70) qui a une portion solidaire du corps mobile, qui présente une forme générale en cloche et qui s'étend au moins en partie radialement à l'extérieur du corps fixe. Selon l'invention, le module comprend une virole annulaire (80) fixée de manière amovible à la pièce annulaire (70) et comprenant des moyens d'attache (81) au mécanisme de liaison (51).

Description

DESCRIPTION
TITRE : MODULE DE TURBOMACHINE EQUIPE D’AUBES A CALAGE VARIABLE ET D’UNE VIROLE ANNULAIRE D’INTERFACE
Domaine de l’invention
La présente invention concerne le domaine des turbomachines d’aéronef. Elle vise en particulier un module de turbomachine comprenant des aubes à calage variable et d’un système de calage des pas. Elle vise également la turbomachine correspondante ainsi qu’un procédé de montage ou démontage du module.
Arrière-plan technique
L’art antérieur comprend les documents suivants US-B2-10907486, FR-A1 -3087233, USAI -2020/141421 , US-B2-10533436, US-A1 -2017/066524.
Les turbomachines comprennent de manière générale une soufflante carénée ou une hélice non carénée équipée d’aubes mobiles à calage variable. Une soufflante carénée munie d’aubes à calage ou à pas variable permet de régler le calage ou l’orientation des pales des aubes en fonction des paramètres de vol de manière à optimiser le fonctionnement de la soufflante. Cette configuration permet d’optimiser le module dans lequel une telle soufflante est intégrée. Pour rappel, l’angle de calage d’une pale correspond à l’angle, dans un plan longitudinal perpendiculaire à l’axe de rotation de la pale, entre la corde de la pale et le plan de rotation de la soufflante. Les aubes à calage variable peuvent occuper une position dite d’inversion de poussée (connue sous le terme anglais « reverse ») dans laquelle celles-ci permettent de générer une contre poussée pour participer au ralentissement de l’aéronef et une position de mise en drapeau dans laquelle, en cas de défaillance ou de panne, celles-ci permettent de limiter leur résistance. Les aubes de la soufflante sont entraînées en rotation par un arbre moteur. Un tel exemple de soufflante avec des aubes à calage variable est décrit dans la demande de brevet FR-A1 -3087233.
Les turbomachines équipées d’hélices non carénées sont connues sous le terme anglais « open rotor » ou « unducted fan ». Dans cette catégorie de turbomachine, il existe celles qui ont deux hélices non carénées et contrarotatives (connues sous l’acronyme anglais UDF pour « Unducted Dual Fan ») ou celles ayant une seule hélice non carénée et un redresseur comprenant plusieurs aubes de stator (connues sous l’acronyme anglais USF pour « Unducted Single Fan »). L’hélice ou les hélices formant la partie propulsive peu(ven)t être placée(s) à l’arrière du générateur de gaz (ou moteur) de sorte à être du type pousseur ou à l’avant du générateur de gaz de sorte à être du type tracteur. Ces turbomachines sont des turbopropulseurs qui se distinguent des turboréacteurs par l’utilisation d’une hélice à l’extérieur de la nacelle (non carénée) au lieu d’une soufflante interne présentée ci-avant. Cela permet d’augmenter le taux de dilution de façon très importante sans être pénalisé par la masse des carters ou nacelles destiné(e)s à entourer les pales de l’hélice ou soufflante. Le calage variable permet dans le même but de freiner l’aéronef ou de limiter la résistance en cas de défaillance.
Actuellement, que ce soient les soufflantes carénées ou les hélices non carénées à aubes à calage variable, le système de changement de pas comprend un moyen de commande qui est relié d’une part, à un arbre de soufflante qui est typiquement entraîné par l’arbre moteur via un réducteur de vitesse et d’autre part, à un mécanisme de liaison couplé aux aubes à calage variable. Le moyen de commande, situé dans un repère tournant de la turbomachine, comprend généralement un corps mobile qui en se déplaçant agit sur la position des pales des aubes à calage variable. Lors d’une opération de maintenance, il est nécessaire de déconnecter les moyens de liaison du moyen de commande afin d’inspecter ce dernier. Cela est valable pour d’autres éléments du système de changement de pas et d’autres organes de la turbomachine tel qu’un dispositif de transfert d’huile afin de vérifier leur bon fonctionnement et leur état d’usure. Cette contrainte induit un temps de maintenance plus important, un nouveau réglage des cinématiques (mécanisme de liaison et moyen de commande), voire des tests de validation supplémentaires pour s’assurer du réglage correct de celles-ci après chaque opération de maintenance. Le démontage du moyen de commande est également complexe, voire non envisageable du fait de sa coopération avec l’arbre moteur, de la zone restreinte dans laquelle celui-ci est agencé et de sa coopération également avec le dispositif de transfert d’huile typiquement placé en aval d’un réducteur de vitesse, dans un repère fixe. Le démontage du dispositif de transfert d’huile nécessiterait le démontage du carter d’entrée ou du compresseur basse pression de la turbomachine par exemple.
Résumé de l’invention
L’objectif de la présente invention est de fournir un module de turbomachine équipé d’aubes à calage variable avec des organes et/ou équipements facilement démontables sans pénaliser le réglage de la cinématique nécessaire au calage des aubes et tout en permettant un gain en compacité. Nous parvenons à cet objectif conformément à l’invention grâce à un module de turbomachine d’axe longitudinal X, comportant : une soufflante destinée à être entraînée en rotation autour de l’axe longitudinal X par un arbre de soufflante, la soufflante comprenant une pluralité d’aubes de soufflante à calage variable, un système de changement de pas des aubes de soufflante comprenant un mécanisme de liaison reliés aux aubes de la soufflante et un moyen de commande agissant sur le mécanisme de liaison, le moyen de commande comportant un corps fixe solidaire de l’arbre de soufflante et un corps mobile, par rapport audit corps fixe, qui est relié au mécanisme de liaison, le système de changement de pas comprenant une pièce annulaire ayant une portion solidaire du corps mobile, la pièce annulaire présentant une forme générale en cloche et s’étendant au moins en partie radialement à l’extérieur du corps fixe, le module comprenant une virole annulaire qui est fixée de manière amovible à la pièce annulaire et qui comprend des moyens d’attache du mécanisme de liaison.
Ainsi, cette solution permet d’atteindre l’objectif susmentionné. En particulier, le fait de prévoir une virole annulaire d’interface entre la pièce annulaire en cloche et le mécanisme de liaison, permet de garantir le maintien du réglage et la configuration du mécanisme de liaison. En effet, la virole annulaire fixée d’une part, au mécanisme de liaison et d’autre part, à la pièce annulaire en cloche évite le démontage du mécanisme de liaison ce qui diminue le temps d’intervention. Cela permet également à un opérateur de contrôler l’angle des aubes, voire de régler à nouveau ces dernières lors du réassemblage. De même, la fixation de manière amovible à la pièce annulaire en cloche qui est montée sur le corps mobile du moyen de commande permet une inspection visuelle du moyen de commande et son démontage/remontage aisé si nécessaire ainsi que pour d’autres pièces en amont et/ou en aval de celui-ci. Le gain de temps pour une technologie comprenant entre huit et vingt-cinq, préférentiellement seize aubes à calage variable avec une cinématique pour chaque aube et des éléments anti-rotation, le gain de temps sur l’intervention est de plusieurs heures. Un tel gain de temps influe également sur un gain économique non négligeable incluant le taux horaire des opérateurs et l’immobilisation de l’aéronef dans les aéroports.
Le module comprend également l’une ou plusieurs des caractéristiques suivantes, prises seules ou en combinaison :
- le corps fixe comprend une virole qui s’étend radialement à l’extérieur du corps fixe depuis une paroi externe et qui comprend une première bride ayant une extrémité libre définissant une bordure externe, le diamètre externe de la bordure externe étant inférieur au diamètre interne de la virole annulaire.
- le corps fixe s’étend radialement autour du corps mobile et le corps mobile comprend une extrémité amont à laquelle est fixée de manière amovible la pièce annulaire.
- la virole annulaire est destinée être montée au moins en partie radialement à l’extérieur d’une portion cylindrique de la pièce annulaire, la virole annulaire comprenant une surface radialement interne de forme complémentaire au moins en partie avec une surface radialement externe de la portion cylindrique.
- le mécanisme de liaison comprend des biellettes ayant chacune une première extrémité solidaire de la virole annulaire via les moyens d’attache et une deuxième extrémité reliée au pied d’une aube de soufflante.
- l’arbre de soufflante est relié à un arbre puissance de la turbomachine via un réducteur de vitesse mécanique, le réducteur de vitesse comprenant une couronne extérieure solidaire en rotation avec l’arbre de soufflante.
- le module de turbomachine comprend un dispositif de transfert de fluide qui est monté en amont du réducteur de vitesse et qui est relié à une source d’alimentation en amont du réducteur de vitesse, le dispositif de transfert comportant une partie stator annulaire solidaire d’une structure fixe de la turbomachine et une partie rotor qui est engagée dans la partie stator et qui est solidaire en rotation avec le moyen de commande, la partie stator comprenant une surface cylindrique interne et des premières canalisations débouchant dans la surface cylindrique interne, la partie rotor comprenant une surface cylindrique externe et des deuxièmes canalisations débouchant dans la surface cylindrique externe.
- le dispositif de transfert de fluide s’étend au moins en partie à l’intérieur de l’arbre de soufflante.
-le corps fixe comprend des moyens d’alimentation qui sont couplés aux deuxièmes canalisations de la partie rotor du dispositif de transfert de fluide.
- le réducteur de vitesse comprend un planétaire intérieur couplé à l’arbre de puissance, des satellites, un porte-satellites qui porte les satellites et une couronne extérieure qui est couplée à arbre de soufflante.
- le réducteur de vitesse est logé dans une enceinte de lubrification.
- la virole annulaire présente une section axiale en forme de U avec une première branche et une deuxième branche reliées par un fond.
- la première branche de la virole présente une surface de forme complémentaire avec une surface d’une bride radiale de la pièce annulaire.
- le fond de la virole annulaire portant la surface radialement interne.
- la virole annulaire est montée sur la pièce annulaire suivant un ajustement glissant au niveau d’une portée cylindrique de la pièce annulaire. - un moins un palier de guidage en rotation d’un pied d’aube est logé dans un logement interne d’un anneau.
- le corps mobile et la pièce annulaire sont solidaires en déplacement via des moyens de couplage agencés entre le corps mobile et la pièce annulaire.
- les biellettes sont réglables en longueur.
- les deuxièmes canalisations de la partie rotor sont en communication fluidique avec les premières canalisations de la partie stator.
- la pièce annulaire comprend une portion centrale qui a une première extrémité reliée à la portion proximale et qui s’étend vers l’aval en s’évasant.
- le moyen de commande est monté globalement en amont de l’arbre de soufflante suivant l’axe longitudinal.
- les organes de fixation comprennent des éléments filetés.
L’invention concerne en outre une turbomachine d’aéronef comprenant au moins un module présentant l’une quelconque des caractéristiques précédentes.
L’invention concerne en outre un aéronef comprenant au moins une turbomachine telle que susmentionnée.
L’invention concerne encore un procédé d’assemblage d’un module de turbomachine selon l’une quelconque des caractéristiques susmentionnées, le procédé comprenant les étapes suivantes :
- une étape d’extraction de la pièce annulaire en supprimant les fixations entre le corps fixe et la virole annulaire, et
- une étape d’extraction du moyen de commande en traversant la virole annulaire.
Ainsi, un tel procédé d’assemblage ou démontage permet de conserver les réglages des aubes de la soufflante ce qui facilite la maintenance de la turbomachine.
Brève description des figures
L’invention sera mieux comprise, et d’autres buts, détails, caractéristiques et avantages de celle-ci apparaîtront plus clairement à la lecture de la description explicative détaillée qui va suivre, de modes de réalisation de l’invention donnés à titre d’exemples purement illustratifs et non limitatifs, en référence aux dessins schématiques annexés dans lesquels :
La figure 1 est une vue schématique, en coupe axiale et partielle d’un exemple de turbomachine avec une soufflante carénée à laquelle s’applique l’invention ; La figure 2 représente de manière schématique et suivant une coupe axiale partielle une aube mobile à calage variable et un système de changement de pas de celle-ci selon l’invention ;
La figure 3 illustre en perspective et en amont une pièce annulaire en cloche montée sur un moyen de commande du système de changement de pas et sur une virole annulaire solidaire d’un mécanisme de liaison du système de changement de pas selon l’invention ; La figure 4 représente une vue de détail d’un dispositif de transfert de fluide selon la figure 2 ;
La figure 5 représente, de manière schématique, une vue en coupe axiale du module amont de la turbomachine avec tous les organes montés/assemblés selon l’invention ; La figure 6 représente, suivant la figure 5, la pièce annulaire en cloche démontée, le mécanisme de liaison étant maintenu en position selon l’invention ;
La figure 7 représente suivant la figure 5 l’extraction du moyen de commande et d’un dispositif de transfert de fluide selon l’invention, et
La figure 8 représente des étapes d’un procédé de démontage de différents organes d’un module de turbomachine selon l’invention.
Description détaillée de l’invention
L’invention s’applique à une turbomachine destinée à être montée sur un aéronef. L’aéronef comprend un fuselage et au moins deux ailes s’étendant de part et d’autre du fuselage suivant l’axe du fuselage. Au moins une turbomachine est montée sous chaque aile. La turbomachine peut être un turboréacteur, par exemple une turbomachine équipée d’une soufflante carénée (turbosoufflante) ou d’un turbopropulseur, par exemple une turbomachine équipée d’une hélice non carénée (« open rotor », « USF » pour «Unducted Single Fan » ou « UDF » pour « Unducted Dual Fan »). Bien entendu l’invention s’applique à d’autres types de turbomachine.
De manière générale et dans la suite de la description, le terme « soufflante » est employé pour désigner indifféremment une soufflante ou une hélice.
Dans la présente invention, et de manière générale, les termes « amont », « aval » « axial » et « axialement » sont définis par rapport à la circulation des gaz dans la turbomachine et ici suivant l’axe longitudinal X (et même de gauche à droite sur la figure 1). De même, les termes « radial », « radialement », « interne », « intérieur », « externe » et « extérieur «sont définis par rapport à un axe radial Z perpendiculaire à l’axe longitudinal X et au regard de l’éloignement par rapport à l’axe longitudinal X. Pour faciliter sa fabrication et son assemblage/montage/démontage, une turbomachine est en général modulaire c’est-à-dire qu’elle comprend plusieurs modules qui sont fabriqués indépendamment les uns des autres et qui sont assemblés ensuite les uns aux autres. La modularité d’une turbomachine facilite en outre sa maintenance. Dans la présente demande, nous entendons par « module de turbomachine », un module qui comprend notamment une soufflante et un arbre de soufflante pour entraîner la soufflante.
Sur la figure 1 , la turbomachine 1 comprend un générateur de gaz 2 en amont duquel est montée une soufflante 3. Le générateur de gaz 2 comporte typiquement d’amont en aval, un compresseur basse pression 4, un compresseur haute pression 5, une chambre de combustion 6, une turbine haute pression 7 et une turbine basse pression 8. Les rotors du compresseur basse pression 4 et de la turbine basse pression 8 sont reliés mécaniquement par un arbre basse pression 9 de manière à former un corps basse pression. Les rotors du compresseur haute pression 5 et de la turbine haute pression 7 sont reliés mécaniquement par un arbre haute pression 10 de manière à former un corps haute pression. Le corps haute pression est guidé en rotation autour de l’axe longitudinal X par un premier palier 11 à roulements en amont et un deuxième palier 12 à roulements en aval. Le premier palier 11 est monté radialement entre un carter inter-compresseur 13 et une extrémité amont de l’arbre haute pression 10. Le carter inter compresseur 13 est agencé axialement entre le compresseur basse pression 4 et le compresseur haute pression 5. Le deuxième palier 12 est monté radialement entre un carter inter-turbine 14 et une extrémité aval de l’arbre haute pression 10. Le carter inter-turbine 14 est agencé axialement entre les turbines basse pression 7 et haute pression 8. Le corps basse pression est guidé en rotation autour de l’axe longitudinal X via un troisième palier 15 à roulements et un quatrième palier double 16 à roulements. Ces derniers sont montés radialement entre un carter d’échappement 17 et une extrémité aval de l’arbre basse pression 9. Le carter d’échappement 17 est situé en aval de la turbine basse pression 8. Le troisième palier 15 est monté radialement entre un carter d’entrée 18 et une extrémité amont de l’arbre basse pression 9. L’arbre haute pression 10 s’étend radialement au moins en partie à l’extérieur de l’arbre basse pression 9 et sont coaxiaux.
Dans une autre configuration non représentée, le corps basse pression ou de faible pression comprend le compresseur basse pression qui est relié à une turbine de pression intermédiaire. Une turbine libre de puissance est montée en aval de la turbine de pression intermédiaire et est reliée à l’hélice décrite ci-après via un arbre de transmission de puissance pour l’entraîner en rotation. La soufflante 3 est ici carénée par un carter de soufflante 19 qui porte une nacelle 20. La soufflante 3 comprime un flux d’air qui entre dans la turbomachine en se divisant en un flux d’air primaire F1 et en flux d’air secondaire F2 au niveau d’un bec de séparation 21 . Ce dernier est porté par le carter d’entrée 18 centré sur l’axe longitudinal X. Le carter d’entrée 18 est prolongé en aval par un carter externe ou carter inter-veine 22. Le flux d’air primaire F1 circule dans une veine primaire 23 qui traverse le générateur de gaz 2 et s’en échappe par une tuyère primaire 24. Le flux d’air secondaire F2 circule dans une veine secondaire 25 et s’en échappe par une tuyère secondaire 26. La veine primaire 23 et la veine secondaire 25 sont séparées par le carter inter-veine 22.
La soufflante 3 comprend une série d’aubes de soufflante 30 s’étendant radialement autour d’un rotor de soufflante 31 . Le rotor de soufflante 31 est traversé par un arbre de soufflante 32, cylindrique, centré sur l’axe longitudinal X. L’arbre de soufflante 32 entraîne en rotation le rotor de soufflante 31 autour de l’axe longitudinal X. L’arbre de soufflante 32 est lui-même entraîné en rotation par un arbre de transmission de puissance d’axe longitudinal X via un mécanisme de transmission de puissance 33. Dans le présent exemple, l’arbre de transmission de puissance est l’arbre basse pression 9. L’arbre de soufflante 32 et l’arbre de basse pression 9 sont coaxiaux. De manière alternative, l’arbre de puissance est un arbre de turbine de puissance alimenté en gaz par le générateur de gaz 2.
Le mécanisme de transmission de puissance 33 est un réducteur de vitesse 34 mécanique permettant de réduire la vitesse de rotation de l’arbre de soufflante 32 par rapport à la vitesse de l’arbre basse pression 9. D’autre part, le réducteur de vitesse 34 permet l’agencement d’une soufflante avec un diamètre important de manière à avoir un fort taux de dilution. Le réducteur 34 est de type à train d’engrenage planétaire. Ce dernier est logé dans une enceinte de lubrification 35 dans lequel celui-ci est lubrifié. Typiquement, le réducteur de vitesse 34 comprend un planétaire 36 intérieur (ou solaire), des satellites 37, un porte-satellites 38 et une couronne extérieure 39 (planétaire extérieur). Dans le présent exemple, le planétaire 36 intérieur est centré sur l’axe longitudinal X et est couplé en rotation avec l’arbre de puissance (ici l’arbre basse pression 9) suivant l’axe longitudinal X. Ce dernier comprend des premiers éléments destinés à coopérer avec des seconds éléments d’accouplement complémentaires portés par le planétaire 36 intérieur. Les satellites 37 sont portés par le porte-satellites 38 et tournent chacun autour d’un axe sensiblement parallèle à l’axe longitudinal X. Chacun des satellites 37 engrène avec le planétaire 36 intérieur et la couronne extérieure 39. Les satellites 37 sont disposés radialement entre le planétaire intérieur 36 et la couronne extérieure 39. Dans le présent exemple, il est prévu trois satellites 37. Bien entendu, le réducteur de vitesse 34 peut comprend un nombre de satellites supérieur à trois.
La couronne extérieure 39 est couplée en rotation avec l’arbre de soufflante 32. La couronne 39 est centrée sur l’axe longitudinal. De la sorte, le planétaire intérieur 36 forme l’entrée du réducteur de vitesse 34 tandis que la couronne extérieure 39 forme la sortie de celui-ci. Le porte-satellites 38 est en revanche fixe par rapport à la couronne 39. Le porte- satellites 38 est en particulier fixé à une structure fixe de la turbomachine via une virole de support 40. Cette dernière est rigidement fixée au carter d’entrée 18 de la turbomachine. La virole de support 40 est également fixée à un premier support de palier 41 , fixe, solidaire du carter d’entrée 18.
Le troisième palier 15 est monté en aval du réducteur de vitesse 34 de manière avantageuse. Des paliers de guidage, à roulements, sont agencés également en amont du réducteur de vitesse 34 pour guider l’arbre de soufflante 32 en rotation. Ces paliers sont également agencés dans l’enceinte de lubrification 35. Plus précisément, nous pouvons voir un cinquième palier 42 à roulements (à billes) juste en amont du réducteur 34 et un sixième palier 43 à roulements (à rouleau) en amont du palier 42. Les bagues externes de ces paliers sont portées par un deuxième support de palier 44, fixe, solidaire du carter d’entrée 18. Les bagues internes sont solidaires de l’arbre de soufflante 32.
En référence aux figures 1 et 2, les aubes de soufflantes 30 sont à calage variable. Chaque aube de soufflante 30 comprend un pied 45 et une pale 46 s’étendant radialement vers l’extérieur depuis le pied 45. Dans l’exemple de la figure 1 , l’extrémité libre des pales est délimitée radialement par le carter de soufflante 19. Le pied 45 de chaque aube 30 se présente typiquement sous la forme d’un arbre ou manchon qui est monté pivotant suivant un axe de calage C dans un logement 47 interne d’un anneau 48. De manière alternative, le pied 45 et la pale 46 sont séparées, la pale s’emboîtant dans le pied via une liaison en queue d’aronde. L’anneau 48 est solidaire du rotor de soufflante 31 , est centré sur l’axe longitudinal et comprend plusieurs logements 47 répartis régulièrement autour de l’axe X. Il y a autant de logements que de pied d’aubes. L’axe de calage C est parallèle à l’axe radial. L’arbre du pied 45 est monté pivotant grâce à deux paliers de guidage 49 montés dans chaque logement 47 et de manière superposée suivant l’axe radial Z. Ces paliers 49 sont de préférence, mais non limitativement, des paliers à roulements. Les éléments roulants de ces deux paliers 49 comprennent ici respectivement des billes. Le calage des aubes de soufflante est réalisé grâce à un système de changement de pas 50 installé dans le rotor de soufflante 31 . Celui-ci est agencé en particulier en amont du réducteur de vitesse 34. Le système de changement de pas 50 comprend au moins un mécanisme de liaison 51 reliés aux aubes de soufflante 30 et un moyen de commande 52 agissant sur le mécanisme de liaison 51 .
Sur la figure 2, le moyen de commande 52 comprend un corps fixe 53 et un corps mobile 54 par rapport au corps fixe 53. Avantageusement, mais non limitativement, le moyen de commande 52 est un actionneur linéaire d’axe coaxial à l’axe longitudinal X. Le corps fixe 53 est solidaire en rotation de l’arbre de soufflante 32. Le corps mobile 54 se déplace suivant une translation le long de l’axe longitudinal X par rapport au corps fixe 53. Le corps fixe 53 est donc tournant mais non translatant. Plus précisément encore, le corps fixe 53 est cylindrique, centré sur l’axe longitudinal X, et de section circulaire. Une telle configuration permet de limiter l’encombrement du moyen de commande 52 dans le rotor de soufflante tant axialement que radialement.
Avantageusement, le corps fixe 53 s’étend radialement autour du corps mobile 54. Le corps fixe 53 comprend une virole 55 qui s’étend radialement vers l’extérieur depuis une surface externe 53a du corps fixe 53. La virole 55 comprend une première bride 56 qui est fixée à une deuxième bride 57 d’un tourillon 58. Ce tourillon 58 est fixé sur la paroi externe de l’arbre de soufflante 32 grâce à des éléments de fixation adéquats. L’anneau 48 de maintien des aubes 30 est également fixé à un cône de soufflante 59 qui comprend une troisième bride radiale 60. La troisième bride radiale 60 est fixée à la deuxième bride 57. De la sorte, l’arbre de soufflante 32 est relié à l’anneau 48. Le cône de soufflante 59 permet de transmettre le couple et les charges radiales. Les trois brides 56, 57 et 60 sont fixées ensemble par des organes de fixation (non représentés) tels que des vis, écrous, boulons, goujons ou éléments analogues.
Dans le présent exemple, le moyen de commande 52 est un vérin muni d’un boîtier et d’un piston mobile dans un volume formé par le boîtier. En particulier, le corps mobile 54 se présente sous la forme d’une tige axiale 61 qui s’étend entre une première extrémité 61a et une deuxième extrémité 61 b. Le corps mobile 54 comprend en outre une paroi annulaire 62 qui s’étend radialement vers l’extérieur depuis une face externe et autour de la tige 61 . La paroi annulaire 62 est située au niveau de la deuxième extrémité 61 b de la tige. Cette paroi annulaire 62 permet de délimiter deux chambres 63a, 63b à volume variable dans le corps fixe 53 et qui sont opposées axialement. Le corps mobile 54 se déplace axialement sous l’action d’une commande du moyen de commande 52, et en particulier de la pression d’un fluide circulant dans chaque chambre 63a, 63b. Pour cela, le système de changement de pas 50 comprend des moyens d’alimentation assurant la commande de celui-ci et décrits plus loin dans la description. Le fluide reçu dans les chambres 63a, 63b est par exemple un fluide hydraulique sous pression, d’un système d’alimentation fluidique, de sorte que le corps mobile 54 occupe au moins deux positions. Bien entendu, le corps mobile 54 occupe plusieurs positions intermédiaires en fonction des différentes phases de vol de l’aéronef. Ces deux positions correspondent respectivement à la position d’inversion de poussée connue en anglais sous le terme « reverse » et à la position de mise en drapeau des aubes à calage variable. Le déplacement du corps mobile 54 suivant l’axe longitudinal X entraîne le mouvement du mécanisme de liaison 51 , de telle manière que celui-ci engendre le pivotement et le calage des pales des aubes autour de l’axe de calage C.
Sur la figure 3, le système de changement de pas 50 comprend une pièce annulaire 70 (dans une section transversale à son axe de révolution) qui présente une forme générale en cloche et qui permet de relier le mécanisme de liaison 51 au moyen de commande 52. Nous comprenons de la figure 3 de la présente demande que le terme « forme générale de cloche » signifie que la forme est sensiblement évasée ou sensiblement tronconique.
De manière avantageuse, mais non limitativement, la pièce annulaire 70 comprend une portion 71 proximale qui est solidaire du corps mobile 54 du moyen de commande 52. Des moyens de couplage 79 sont agencés entre le corps mobile 54 et la pièce annulaire 70 de sorte que ceux-ci soient solidaires en déplacement, et en particulier en translation. La portion 71 se présente sous la forme d’un disque centré sur l’axe longitudinal X. La portion 71 comprend un trou central 72 qui traverse sa paroi de part et d’autre suivant l’axe longitudinal X. La tige 61 du corps mobile 54 traverse au moins en partie le trou central 72 de la portion 71 qui est fixée sur la tige 61 . La première extrémité 61a de la tige 61 s’étend en amont de la portion 71 et à l’extérieur de la pièce annulaire 70. Les moyens de couplage 79 comprennent des premières cannelures 79a qui sont formées sur une paroi radialement externe de la tige 61 et au voisinage de la première extrémité 61a. Ces premières cannelures 79a s’engagent avec des deuxièmes cannelures 79b correspondantes de la portion 71 . Ces deuxièmes cannelures 79b sont formées sur une paroi radialement interne du trou central 72. Un organe de serrage 73 tel qu’un écrou est monté sur la paroi externe de la tige 61 . L’organe de serrage 73 permet de verrouiller axialement la portion 71 sur la tige 61 . De manière avantageuse, la pièce annulaire 70 comprend une portion centrale 74 qui a une première extrémité reliée à la portion 71 proximale et qui s’étend vers l’aval en s’évasant. Comme cela est illustré, la pièce annulaire 70 s’étend radialement à l’extérieur du corps fixe 54. La portion centrale 74 présente une section axiale sensiblement tronconique. La pièce annulaire 70 comprend une quatrième bride 75 qui s’étend radialement vers l’extérieur depuis une surface externe de la portion centrale 74. La bride 75 est agencée à proximité d’une deuxième extrémité de la portion centrale 74.
La pièce annulaire 70 comprend une portion cylindrique 76, distale qui étend axialement la portion centrale 74 au niveau de sa deuxième extrémité. La portion cylindrique 76 présente un diamètre interne D3 (mesuré sur la surface interne 77 de ladite portion 76) (visible sur la figure 7) qui est supérieur au diamètre externe D4 (défini par l’extrémité libre de la bride 56) (et visible sur la figure 7) du corps fixe 53. Avantageusement, la bride 75 de la pièce annulaire 70 comprend une surface interne 78 qui est définie dans un plan perpendiculaire à l’axe longitudinal X. Ce plan passe également sensiblement au milieu du corps fixe 53 (suivant la longueur axiale du corps fixe 53). La portion cylindrique 76 et la bride 75 présente une forme axiale sensiblement en L.
En référence à la figure 3, le système de changement de pas 50 comprend une virole annulaire 80 d’interface qui est agencée cinématiquement entre la pièce annulaire 70 et le mécanisme de liaison 51 . La virole annulaire 80 est une pièce rapportée. C’est-à-dire que la virole annulaire 80 est distincte de la pièce annulaire 70. Cette virole 80 supplémentaire permet un montage/démontage simple du moyen de commande 52 sans que la cinématique réalisée par le mécanisme de liaison 51 ne soit impactée. La virole annulaire 80 est fixée de manière amovible à la pièce annulaire 70 et comprend des moyens d’attache 81 , fixes, du mécanisme de liaison 51 . Nous comprenons de la figure 3 que la virole annulaire 80 et la pièce annulaire 70 sont fixées ensemble grâce à des organes de fixation qui sont amovibles. Cela permet d’assembler et de désassembler le moyen de commande du mécanisme de liaison avec une grande facilité.
Avantageusement, la virole annulaire 80 présente une section axiale en forme de U avec une première branche 82 et une deuxième branche 83 qui sont reliées par un fond 84. Bien entendu, d’autres formes sont envisageables dès lorsqu’elles permettent une fixation avec la pièce annulaire 70 et une fixation avec le mécanisme de liaison 51 . La première branche 82 et la deuxième branche 83 s’étendent chacune radialement vers l’extérieur.
Le fond 84 s’étend suivant l’axe longitudinal et est centré sur l’axe longitudinal X. La virole annulaire 80 est destinée être montée au moins en partie radialement à l’extérieur de la portion cylindrique 76. La virole 80 est destinée à reposer sur cette dernière.
La virole 80 comprend une surface radialement interne de forme complémentaire au moins en partie avec une surface radialement externe de la pièce annulaire 70. En particulier, la première branche 82 comprend une surface externe 85 qui présente une forme complémentaire à la surface interne 78 de la bride 75. La surface externe 85 est définie dans un plan parallèle au plan de la surface interne 78. Les surfaces interne et externe 78, 85 sont planes dans le présent exemple. De même, le fond 84 présente une surface radialement interne 86 dont une partie au moins est complémentaire avec une surface radialement externe 87 de la portion cylindrique 76. La surface radialement externe 87 de la portion cylindrique 76 forme une portée cylindrique. La portion cylindrique 76 permet de réaliser un centrage court. La surface radialement externe 87 est opposée radialement à la surface interne 77. La virole annulaire 80 peut comprend des nervures (non représentées) s’étendant entre la première branche et le fond de manière à rigidifier celle-ci.
La bride 75 et la première branche 82 sont fixées ensemble via des organes de fixation (non représentés) amovibles. A cet effet, la bride 75 comprend une pluralité de premiers orifices 88 qui traversent la paroi de la bride 75 de part et d’autre suivant une direction parallèle à l’axe longitudinal X. Ces premiers orifices 88 sont répartis régulièrement autour de l’axe longitudinal. La première branche 82 comprend également des deuxièmes orifices 89 qui traversent sa paroi de part et d’autre suivant une direction parallèle à l’axe longitudinal. En situation d’installation, les premiers et les deuxièmes orifices 88, 89 sont chacun l’un en regard de l’autre et coaxial. Les organes de fixation peuvent comprendre des vis, des goujons, des écrous permettant de monter et de démonter ces éléments facilement et rapidement.
De manière avantageuse, et dans ce mode de réalisation, les organes de fixation sont axiaux. Bien entendu les organes peuvent être différents et s’adapter à la configuration de l’interface entre la pièce annulaire et la virole annulaire.
Dans ce mode de réalisation, la virole 80 est montée sur la pièce annulaire 70 suivant un ajustement glissant au niveau de la portée cylindrique 76 de la pièce annulaire 70 pour faciliter le démontage de la pièce annulaire 70 par rapport à la virole annulaire 80. Dans ce mode de réalisation, le diamètre interne D2 de la virole annulaire 80 (mesuré au niveau de surface radialement interne 86 du fond 84) est supérieur au diamètre externe D1 (mesuré au niveau de la surface radialement externe 87) de la portion cylindrique 76. Le diamètre interne de la virole 80 est également supérieur au diamètre externe de la bride 56 (mesuré au niveau de la bordure 90 de celle-ci). Une fois les organes de fixation démontés, l’extraction de la pièce annulaire 70 est réalisée sans effort. Dans un autre mode de réalisation (non représenté), la virole annulaire est frettée sur la pièce annulaire. Dans ce cas, des trous d’extraction sont ménagés dans la bride 75 et par exemple entre, circonférentiellement, les premiers orifices 88. Les trous d’extraction sont d’axes parallèles à ceux des premiers orifices 88 et traversent de part et d’autre la bride 75 suivant l’axe longitudinal X. Les trous d’extraction sont avantageusement, mais non limitativement filetés. Un élément d’extraction de type vis est vissé dans au moins un trou d’extraction de sorte que la vis soit en butée et appuie sur la surface externe 85 de la première branche 82 de la virole 80 de manière à désolidariser la pièce annulaire 70 par rapport à la virole annulaire 80 une fois les organes de fixation enlevés.
Suivant un mode de réalisation, la pièce annulaire 70 est ajourée de manière à alléger la masse celle-ci. En particulier, des lumières traversantes, et présentant une forme allongée, sont réalisées dans la portion centrale 74 de la pièce annulaire 70.
Sur les figures 2 et 3, le mécanisme de liaison 51 comprend plusieurs biellettes 91 . Une des biellettes 91 est représentée par exemple sur la figure 3. Chaque biellette 91 comprend une première extrémité 92a et une deuxième extrémité 92b opposées suivant la direction d’allongement de la biellette 91 . La direction d’allongement est ici sensiblement parallèle à l’axe longitudinal (en situation d’installation). La première extrémité 92a est reliée aux moyens d’attache 81 solidaire de la virole annulaire 80. Les moyens d’attache 81 comprennent ici des chapes formées chacune de deux oreilles 93a, 93b. Les deux oreilles 93a, 93b de chaque chape sont traversées par un axe d’articulation 94 sensiblement parallèle à l’axe radial et autour duquel pivote une biellette 91 . La deuxième extrémité 92b de chaque biellette 91 (représentée sur la figure 2) est articulée à une fourchette 95a prévue à l’extrémité libre d’un bras 95 (cf. figure 2) relié au pied 45 d’une aube de soufflante. Le bras 95 forme un excentrique pour chaque aube. Les biellettes 91 sont réalisées dans un matériau métallique.
De manière avantageuse, les biellettes 91 sont chacune réglables en longueur. Typiquement, chaque biellette 91 comprend un axe intermédiaire fileté (non représenté) s’étendant entre une première extrémité et une deuxième extrémité. La première extrémité de l’axe intermédiaire est vissée dans un orifice taraudé d’une première portion de biellette (pourvue d’une des extrémités de la biellette). La deuxième extrémité de l’axe intermédiaire est vissée également dans un orifice taraudé d’une deuxième portion de biellette (avec l’autre des extrémités de la biellette). Cette configuration permet de régler le calage des aubes les unes par rapport aux autres. Les calages sont ainsi finement ajustés malgré les défauts de fabrication, de tolérance et de vieillissement pouvant affecter les différentes pièces constituant la soufflante et le système de changement de pas. La virole annulaire 80 permet de conserver le réglage malgré le démontage du moyen de commande 52 (vérin).
En référence à la figure 4, et comme nous l’avons annoncé précédemment, la turbomachine 1 comprend un système d’alimentation fluidique 100 permettant de distribuer un fluide de lubrification vers les différents organes et/ou équipements qui en ont besoin tels que le moyen de commande 52, les paliers, etc. Le fluide est avantageusement de l’huile sous pression. Le système d’alimentation 100 comprend une source d’alimentation 101 (ou un réservoir) (cf. figure 1) et une pompe permettant de faire circuler l’huile vers les organes et/ou équipements. La source d’alimentation 101 est agencée dans un repère fixe de la turbomachine et de manière générale dans la nacelle 20 telle qu’illustrée sur la figure 1 ou dans le carter inter-veine 22. Cependant, étant donné que le moyen de commande 52 est situé dans un repère tournant, la turbomachine comprend un dispositif de transfert de fluide 103 (cf. figure 2) ou palier de transfert d’huile. Ce dispositif de transfert 103 est connu sous le sigle anglais « OTB » pour « Oil transfert Bearing » et comme son nom l’indique permet le transfert d’huile du repère fixe au repère tournant. Le dispositif de transfert d’huile 103 est agencé en amont du réducteur de vitesse 34 suivant la figure 2. L’emplacement du dispositif de transfert d’huile est avantageux car celui-ci permet de faciliter son démontage/montage sans intervenir sur le réducteur de vitesse. Le système d’alimentation 100 comprend également plusieurs canaux d’alimentation 104 pour acheminer l’huile vers les organes et/ou équipements et qui sont représentés en pointillé sur la figure 1 et sur la figure 4. Certains de ces canaux 104 traversent le porte-satellites 38 qui est fixe.
Sur les figures 2 et 3, le dispositif de transfert 103 s’étend à l’intérieur de l’arbre de soufflante 32 (qui est creux) de manière à réduire l’encombrement axial et radial. En particulier, l’encombrement est avantageusement réduit en amont où se trouve le moyen de commande 52. Nous comprenons notamment des différentes figures que le moyen de commande 52 est monté globalement en amont de l’arbre de soufflante 32 suivant l’axe longitudinal. Le dispositif 103 comprend une partie stator 105 qui est centrée sur l’axe longitudinal X. La partie stator 105 est montée solidaire d’une structure fixe de la turbomachine. Dans le présent exemple, la partie stator 105 est fixée au porte-satellites 38 via un élément tubulaire 106. Pour cela, la partie stator 105 comprend une septième bride 108 radiale qui s’étend radialement vers l’extérieur depuis la surface externe de la partie stator 105. La bride 108 est fixée à une huitième bride radiale 109 de l’élément tubulaire 106 via des organes de fixation (ici des vis et écrous ou autre autres éléments analogues). La partie stator 105 comprend une surface cylindrique interne 110 dans laquelle débouchent des premières canalisations 111.
Le dispositif 103 comprend également une partie rotor 112 qui est engagée à l’intérieur de la partie stator 105. La partie rotor 112 présente une forme cylindrique et s’étend suivant l’axe longitudinal X. La partir rotor 112 est mobile en rotation à l’intérieur de la partie stator 105 suivant l’axe longitudinal. A cet effet, la partie rotor 112 est solidaire en rotation du moyen de commande 52, et ici plus particulièrement du corps fixe 53 de celui-ci. La partie rotor 112 comprend une surface cylindrique externe 113 qui se trouve en regard de la surface cylindrique interne 110 de la partie stator 105. La partie rotor 112 comprend en outre des deuxièmes canalisations 114 qui débouchent chacune dans la surface cylindrique externe 113 via des orifices 117. Les deuxièmes canalisations 114 sont en communication fluidique avec les premières canalisations 111 de la partie stator. D’autre part, ces deuxièmes canalisations 114 sont connectées fluidiquement avec les moyens d’alimentation du moyen de commande 52.
Sur la figure 3, les deuxièmes canalisations 114 comprennent une canalisation externe 114a qui s’étend dans l’épaisseur de la paroi de la partie rotor 112. L’orifice 117 de la canalisation externe 114a est en regard d’une des premières canalisations 111 (ici la première canalisation amont). Les deuxièmes canalisations 114 comprennent également une canalisation centrale 114b qui s’étend en majeur partie suivant l’axe central de la partie rotor 112. L’orifice 117 de la canalisation centrale 114b est en regard de l’autre des premières canalisations 111 (ici la première canalisation aval). La canalisation externe 114a est couplée à une première conduite 115 qui s’étend dans l’épaisseur de paroi du corps fixe 53. La première conduite 115 comprend une portion sensiblement radiale 115a qui est agencée en aval des chambres 63a et 63b et une portion axiale 115b qui s’étend le long des chambres 63a, 63b du corps fixe. La portion axiale 115b débouche dans la chambre 63a. La canalisation centrale 114b est couplée à une deuxième conduite 116 du corps fixe 53. La canalisation centrale 114b et la deuxième conduite 116 sont coaxiales. La deuxième conduite 116 débouche dans la chambre 63b. De la sorte, le fluide, l’huile, peut circuler depuis la source d’alimentation 101 vers le moyen de commande 52 en passant d’une part par le réducteur de vitesse 34, et d’autre part par le dispositif de transfert 103 de fluide.
En référence à la figure 4, la partie rotor 112 est montée rotative par rapport à la partie stator 105 au moyen de paliers. Un premier palier 120 est monté en amont des orifices 117 formés dans la surface cylindrique externe 113 et par lesquels débouchent les canalisations 114. Le premier palier 120 est à roulements. Celui-ci comprend une bague interne 121 qui est portée par la surface cylindrique externe et une bague externe 122 qui est portée par la surface cylindrique interne de la partie stator 105. La bague externe 122 est bloquée axialement d’une part, par une portée cylindrique, et d’autre part, par un écrou ou une frette 123. La bague interne est portée par la surface cylindrique externe de la partie rotor. La bague interne 121 est bloquée axialement d’une part, par une portée cylindrique, et d’autre part, par un manchon cylindrique 124. Le manchon cylindrique 124 est bloqué en amont par une frette ou un écrou 125. Les éléments roulants sont des billes.
Le manchon 124 comprend une bride radiale 126 qui s’étend radialement vers l’extérieur. La bride 126 est fixée à une bride 127 qui s’étend radialement vers l’extérieur depuis une portion proximale 128 du corps fixe 53. Entre les deux brides est ménagé un joint annulaire 129 qui est défini dans un plan perpendiculaire à l’axe longitudinal X. Le joint annulaire 126 comprend un bord interne fixé entre les brides via des organes de fixation tels que des vis et écrous et un bord externe en contact avec une paroi interne cylindrique 130 de l’arbre de soufflante 32.
Un deuxième palier 131 est également monté entre la partie rotor 112 et la partie stator 105. Le deuxième palier 131 est également un palier à roulements. Les éléments roulants de ce palier 131 sont des rouleaux. Ce palier 131 est monté en aval du premier palier 120 et notamment en aval des orifices 117 formés dans la surface cylindrique externe 113. Le deuxième palier 131 comprend une bague interne 132 et une bague externe 133. La bague externe 133 est portée par la surface cylindrique interne 110. La bague externe 133 est bloquée axialement en amont par une portée cylindrique et en aval par une frette ou un écrou 134. La bague interne 132 est portée par la surface cylindrique externe 113. Celle-ci est bloquée en amont par une portée cylindrique et en aval par une frette un ou un écrou 135. Les figures 5 à 8 illustrent un procédé 200 de démontage du module de turbomachine tel que décrit précédemment. En particulier, le procédé de démontage permet d’intervenir sur le moyen de commande 52 et éventuellement sur le dispositif de transfert 103 d’huile sans intervenir sur les biellettes 91 dont le réglage doit être précis pour toutes les pales et est fastidieux. Sur la figure 5 tous les éléments sont assemblés. Le procédé comprend une étape d’extraction 220 de la pièce annulaire 70 du rotor de soufflante comme cela est représenté sur la figure 6. Lors de cette étape 220, les fixations sur la virole annulaire 80 et sur la tige 61 du corps mobiles sont supprimées, retirées. La virole annulaire 80 reste fixée aux biellettes 91 . Le procédé comprend une étape d’extraction 230 du moyen de commande 52 telle qu’illustrée sur la figure 7. Lors de cette étape 230, les fixations entre le corps fixe et l’arbre de soufflante 32 sont supprimées. Le moyen de commande 52 est déplacé vers l’amont sans obstacle car le diamètre de la bride 56 est inférieur au diamètre de la virole annulaire 80. Le moyen de commande 52 passe à travers la virole annulaire 80. Le dispositif de transfert d’huile 103 peut être extrait également. Pour cela, les fixations entre les brides 108 et 109 sont supprimées.
Préalablement à l’étape 220, le procédé comprend une étape d’extraction du nez 210 qui est fixé sur le rotor de soufflante 31 de manière à pouvoir accéder à la pièce annulaire 70.
Le remontage de ces éléments est opéré en inversant les étapes du procédé de démontage exposées ci-dessus.

Claims

REVENDICATIONS
1 . Module de turbomachine d’axe longitudinal X, comportant : une soufflante (3) destinée à être entraînée en rotation autour de l’axe longitudinal X par un arbre de soufflante (32), la soufflante (3) comprenant une pluralité d’aubes de soufflante (30) à calage variable, un système de changement de pas (50) des aubes de soufflante (30) comprenant un mécanisme de liaison (51 ) reliés aux aubes de la soufflante (30) et un moyen de commande (52) agissant sur le mécanisme de liaison (51 ), le moyen de commande (52) comportant un corps fixe (53) solidaire de l’arbre de soufflante (32) et un corps mobile (54), par rapport audit corps fixe (53), qui est relié au mécanisme de liaison (51 ), le système de changement de pas (50) comprenant une pièce annulaire (70) ayant une portion (71 ) solidaire du corps mobile (54), la pièce annulaire (70) présentant une forme générale en cloche et s’étendant au moins en partie radialement à l’extérieur du corps fixe (53), caractérisé en ce qu’il comprend une virole annulaire (80) qui est fixée de manière amovible à la pièce annulaire (70) et qui comprend des moyens d’attache (81 ) du mécanisme de liaison (51 ), la virole annulaire (80) et la pièce annulaire (70) sont fixées ensemble au moyen d’organes de fixation amovibles.
2. Module de turbomachine selon la revendication précédente, caractérisé en ce que le corps fixe (53) comprend une virole (55) qui s’étend radialement à l’extérieur du corps fixe (53) depuis une paroi externe et qui comprend une première bride (56) ayant une extrémité libre définissant une bordure externe (90), le diamètre externe (D1 ) de la bordure externe (90) étant inférieur au diamètre interne (D2) de la virole annulaire (80).
3. Module de turbomachine selon l’une quelconque des revendications précédentes, caractérisé en ce que le corps fixe (53) s’étend radialement autour du corps mobile (54) et le corps mobile (54) comprend une extrémité amont (61 a) à laquelle est fixée de manière amovible la pièce annulaire (70).
4. Module de turbomachine selon l’une quelconque des revendications précédentes, caractérisé en ce que la virole annulaire (80) est destinée être montée au moins en partie radialement à l’extérieur d’une portion cylindrique (76) de la pièce annulaire (70), la virole annulaire (80) comprenant une surface radialement interne (86) de forme complémentaire au moins en partie avec une surface radialement externe (87) de la portion cylindrique (76).
5. Module de turbomachine selon l’une quelconque des revendications précédentes, caractérisé en ce que le mécanisme de liaison (51 ) comprend des biellettes (91 ) ayant chacune une première extrémité (92a) solidaire de la virole annulaire (80) via les moyens d’attache (81 ) et une deuxième extrémité (92b) reliée au pied (45) d’une aube de soufflante (30).
6. Module de turbomachine selon l’une quelconque des revendications précédentes, caractérisé en ce que l’arbre de soufflante (32) est relié à un arbre puissance de la turbomachine via un réducteur de vitesse (34) mécanique, le réducteur de vitesse (34) comprenant une couronne extérieure (39) solidaire en rotation avec l’arbre de soufflante (32).
7. Module de turbomachine selon la revendication précédente, caractérisé en ce qu’il comprend un dispositif de transfert (103) de fluide qui est monté en amont du réducteur de vitesse (34) et qui est relié à une source d’alimentation en amont du réducteur de vitesse (34), le dispositif de transfert (103) comportant une partie stator (105) annulaire solidaire d’une structure fixe de la turbomachine (1 ) et une partie rotor (112) qui est engagée dans la partie stator (105) et qui est solidaire en rotation avec le moyen de commande (52), la partie stator (105) comprenant une surface cylindrique interne (110) et des premières canalisations (1 11 ) débouchant dans la surface cylindrique interne (1 10), la partie rotor (112) comprenant une surface cylindrique externe (1 13) et des deuxièmes canalisations (114) débouchant dans la surface cylindrique externe (1 13).
8. Module de turbomachine selon la revendication précédente, caractérisé en ce que le dispositif de transfert (103) de fluide s’étend au moins en partie à l’intérieur de l’arbre de soufflante (32).
9. Module de turbomachine selon l’une des revendications 7 et 8, caractérisé en ce que le corps fixe (53) comprend des moyens d’alimentation qui sont couplés aux deuxièmes canalisations (114) de la partie rotor (112) du dispositif de transfert (103) de fluide.
10. Module de turbomachine selon l’une quelconque des revendications précédentes, caractérisé en ce que la virole annulaire (80) présente une section axiale en forme de U avec une première branche et une deuxième branche reliées par un fond.
11 . Module de turbomachine selon l’une quelconque des revendications précédentes, caractérisé en ce que la pièce annulaire (70) comprend une portion centrale (74) qui a une première extrémité reliée à la portion (71) et qui s’étend vers l’aval en s’évasant.
12. Module de turbomachine selon l’une quelconque des revendications précédentes, caractérisé en ce que le moyen de commande (52) est monté globalement en amont de l’arbre de soufflante (32) suivant l’axe longitudinal.
13. Turbomachine (1 ) d’aéronef comprenant au moins un module de turbomachine selon l’une quelconque des revendications précédentes.
14. Procédé d’assemblage d’un module de turbomachine selon l’une quelconque des revendications 1 à 12, le procédé étant caractérisé en ce qu’il comprend les étapes suivantes : - une étape d’extraction (220) de la pièce annulaire (70) en supprimant les fixations entre le corps fixe (54) et la virole annulaire (80), et une étape d’extraction (230) du moyen de commande (52) en traversant la virole annulaire (80).
PCT/FR2022/052320 2021-12-20 2022-12-13 Module de turbomachine equipe d'aubes a calage variable et d'une virole annulaire d'interface WO2023118686A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2113951A FR3130894A1 (fr) 2021-12-20 2021-12-20 Module de turbomachine equipe d’aubes a calage variable et d’une virole annulaire d’interface
FRFR2113951 2021-12-20

Publications (1)

Publication Number Publication Date
WO2023118686A1 true WO2023118686A1 (fr) 2023-06-29

Family

ID=80786435

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2022/052320 WO2023118686A1 (fr) 2021-12-20 2022-12-13 Module de turbomachine equipe d'aubes a calage variable et d'une virole annulaire d'interface

Country Status (2)

Country Link
FR (1) FR3130894A1 (fr)
WO (1) WO2023118686A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11873738B2 (en) 2021-12-23 2024-01-16 General Electric Company Integrated stator-fan frame assembly
US11859515B2 (en) 2022-03-04 2024-01-02 General Electric Company Gas turbine engines with improved guide vane configurations
US11946378B2 (en) 2022-04-13 2024-04-02 General Electric Company Transient control of a thermal transport bus
US11927142B2 (en) 2022-07-25 2024-03-12 General Electric Company Systems and methods for controlling fuel coke formation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170066524A1 (en) 2015-09-07 2017-03-09 General Electric Company System and method for controlling propeller pitch
US10533436B2 (en) 2015-11-04 2020-01-14 General Electric Company Centerline-mounted hydraulic pitch change mechanism actuator
FR3087233A1 (fr) 2018-10-10 2020-04-17 Safran Aircraft Engines Module de soufflante a pales a calage variable
US20200141421A1 (en) 2016-02-12 2020-05-07 General Electric Company Method and System for Integrated Pitch Control Mechanism Actuator Hydraulic Fluid Transfer
US10907486B2 (en) 2017-05-18 2021-02-02 Safran Aircraft Engines Turbomachine module comprising a rotor supporting pitchable blades

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170066524A1 (en) 2015-09-07 2017-03-09 General Electric Company System and method for controlling propeller pitch
US10533436B2 (en) 2015-11-04 2020-01-14 General Electric Company Centerline-mounted hydraulic pitch change mechanism actuator
US20200141421A1 (en) 2016-02-12 2020-05-07 General Electric Company Method and System for Integrated Pitch Control Mechanism Actuator Hydraulic Fluid Transfer
US10907486B2 (en) 2017-05-18 2021-02-02 Safran Aircraft Engines Turbomachine module comprising a rotor supporting pitchable blades
FR3087233A1 (fr) 2018-10-10 2020-04-17 Safran Aircraft Engines Module de soufflante a pales a calage variable

Also Published As

Publication number Publication date
FR3130894A1 (fr) 2023-06-23

Similar Documents

Publication Publication Date Title
WO2023118689A1 (fr) Module de turbomachine equipe d'aubes a calage variable et d'un dispostif de transfert d'huile
WO2023118686A1 (fr) Module de turbomachine equipe d'aubes a calage variable et d'une virole annulaire d'interface
WO2021165616A1 (fr) Module de turbomachine equipe de systeme de changement de pas des pales d aubes de stator
EP3864297B1 (fr) Module de soufflante a pales a calage variable
EP2867551B1 (fr) Palier a moyen de lubrification et systeme pour changer le pas des pales d'une helice de turbopropulseur d'aeronef, equipe dudit palier
FR2905975A1 (fr) Conduite de soufflante pour une turbomachine.
FR3043714A1 (fr) Partie avant de turbomachine d'aeronef comprenant une soufflante unique entrainee par un reducteur, ainsi que des aubes directrices de sortie structurales agencees en partie en amont d'un bec de separation
FR3027053A1 (fr) Stator de turbomachine d'aeronef
FR3055001A1 (fr) Systeme de changement de pas equipe de moyens de reglage du pas des pales et turbomachine correspondante
FR3130874A1 (fr) Module de turbomachine equipe d’un systeme de changement de pas et d’un dispostif de transfert de fluide a emmanchement en aveugle
EP4185767A1 (fr) Module de turbomachine equipe d'une helice et d'aubes de stator supportees par des moyens de maintien et turbomachine correspondante
EP3299605B1 (fr) Carter avec bras aspirant pour turbomachine axiale
EP4073371B1 (fr) Système propulsif aéronautique à faible débit de fuite et rendement propulsif amélioré
EP4073354B1 (fr) Pressurisation d'enceintes de lubrification dans une turbomachine a turbine contrarotative
WO2022069835A1 (fr) Module de turbomachine equipe d'une helice et d'aubes de stator deportees
EP3569854A1 (fr) Architecture de turbomachine a triple compresseur
WO2022069834A1 (fr) Module de turbomachine equipe d'une helice et d'aubes de stator portees par deux carters et turbomachine correspondante
EP4073366B1 (fr) Système propulsif aéronautique à faible débit de fuite et rendement propulsif amélioré
EP3553322B1 (fr) Ensemble pour turbomachine axiale avec virole exterieure en deux parties
EP4355983A1 (fr) Redresseur non-caréné de turbomachine, module de turbomachine et turbomachine d'aéronef
FR3098850A1 (fr) Module de turbomachine equipe de systeme de changement de pas des pales d’une helice et d’un dispositif de mise en drapeau des pales.
WO2021116578A1 (fr) Turbomachine a turbine contrarotative pour un aeronef

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22840795

Country of ref document: EP

Kind code of ref document: A1