WO2023117405A1 - Method for producing an electronic component assembly, component assembly and machine - Google Patents

Method for producing an electronic component assembly, component assembly and machine Download PDF

Info

Publication number
WO2023117405A1
WO2023117405A1 PCT/EP2022/084574 EP2022084574W WO2023117405A1 WO 2023117405 A1 WO2023117405 A1 WO 2023117405A1 EP 2022084574 W EP2022084574 W EP 2022084574W WO 2023117405 A1 WO2023117405 A1 WO 2023117405A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
electronic component
shaped piece
component assembly
produced
Prior art date
Application number
PCT/EP2022/084574
Other languages
German (de)
French (fr)
Inventor
Benjamin Zillmann
Thomas Woehrle
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2023117405A1 publication Critical patent/WO2023117405A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/062Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/08Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools with one or more parts not made from powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/303Surface mounted components, e.g. affixing before soldering, aligning means, spacing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/10Auxiliary heating means
    • B22F12/17Auxiliary heating means to heat the build chamber or platform
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/20Post-treatment, e.g. curing, coating or polishing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0425Copper-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0466Alloys based on noble metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/06Alloys based on silver
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10431Details of mounted components
    • H05K2201/10568Integral adaptations of a component or an auxiliary PCB for mounting, e.g. integral spacer element
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/20Details of printed circuits not provided for in H05K2201/01 - H05K2201/10
    • H05K2201/2036Permanent spacer or stand-off in a printed circuit or printed circuit assembly

Definitions

  • the invention relates to a method for producing an electronic composite component, a composite component comprising a substrate and a shaped piece, and a machine for producing a composite component.
  • a semiconductor multichip structure is known from US 2007/0007643 A1, which comprises a substrate, a first semiconductor chip mounted on the substrate and a second semiconductor chip arranged directly above the first semiconductor chip.
  • the assembly further includes a spacer disposed between the substrate and the second semiconductor die to maintain a vertical spacing between the first and second semiconductor die and to electrically connect the second semiconductor die to the substrate.
  • the method according to the invention for producing an electronic component assembly comprising a substrate and a shaped piece, the shaped piece being produced on the substrate by means of an additive manufacturing method, has the advantage that the shaped piece can be produced simply and therefore inexpensively.
  • the method has the advantage that properties of the molded part can be changed simply by selecting the material and/or the process parameters for its production can be adjusted. It is particularly advantageous that the direct production of a materially bonded connection of the molded piece to the substrate during the production of the molded piece eliminates an additional connection step that is otherwise necessary for molded parts, for example stamped parts, that are produced independently of the substrate. Due to the reduced number of manufacturing steps, the process is simple and therefore inexpensive.
  • the shaped piece is preferably a spacer for spacing two components, in particular the electronic component from the substrate and/or a second substrate from the substrate.
  • the shaped piece is alternatively or additionally designed as an electrical contact for making electrical contact and/or as a heat exchanger for transferring heat from a source to a sink.
  • the shaped piece consists of silver and/or a silver alloy and/or copper and/or a copper alloy and/or that the shaped piece is made by melting powder made of silver and/or a silver alloy and/or copper and/or a copper alloy will be produced.
  • These materials have the advantage that they have high thermal conductivity and high electrical conductivity.
  • the materials used, silver and copper have both high electronic conductivity and high thermal conductivity, so that the efficiency of the shaped piece, in particular as a spacer, is high with regard to electrical and/or thermal conductivity.
  • processing the materials mentioned using the additive manufacturing process has the advantage that, by avoiding internal stresses, the material connection is reliable and there is no risk of delamination.
  • the shaped part is produced in layers from powder in a powder bed on the substrate by means of an energy beam.
  • This makes it possible to build complex, three-dimensional shapes that are adapted to the substrate and / or the electronic component, since the energy beam, especially in Form of a laser beam and / or an electron beam, can be easily deflected and so a predetermined area can be scanned.
  • a first layer of the shaped piece is produced in such a way that the first layer is bonded to the substrate. This has the advantage that no additional process step for connecting the shaped piece to the substrate is required.
  • the substrate is a printed circuit board, in particular a low-temperature single-fired ceramic printed circuit board.
  • Low-temperature single-fired ceramics are circuit boards with, in particular, multi-layer circuits based on sintered ceramic carriers, which are sintered at maximum temperatures of 850°C to 900°C.
  • the electronic component assembly is produced in a assembly chamber, the assembly chamber being heated to a predetermined temperature, which is preferably higher than the ambient temperature, and/or that the electronic component assembly is produced on a assembly board, the assembly board being heated to a predetermined temperature Preheating temperature is tempered.
  • a predetermined temperature which is preferably higher than the ambient temperature
  • Preheating temperature is tempered.
  • Process parameters are the power of the energy beam, in particular the power of the laser beam, and/or the feed rate of the energy beam, in particular the scanning speed of the laser beam, and/or the spot diameter of the energy beam, in particular the laser beam spot, and/or the predetermined temperature of the build-up chamber and/or a preheat temperature of the build plate.
  • the process parameters selected in this way, with a minimally necessary energy input, also contribute to the thermal protection of the substrate and the molded part. Furthermore, this contributes to energy saving in the manufacture of the fitting.
  • the invention also relates to an electronic component assembly comprising a substrate and a molded part, the molded part being an additively manufactured molded part.
  • the composite electronic component has been produced by the method described above.
  • the shaped piece is preferably connected to the substrate in a cohesive manner as a result of additive manufacturing.
  • the shaped piece is made of silver and/or a silver alloy and/or copper and/or a copper alloy and/or a combination thereof.
  • the substrate is preferably a printed circuit board, in particular a low-temperature single-fired ceramic printed circuit board.
  • the electronic component assembly comprises an electronic component and/or a second substrate, wherein the electronic component and/or the second substrate is electrically and/or thermally contacted with the substrate by means of the shaped piece.
  • the electronic component and/or the second substrate is/are preferably soldered to the shaped piece.
  • the electronic component is in particular a microchip and/or a power semiconductor.
  • the second substrate is a printed circuit board, in particular a low-temperature single-fired ceramic printed circuit board.
  • the invention also relates to a machine for producing an electronic composite component comprising a substrate and a molded piece, in particular the component composite described, the machine being designed to produce the molded piece by means of an additive manufacturing method.
  • the machine is designed to produce the electronic component assembly using the method described.
  • the machine comprises in particular a build-up chamber and/or a build-up plate and/or a coater for applying powder and/or a melting device for selectively melting the powder and/or a depowdering device for removing the excess and non-melted powder and/or a loading device for placing the electronic component in the correct position and/or in the correct position on the shaped piece and/or a soldering device for soldering the electronic component to the shaped piece.
  • FIG. 2 shows a flow chart of a method for producing an electronic component assembly.
  • a method for producing an electronic component assembly, in particular a microelectronic component assembly, comprising a substrate and a shaped part is described below, the shaped part being produced on the substrate by means of an additive manufacturing method.
  • an electronic component composite is described comprising a substrate and a molded piece, the molded piece being an additively manufactured molded piece.
  • SLM selective laser melting
  • silver powder and/or copper powder are described below. Due to the excellent thermal and electrical conductivity, powders made of silver and/or copper and their alloys are used.
  • Preselected process parameters of selective laser melting and a preselected temperature control ensure good adhesion of the spacer to the substrate, especially at a low temperature -Fired-in ceramic circuit board (low temperature cofired ceramics, LTCC) ensures that thermal expansion of the spacer that is unfavorable in relation to the circuit board can be compensated for and internal stresses during the construction of the spacer are reduced.
  • LTCC low temperature cofired ceramics
  • the manufacturing process is designed to keep the energy input from the energy beam into the substrate as low as possible by varying the process parameters, but at the same time high enough to produce a dense end component from the powder.
  • the process parameters are the laser power and/or hedge and/or speed and/or spot diameter and/or preheating temperature of the build-up plate.
  • the process parameters are chosen depending on the material and the properties of the powder used, such as powder size.
  • FIG. 1 shows an electronic component assembly 10 comprising a substrate 12 and a molded piece 14.
  • the molded piece 14 is an additively manufactured molded piece 14.
  • the molded piece 14 is directly bonded to the substrate 12 by means of additive manufacturing.
  • the fitting 14 is made of silver and/or a silver alloy and/or copper and/or a copper alloy.
  • the substrate 12 is a circuit board.
  • the substrate 12 is a low temperature single-fired ceramic circuit board.
  • the electronic component assembly 10 comprises an electronic component 16, the electronic component 16 being in contact with the substrate 12 both electrically and thermally by means of the shaped piece 14.
  • the electronic component 16 is connected to the fitting 14 via a soldered connection.
  • the substrate 12 comprises contact areas 18, a bonding wire 20 being applied, in particular soldered, to the contact areas 18 such that the contact area 18 is electrically connected via the bonding wire 20 to contact areas (not shown) on or on the electronic component 16.
  • the production of the electronic component assembly 10 described and in particular of the additively produced molded part 14 is described below with reference to FIG.
  • Figure 2 shows a flowchart of a method for producing an electronic component composite according to Figure 1.
  • a build-up chamber in which the electronic component composite is produced is heated to a predetermined temperature, the predetermined temperature being higher than the ambient temperature .
  • a mounting plate on which the composite electronic component is produced is tempered to a predetermined preheating temperature.
  • the predetermined temperature of the build-up chamber and/or the preheating temperature is selected in such a way that it is at least 100° C., in particular at least 200° C., lower than the melting temperature of the powder.
  • the substrate is provided. In the preferred embodiment, the substrate is provided in a build chamber on a build plate.
  • the substrate is in particular a low-temperature single-fired ceramic circuit board.
  • a first powder layer is applied to the substrate.
  • the powder is applied to the substrate from a powder reservoir using a doctor blade.
  • the material of the powder is silver and/or a silver alloy and/or copper and/or a copper alloy or a combination thereof.
  • the applied first powder layer is selectively melted by means of a laser beam at those points where the molded part is to be applied to the substrate.
  • the shape of the fitting and the first layer of the fitting are predetermined by a digital data set.
  • the powder is alternatively or additionally selectively melted with an electron beam.
  • the process parameters of the additive manufacturing process in particular the power of the energy beam and/or the feed rate of the energy beam and/or the spot diameter of the energy beam and/or the predetermined temperature of the build-up chamber and/or a preheating temperature of the build-up plate, are selected in such a way that with minimal energy input the powder layer is just melted into the substrate and is firmly bonded to the substrate.
  • a decision 38 following the fourth method step 36 a check is made as to whether or not the fitting is finished. If it is determined that the shaped piece is not yet finished 40 , the process continues with the third method step 34 .
  • one or more further layers are iteratively applied to the first layer that has already been produced, by applying powder to the last layer produced and selectively melting the powder, with the further layers produced each having the underlying layer layers that have already been produced can be firmly bonded. If the answer in decision 38 is yes 42, ie it is determined that the fitting is finished, the fifth method step 44 is carried out. In this fifth method step 44, the substrate is de-powdered with the formed part produced and thus the composite component is cleaned of unmelted powder. In the preferred embodiment, the depowdering is carried out by a
  • an electronic component is provided and positioned in a predetermined position and alignment on the molded part that has been produced.
  • the electronic component is then cohesively connected to the shaped piece by a soldered connection.
  • further contact areas of the substrate are electrically connected to contact areas of the electronic component via a bonding wire.
  • the molded part is made by the additive manufacturing process of selective laser melting.
  • the shaped piece is produced by selective electron beam melting. The process parameters of the powder-based, additive manufacturing process are selected in such a way that the powder straight with minimal energy input into the substrate is still melted.
  • the process parameters are the power of the energy beam and/or the feed rate of the energy beam and/or the spot diameter of the energy beam and/or the predetermined temperature of the build-up chamber and/or a preheating temperature of the build-up plate or a combination thereof.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Powder Metallurgy (AREA)

Abstract

The invention relates to a method for producing an electronic component assembly (10) comprising a substrate (12) and a shaped piece (14), wherein the shaped piece (14) is produced on the substrate (12) by means of an additive manufacturing method. The invention further relates to an electronic component assembly (10) comprising a substrate (12) and a shaped piece (14), wherein the shaped piece (14) is an additively-manufactured shaped piece (14).

Description

Beschreibung Description
Titel title
Verfahren zur Herstellung eines elektronischen Bauteilverbunds, Bauteilverbund und Maschine Process for producing an electronic component assembly, component assembly and machine
Stand der Technik State of the art
Die Erfindung betrifft ein Verfahren zur Herstellung eines elektronischen Bauteilverbunds, einen Bauteilverbund umfassend ein Substrat und ein Formstück und eine Maschine zur Herstellung eines Bauteilverbunds. The invention relates to a method for producing an electronic composite component, a composite component comprising a substrate and a shaped piece, and a machine for producing a composite component.
Aus der US 2007/0007643 A1 ist ein Halbleiter-Mehrchip-Aufbau bekannt, der ein Substrat, einen auf dem Substrat montierten ersten Halbleiterchip und einen direkt über dem ersten Halbleiterchip angeordneten zweiten Halbleiterchip umfasst. Der Aufbau enthält ferner einen Abstandshalter, der zwischen dem Substrat und dem zweiten Halbleiterchip angeordnet ist, um einen vertikalen Abstand zwischen dem ersten und dem zweiten Halbleiterchip aufrechtzuerhalten und den zweiten Halbleiterchip mit dem Substrat elektrisch zu verbinden. A semiconductor multichip structure is known from US 2007/0007643 A1, which comprises a substrate, a first semiconductor chip mounted on the substrate and a second semiconductor chip arranged directly above the first semiconductor chip. The assembly further includes a spacer disposed between the substrate and the second semiconductor die to maintain a vertical spacing between the first and second semiconductor die and to electrically connect the second semiconductor die to the substrate.
Offenbarung der Erfindung Disclosure of Invention
Vorteile der Erfindung Advantages of the Invention
Die erfindungsgemäße Verfahren zur Herstellung eines elektronischen Bauteilverbunds umfassend ein Substrat und ein Formstück, wobei das Formstück mittels eines additiven Herstellungsverfahrens auf dem Substrat hergestellt wird, hat den Vorteil, dass das Formstück einfach und damit kostengünstig hergestellt werden kann. Gleichzeitig hat das Verfahren den Vorteil, dass Eigenschaften des Formstücks einfach durch die Wahl des Materials und/oder der Prozessparameter zu dessen Herstellung eingestellt werden können. Besonders vorteilhaft ist dabei, dass durch die unmittelbare Herstellung einer stoffschlüssigen Verbindung des Formstücks mit dem Substrat bei der Herstellung des Formstücks ein sonst bei unabhängig vom Substrat hergestellten Formteilen, beispielsweise Stanzteilen, notwendiger zusätzlicher Verbindungsschritt entfällt. Durch die reduzierte Zahl an Herstellungsschritten ist das Verfahren einfach und damit kostengünstig. The method according to the invention for producing an electronic component assembly comprising a substrate and a shaped piece, the shaped piece being produced on the substrate by means of an additive manufacturing method, has the advantage that the shaped piece can be produced simply and therefore inexpensively. At the same time, the method has the advantage that properties of the molded part can be changed simply by selecting the material and/or the process parameters for its production can be adjusted. It is particularly advantageous that the direct production of a materially bonded connection of the molded piece to the substrate during the production of the molded piece eliminates an additional connection step that is otherwise necessary for molded parts, for example stamped parts, that are produced independently of the substrate. Due to the reduced number of manufacturing steps, the process is simple and therefore inexpensive.
Vorzugsweise ist das Formstück ein Abstandshalter (Spacer) zur Beabstandung von zwei Bauelementen, insbesondere dem elektronischen Bauelement von dem Substrat und/oder einem zweiten Substrat von dem Substrat. In einer Variante ist das Formstück alternativ oder zusätzlich als elektrischer Kontakt zur elektrischen Kontaktierung und/oder als Wärmeübertrager zur Übertragung von Wärme von einer Quelle zu einer Senke ausgebildet. The shaped piece is preferably a spacer for spacing two components, in particular the electronic component from the substrate and/or a second substrate from the substrate. In one variant, the shaped piece is alternatively or additionally designed as an electrical contact for making electrical contact and/or as a heat exchanger for transferring heat from a source to a sink.
Besonders vorteilhaft ist, dass das Formstück aus Silber und/oder einer Silberlegierung und/oder Kupfer und/oder einer Kupferlegierung besteht und/oder dass das Formstück durch Aufschmelzen von Pulver aus Silber und/oder einer Silberlegierung und/oder Kupfer und/oder einer Kupferlegierung hergestellt wird. Diese Materialien haben den Vorteil, dass diese eine hohe thermische Leitfähigkeit und eine hohe elektrische Leitfähigkeit aufweisen. Indem ein additives Herstellungsverfahren verwendet wird, ist es durch geeignete Wahl der Prozessparameter möglich, schädliche Eigenspannungen zu reduzieren. Die verwendeten Materialien Silber und Kupfer weisen sowohl eine hohe elektronische Leitfähigkeit als auch eine hohe thermische Leitfähigkeit auf, so dass damit der Wirkungsgrad des Formstücks, insbesondere als Abstandshalter, bezüglich der elektrischen und/oder der thermischen Leitfähigkeit hoch ist. Zudem hat die Verarbeitung der genannten Materialien durch das additive Herstellungsverfahren den Vorteil, dass durch die Vermeidung von Eigenspannungen die stoffschlüssige Verbindung zuverlässig ist und kein Risiko einer Delamination besteht. It is particularly advantageous that the shaped piece consists of silver and/or a silver alloy and/or copper and/or a copper alloy and/or that the shaped piece is made by melting powder made of silver and/or a silver alloy and/or copper and/or a copper alloy will be produced. These materials have the advantage that they have high thermal conductivity and high electrical conductivity. By using an additive manufacturing process, it is possible to reduce harmful residual stresses by suitably selecting the process parameters. The materials used, silver and copper, have both high electronic conductivity and high thermal conductivity, so that the efficiency of the shaped piece, in particular as a spacer, is high with regard to electrical and/or thermal conductivity. In addition, processing the materials mentioned using the additive manufacturing process has the advantage that, by avoiding internal stresses, the material connection is reliable and there is no risk of delamination.
Vorteilhaft ist, dass das Formstück schichtweise aus Pulver in einem Pulverbett auf dem Substrat mittels eines Energiestrahls hergestellt wird. Dies ermöglicht es, komplexe, dreidimensionale Formstücke aufzubauen, die an das Substrat und/oder das elektronische Bauelement angepasst sind, da der Energiestrahl, insbesondere in Form eines Laserstrahls und/oder eines Elektronenstrahls, einfach abgelenkt werden kann und so eine vorbestimmte Fläche abgescannt werden kann. It is advantageous that the shaped part is produced in layers from powder in a powder bed on the substrate by means of an energy beam. This makes it possible to build complex, three-dimensional shapes that are adapted to the substrate and / or the electronic component, since the energy beam, especially in Form of a laser beam and / or an electron beam, can be easily deflected and so a predetermined area can be scanned.
Besonders vorteilhaft ist, dass eine erste Schicht des Formstücks derart hergestellt wird, dass die erste Schicht stoffschlüssig mit dem Substrat verbunden ist. Dies hat den Vorteil, dass kein zusätzlicher Verfahrensschritt zur Verbindung des Formstücks mit dem Substrat erforderlich ist. It is particularly advantageous that a first layer of the shaped piece is produced in such a way that the first layer is bonded to the substrate. This has the advantage that no additional process step for connecting the shaped piece to the substrate is required.
Vorteilhaft ist ferner, dass das Substrat eine Leiterplatte, insbesondere eine Niedertemperatur-Einbrand-Keramik-Leiterplatte, ist. Niedertemperatur-Einbrand- Keramiken (LTCC, Low Temperature Cofired Ceramics) sind Leiterplatten mit insbesondere Mehrlagenschaltungen auf der Basis von gesinterten Keramikträgern, die bei maximalen Temperaturen von 850°C bis 900°C gesintert werden. It is also advantageous that the substrate is a printed circuit board, in particular a low-temperature single-fired ceramic printed circuit board. Low-temperature single-fired ceramics (LTCC, Low Temperature Cofired Ceramics) are circuit boards with, in particular, multi-layer circuits based on sintered ceramic carriers, which are sintered at maximum temperatures of 850°C to 900°C.
Besonders vorteilhaft ist, dass als additives Herstellungsverfahren das selektive Laserschmelzen und/oder das selektive Elektronenstrahlschmelzen verwendet wird. Beide additive Verfahren ermöglichen es in vorteilhafter Weise, das Formstück schnell und zuverlässig aufzubauen. It is particularly advantageous that selective laser melting and/or selective electron beam melting is used as the additive manufacturing method. Both additive methods make it possible in an advantageous manner to construct the fitting quickly and reliably.
Vorteilhaft ist ferner, dass der elektronische Bauteilverbund in einer Aufbaukammer hergestellt wird, wobei die Aufbaukammer auf eine vorbestimmte Temperatur, die vorzugsweise höher als die Umgebungstemperatur ist, temperiert ist und/oder dass elektronischen Bauteilverbund auf einer Aufbauplatte hergestellt wird, wobei die Aufbauplatte auf eine vorbestimmte Vorheiztemperatur temperiert ist. Dies hat zum einen den Vorteil, dass die Herstellung des Formstücks schnell erfolgen kann, da das Pulver bereits vorerwärmt ist. Ferner hat dies den Vorteil, dass der zusätzliche Energieeintrag in das Substrat beim Aufschmelzen gering ist, da nur eine kleine Energiedifferenz notwendig ist, um das bereits vorerwärmte Pulver zu schmelzen. Dies trägt zu einer thermischen Schonung des Substrats bei. Ferner trägt dies dazu bei, dass die thermischen Spannungen im Formteil gering sind, so dass die stoffschlüssige Verbindung zwischen dem Formstück und dem Substrat fest und widerstandsfähig ist. It is also advantageous that the electronic component assembly is produced in a assembly chamber, the assembly chamber being heated to a predetermined temperature, which is preferably higher than the ambient temperature, and/or that the electronic component assembly is produced on a assembly board, the assembly board being heated to a predetermined temperature Preheating temperature is tempered. On the one hand, this has the advantage that the molded part can be produced quickly, since the powder is already preheated. Furthermore, this has the advantage that the additional energy input into the substrate during melting is low, since only a small energy difference is necessary to melt the already preheated powder. This contributes to thermal protection of the substrate. Furthermore, this contributes to the fact that the thermal stresses in the molded part are low, so that the bonded connection between the molded part and the substrate is strong and resistant.
Besonders vorteilhaft ist, dass Prozessparameter des additiven Herstellungsverfahrens derart gewählt sind, dass bei minimalem Energieeintrag in das Substrat das Pulver gerade noch aufgeschmolzen wird. Prozessparameter sind die Leistung des Energiestrahls, insbesondere die Leistung des Laserstrahls, und/oder die Vorschubgeschwindigkeit des Energiestrahls, insbesondere die Scangeschwindigkeit des Laserstrahls, und/oder der Spotdurchmesser des Energiestrahls, insbesondere der Laserstrahlspot, und/oder die vorbestimmte Temperatur der Aufbaukammer und/oder eine Vorheiztemperatur der Aufbauplatte. Die derart gewählten Prozessparameter mit einem minimal notwendigen Energieeintrag tragen ebenfalls zur thermischen Schonung des Substrate und des Formstücks bei. Ferner trägt dies zur Energieeinsparung bei der Herstellung des Formstücks bei. It is particularly advantageous that the process parameters of the additive manufacturing process are selected in such a way that the powder with minimal energy input into the substrate is just about to be melted. Process parameters are the power of the energy beam, in particular the power of the laser beam, and/or the feed rate of the energy beam, in particular the scanning speed of the laser beam, and/or the spot diameter of the energy beam, in particular the laser beam spot, and/or the predetermined temperature of the build-up chamber and/or a preheat temperature of the build plate. The process parameters selected in this way, with a minimally necessary energy input, also contribute to the thermal protection of the substrate and the molded part. Furthermore, this contributes to energy saving in the manufacture of the fitting.
Die Erfindung betrifft ferner einen elektronischen Bauteilverbund umfassend ein Substrat und ein Formstück, wobei das Formstück ein additiv hergestelltes Formstück ist. Insbesondere ist der elektronische Bauteilverbund durch das vorstehend beschriebene Verfahren hergestellt worden. Vorzugsweise ist das Formstück durch die additive Herstellung stoffschlüssig mit dem Substrat verbunden. Insbesondere ist das Formstück aus Silber und/oder einer Silberlegierung und/oder Kupfer und/oder einer Kupferlegierung und/oder einer Kombination davon. Vorzugsweise ist das Substrat eine Leiterplatte, insbesondere eine Niedertemperatur-Einbrand-Keramik-Leiterplatte. Insbesondere umfasst der elektronische Bauteilverbund ein elektronisches Bauelement und/oder ein zweites Substrat, wobei das elektronischen Bauelement und/oder das zweite Substrat mittels des Formstücks mit dem Substrat elektrisch und/oder thermisch kontaktiert ist. Vorzugsweise ist das elektronischen Bauelement und/oder das zweite Substrat mit dem Formstück verlötet. Das elektronische Bauelement ist insbesondere ein Mikrochip und/oder ein Leistungshalbleiter. Insbesondere ist das zweite Substrat eine Leiterplatte, insbesondere eine Niedertemperatur-Einbrand-Keramik-Leiterplatte. The invention also relates to an electronic component assembly comprising a substrate and a molded part, the molded part being an additively manufactured molded part. In particular, the composite electronic component has been produced by the method described above. The shaped piece is preferably connected to the substrate in a cohesive manner as a result of additive manufacturing. In particular, the shaped piece is made of silver and/or a silver alloy and/or copper and/or a copper alloy and/or a combination thereof. The substrate is preferably a printed circuit board, in particular a low-temperature single-fired ceramic printed circuit board. In particular, the electronic component assembly comprises an electronic component and/or a second substrate, wherein the electronic component and/or the second substrate is electrically and/or thermally contacted with the substrate by means of the shaped piece. The electronic component and/or the second substrate is/are preferably soldered to the shaped piece. The electronic component is in particular a microchip and/or a power semiconductor. In particular, the second substrate is a printed circuit board, in particular a low-temperature single-fired ceramic printed circuit board.
Die Erfindung betrifft ferner eine Maschine zur Herstellung eines elektronischen Bauteilverbunds umfassend ein Substrat und ein Formstück, insbesondere den beschriebenen Bauteilverbund, wobei die Maschine ausgebildet ist, das Formstück mittels eines additiven Herstellungsverfahrens herzustellen. Insbesondere ist die Maschine ausgebildet, den elektronischen Bauteilverbund mittels des beschriebenen Verfahrens herzustellen. Die Maschine umfasst insbesondere eine Aufbaukammer und/oder eine Aufbauplatte und/oder einen Beschichter zum Aufbringen von Pulver und/oder eine Schmelzeinrichtung zum selektiven Aufschmelzen des Pulvers und/oder eine Entpulverungseinrichtung zum Entfernen des überschüssigen und nicht aufgeschmolzenen Pulvers und/oder eine Bestückungseinrichtung zum positionsrichtigen und/oder lagerichtigen Auflegen des elektronischen Bauelements auf das Formstück und/oder eine Löteinrichtung zum Verlöten des elektronischen Bauelements mit dem Formstück. The invention also relates to a machine for producing an electronic composite component comprising a substrate and a molded piece, in particular the component composite described, the machine being designed to produce the molded piece by means of an additive manufacturing method. In particular, the machine is designed to produce the electronic component assembly using the method described. The machine comprises in particular a build-up chamber and/or a build-up plate and/or a coater for applying powder and/or a melting device for selectively melting the powder and/or a depowdering device for removing the excess and non-melted powder and/or a loading device for placing the electronic component in the correct position and/or in the correct position on the shaped piece and/or a soldering device for soldering the electronic component to the shaped piece.
Die Vorteile des Verfahrens geltend entsprechend für den elektronischen Bauteilverbund und die Maschine zur Herstellung des elektronischen Bauteilverbunds. The advantages of the method apply correspondingly to the electronic component assembly and the machine for producing the electronic component assembly.
Weitere Vorteile ergeben sich aus der nachfolgenden Beschreibung von Ausführungsbeispielen mit Bezug zu den Figuren und aus den abhängigen Ansprüchen. Further advantages result from the following description of exemplary embodiments with reference to the figures and from the dependent claims.
Kurze Beschreibung der Zeichnungen Brief description of the drawings
Ausführungsbeispiele der Erfindung sind in den Zeichnungen anhand mehrerer Figuren dargestellt und in der nachfolgenden Beschreibung näher erläutert. Exemplary embodiments of the invention are illustrated in the drawings using several figures and explained in more detail in the following description.
Es zeigen: Show it:
Fig. 1 einen elektronischen Bauteilverbund, und 1 shows an electronic component assembly, and
Fig. 2 ein Ablaufdiagramm eines Verfahrens zur Herstellung eines elektronischen Bauteilverbunds. 2 shows a flow chart of a method for producing an electronic component assembly.
Beschreibung von Ausführungsbeispielen Description of exemplary embodiments
Nachfolgend wird ein Verfahren zur Herstellung eines elektronischen Bauteilverbunds, insbesondere eines mikroelektronischen Bauteilverbunds, umfassend ein Substrat und ein Formstück beschrieben, wobei das Formstück mittels eines additiven Herstellungsverfahrens auf dem Substrat hergestellt wird. Ferner wird ein elektronischer Bauteilverbund umfassend ein Substrat und ein Formstück beschrieben, wobei das Formstück ein additiv hergestelltes Formstück ist. Im Weiteren wird die Herstellung eines als Formstück ausgebildeten Abstandshalters (Spacer) durch Verwendung von selektivem Laserschmelzen (Selective Laser Melting, SLM) und Silberpulver und/oder Kupferpulver beschrieben. Aufgrund der herausragenden thermischen und elektrischen Leitfähigkeit werden Pulver aus Silber und/oder Kupfer sowie deren Legierungen verwendet Durch vorgewählte Prozessparameter des selektiven Laserschmelzens und einer vorgewählten Temperaturführung, beispielsweise durch Vorheizen der Aufbaukammer, wird eine gute Haftung des Abstandshalters auf dem Substrat, insbesondere auf einer Niedertemperatur-Einbrand-Keramik-Platine (Low temperature cofired ceramics, LTCC), gewährleistet, so dass eine in Bezug zur Platine ungünstige Wärmeausdehnung des Abstandshalters kompensiert werden kann und Eigenspannungen während des Aufbaus des Abstandshalters reduziert werden. Hierbei wird ausgenutzt, dass sowohl Silber als auch Kupfer eine niedrige Streckgrenze haben, welche bei Prozess-Temperaturen weiter deutlich herabgesetzt wird. Durch plastische Verformung und Kriechvorgänge während des additiven Aufbaus werden so entstehende Eigenspannungen im Abstandshalter auf ein unkritisches Maß reduziert. Dabei wird das Formstück, insbesondere der Abstandshalter (Spacer), direkt auf das Substrat mittels additiver Fertigung aufgebracht. Das Herstellungsverfahren ist ausgestaltet, den Energieeintrag durch den Energiestrahl in das Substrat durch Variation der Prozessparameter möglichst gering zu halten, aber gleichzeitig so hoch, um aus dem Pulver ein dichtes Endbauteil zu erzeugen. Die Prozessparameter sind dabei beim selektiven Laserschmelzen die Laserleistung und/oder Hedge und/oder Geschwindigkeit und/oder Spotdurchmesser und/oder Vorheiztemperatur der Aufbauplatte. Die Prozessparameter werden in Abhängigkeit des Materials und der Eigenschaften des verwendeten Pulvers, wie Pulvergröße, gewählt. A method for producing an electronic component assembly, in particular a microelectronic component assembly, comprising a substrate and a shaped part is described below, the shaped part being produced on the substrate by means of an additive manufacturing method. Furthermore, an electronic component composite is described comprising a substrate and a molded piece, the molded piece being an additively manufactured molded piece. The production of a spacer designed as a shaped piece by using selective laser melting (SLM) and silver powder and/or copper powder is described below. Due to the excellent thermal and electrical conductivity, powders made of silver and/or copper and their alloys are used. Preselected process parameters of selective laser melting and a preselected temperature control, for example by preheating the build-up chamber, ensure good adhesion of the spacer to the substrate, especially at a low temperature -Fired-in ceramic circuit board (low temperature cofired ceramics, LTCC) ensures that thermal expansion of the spacer that is unfavorable in relation to the circuit board can be compensated for and internal stresses during the construction of the spacer are reduced. This exploits the fact that both silver and copper have a low yield point, which is further reduced significantly at process temperatures. The resulting internal stresses in the spacer are reduced to an uncritical level as a result of plastic deformation and creep processes during the additive build-up. The shaped piece, in particular the spacer, is applied directly to the substrate using additive manufacturing. The manufacturing process is designed to keep the energy input from the energy beam into the substrate as low as possible by varying the process parameters, but at the same time high enough to produce a dense end component from the powder. In the case of selective laser melting, the process parameters are the laser power and/or hedge and/or speed and/or spot diameter and/or preheating temperature of the build-up plate. The process parameters are chosen depending on the material and the properties of the powder used, such as powder size.
Figur 1 zeigt einen elektronischen Bauteilverbund 10 umfassend ein Substrat 12 und ein Formstück 14. Das Formstück 14 ist ein additiv hergestelltes Formstück 14. Dabei ist das Formstück 14 mittels der additiven Herstellung unmittelbar stoffschlüssig mit dem Substrat 12 verbunden. Im bevorzugten Ausführungsbeispiel ist das Formstück 14 aus Silber und/oder einer Silberlegierung und/oder Kupfer und/oder einer Kupferlegierung. Ferner ist das Substrat 12 eine Leiterplatte. Im bevorzugten Ausführungsbeispiel ist das Substrat 12 eine Niedertemperatur-Einbrand-Keramik- Leiterplatte. Ferner umfasst der elektronischen Bauteilverbund 10 ein elektronisches Bauelement 16, wobei das elektronischen Bauelement 16 mittels des Formstücks 14 mit dem Substrat 12 sowohl elektrisch als auch thermisch kontaktiert ist. Im bevorzugten Ausführungsbeispiel ist das elektronischen Bauelement 16 mit dem Formstück 14 über eine Lötverbindung verbunden. Ferner umfasst das Substrat 12 Kontaktflächen 18, wobei auf den Kontaktflächen 18 ein Bonddraht 20 aufgebracht, insbesondere aufgelötet, ist, derart, dass die Kontaktfläche 18 über den Bonddraht 20 mit nicht gezeigten Kontaktflächen auf oder an dem elektronischen Bauelement 16 elektrisch verbunden sind. Die Herstellung des beschriebenen elektronischen Bauteilverbunds 10 und insbesondere des additiv hergestellten Formstücks 14 wird nachfolgend mit Bezug auf die Figur 2 beschrieben. FIG. 1 shows an electronic component assembly 10 comprising a substrate 12 and a molded piece 14. The molded piece 14 is an additively manufactured molded piece 14. The molded piece 14 is directly bonded to the substrate 12 by means of additive manufacturing. In the preferred embodiment, the fitting 14 is made of silver and/or a silver alloy and/or copper and/or a copper alloy. Furthermore, the substrate 12 is a circuit board. In the preferred embodiment, the substrate 12 is a low temperature single-fired ceramic circuit board. Furthermore, the electronic component assembly 10 comprises an electronic component 16, the electronic component 16 being in contact with the substrate 12 both electrically and thermally by means of the shaped piece 14. In the preferred embodiment, the electronic component 16 is connected to the fitting 14 via a soldered connection. Furthermore, the substrate 12 comprises contact areas 18, a bonding wire 20 being applied, in particular soldered, to the contact areas 18 such that the contact area 18 is electrically connected via the bonding wire 20 to contact areas (not shown) on or on the electronic component 16. The production of the electronic component assembly 10 described and in particular of the additively produced molded part 14 is described below with reference to FIG.
Figur 2 zeigt ein Ablaufdiagramm eines Verfahrens zur Herstellung eines elektronischen Bauteilverbunds nach der Figur 1. In einem ersten optionalen Verfahrensschritt 30 wird eine Aufbaukammer, in welcher der elektronische Bauteilverbund hergestellt wird, auf eine vorbestimmte Temperatur temperiert, wobei die vorbestimmte Temperatur höher als die Umgebungstemperatur ist. Alternativ oder zusätzlich wird in diesem ersten optionalen Verfahrensschritt 30 eine Aufbauplatte, auf welche der elektronische Bauteilverbund hergestellt wird, auf eine vorbestimmte Vorheiztemperatur temperiert. Dabei ist die vorbestimmte Temperatur der Aufbaukammer und/oder die Vorheiztemperatur derart gewählt, dass diese wenigstens 100 °C, insbesondere wenigstens 200 °C, niedriger als die Schmelztemperatur des Pulvers ist. In einem zweiten Verfahrensschritt 32 wird das Substrat bereitgestellt. Im bevorzugten Ausführungsbeispiel wird das Substrat in einer Aufbaukammer auf einer Aufbauplatte bereitgestellt. Das Substrat ist insbesondere eine Niedertemperatur- Einbrand-Keramik-Leiterplatte. In einem dritten Verfahrensschritt 34 wird eine erste Pulverschicht auf das Substrat aufgebracht. Das Pulver wird aus einem Pulverreservoir mittels eines Rakels auf das Substrat aufgetragen. Das Material des Pulvers ist Silber und/oder eine Silberlegierung und/oder Kupfer und/oder eine Kupferlegierung oder eine Kombination davon. In einem vierten Verfahrensschritt 36 wird die aufgebrachte erste Pulverschicht mittels eines Laserstrahls selektiv dort aufgeschmolzen, wo das Formstück auf dem Substrat aufgebracht werden soll. Die Form des Formstücks und die erste Schicht des Formstücks sind dabei durch einen digitalen Datensatz vorbestimmt. In diesem vierten Verfahrensschritt 36 wird die so hergestellte erste Schicht des Formstücks gleichzeitig stoffschlüssig mit dem Substrat verbunden. In einer Variante des bevorzugten Ausführungsbeispiels wird das Pulver alternativ oder zusätzlich mit einem Elektronenstrahl selektiv aufgeschmolzen. Dabei sind die Prozessparameter des additiven Herstellungsverfahrens, insbesondere die Leistung des Energiestrahls und/oder die Vorschubgeschwindigkeit des Energiestrahls und/oder der Spotdurchmesser des Energiestrahls und/oder die vorbestimmte Temperatur der Aufbaukammer und/oder eine Vorheiztemperatur der Aufbauplatte, derart gewählt, dass bei minimalem Energieeintrag in das Substrat die Pulverschicht gerade noch aufgeschmolzen wird und sich mit dem Substrat stoffschlüssig verbindet. In einer an den vierten Verfahrensschritt 36 anschließenden Entscheidung 38 wird geprüft, ob das Formstück fertig gestellt ist oder nicht. Falls festgestellt wird, dass das Formstück noch nicht 40 fertig gestellt ist, wird mit dem dritten Verfahrensschritt 34 fortgefahren. In dem dritten Verfahrensschritt 34 und dem vierten Verfahrensschritt 36 wird auf die bereits hergestellt erste Schicht iterativ eine oder mehrere weitere Schichten aufgebracht, indem auf die zuletzt hergestellt Schicht Pulver aufgetragen und das Pulver selektiv aufgeschmolzen wird, wobei die weiteren hergestellten Schichten jeweils mit den darunter liegenden bereits hergestellten Schichten stoffschlüssig verbunden werden. Falls in der Entscheidung 38 die Antwort ja 42 ist, also festgestellt wird, dass das Formstück fertig gestellt ist, wird der fünfte Verfahrensschritt 44 durchgeführt. In diesem fünften Verfahrensschritt 44 wird das Substrat mit dem hergestellten Formstück entpulvert und somit der Bauteilverbund von nicht aufgeschmolzenen Pulver gereinigt. Im bevorzugten Ausführungsbeispiel erfolgt das Entpulvern durch eineFigure 2 shows a flowchart of a method for producing an electronic component composite according to Figure 1. In a first optional method step 30, a build-up chamber in which the electronic component composite is produced is heated to a predetermined temperature, the predetermined temperature being higher than the ambient temperature . Alternatively or additionally, in this first optional method step 30, a mounting plate on which the composite electronic component is produced is tempered to a predetermined preheating temperature. The predetermined temperature of the build-up chamber and/or the preheating temperature is selected in such a way that it is at least 100° C., in particular at least 200° C., lower than the melting temperature of the powder. In a second method step 32, the substrate is provided. In the preferred embodiment, the substrate is provided in a build chamber on a build plate. The substrate is in particular a low-temperature single-fired ceramic circuit board. In a third method step 34, a first powder layer is applied to the substrate. The powder is applied to the substrate from a powder reservoir using a doctor blade. The material of the powder is silver and/or a silver alloy and/or copper and/or a copper alloy or a combination thereof. In a fourth method step 36, the applied first powder layer is selectively melted by means of a laser beam at those points where the molded part is to be applied to the substrate. The shape of the fitting and the first layer of the fitting are predetermined by a digital data set. In this fourth process step 36, the first produced in this way Layer of the fitting simultaneously cohesively connected to the substrate. In a variant of the preferred embodiment, the powder is alternatively or additionally selectively melted with an electron beam. The process parameters of the additive manufacturing process, in particular the power of the energy beam and/or the feed rate of the energy beam and/or the spot diameter of the energy beam and/or the predetermined temperature of the build-up chamber and/or a preheating temperature of the build-up plate, are selected in such a way that with minimal energy input the powder layer is just melted into the substrate and is firmly bonded to the substrate. In a decision 38 following the fourth method step 36, a check is made as to whether or not the fitting is finished. If it is determined that the shaped piece is not yet finished 40 , the process continues with the third method step 34 . In the third method step 34 and the fourth method step 36, one or more further layers are iteratively applied to the first layer that has already been produced, by applying powder to the last layer produced and selectively melting the powder, with the further layers produced each having the underlying layer layers that have already been produced can be firmly bonded. If the answer in decision 38 is yes 42, ie it is determined that the fitting is finished, the fifth method step 44 is carried out. In this fifth method step 44, the substrate is de-powdered with the formed part produced and thus the composite component is cleaned of unmelted powder. In the preferred embodiment, the depowdering is carried out by a
Absaugeinrichtung. In einem daran anschließenden sechsten Verfahrensschritt 46 wird ein elektronisches Bauelement bereitgestellt und auf dem hergestellten Formstück in einer vorbestimmten Position und Ausrichtung positioniert. Anschließend wird in dem sechsten Verfahrensschritt 46 das elektronischen Bauelement mit dem Formstück durch eine Lötverbindung stoffschlüssig verbunden. In einer Variante werden in dem sechsten Verfahrensschritt 46 weitere Kontaktflächen des Substrats über einen Bonddraht mit Kontaktflächen des elektronischen Bauelements elektrisch verbunden. Im bevorzugten Ausführungsbeispiel wird das Formstück durch das additive Herstellungsverfahren des selektiven Laserschmelzens hergestellt. In einer Variante wird das Formstück durch selektives Elektronenstrahlschmelzen hergestellt. Dabei werden die Prozessparameter des pulverbasierten, additiven Herstellungsverfahrens derart gewählt, dass bei minimalem Energieeintrag in das Substrat das Pulver gerade noch aufgeschmolzen wird. Die Prozessparameter sind dabei die Leistung des Energiestrahls und/oder die Vorschubgeschwindigkeit des Energiestrahls und/oder der Spotdurchmesser des Energiestrahls und/oder die vorbestimmte Temperatur der Aufbaukammer und/oder eine Vorheiztemperatur der Aufbauplatte oder eine Kombination davon. suction device. In a subsequent sixth method step 46, an electronic component is provided and positioned in a predetermined position and alignment on the molded part that has been produced. In the sixth method step 46, the electronic component is then cohesively connected to the shaped piece by a soldered connection. In one variant, in the sixth method step 46, further contact areas of the substrate are electrically connected to contact areas of the electronic component via a bonding wire. In the preferred embodiment, the molded part is made by the additive manufacturing process of selective laser melting. In a variant, the shaped piece is produced by selective electron beam melting. The process parameters of the powder-based, additive manufacturing process are selected in such a way that the powder straight with minimal energy input into the substrate is still melted. The process parameters are the power of the energy beam and/or the feed rate of the energy beam and/or the spot diameter of the energy beam and/or the predetermined temperature of the build-up chamber and/or a preheating temperature of the build-up plate or a combination thereof.

Claims

Ansprüche Expectations
1 . Verfahren zur Herstellung eines elektronischen Bauteilverbunds (10) umfassend ein Substrat (12) und ein Formstück (14), dadurch gekennzeichnet, dass das Formstück (14) mittels eines additiven Herstellungsverfahrens auf dem Substrat (12) hergestellt wird. 1 . Method for producing an electronic component assembly (10) comprising a substrate (12) and a shaped piece (14), characterized in that the shaped piece (14) is produced on the substrate (12) by means of an additive manufacturing method.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass das Formstück (14) durch Aufschmelzen von Silber und/oder einer Silberlegierung und/oder Kupfer und/oder einer Kupferlegierung hergestellt wird. 2. The method according to claim 1, characterized in that the shaped piece (14) is produced by melting silver and/or a silver alloy and/or copper and/or a copper alloy.
3. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Formstück (14) schichtweise aus Pulver in einem Pulverbett auf dem Substrat (12) mittels eines Energiestrahls hergestellt wird. 3. The method according to any one of the preceding claims, characterized in that the shaped piece (14) is produced in layers from powder in a powder bed on the substrate (12) by means of an energy beam.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass eine erste Schicht des Formstücks (14) derart hergestellt wird, dass die erste Schicht stoffschlüssig mit dem Substrat (12) verbunden ist. 4. The method according to claim 3, characterized in that a first layer of the shaped piece (14) is produced in such a way that the first layer is materially bonded to the substrate (12).
5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Substrat (12) eine Leiterplatte, insbesondere eine Niedertemperatur-Einbrand- Keramik-Leiterplatte, ist. 5. The method according to any one of the preceding claims, characterized in that the substrate (12) is a circuit board, in particular a low-temperature single-fired ceramic circuit board.
6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das additive Herstellungsverfahren ein pulverbasiertes additives Herstellungsverfahren, insbesondere ein selektives Laserschmelzen und/oder ein selektives Elektronenstrahlschmelzen, ist. 6. The method according to any one of the preceding claims, characterized in that the additive manufacturing method is a powder-based additive manufacturing method, in particular selective laser melting and/or selective electron beam melting.
7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der elektronischen Bauteilverbund (10) in einer Aufbaukammer hergestellt wird, wobei die Aufbaukammer auf eine vorbestimmte Temperatur, die vorzugsweise höher als die Umgebungstemperatur ist, temperiert ist. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der elektronische Bauteilverbund (10) auf einer Aufbauplatte hergestellt wird, wobei die Aufbauplatte auf eine vorbestimmte Vorheiztemperatur temperiert ist. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass 7. The method according to any one of the preceding claims, characterized in that the electronic component assembly (10) is produced in a construction chamber, the temperature of the construction chamber being controlled to a predetermined temperature which is preferably higher than the ambient temperature. Method according to one of the preceding claims, characterized in that the electronic component assembly (10) is produced on a mounting plate, the mounting plate being heated to a predetermined preheating temperature. Method according to one of the preceding claims, characterized in that
Prozessparameter des additiven Herstellungsverfahrens, insbesondere die Leistung des Energiestrahls und/oder die Vorschubgeschwindigkeit des Energiestrahls und/oder der Spotdurchmesser des Energiestrahls und/oder die vorbestimmte Temperatur der Aufbaukammer und/oder die Vorheiztemperatur der Aufbauplatte, derart gewählt sind, dass bei minimal erforderlichem Energieeintrag in das Substrat (12) das Pulver gerade noch aufgeschmolzen wird. Elektronischer Bauteilverbund (10) umfassend ein Substrat (12) und ein Formstück (14), insbesondere hergestellt durch ein Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass das Formstück (14) ein additiv hergestelltes Formstück (14) ist. Elektronischer Bauteilverbund (10) nach Anspruch 10, dadurch gekennzeichnet, dass das Formstück (14) durch die additive Herstellung stoffschlüssig mit dem Substrat (12) verbunden ist. Elektronischer Bauteilverbund (10) nach einem der Ansprüche 10 oder 11 , dadurch gekennzeichnet, dass das Formstück (14) aus Silber und/oder einer Silberlegierung und/oder Kupfer und/oder einer Kupferlegierung ist. Elektronischer Bauteilverbund (10) nach einem der Ansprüche 10 bis 12, dadurch gekennzeichnet, dass das Substrat (12) eine Leiterplatte, insbesondere eine Niedertemperatur-Einbrand- Keramik-Leiterplatte, ist Elektronischer Bauteilverbund (10) nach einem der Ansprüche 10 bis 13, dadurch gekennzeichnet, dass der elektronische Bauteilverbund (10) ein elektronisches Bauelement (16) und/oder ein zweites Substrat umfasst, wobei das elektronischen Bauelement (16) und/oder das zweite Substrat mittels des Formstücks (14) mit dem Substrat (12) elektrisch und/oder thermisch kontaktiert ist Maschine zur Herstellung eines elektronischen Bauteilverbunds (10) umfassend ein Substrat (12) und ein Formstück (14), insbesondere zur Herstellung eines elektronischen Bauteilverbunds (10) nach einem der Ansprüche 10 bis 14, dadurch gekennzeichnet, dass die Maschine ausgebildet ist, das Formstück (14) mittels eines additivenProcess parameters of the additive manufacturing process, in particular the power of the energy beam and/or the feed rate of the energy beam and/or the spot diameter of the energy beam and/or the predetermined temperature of the build-up chamber and/or the preheating temperature of the build-up plate, are selected in such a way that with the minimum required energy input in the substrate (12) the powder is just melted. Electronic component assembly (10) comprising a substrate (12) and a shaped piece (14), in particular produced by a method according to one of claims 1 to 9, characterized in that the shaped piece (14) is an additively produced shaped piece (14). Electronic component assembly (10) according to Claim 10, characterized in that the shaped part (14) is connected to the substrate (12) in a materially bonded manner by additive manufacturing. Electronic component assembly (10) according to one of Claims 10 or 11, characterized in that the shaped piece (14) is made of silver and/or a silver alloy and/or copper and/or a copper alloy. Electronic component assembly (10) according to any one of claims 10 to 12, characterized in that the substrate (12) is a printed circuit board, in particular a low-temperature single-fired ceramic printed circuit board. Electronic component assembly (10) according to one of Claims 10 to 13, characterized in that the electronic component assembly (10) is an electronic component (16) and/or or a second substrate, the electronic component (16) and/or the second substrate being in electrical and/or thermal contact with the substrate (12) by means of the shaped piece (14) Machine for producing an electronic component assembly (10) comprising a substrate (12) and a shaped piece (14), in particular for the production of an electronic component assembly (10) according to any one of claims 10 to 14, characterized in that the machine is designed, the shaped piece (14) by means of an additive
Herstellungsverfahrens, insbesondere mittels des Verfahrens nach einem der Ansprüche 1 bis 9, auf dem Substrat (12) herzustellen. Manufacturing method, in particular by means of the method according to any one of claims 1 to 9 to produce on the substrate (12).
PCT/EP2022/084574 2021-12-21 2022-12-06 Method for producing an electronic component assembly, component assembly and machine WO2023117405A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102021214847.6 2021-12-21
DE102021214847.6A DE102021214847A1 (en) 2021-12-21 2021-12-21 Process for producing an electronic component assembly, component assembly and machine

Publications (1)

Publication Number Publication Date
WO2023117405A1 true WO2023117405A1 (en) 2023-06-29

Family

ID=84689226

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2022/084574 WO2023117405A1 (en) 2021-12-21 2022-12-06 Method for producing an electronic component assembly, component assembly and machine

Country Status (2)

Country Link
DE (1) DE102021214847A1 (en)
WO (1) WO2023117405A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070007643A1 (en) 2005-07-05 2007-01-11 Samsung Electro-Mechanics Co., Ltd. Semiconductor multi-chip package
WO2008009524A1 (en) * 2006-07-18 2008-01-24 Robert Bosch Gmbh Electronic arrangement
US20150201500A1 (en) * 2014-01-12 2015-07-16 Zohar SHINAR System, device, and method of three-dimensional printing
US20170279207A1 (en) * 2016-03-22 2017-09-28 Northrop Grumman Systems Corporation Resilient miniature mechanical support that can also serve as an electrical connector
CN108687345A (en) * 2018-06-13 2018-10-23 东莞宜安科技股份有限公司 A kind of 3D printing method
DE102020204989B3 (en) * 2020-04-21 2021-09-23 Friedrich-Alexander-Universität Erlangen-Nürnberg Process for the additive manufacturing of a circuit carrier and circuit carrier

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070007643A1 (en) 2005-07-05 2007-01-11 Samsung Electro-Mechanics Co., Ltd. Semiconductor multi-chip package
WO2008009524A1 (en) * 2006-07-18 2008-01-24 Robert Bosch Gmbh Electronic arrangement
US20150201500A1 (en) * 2014-01-12 2015-07-16 Zohar SHINAR System, device, and method of three-dimensional printing
US20170279207A1 (en) * 2016-03-22 2017-09-28 Northrop Grumman Systems Corporation Resilient miniature mechanical support that can also serve as an electrical connector
CN108687345A (en) * 2018-06-13 2018-10-23 东莞宜安科技股份有限公司 A kind of 3D printing method
DE102020204989B3 (en) * 2020-04-21 2021-09-23 Friedrich-Alexander-Universität Erlangen-Nürnberg Process for the additive manufacturing of a circuit carrier and circuit carrier

Also Published As

Publication number Publication date
DE102021214847A1 (en) 2023-06-22

Similar Documents

Publication Publication Date Title
DE102005008491B4 (en) Power semiconductor device and method for its manufacture
DE102006019602B4 (en) Power semiconductor module
DE19653499B4 (en) Lotzuführgerät and Lotzuführverfahren
DE102010060831B4 (en) Bonding material with exothermically reactive heterostructures and method for fixing by means of a bonding compound produced therewith
DE102005047106B4 (en) Power semiconductor module and method of manufacture
EP3103138B1 (en) Method for mounting an electrical component in which a cap is used
WO2015150311A1 (en) Method for mounting an electrical component, wherein a hood is used, and hood suitable for use in said method
DE112012003214T5 (en) Semiconductor power module, semiconductor power module manufacturing method, and circuit substrate
DE102020204989B3 (en) Process for the additive manufacturing of a circuit carrier and circuit carrier
WO2019110219A1 (en) Heat sink for an electronic component, electronic subassembly with a heat sink of this kind and method for producing a heat sink of this kind
WO2014086519A1 (en) Method for connecting at least two components using a sintering process
DE102021109666B3 (en) Electronic device and method for its manufacture
DE602005003318T2 (en) Method for producing a semiconductor substrate
WO2023117405A1 (en) Method for producing an electronic component assembly, component assembly and machine
EP2382654A1 (en) High-temperature-resistant component structure free of soldering agent, and method for electrical contact-connection
WO2016071534A1 (en) Method for producing a contact region for a layer of an electrical heating device and apparatus for an electrical heating device for a motor vehicle
DE102021109658B3 (en) Method of manufacturing a semiconductor power device and semiconductor power device manufactured therewith and a tool part for a sintering press and use of a sintering press
EP1283664B1 (en) System consisting of flat conductor and component and process for soldering flat conductor and component
DE112019002610B4 (en) PROCESS FOR MAKING A HEATER
DE10359564B4 (en) Method for connecting components
WO1998008191A1 (en) Method for manufacturing an electric and mechanical connexion in a chip card module placed in a card holder recess
DE102017207329A1 (en) Electronic assembly with a built between two substrates component and method for its preparation
DE102021117573B4 (en) Method of making an electrical connection to an electronic component and a chip assembly
EP3720639B1 (en) Method for producing a structural unit and method for connecting a component to such a structural unit
EP2553038A1 (en) Heat-conducting arrangement between two components and process for producing a heat-conducting arrangement

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22834503

Country of ref document: EP

Kind code of ref document: A1