WO2023116908A1 - Polymer composition, polymer masterbatch composition and sheet materials comprising or produced from said compositions - Google Patents

Polymer composition, polymer masterbatch composition and sheet materials comprising or produced from said compositions Download PDF

Info

Publication number
WO2023116908A1
WO2023116908A1 PCT/CN2022/141560 CN2022141560W WO2023116908A1 WO 2023116908 A1 WO2023116908 A1 WO 2023116908A1 CN 2022141560 W CN2022141560 W CN 2022141560W WO 2023116908 A1 WO2023116908 A1 WO 2023116908A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
parts
range
antioxidant
polymer
Prior art date
Application number
PCT/CN2022/141560
Other languages
French (fr)
Inventor
Yi Ming Sun
Hong Jie ZHOU
Patrick Jacobs
Fei Xin
Original Assignee
Lanxess Chemical (China) Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lanxess Chemical (China) Co., Ltd. filed Critical Lanxess Chemical (China) Co., Ltd.
Publication of WO2023116908A1 publication Critical patent/WO2023116908A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • C08J9/0023Use of organic additives containing oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • C08J9/0038Use of organic additives containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0095Mixtures of at least two compounding ingredients belonging to different one-dot groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/122Hydrogen, oxygen, CO2, nitrogen or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/142Compounds containing oxygen but no halogen atom
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/01Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • C08K5/134Phenols containing ester groups
    • C08K5/1345Carboxylic esters of phenolcarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/06CO2, N2 or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/12Organic compounds only containing carbon, hydrogen and oxygen atoms, e.g. ketone or alcohol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2425/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2425/02Homopolymers or copolymers of hydrocarbons
    • C08J2425/04Homopolymers or copolymers of styrene
    • C08J2425/08Copolymers of styrene
    • C08J2425/10Copolymers of styrene with conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2453/00Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2453/00Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2453/02Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers of vinyl aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2231Oxides; Hydroxides of metals of tin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2296Oxides; Hydroxides of metals of zinc
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • C08K2003/267Magnesium carbonate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/387Borates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation

Definitions

  • the invention relates to the field of polymer processing, and more specifically, to a polymer composition, a polymer masterbatch composition and sheet materials comprising or produced from said compositions.
  • Polymers show a number of unique characteristics generally not possessed by metals or ceramics, including low density, high toughness and impact resistance, and optical transparency. However, although they show excellent characteristics, they lack flame-retardant properties. In the prior art, such properties have been imparted to polymers by adding flame retardants.
  • HBCD low-molecular-weight hexabromocyclo-dodecane
  • Polymeric flame retardants have a high molecular weight, with increased resistance to migration, extraction and evaporation, thus reducing the risk of release of the flame retardant contained in the polymer into the environment. Moreover, polymeric flame retardants have a higher molecular weight than low-molecular weight flame retardants, which makes them resistant to gastrointestinal absorption and breakdown, decreasing their bioavailability and adverse effects on the ecological environment.
  • the main object of the present invention is to provide a polymer composition, a polymer masterbatch composition and sheet materials comprising or produced from said compositions in order to solve the problem of high-temperature instability of the polymer compositions of prior art.
  • an aspect of the present invention provides a polymer composition
  • a polymer composition comprising: a polymer matrix, 90 parts by weight to 99 parts by weight; a flame retardant, 1 part by weight to 10 parts by weight; an acid-binding agent, 0.1 part by weight to 0.5 parts by weight; an antioxidant, 0.1 part by weight to 0.5 parts by weight; and a synergistic agent, 0.2 parts by weight to 5 parts by weight, with the above amounts in parts by weight all being based on a total of 100 parts by weight of the polymer composition.
  • the acid-binding agent comprises a stannic oxide acid-binding agent, a hydrotalcite acid-binding agent or a combination thereof.
  • the antioxidant comprises a main antioxidant and an auxiliary antioxidant, with the main antioxidant comprising a hindered phenol antioxidant, an amine antioxidant, a thioether antioxidant, a triazine antioxidant or any combination of two or more thereof, and the auxiliary antioxidant comprising a phosphite antioxidant, a triazine antioxidant or a combination thereof.
  • the synergistic agent comprises a zinc compound, expanded graphite, bicumyl (i.e. 2, 3-dimethyl-2, 3-diphenylbutane) or any combination of two or more thereof.
  • the flame retardant is butadiene bromide-styrene block copolymer, with said butadiene bromide-styrene block copolymer comprising brominated 1, 2-butadiene block, brominated 1, 4-butadiene block or a combination thereof; based on 100 parts by weight of butadiene bromide block in the butadiene bromide-styrene block copolymer, the amount of brominated 1, 2-butadiene block is in the range of 50 parts by weight to 90 parts by weight, and the amount of brominated 1, 4-butadiene block is in the range of 10 parts by weight to 50 parts by weight.
  • the ratio by weight of the flame retardant to the synergistic agent is in the range of 1 : 1 to 10 : 1.
  • the ratio by weight of the acid-binding agent to the antioxidant is in the range of 0.5 : 1 to 5 : 1.
  • Another aspect of the present invention provides a polymer masterbatch composition, characterized by comprising: a first masterbatch, with the total weight of the first masterbatch based on 100 parts by weight comprising 5 parts by weight to 20 parts by weight of a synergistic agent and 80 parts by weight to 95 parts by weight of a polymer matrix; a second masterbatch, with the total weight of the second masterbatch based on 100 parts by weight comprising 40 parts by weight to 60 parts by weight of a flame retardant, 2 parts by weight to 5 parts by weight of an acid-binding agent, 2 parts by weight to 3.75 parts by weight of an antioxidant and 30 parts by weight to 60 parts by weight of a polymer matrix, with the ratio by weight of said first masterbatch to said second masterbatch being in the range of 1 : 2 to 1 : 4.
  • Another aspect of the present invention provides a sheet material comprising any of the above-described polymer compositions.
  • Another aspect of the present invention provides a sheet material produced from any of the above-described polymer compositions or the above-described polymer masterbatch composition.
  • polymer composition By applying the polymer composition, polymer masterbatch composition and sheet materials comprising or produced from said compositions of the present invention, high-temperature stability may be increased, and the flame-retardant and mechanical properties may be balanced.
  • a typical embodiment of the present invention provides a polymer composition, comprising: 90 parts by weight to 99 parts by weight of a polymer matrix; 1 part by weight to 10 parts by weight of a flame retardant; 0.1 parts by weight to 0.5 parts by weight of an acid-binding agent; 0.1 part by weight to 0.5 parts by weight of an antioxidant; and 0.2 parts by weight to 5 parts by weight of a synergistic agent, with the above amounts in parts by weight all being based on a total of 100 parts by weight of the polymer composition.
  • the inventors discovered that by adding a flame retardant and a synergistic agent to the polymer system in the above amounts in parts by weight, this makes it possible for the synergistic agent to effectively react with the degradation products of the flame retardant formed at high temperatures; for example, when a halogen-containing compound is used as the flame retardant, the synergistic agent will react with the hydrogen halide or active halogen element formed at high temperatures, thus reducing the production of highly-volatile flammable gases and producing carbides that can exert a heat insulating and shielding effect, thus preserving the polymer system from further thermal degradation.
  • LOI limit oxygen index
  • the acid-binding agent comprises a stannic oxide acid-binding agent, a hydrotalcite acid-binding agent or a combination thereof.
  • an acid-binding agent having the characteristics described above is selected and used in order to manifest the action of neutralizing an acidic substance (hydrogen bromide) in a polymer system, thus inhibiting the autocatalytic decomposition of the butadiene bromide-styrene block copolymer.
  • the above-mentioned acid-binding agent is preferably a hydrotalcite acid-binding agent.
  • the acid-binding agent used in the present invention comprises monobutyltin oxide, dibutyltin oxide, tributyltin oxide, dipentyltin oxide, dioctyltin oxide, Al 2 O 3 ⁇ 6MgO ⁇ CO 2 ⁇ 12H 2 O, Mg 4.5 Al 2 (OH) 13 ⁇ CO 3 ⁇ 3, 5H 2 O, 4MgO ⁇ Al 2 O 3 ⁇ CO 2 ⁇ 9H 2 O, 4MgO ⁇ Al 2 O 3 ⁇ CO 2 ⁇ 6H 2 O, ZnO ⁇ 3MgO ⁇ Al 2 O 3 ⁇ CO 2 ⁇ 8H 2 O, ZnO ⁇ 3MgO ⁇ Al 2 O 3 ⁇ CO 2 ⁇ 5H 2 O, Mg 4.5 Al 2 (OH) 13 ⁇ CO 3 , Mg 4.5 Al 2 (OH) 13 ⁇ CO 3 ⁇ 3H 2 O, Mg 4.5 Al 2 (OH) 13 ⁇ O 0.2 ⁇ (CO 3 ) 0.8 and
  • the acid binding agents that can be used in the specific working examples of the present invention include but are not limited to: product no. 652288 synthetic hydrotalcite from Sigma-Aldrich (Shanghai) ; product H875432 synthetic hydrotalcite from Macklin (Shanghai) ; products HT-33PL, HT-33PL, HT-22, HT-37 aluminium magnesium hydrotalcite and aluminium magnesium anhydrous hydrotalcite from Nantong Advance Chemicals; product KLE713 hydrated aluminium magnesium carbonate ( 713) from Clariant; product MBTO monobutyltin oxide from Nantong Advance Chemicals; product DBTO dibutyltin oxide from Nantong Advance Chemicals; tributyltin oxide from Beijing J&K Scientific, CAS: 56-35-9; dipentyltin oxide from Achemica (Switzerland) , CAS: 2273-46-3; and product DOTO dioctyltin oxide from Nantong Advance Chemicals.
  • the antioxidant comprises a main antioxidant and an auxiliary antioxidant, with the main antioxidant comprising a hindered phenol antioxidant, an amine antioxidant, a thioether antioxidant, a triazine antioxidant or any combination of two or more thereof and the auxiliary antioxidant comprising a phosphite antioxidant, a triazine antioxidant or a combination thereof.
  • the flame retardant composition of the present invention may contain only a single type of antioxidant, such as a hindered phenol antioxidant, an amine antioxidant, a phosphite antioxidant, a thioether antioxidant or a triazine antioxidant.
  • the flame retardant composition of the present invention comprises only a triazine antioxidant.
  • the flame retardant composition of the present invention comprises a combination of a main antioxidant and an auxiliary antioxidant.
  • a combination of a hindered phenol antioxidant as the main antioxidant and a phosphite antioxidant is preferable to use as the auxiliary antioxidant.
  • the main antioxidant comprises tetrakis [ ⁇ - (3, 5-di-tert-butyl-4-hydroxyphenyl) propionic acid] pentaerythritol ester, pentaerythritol tetrakis (3, 5-di-tert-butyl-4-hydroxy) phenylpropionate, 2, 6-di-tert-butyl-p-cresol, 2, 6-di-tert-butyl-4-hydroxy-methylphenol, 2, 6-di-tert-butyl- ⁇ - (dimethylamino) phenol, N-cyclohexyl-N′-phenyl-p-phenylene-diamine, N, N'-diphenyl-p-phenylenediamine, thiodipropionic acid dilauric acid ester, 2, 4-bis(dodecylthiomethyl) -6-methylphenol, 6- (4-hydroxyl-3, 5-di-tert-but
  • the auxiliary antioxidant comprises tris (2, 4-di-tert-butylphenyl) phosphite, bis (2, 4-di-butylphenyl) pentaerythritol diphosphate, bisphenol A phosphite, tributyl phosphite, 6- (4-hydroxyl-3, 5-di-tert-butylanilino) -2, 4-bis (octylthio) -1, 3, 5-triazine, 2-n-octylthio-4, 6-bis (4'-hydroxy-3, 5-di-tert-butylphenoxy) -1, 3, 5-triazine or any combina-tion of two or more thereof.
  • the synergistic agent in the polymer composition of the present application comprises a zinc compound, expanded graphite, bicumyl (i.e. 2, 3-dimethyl-2, 3-diphenylbutane) or any combination of two or more thereof.
  • the synergistic agent comprises expanded graphite, zinc stannate, zinc borate, zinc oxide, bicumyl (i.e. 2, 3-dimethyl-2, 3-diphenylbutane) or any combination of two or more thereof. If the above synergistic agent is used, a synergistic action with the flame retardant can be achieved, thus effectively increasing the oxygen index of the polymer composition.
  • the butadiene bromide-styrene block copolymer comprises 10 to 40 parts by weight of styrene block and 60 to 90 parts by weight of butadiene bromide block. In a preferred embodiment, based on 100 parts by weight, the butadiene bromide-styrene block copolymer comprises 15 parts by weight to 35 parts by weight of styrene block and 65 parts by weight to 85 parts by weight of butadiene bromide block.
  • the minimum amount of styrene block should be greater than 10 parts by weight, 11 parts by weight, 12 parts by weight, 13 parts by weight, 14 parts by weight, 15 parts by weight, 16 parts by weight, 17 parts by weight, 18 parts by weight, 19 parts by weight or 20 parts by weight and the maximum amount should be less than 40 parts by weight, 39 parts by weight, 38 parts by weight, 37 parts by weight, 36 parts by weight, 35 parts by weight, 34 parts by weight, 33 parts by weight, 32 parts by weight, 31 parts by weight or 30 parts by weight.
  • the minimum amount of the butadiene bromide block should be greater than 60 parts by weight, 61 parts by weight, 62 parts by weight, 63 parts by weight, 64 parts by weight, 65 parts by weight, 66 parts by weight, 67 parts by weight, 68 parts by weight, 69 parts by weight, 70 parts by weight, 71 parts by weight, 72 parts by weight, 73 parts by weight, 74 parts by weight or 75 parts by weight, and the maximum amount should be less than 90 parts by weight, 89 parts by weight, 88 parts by weight, 87 parts by weight, 86 parts by weight, 85 parts by weight, 84 parts by weight, 83 parts by weight, 82 parts by weight, 81 parts by weight, 80 parts by weight, 79 parts by weight, 78 parts by weight, 77 parts by weight or 76 parts by weight.
  • the amount of styrene block may be in the following ranges: in the range of 10 parts by weight to 40 parts by weight, 11 parts by weight to 39 parts by weight, 12 parts by weight to 38 parts by weight, 13 parts by weight to 37 parts by weight, 14 parts by weight to 36 parts by weight, 15 parts by weight to 35 parts by weight, 16 parts by weight to 34 parts by weight, 17 parts by weight to 33 parts by weight, 18 parts by weight to 32 parts by weight, 19 parts by weight to 31 parts by weight, 20 parts by weight to 30 parts by weight, 10 parts by weight to 20 parts by weight, 10 parts by weight to 30 parts by weight, 20 parts by weight to 40 parts by weight or 30 parts by weight to 40 parts by weight.
  • the amount of butadiene bromide block may be in the following ranges: in the range of 60 parts by weight to 90 parts by weight, 61 parts by weight to 89 parts by weight, 62 parts by weight to 88 parts by weight, 63 parts by weight to 87 parts by weight, 64 parts by weight to 86 parts by weight, 65 parts by weight to 85 parts by weight, 66 parts by weight to 84 parts by weight, 67 parts by weight to 83 parts by weight, 68 parts by weight to 82 parts by weight, 69 parts by weight to 81 parts by weight, 70 parts by weight to 80 parts by weight, 70 parts by weight to 90 parts by weight, 80 parts by weight to 90 parts by weight, 60 parts by weight to 80 parts by weight or 60 parts by weight to 70 parts by weight.
  • the amount of the brominated 1, 2-butadiene block is in the range of 50 parts by weight to 90 parts by weight, and the amount of the brominated 1, 4-butadiene block is in the range of 10 parts by weight to 50 parts by weight.
  • the amount of brominated 1, 2-butadiene block is in the range of 60 parts by weight to 85 parts by weight, and the amount of brominated 1, 4-butadiene block is in the range of 15 parts by weight to 40 parts by weight.
  • the butadiene bromide-styrene block copolymer can simultaneously comprise brominated 1, 2-butadiene block and brominated 1, 4-butadiene block, e.g.
  • the minimum amount of the brominated 1, 2-butadiene block should be greater than 60 parts by weight, greater than 61 parts by weight, greater than 62 parts by weight, greater than 63 parts by weight, greater than 64 parts by weight, greater than 65 parts by weight, greater than 66 parts by weight, greater than 67 parts by weight, greater than 68 parts by weight, greater than 69 parts by weight or greater than 70 parts by weight, and the maximum amount should be less than 85 parts by weight, less than 84 parts by weight, less than 83 parts by weight, less than 82 parts by weight, less than 81 parts by weight, less than 80 parts by weight, less than 79 parts by weight, less than 78 parts by weight, less than 77 parts by weight, less than 76 parts
  • the minimum amount of the brominated 1, 4-butadiene block should be greater than 15 parts by weight, greater than 16 parts by weight, greater than 17 parts by weight, greater than 18 parts by weight, greater than 19 parts by weight, greater than 20 parts by weight, greater than 21 parts by weight, greater than 22 parts by weight, greater than 23 parts by weight, greater than 24 parts by weight or greater than 25 parts by weight, and the maximum amount should be less than 40 parts by weight, less than 39 parts by weight, less than 38 parts by weight, less than 37 parts by weight, less than 36 parts by weight, less than 35 parts by weight, less than 34 parts by weight, less than 33 parts by weight, less than 32 parts by weight, less than 31 parts by weight or less than 30 parts by weight.
  • the amount of brominated 1, 2-butadiene block is in the following ranges: in the range of 60 parts by weight to 85 parts by weight, in the range of 61 parts by weight to 84 parts by weight, in the range of 62 parts by weight to 83 parts by weight, in the range of 63 parts by weight to 82 parts by weight, in the range of 64 parts by weight to 81 parts by weight, in the range of 65 parts by weight to 80 parts by weight, in the range of 66 parts by weight to 79 parts by weight, in the range of 67 parts by weight to 78 parts by weight, in the range of 68 parts by weight to 77 parts by weight, in the range of 69 parts by weight to 76 parts by weight, in the range of 70 parts by weight to 75 parts by weight, in the range of 60 parts by weight to 80 parts by weight, in the range of 60 parts by weight to 75 parts
  • the amount of brominated 1, 4-butadiene block is in the following ranges: in the range of 15 parts by weight to 40 parts by weight, in the range of 16 parts by weight to 39 parts by weight, in the range of 17 parts by weight to 38 parts by weight, in the range of 18 parts by weight to 37 parts by weight, in the range of 19 parts by weight to 36 parts by weight, in the range of 20 parts by weight to 35 parts by weight, in the range of 21 parts by weight to 34 parts by weight, in the range of 22 parts by weight to 33 parts by weight, in the range of 23 parts by weight to 32 parts by weight, in the range of 24 parts by weight to 31 parts by weight, in the range of 25 parts by weight to 30 parts by weight, in the range of 20 parts by weight to 40 parts by weight, in the range of 25 parts by weight to 40 parts by weight, in the range of 30 parts by weight to 40 parts by weight, in the range of 20 parts by weight to 40 parts by weight, in the range of 25 parts by weight to 40 parts by weight, in the range of 30 parts by weight to 40
  • the butadiene bromide-styrene block copolymer had a weight average molecular weight of 100,000 to 160,000 g/mol as measured by gel permeation chromatography (GPC) using bisphenol A homopolycarbonate standard product in all cases.
  • GPC gel permeation chromatography
  • the butadiene bromide-styrene block copolymer had a weight average molecular weight of 120,000 to 150,000 g/mol.
  • the weight average molecular weight of the butadiene bromide-styrene block copolymer may be greater than or equal to 100,000 g/mol, greater than or equal to 110,000 g/mol, greater than or equal to 120,000 g/mol, greater than or equal to 130,000 g/mol, greater than or equal to 140,000 g/mol or greater than or equal to 150,000 g/mol and less than or equal to 160,000 g/mol, less than or equal to 150,000 g/mol, less than or equal to 140,000 g/mol, less than or equal to 130,000 g/mol or less than or equal to 120,000 g/mol.
  • molecular weight may also be determined according to ASTM D5296-11 by gel permeation chromatography (GPC) using polystyrene standard product. In some embodiments, measurement may be carried out at 220°C using 1-chloronaphthalene as a solvent by high-temperature GPC, for example according to ASTM D6474-11.
  • the ratio by weight of the flame retardant to the synergistic agent in the polymer composition of the present invention, is in the range of 1 : 1 to 10 : 1. In a preferred embodiment, the ratio by weight of the flame retardant to the synergistic agent is in the range of 3 : 1 to 7: 1. If the ratio by weight of said flame retardant to the synergistic agent is less than 1 : 1, the content of the flame retardant will be too low, with the result that its flame-retardant action cannot be effectively manifested.
  • the ratio by weight of said flame retardant to the synergistic agent is greater than 10 : 1, the content of the flame retardant will be too high, so the synergistic agent will be insufficient to act in synergy with the flame retardant, which therefore makes it difficult to achieve the action of increasing the oxygen index.
  • the ratio by weight of the flame retardant to the synergistic agent is in the following ranges: in the range of 1 : 1 to 10 : 1, in the range of 2 : 1 to 10 : 1, in the range of 3 : 1 to 10 : 1, in the range of 1 : 1 to 9 : 1, in the range of 1 : 1 to 8 : 1, in the range of 1 : 1 to 7: 1, in the range of 2 : 1 to 9 : 1, in the range of 2 : 1 to 8 : 1, in the range of 2 : 1 to 7: 1, in the range of 3 : 1 to 9 : 1, in the range of 3 : 1 to 8 : 1 or in the range of 3 : 1 to 7: 1.
  • the ratio by weight of the acid-binding agent to the antioxidant is in the range of 0.5 : 1 to 5 : 1, and preferably, the ratio by weight of the acid-binding agent to the antioxidant is in the range of 1 : 1 to 2 : 1.
  • the ratio by weight of the acid-binding agent to the antioxidant should be in the range of 0.5 : 1 to 5 : 1 in order to achieve the action of jointly promoting thermal stability of the flame retardant during high-temperature treatment (300°C or above) .
  • the ratio by weight of the acid-binding agent to the antioxidant may be in the following ranges: in the range of 1 : 1.5 to 4.5 : 1, 1 : 1.4 to 4 : 1, 1 : 1.3 to 3.5 : 1, 1 : 1.2 to 3 : 1, 1 : 1.1 to 2.5 : 1 or 1 : 1 to 2 : 1.
  • the weight ratio of the total amount of the acid-binding agent and the antioxidant to the amount of the butadiene bromide-styrene block copolymer in the flame-retardant composition is in the range of 1 : 20 to 1 : 3.
  • the ratio by weight of the total amount of the acid-binding agent and the antioxidant to the amount of the butadiene bromide-styrene block copolymer is in the range of 1 : 12 to 1 : 5. More preferably, the ratio by weight of the total amount of the acid-binding agent and the antioxidant to the amount of the butadiene bromide-styrene block copolymer is in the range of 1 : 8 to 1 : 10.
  • the acid-binding agent and the antioxidant are additives for the purpose of imparting stability to the flame retardant, and if the ratio by weight of the total amount of the acid-binding agent and the antioxidant to the amount of the butadiene bromide-styrene block copolymer is less than 1 : 20, the amount added will be too small, with the result that the action of stabilizing the flame retardant cannot be effectively achieved, making it impossible to effectively preserve its flame-retardant properties during high-temperature processing.
  • the ratio by weight of the total amount of the acid-binding agent and the antioxidant to the amount of the butadiene bromide-styrene block copolymer is greater than 1 : 3, the total amount of the acid-binding agent and the antioxidant will be too great, resulting in an adverse effect on the mechanical properties of the polymer system.
  • the ratio by weight of the total amount of the acid-binding agent and the antioxidant to the amount of the butadiene bromide-styrene block copolymer in the flame-retardant composition may be in the following ranges: in the range of 1 : 20 to 1 : 3, in the range of 1 : 18 to 1 : 3.5, in the range of 1 : 16 to 1 : 4, in the range of 1 : 14 to 1 : 4.5, in the range of 1 : 12 to 1 : 5, in the range of 1 : 10 to 1 : 5.5, in the range of 1 : 8 to 1: 6, in the range of 1 : 8 to 1 : 10, in the range of 1: 6 to 1: 6.5, in the range of 1 : 4 to 1: 7, in the range of 1 : 2 to 1: 7.5 or in the range of 1 : 1 to 1: 8.
  • the ratio by weight of the main antioxidant to the auxiliary antioxidant is in the range of 1: 0.5 to 1 : 5; preferably, the ratio by weight of the main antioxidant to the auxiliary antioxidant is in the range of 1 : 1 to 1 : 2.
  • the ratio by weight of the main antioxidant to the auxiliary antioxidant is in the following ranges: in the range of 1: 0.75 to 1 : 4.5, in the range of 1 : 1 to 1 : 4, in the range of 1 : 1.25 to 1 : 3.5, in the range of 1 : 1.5 to 1 : 3, in the range of 1 : 1.75 to 1 : 2.5, in the range of 1 : 1 to 1 : 2, in the range of 1 : 1 to 1 : 3 or in the range of 1 : 1 to 1 : 5.
  • the polymer matrix of the polymer composition of the present invention there are no particular limitations on the polymer matrix of the polymer composition of the present invention, provided that it is a known thermoplastic material.
  • the polymer matrix comprises polystyrene, polyetherimide, acrylic acid, a fluorocarbon compound, polyamide, polyethylene, polyester, polypropylene, polycarbonate, polyurethane, polyether ether ketone, polyphenyl thioether and polyether ketone ketone or a mixture or copolymer of two or more of these substances.
  • the amount of the polymer matrix is in the range of 90 parts by weight to 99 parts by weight.
  • the weight of the polymer matrix may be in the following ranges: in the range of 90.5 parts by weight to 98.5 parts by weight, in the range of 91 parts by weight to 98 parts by weight, in the range of 91.5 parts by weight to 97.5 parts by weight, in the range of 92 parts by weight to 97 parts by weight, in the range of 92.5 parts by weight to 96.5 parts by weight, in the range of 93 parts by weight to 96 parts by weight, in the range of 93.5 parts by weight to 95.5 parts by weight, in the range of 94 parts by weight to 95 parts by weight, in the range of 97 parts by weight to 98 parts by weight, in the range of 95 parts by weight to 96 parts by weight or in the range of 91 parts by weight to
  • the weight of the flame retardant is in the range of 1 part by weight to 10 parts by weight.
  • the weight of the flame retardant may be in the following ranges: in the range of 1 part by weight to 10 parts by weight, in the range of 2 parts by weight to 9 parts by weight, in the range of 3 parts by weight to 8 parts by weight, in the range of 4 parts by weight to 6 parts by weight, in the range of 1 part by weight to 9 parts by weight, in the range of 1 part by weight to 8 parts by weight, in the range of 1 part by weight to 7 parts by weight, in the range of 1 part by weight to 6 parts by weight, in the range of 1 part by weight to 5 parts by weight, in the range of 2 parts by weight to 10 parts by weight, in the range of 3 parts by weight to 10 parts by weight, in the range of 4 parts by weight to 10 parts by weight, in the range of 5 parts by weight to 10 parts
  • the weight of the acid-binding agent is in the range of 0.1 part by weight to 0.5 parts by weight.
  • the weight of the acid-binding agent may be in the following ranges: in the range of 0.1 part by weight to 0.5 parts by weight, in the range of 0.15 parts by weight to 0.45 parts by weight, in the range of 0.2 parts by weight to 0.4 parts by weight, in the range of 0.25 parts by weight to 0.35 parts by weight, in the range of 0.1 part by weight to 0.2 parts by weight, in the range of 0.1 part by weight to 0.15 parts by weight, in the range of 0.15 parts by weight to 0.2 parts by weight, in the range of 0.2 parts by weight to 0.28 parts by weight, in the range of 0.3 parts by weight to 0.35 parts by weight or in the range of 0.35 parts by weight to 0.4 parts by weight.
  • the amount of the antioxidant is in the range of 0.1 part by weight to 0.5 parts by weight.
  • the amount of the antioxidant may be in the following ranges: in the range of 0.1 part by weight to 0.5 parts by weight, in the range of 0.15 parts by weight to 0.45 parts by weight, in the range of 0.2 parts by weight to 0.4 parts by weight, in the range of 0.25 parts by weight to 0.35 parts by weight, in the range of 0.1 part by weight to 0.2 parts by weight, in the range of 0.1 part by weight to 0.15 parts by weight, in the range of 0.15 parts by weight to 0.2 parts by weight, in the range of 0.2 parts by weight to 0.28 parts by weight, in the range of 0.3 parts by weight to 0.35 parts by weight or in the range of 0.35 parts by weight to 0.4 parts by weight.
  • the antioxidant comprises a main antioxidant and an auxiliary antioxidant, based on a total of 100 parts by weight of the polymer composition, the amounts of the main antioxidant and the auxiliary antioxidant respectively may be in the range of 0.05 parts by weight to 0.20 parts by weight.
  • the amounts of the main antioxidant and the auxiliary antioxidant respectively may be in the following ranges: in the range of 0.05 parts by weight to 0.20 parts by weight, in the range of 0.06 parts by weight to 0.19 parts by weight, in the range of 0.07 parts by weight to 0.18 parts by weight, in the range of 0.08 parts by weight to 0.17 parts by weight, in the range of 0.09 parts by weight to 0.16 parts by weight, in the range of 0.1 part by weight to 0.15 parts by weight, in the range of 0.11 parts by weight to 0.14 parts by weight, in the range of 0.12 parts by weight to 0.13 parts by weight, in the range of 0.05 parts by weight to 0.07 parts by weight, in the range of 0.08 parts by weight to 0.1 part by weight, in the range of 0.1 part by weight to 0.13 parts by weight, in the range of 0.15 parts by weight to 0.17 parts by weight or in the range of 0.18 parts by weight to 0.20 parts by weight.
  • the amount of the synergistic agent is in the range of 0.2 parts by weight to 5 parts by weight.
  • the amount of the synergistic agent may be in the following ranges: in the range of 0.2 parts by weight to 5 parts by weight, in the range of 0.25 parts by weight to 4.5 parts by weight, in the range of 0.3 parts by weight to 4 parts by weight, in the range of 0.35 parts by weight to 3.5 parts by weight, in the range of 0.4 parts by weight to 3 parts by weight, in the range of 0.45 parts by weight to 2.5 parts by weight, in the range of 0.5 parts by weight to 2 parts by weight, in the range of 0.5 parts by weight to 1.5 parts by weight, in the range of 0.75 parts by weight to 1.25 parts by weight, in the range of 0.4 parts by weight to 0.7 parts by weight, in the range of 0.8 parts by weight to 1 part by weight, in the range of 1
  • the polymer composition of the present invention comprises or consists of the following substances: 91.5 parts by weight to 97.5 parts by weight of a polymer matrix, 2 parts by weight to 6 parts by weight of a flame retardant, 0.2 parts by weight to 0.3 parts by weight of an acid-binding agent, 0.2 parts by weight to 0.3 parts by weight of an antioxidant and 0.5 parts by weight to 1.5 parts by weight of a synergistic agent.
  • the polymer composition of the present invention comprises or consists of the following substances: 90 parts by weight to 99 parts by weight of a polymer matrix, 1 part by weight to 10 parts by weight of a flame retardant, 0.1 part by weight to 0.5 parts by weight of an acid-binding agent, 0.05 parts by weight to 0.20 parts by weight of a main antioxidant, 0.05 parts by weight to 0.20 parts by weight of an auxiliary antioxidant, and 0.2 parts by weight to 5 parts by weight of a synergistic agent.
  • the polymer composition of the present invention comprises or consists of the following substances: 91.5 parts by weight to 97.5 parts by weight of a polymer matrix, 2 parts by weight to 6 parts by weight of a flame retardant, 0.2 parts by weight to 0.3 parts by weight of an acid-binding agent, 0.1 part by weight to 0.15 parts by weight of a main antioxidant, 0.1 part by weight to 0.15 parts by weight of auxiliary antioxidant, and 0.5 parts by weight to 1.5 parts by weight of a synergistic agent.
  • the polymer composition of the present invention further comprises 0.02 parts by weight to 0.1 part by weight of a foaming agent.
  • the amount of the foaming agent may be in the following ranges: in the range of 0.02 parts by weight to 0.1 part by weight, in the range of 0.03 parts by weight to 0.09 parts by weight, in the range of 0.04 parts by weight to 0.08 parts by weight or in the range of 0.05 parts by weight to 0.07 parts by weight.
  • the polymer composition of the present invention further comprises 0.001 parts by weight to 0.03 parts by weight of a nucleating agent.
  • the amount of the nucleating agent may be in the following ranges: in the range of 0.001 parts by weight to 0.03 parts by weight, in the range of 0.003 parts by weight to 0.025 parts by weight, in the range of 0.005 parts by weight to 0.02 parts by weight, in the range of 0.008 parts by weight to 0.015 parts by weight or in the range of 0.01 parts by weight to 0.02 parts by weight.
  • a polymer masterbatch composition comprising a first masterbatch and a second masterbatch.
  • the first masterbatch based on a total of 100 parts by weight, comprises 5 parts by weight to 20 parts by weight of a synergistic agent and 80 parts by weight to 95 parts by weight of a polymer matrix;
  • the second masterbatch based on a total of 100 parts by weight, comprises 40 parts by weight to 60 parts by weight of a flame retardant, 2 parts by weight to 5 parts by weight of an acid-binding agent, 2 parts by weight to 3.75 parts by weight of an antioxidant, and 30 parts by weight to 60 parts by weight of a polymer matrix, with the ratio by weight of the first masterbatch to the second masterbatch being in the range of 1 : 2 to 1 : 4.
  • the limit oxygen index of the polymer may be effectively increased, and the flame retardant and mechanical properties of the polymer end product may be effectively balanced.
  • the synergistic agent, polymer matrix, flame retardant, acid-binding agent and antioxidant used in this embodiment may be selected from the materials described above, and their description will not be repeated here.
  • the first masterbatch and the second masterbatch are blended together.
  • the first masterbatch and second masterbatch are used independently and are not blended together.
  • the ratio by weight of the flame retardant to the synergistic agent in the polymer composition of the present invention, is in the range of 1 : 1 to 10 : 1. In a preferred embodiment, the ratio by weight of the flame retardant to the synergistic agent is in the range of 3 : 1 to 7: 1. If the ratio by weight of the flame retardant to the synergistic agent is less than 1 : 1, the content of the flame retardant will be too low, with the result that its flame-retardant action cannot be effectively manifested.
  • the ratio by weight of the flame retardant to the synergistic agent is greater than 10 : 1, the content of the flame retardant will be too high, so the synergistic agent will be insufficient to act in synergy with the flame retardant, which therefore makes it difficult to achieve the action of increasing the oxygen index.
  • the ratio by weight of the flame retardant to the synergistic agent is in the following ranges: in the range of 1 : 1 to 10 : 1, in the range of 2 : 1 to 10 : 1, in the range of 3 : 1 to 10 : 1, in the range of 1 : 1 to 9 : 1, in the range of 1 : 1 to 8 : 1, in the range of 1 : 1 to 7: 1, in the range of 2 : 1 to 9 : 1, in the range of 2 : 1 to 8 : 1, in the range of 2 : 1 to 7: 1, in the range of 3 : 1 to 9 : 1, in the range of 3 : 1 to 8 : 1 or in the range of 3 : 1 to 7: 1.
  • the ratio by weight of the acid-binding agent to the antioxidant is in the range of 0.5 : 1 to 5 : 1, and preferably, the ratio by weight of the acid-binding agent to the antioxidant is in the range of 1 : 1 to 2 : 1.
  • the acid-binding agent and the antioxidant have a synergistic action, they can at the same time provide the flame retardant with thermal stability, and for this reason, the ratio by weight of the acid-binding agent to the antioxidant must be in the range of 0.5 : 1 to 5 : 1 so that they can jointly promote thermal stabilization of the flame retardant in treatment at high temperatures (300°C or above) .
  • the ratio by weight of the acid-binding agent to the antioxidant may be in the following ranges: in the range of 1 : 1.5 to 4.5 : 1, 1 : 1.4 to 4 : 1, 1 : 1.3 to 3.5 : 1, 1 : 1.2 to 3 : 1, 1 : 1.1 to 2.5 : 1 or 1 : 1 to 2 : 1.
  • the antioxidant comprises a main antioxidant and an auxiliary antioxidant.
  • the ratio by weight of the main antioxidant to the auxiliary antioxidant is in the range of 1: 0.5 to 1 : 5; preferably, the ratio by weight of the main antioxidant to the auxiliary antioxidant is in the range of 1 : 1 to 1 : 2.
  • the ratio by weight of the main antioxidant to the auxiliary antioxidant is in the following ranges: in the range of 1: 0.75 to 1 : 4.5, in the range of 1 : 1 to 1 : 4, in the range of 1 : 1.25 to 1 : 3.5, in the range of 1 : 1.5 to 1 : 3, in the range of 1 : 1.75 to 1 : 2.5, in the range of 1 : 1 to 1 : 2, in the range of 1 : 1 to 1 : 3 or in the range of 1 : 1 to 1 : 5.
  • the polymer matrix of the polymer composition there are no particular limitations on the polymer matrix of the polymer composition, provided that it is a known thermoplastic material.
  • the polymer matrix comprises polystyrene, polyetherimide, acrylic acid, a fluorocarbon compound, polyamide, polyethylene, polyester, polypropylene, polycarbonate, polyurethane, polyether ether ketone, polyphenyl thioether and polyether ketone ketone or a mixture or copolymer of two or more of these substances.
  • Another typical embodiment of the present invention provides a sheet material comprising the polymer composition of the present invention.
  • this sheet material comprises the polymer composition of the present invention described above, it will have the expected flame-retardant properties, high limit oxygen index, and excellent balance of flame-retardant and mechanical properties.
  • Another typical embodiment of the present invention provides a sheet material produced from the polymer composition of the present invention or the polymer masterbatch composition of the present invention.
  • the sheet material manufactured therefrom will contain effective amounts of a flame retardant, an acid-binding agent, an antioxidant and a synergistic agent. For this reason, when the polymer composition of the present invention or the polymer masterbatch composition of the present invention is used to produce a sheet material, the material will have outstanding flame retardant and mechanical properties.
  • Table 1 shows the components used in the following working examples, along with a simplified description and the source thereof.
  • Table 1 Components used in the working examples and description and source thereof
  • the various components were fed in the amounts shown in Table 2 below through different feeders into a twin-screw extruder.
  • the thread diameter of the twin-screw extruder was 85 mm, and its heating stage temperature was 190°C to 220°C.
  • the mixture obtained was fed into the second stage of the extruder system (the single-screw extruder) , with said single-screw extruder having a thread diameter of 200 mm, 13.5 kg of foaming agent (carbon dioxide and alcohol) (purchased from Beyond Industries) was fed into the single-screw extruder at the same time, and the mixture was passed through a single-aperture dry extruder at a temperature of 70°C-120°C, after which it was passed through a die and moulding unit to obtain the foamed sheet material.
  • foaming agent carbon dioxide and alcohol
  • the numerical data in working examples 1-18 and comparative examples 1-2 are all in units of kg/h, and the total production volume of the extruder system was 300 kg/h.
  • Table 2 Composition and content of polymer foam materials of working examples 1-18 and comparative examples 1-2
  • Compound 1 styrene-butadiene bromide diblock copolymer comprising 10 parts by weight to 30 parts by weight of styrene block, weight average molecular weight 10,000 to 13,000 g/mol, 50 parts by weight to 60 parts by weight of 1, 2-butadiene block and 40 parts by weight to 50 parts by weight of 1, 4-butadiene block;
  • Compound 2 styrene-butadiene bromide-styrene ternary block copolymer comprising 25 parts by weight to 40 parts by weight of styrene block, weight average molecular weight 14,000 to 16,000 g/mol, 50 parts by weight to 90 parts by weight of 1, 2-butadiene block and 10 parts by weight to 50 parts by weight of 1, 4-butadiene block.
  • Compound 1 and Compound 2 above were purchased from Lanxess AG, Germany.
  • Table 3 Test items and test standards of tests conducted in the working examples
  • Test item Test conditions Limit oxygen index According to ASTM D 2863-97 test standards Horizontal flammability test According to ISO 9772: 2001 test standards Flammability performance rating According to GB 8624-2012 test standards Material density Density as measured with a densitometer Thermal conductivity According to GB/T 10295-2008 test standards Compressive strength According to GB/T 8813-2008 test standards
  • the polymer of the present invention can effectively increase the LOI, and compared to the LOI of pure PS (comparative example 1) of 19.7%, the LOI was effectively increased in all of working examples 1-18 of the present invention.
  • comparative example 2 in which a flame retardant alone was used without any synergistic agent, the rate of increase in LOI was relatively low, thus making it impossible to achieve the expected flame-retardant action.
  • the polymer composition of the present invention was capable of meeting the HF1 horizontal flammability rating in all cases.
  • Polymer composition comprising:
  • a flame retardant 1 part by weight to 10 parts by weight
  • an acid-binding agent 0.1 part by weight to 0.5 parts by weight
  • a synergistic agent 0.2 parts by weight to 5 parts by weight
  • Specific working example 2 Polymer composition according to specific working example 1, wherein the acid-binding agent comprises a stannic oxide acid-binding agent, a hydrotalcite acid-binding agent or a combination thereof.
  • Specific working example 4 Polymer composition according to specific working example 1 or 2, wherein the antioxidant comprises a main antioxidant and an auxiliary antioxidant, with the main antioxidant comprising a hindered phenol antioxidant, an amine antioxidant, a thioether antioxidant, a triazine antioxidant or a combination thereof and the auxiliary antioxidant comprising a phosphite antioxidant, a triazine antioxidant or a combination thereof.
  • the main antioxidant comprising a hindered phenol antioxidant, an amine antioxidant, a thioether antioxidant, a triazine antioxidant or a combination thereof
  • the auxiliary antioxidant comprising a phosphite antioxidant, a triazine antioxidant or a combination thereof.
  • auxiliary antioxidant comprises tris (2, 4-di-tert-butylphenyl) phosphite, bis (2, 4-di-butylphenyl) pentaerythritol diphosphate, bisphenol A phosphite, tributyl phosphite, 6- (4-hydroxyl-3, 5-di-tert-butylanilino) -2, 4-bis (octylthio) -1, 3, 5-triazine, 2-n-octylthio-4, 6-bis (4'-hydroxy-3, 5-di-tert-butylphenoxy) -1, 3, 5-triazine or any desired combination thereof.
  • Specific working example 7 Polymer composition according to specific working example 1 or 2, wherein the synergistic agent comprises a zinc compound, expanded graphite, bicumyl or any desired combination thereof.
  • Specific working example 8 Polymer composition according to specific working example 7, wherein the synergistic agent comprises expanded graphite, zinc stannate, zinc borate, zinc oxide, or bicumyl and any desired combination thereof.
  • Specific working example 9 Polymer composition according to specific working example 1 or 2, wherein the flame retardant is butadiene bromide-styrene block copolymer and the butadiene bromide-styrene block copolymer comprises brominated 1, 2-butadiene block, brominated 1, 4-butadiene block or a combination thereof; based on 100 parts by weight of the butadiene bromide block in the butadiene bromide-styrene block copolymer, the amount of the brominated 1, 2-butadiene block is in the range of 50 parts by weight to 90 parts by weight and the amount of the brominated 1, 4-butadiene block is in the range of 10 parts by weight to 50 parts by weight.
  • the flame retardant is butadiene bromide-styrene block copolymer and the butadiene bromide-styrene block copolymer comprises brominated 1, 2-butadiene block, brominated 1, 4-butadiene block or a
  • Specific working example 10 Polymer composition according to specific working example 7, wherein based on 100 parts by weight of the butadiene bromide-styrene block copolymer, the butadiene bromide-styrene block copolymer comprises 10 parts by weight to 40 parts by weight of styrene block and 60 parts by weight to 90 parts by weight of butadiene bromide block; and the butadiene bromide-styrene block copolymer has a weight average molecular weight of 100,000 to 160,000 g/mol as measured by gel permeation chromatography using bisphenol A homopolycarbonate standard product in all cases.
  • Specific working example 14 Polymer composition according to specific working example 4, wherein the ratio by weight of the main antioxidant to the auxiliary antioxidant is in the range of 1: 0.5 to 1 : 5.
  • Specific working example 15 Polymer composition according to specific working example 1 or 2, wherein the polymer matrix comprises polystyrene, polyetherimide, acrylic acid, a fluorocarbon compound, polyamide, polyethylene, polyester, polypropylene, polycarbonate, polyurethane, polyether ether ketone, polyphenyl thioether, polyether ketone ketone, or any desired combination thereof.
  • a synergistic agent 05 parts by weight to 1.5 parts by weight
  • Polymer composition according to specific working example 4 comprising:
  • a flame retardant 1 part by weight to 10 parts by weight
  • an acid-binding agent 0.1 part by weight to 0.5 parts by weight
  • a main antioxidant 0.05 parts by weight to 0.20 parts by weight
  • a synergistic agent 0.2 parts by weight to 5 parts by weight
  • a main antioxidant 0.1 part by weight to 0.15 parts by weight
  • a synergistic agent 0.5 parts by weight to 1.5 parts by weight
  • a foaming agent 1 part by weight to 5 parts by weight.
  • nucleating agent 0.1 part by weight to 1 part by weight.
  • Polymer masterbatch composition comprising
  • a first masterbatch with the total weight of the first masterbatch based on 100 parts by weight comprising 5 parts by weight to 20 parts by weight of a synergistic agent and 80 parts by weight to 95 parts by weight of a polymer matrix;
  • a second masterbatch with the total weight of the second masterbatch based on 100 parts by weight comprising 40 parts by weight to 60 parts by weight of a flame retardant, 2 parts by weight to 5 parts by weight of an acid-binding agent, 2 parts by weight to 3.75 parts by weight of an antioxidant and 30 parts by weight to 60 parts by weight of a polymer matrix,
  • Specific working example 22 Polymer masterbatch composition according to specific working example 21, wherein the acid-binding agent comprises a stannic oxide acid-binding agent, a hydrotalcite acid-binding agent or a combination thereof.
  • the acid-binding agent comprises a stannic oxide acid-binding agent, a hydrotalcite acid-binding agent or a combination thereof.
  • Specific working example 23 Polymer masterbatch composition according to specific working example 21, wherein the antioxidant comprises a main antioxidant and an auxiliary antioxidant, with the main antioxidant comprising a hindered phenol antioxidant, an amine antioxidant, a thioether antioxidant, a triazine antioxidant or a combination thereof, the auxiliary antioxidant comprises a phosphite antioxidant, a triazine antioxidant or a combination thereof.
  • the antioxidant comprises a main antioxidant and an auxiliary antioxidant
  • the main antioxidant comprising a hindered phenol antioxidant, an amine antioxidant, a thioether antioxidant, a triazine antioxidant or a combination thereof
  • the auxiliary antioxidant comprises a phosphite antioxidant, a triazine antioxidant or a combination thereof.
  • Specific working example 24 Polymer masterbatch composition according to specific working example 21, wherein the synergistic agent comprises a zinc compound, expanded graphite, bicumyl or any desired combination thereof.
  • Specific working example 25 Polymer masterbatch composition according to specific working example 21, wherein the flame retardant is butadiene bromide-styrene block copolymer, with said butadiene bromide-styrene block copolymer comprising brominated 1, 2-butadiene block, brominated 1, 4-butadiene block or a combination thereof; based on 100 parts by weight of the butadiene bromide block in the butadiene bromide-styrene block copolymer, the amount of the brominated 1, 2-butadiene block is in the range of 50 parts by weight to 90 parts by weight, and the amount of the brominated 1, 4-butadiene block is in the range of 10 parts by weight to 50 parts by weight.
  • the flame retardant is butadiene bromide-styrene block copolymer, with said butadiene bromide-styrene block copolymer comprising brominated 1, 2-butadiene block, brominated 1, 4-buta
  • Specific working example 26 Polymer masterbatch composition according to specific working example 21, wherein the ratio of the flame retardant to the synergistic agent is in the range of 1 : 1 to 10 : 1.
  • Specific working example 27 Polymer masterbatch composition according to specific working example 21, wherein the ratio of the flame retardant to the synergistic agent is in the range of 3 : 1 to 7: 1.
  • Specific working example 28 Polymer masterbatch composition according to specific working example 21, wherein the ratio by weight of the acid-binding agent to the antioxidant is in the range of 0.5 : 1 to 5 : 1.
  • Specific working example 29 Polymer masterbatch composition according to specific working example 23, wherein the ratio by weight of the main antioxidant to the auxiliary antioxidant is in the range of 1: 0.5 to 1 : 5.
  • Specific working example 30 Polymer masterbatch composition according to specific working example 21, wherein the polymer matrix comprises polystyrene, polyetherimide, acrylic acid, a fluorocarbon compound, polyamide, polyethylene, polyester, polypropylene, polycarbonate, polyurethane, polyether ether ketone, polyphenyl thioether, polyether ketone ketone, or any desired combination thereof.
  • the polymer matrix comprises polystyrene, polyetherimide, acrylic acid, a fluorocarbon compound, polyamide, polyethylene, polyester, polypropylene, polycarbonate, polyurethane, polyether ether ketone, polyphenyl thioether, polyether ketone ketone, or any desired combination thereof.
  • Sheet material comprising any one of the polymer compositions according to specific working examples 1 to 20.
  • Specific working example 32 Sheet material produced from any one of the polymer compositions according to specific working examples 1 to 20 or any one of the polymer masterbatch compositions according to specific working examples 21 to 30.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Emergency Medicine (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The invention provides a polymer composition, a polymer masterbatch composition and sheet materials comprising or produced from said compositions. Said polymer composition comprises: 90 parts by weight to 99 parts by weight of a polymer matrix; 1 part by weight to 10 parts by weight of a flame retardant; 0.1 part by weight to 0.5 parts by weight of an acid-binding agent; 0.1 part by weight to 0.5 parts by weight of an antioxidant; and 0.2 parts by weight to 5 parts by weight of a synergistic agent, with the above amounts in parts by weight all being based on a total of 100 parts by weight of the polymer composition. By using the polymer composition, polymer masterbatch composition and sheet materials comprising or produced from said compositions according to the invention, stability at high temperatures is improved, and flame-retardant and mechanical properties are balanced.

Description

Polymer composition, polymer masterbatch composition and sheet materials comprising or produced from said compositions
Technological field
The invention relates to the field of polymer processing, and more specifically, to a polymer composition, a polymer masterbatch composition and sheet materials comprising or produced from said compositions.
Prior art
Polymers show a number of unique characteristics generally not possessed by metals or ceramics, including low density, high toughness and impact resistance, and optical transparency. However, although they show excellent characteristics, they lack flame-retardant properties. In the prior art, such properties have been imparted to polymers by adding flame retardants.
In order to impart a flame-retardant action to polymers, low-molecular-weight hexabromocyclo-dodecane (HBCD) is frequently added as a flame retardant. However, it has been found in large-scale application of and experiments conducted on this substance that HBCD shows a certain degree of biotoxicity, it can accumulate in organisms, and it is not environmentally biodegradable. For this reason, in order to reduce environmental contamination and biotoxicity, numerous novel macromolecular (polymeric) flame retardants have been developed in the polymer industry, such as the flame retardant Emerald Innovation 3000 (abbreviated EI3000) from Lanxess AG. Polymeric flame retardants have a high molecular weight, with increased resistance to migration, extraction and evaporation, thus reducing the risk of release of the flame retardant contained in the polymer into the environment. Moreover, polymeric flame retardants have a higher molecular weight than low-molecular weight flame retardants, which makes them resistant to gastrointestinal absorption and breakdown, decreasing their bioavailability and adverse effects on the ecological environment.
Nevertheless, it has been found in use of polymeric flame retardants that they undergo bio-degradation at the temperature of 190℃, thus giving rise to the possibility of an adverse effect on their flame-retardant properties. Moreover, as acidic substances are formed during the degradation process of polymeric flame retardants, this may have an effect on the mechanical properties of the polymer product. For this reason, there is still a need to develop polymer compositions with high-temperature stability which allow the flame retardant and mechanical properties of the polymer product to be balanced.
Description of the present invention
The main object of the present invention is to provide a polymer composition, a polymer masterbatch composition and sheet materials comprising or produced from said compositions in order to solve the problem of high-temperature instability of the polymer compositions of prior art.
In order to achieve this object, an aspect of the present invention provides a polymer composition comprising: a polymer matrix, 90 parts by weight to 99 parts by weight; a flame retardant, 1 part by weight to 10 parts by weight; an acid-binding agent, 0.1 part by weight to 0.5 parts by weight; an antioxidant, 0.1 part by weight to 0.5 parts by weight; and a synergistic agent, 0.2 parts by weight to 5 parts by weight, with the above amounts in parts by weight all being based on a total of 100 parts by weight of the polymer composition.
Furthermore, in the above polymer composition, the acid-binding agent comprises a stannic oxide acid-binding agent, a hydrotalcite acid-binding agent or a combination thereof.
Furthermore, in the above polymer composition, the antioxidant comprises a main antioxidant and an auxiliary antioxidant, with the main antioxidant comprising a hindered phenol antioxidant, an amine antioxidant, a thioether antioxidant, a triazine antioxidant or any combination of two or more thereof, and the auxiliary antioxidant comprising a phosphite antioxidant, a triazine antioxidant or a combination thereof.
Furthermore, in the above polymer composition, the synergistic agent comprises a zinc compound, expanded graphite, bicumyl (i.e. 2, 3-dimethyl-2, 3-diphenylbutane) or any combination of two or more thereof.
Furthermore, in the above polymer composition, the flame retardant is butadiene bromide-styrene block copolymer, with said butadiene bromide-styrene block copolymer comprising brominated 1, 2-butadiene block, brominated 1, 4-butadiene block or a combination thereof; based on 100 parts by weight of butadiene bromide block in the butadiene bromide-styrene block copolymer, the amount of brominated 1, 2-butadiene block is in the range of 50 parts by weight to 90 parts by weight, and the amount of brominated 1, 4-butadiene block is in the range of 10 parts by weight to 50 parts by weight.
Furthermore, in the above polymer composition, the ratio by weight of the flame retardant to the synergistic agent is in the range of 1 : 1 to 10 : 1.
Furthermore, in the above polymer composition, the ratio by weight of the acid-binding agent to the antioxidant is in the range of 0.5 : 1 to 5 : 1.
Another aspect of the present invention provides a polymer masterbatch composition, characterized by comprising: a first masterbatch, with the total weight of the first masterbatch based on 100 parts by weight comprising 5 parts by weight to 20 parts by weight of a synergistic agent and 80 parts by weight to 95 parts by weight of a polymer matrix; a second masterbatch, with the total weight of the second masterbatch based on 100 parts by weight comprising 40 parts by weight to 60 parts by weight of a flame retardant, 2 parts by weight to 5 parts by weight of an acid-binding agent, 2 parts by weight to 3.75 parts by weight of an antioxidant and 30 parts by weight to 60 parts by weight of a polymer matrix, with the ratio by weight of said first masterbatch to said second masterbatch being in the range of 1 : 2 to 1 : 4.
Another aspect of the present invention provides a sheet material comprising any of the above-described polymer compositions.
Another aspect of the present invention provides a sheet material produced from any of the above-described polymer compositions or the above-described polymer masterbatch composition.
By applying the polymer composition, polymer masterbatch composition and sheet materials comprising or produced from said compositions of the present invention, high-temperature stability may be increased, and the flame-retardant and mechanical properties may be balanced.
Description of the preferred embodiments
It should be explained that under non-conflicting conditions, the embodiments in this application and the characteristics thereof may be mutually combined. The invention will be explained in detail below with reference to embodiments. The embodiments below are intended solely for illustrative purposes, and they by no means constitute limitations on the scope of protection of the present invention.
As explained in the prior art, the polymer compositions of conventional technology are unstable at high temperatures, readily decomposing and adversely affecting the end product polymer. With respect to this problem of the prior art, a typical embodiment of the present invention provides a polymer composition, comprising: 90 parts by weight to 99 parts by weight of a polymer matrix; 1 part by weight to 10 parts by weight of a flame retardant; 0.1 parts by weight to 0.5 parts by weight of an acid-binding agent; 0.1 part by weight to 0.5 parts by weight of an antioxidant; and 0.2 parts by weight to 5 parts by weight of a synergistic agent, with the above amounts in parts by weight all being based on a total of 100 parts by weight of the polymer composition.
After the inventors of the present invention conducted extensive research, they discovered that surprisingly, when 1 part by weight to 10 parts by weight of a flame retardant and 0.2 parts by weight to 5 parts by weight of a synergistic agent are added simultaneously to a polymer  composition, it is possible to effectively increase the oxygen index of the polymer system. The inventors discovered that by adding a flame retardant and a synergistic agent to the polymer system in the above amounts in parts by weight, this makes it possible for the synergistic agent to effectively react with the degradation products of the flame retardant formed at high temperatures; for example, when a halogen-containing compound is used as the flame retardant, the synergistic agent will react with the hydrogen halide or active halogen element formed at high temperatures, thus reducing the production of highly-volatile flammable gases and producing carbides that can exert a heat insulating and shielding effect, thus preserving the polymer system from further thermal degradation. In a limit oxygen index (LOI) test conducted according to ASTM D 2863-97, it was found that using the polymer composition of the present application, the LOI index was increased by at least 5%compared to a polymer system in which no flame retardant or synergistic agent was used.
In the prior art, although some flame retardants can effectively impart desired flame-retardant properties to the end product polymer, polymer systems comprising only a flame retardant ordinarily show unsatisfactory mechanical properties and thermal conductivity, such as decreased thermal conductivity and compressive properties. However, when the polymer composition of the present invention is used, the flame retardant and mechanical properties of the polymer end product can be effectively balanced, and when the flame retardant properties of the end product are increased, it is still possible to preserve the outstanding thermal conductivity and compressive properties of the end product.
In some embodiments of the present invention, the acid-binding agent comprises a stannic oxide acid-binding agent, a hydrotalcite acid-binding agent or a combination thereof. In an embodiment of the present invention, an acid-binding agent having the characteristics described above is selected and used in order to manifest the action of neutralizing an acidic substance (hydrogen bromide) in a polymer system, thus inhibiting the autocatalytic decomposition of the butadiene bromide-styrene block copolymer. The above-mentioned acid-binding agent is preferably a hydrotalcite acid-binding agent. Preferably, the acid-binding agent used in the present invention comprises monobutyltin oxide, dibutyltin oxide, tributyltin oxide, dipentyltin oxide, dioctyltin oxide, Al 2O 3·6MgO·CO 2·12H 2O, Mg 4.5Al 2 (OH)  13·CO 3·3, 5H 2O, 4MgO·Al 2O 3·CO 2·9H 2O, 4MgO·Al 2O 3·CO 2·6H 2O, ZnO·3MgO·Al 2O 3·CO 2·8H 2O, ZnO·3MgO·Al 2O 3·CO 2·5H 2O, Mg 4.5Al 2 (OH)  13·CO 3, Mg 4.5Al 2 (OH)  13·CO 3·3H 2O, Mg 4.5Al 2 (OH)  13·O 0.2· (CO 30.8 and any desired combination thereof. The acid binding agents that can be used in the specific working examples of the present invention include but are not limited to: product no. 652288 synthetic hydrotalcite from Sigma-Aldrich (Shanghai) ; product H875432 synthetic hydrotalcite from Macklin (Shanghai) ; products HT-33PL, HT-33PL, HT-22, HT-37 aluminium magnesium hydrotalcite and aluminium magnesium anhydrous hydrotalcite from Nantong Advance Chemicals; product KLE713 hydrated  aluminium magnesium carbonate (
Figure PCTCN2022141560-appb-000001
713) from Clariant; product MBTO monobutyltin oxide from Nantong Advance Chemicals; product DBTO dibutyltin oxide from Nantong Advance Chemicals; tributyltin oxide from Beijing J&K Scientific, CAS: 56-35-9; dipentyltin oxide from Achemica (Switzerland) , CAS: 2273-46-3; and product DOTO dioctyltin oxide from Nantong Advance Chemicals.
In some embodiments of the present invention, the antioxidant comprises a main antioxidant and an auxiliary antioxidant, with the main antioxidant comprising a hindered phenol antioxidant, an amine antioxidant, a thioether antioxidant, a triazine antioxidant or any combination of two or more thereof and the auxiliary antioxidant comprising a phosphite antioxidant, a triazine antioxidant or a combination thereof. In some embodiments, the flame retardant composition of the present invention may contain only a single type of antioxidant, such as a hindered phenol antioxidant, an amine antioxidant, a phosphite antioxidant, a thioether antioxidant or a triazine antioxidant. In a preferred embodiment, the flame retardant composition of the present invention comprises only a triazine antioxidant. In other embodiments, the flame retardant composition of the present invention comprises a combination of a main antioxidant and an auxiliary antioxidant. When two or more antioxidants are used, it is preferable to use a combination of a hindered phenol antioxidant as the main antioxidant and a phosphite antioxidant as the auxiliary antioxidant.
In specific embodiments of the present invention, the main antioxidant comprises tetrakis [β- (3, 5-di-tert-butyl-4-hydroxyphenyl) propionic acid] pentaerythritol ester, pentaerythritol tetrakis (3, 5-di-tert-butyl-4-hydroxy) phenylpropionate, 2, 6-di-tert-butyl-p-cresol, 2, 6-di-tert-butyl-4-hydroxy-methylphenol, 2, 6-di-tert-butyl-α- (dimethylamino) phenol, N-cyclohexyl-N′-phenyl-p-phenylene-diamine, N, N'-diphenyl-p-phenylenediamine, thiodipropionic acid dilauric acid ester, 2, 4-bis(dodecylthiomethyl) -6-methylphenol, 6- (4-hydroxyl-3, 5-di-tert-butylanilino) -2, 4-bis (octylthio) -1, 3, 5-triazine, 2-n-octylthio-4, 6-bis (4'-hydroxy-3, 5-di-tert-butylphenoxy) -1, 3, 5-triazine or any combination of two or more thereof.
In specific embodiments of the present invention, the auxiliary antioxidant comprises tris (2, 4-di-tert-butylphenyl) phosphite, bis (2, 4-di-butylphenyl) pentaerythritol diphosphate, bisphenol A phosphite, tributyl phosphite, 6- (4-hydroxyl-3, 5-di-tert-butylanilino) -2, 4-bis (octylthio) -1, 3, 5-triazine, 2-n-octylthio-4, 6-bis (4'-hydroxy-3, 5-di-tert-butylphenoxy) -1, 3, 5-triazine or any combina-tion of two or more thereof.
In specific embodiments of the present invention, the synergistic agent in the polymer composition of the present application comprises a zinc compound, expanded graphite, bicumyl (i.e. 2, 3-dimethyl-2, 3-diphenylbutane) or any combination of two or more thereof. In a further preferred embodiment, the synergistic agent comprises expanded graphite, zinc stannate, zinc borate, zinc oxide, bicumyl (i.e. 2, 3-dimethyl-2, 3-diphenylbutane) or any combination of two or more thereof.  If the above synergistic agent is used, a synergistic action with the flame retardant can be achieved, thus effectively increasing the oxygen index of the polymer composition.
In some embodiments of the present invention, based on 100 parts by weight, the butadiene bromide-styrene block copolymer comprises 10 to 40 parts by weight of styrene block and 60 to 90 parts by weight of butadiene bromide block. In a preferred embodiment, based on 100 parts by weight, the butadiene bromide-styrene block copolymer comprises 15 parts by weight to 35 parts by weight of styrene block and 65 parts by weight to 85 parts by weight of butadiene bromide block. Specifically, in some embodiments of the present invention, based on 100 parts by weight of butadiene bromide-styrene block copolymer, the minimum amount of styrene block should be greater than 10 parts by weight, 11 parts by weight, 12 parts by weight, 13 parts by weight, 14 parts by weight, 15 parts by weight, 16 parts by weight, 17 parts by weight, 18 parts by weight, 19 parts by weight or 20 parts by weight and the maximum amount should be less than 40 parts by weight, 39 parts by weight, 38 parts by weight, 37 parts by weight, 36 parts by weight, 35 parts by weight, 34 parts by weight, 33 parts by weight, 32 parts by weight, 31 parts by weight or 30 parts by weight. Moreover, in some embodiments, based on 100 parts by weight of butadiene bromide-styrene block copolymer, the minimum amount of the butadiene bromide block should be greater than 60 parts by weight, 61 parts by weight, 62 parts by weight, 63 parts by weight, 64 parts by weight, 65 parts by weight, 66 parts by weight, 67 parts by weight, 68 parts by weight, 69 parts by weight, 70 parts by weight, 71 parts by weight, 72 parts by weight, 73 parts by weight, 74 parts by weight or 75 parts by weight, and the maximum amount should be less than 90 parts by weight, 89 parts by weight, 88 parts by weight, 87 parts by weight, 86 parts by weight, 85 parts by weight, 84 parts by weight, 83 parts by weight, 82 parts by weight, 81 parts by weight, 80 parts by weight, 79 parts by weight, 78 parts by weight, 77 parts by weight or 76 parts by weight.
Specifically, based on 100 parts by weight of the butadiene bromide-styrene block copolymer, the amount of styrene block may be in the following ranges: in the range of 10 parts by weight to 40 parts by weight, 11 parts by weight to 39 parts by weight, 12 parts by weight to 38 parts by weight, 13 parts by weight to 37 parts by weight, 14 parts by weight to 36 parts by weight, 15 parts by weight to 35 parts by weight, 16 parts by weight to 34 parts by weight, 17 parts by weight to 33 parts by weight, 18 parts by weight to 32 parts by weight, 19 parts by weight to 31 parts by weight, 20 parts by weight to 30 parts by weight, 10 parts by weight to 20 parts by weight, 10 parts by weight to 30 parts by weight, 20 parts by weight to 40 parts by weight or 30 parts by weight to 40 parts by weight. Moreover, the amount of butadiene bromide block, based on 100 parts by weight of butadiene bromide-styrene block copolymer, may be in the following ranges: in the range of 60 parts by weight to 90 parts by weight, 61 parts by weight to 89 parts by weight, 62 parts by weight to 88 parts by weight, 63 parts by weight to 87 parts by weight, 64 parts by weight to 86 parts by weight, 65 parts by weight to 85 parts by weight, 66 parts by weight to 84 parts by weight, 67 parts  by weight to 83 parts by weight, 68 parts by weight to 82 parts by weight, 69 parts by weight to 81 parts by weight, 70 parts by weight to 80 parts by weight, 70 parts by weight to 90 parts by weight, 80 parts by weight to 90 parts by weight, 60 parts by weight to 80 parts by weight or 60 parts by weight to 70 parts by weight.
In some embodiments of the present invention, based on 100 parts by weight of the butadiene bromide block in the butadiene bromide-styrene block copolymer, the amount of the brominated 1, 2-butadiene block is in the range of 50 parts by weight to 90 parts by weight, and the amount of the brominated 1, 4-butadiene block is in the range of 10 parts by weight to 50 parts by weight.
In some embodiments of the present invention, based on 100 parts by weight of the butadiene bromide block in the butadiene bromide-styrene block copolymer, the amount of brominated 1, 2-butadiene block is in the range of 60 parts by weight to 85 parts by weight, and the amount of brominated 1, 4-butadiene block is in the range of 15 parts by weight to 40 parts by weight. In some embodiments of the present invention, as described above, the butadiene bromide-styrene block copolymer can simultaneously comprise brominated 1, 2-butadiene block and brominated 1, 4-butadiene block, e.g. styrene-brominated 1, 2-butadiene-brominated 1, 4-butadiene ternary block copolymer or styrene-brominated 1, 2-butadiene-brominated 1, 4-butadiene-styrene quaternary block copolymer. In some embodiments, when the copolymer simultaneously comprises brominated 1, 2-butadiene block and brominated 1, 4-butadiene block, based on 100 parts by weight of the butadiene bromide block in the butadiene bromide-styrene block copolymer, the minimum amount of the brominated 1, 2-butadiene block should be greater than 60 parts by weight, greater than 61 parts by weight, greater than 62 parts by weight, greater than 63 parts by weight, greater than 64 parts by weight, greater than 65 parts by weight, greater than 66 parts by weight, greater than 67 parts by weight, greater than 68 parts by weight, greater than 69 parts by weight or greater than 70 parts by weight, and the maximum amount should be less than 85 parts by weight, less than 84 parts by weight, less than 83 parts by weight, less than 82 parts by weight, less than 81 parts by weight, less than 80 parts by weight, less than 79 parts by weight, less than 78 parts by weight, less than 77 parts by weight, less than 76 parts by weight or less than 75 parts by weight. Moreover, in some embodiments, based on 100 parts by weight of the butadiene bromide block in the butadiene bromide-styrene block copolymer, the minimum amount of the brominated 1, 4-butadiene block should be greater than 15 parts by weight, greater than 16 parts by weight, greater than 17 parts by weight, greater than 18 parts by weight, greater than 19 parts by weight, greater than 20 parts by weight, greater than 21 parts by weight, greater than 22 parts by weight, greater than 23 parts by weight, greater than 24 parts by weight or greater than 25 parts by weight, and the maximum amount should be less than 40 parts by weight, less than 39 parts by weight, less than 38 parts by weight, less than 37 parts by weight, less than 36 parts by weight, less than 35 parts by weight, less  than 34 parts by weight, less than 33 parts by weight, less than 32 parts by weight, less than 31 parts by weight or less than 30 parts by weight.
Specifically, based on 100 parts by weight of the butadiene bromide block in the butadiene bromide-styrene block copolymer, the amount of brominated 1, 2-butadiene block is in the following ranges: in the range of 60 parts by weight to 85 parts by weight, in the range of 61 parts by weight to 84 parts by weight, in the range of 62 parts by weight to 83 parts by weight, in the range of 63 parts by weight to 82 parts by weight, in the range of 64 parts by weight to 81 parts by weight, in the range of 65 parts by weight to 80 parts by weight, in the range of 66 parts by weight to 79 parts by weight, in the range of 67 parts by weight to 78 parts by weight, in the range of 68 parts by weight to 77 parts by weight, in the range of 69 parts by weight to 76 parts by weight, in the range of 70 parts by weight to 75 parts by weight, in the range of 60 parts by weight to 80 parts by weight, in the range of 60 parts by weight to 75 parts by weight, in the range of 60 parts by weight to 70 parts by weight, in the range of 60 parts by weight to 65 parts by weight, in the range of 65 parts by weight to 85 parts by weight, in the range of 70 parts by weight to 85 parts by weight, in the range of 75 parts by weight to 85 parts by weight or in the range of 80 parts by weight to 85 parts by weight. Moreover, based on 100 parts by weight of the butadiene bromide block in the butadiene bromide-styrene block copolymer, the amount of brominated 1, 4-butadiene block is in the following ranges: in the range of 15 parts by weight to 40 parts by weight, in the range of 16 parts by weight to 39 parts by weight, in the range of 17 parts by weight to 38 parts by weight, in the range of 18 parts by weight to 37 parts by weight, in the range of 19 parts by weight to 36 parts by weight, in the range of 20 parts by weight to 35 parts by weight, in the range of 21 parts by weight to 34 parts by weight, in the range of 22 parts by weight to 33 parts by weight, in the range of 23 parts by weight to 32 parts by weight, in the range of 24 parts by weight to 31 parts by weight, in the range of 25 parts by weight to 30 parts by weight, in the range of 20 parts by weight to 40 parts by weight, in the range of 25 parts by weight to 40 parts by weight, in the range of 30 parts by weight to 40 parts by weight, in the range of 35 parts by weight to 40 parts by weight, in the range of 15 parts by weight to 35 parts by weight, in the range of 15 parts by weight to 30 parts by weight, in the range of 15 parts by weight to 25 parts by weight or in the range of 15 parts by weight to 20 parts by weight.
In some embodiments of the present invention, the butadiene bromide-styrene block copolymer had a weight average molecular weight of 100,000 to 160,000 g/mol as measured by gel permeation chromatography (GPC) using bisphenol A homopolycarbonate standard product in all cases. Preferably, the butadiene bromide-styrene block copolymer had a weight average molecular weight of 120,000 to 150,000 g/mol. In some embodiments of the present invention, regardless of the specific structure, the weight average molecular weight of the butadiene bromide-styrene block copolymer may be greater than or equal to 100,000 g/mol, greater than or equal to 110,000 g/mol,  greater than or equal to 120,000 g/mol, greater than or equal to 130,000 g/mol, greater than or equal to 140,000 g/mol or greater than or equal to 150,000 g/mol and less than or equal to 160,000 g/mol, less than or equal to 150,000 g/mol, less than or equal to 140,000 g/mol, less than or equal to 130,000 g/mol or less than or equal to 120,000 g/mol. In some embodiments of the present invention, molecular weight may also be determined according to ASTM D5296-11 by gel permeation chromatography (GPC) using polystyrene standard product. In some embodiments, measurement may be carried out at 220℃ using 1-chloronaphthalene as a solvent by high-temperature GPC, for example according to ASTM D6474-11.
In some embodiments of the present invention, in the polymer composition of the present invention, the ratio by weight of the flame retardant to the synergistic agent is in the range of 1 : 1 to 10 : 1. In a preferred embodiment, the ratio by weight of the flame retardant to the synergistic agent is in the range of 3 : 1 to 7: 1. If the ratio by weight of said flame retardant to the synergistic agent is less than 1 : 1, the content of the flame retardant will be too low, with the result that its flame-retardant action cannot be effectively manifested. If the ratio by weight of said flame retardant to the synergistic agent is greater than 10 : 1, the content of the flame retardant will be too high, so the synergistic agent will be insufficient to act in synergy with the flame retardant, which therefore makes it difficult to achieve the action of increasing the oxygen index.
More particularly, in specific working examples of the present invention, the ratio by weight of the flame retardant to the synergistic agent is in the following ranges: in the range of 1 : 1 to 10 : 1, in the range of 2 : 1 to 10 : 1, in the range of 3 : 1 to 10 : 1, in the range of 1 : 1 to 9 : 1, in the range of 1 : 1 to 8 : 1, in the range of 1 : 1 to 7: 1, in the range of 2 : 1 to 9 : 1, in the range of 2 : 1 to 8 : 1, in the range of 2 : 1 to 7: 1, in the range of 3 : 1 to 9 : 1, in the range of 3 : 1 to 8 : 1 or in the range of 3 : 1 to 7: 1.
In some embodiments of the present invention, the ratio by weight of the acid-binding agent to the antioxidant is in the range of 0.5 : 1 to 5 : 1, and preferably, the ratio by weight of the acid-binding agent to the antioxidant is in the range of 1 : 1 to 2 : 1. In the present invention, as the acid-binding agent and the antioxidant have a synergistic action, they can simultaneously thermally stabilize the flame retardant, and for this reason, the ratio by weight of the acid-binding agent to the antioxidant should be in the range of 0.5 : 1 to 5 : 1 in order to achieve the action of jointly promoting thermal stability of the flame retardant during high-temperature treatment (300℃ or above) . In the specific working examples, the ratio by weight of the acid-binding agent to the antioxidant may be in the following ranges: in the range of 1 : 1.5 to 4.5 : 1, 1 : 1.4 to 4 : 1, 1 : 1.3 to 3.5 : 1, 1 : 1.2 to 3 : 1, 1 : 1.1 to 2.5 : 1 or 1 : 1 to 2 : 1.
In some embodiments of the present invention, the weight ratio of the total amount of the acid-binding agent and the antioxidant to the amount of the butadiene bromide-styrene block copolymer  in the flame-retardant composition is in the range of 1 : 20 to 1 : 3. Preferably, the ratio by weight of the total amount of the acid-binding agent and the antioxidant to the amount of the butadiene bromide-styrene block copolymer is in the range of 1 : 12 to 1 : 5. More preferably, the ratio by weight of the total amount of the acid-binding agent and the antioxidant to the amount of the butadiene bromide-styrene block copolymer is in the range of 1 : 8 to 1 : 10.
In the present invention, the acid-binding agent and the antioxidant are additives for the purpose of imparting stability to the flame retardant, and if the ratio by weight of the total amount of the acid-binding agent and the antioxidant to the amount of the butadiene bromide-styrene block copolymer is less than 1 : 20, the amount added will be too small, with the result that the action of stabilizing the flame retardant cannot be effectively achieved, making it impossible to effectively preserve its flame-retardant properties during high-temperature processing.
If the ratio by weight of the total amount of the acid-binding agent and the antioxidant to the amount of the butadiene bromide-styrene block copolymer is greater than 1 : 3, the total amount of the acid-binding agent and the antioxidant will be too great, resulting in an adverse effect on the mechanical properties of the polymer system.
More particularly, in specific working examples of the present invention, the ratio by weight of the total amount of the acid-binding agent and the antioxidant to the amount of the butadiene bromide-styrene block copolymer in the flame-retardant composition may be in the following ranges: in the range of 1 : 20 to 1 : 3, in the range of 1 : 18 to 1 : 3.5, in the range of 1 : 16 to 1 : 4, in the range of 1 : 14 to 1 : 4.5, in the range of 1 : 12 to 1 : 5, in the range of 1 : 10 to 1 : 5.5, in the range of 1 : 8 to 1: 6, in the range of 1 : 8 to 1 : 10, in the range of 1: 6 to 1: 6.5, in the range of 1 : 4 to 1: 7, in the range of 1 : 2 to 1: 7.5 or in the range of 1 : 1 to 1: 8.
In some embodiments of the present invention, the ratio by weight of the main antioxidant to the auxiliary antioxidant is in the range of 1: 0.5 to 1 : 5; preferably, the ratio by weight of the main antioxidant to the auxiliary antioxidant is in the range of 1 : 1 to 1 : 2. More particularly, in specific working examples of the present invention, the ratio by weight of the main antioxidant to the auxiliary antioxidant is in the following ranges: in the range of 1: 0.75 to 1 : 4.5, in the range of 1 : 1 to 1 : 4, in the range of 1 : 1.25 to 1 : 3.5, in the range of 1 : 1.5 to 1 : 3, in the range of 1 : 1.75 to 1 : 2.5, in the range of 1 : 1 to 1 : 2, in the range of 1 : 1 to 1 : 3 or in the range of 1 : 1 to 1 : 5.
In some embodiments of the present invention, there are no particular limitations on the polymer matrix of the polymer composition of the present invention, provided that it is a known thermoplastic material. In a preferred embodiment, the polymer matrix comprises polystyrene, polyetherimide, acrylic acid, a fluorocarbon compound, polyamide, polyethylene, polyester, polypropylene, polycarbonate, polyurethane, polyether ether ketone, polyphenyl thioether and polyether ketone ketone or a mixture or copolymer of two or more of these substances.
In a specific embodiment of the present invention, based on a total of 100 parts by weight of the polymer composition, the amount of the polymer matrix is in the range of 90 parts by weight to 99 parts by weight. In a preferred embodiment, based on a total of 100 parts by weight of the polymer composition, the weight of the polymer matrix may be in the following ranges: in the range of 90.5 parts by weight to 98.5 parts by weight, in the range of 91 parts by weight to 98 parts by weight, in the range of 91.5 parts by weight to 97.5 parts by weight, in the range of 92 parts by weight to 97 parts by weight, in the range of 92.5 parts by weight to 96.5 parts by weight, in the range of 93 parts by weight to 96 parts by weight, in the range of 93.5 parts by weight to 95.5 parts by weight, in the range of 94 parts by weight to 95 parts by weight, in the range of 97 parts by weight to 98 parts by weight, in the range of 95 parts by weight to 96 parts by weight or in the range of 91 parts by weight to 92 parts by weight.
Based on a total of 100 parts by weight of the polymer composition, the weight of the flame retardant is in the range of 1 part by weight to 10 parts by weight. In a preferred embodiment, based on a total of 100 parts by weight of the polymer composition, the weight of the flame retardant may be in the following ranges: in the range of 1 part by weight to 10 parts by weight, in the range of 2 parts by weight to 9 parts by weight, in the range of 3 parts by weight to 8 parts by weight, in the range of 4 parts by weight to 6 parts by weight, in the range of 1 part by weight to 9 parts by weight, in the range of 1 part by weight to 8 parts by weight, in the range of 1 part by weight to 7 parts by weight, in the range of 1 part by weight to 6 parts by weight, in the range of 1 part by weight to 5 parts by weight, in the range of 2 parts by weight to 10 parts by weight, in the range of 3 parts by weight to 10 parts by weight, in the range of 4 parts by weight to 10 parts by weight, in the range of 5 parts by weight to 10 parts by weight, in the range of 2 parts by weight to 6 parts by weight, in the range of 2 parts by weight to 4 parts by weight, in the range of 3 parts by weight to 5 parts by weight, in the range of 4 parts by weight to 6 parts by weight or in the range of 5 parts by weight to 7 parts by weight.
Based on a total of 100 parts by weight of the polymer composition, the weight of the acid-binding agent is in the range of 0.1 part by weight to 0.5 parts by weight. In a preferred embodiment, based on a total of 100 parts by weight of the polymer composition, the weight of the acid-binding agent may be in the following ranges: in the range of 0.1 part by weight to 0.5 parts by weight, in the range of 0.15 parts by weight to 0.45 parts by weight, in the range of 0.2 parts by weight to 0.4 parts by weight, in the range of 0.25 parts by weight to 0.35 parts by weight, in the range of 0.1 part by weight to 0.2 parts by weight, in the range of 0.1 part by weight to 0.15 parts by weight, in the range of 0.15 parts by weight to 0.2 parts by weight, in the range of 0.2 parts by weight to 0.28 parts by weight, in the range of 0.3 parts by weight to 0.35 parts by weight or in the range of 0.35 parts by weight to 0.4 parts by weight.
Based on a total of 100 parts by weight of the polymer composition, the amount of the antioxidant is in the range of 0.1 part by weight to 0.5 parts by weight. In a preferred embodiment, based on a total of 100 parts by weight of the polymer composition, the amount of the antioxidant may be in the following ranges: in the range of 0.1 part by weight to 0.5 parts by weight, in the range of 0.15 parts by weight to 0.45 parts by weight, in the range of 0.2 parts by weight to 0.4 parts by weight, in the range of 0.25 parts by weight to 0.35 parts by weight, in the range of 0.1 part by weight to 0.2 parts by weight, in the range of 0.1 part by weight to 0.15 parts by weight, in the range of 0.15 parts by weight to 0.2 parts by weight, in the range of 0.2 parts by weight to 0.28 parts by weight, in the range of 0.3 parts by weight to 0.35 parts by weight or in the range of 0.35 parts by weight to 0.4 parts by weight.
In an embodiment in which the antioxidant comprises a main antioxidant and an auxiliary antioxidant, based on a total of 100 parts by weight of the polymer composition, the amounts of the main antioxidant and the auxiliary antioxidant respectively may be in the range of 0.05 parts by weight to 0.20 parts by weight. In a preferred embodiment, based on a total of 100 parts by weight of the polymer composition, the amounts of the main antioxidant and the auxiliary antioxidant respectively may be in the following ranges: in the range of 0.05 parts by weight to 0.20 parts by weight, in the range of 0.06 parts by weight to 0.19 parts by weight, in the range of 0.07 parts by weight to 0.18 parts by weight, in the range of 0.08 parts by weight to 0.17 parts by weight, in the range of 0.09 parts by weight to 0.16 parts by weight, in the range of 0.1 part by weight to 0.15 parts by weight, in the range of 0.11 parts by weight to 0.14 parts by weight, in the range of 0.12 parts by weight to 0.13 parts by weight, in the range of 0.05 parts by weight to 0.07 parts by weight, in the range of 0.08 parts by weight to 0.1 part by weight, in the range of 0.1 part by weight to 0.13 parts by weight, in the range of 0.15 parts by weight to 0.17 parts by weight or in the range of 0.18 parts by weight to 0.20 parts by weight.
Based on a total of 100 parts by weight of the polymer composition, the amount of the synergistic agent is in the range of 0.2 parts by weight to 5 parts by weight. In a preferred embodiment, based on a total of 100 parts by weight of the polymer composition, the amount of the synergistic agent may be in the following ranges: in the range of 0.2 parts by weight to 5 parts by weight, in the range of 0.25 parts by weight to 4.5 parts by weight, in the range of 0.3 parts by weight to 4 parts by weight, in the range of 0.35 parts by weight to 3.5 parts by weight, in the range of 0.4 parts by weight to 3 parts by weight, in the range of 0.45 parts by weight to 2.5 parts by weight, in the range of 0.5 parts by weight to 2 parts by weight, in the range of 0.5 parts by weight to 1.5 parts by weight, in the range of 0.75 parts by weight to 1.25 parts by weight, in the range of 0.4 parts by weight to 0.7 parts by weight, in the range of 0.8 parts by weight to 1 part by weight, in the range of 1 part by weight to 1.2 parts by weight, in the range of 1.2 parts by weight to 1.4 parts by weight or in the range of 1.3 parts by weight to 1.6 parts by weight.
In a preferred embodiment of the present invention, based on a total of 100 parts by weight of the polymer composition of the present invention, the polymer composition of the present invention comprises or consists of the following substances: 91.5 parts by weight to 97.5 parts by weight of a polymer matrix, 2 parts by weight to 6 parts by weight of a flame retardant, 0.2 parts by weight to 0.3 parts by weight of an acid-binding agent, 0.2 parts by weight to 0.3 parts by weight of an antioxidant and 0.5 parts by weight to 1.5 parts by weight of a synergistic agent.
In an embodiment in which the antioxidant comprises a main antioxidant and an auxiliary antioxidant, based on a total of 100 parts by weight of the polymer composition of the present invention, the polymer composition of the present invention comprises or consists of the following substances: 90 parts by weight to 99 parts by weight of a polymer matrix, 1 part by weight to 10 parts by weight of a flame retardant, 0.1 part by weight to 0.5 parts by weight of an acid-binding agent, 0.05 parts by weight to 0.20 parts by weight of a main antioxidant, 0.05 parts by weight to 0.20 parts by weight of an auxiliary antioxidant, and 0.2 parts by weight to 5 parts by weight of a synergistic agent.
In a preferred embodiment, based on a total of 100 parts by weight, the polymer composition of the present invention comprises or consists of the following substances: 91.5 parts by weight to 97.5 parts by weight of a polymer matrix, 2 parts by weight to 6 parts by weight of a flame retardant, 0.2 parts by weight to 0.3 parts by weight of an acid-binding agent, 0.1 part by weight to 0.15 parts by weight of a main antioxidant, 0.1 part by weight to 0.15 parts by weight of auxiliary antioxidant, and 0.5 parts by weight to 1.5 parts by weight of a synergistic agent.
In other embodiments of the present invention, the polymer composition of the present invention further comprises 0.02 parts by weight to 0.1 part by weight of a foaming agent. In a specific embodiment of the present invention, based on a total of 100 parts by weight of the polymer composition, the amount of the foaming agent may be in the following ranges: in the range of 0.02 parts by weight to 0.1 part by weight, in the range of 0.03 parts by weight to 0.09 parts by weight, in the range of 0.04 parts by weight to 0.08 parts by weight or in the range of 0.05 parts by weight to 0.07 parts by weight.
In other embodiments of the present invention, the polymer composition of the present invention further comprises 0.001 parts by weight to 0.03 parts by weight of a nucleating agent. In a specific embodiment of the present invention, based on a total of 100 parts by weight of the polymer composition, the amount of the nucleating agent may be in the following ranges: in the range of 0.001 parts by weight to 0.03 parts by weight, in the range of 0.003 parts by weight to 0.025 parts by weight, in the range of 0.005 parts by weight to 0.02 parts by weight, in the range of 0.008 parts by weight to 0.015 parts by weight or in the range of 0.01 parts by weight to 0.02 parts by weight.
In another typical embodiment of the present invention, a polymer masterbatch composition is provided that comprises a first masterbatch and a second masterbatch. The first masterbatch, based on a total of 100 parts by weight, comprises 5 parts by weight to 20 parts by weight of a synergistic agent and 80 parts by weight to 95 parts by weight of a polymer matrix; the second masterbatch, based on a total of 100 parts by weight, comprises 40 parts by weight to 60 parts by weight of a flame retardant, 2 parts by weight to 5 parts by weight of an acid-binding agent, 2 parts by weight to 3.75 parts by weight of an antioxidant, and 30 parts by weight to 60 parts by weight of a polymer matrix, with the ratio by weight of the first masterbatch to the second masterbatch being in the range of 1 : 2 to 1 : 4. When said polymer masterbatch composition is used, the limit oxygen index of the polymer may be effectively increased, and the flame retardant and mechanical properties of the polymer end product may be effectively balanced. The synergistic agent, polymer matrix, flame retardant, acid-binding agent and antioxidant used in this embodiment may be selected from the materials described above, and their description will not be repeated here. In a specific embodiment, the first masterbatch and the second masterbatch are blended together. In another embodiment, the first masterbatch and second masterbatch are used independently and are not blended together.
In some embodiments of the present invention, in the polymer composition of the present invention, the ratio by weight of the flame retardant to the synergistic agent is in the range of 1 : 1 to 10 : 1. In a preferred embodiment, the ratio by weight of the flame retardant to the synergistic agent is in the range of 3 : 1 to 7: 1. If the ratio by weight of the flame retardant to the synergistic agent is less than 1 : 1, the content of the flame retardant will be too low, with the result that its flame-retardant action cannot be effectively manifested. If the ratio by weight of the flame retardant to the synergistic agent is greater than 10 : 1, the content of the flame retardant will be too high, so the synergistic agent will be insufficient to act in synergy with the flame retardant, which therefore makes it difficult to achieve the action of increasing the oxygen index.
More particularly, in specific working examples of the present invention, the ratio by weight of the flame retardant to the synergistic agent is in the following ranges: in the range of 1 : 1 to 10 : 1, in the range of 2 : 1 to 10 : 1, in the range of 3 : 1 to 10 : 1, in the range of 1 : 1 to 9 : 1, in the range of 1 : 1 to 8 : 1, in the range of 1 : 1 to 7: 1, in the range of 2 : 1 to 9 : 1, in the range of 2 : 1 to 8 : 1, in the range of 2 : 1 to 7: 1, in the range of 3 : 1 to 9 : 1, in the range of 3 : 1 to 8 : 1 or in the range of 3 : 1 to 7: 1.
In some embodiments of the present invention, the ratio by weight of the acid-binding agent to the antioxidant is in the range of 0.5 : 1 to 5 : 1, and preferably, the ratio by weight of the acid-binding agent to the antioxidant is in the range of 1 : 1 to 2 : 1. In the present invention, as the acid-binding agent and the antioxidant have a synergistic action, they can at the same time provide the flame retardant with thermal stability, and for this reason, the ratio by weight of the acid-binding agent to  the antioxidant must be in the range of 0.5 : 1 to 5 : 1 so that they can jointly promote thermal stabilization of the flame retardant in treatment at high temperatures (300℃ or above) . In specific working examples, the ratio by weight of the acid-binding agent to the antioxidant may be in the following ranges: in the range of 1 : 1.5 to 4.5 : 1, 1 : 1.4 to 4 : 1, 1 : 1.3 to 3.5 : 1, 1 : 1.2 to 3 : 1, 1 : 1.1 to 2.5 : 1 or 1 : 1 to 2 : 1.
In some embodiments of the present invention, the antioxidant comprises a main antioxidant and an auxiliary antioxidant. The ratio by weight of the main antioxidant to the auxiliary antioxidant is in the range of 1: 0.5 to 1 : 5; preferably, the ratio by weight of the main antioxidant to the auxiliary antioxidant is in the range of 1 : 1 to 1 : 2. More particularly, in specific working examples of the present invention, the ratio by weight of the main antioxidant to the auxiliary antioxidant is in the following ranges: in the range of 1: 0.75 to 1 : 4.5, in the range of 1 : 1 to 1 : 4, in the range of 1 : 1.25 to 1 : 3.5, in the range of 1 : 1.5 to 1 : 3, in the range of 1 : 1.75 to 1 : 2.5, in the range of 1 : 1 to 1 : 2, in the range of 1 : 1 to 1 : 3 or in the range of 1 : 1 to 1 : 5.
In some embodiments of the present invention, there are no particular limitations on the polymer matrix of the polymer composition, provided that it is a known thermoplastic material. In a preferred embodiment, the polymer matrix comprises polystyrene, polyetherimide, acrylic acid, a fluorocarbon compound, polyamide, polyethylene, polyester, polypropylene, polycarbonate, polyurethane, polyether ether ketone, polyphenyl thioether and polyether ketone ketone or a mixture or copolymer of two or more of these substances.
Another typical embodiment of the present invention provides a sheet material comprising the polymer composition of the present invention. As this sheet material comprises the polymer composition of the present invention described above, it will have the expected flame-retardant properties, high limit oxygen index, and excellent balance of flame-retardant and mechanical properties.
Another typical embodiment of the present invention provides a sheet material produced from the polymer composition of the present invention or the polymer masterbatch composition of the present invention. When the polymer composition of the present invention or the polymer masterbatch composition of the present invention is used, the sheet material manufactured therefrom will contain effective amounts of a flame retardant, an acid-binding agent, an antioxidant and a synergistic agent. For this reason, when the polymer composition of the present invention or the polymer masterbatch composition of the present invention is used to produce a sheet material, the material will have outstanding flame retardant and mechanical properties.
Working examples
The following is an explanation of the present application in further detail with reference to specific working examples, but these working examples may not be construed as limiting the scope of protection of the present invention.
Table 1 below shows the components used in the following working examples, along with a simplified description and the source thereof.
Table 1: Components used in the working examples and description and source thereof
Figure PCTCN2022141560-appb-000002
Figure PCTCN2022141560-appb-000003
Production of polymer foam material
By means of the two-stage extrusion method, using a Hanshow model 85200 extruder system (comprising a twin-screw extruder and a single-screw extruder) , the various components were fed in the amounts shown in Table 2 below through different feeders into a twin-screw extruder. In the first stage of the extruder system (the twin-screw extruder) , the thread diameter of the twin-screw extruder was 85 mm, and its heating stage temperature was 190℃ to 220℃. After passing through the twin-screw extruder, the mixture obtained was fed into the second stage of the extruder system (the single-screw extruder) , with said single-screw extruder having a thread diameter of 200 mm, 13.5 kg of foaming agent (carbon dioxide and alcohol) (purchased from Beyond Industries) was fed into the single-screw extruder at the same time, and the mixture was passed through a single-aperture dry extruder at a temperature of 70℃-120℃, after which it was passed through a die and moulding unit to obtain the foamed sheet material.
The numerical data in working examples 1-18 and comparative examples 1-2 are all in units of kg/h, and the total production volume of the extruder system was 300 kg/h.
Table 2: Composition and content of polymer foam materials of working examples 1-18 and comparative examples 1-2
Figure PCTCN2022141560-appb-000004
Figure PCTCN2022141560-appb-000005
Note: Compound 1: styrene-butadiene bromide diblock copolymer comprising 10 parts by weight to 30 parts by weight of styrene block, weight average molecular weight 10,000 to 13,000 g/mol, 50 parts by weight to 60 parts by weight of 1, 2-butadiene block and 40 parts by weight to 50 parts by weight of 1, 4-butadiene block;
Compound 2: styrene-butadiene bromide-styrene ternary block copolymer comprising 25 parts by weight to 40 parts by weight of styrene block, weight average molecular weight 14,000 to 16,000 g/mol, 50 parts by weight to 90 parts by weight of 1, 2-butadiene block and 10 parts by weight to 50 parts by weight of 1, 4-butadiene block.
Compound 1 and Compound 2 above were purchased from Lanxess AG, Germany.
Test of foamed material properties
Using the test conditions shown in Table 3 below, the properties of foamed materials produced according to working examples 1-18 and comparative examples 1-2 respectively were tested:
Table 3: Test items and test standards of tests conducted in the working examples
Test item Test conditions
Limit oxygen index According to ASTM D 2863-97 test standards
Horizontal flammability test According to ISO 9772: 2001 test standards
Flammability performance rating According to GB 8624-2012 test standards
Material density Density as measured with a densitometer
Thermal conductivity According to GB/T 10295-2008 test standards
Compressive strength According to GB/T 8813-2008 test standards
The test results are shown in Table 4 below.
Table 4: Results of tests of the working examples
Figure PCTCN2022141560-appb-000006
Figure PCTCN2022141560-appb-000007
It can be seen from the above experimental results that the polymer of the present invention can effectively increase the LOI, and compared to the LOI of pure PS (comparative example 1) of 19.7%, the LOI was effectively increased in all of working examples 1-18 of the present invention. In comparative example 2, in which a flame retardant alone was used without any synergistic agent, the rate of increase in LOI was relatively low, thus making it impossible to achieve the expected flame-retardant action. It can be seen from the results of the horizontal flammability test that the polymer composition of the present invention was capable of meeting the HF1 horizontal flammability rating in all cases.
Moreover, it can be seen from the results of the above tests of material density, thermal conductivity and compressive strength that with foamed sheet materials produced from the polymer  composition of the present invention, it was possible to effectively balance the flame retardant and mechanical properties of the polymer foamed materials, and when the flame-retardant properties of the end product were increased, it was still possible to preserve the favourable thermal conductivity and compressive properties of the end product. It can be seen from the results for density of the materials measured using a densitometer that the density, thermal conductivity and compressive strength of the foamed materials of working examples 1-18 were similar to those of comparative example 1 (pure PS foamed material) . As the foamed materials produced from the polymer composition of the present invention showed mechanical properties similar to those of the pure PS foamed materials, this demonstrates that the polymer composition of the present application can simultaneously effectively increase the flame-retardant action and balance it with mechanical properties.
Other specific working examples
Specific working example 1. Polymer composition, comprising:
a polymer matrix, 90 parts by weight to 99 parts by weight;
a flame retardant, 1 part by weight to 10 parts by weight;
an acid-binding agent, 0.1 part by weight to 0.5 parts by weight;
an antioxidant, 0.1 part by weight to 0.5 parts by weight; and
a synergistic agent, 0.2 parts by weight to 5 parts by weight,
with the above amounts in parts by weight all being based on a total of 100 parts by weight of the polymer composition.
Specific working example 2. Polymer composition according to specific working example 1, wherein the acid-binding agent comprises a stannic oxide acid-binding agent, a hydrotalcite acid-binding agent or a combination thereof.
Specific working example 3. Polymer composition according to specific working example 1, wherein the acid-binding agent comprises monobutyltin oxide, dibutyltin oxide, tributyltin oxide, dipentyltin oxide, dioctyltin oxide, Al 2O 3·6MgO·CO 2·12H 2O, Mg 4.5Al 2 (OH)  13·CO 3·3.5H 2O, 4MgO·Al 2O 3·CO 2·9H 2O, 4MgO·Al 2O 3·CO 2·6H 2O, ZnO·3MgO·Al 2O 3·CO 2·8H 2O, ZnO·3MgO·Al 2O 3·CO 2·5H 2O, Mg 4.5Al 2 (OH)  13·CO 3, Mg 4.5Al 2 (OH)  13·CO 3·3H 2O, Mg 4.5Al 2 (OH)  13·O 0.2· (CO 30.8 and any desired combination thereof.
Specific working example 4. Polymer composition according to specific working example 1 or 2, wherein the antioxidant comprises a main antioxidant and an auxiliary antioxidant, with the main antioxidant comprising a hindered phenol antioxidant, an amine antioxidant, a thioether  antioxidant, a triazine antioxidant or a combination thereof and the auxiliary antioxidant comprising a phosphite antioxidant, a triazine antioxidant or a combination thereof.
Specific working example 5. Flame-retardant composition according to specific working example 4, wherein the main antioxidant comprises tetrakis [β- (3, 5-di-tert-butyl-4-hydroxyphenyl) propionic acid] pentaerythritol ester, pentaerythritol tetrakis (3, 5-di-tert-butyl-4-hydroxy) phenylpropionate, 2, 6-di-tert-butyl-p-cresol, 2, 6-di-tert-butyl-4-hydroxymethylphenol, 2, 6-di-tert-butyl-α- (dimethyl-amino) phenol, N-cyclohexyl-N'-phenyl-p-phenylenediamine, N, N'-diphenyl-p-phenylenediamine, thiodipropionic acid dilauric acid ester, 2, 4-bis (dodecylthiomethyl) -6-methylphenol, 6- (4-hydroxyl-3, 5-di-tert-butylanilino) -2, 4-bis (octylthio) -1, 3, 5-triazine, 2-n-octylthio-4, 6-bis (4'-hydroxy-3, 5-di-tert-butylphenoxy) -1, 3, 5-triazine or any desired combination thereof.
Specific working example 6. Flame-retardant composition according to specific working example 4, wherein the auxiliary antioxidant comprises tris (2, 4-di-tert-butylphenyl) phosphite, bis (2, 4-di-butylphenyl) pentaerythritol diphosphate, bisphenol A phosphite, tributyl phosphite, 6- (4-hydroxyl-3, 5-di-tert-butylanilino) -2, 4-bis (octylthio) -1, 3, 5-triazine, 2-n-octylthio-4, 6-bis (4'-hydroxy-3, 5-di-tert-butylphenoxy) -1, 3, 5-triazine or any desired combination thereof.
Specific working example 7. Polymer composition according to specific working example 1 or 2, wherein the synergistic agent comprises a zinc compound, expanded graphite, bicumyl or any desired combination thereof.
Specific working example 8. Polymer composition according to specific working example 7, wherein the synergistic agent comprises expanded graphite, zinc stannate, zinc borate, zinc oxide, or bicumyl and any desired combination thereof.
Specific working example 9. Polymer composition according to specific working example 1 or 2, wherein the flame retardant is butadiene bromide-styrene block copolymer and the butadiene bromide-styrene block copolymer comprises brominated 1, 2-butadiene block, brominated 1, 4-butadiene block or a combination thereof; based on 100 parts by weight of the butadiene bromide block in the butadiene bromide-styrene block copolymer, the amount of the brominated 1, 2-butadiene block is in the range of 50 parts by weight to 90 parts by weight and the amount of the brominated 1, 4-butadiene block is in the range of 10 parts by weight to 50 parts by weight.
Specific working example 10. Polymer composition according to specific working example 7, wherein based on 100 parts by weight of the butadiene bromide-styrene block copolymer, the butadiene bromide-styrene block copolymer comprises 10 parts by weight to 40 parts by weight of styrene block and 60 parts by weight to 90 parts by weight of butadiene bromide block; and the butadiene bromide-styrene block copolymer has a weight average molecular weight of 100,000 to  160,000 g/mol as measured by gel permeation chromatography using bisphenol A homopolycarbonate standard product in all cases.
Specific working example 11. Polymer composition according to specific working example 1 or 2, wherein the ratio of the flame retardant to the synergistic agent is in the range of 1 : 1 to 10 : 1.
Specific working example 12. Polymer composition according to specific working example 11, wherein the ratio of the flame retardant to the synergistic agent is in the range of 3 : 1 to 7: 1.
Specific working example 13. Polymer composition according to specific working example 1 or 2, wherein the ratio by weight of the acid-binding agent to the antioxidant is in the range of 0.5 : 1 to 5 : 1.
Specific working example 14. Polymer composition according to specific working example 4, wherein the ratio by weight of the main antioxidant to the auxiliary antioxidant is in the range of 1: 0.5 to 1 : 5.
Specific working example 15. Polymer composition according to specific working example 1 or 2, wherein the polymer matrix comprises polystyrene, polyetherimide, acrylic acid, a fluorocarbon compound, polyamide, polyethylene, polyester, polypropylene, polycarbonate, polyurethane, polyether ether ketone, polyphenyl thioether, polyether ketone ketone, or any desired combination thereof.
Specific working example 16. Polymer composition according to specific working example 1 or 2, comprising:
a polymer matrix, 91.5 parts by weight to 97.5 parts by weight;
a flame retardant, 2 parts by weight to 6 parts by weight;
an acid-binding agent, 0.2 parts by weight to 0.3 parts by weight;
an antioxidant, 0.2 parts by weight to 0.3 parts by weight; and
a synergistic agent, 05 parts by weight to 1.5 parts by weight,
with the above amounts in parts by weight all being based on a total of 100 parts by weight of the polymer composition.
Specific working example 17. Polymer composition according to specific working example 4, comprising:
a polymer matrix, 90 parts by weight to 99 parts by weight;
a flame retardant, 1 part by weight to 10 parts by weight;
an acid-binding agent, 0.1 part by weight to 0.5 parts by weight;
a main antioxidant, 0.05 parts by weight to 0.20 parts by weight;
an auxiliary antioxidant, 0.05 parts by weight to 0.20 parts by weight; and
a synergistic agent, 0.2 parts by weight to 5 parts by weight,
with the above amounts in parts by weight all being based on a total of 100 parts by weight of the polymer composition.
Specific working example 18. Polymer composition according to specific working example 16, comprising:
a polymer matrix, 91.5 parts by weight to 97.5 parts by weight;
a flame retardant, 2 parts by weight to 6 parts by weight;
an acid-binding agent, 0.2 parts by weight to 0.3 parts by weight;
a main antioxidant, 0.1 part by weight to 0.15 parts by weight;
an auxiliary antioxidant, 0.1 part by weight to 0.15 parts by weight; and
a synergistic agent, 0.5 parts by weight to 1.5 parts by weight,
with the above amounts in parts by weight all being based on a total of 100 parts by weight of the polymer composition.
Specific working example 19. Polymer composition according to specific working example 1 or 2, wherein the polymer composition further comprises:
a foaming agent, 1 part by weight to 5 parts by weight.
Specific working example 20. Polymer composition according to specific working example 1 or 2, wherein the polymer composition further comprises:
a nucleating agent, 0.1 part by weight to 1 part by weight.
Specific working example 21. Polymer masterbatch composition, comprising
a first masterbatch, with the total weight of the first masterbatch based on 100 parts by weight comprising 5 parts by weight to 20 parts by weight of a synergistic agent and 80 parts by weight to 95 parts by weight of a polymer matrix;
a second masterbatch, with the total weight of the second masterbatch based on 100 parts by weight comprising 40 parts by weight to 60 parts by weight of a flame retardant, 2 parts by weight to 5  parts by weight of an acid-binding agent, 2 parts by weight to 3.75 parts by weight of an antioxidant and 30 parts by weight to 60 parts by weight of a polymer matrix,
with the ratio by weight of said first masterbatch to said second masterbatch being in the range of 1 : 2 to 1 : 4.
Specific working example 22. Polymer masterbatch composition according to specific working example 21, wherein the acid-binding agent comprises a stannic oxide acid-binding agent, a hydrotalcite acid-binding agent or a combination thereof.
Specific working example 23. Polymer masterbatch composition according to specific working example 21, wherein the antioxidant comprises a main antioxidant and an auxiliary antioxidant, with the main antioxidant comprising a hindered phenol antioxidant, an amine antioxidant, a thioether antioxidant, a triazine antioxidant or a combination thereof, the auxiliary antioxidant comprises a phosphite antioxidant, a triazine antioxidant or a combination thereof.
Specific working example 24. Polymer masterbatch composition according to specific working example 21, wherein the synergistic agent comprises a zinc compound, expanded graphite, bicumyl or any desired combination thereof.
Specific working example 25. Polymer masterbatch composition according to specific working example 21, wherein the flame retardant is butadiene bromide-styrene block copolymer, with said butadiene bromide-styrene block copolymer comprising brominated 1, 2-butadiene block, brominated 1, 4-butadiene block or a combination thereof; based on 100 parts by weight of the butadiene bromide block in the butadiene bromide-styrene block copolymer, the amount of the brominated 1, 2-butadiene block is in the range of 50 parts by weight to 90 parts by weight, and the amount of the brominated 1, 4-butadiene block is in the range of 10 parts by weight to 50 parts by weight.
Specific working example 26. Polymer masterbatch composition according to specific working example 21, wherein the ratio of the flame retardant to the synergistic agent is in the range of 1 : 1 to 10 : 1.
Specific working example 27. Polymer masterbatch composition according to specific working example 21, wherein the ratio of the flame retardant to the synergistic agent is in the range of 3 : 1 to 7: 1.
Specific working example 28. Polymer masterbatch composition according to specific working example 21, wherein the ratio by weight of the acid-binding agent to the antioxidant is in the range of 0.5 : 1 to 5 : 1.
Specific working example 29. Polymer masterbatch composition according to specific working example 23, wherein the ratio by weight of the main antioxidant to the auxiliary antioxidant is in the range of 1: 0.5 to 1 : 5.
Specific working example 30. Polymer masterbatch composition according to specific working example 21, wherein the polymer matrix comprises polystyrene, polyetherimide, acrylic acid, a fluorocarbon compound, polyamide, polyethylene, polyester, polypropylene, polycarbonate, polyurethane, polyether ether ketone, polyphenyl thioether, polyether ketone ketone, or any desired combination thereof.
Specific working example 31. Sheet material comprising any one of the polymer compositions according to specific working examples 1 to 20.
Specific working example 32. Sheet material produced from any one of the polymer compositions according to specific working examples 1 to 20 or any one of the polymer masterbatch compositions according to specific working examples 21 to 30.
All of the above are intended solely as preferred embodiments of the present invention and cannot be used to limit the scope of the invention, and various modifications and changes may be made to the present invention by the person skilled in the art. Within the spirit and original principles of the present invention, all modifications, equivalent substitutions, improvements etc. shall be deemed to fall within the scope of protection of the present invention.

Claims (10)

  1. Polymer composition, characterized by comprising:
    a polymer matrix, 90 parts by weight to 99 parts by weight;
    a flame retardant, 1 part by weight to 10 parts by weight;
    an acid-binding agent, 0.1 part by weight to 0.5 parts by weight;
    an antioxidant, 0.1 part by weight to 0.5 parts by weight; and
    a synergistic agent, 0.2 parts by weight to 5 parts by weight,
    with the above amounts in parts by weight all being based on a total of 100 parts by weight of the polymer composition.
  2. Polymer composition according to Claim 1, characterized in that said acid-binding agent comprises a stannic oxide acid-binding agent, a hydrotalcite acid-binding agent or a combination thereof.
  3. Polymer composition according to Claim 1 or 2, characterized in that said antioxidant comprises a main antioxidant and an auxiliary antioxidant, with said main antioxidant comprising a hindered phenol antioxidant, an amine antioxidant, a thioether antioxidant, a triazine antioxidant or any combination of two or more thereof, and said auxiliary antioxidant comprising a phosphite antioxidant, a triazine antioxidant or a combination thereof.
  4. Polymer composition according to Claim 1 or 2, characterized in that said synergistic agent comprises a zinc compound, expanded graphite, bicumyl or any combination of two or more thereof.
  5. Polymer composition according to Claim 1 or 2, characterized in that said flame retardant is butadiene bromide-styrene block copolymer, with said butadiene bromide-styrene block copolymer comprising brominated 1, 2-butadiene block, brominated 1, 4-butadiene block or a combination thereof; based on 100 parts by weight of butadiene bromide block in said butadiene bromide-styrene block copolymer, the weight of said brominated 1, 2-butadiene block is in the range of 50 parts by weight to 90 parts by weight, and the weight of said brominated 1, 4-butadiene block is in the range of 10 parts by weight to 50 parts by weight.
  6. Polymer composition according to Claim 1 or 2, characterized in that the ratio by weight of said flame retardant to said synergistic agent is in the range of 1 : 1 to 10 : 1.
  7. Polymer composition according to Claim 1 or 2, characterized in that the ratio by weight of said acid-binding agent to said antioxidant is in the range of 0.5 : 1 to 5 : 1.
  8. Polymer masterbatch composition, characterized by comprising:
    a first masterbatch, with the total weight of the first masterbatch based on 100 parts by weight comprising 5 parts by weight to 20 parts by weight of a synergistic agent and 80 parts by weight to 95 parts by weight of a polymer matrix;
    a second masterbatch, with the total weight of the second masterbatch based on 100 parts by weight comprising 40 parts by weight to 60 parts by weight of a flame retardant, 2 parts by weight to 5 parts by weight of an acid-binding agent, 2 parts by weight to 3.75 parts by weight of an antioxidant and 30 parts by weight to 60 parts by weight of said polymer matrix,
    with the ratio by weight of said first masterbatch to said second masterbatch being in the range of 1 : 2 to 1 : 4.
  9. Sheet material comprising any of the polymer compositions of Claims 1 to 7.
  10. Sheet material produced from any of the polymer compositions of Claims 1 to 7 or the polymer masterbatch composition of Claim 8.
PCT/CN2022/141560 2021-12-24 2022-12-23 Polymer composition, polymer masterbatch composition and sheet materials comprising or produced from said compositions WO2023116908A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111604740.2A CN116333429A (en) 2021-12-24 2021-12-24 Polymer composition, polymer masterbatch composition and sheet comprising or made therefrom
CN202111604740.2 2021-12-24

Publications (1)

Publication Number Publication Date
WO2023116908A1 true WO2023116908A1 (en) 2023-06-29

Family

ID=85227009

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/141560 WO2023116908A1 (en) 2021-12-24 2022-12-23 Polymer composition, polymer masterbatch composition and sheet materials comprising or produced from said compositions

Country Status (2)

Country Link
CN (1) CN116333429A (en)
WO (1) WO2023116908A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2921520A1 (en) * 2012-12-19 2015-09-23 Dai-Ichi Kogyo Seiyaku Co., Ltd. Flame-retardant foamed styrene resin composition
EP2960272A1 (en) * 2013-02-14 2015-12-30 Kaneka Corporation Styrene-type resin extruded foam and method for recycling same
EP3070118A1 (en) * 2013-11-14 2016-09-21 Kaneka Corporation Extruded styrenic resin foam and method for manufacturing same
CN109181291A (en) * 2018-07-09 2019-01-11 中广核俊尔新材料有限公司 A kind of blue red phosphorus flame-retardant reinforced polyamide material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2921520A1 (en) * 2012-12-19 2015-09-23 Dai-Ichi Kogyo Seiyaku Co., Ltd. Flame-retardant foamed styrene resin composition
EP2960272A1 (en) * 2013-02-14 2015-12-30 Kaneka Corporation Styrene-type resin extruded foam and method for recycling same
EP3070118A1 (en) * 2013-11-14 2016-09-21 Kaneka Corporation Extruded styrenic resin foam and method for manufacturing same
CN109181291A (en) * 2018-07-09 2019-01-11 中广核俊尔新材料有限公司 A kind of blue red phosphorus flame-retardant reinforced polyamide material

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Week 201924, 11 January 2019 Derwent World Patents Index; AN 2019-09318M, XP002809113 *

Also Published As

Publication number Publication date
CN116333429A (en) 2023-06-27

Similar Documents

Publication Publication Date Title
EP1983028B1 (en) Flame-retardant styrene resin composition
US7468408B2 (en) Flame-retardant styrene resin composition
EP2921520B1 (en) Flame-retardant foamed styrene resin composition
EP1786853B1 (en) Novel flame-retardant polystyrenes
EP2998347B1 (en) Flame-retardant expandable styrene resin composition
CN111333960A (en) Antimony-free flame-retardant polypropylene composition and preparation method thereof
TWI698472B (en) Flame retardant expanded styrene resin composition and expanded molded body
CN111087785A (en) Transparent flame-retardant polycarbonate composite material and preparation method thereof
CN112080074B (en) Flame-retardant polypropylene composition and preparation method and application thereof
WO2023116908A1 (en) Polymer composition, polymer masterbatch composition and sheet materials comprising or produced from said compositions
WO2023116907A1 (en) Polymer composition, polymer masterbatch composition and sheet materials comprising or produced from said compositions
JP6924823B2 (en) Flame-retardant transparent polycarbonate composition
WO2023116909A1 (en) Flame retardant composition, polymer composition comprising flame retardant composition and preparation method thereof
CN1458955A (en) Flame-retardant polyolefin resin composition
EP4289896A1 (en) Flame retardant composition for foamed styrene resin, flame-retardant foamed styrene-based resin composition, and extrusion foam-molded product of same
WO2023116906A1 (en) Flame retardant composition, polymer composition comprising flame retardant composition and preparation method thereof
WO2023214485A1 (en) Resin composition and molded article
JP2021138908A (en) Flame retardant composition for foamed styrene resin, flame-retardant foamed-styrene-based resin composition, and extruded foam molded product thereof
JP2024063687A (en) Manufacturing method of extruded thermoplastic resin foam board
CN116376031A (en) Polymeric phosphorus-nitrogen-silicon flame retardant and halogen-free polystyrene flame-retardant master batch

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22857011

Country of ref document: EP

Kind code of ref document: A1