WO2023116823A1 - 定位方法、系统、装置、计算机设备和存储介质 - Google Patents

定位方法、系统、装置、计算机设备和存储介质 Download PDF

Info

Publication number
WO2023116823A1
WO2023116823A1 PCT/CN2022/141017 CN2022141017W WO2023116823A1 WO 2023116823 A1 WO2023116823 A1 WO 2023116823A1 CN 2022141017 W CN2022141017 W CN 2022141017W WO 2023116823 A1 WO2023116823 A1 WO 2023116823A1
Authority
WO
WIPO (PCT)
Prior art keywords
osteotomy
guide block
block device
target
pose
Prior art date
Application number
PCT/CN2022/141017
Other languages
English (en)
French (fr)
Inventor
杨君娟
何超
李涛
于海英
彭维礼
Original Assignee
苏州微创畅行机器人有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州微创畅行机器人有限公司 filed Critical 苏州微创畅行机器人有限公司
Publication of WO2023116823A1 publication Critical patent/WO2023116823A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B34/32Surgical robots operating autonomously
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/14Surgical saws ; Accessories therefor
    • A61B17/15Guides therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/14Surgical saws ; Accessories therefor
    • A61B17/15Guides therefor
    • A61B17/154Guides therefor for preparing bone for knee prosthesis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
    • A61B17/17Guides or aligning means for drills, mills, pins or wires
    • A61B17/1732Guides or aligning means for drills, mills, pins or wires for bone breaking devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • A61F2/4603Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/101Computer-aided simulation of surgical operations
    • A61B2034/105Modelling of the patient, e.g. for ligaments or bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/107Visualisation of planned trajectories or target regions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/108Computer aided selection or customisation of medical implants or cutting guides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2065Tracking using image or pattern recognition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2068Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis using pointers, e.g. pointers having reference marks for determining coordinates of body points
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • A61F2002/4632Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor using computer-controlled surgery, e.g. robotic surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • A61F2002/4632Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor using computer-controlled surgery, e.g. robotic surgery
    • A61F2002/4633Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor using computer-controlled surgery, e.g. robotic surgery for selection of endoprosthetic joints or for pre-operative planning

Definitions

  • the present application relates to the technical field of robots, in particular to a positioning method, system, device, computer equipment and storage medium.
  • robots can be used in various fields to assist people in their operations.
  • doctors can be assisted by robots to perform related operations such as diagnosis and treatment.
  • orthopedic surgery robots can assist doctors in surgery.
  • the operator is instructed to use the collaborative mode to roughly position the robotic arm to the osteotomy surface, and then use the automatic mode to allow the robotic arm to perform the operation. Automatic fine positioning and osteotomy operation.
  • the above-mentioned process needs to be repeated for each osteotomy surface until the osteotomy operation is completed on all osteotomy surfaces.
  • the present application provides a positioning method, the method comprising: planning the osteotomy plane according to the image information of the target part to obtain at least one osteotomy plane of the target part; The pose relationship between the guide block device and each of the osteotomy surfaces in the at least one osteotomy surface of the target site, determine the target osteotomy surface from the osteotomy surface; when the osteotomy guide block device and When the pose relationship of the target osteotomy surface satisfies the positioning condition, an automatic mode is used to control the mechanical arm to position the osteotomy guide block device to the target osteotomy surface.
  • the planning of the osteotomy plane according to the image information of the target part to obtain at least one osteotomy plane of the target part includes: determining the characteristics of the target part from the image information of the target part Point information; according to the feature point information, at least one osteotomy plane of the target site is determined.
  • the determining at least one osteotomy plane of the target site according to the feature point information includes: determining at least one initial osteotomy plane of the target site according to the feature point information; The prosthesis device at the target site adjusts each of the initial osteotomy planes to obtain at least one osteotomy plane at the target site.
  • the osteotomy guide block device installed at the end of the mechanical arm and each of the osteotomy surfaces in the at least one osteotomy surface of the target site, from the osteotomy Determining the target osteotomy surface in the plane includes: collecting real-time image information of the target site through an image acquisition device;
  • the pose relationship between the osteotomy guide block device and each of the osteotomy surfaces is determined; according to the osteotomy The pose relationship between the guide block device and each of the osteotomy surfaces, the target osteotomy surface is determined from the osteotomy surface, and the pose relationship is used to characterize the relationship between the osteotomy guide block device and the osteotomy surface The distance between them and the angular relationship presented.
  • determining the osteotomy area of the target site according to the real-time image information and each of the osteotomy surfaces includes: generating a corresponding initial osteotomy area according to the target site and each of the osteotomy surfaces Osteotomy area; according to the real-time image information of the target part, after spatially registering the target part and the three-dimensional model of the target part, the three-dimensional model is displayed on the display interface, and the three-dimensional model includes all The initial osteotomy area and each of the osteotomy surfaces, each of the osteotomy surfaces is located in the initial osteotomy area; in response to the adjustment operation on the initial osteotomy area, the osteotomy of the target site is obtained area.
  • the position and posture relationship of the surface includes: obtaining in real time the cross-sectional position and posture information of the section of the osteotomy guide block device installed at the end of the mechanical arm in the coordinate system of the image acquisition device; according to the described osteotomy guide block device Section pose information, determine whether the osteotomy guide block device moves into the osteotomy area; when it is determined that the osteotomy guide block device moves into the osteotomy guide block area, according to the osteotomy guide
  • the cross-sectional pose information of the block device and the pose information of each of the osteotomy surfaces determine the pose relationship between the osteotomy guide block device and each of the osteotomy surfaces.
  • determining the pose relationship between the osteotomy guide block device and each of the osteotomy faces includes: when the osteotomy guide block device moves into the osteotomy guide block area, Real-time detection of whether there is external force control on the mechanical arm; when it is detected that there is no external force control on the mechanical arm, according to the cross-sectional pose information of the osteotomy guide block device, and the pose of each osteotomy surface information to determine the pose relationship between the osteotomy guide block device and each of the osteotomy surfaces.
  • the relationship between the osteotomy guide block device and each of the osteotomy planes is determined.
  • the pose relationship of the bone surface includes: for any of the osteotomy surfaces, according to the cross-sectional pose information of the osteotomy guide block device and the pose information of the osteotomy surface, determining the osteotomy The angle and distance between the guide block device and the osteotomy surface; according to the angle and the distance, the pose relationship between the osteotomy guide block device and the osteotomy surface is determined.
  • the present application also provides a positioning system, which includes: an image acquisition device, a mechanical arm, and an osteotomy guide block device installed at the end of the mechanical arm, wherein the image acquisition device is used to The image information of the osteotomy plane is used to plan the osteotomy plane to obtain at least one osteotomy plane of the target site; pose relationship, after determining the target osteotomy surface from the osteotomy surface, send the pose information of the target osteotomy surface to the mechanical arm; The pose information of the osteotomy surface positions the osteotomy guide block device to the target osteotomy surface.
  • the image acquisition device is also used to acquire real-time image information of the target site, determine the osteotomy area for the target site according to the real-time image information and each of the osteotomy surfaces, and determine the The osteotomy guide block device is moved to the osteotomy area, and the target osteotomy surface is determined from the osteotomy surfaces according to the pose relationship between the osteotomy guide block device and each of the osteotomy surfaces.
  • the image acquisition device is further used to obtain in real time the section pose information of the section of the osteotomy guide block device in the coordinate system of the image acquisition device, and detect the obtained information according to the section pose information. Whether the osteotomy guide device moves into the osteotomy area, and when it is detected that the osteotomy guide device moves into the osteotomy guide area, according to the The cross-sectional pose information, and the pose information of each of the osteotomy surfaces determine the pose relationship between the osteotomy guide block device and each of the osteotomy surfaces.
  • the osteotomy guide block device includes a card slot, and the system further includes a marking member installed at the end of the mechanical arm; the image acquisition device is also used to acquire the marking member in the image After collecting the pose information in the equipment coordinate system, according to the coordinate transformation matrix of the osteotomy guide block device and the marking member, and the pose information of the marking member in the image acquisition equipment coordinate system, determine the The pose information of the osteotomy guide block device in the coordinate system of the image acquisition device; The pose information of the bone guide block device in the coordinate system of the image acquisition device determines the pose information of the section of the osteotomy guide block device in the coordinate system of the image acquisition device.
  • the present application also provides a positioning device, the device comprising: a planning module, configured to plan an osteotomy plane according to image information of the target site, and obtain at least one osteotomy plane of the target site; a determination module , used to determine the target section from the osteotomy surface according to the pose relationship between the osteotomy guide block device installed at the end of the mechanical arm and the at least one osteotomy surface of the target site Bone surface; a positioning module, used to control the mechanical arm in an automatic mode to position the osteotomy guide block device to the target osteotomy surface when the pose relationship between the osteotomy guide block device and the target osteotomy surface satisfies the positioning condition bone surface.
  • a planning module configured to plan an osteotomy plane according to image information of the target site, and obtain at least one osteotomy plane of the target site
  • a determination module used to determine the target section from the osteotomy surface according to the pose relationship between the osteotomy guide block device installed at the end of the mechanical arm and the at least one osteotomy surface of the
  • the planning module is further configured to: determine the feature point information of the target part from the image information of the target part; determine at least one osteotomy of the target part according to the feature point information noodle.
  • the planning module is further configured to: determine at least one initial osteotomy surface of the target site according to the feature point information; The surface is adjusted to obtain at least one osteotomy surface of the target site.
  • the determining module is further configured to: collect real-time image information of the target site through an image acquisition device; The osteotomy area; when it is detected that the osteotomy guide block device installed at the end of the mechanical arm moves into the osteotomy area, determine the pose relationship between the osteotomy guide block device and each of the osteotomy surfaces; According to the pose relationship between the osteotomy guide block device and each of the osteotomy surfaces, the target osteotomy surface is determined from the osteotomy surfaces, and the pose relationship is used to characterize the osteotomy guide block device and the osteotomy surface. Describe the distance between the osteotomy surfaces and the angle relationship presented.
  • the determining module is further configured to: generate a corresponding initial osteotomy area according to the target site and each of the osteotomy surfaces; After the target site and the three-dimensional model of the target site are spatially registered, the three-dimensional model is displayed on the display interface, and the three-dimensional model includes the initial osteotomy area and each of the osteotomy surfaces, and each of the osteotomy The bone surfaces are all located in the initial osteotomy area; in response to the adjustment operation on the initial osteotomy area, the osteotomy area of the target site is obtained.
  • the determination module is further configured to: obtain in real time the cross-sectional pose information of the osteotomy guide block device installed at the end of the mechanical arm in the coordinate system of the image acquisition device; according to the The cross-sectional pose information of the osteotomy guide block device determines whether the osteotomy guide block device moves into the osteotomy area; when it is determined that the osteotomy guide block device moves into the osteotomy guide block area , according to the cross-sectional pose information of the osteotomy guide block device and the pose information of each of the osteotomy surfaces, the pose relationship between the osteotomy guide block device and each of the osteotomy surfaces is determined.
  • the determination module is also used to: when the osteotomy guide block device moves into the osteotomy guide block area, detect in real time whether there is external force control on the mechanical arm; When there is no external force control on the mechanical arm, according to the cross-sectional pose information of the osteotomy guide block device and the pose information of each osteotomy surface, determine the relationship between the osteotomy guide block device and each of the osteotomy guide block devices. The pose relationship of the osteotomy surface.
  • the determination module is further configured to: for any of the osteotomy surfaces, according to the cross-sectional pose information of the osteotomy guide block device, and the pose of the osteotomy surface information, determine the angle and distance between the osteotomy guide block device and the osteotomy surface; determine the pose relationship between the osteotomy guide block device and the osteotomy surface according to the angle and the distance.
  • the present application also provides a computer device.
  • the computer device includes a memory and a processor, the memory stores a computer program, and the processor implements the steps of the positioning method above when executing the computer program.
  • the present application also provides a computer-readable storage medium.
  • the computer-readable storage medium has a computer program stored thereon, and when the computer program is executed by a processor, the steps of the above positioning method are realized.
  • the present application further provides a computer program product.
  • the computer program product includes a computer program, and when the computer program is executed by a processor, the steps of the above positioning method are realized.
  • Fig. 1 is a schematic flow chart of a positioning method in an embodiment
  • Fig. 2 is a schematic flow chart of a positioning method in an embodiment
  • 3a to 3c are schematic diagrams of a positioning method in an embodiment
  • FIG. 4 is a schematic flow diagram of a positioning method in an embodiment
  • Fig. 5 is a schematic diagram of a positioning method in an embodiment
  • Fig. 6 is a schematic diagram of a positioning method in an embodiment
  • Fig. 7 is a schematic flowchart of a positioning method in an embodiment
  • FIG. 8 is a schematic flowchart of a positioning method in an embodiment
  • Fig. 9 is a schematic diagram of a positioning method in an embodiment
  • Fig. 10 is a schematic diagram of a positioning method in an embodiment
  • 11a to 11c are schematic diagrams of a positioning method in an embodiment
  • Fig. 12 is a schematic flowchart of a positioning method in an embodiment
  • Fig. 13 is a schematic diagram of a positioning method in an embodiment
  • Fig. 14 is a schematic flowchart of a positioning method in an embodiment
  • Fig. 15 is a schematic diagram of a positioning method in an embodiment
  • Fig. 16 is a schematic flowchart of a positioning method in an embodiment
  • Fig. 17 is a schematic diagram of a positioning method in an embodiment
  • Fig. 18 is a schematic diagram of a positioning method in an embodiment
  • Fig. 19 is a schematic diagram of a positioning method in an embodiment
  • Fig. 20 is a schematic diagram of a positioning method in an embodiment
  • Fig. 21 is a schematic diagram of a positioning method in an embodiment
  • Fig. 22 is a schematic diagram of a positioning method in an embodiment
  • Fig. 23 is a schematic diagram of a positioning method in an embodiment
  • Fig. 24 is a schematic structural diagram of a positioning system in an embodiment
  • Figure 25 is a schematic diagram of a positioning system in one embodiment
  • 26a to 26b are schematic diagrams of a positioning system in one embodiment
  • 27a to 27c are schematic diagrams of a positioning system in an embodiment
  • Figure 28 is a schematic diagram of a positioning system in one embodiment
  • Fig. 29 is a structural block diagram of a positioning device in an embodiment
  • Figure 30 is a diagram of the internal structure of a computer device in one embodiment.
  • a positioning method is provided.
  • the application of this method to a robot is used as an example for illustration. It can be understood that this method can also be applied to a terminal device controlling a robot. It can be applied to a system including a terminal and a server, and is realized through interaction between the terminal and the server.
  • the method includes the following steps:
  • Step 102 plan the osteotomy plane according to the image information of the target part, and obtain at least one osteotomy plane of the target part.
  • the image information of the target site can be obtained before the osteotomy operation, and the image information can include images such as CT (Computed Tomography, computerized tomography) scan images, AR (Augmented Reality, augmented reality) visual scan images, etc. .
  • the osteotomy plane can be planned based on the image information of the target part, and at least one osteotomy plane of the target part can be planned. For example: at least one osteotomy plane of the target part may be generated based on the feature point information of the target part in the image information.
  • Step 104 Determine the target osteotomy surface from the osteotomy surface according to the pose relationship between the osteotomy guide block device installed at the end of the mechanical arm and each osteotomy surface in the at least one osteotomy surface of the target site.
  • At least one osteotomy surface of the target site can be planned before the osteotomy operation.
  • the assist mode can be used, and the medical staff can control the mechanical arm to move to the osteotomy surface of the target site. , or the robotic arm can also move to the osteotomy surface of the target site in an automatic mode.
  • the pose information of the osteotomy guide device installed at the end of the manipulator can be detected in real time, and then it can be determined in real time according to the pose information of the osteotomy guide device installed at the end of the manipulator.
  • the pose relationship of each osteotomy plane in the wherein the pose relationship may include a distance relationship and an angle relationship of a section.
  • the target osteotomy surface that best matches the osteotomy guide block device can be selected from the osteotomy surfaces, exemplary , the osteotomy surface with the closest distance and/or the smallest angle to the osteotomy guide block device can be determined as the target osteotomy surface that best matches the osteotomy guide block device.
  • Step 106 when the pose relationship between the osteotomy guide block device and the target osteotomy surface satisfies the positioning condition, use the automatic mode to control the mechanical arm to position the osteotomy guide block device to the target osteotomy surface.
  • the image acquisition device can be used to detect the pose relationship between the osteotomy guide block device and the target osteotomy surface in real time.
  • the pose information of the target osteotomy surface can be sent to the robotic arm, and the automatic mode can be used to control the robotic arm for fine positioning, so that the osteotomy surface can be cut according to the pose information of the target osteotomy surface.
  • the bone guide block device is automatically positioned to the target osteotomy surface.
  • the positioning condition may include that the distance and/or angle between the osteotomy guide block device and the target osteotomy surface is less than or equal to a preset distance threshold and/or angle threshold.
  • the mechanical arm can enter the holding state, and the medical staff can use the osteotomy guide groove and/or guide hole on the osteotomy guide block device to install an oscillating saw or an electric drill , for osteotomy and drilling operations.
  • the positioning method provided by the embodiment of the present application can plan the osteotomy surface according to the image information of the target part, and obtain at least one osteotomy surface of the target part, and according to the osteotomy guide block device installed at the end of the mechanical arm and each osteotomy in the target part Determine the target osteotomy surface from the osteotomy surface, and when the pose relationship between the osteotomy guide block device and the target osteotomy surface meets the positioning conditions, use the automatic mode to control the mechanical arm to move the osteotomy guide block device Locate to the target osteotomy plane.
  • the positioning method provided by the embodiment of the present application can plan the osteotomy surface for the target site before the operation, and control the mechanical arm through visual positioning to select the target osteotomy surface for automatic positioning, that is, the positioning and positioning processes are all automated, which can Simplify the positioning process of the robotic arm during the osteotomy process, improve the positioning efficiency of the osteotomy surface, thereby reducing labor costs and time-consuming osteotomy operations, and improving the efficiency of osteotomy operations.
  • the osteotomy plane is planned according to the image information of the target part to obtain at least one osteotomy plane of the target part, including: step 202, from the image information of the target part , determine the feature point information of the target part; Step 204, determine at least one osteotomy surface of the target part according to the feature point information.
  • the image information of the target part can be obtained before the osteotomy operation, and the feature point information of the target part can be determined in the image information of the target part through image recognition or manual marking by medical personnel, and then according to the target part
  • the feature point information of the target part is used to determine at least one osteotomy plane of the target part in the image information of the target part.
  • the feature point information for generating each osteotomy surface of the target site may be preset, and then after the feature point information corresponding to each osteotomy surface is identified, the corresponding osteotomy surface may be generated based on the feature point information.
  • the femoral feature points include the femoral rotation center, the knee joint center (femoral force line), the highest point of the lateral condyle, the lowest point of the inner condyle intercondylar depression (through the condylar line (TEA) ), the highest point of the intercondylar notch, the lowest point of the trochlear (Whiteside line), the tip of the greater trochanter, the midpoint of the intercondylar notch (anatomical axis of the femur), the tangent point of the distal end of the medial condyle, the tangent point of the distal end of the lateral condyle (the axis of the distal femur ), the medial tangent point of the posterior condyle, the lateral tangent point of the posterior condyle (posterior condyle axis).
  • the tibial feature points include the midpoint of the talus, the midpoint of the tibial plateau (the center of the tibial knee joint) (the line of tibial force), the medial 1/ 3 points, the midpoint of the posterior cruciate ligament (PCL center) (tibia AP line), proximal tibia-medial tangent point, tibial proximal-lateral tangent point (proximal tibial axis) and other characteristic points).
  • PCL center posterior cruciate ligament
  • lateral condyle distal end tangent point 301 can confirm femur distal end axis and femoral line of force 304, pass posterior condyle
  • the lateral cut point 305 and the medial cut point 306 of the posterior condyle can confirm the axis of the posterior condyle, and can generate a corresponding osteotomy surface based on the axis of the distal femur, the line of force of the femur, and the axis of the posterior condyle.
  • the section plane of the distal femur and the line of force of the femur are as vertical as possible.
  • the positioning method provided in the embodiment of the present application can plan the osteotomy surface according to the image information of the target part before the osteotomy operation, and obtain at least one osteotomy surface of the target part, so as to control the machine through visual positioning during the osteotomy process.
  • the arm selects the target osteotomy surface for automatic positioning, that is, the positioning and positioning process are all automated, which can simplify the positioning process of the robotic arm during the osteotomy process, improve the positioning efficiency of the osteotomy surface, and reduce labor costs and osteotomy operations. The time-consuming can improve the operation efficiency of osteotomy.
  • determining at least one osteotomy surface of the target site according to the feature point information includes: step 402, determining at least one initial osteotomy plane of the target site according to the feature point information surface; step 404, adjust each initial osteotomy surface according to the prosthetic device at the target site, and obtain at least one osteotomy surface at the target site.
  • initial planning can be performed based on the feature point information of the target part, at least one initial osteotomy surface of the target part can be determined, and each initial osteotomy surface can be adjusted based on the prosthetic device of the selected target part, Information such as adjusting the position and angle of each initial osteotomy plane is included, and then at least one osteotomy plane of the target site is obtained.
  • the prosthetic device can be manually selected by the medical staff, or it can also be automatically selected according to the osteotomy surface or feature point information, and the adjustment for the initial osteotomy surface can be manually adjusted by the medical staff, or it can also be based on fake
  • the osteotomy surface information corresponding to the body device automatically adjusts the initial osteotomy surface, which is not specifically limited in this embodiment of the present application.
  • knee joint image information may be acquired, and target area planning may be performed based on the knee joint image information to obtain the target area.
  • Feature point selection is performed on the target area in the image information of the knee joint to obtain feature point information of the image information of the knee joint.
  • at least one initial osteotomy surface of the knee joint can be generated based on the feature point information, and each initial osteotomy surface can be adjusted based on the prosthesis model to obtain each osteotomy surface of the knee joint.
  • each osteotomy surface can be shown in Fig.
  • 601 is the position of the anterior section of the distal femur
  • 602 is the position of the oblique section of the distal femur
  • 603 is the position of the posterior section of the distal femur
  • 604 is the position of the distal femur.
  • the location of the posterior oblique section, 605 is the location of the section of the distal end of the femur.
  • the positioning method provided in the embodiment of the present application can plan the osteotomy surface according to the image information of the target part before the osteotomy operation, obtain at least one initial osteotomy surface of the target part, and perform the initial osteotomy surface based on the prosthetic device Adjust to accurately obtain the osteotomy surface of the target site, and then in the process of osteotomy, control the robotic arm through visual positioning to automatically select the target osteotomy surface from the planned osteotomy surface for automatic positioning, that is, the positioning and positioning process is complete. Automation can simplify the positioning process of the robotic arm during the osteotomy process, improve the positioning efficiency of the osteotomy surface, thereby reducing labor costs and time-consuming osteotomy operations, and improving the efficiency of osteotomy operations.
  • step 104 according to the pose relationship between the osteotomy guide block device installed at the end of the mechanical arm and each osteotomy surface in at least one osteotomy surface of the target site, the osteotomy surface Determining the target osteotomy surface, including: step 702, collecting real-time image information of the target part through an image acquisition device; step 704, determining the osteotomy area of the target part according to the real-time image information and each osteotomy surface; step 706, When it is detected that the osteotomy guide block device installed at the end of the mechanical arm moves into the osteotomy area, determine the pose relationship between the osteotomy guide block device and each osteotomy surface; step 708, according to the osteotomy guide block device and each osteotomy The pose relationship of the surface is used to determine the target osteotomy surface from the osteotomy surface, and the pose relationship is used to characterize the distance between the osteotomy guide block device and the osteotomy surface and the angle relationship presented.
  • the real-time image information of the target part can be collected by the image acquisition device, and the target position can be generated according to each osteotomy surface and the position of the target part in the real-time image information.
  • Osteotomy area of the site Exemplarily, the osteotomy area is centered on the center point of the target site, and each osteotomy surface is located in the osteotomy area.
  • the robotic arm After the osteotomy area is determined, the robotic arm starts to perform osteotomy positioning, and controls the osteotomy guide block device to gradually approach the osteotomy area. It should be noted that during the osteotomy positioning process, the robotic arm can move in cooperative mode and It can move in automatic mode, which is not specifically limited in this embodiment of the present application.
  • the target osteotomy surface to be positioned can be automatically determined from multiple osteotomy surfaces according to the pose relationship between the osteotomy guide block device and each osteotomy surface, and the target osteotomy surface to be positioned can be positioned in the automatic mode.
  • Target osteotomy surface can be automatically determined from multiple osteotomy surfaces according to the pose relationship between the osteotomy guide block device and each osteotomy surface, and the target osteotomy surface to be positioned can be positioned in the automatic mode.
  • the pose relationship can be determined according to the pose information of the osteotomy guide block device and the pose information of the osteotomy surface, and the pose relationship can be used to characterize the distance between the osteotomy guide block device and the osteotomy surface and the presented angle relationship.
  • the positioning method during the osteotomy process, it can be determined by visual positioning whether the osteotomy guide block device installed at the end of the mechanical arm is located in the osteotomy area, and in the osteotomy area according to the osteotomy guide block device and
  • the position and posture relationship of each osteotomy surface is automatically selected from the target osteotomy surface for automatic positioning, that is, the rough placement and fine positioning of the robotic arm are all automated, which can simplify the positioning process of the robotic arm during the osteotomy process and improve the osteotomy surface.
  • the positioning efficiency can be improved, thereby reducing the labor cost and the time-consuming osteotomy operation, and improving the operation efficiency of the osteotomy operation.
  • step 704 according to the real-time image information and each osteotomy surface, determining the osteotomy area of the target site may include: step 802, according to the target site and each osteotomy surface, generating Corresponding initial osteotomy area; step 804, according to the real-time image information of the target site, after spatially registering the target site and the 3D model of the target site, the 3D model is displayed on the display interface, the 3D model includes the initial osteotomy area and Each osteotomy surface, each osteotomy surface is located in the initial osteotomy area; Step 806, in response to the adjustment operation on the initial osteotomy area, obtain the osteotomy area of the target site.
  • a three-dimensional model corresponding to the target part may be generated based on feature point information in the image information of the target part.
  • the calibration position can be selected in the image information of the target part, and a marking member (such as: an optical target, etc.) is set on each calibration position in the target part of the target object, and the target part is collected by an image acquisition device such as NDI. real-time image information, and register the real-time image information with the image information based on the calibration position, so as to spatially register the target part and the 3D model of the target part.
  • a marking member such as: an optical target, etc.
  • the size of the osteotomy region of the target part can be preset, and then the initial osteotomy region can be generated according to the center of the target part and the preset size of the osteotomy region, and displayed on the display interface
  • the initial osteotomy region is shown in .
  • an initial osteotomy region may also be generated according to each osteotomy surface and the center of the target site, and the method of generating the initial osteotomy region is not specifically limited in this embodiment of the present application.
  • the calibration position can be selected in the CT image information of the target part, including multiple positions such as the knee joint, hip joint, and ankle joint. Marking components are set at multiple positions such as the hip joint and ankle joint, and real-time image information is collected by NDI image acquisition equipment, so as to complete the registration of real-time image information and image information according to the marking components.
  • the initial osteotomy area can be generated based on the target site and each osteotomy surface, and the 3D model including the initial osteotomy area is displayed on the display interface. In the display interface, the initial osteotomy area includes each osteotomy area noodle.
  • the initial osteotomy area can be displayed as a polyhedral structure, for example, various polyhedral structures such as the sphere shown in FIG. 11a, the cube shown in FIG. 11b, and the cylinder shown in FIG. 11c.
  • 1101 is the osteotomy area
  • 1102 is the knee joint center point
  • 1103 is the osteotomy surface
  • Fig. 11b 1201 is the osteotomy area
  • 1202 is the knee joint center point
  • Fig. 11c, 1301 is The osteotomy area, 1302 is the center point of the knee joint.
  • the polyhedral structure of the osteotomy area is not specifically limited in the embodiment of the present application.
  • the osteotomy area of the target site can be obtained by adjusting the size of the initial osteotomy area on the display interface.
  • the corresponding initial osteotomy area can be generated according to the center of the knee joint.
  • the size of the initial osteotomy area can be set according to the size of the patient's knee joint (for example, a sphere with a radius of 10-15 cm at the center of the knee joint can generally be used).
  • the initial osteotomy area can be adjusted according to the position of each osteotomy surface to obtain the osteotomy area of the knee joint. For example: in the process of operating the robotic arm in the cooperative mode to roughly move to each osteotomy surface, confirm that the osteotomy guide block device is always in the initial osteotomy area. When the osteotomy guide block device is found not in the initial osteotomy area, The initial osteotomy area can be adjusted to obtain the adjusted osteotomy area.
  • the positioning method provided in the embodiment of the present application can plan the osteotomy surface and the osteotomy area, and then can determine whether the osteotomy guide block device installed at the end of the mechanical arm is located in the osteotomy area through visual positioning during the osteotomy process, so as to Automatically select the target osteotomy surface from the osteotomy surface for automatic positioning, that is, the process of rough positioning and fine positioning of the robotic arm is fully automated, which can simplify the positioning process of the robotic arm during the osteotomy process and improve the positioning efficiency of the osteotomy surface.
  • the labor cost and the time consumption of osteotomy can be reduced, and the operation efficiency of osteotomy can be improved.
  • step 806 when it is detected that the osteotomy guide block device installed at the end of the mechanical arm moves into the osteotomy area, the distance between the osteotomy guide block device and each osteotomy surface is determined.
  • the pose relationship may include: step 1202, obtaining in real time the section pose information of the section of the osteotomy guide block device installed at the end of the mechanical arm in the coordinate system of the image acquisition device; step 1204, according to the section pose information of the osteotomy guide block device information, determine whether the osteotomy guide block device has moved into the osteotomy area; Step 1206, when it is determined that the osteotomy guide block device has moved into the osteotomy guide block area, according to the cross-sectional pose information of the osteotomy guide block device, As well as the pose information of each osteotomy surface, the pose relationship between the osteotomy guide block device and each osteotomy surface is determined.
  • the registration of the real-time image information collected by the image acquisition equipment and the image information of the target site has been realized in the aforementioned process, so during the movement of the mechanical arm, it can be fixed according to the fixed connection with the osteotomy guide block device
  • the component is marked, and the pose information of the osteotomy guide block device in the coordinate system of the image acquisition device is obtained in real time.
  • the pose information of the osteotomy guide device in the coordinate system of the image acquisition device is converted to obtain the osteotomy guide device
  • the position and orientation information of the card slot in the coordinate system of the image acquisition device, the position and orientation information of the card slot in the coordinate system of the image acquisition device, that is, the cross-sectional position of the section of the osteotomy guide block device in the coordinate system of the image acquisition device pose information (hereinafter referred to as cross-section pose information).
  • the osteotomy guide device After obtaining the cross-sectional pose information of the osteotomy guide device, it can be determined whether the osteotomy guide device has moved into the osteotomy area according to the cross-sectional pose information of the osteotomy guide device, and when the osteotomy guide device is determined When it has moved into the osteotomy area, the pose relationship between the osteotomy guide block device and each osteotomy surface is determined according to the osteotomy pose information of the osteotomy guide block device and the pose information of each osteotomy surface.
  • the osteotomy guide block device determines the target osteotomy surface from each osteotomy surface, and move to the target osteotomy surface, when the osteotomy guide block device and the target osteotomy surface meet the positioning In the case of certain conditions, turn on the automatic mode for fine positioning.
  • the mechanical arm can be controlled to move into the osteotomy area (cooperative mode can be used, and the manipulator can be controlled to move to the osteotomy area, or an automatic mode can be used, and the mechanical arm automatically moves to the osteotomy area.
  • the position information X of the osteotomy guide device in space can be obtained from the cross-sectional pose information, assuming that the osteotomy area is ( f min , f max ), then in the case of f min ⁇ X ⁇ f max , it can be determined that the osteotomy guide block device has moved into the osteotomy area, and the position of the osteotomy guide block device and each osteotomy surface can be determined. Determine the target osteotomy surface from each osteotomy surface.
  • step 1206 when it is determined that the osteotomy block device moves into the region of the osteotomy block, according to the cross-sectional pose information of the osteotomy block device, and each osteotomy surface determine the pose relationship between the osteotomy guide block device and each osteotomy surface, including: step 1402, when the osteotomy guide block device moves into the osteotomy guide block area, detect in real time whether there is external force control on the mechanical arm ; Step 1404, when it is detected that there is no external force control on the mechanical arm, determine the position of the osteotomy guide block device and each osteotomy surface according to the cross-sectional pose information of the osteotomy guide block device and the pose information of each osteotomy surface posture relationship.
  • the robotic arm after planning the osteotomy surface and the osteotomy area, the robotic arm can intelligently select the target osteotomy surface.
  • the robotic arm may adopt a cooperative mode or an automatic mode, which is not specifically limited in this embodiment of the present application.
  • the target osteotomy plane can be determined from the osteotomy plane.
  • the movement of the robotic arm can be manually guided by a human (this process can also be realized by automatic positioning). It can be judged in real time whether the osteotomy guide block device is located in the osteotomy area, and when the osteotomy guide block device is located in the osteotomy area, it is detected whether there is external force control on the mechanical arm. When it is detected that the mechanical arm is controlled by an external force, the mechanical arm can move in a compliant mode under the control of the external force, and detect in real time whether the osteotomy guide block device is located in the osteotomy area during the moving process.
  • the robotic arm can be automatically positioned to the target osteotomy surface in automatic mode. In this way, after completing the osteotomy operation for the target osteotomy surface, the user can give the mechanical arm an external force control when positioning other osteotomy surfaces.
  • the mechanical arm After receiving the external force control, the mechanical arm continues to move and repeat
  • the foregoing process can realize automatic positioning and osteotomy operation for all osteotomy surfaces, and after the positioning and osteotomy operations of all osteotomy surfaces are completed, a stop osteotomy instruction can be triggered through the display interface to end the osteotomy process.
  • the positioning method provided by the embodiment of the present application can determine whether the osteotomy guide block device installed at the end of the mechanical arm is located in the osteotomy area through visual positioning, so as to automatically select the target osteotomy surface from the osteotomy surface for automatic positioning, that is, the mechanical
  • the process of coarse positioning and fine positioning of the arm is fully automated, which can simplify the positioning process of the robotic arm during the osteotomy process and improve the positioning efficiency of the osteotomy surface, thereby reducing labor costs and time-consuming osteotomy operations, and improving osteotomy procedures. surgical efficiency.
  • step 1206 according to the cross-sectional pose information of the osteotomy guide block device and the pose information of each osteotomy surface, the distance between the osteotomy guide block device and each osteotomy surface is determined.
  • the pose relationship may include: step 1602, for any of the osteotomy surfaces, according to the cross-sectional pose information of the osteotomy guide block device and the pose information of the osteotomy surface, determine the osteotomy guide block device and the osteotomy surface The angle and distance; step 1604, according to the angle and the distance, determine the pose relationship between the osteotomy guide block device and the osteotomy surface.
  • the cross-sectional pose information of the osteotomy guide block device can be obtained in real time, and it can be judged whether the osteotomy guide block device is in the osteotomy area according to the cross-sectional pose information. If the osteotomy guide block device is in the osteotomy area and the mechanical arm is not controlled by external force, calculate the section of the osteotomy guide block device and each osteotomy surface (for example, assuming that there are 6 osteotomy surfaces, each osteotomy The faces are respectively numbered 1, 2, 3, 4, 5, 6) and the angle ⁇ i (for example, the value range of ⁇ i is generally between 0 and 45°, and i is an integer greater than 0 and less than 7) . As shown in Fig.
  • the pose relationship between the osteotomy guide block device 1702 and each osteotomy surface can be determined, and the osteotomy surface with the smallest pose relationship f i can be selected from each osteotomy surface, and the distance between the osteotomy surface and the osteotomy guide can be determined.
  • Block Device Recently, the osteotomy block device can be identified as the target osteotomy block.
  • the included angle between the target osteotomy surface and the osteotomy guide block device can be displayed on the display interface, and when the osteotomy guide block device and the target When the angle between the osteotomy surfaces is less than the angle threshold, the user can be prompted by voice, text, AR, etc. Still taking the example shown in FIG. 18
  • the distance and included angle between the osteotomy guide block device 1702 and the distal femur section 1701 are the smallest, that is, the distal femoral section 1701 is the target osteotomy surface (assuming that the mechanical arm not controlled by external force), at this time, the display interface shows the angle between the section 1701 of the distal end of the femur and the section of the osteotomy guide block device 1702 .
  • the distal femoral section is determined to be The section is the target osteotomy surface (assuming that the mechanical arm is not controlled by external force at this time), the angle between the anterior section of the distal femur and the section of the osteotomy guide block device can be displayed on the display interface.
  • the positioning method provided by the embodiment of the present application can determine the position and posture relationship between the osteotomy guide block device installed at the end of the mechanical arm and each osteotomy surface through visual positioning, and select the target osteotomy surface for automatic positioning, that is, the mechanical arm roughly
  • the positioning and fine positioning process are fully automated, which can simplify the positioning process of the robotic arm during the osteotomy process and improve the positioning efficiency of the osteotomy surface, thereby reducing labor costs and time-consuming osteotomy operations, and improving the efficiency of osteotomy operations. efficiency.
  • the pose information of the osteotomy guide block device can be detected in real time by an image acquisition device, and it can be judged whether the osteotomy guide block device is located in the osteotomy area according to the pose information.
  • the movement of the manipulator can be manually controlled by humans (or the movement of the manipulator can also be controlled by automatic positioning), until it is detected that the osteotomy guide block device is located in the osteotomy area, it can be The corresponding prompt information is displayed on the display interface.
  • the person can let go of the control of the robotic arm, and the robotic arm can automatically position it, or can control the movement of the robotic arm in a compliant mode.
  • the image acquisition device can be used to judge the pose relationship between the osteotomy guide block device and each osteotomy surface, and select a target osteotomy surface from each osteotomy surface according to the pose relationship. And display the angle and position relationship between the osteotomy guide block device and the target osteotomy surface in the display interface.
  • corresponding prompt information may be displayed on the display interface.
  • the robotic arm can be automatically positioned in the automatic mode, and after the target osteotomy surface is positioned, the corresponding prompt information will be displayed on the display interface.
  • the terminal can be used to send fine-tuning commands, and the robotic arm keeps the current posture unchanged, and the robotic arm can be manually controlled or the robotic arm can automatically move between the direction of the target osteotomy surface and the target osteotomy surface.
  • the normal direction of the bone surface is fine-tuned.
  • the osteotomy guide block moves to the osteotomy area during the movement, the bone edge information of the target part can be obtained through the image acquisition equipment.
  • the robot arm has the function of collision detection during the movement, which can Prevent bumping into human legs or other objects during the operation of the robotic arm. When the robot arm detects a collision, the robot arm stops moving in the current direction.
  • the compliant positioning mode when the human hand drags the robotic arm to move in the osteotomy area, the compliant positioning mode can be used, and the model structure corresponding to the compliant positioning mode can be shown in FIG. 20 .
  • Figure 20 shows the compliant positioning mode.
  • the difference between the position and speed command 2002 and the position and speed fed back by the actuator encoder 2004 can be used to output the control torque through the controller 2006, and the feed-forward gravity compensation 2008 and After friction compensation, the total torque is obtained, and the total torque is sent to each control joint of the robot arm body 2010 to realize a compliant positioning mode.
  • the structure of the above-mentioned controller 2006 can be referred to as shown in FIG. 21 .
  • the difference between the position and speed command 2002 and the speed fed back by the actuator encoder 2004 is multiplied by the coefficient Ki through the integral link, and the difference between the position and speed command 2002 and the speed fed back by the actuator encoder 2004 is directly After multiplying by a gain coefficient Kp, the sum of the two can be used as the torque output of the controller 2006 .
  • the structure of the above-mentioned controller 2006 may also refer to that shown in FIG. 22 .
  • the friction force and gravity of each joint of the mechanical arm body 2010 have been compensated by feedforward, and the entire mechanical arm is in a state of zero force. When an external force acts, the mechanical arm body will follow the external force.
  • the masterpiece follows.
  • the structure of the controller 2006 can be referred to as shown in Figure 23.
  • the position and speed command 2002 and the position and speed fed back by the actuator encoder 2004 are calculated for the difference.
  • the control torque required for the entire positioning process is generated as the output of the controller 2006 through a PID controller added with a speed filter.
  • a positioning system in one embodiment, as shown in FIG. 24, the system includes: an image acquisition device 2402, a mechanical arm 2404, and an osteotomy guide block device 2406 installed at the end of the mechanical arm 2404, wherein the image
  • the acquisition device 2402 is used to plan the osteotomy surface according to the image information of the target part, and obtain at least one osteotomy surface of the target part;
  • Pose relationship after determining the target osteotomy surface from the osteotomy surface, send the pose information of the target osteotomy surface to the robot arm 2404; the robot arm 2404 is used to Position the osteotomy block assembly on the target osteotomy plane.
  • the image acquisition device 2402 may be an NDI navigation device. Before the osteotomy operation, the image acquisition device 2402 can plan the osteotomy plane according to the acquired image information of the target part, so as to obtain at least one osteotomy plane of the target part.
  • the image acquisition device 2402 can plan the osteotomy plane according to the acquired image information of the target part, so as to obtain at least one osteotomy plane of the target part.
  • the specific planning process of the osteotomy plane refer to the relevant description of the foregoing embodiments. That is, this embodiment of the present application will not repeat it here.
  • the image acquisition device 2402 can collect real-time image information of the target part during the osteotomy operation, and based on the marking member (optical target, etc.) Registration of the image information of the bone surface, so that the pose information of the osteotomy guide block device 2406 installed at the end of the mechanical arm 2404 can be obtained in real time after registration, and the position and posture information of the osteotomy guide block device 2406 can be determined according to the pose information of the osteotomy guide block device 2406.
  • the pose relationship of each osteotomy surface in the target part and then according to the pose relationship between the osteotomy guide block device 2406 and each osteotomy surface in the target part, determine the target osteotomy surface from the osteotomy surface, and send the target osteotomy
  • the pose information of the plane is sent to the robot arm 2404.
  • the robotic arm 2404 can perform automatic positioning in the automatic mode, locate to the target osteotomy surface according to the pose information of the target osteotomy surface, and enter the holding mode after completing the positioning of the target osteotomy surface, and the doctor can use the oscillating saw Or the electric drill performs osteotomy and drilling operations through the osteotomy guide groove and guide hole of the osteotomy guide block device, and after the osteotomy and drilling operations are completed, the doctor can install the prosthesis and perform other operations.
  • the image acquisition device is used to plan the osteotomy surface according to the image information of the target part to obtain at least one osteotomy surface of the target part.
  • the pose relationship between the osteotomy guide block device and each osteotomy surface in the target site after determining the target osteotomy surface from the osteotomy surface, sends the pose information of the target osteotomy surface to the mechanical arm.
  • the mechanical arm is used to position the osteotomy guide block device to the target osteotomy surface according to the pose information of the target osteotomy surface in an automatic mode.
  • the positioning system provided by the embodiment of the present application can plan the osteotomy surface for the target site before the operation, and control the mechanical arm through visual positioning to select the target osteotomy surface for automatic positioning, that is, the positioning and positioning process are all automated, which can Simplify the positioning process of the robotic arm during the osteotomy process, improve the positioning efficiency of the osteotomy surface, thereby reducing labor costs and time-consuming osteotomy operations, and improving the efficiency of osteotomy operations.
  • the image acquisition device 2402 is also used to acquire real-time image information of the target site, determine the osteotomy area for the target site according to the real-time image information and each osteotomy surface, and when it is determined that the osteotomy guide block device 2406 moves When reaching the osteotomy area, the target osteotomy surface is determined from the osteotomy surface according to the pose relationship between the osteotomy guide block device and each osteotomy surface.
  • the image acquisition device 2402 determines the osteotomy area for the target site according to the real-time image information and each osteotomy surface, and when it is determined that the osteotomy guide block device 2406 moves into the osteotomy area, according to the
  • the relationship between the position and posture of the bone guide block device and each osteotomy surface, and the specific process of determining the target osteotomy surface from the osteotomy surface can refer to the relevant descriptions of the foregoing embodiments, and the embodiments of the present application will not repeat them here.
  • the image acquisition device 2402 is also used to acquire the section pose information of the section of the osteotomy guide block device 2406 in the image acquisition device coordinate system in real time, and detect whether the osteotomy guide block device 2406 moves according to the section pose information into the osteotomy area, and when it is detected that the osteotomy guide block device 2406 moves into the osteotomy guide block area, according to the cross-sectional pose information of the osteotomy guide block device 2406 and the pose information of each osteotomy surface, determine The pose relationship between the osteotomy guide block device 2406 and each osteotomy surface.
  • the osteotomy guide block device 2406 includes a card slot, and the system further includes a marking member 2408 installed at the end of the mechanical arm; the image acquisition device 2402 is also used to acquire the position of the marking member 2408 in the coordinate system of the image acquisition device After obtaining the pose information, according to the coordinate transformation matrix of the osteotomy guide block device 2406 and the marker member 2408, and the pose information of the marker member 2408 in the coordinate system of the image acquisition device, determine that the osteotomy guide block device 2406 is in the coordinate system of the image acquisition device.
  • the image acquisition device 2402 is also used to determine the osteotomy guide according to the coordinate transformation matrix of the osteotomy guide block device 2406 and the slot, and the pose information of the osteotomy guide block device 2406 in the coordinate system of the image acquisition device.
  • the osteotomy guide block device 2406 includes a slot 2502 , as shown in FIG. 25 .
  • the osteotomy guide block device 2406 can have a plurality of slots 2502, and can also be a single slot 2502, wherein, the osteotomy guide block device 2406 with multiple slots can be shown in Figure 26a, the osteotomy guide with a single slot
  • the block device 2406 can be shown with reference to FIG. 26b.
  • the embodiment of the present application does not specifically limit the number of slots of the osteotomy guide block device 2406 .
  • the osteotomy guide block device 2406 can be an osteotomy guide block with no degree of freedom, or a multi-degree-of-freedom osteotomy guide block as shown in Figure 27a to Figure 27c.
  • the osteotomy guide block device The degrees of freedom are not specifically limited.
  • the osteotomy guide block device 2406 can be an adjustable device combined with multiple degrees of freedom, or a guide block device with only one osteotomy slot or multiple osteotomy slots.
  • the coordinate transformation relationship between the osteotomy guide block device 2406 and the marking member 2408 is fixed, and the coordinate transformation relationship between the osteotomy guide block device 2406 and the marking member 2408 can be obtained in advance
  • the pose information of the marker member 2408 in the image acquisition device 2402 can be obtained through the image acquisition device 2402 as Then the pose information of the osteotomy guide block device 2406 in the image acquisition device 2402 can be converted for:
  • the coordinate system conversion relationship of the draw slot 2502 in the osteotomy guide block device 2406 coordinate system is obtained through measurement and calibration as Then along with the movement of the mechanical arm 2404, the cross-sectional pose information of the osteotomy guide block device 2406 can be obtained in real time for:
  • the section pose information of each osteotomy surface can be obtained as Known section pose information
  • the position information of osteotomy guide block device 2406 and attitude information composed, that is, can be based on Whether the osteotomy guide block device 2406 is in the osteotomy area is judged whether it is within the boundary of the osteotomy area.
  • the specific process may refer to the following formula (1).
  • the position-posture relationship conversion function and the cross-section posture information of the osteotomy guide block device 2406 and the cross section can be obtained.
  • the included angle ⁇ i and the distance of the posture information of the bone surface determine the posture relationship between the osteotomy guide block device 2406 and the osteotomy surface.
  • the embodiment of the present application does not specifically limit the posture relationship conversion function. For example, you can refer to the formula (3) as shown.
  • the positioning system provided by the embodiment of the present application can obtain the feature point information of the bone of the target part through the image acquisition device, and then set the osteotomy area and the corresponding osteotomy surface according to the feature point information of the bone of the target part. By identifying the position information of the osteotomy guide block device and the edge of the osteotomy area, it is determined whether the osteotomy guide block device reaches the osteotomy area.
  • the osteotomy guide block device When it is determined that the osteotomy guide block device is located in the osteotomy area, determine the distance and angle between the osteotomy guide block device and each osteotomy surface, and select the target osteotomy according to the distance and angle between the osteotomy guide block device and each osteotomy surface surface, and operate the robotic arm in the compliant mode to make the osteotomy guide device slowly approach the target osteotomy surface.
  • the mechanical The arm adopts the automatic mode to automatically locate the target osteotomy surface, and when the target osteotomy surface is positioned and the corresponding osteotomy operation is completed, you can apply external force to the osteotomy guide block device and repeat the above process to complete the positioning of other osteotomy surfaces .
  • the present invention obtains the corresponding osteotomy area and the corresponding osteotomy surface through the visual system, and automatically selects the target osteotomy surface by detecting the pose relationship between the osteotomy guide block device and the osteotomy surface, and When the block device and the target osteotomy surface meet the positioning conditions, the fine positioning of the osteotomy guide block device is realized by using the automatic mode to control the mechanical arm to automatically position to the target osteotomy surface, which simplifies the positioning process and optimizes the interaction of use. The time spent on surgery can be reduced.
  • the knee replacement operation is taken as an example.
  • Fig. 28 it includes a surgical trolley 2801, a mechanical arm 2802, a tool target 2803, an osteotomy guide block device 2804, an oscillating saw 2805, an NDI navigation device 2806, an auxiliary display 2807, a main display 2808, a navigation trolley 2809, and a keyboard 2810.
  • the operating trolley 2801 and the navigation trolley 2809 can be placed in a suitable position beside the hospital bed, and a femoral target 2811, a tibial target 2812, a base target 2815, a sterile bag, an osteotomy guide block device 2804, a tool target 2803, etc. can be installed.
  • the doctor imports the CT scan image of the patient's bone into the computer for preoperative osteotomy planning, for example: plan the plane coordinates of the osteotomy surface, select a suitable type of prosthesis and adjust the osteotomy surface.
  • the computer includes a main monitor 2808, a keyboard 2810 and a Navigate the controller within the dolly 2809.
  • the doctor uses the target pen to click on the feature points of the patient's femur and tibia
  • the NDI navigation device 2806 takes the base target 2815 as a reference, records the position of the patient's bone feature points according to the click of the target pen, and sends the position of the bone feature points to the computer, and then the computer
  • the actual orientation of the femur and tibia is obtained through the feature matching algorithm, which corresponds to the orientation of the CT images of the femur and tibia, and then the navigation system associates the actual orientation of the femur and tibia with the corresponding targets installed on the femur and tibia, so that the femur
  • the target and the tibial target can track the actual position of the bone in real time, so that during the operation, as long as the relative position of the target and the bone is fixed, the movement of the bone will not affect the surgical effect.
  • the NDI navigation device 2806 determines the target osteotomy surface according to the pose information of the osteotomy guide block device 2804 and the pose information of the osteotomy surface, and sends the preoperatively planned osteotomy plane coordinates of the target osteotomy surface to the mechanical arm 2802,
  • the mechanical arm 2802 automatically locates the target osteotomy surface through the tool target (installed on the mechanical arm or the osteotomy guide block device) and moves to the predetermined position.
  • the mechanical arm enters the holding state, and the doctor can use the oscillating saw or electric drill to pass through the osteotomy guide block.
  • the osteotomy guide groove and guide hole of the module perform osteotomy and drilling operations, and after the osteotomy and drilling operations are completed, the doctor can install the prosthesis and perform other operations.
  • the positioning method and system provided by the embodiment of the present application can simplify the osteotomy operation process, and the medical staff can directly assist the mechanical arm, which can complete the automatic positioning of the osteotomy surface, and the whole process does not require additional operators to switch back and forth. Realized, and the selection of the cut surface can be automatically determined by the operator or medical staff or automatically selected by the robotic arm. After the osteotomy guide device of the robotic arm is placed in the osteotomy area, the robotic arm can select the target osteotomy surface for automatic Positioning, the positioning method and system provided by the embodiments of the present application are beneficial to the use of medical staff, the interaction is better, and the operation time can be shortened.
  • steps in the flow charts involved in the above embodiments are shown sequentially according to the arrows, these steps are not necessarily executed sequentially in the order indicated by the arrows. Unless otherwise specified herein, there is no strict order restriction on the execution of these steps, and these steps can be executed in other orders. Moreover, at least some of the steps in the flow charts involved in the above-mentioned embodiments may include multiple steps or stages, and these steps or stages are not necessarily executed at the same time, but may be performed at different times For execution, the execution order of these steps or stages is not necessarily performed sequentially, but may be executed in turn or alternately with other steps or at least a part of steps or stages in other steps.
  • an embodiment of the present application further provides a positioning device for implementing the positioning method involved above.
  • the solution to the problem provided by the device is similar to the implementation described in the above method, so the specific limitations in one or more positioning device embodiments provided below can refer to the definition of the positioning method above, here No longer.
  • a positioning device 2900 including: a planning module 2902, a determination module 2904, and a positioning module 2906, wherein: the planning module 2902 is configured to perform interception according to the image information of the target part Bone surface planning, obtaining at least one osteotomy surface of the target site; a determination module 2904, configured to, according to the pose relationship between the osteotomy guide block device installed at the end of the mechanical arm and each of the osteotomy surfaces in the target site, Determine the target osteotomy surface from the osteotomy surface; the positioning module 2906 is used to control the machine in an automatic mode when the pose relationship between the osteotomy guide block device and the target osteotomy surface satisfies the positioning condition The arm positions the osteotomy block device to the target osteotomy plane.
  • the above positioning device can plan the osteotomy surface according to the image information of the target part to obtain at least one osteotomy surface of the target part, and according to the pose relationship between the osteotomy guide block device installed at the end of the mechanical arm and each osteotomy surface in the target part , determine the target osteotomy surface from the osteotomy surface, and when the pose relationship between the osteotomy guide block device and the target osteotomy surface meets the positioning conditions, use the automatic mode to control the mechanical arm to position the osteotomy guide block device to the target osteotomy noodle.
  • the positioning device provided by the embodiment of the present application can plan the osteotomy surface for the target site before the operation, and control the mechanical arm through visual positioning to select the target osteotomy surface for automatic positioning, that is, the positioning and positioning process are all automated, which can Simplify the positioning process of the robotic arm during the osteotomy process, improve the positioning efficiency of the osteotomy surface, thereby reducing labor costs and time-consuming osteotomy operations, and improving the efficiency of osteotomy operations.
  • the planning module 2902 is further configured to: determine the feature point information of the target part from the image information of the target part; determine at least one osteotomy plane of the target part according to the feature point information .
  • the planning module 2902 is further configured to: determine at least one initial osteotomy surface of the target site according to the feature point information; Adjusting is performed to obtain at least one osteotomy plane of the target site.
  • the determining module 2904 is further configured to: collect real-time image information of the target part through an image acquisition device; determine the real-time image information of the target part according to the real-time image information and each of the osteotomy planes Osteotomy area; when it is detected that the osteotomy guide block device installed at the end of the mechanical arm moves into the osteotomy area, determine the pose relationship between the osteotomy guide block device and each of the osteotomy surfaces; according to The position and posture relationship between the osteotomy guide block device and each of the osteotomy surfaces, determine the target osteotomy surface from the osteotomy surface, and the position and posture relationship is used to characterize the relationship between the osteotomy guide block device and the The distance between the osteotomy surfaces and the angular relationship presented.
  • the determination module 2904 is further configured to: generate a corresponding initial osteotomy area according to the target site and each of the osteotomy surfaces; After the target site and the three-dimensional model of the target site are spatially registered, the three-dimensional model is displayed on the display interface, and the three-dimensional model includes the initial osteotomy area and each of the osteotomy surfaces, and each of the osteotomy The bone surfaces are all located in the initial osteotomy area; in response to the adjustment operation on the initial osteotomy area, the osteotomy area of the target site is obtained.
  • the determining module 2904 is further configured to: obtain in real time the section pose information of the section of the osteotomy guide block device installed at the end of the mechanical arm in the coordinate system of the image acquisition device; according to the The cross-sectional pose information of the osteotomy guide block device determines whether the osteotomy guide block device moves into the osteotomy area; when it is determined that the osteotomy guide block device moves into the osteotomy guide block area , according to the cross-sectional pose information of the osteotomy guide block device and the pose information of each of the osteotomy surfaces, the pose relationship between the osteotomy guide block device and each of the osteotomy surfaces is determined.
  • the determination module 2904 is also used to: when the osteotomy guide block device moves into the osteotomy guide block area, detect in real time whether there is external force control on the mechanical arm; When there is no external force control on the mechanical arm, according to the cross-sectional pose information of the osteotomy guide block device and the pose information of each osteotomy surface, determine the relationship between the osteotomy guide block device and each of the osteotomy guide block devices. The pose relationship of the osteotomy surface.
  • the determination module 2904 is further configured to: for any of the osteotomy surfaces, according to the cross-sectional pose information of the osteotomy guide block device, and the pose of the osteotomy surface information, determine the angle and distance between the osteotomy guide block device and the osteotomy surface; determine the pose relationship between the osteotomy guide block device and the osteotomy surface according to the angle and the distance.
  • Each module in the above positioning device can be fully or partially realized by software, hardware and a combination thereof.
  • the above-mentioned modules can be embedded in or independent of the processor in the computer device in the form of hardware, and can also be stored in the memory of the computer device in the form of software, so that the processor can invoke and execute the corresponding operations of the above-mentioned modules.
  • a computer device is provided.
  • the computer device may be a terminal, and its internal structure may be as shown in FIG. 30 .
  • the computer device includes a processor, a memory, a communication interface, a display screen and an input device connected through a system bus. Wherein, the processor of the computer device is used to provide calculation and control capabilities.
  • the memory of the computer device includes a non-volatile storage medium and an internal memory.
  • the non-volatile storage medium stores an operating system and computer programs.
  • the internal memory provides an environment for the operation of the operating system and computer programs in the non-volatile storage medium.
  • the communication interface of the computer device is used to communicate with an external terminal in a wired or wireless manner, and the wireless manner can be realized through WIFI, mobile cellular network, NFC (near field communication) or other technologies.
  • the display screen of the computer device may be a liquid crystal display screen or an electronic ink display screen
  • the input device of the computer device may be a touch layer covered on the display screen, or a button, a trackball or a touch pad provided on the casing of the computer device , and can also be an external keyboard, touchpad, or mouse.
  • Figure 30 is only a block diagram of a partial structure related to the solution of this application, and does not constitute a limitation on the computer equipment on which the solution of this application is applied.
  • the specific computer equipment can be More or fewer components than shown in the figures may be included, or some components may be combined, or have a different arrangement of components.
  • a computer device including a memory and a processor, where a computer program is stored in the memory, and the processor implements the steps in the above method embodiments when executing the computer program.
  • a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, the steps in the foregoing method embodiments are implemented.
  • a computer program product including a computer program, and when the computer program is executed by a processor, the steps in the foregoing method embodiments are implemented.
  • user information including but not limited to user equipment information, user personal information, etc.
  • data including but not limited to data used for analysis, stored data, displayed data, etc.
  • Information and data authorized by the user or fully authorized by the parties are Information and data authorized by the user or fully authorized by the parties.
  • Non-volatile memory can include read-only memory (Read-Only Memory, ROM), magnetic tape, floppy disk, flash memory, optical memory, high-density embedded non-volatile memory, resistive variable memory (ReRAM), magnetic variable memory (Magnetoresistive Random Access Memory, MRAM), Ferroelectric Random Access Memory (FRAM), Phase Change Memory (Phase Change Memory, PCM), graphene memory, etc.
  • the volatile memory may include random access memory (Random Access Memory, RAM) or external cache memory, etc.
  • RAM Random Access Memory
  • RAM Random Access Memory
  • RAM can take many forms, such as Static Random Access Memory (SRAM) or Dynamic Random Access Memory (DRAM).
  • the databases involved in the various embodiments provided in this application may include at least one of a relational database and a non-relational database.
  • the non-relational database may include a blockchain-based distributed database, etc., but is not limited thereto.
  • the processors involved in the various embodiments provided by this application can be general-purpose processors, central processing units, graphics processors, digital signal processors, programmable logic devices, data processing logic devices based on quantum computing, etc., and are not limited to this.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medical Informatics (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Robotics (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Dentistry (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Cardiology (AREA)
  • Vascular Medicine (AREA)
  • Surgical Instruments (AREA)
  • Image Analysis (AREA)

Abstract

一种定位方法、系统、装置、计算机设备和存储介质。方法包括:根据目标部位的图像信息进行截骨面规划,得到目标部位的至少一个截骨面(102);根据机械臂末端安装的截骨导块装置与目标部位中各个截骨面的位姿关系,从截骨面中确定目标截骨面(104);当截骨导块装置与目标截骨面的位姿关系满足定位条件时,采用自动模式控制机械臂将截骨导块装置定位到目标截骨面(106)。

Description

定位方法、系统、装置、计算机设备和存储介质
本申请要求于2021年12月24日提交的申请号为202111604601X、名称为“定位方法、系统、装置、计算机设备和存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及机器人技术领域,特别是涉及一种定位方法、系统、装置、计算机设备和存储介质。
背景技术
随着科技的进步,机器人可以应用在各种领域,辅助人们进行作业。
例如:在医疗领域,可以通过机器人辅助医生进行诊疗等相关操作。以骨科手术为例,在骨科手术过程中,可以通过骨科手术机器人协助医生进行手术。相关技术中,骨科手术机器人在截骨过程中,需要由医生规划待定位的截骨面后,指挥操作人员采用协作模式将机械臂粗摆位到截骨面后,采用自动模式让机械臂执行自动精细定位及截骨操作,在存在多个截骨面的情况下,针对各截骨面均需要重复前述过程,直至全部截骨面均完成截骨操作。
发明内容
第一方面,本申请提供了一种定位方法,所述方法包括:根据目标部位的图像信息进行截骨面规划,得到所述目标部位的至少一个截骨面;根据机械臂末端安装的截骨导块装置与所述目标部位的所述至少一个截骨面中各个所述截骨面的位姿关系,从所述截骨面中确定目标截骨面;当所述截骨导块装置与所述目标截骨面的位姿关系满足定位条件时下,采用自动模式控制所述机械臂将截骨导块装置定位到所述目标截骨面。
在其中一个实施例中,所述根据目标部位的图像信息进行截骨面规划,得到所述目标部位的至少一个截骨面,包括:从目标部位的图像信息中,确定所述目标部位的特征点信息;根据所述特征点信息,确定所述目标部位的至少一个截骨面。
在其中一个实施例中,所述根据所述特征点信息,确定所述目标部位的至少一个截骨面,包括:根据所述特征点信息确定所述目标部位的至少一个初始截骨面;根据所述目标部位的假体装置对各所述初始截骨面进行调整,得到所述目标部位的至少一个截骨面。
在其中一个实施例中,所述根据机械臂末端安装的截骨导块装置与所述目标部位的所述至少一个截骨面中各个所述截骨面的位姿关系,从所述截骨面中确定目标截骨面,包括:通过图像采集设备采集所述目标部位的实时图像信息;
根据所述实时图像信息以及各个所述截骨面,确定针对所述目标部位的截骨区域;
当检测到机械臂末端安装的所述截骨导块装置移动至所述截骨区域内时,确定所述截骨导块装置与各个所述截骨面的位姿关系;根据所述截骨导块装置与各个所述截骨面的位姿关系,从所述截骨面中确定目标截骨面,所述位姿关系用于表征所述截骨导块装置与所述截骨面之间的距离及呈现的角度关系。
在其中一个实施例中,根据所述实时图像信息以及各个所述截骨面,确定所述目标部位的截骨区域,包括:根据所述目标部位及各所述截骨面,生成对应的初始截骨区域;根据所述目标部位的实时图像信息,对所述目标部位与所述目标部位的三维模型进行空间配准后,在显示界面中展示所述三维模型,所述三维模型中包括所述初始截骨区域及各个所述截骨面,各个所述截骨面均位于所述初始截骨区域内;响应于针对所述初始截骨区域的调整操作,得到所述目标部位的截骨区域。
在其中一个实施例中,所述当检测到所述机械臂末端安装的所述截骨导块装置移动至所述截骨区域内时,确定所述截骨导块装置与各个所述截骨面的位姿关系,包括:实时获取所述机械臂末端安装的所述截骨导块装置的截面在图像采集设备坐标系下的截面位姿信息;根据所述截骨导块装置的所述截面位姿信息,确定所述截骨导块装置是否移动至所述截骨区域内;当确定所述截骨导块装置移动至所述截骨导块区域内时,根据所述截骨导块装置的所述截面位姿信息,以及各所述截骨面的位姿信息,确定所述截骨导块装置与各所述截骨面的位姿关系。
在其中一个实施例中,所述当确定所述截骨导块装置移动至所述截骨导块区域内时,根据所述截骨导块装置的所述截面位姿信息,以及各所述截骨面的位姿信息,确定所述截骨导块装置与各所述截骨面的位姿关 系,包括:当所述截骨导块装置移动至所述截骨导块区域内时,实时检测所述机械臂是否存在外力控制;在检测到所述机械臂不存在外力控制时,根据所述截骨导块装置的所述截面位姿信息,以及各所述截骨面的位姿信息,确定所述截骨导块装置与各所述截骨面的位姿关系。
在其中一个实施例中,所述根据所述截骨导块装置的所述截面位姿信息,以及各所述截骨面的位姿信息,确定所述截骨导块装置与各所述截骨面的位姿关系,包括:针对任一所述截骨面,根据所述截骨导块装置的所述截面位姿信息,以及所述截骨面的位姿信息,确定所述截骨导块装置与所述截骨面的角度和距离;根据所述角度和所述距离,确定所述截骨导块装置与所述截骨面的位姿关系。
第二方面,本申请还提供了一种定位系统,所述系统包括:图像采集装置、机械臂及安装于机械臂末端的截骨导块装置,其中,所述图像采集装置用于根据目标部位的图像信息进行截骨面规划,得到所述目标部位的至少一个截骨面;所述图像采集装置还用于根据所述截骨导块装置与所述目标部位中各所述截骨面的位姿关系,从所述截骨面中确定目标截骨面后,发送所述目标截骨面的位姿信息至所述机械臂;所述机械臂用于在自动模式下,根据所述目标截骨面的位姿信息将所述截骨导块装置定位到所述目标截骨面。
在其中一个实施例中,所述图像采集设备还用于采集目标部位的实时图像信息,根据所述实时图像信息及各个所述截骨面,确定针对目标部位的截骨区域,并在确定所述截骨导块装置移动至所述截骨区域,根据所述截骨导块装置与各所述截骨面的位姿关系,从所述截骨面中确定目标截骨面。
在其中一个实施例中,所述图像采集设备还用于实时获取所述截骨导块装置的截面在所述图像采集设备坐标系下的截面位姿信息,根据所述截面位姿信息检测所述截骨导块装置是否移动至所述截骨区域内,并在检测到所述截骨导块装置移动至所述截骨导块区域内时,根据所述截骨导块装置的所述截面位姿信息,以及各所述截骨面的位姿信息,确定所述截骨导块装置与各所述截骨面的位姿关系。
在其中一个实施例中,所述截骨导块装置包括卡槽、所述系统还包括安装于所述机械臂末端的标记构件;所述图像采集设备还用于在获取标记构件在所述图像采集设备坐标系下的位姿信息后,根据所述截骨导块装置与所述标记构件的坐标转换矩阵、以及所述标记构件在所述图像采集设备坐标系下的位姿信息,确定所述截骨导块装置在所述图像采集设备坐标系下的位姿信息;所述图像采集设备还用于根据所述截骨导块装置与所述卡槽的坐标转换矩阵、以及所述截骨导块装置在所述图像采集设备坐标系下的位姿信息,确定所述截骨导块装置的截面在所述图像采集设备坐标系下的位姿信息。
第三方面,本申请还提供了一种定位装置,所述装置包括:规划模块,用于根据目标部位的图像信息进行截骨面规划,得到所述目标部位的至少一个截骨面;确定模块,用于在根据机械臂末端安装的截骨导块装置与所述目标部位的所述至少一个截骨面中各个所述截骨面的位姿关系,从所述截骨面中确定目标截骨面;定位模块,用于当截骨导块装置与所述目标截骨面的位姿关系满足定位条件时,采用自动模式控制所述机械臂将截骨导块装置定位到所述目标截骨面。
在其中一个实施例中,所述规划模块还用于:从目标部位的图像信息中,确定所述目标部位的特征点信息;根据所述特征点信息,确定所述目标部位的至少一个截骨面。
在其中一个实施例中,所述规划模块还用于:根据所述特征点信息确定所述目标部位的至少一个初始截骨面;根据所述目标部位的假体装置对各所述初始截骨面进行调整,得到所述目标部位的至少一个截骨面。
在其中一个实施例中,所述确定模块,还用于:通过图像采集设备采集所述目标部位的实时图像信息;根据所述实时图像信息以及各个所述截骨面,确定针对所述目标部位的截骨区域;当检测到机械臂末端安装的所述截骨导块装置移动至所述截骨区域内时,确定所述截骨导块装置与各个所述截骨面的位姿关系;根据所述截骨导块装置与各个所述截骨面的位姿关系,从所述截骨面中确定目标截骨面,所述位姿关系用于表征所述截骨导块装置与所述截骨面之间的距离及呈现的角度关系。
在其中一个实施例中,所述确定模块,还用于:根据所述目标部位及各所述截骨面,生成对应的初始截骨区域;根据所述目标部位的实时图像信息,对所述目标部位与所述目标部位的三维模型进行空间配准后,在显示界面中展示所述三维模型,所述三维模型中包括所述初始截骨区域及各个所述截骨面,各个所述截骨面均位于所述初始截骨区域内;响应于针对所述初始截骨区域的调整操作,得到所述目标部位的截骨区域。
在其中一个实施例中,所述确定模块,还用于:实时获取所述机械臂末端安装的所述截骨导块装置的截面在图像采集设备坐标系下的截面位姿信息;根据所述截骨导块装置的所述截面位姿信息,确定所述截骨导块装置是否移动至所述截骨区域内;当确定所述截骨导块装置移动至所述截骨导块区域内时,根据所述截骨导块装置的所述截面位姿信息,以及各所述截骨面的位姿信息,确定所述截骨导块装置与各所述截骨面的位 姿关系。
在其中一个实施例中,所述确定模块,还用于:当所述截骨导块装置移动至所述截骨导块区域内时,实时检测所述机械臂是否存在外力控制;在检测到所述机械臂不存在外力控制时,根据所述截骨导块装置的所述截面位姿信息,以及各所述截骨面的位姿信息,确定所述截骨导块装置与各所述截骨面的位姿关系。
在其中一个实施例中,所述确定模块,还用于:针对任一所述截骨面,根据所述截骨导块装置的所述截面位姿信息,以及所述截骨面的位姿信息,确定所述截骨导块装置与所述截骨面的角度和距离;根据所述角度和所述距离,确定所述截骨导块装置与所述截骨面的位姿关系。
第四方面,本申请还提供了一种计算机设备。所述计算机设备包括存储器和处理器,所述存储器存储有计算机程序,所述处理器执行所述计算机程序时实现以上定位方法的步骤。
第五方面,本申请还提供了一种计算机可读存储介质。所述计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现以上定位方法的步骤。
第六方面,本申请还提供了一种计算机程序产品。所述计算机程序产品,包括计算机程序,该计算机程序被处理器执行时实现以上定位方法的步骤。
本发明的一个或多个实施例的细节在下面的附图和描述中提出。本发明的其它特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更好地描述和说明本申请的实施例,可参考一幅或多幅附图,但用于描述附图的附加细节或示例不应当被认为是对本申请的发明创造、目前所描述的实施例或优选方式中任何一者的范围的限制。
图1为一个实施例中定位方法的流程示意图;
图2为一个实施例中定位方法的流程示意图;
图3a至图3c为一个实施例中定位方法的示意图;
图4为一个实施例中定位方法的流程示意图;
图5为一个实施例中定位方法的示意图;
图6为一个实施例中定位方法的示意图;
图7为一个实施例中定位方法的流程示意图;
图8为一个实施例中定位方法的流程示意图;
图9为一个实施例中定位方法的示意图;
图10为一个实施例中定位方法的示意图;
图11a至图11c为一个实施例中定位方法的示意图;
图12为一个实施例中定位方法的流程示意图;
图13为一个实施例中定位方法的示意图;
图14为一个实施例中定位方法的流程示意图;
图15为一个实施例中定位方法的示意图;
图16为一个实施例中定位方法的流程示意图;
图17为一个实施例中定位方法的示意图;
图18为一个实施例中定位方法的示意图;
图19为一个实施例中定位方法的示意图;
图20为一个实施例中定位方法的示意图;
图21为一个实施例中定位方法的示意图;
图22为一个实施例中定位方法的示意图;
图23为一个实施例中定位方法的示意图;
图24为一个实施例中定位系统的结构示意图;
图25为一个实施例中定位系统的示意图;
图26a至图26b为一个实施例中定位系统的示意图;
图27a至图27c为一个实施例中定位系统的示意图;
图28为一个实施例中定位系统的示意图;
图29为一个实施例中定位装置的结构框图;
图30为一个实施例中计算机设备的内部结构图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
在一个实施例中,如图1所示,提供了一种定位方法,本实施例以该方法应用于机器人进行举例说明,可以理解的是,该方法也可以应用于控制机器人的终端设备,还可以应用于包括终端和服务器的系统,并通过终端和服务器的交互实现。本实施例中,该方法包括以下步骤:
步骤102,根据目标部位的图像信息进行截骨面规划,得到目标部位的至少一个截骨面。
本申请实施例中,在截骨手术之前可以获取目标部位的图像信息,该图像信息可以包括CT(Computed Tomography,电子计算机断层扫描)扫描图像、AR(Augmented Reality,增强现实)视觉扫描图像等图像。并可以基于目标部位的图像信息进行截骨面规划,规划目标部位的至少一个截骨面。例如:可以基于图像信息中目标部位的特征点信息,生成目标部位的至少一个截骨面。
步骤104,根据机械臂末端安装的截骨导块装置与目标部位的至少一个截骨面中各个截骨面的位姿关系,从截骨面中确定目标截骨面。
本申请实施例中,在截骨手术前,可以规划得到目标部位的至少一个截骨面,在截骨手术过程中,可以采用协助模式,由医护人员控制机械臂向目标部位的截骨面移动,或者机械臂也可以采用自动模式向目标部位的截骨面移动。在机械臂的移动过程中,可以实时检测机械臂末端安装的截骨导块装置的位姿信息,进而可以实时根据机械臂末端安装的截骨导块装置的位姿信息,确定其与目标部位中各个截骨面的位姿关系,其中,位姿关系可以包括距离关系和截面所呈角度关系。
在确定机械臂末端安装的截骨导块装置与目标部位中各个截骨面的位姿关系后,可以从截骨面中选择与截骨导块装置最匹配的目标截骨面,示例性的,可以将与截骨导块装置距离最近和/或角度最小的截骨面,确定为与截骨导块装置最匹配的目标截骨面。
步骤106,当截骨导块装置与目标截骨面的位姿关系满足定位条件时,采用自动模式控制机械臂将截骨导块装置定位到目标截骨面。
本申请实施例中,在确定目标截骨面之后,可以通过图像采集装置实时检测截骨导块装置与目标截骨面的位姿关系,在截骨导块装置与目标截骨面的位姿关系满足预先设定的定位条件的情况下,可以将目标截骨面的位姿信息发送至机械臂,并采用自动模式控制机械臂进行精细定位,以根据目标截骨面的位姿信息将截骨导块装置自动定位到目标截骨面。其中,定位条件可以包括截骨导块装置与目标截骨面的距离和/或角度小于或者等于预设的距离阈值和/或角度阈值。
示例性的,在截骨导块装置定位到目标截骨面后,机械臂可以进入保持状态,医护人员可以使用截骨导块装置上的截骨导向槽和/或导向孔安装摆锯或电钻,以进行截骨及钻孔操作。
本申请实施例提供的定位方法,可以根据目标部位的图像信息进行截骨面规划,得到目标部位的至少一个截骨面,根据机械臂末端安装的截骨导块装置与目标部位中各个截骨面的位姿关系,从截骨面中确定目标截骨面,并当截骨导块装置与目标截骨面的位姿关系满足定位条件时,采用自动模式控制机械臂将截骨导块装置定位到目标截骨面。本申请实施例提供的定位方法,可以在手术前规划好针对目标部位的截骨面,并通过视觉定位控制机械臂选择目标截骨面进行自动定位,也即摆位及定位过程全部自动化,可以简化截骨过程中机械臂的定位流程,提高截骨面的定位效率,进而能够降低人工成本以及降低截骨手术的耗时,能够提高截骨手术的手术效率。
在一个实施例中,参照图2所示,步骤102中,根据目标部位的图像信息进行截骨面规划,得到目标部位的至少一个截骨面,包括:步骤202,从目标部位的图像信息中,确定目标部位的特征点信息;步骤204,根据特征点信息,确定目标部位的至少一个截骨面。
本申请实施例中,在截骨手术前可以获取目标部位的图像信息,并通过图像识别或者医护人员手动标记的方式,在目标部位的图像信息中确定目标部位的特征点信息,进而根据目标部位的特征点信息,在目标部位的图像信息中确定目标部位的至少一个截骨面。示例性的,可以预先设定用于生成目标部位各截骨面的特征点信息,进而在识别得到各截骨面对应的特征点信息后,可以基于特征点信息生成对应的截骨面。
示例性的,以膝关节置换手术为例,通过图像设备(如CT扫描设备,AR视觉扫描设备)获取胫骨、股骨及膝关节的图像信息后,医护人员可以手动对图像信息进行目标区域划分,得到图像中的目标区域。进而从目标区域中得到膝关节特征点(包括:股骨特征点包括股骨旋转中心、膝关节中心(股骨力线)、外侧髁最高点、内测髁髁间凹最低点(通髁线(TEA))、髁间窝最高点、滑车最低点(Whiteside线)、大转子尖点、髁间窝中点(股骨解剖轴线)、内髁远端切点、外髁远端切点(股骨远端轴线)、后髁内侧切点、后髁外侧切点(后髁轴线)。胫骨特征点包括距骨中点、胫骨平台中点(胫骨膝关节中心)(胫骨力线)、胫骨结节中内1/3处、后交叉韧带抵止部中点(PCL中心)(胫骨AP线)、胫骨近端-内侧切点、胫骨近端-外侧切点(胫骨近端轴线)等特征点)。
示例性的,参照图3a至图3c,通过特征点外髁远端切点301、内髁远端切点302以及膝关节中心303,可以确认股骨远端轴线和股骨力线304,通过后髁外侧切点305以及后髁内侧切点306,可以确认后髁轴线,并可以基于股骨远端轴线、股骨力线和后髁轴线生成对应的截骨面。示例性的,以股骨远端切面及股骨力线为例,股骨远端切面与股骨力线尽量垂直。
本申请实施例提供的定位方法,在截骨手术之前,可以根据目标部位的图像信息进行截骨面规划,得到目标部位的至少一个截骨面,以在截骨过程中,通过视觉定位控制机械臂选择目标截骨面进行自动定位,也即摆位及定位过程全部自动化,可以简化截骨过程中机械臂的定位流程,提高截骨面的定位效率,进而能够降低人工成本以及降低截骨手术的耗时,能够提高截骨手术的手术效率。
在一个实施例中,参照图4所示,在步骤204中,根据特征点信息,确定目标部位的至少一个截骨面,包括:步骤402,根据特征点信息确定目标部位的至少一个初始截骨面;步骤404,根据目标部位的假体装置对各初始截骨面进行调整,得到目标部位的至少一个截骨面。
本申请实施例中,可以基于目标部位的特征点信息进行初始规划,确定目标部位的至少一个初始截骨面,并可以基于选定的目标部位的假体装置对各初始截骨面进行调整,包括调整各初始截骨面的位置和角度等信息,进而得到目标部位的至少一个截骨面。
其中,假体装置可以为医护人员手动选取的,或者还可以为根据截骨面或者特征点信息自动选取的,针对初始截骨面的调整可以为医护人员手动调整的,或者也可以为根据假体装置对应的截骨面信息自动对初始截骨面进行自动调整,本申请实施例对此不做具体限定。
示例性的,参照图5所示,可以获取膝关节图像信息,并基于膝关节图像信息进行目标区域的规划,得到目标区域。对膝关节图像信息中目标区域进行特征点选取,得到膝关节图像信息的特征点信息。选择膝关节对应的假体型号后,可以基于特征点信息生成膝关节的至少一个初始截骨面,并基于假体型号对各初始截骨面进行调整,得到膝关节的各截骨面。示例性的,各截骨面可以参照图6所示,601为股骨远端前切面所在位置,602为股骨远端前斜切面所在位置,603为股骨远端后切面所在位置,604为股骨远端后斜切面所在位置,605为股骨远端切面所在位置。
本申请实施例提供的定位方法,在截骨手术之前,可以根据目标部位的图像信息进行截骨面规划,得到目标部位的至少一个初始截骨面,并基于假体装置对初始截骨面进行调整,以精准得到目标部位的截骨面,进而在截骨过程中,通过视觉定位控制机械臂从规划的截骨面中自动选择目标截骨面进行自动定位,也即摆位及定位过程全部自动化,可以简化截骨过程中机械臂的定位流程,提高截骨面的定位效率,进而能够降低人工成本以及降低截骨手术的耗时,能够提高截骨手术的手术效率。
在一个实施例中,参照图7所示,步骤104中,根据机械臂末端安装的截骨导块装置与目标部位的至少一个截骨面中各个截骨面的位姿关系,从截骨面中确定目标截骨面,包括:步骤702,通过图像采集设备采集所述目标部位的实时图像信息;步骤704,根据实时图像信息以及各个截骨面,确定目标部位的截骨区域;步骤706,当检测到机械臂末端安装的截骨导块装置移动至截骨区域内时,确定截骨导块装置与各个截骨面的位姿关系;步骤708,根据截骨导块装置与各个截骨面的位姿关系,从截骨面中确定目标截骨面,位姿关系用于表征截骨导块装置与截骨面之间的距离及呈现的角度关系。
本申请实施例中,在截骨手术中,执行截骨操作之前,可以通过图像采集设备采集目标部位的实时图像信息后,根据各个截骨面及实时图像信息中目标部位的位置,生成该目标部位的截骨区域。示例性的,该截骨区域以目标部位的中心点为中心,且各截骨面均位于该截骨区域内。
在确定截骨区域后,机械臂开始进行截骨定位,控制截骨导块装置逐渐向截骨区域内靠近,需说明的是,在截骨定位过程,机械臂可在协作模式下移动,也可在自动模式下移动,本申请实施例对此不做具体限定。
实时检测机械臂末端安装的截骨导块装置的位姿信息,并根据截骨导块装置的位姿信息确定截骨导块装置是否移动到截骨区域内,在检测到截骨导块装置移动至截骨区域内时,可以根据截骨导块装置与各截骨面的位姿关系,自动从多个截骨面中确定出待定位的目标截骨面,并采用自动模式定位到该目标截骨面。其中,可以根据截骨导块装置的位姿信息及截骨面的位姿信息确定位姿关系,该位姿关系可以用于表征截骨导块装置与截骨面之间的距离以及呈现的角度关系。
本申请实施例提供的定位方法,在截骨过程中,可以通过视觉定位确定机械臂末端安装的截骨导块装置是否位于截骨区域内,并在截骨区域内根据截骨导块装置与各截骨面的位姿关系,自动从中选择目标截骨面进行自动定位,也即机械臂粗摆位及精细定位过程全部自动化,可以简化截骨过程中机械臂的定位流程,提高截骨面的定位效率,进而能够降低人工成本以及降低截骨手术的耗时,能够提高截骨手术的手术效率。
在一个实施例中,参照图8所示,步骤704中,根据实时图像信息以及各个截骨面,确定目标部位的截骨区域,可以包括:步骤802,根据目标部位及各截骨面,生成对应的初始截骨区域;步骤804,根据目标部位的实时图像信息,对目标部位与目标部位的三维模型进行空间配准后,在显示界面中展示三维模型,三维模型中包括初始截骨区域及各个截骨面,各个截骨面均位于初始截骨区域内;步骤806,响应于针对初始截骨区域的调整操作,得到目标部位的截骨区域。
本申请实施例中,可以基于目标部位图像信息中的特征点信息生成目标部位对应的三维模型,示例性的,三维模型参照图9所示。参照图10所示,可以在目标部位的图像信息中选择标定位置,并在目标对象的目标部位中各标定位置上设置标记构件(例如:光学靶标等),通过NDI等图像采集设备采集目标部位的实时图像信息,并基于标定位置对实时图像信息与图像信息进行配准,以将目标部位与目标部位的三维模型进行空间配准。
示例性的,可基于目标部位的先验知识,预先设定目标部位的截骨区域尺寸,进而可以根据目标部位的中心及预设的截骨区域尺寸,生成初始截骨区域,并在显示界面中展示初始截骨区域。或者,也可以根据各截骨面及目标部位的中心,生成初始截骨区域,本申请实施例中对于初始截骨区域的生成方式不做具体限定。
在一个示例中,仍以膝关节置换手术为例,可以在目标部位的CT图像信息中选择标定位置,包括膝关节、髋关节、以及踝关节等多个位置,在目标部位上的膝关节、髋关节、以及踝关节等多个位置上设置标记构件,利用NDI图像采集设备采集实时图像信息,以根据标记构件完成实时图像信息与图像信息配准。在完成配准后,可以基于目标部位及各截骨面生成初始截骨区域,并在显示界面中展示包括初始截骨区域的三维模型,在显示界面中,初始截骨区域中包括各个截骨面。
在显示界面中,初始截骨区域可以为展示为多面体结构,例如:图11a所示的球体、图11b所示的立方体、以及图11c所示的圆柱体等各种多面体结构。在图11a中,1101为截骨区域,1102为膝关节中心点,1103为截骨面;在图11b中,1201为截骨区域,1202为膝关节中心点;以及在图11c中,1301为截骨区域,1302为膝关节中心点。本申请实施例中不对截骨区域的多面体结构做具体限定。在生成初始截骨区域后,可以通过在显示界面上调整初始截骨区域的大小,得到目标部位的截骨区域。
仍以上述示例为例,可以根据膝关节中心,生成对应的初始截骨区域。初始截骨区域的大小可以根据患者的膝关节大小设定(示例性的,一般可以取膝关节中心半径为10~15cm的球体)。可以根据每一个截骨面所在位置对初始截骨区域进行调整,得到膝关节的截骨区域。例如:在协作模式下操作机械臂粗摆位到各截骨面的过程中,确认截骨导块装置一直处于初始截骨区域内,当发现截骨导块装置不在初始截骨区域内时,可以对初始截骨区域进行调整,得到调整后的截骨区域。
本申请实施例提供的定位方法,可以通过规划截骨面及截骨区域,进而在截骨过程中,可以通过视觉定位确定机械臂末端安装的截骨导块装置是否位于截骨区域内,以自动从截骨面中选择目标截骨面进行自动定位,也即机械臂粗摆位及精细定位过程全部自动化,可以简化截骨过程中机械臂的定位流程,提高截骨面的定位效率,进而能够降低人工成本以及降低截骨手术的耗时,能够提高截骨手术的手术效率。
在一个实施例中,参图12所示,在步骤806中,当检测到机械臂末端安装的截骨导块装置移动至截骨区域内时,确定截骨导块装置与各个截骨面的位姿关系,可以包括:步骤1202,实时获取机械臂末端安装的截骨导块装置的截面在图像采集设备坐标系下的截面位姿信息;步骤1204,根据截骨导块装置的截面位姿信息,确定截骨导块装置是否移动至截骨区域内;步骤1206,当确定截骨导块装置移动至截骨导块区域内时,根据截骨导块装置的所述截面位姿信息,以及各截骨面的位姿信息,确定截骨导块装置与各截骨面的位姿关系。
本申请实施例中,前述过程中已实现了图像采集设备采集的实时图像信息与目标部位的图像信息的配准, 故在机械臂移动的过程中,可以根据与截骨导块装置固定连接的标记构件,实时获得截骨导块装置在图像采集设备坐标系下的位姿信息。进一步的,根据截骨导块装置与截骨导块装置的卡槽的坐标转换矩阵,对截骨导块装置在图像采集设备坐标系下的位姿信息进行转换,可以得到截骨导块装置的卡槽在图像采集设备坐标系下的位姿信息,该卡槽在图像采集设备坐标系下的位姿信息,即可以作为截骨导块装置的截面在图像采集设备坐标系下的截面位姿信息(以下简称为截面位姿信息)。
在获取截骨导块装置的截面位姿信息后,可以根据截骨导块装置的截面位姿信息,确定截骨导块装置是否已移动到截骨区域内,并当确定截骨导块装置已移动至截骨区域内时,根据截骨导块装置的截骨位姿信息及各截骨面的位姿信息,确定截骨导块装置与各截骨面的位姿关系。进而根据截骨导块装置与各截骨面的位姿关系,从各截骨面中确定目标截骨面,并向目标截骨面移动,在截骨导块装置与目标截骨面满足定位条件的情况下,开启自动模式进行精细定位。
示例性的,参照图13所示,可以控制机械臂向截骨区域内移动(可以采用协作模式,由人控制机械臂向截骨区域移动,也可以采用自动模式,机械臂自动向截骨区域内移动),并实时检测机械臂末端安装的截骨导块装置的截面位姿信息,由该截面位姿信息可以得到截骨导块装置在空间中的位置信息X,假设截骨区域为(f min,f max),则在f min<X<f max的情况下,可以确定截骨导块装置已移动至截骨区域内,可以通过确定截骨导块装置与各截骨面的位姿关系,从各截骨面中确定目标截骨面。
在一个实施例中,参照图14所示,步骤1206中,当确定截骨导块装置移动至截骨导块区域内时,根据截骨导块装置的截面位姿信息,以及各截骨面的位姿信息,确定截骨导块装置与各截骨面的位姿关系,包括:步骤1402,当截骨导块装置移动至截骨导块区域内时,实时检测机械臂是否存在外力控制;步骤1404,在检测到机械臂不存在外力控制时,根据截骨导块装置的截面位姿信息,以及各截骨面的位姿信息,确定截骨导块装置与各截骨面的位姿关系。
本申请实施例中,在规划截骨面及截骨区域后,机械臂可进行目标截骨面的智能选择。机械臂在进行目标截骨面的选择过程中,可以采用协作模式,也可以采用自动模式,本申请实施例对此不做具体限定。当截骨导块装置移动至截骨导块区域内且不再外力控制的情况下,可以从截骨面中确定目标截骨面。
示例性的,参照图15所示,在协作模式下,可以通过人手动引导机械臂运动(该过程也可以采用自动定位实现)。可以实时判断截骨导块装置是否位于截骨区域内,当截骨导块装置位于截骨区域内时,检测机械臂是否存在外力控制。当检测到机械臂存在外力控制时,机械臂可以在该外力控制下采用柔顺模式进行移动,并在移动过程中实时检测截骨导块装置是否位于截骨区域内。直至机械臂不受外力控制且仍位于截骨区域内时,可以确定截骨导块装置与各截骨面之间的位姿关系,可以根据位姿关系从各截骨面中选择最近的目标截骨面,机械臂可以采用自动模式自动定位到该目标截骨面。这样一来,在完成针对目标截骨面的截骨操作后,在对其他截骨面进行定位时,用户可以给机械臂一个外力控制,机械臂接收到该外力控制后,继续移动,并重复前述流程,可以实现针对全部截骨面的自动定位及截骨操作,并在完成全部截骨面的定位和截骨操作后,可以通过显示界面触发停止截骨指令,结束截骨流程。
本申请实施例提供的定位方法,可以通过视觉定位确定机械臂末端安装的截骨导块装置是否位于截骨区域内,以自动从截骨面中选择目标截骨面进行自动定位,也即机械臂粗摆位及精细定位过程全部自动化,可以简化截骨过程中机械臂的定位流程,提高截骨面的定位效率,进而能够降低人工成本以及降低截骨手术的耗时,能够提高截骨手术的手术效率。
在一个实施例中,参照图16所示,步骤1206中,根据截骨导块装置的截面位姿信息,以及各截骨面的位姿信息,确定截骨导块装置与各截骨面的位姿关系,可以包括:步骤1602,针对任一所述截骨面,根据截骨导块装置的截面位姿信息,以及截骨面的位姿信息,确定截骨导块装置与截骨面的角度和距离;步骤1604,根据角度和所述距离,确定截骨导块装置与截骨面的位姿关系。
本申请实施例中,可以实时获取截骨导块装置的截面位姿信息,并根据截面位姿信息判断截骨导块装置是否在截骨区域内。若截骨导块装置在截骨区域内且机械臂不受外力控制,则计算截骨导块装置的截面与各个截骨面(示例性的,假设存在6个截骨面,则各截骨面分别编号为1,2,3,4,5,6)的夹角α i(示例性的,α i取值范围一般在0到45°之间,i为大于0且小于7的整数)。参照图17所示,假设在图像采集设备中可得到在图像采集设备坐标系中股骨远端截骨面1701的方向向量
Figure PCTCN2022141017-appb-000001
以及截骨导块装置1702在图像采集设备坐标系中的方向向量
Figure PCTCN2022141017-appb-000002
则通过
Figure PCTCN2022141017-appb-000003
可计算出截骨导块装置与第i个截骨面 所呈角度α i的角度值,并可以得到截骨导块装置1702与股骨远端截骨面的距离d i。进一步的,可以通过位姿关系判别函数f(α i,d i)=kα i+(1-k)d i,确定截骨导块装置1702与股骨远端截骨面的位姿关系f i,其中k为角度与距离的权重系数,k∈(0,1)。依次类推,可以确定截骨导块装置1702与各截骨面的位姿关系,并可以从各截骨面中选择位姿关系f i最小的截骨面,确定该截骨面离截骨导块装置最近,可以将该截骨导块装置确定为目标截骨导块。
在一个示例中,参照图18所示,在确定目标截骨面之后,可以在显示界面中展示目标截骨面及截骨导块装置之间的夹角,并当截骨导块装置与目标截骨面之间的夹角小于夹角阈值时,可以通过语音、文字、AR等方式提示用户。仍以图17所示的示例为例,此时截骨导块装置1702离股骨远端截面1701的距离与夹角最小,也即股骨远端截面1701为目标截骨面(假设此时机械臂没有受到外力控制),此时显示界面中展示的是股骨远端截面1701与截骨导块装置1702的截面之间的夹角。假设继续运动截骨导块装置使得截骨导块装置贴合股骨远端前切截面,直到截骨导块装置离股骨远端前切截面的距离及夹角最小,则确定股骨远端前切截面为目标截骨面(假设此时机械臂没有受到外力控制),则可在显示界面中展示股骨远端前切截面与截骨导块装置的截面之间的夹角。
本申请实施例提供的定位方法,可以通过视觉定位确定机械臂末端安装的截骨导块装置与各截骨面的位姿关系,并从中选择目标截骨面进行自动定位,也即机械臂粗摆位及精细定位过程全部自动化,可以简化截骨过程中机械臂的定位流程,提高截骨面的定位效率,进而能够降低人工成本以及降低截骨手术的耗时,能够提高截骨手术的手术效率。
在一个实施例中,参照图19所示,可以通过图像采集设备实时检测截骨导块装置的位姿信息,并根据位姿信息判断截骨导块装置是否位于截骨区域内。当截骨导块不位于截骨区域内时,可以通过人手动控制机械臂移动(或者也可以采用自动定位方式控制机械臂移动),直至检测到截骨导块装置位于截骨区域内,可以在显示界面中展示对应的提示信息。此时若是采用人手动控制机械臂移动的情况下,人可以放开对机械臂的控制,由机械臂自动定位,或者可以在柔顺模式下控制机械臂移动。
在机械臂不受外力控制的情况下,可以通过图像采集设备判断截骨导块装置与各截骨面的位姿关系,并根据位姿关系从各截骨面中选择一个目标截骨面,并在展示界面中展示截骨导块装置与该目标截骨面之间的夹角以位置关系。当截骨导块装置与目标截骨面之间的夹角小于夹角阈值时,可以在显示界面中展示对应的提示信息。此时机械臂可以采用自动模式进行自动定位,并在定位到目标截骨面之后,在显示界面中展示对应的提示信息。
在截骨导块装置达到目标截骨面后,若需微调,可利用终端发送微调指令,机械臂保持当前姿态不变,可由人手操控机械臂或机械臂自动在目标截骨面方向和目标截骨面法线方向作微调,对于运动过程中当截骨导块装置运动到截骨区域后,通过图像采集设备可得到目标部位的骨边缘信息,机械臂运动过程中有碰撞检测的功能,可防止操作机械臂的过程中撞到人腿或其他物体。当机械臂检测到碰撞后,机械臂停止当前方向的运动。
在一个示例中,当人手拖动机械臂在截骨区域内运动时,可以采用柔顺定位模式,柔顺定位模式对应的模型结构可以参照图20所示。图20所示的是柔顺定位模式,可以将位置及速度指令2002与致动器编码器2004反馈的位置及速度的差值,经过控制器2006输出控制力矩,并加上前馈重力补偿2008以及摩擦力补偿后得到总力矩,将总力矩发送给机械臂本体2010的各个控制关节,以实现柔顺定位模式。
其中,上述控制器2006的结构可以参照图21所示。将位置及速度指令2002与致动器编码器2004反馈的速度的差值经过积分环节在乘以系数Ki,以及直接将位置及速度指令2002与致动器编码器2004反馈的速度的差值直接乘以一个增益系数Kp后,再对二者求和可以作为控制器2006的力矩输出。或者,上述控制器2006的结构也可以参照图22所示。图22中所示的是机械臂本体2010的各个关节的摩擦力及重力都已经被前馈补偿完成,整个机械臂处于一个零力的状态,当有外力作用后,机械臂本体将随着外力作随动。
当执行机械臂采用自动模式进行自动定位时,控制器2006的结构可以参照图23所示,在图23中将位置及速度指令2002与致动器编码器2004反馈的位置及速度求差值后,经过一个加了速度滤波器的PID控制器生成整个定位过程所需的控制力矩作为控制器2006的输出。
在一个实施例中,参照图24所示,提供了一种定位系统,所述系统包括:图像采集装置2402、机械臂2404及安装于机械臂2404末端的截骨导块装置2406,其中,图像采集装置2402用于根据目标部位的图像信息进行截骨面规划,得到目标部位的至少一个截骨面;图像采集装置2402还用于根据截骨导块装置2406与 目标部位中各截骨面的位姿关系,从截骨面中确定目标截骨面后,发送目标截骨面的位姿信息至机械臂2404;机械臂2404用于在自动定位模式下,根据目标截骨面的位姿信息将截骨导块装置定位到目标截骨面。
本申请实施例中,图像采集装置2402可以为NDI导航设备。在截骨手术之前,图像采集装置2402可以通过获取的目标部位的图像信息进行截骨面规划,以得到目标部位的至少一个截骨面,截骨面的具体规划过程参照前述实施例的相关描述即可,本申请实施例在此对此不再赘述。
规划截骨面之后,图像采集装置2402在截骨手术过程中,可以采集目标部位的实时图像信息,并基于目标部位的标记位置上设置的标记构件(光学靶标等),实现与用于规划截骨面的图像信息的配准,以在配准后可以实时获取到机械臂2404末端安装的截骨导块装置2406的位姿信息,并根据截骨导块装置2406的位姿信息确定其与目标部位中各截骨面的位姿关系,进而可以根据截骨导块装置2406与目标部位中各截骨面的位姿关系,从截骨面中确定目标截骨面,并发送目标截骨面的位姿信息至机械臂2404。
机械臂2404可以在自动模式下进行自动定位,根据目标截骨面的位姿信息定位到目标截骨面中,并在完成目标截骨面的定位后,进入保持模式,医生即可使用摆锯或电钻通过截骨导块装置的截骨导向槽及导向孔进行截骨及钻孔操作,并在完成截骨及钻孔操作后,医生即可安装假体及进行其他手术操作。
本申请实施例提供的定位系统,图像采集装置用于根据目标部位的图像信息进行截骨面规划,得到目标部位的至少一个截骨面,图像采集装置还用于在截骨手术过程中,根据截骨导块装置与目标部位中各截骨面的位姿关系,从截骨面中确定目标截骨面后,发送目标截骨面的位姿信息至所述机械臂。机械臂用于在自动模式下,根据目标截骨面的位姿信息将截骨导块装置定位到目标截骨面。本申请实施例提供的定位系统,可以在手术前规划好针对目标部位的截骨面,并通过视觉定位控制机械臂选择目标截骨面进行自动定位,也即摆位及定位过程全部自动化,可以简化截骨过程中机械臂的定位流程,提高截骨面的定位效率,进而能够降低人工成本以及降低截骨手术的耗时,能够提高截骨手术的手术效率。
在一个实施例中,图像采集设备2402还用于采集目标部位的实时图像信息,根据实时图像信息及各个截骨面,确定针对目标部位的截骨区域,并当确定截骨导块装置2406移动至截骨区域内时,根据截骨导块装置与各截骨面的位姿关系,从截骨面中确定目标截骨面。
本申请实施例中,图像采集设备2402根据实时图像信息及各个截骨面,确定针对目标部位的截骨区域、以及在确定截骨导块装置2406移动至截骨区域内的情况下,根据截骨导块装置与各截骨面的位姿关系,从截骨面中确定目标截骨面的具体过程可以参照前述实施例的相关描述即可,本申请实施例在此不再赘述。
在一个实施例中,图像采集设备2402还用于实时获取截骨导块装置2406的截面在图像采集设备坐标系下的截面位姿信息,根据截面位姿信息检测截骨导块装置2406是否移动至截骨区域内,并在检测到截骨导块装置2406移动至截骨导块区域内时,根据截骨导块装置2406的截面位姿信息,以及各截骨面的位姿信息,确定截骨导块装置2406与各截骨面的位姿关系。
本申请实施例中,图像采集设备2402的上述操作过程具体参照前述实施例的相关描述即可,本申请实施例在此不再赘述。
在一个实施例中,截骨导块装置2406包括卡槽、系统还包括安装于机械臂末端的标记构件2408;图像采集设备2402还用于在获取标记构件2408在图像采集设备坐标系下的位姿信息后,根据截骨导块装置2406与标记构件2408的坐标转换矩阵、以及标记构件2408在图像采集设备坐标系下的位姿信息,确定截骨导块装置2406在图像采集设备坐标系下的位姿信息;图像采集设备2402还用于根据截骨导块装置2406与卡槽的坐标转换矩阵、以及截骨导块装置2406在图像采集设备坐标系下的位姿信息,确定截骨导块装置2406的截面在图像采集设备坐标系下的位姿信息。
本申请实施例中,截骨导块装置2406包括卡槽2502,参照图25所示。其中,截骨导块装置2406可以具有多个卡槽2502,也可以为单卡槽2502,其中,多卡槽的截骨导块装置2406可以参照图26a所示,单卡槽的截骨导块装置2406可以参照图26b所示。本申请实施例对于截骨导块装置2406的卡槽数量不做具体限定。此外,截骨导块装置2406可以为无自由度的截骨导块,也可以为如图27a至图27c所示的多自由度截骨导块,本申请实施例中对于截骨导块装置的自由度不做具体限定。
参照图24所示,截骨导块装置2406可以为多自由度组合的可调节的装置,亦可为只有一个截骨槽或多个截骨槽的导块装置。
在机械臂中,截骨导块装置2406与标记构件2408的坐标转换关系是固定的,可以预先获取截骨导块装置2406与标记构件2408的坐标转换关系
Figure PCTCN2022141017-appb-000004
可通过图像采集设备2402获得标记构件2408在图像采集 设备2402中的位姿信息为
Figure PCTCN2022141017-appb-000005
则可以转换得到截骨导块装置2406在图像采集设备2402中的位姿信息
Figure PCTCN2022141017-appb-000006
为:
Figure PCTCN2022141017-appb-000007
参照图25所示,通过测量标定得到卡槽2502在截骨导块装置2406坐标系中的坐标系转换关系为
Figure PCTCN2022141017-appb-000008
则随着机械臂2404的运动,可以实时得到截骨导块装置2406的截面位姿信息
Figure PCTCN2022141017-appb-000009
为:
Figure PCTCN2022141017-appb-000010
Figure PCTCN2022141017-appb-000011
图像采集设备在截面规划时,可以得到各截骨面的截面位姿信息为
Figure PCTCN2022141017-appb-000012
已知截面位姿信息
Figure PCTCN2022141017-appb-000013
由截骨面的位置信息
Figure PCTCN2022141017-appb-000014
和截骨面的姿态信息
Figure PCTCN2022141017-appb-000015
组成,也即
Figure PCTCN2022141017-appb-000016
同理,截骨导块装置2406的截面位姿信息
Figure PCTCN2022141017-appb-000017
也由截骨导块装置2406的位置信息
Figure PCTCN2022141017-appb-000018
和姿态信息
Figure PCTCN2022141017-appb-000019
组成,也即,
Figure PCTCN2022141017-appb-000020
则可根据
Figure PCTCN2022141017-appb-000021
是否在截骨区域的边界内判断截骨导块装置2406是否在截骨区域内,当确定截骨导块装置2406在截骨区域中时,可以根据截骨面的位置信息
Figure PCTCN2022141017-appb-000022
和截骨导块装置2406的截面位置信息
Figure PCTCN2022141017-appb-000023
确定截骨导块装置2406与截骨面之间的距离d i,具体过程可以参照下述公式(一)。
Figure PCTCN2022141017-appb-000024
依此类推,在确定截骨导块装置2406的截面姿态信息
Figure PCTCN2022141017-appb-000025
与截骨面的姿态信息
Figure PCTCN2022141017-appb-000026
且已知截骨导块装置2406在截骨导块装置坐标系中的方向向量为
Figure PCTCN2022141017-appb-000027
截骨面在目标部位坐标系中的方向向量为
Figure PCTCN2022141017-appb-000028
则可计算出截骨导块装置2406的截面姿态信息与截骨面的姿态信息的夹角α i,具体过程可以参照下述公式(二)。
Figure PCTCN2022141017-appb-000029
Figure PCTCN2022141017-appb-000030
用于表示取向量
Figure PCTCN2022141017-appb-000031
的模,
Figure PCTCN2022141017-appb-000032
用于表示取向量
Figure PCTCN2022141017-appb-000033
的模。
在得到截骨导块装置2406的截面姿态信息与截骨面的姿态信息的夹角α i和距离d i之后,可根据位姿关系换算函数及截骨导块装置2406的截面姿态信息与截骨面的姿态信息的夹角α i和距离,确定截骨导块装置2406与截骨面的位姿关系,本申请实施例不对位姿关系换算函数做具体限定,示例性的,可以参公式(三)所示。
f(α i,d i)=k*α i+(1-k)*d i   公式(三)
本申请实施例提供的定位系统,可以通过图像采集装置得到目标部位骨骼的特征点信息,进而依据目标部位骨骼的特征点信息设定截骨区域及对应的截骨面。通过识别截骨导块装置与截骨区域边缘的位置信息,确定截骨导块装置是否到达截骨区域内。在确定截骨导块装置位于截骨区域内时,确定截骨导块装置与各截骨面的距离和角度,根据截骨导块装置与各截骨面的距离和角度,选择目标截骨面,并在柔顺模式下操作机械臂使得截骨导块装置慢慢接近目标截骨面,当设定的目标截骨面与截骨导块装置之间的夹角到达夹角阈值后,机械臂采用自动模式自动向目标截骨面定位,并当目标截骨面定位完成并完成相应截骨操作后,可以通过对截骨导块装置施加外力,重复前述过程,完成其他截骨面的定位。
本发明通过视觉系统得到手术过程中对应的截骨区域以及对应的截骨面,并通过检测截骨导块装置与截骨面的位姿关系,自动选择目标截骨面,并在截骨导块装置与目标截骨面满足定位条件的情况下,采用自动模式控制机械臂自动定位到目标截骨面的方式实现截骨导块装置的精细定位,简化了定位过程,优化了使用的交互,可降低手术所耗时间。
为使本领域技术人员更好的理解申请实施例,以下通过具体示例对本申请实施例加以说明。
参照图28所示,以膝关节置换手术为例。图28中,包括手术台车2801,机械臂2802,工具靶标2803,截骨导块装置2804,摆锯2805,NDI导航设备2806,辅助显示器2807,主显示器2808,导航台车2809,键盘2810,股骨靶标2811,股骨2812,胫骨靶标2813,胫骨2814,基座靶标2815。
可以将手术台车2801及导航台车2809放置在病床旁边合适的位置,并安装股骨靶标2811、胫骨靶标2812、基座靶标2815、无菌袋、截骨导块装置2804、工具靶标2803等。医生将病人骨头CT扫描图像导入计算机进行术前截骨面规划,例如:规划截骨面的平面坐标,并选择合适型号的假体并调整截骨面,计算机包括主显示器2808、键盘2810以及位于导航台车2809内的控制器。
医生使用靶标笔点击病人的股骨及胫骨的特征点,NDI导航设备2806以基座靶标2815为基准,根据靶标笔的点击记录病人骨头特征点位置,并将骨头特征点位置发送给计算机,然后计算机通过特征匹配算法得到股骨及胫骨的实际方位,并与股骨及胫骨的CT图像方位相对应,随后导航系统将股骨、胫骨的实际方位与 安装在股骨及胫骨上的相应靶标相联系,从而使股骨靶标和胫骨靶标可以实时跟踪骨头的实际位置,这样一来,手术过程中,只要靶标与骨头相对位置固定,骨头移动不会影响手术效果。
NDI导航设备2806根据截骨导块装置2804的位姿信息及截骨面的位姿信息确定目标截骨面,并将术前规划的目标截骨面的截骨平面坐标发送给机械臂2802,机械臂2802通过工具靶标(安装在机械臂或者截骨导块装置上)自动定位目标截骨面并运动到预定位置,机械臂进入保持状态,医生即可使用摆锯或电钻通过截骨导块模块的截骨导向槽及导向孔进行截骨及钻孔操作,并在完成截骨及钻孔操作后,医生即可安装假体及进行其他手术操作。
本申请实施例提供的定位方法和系统,可以简化截骨手术流程,可直接由医护人员协助机械臂,既可完成截骨面的自动定位,整个过程不需额外的操作者来回切状态即可实现,且切面的选择可以由操作者或者医护人员自动决定或由机械臂自动选择,机械臂的截骨导块装置摆位到截骨区域后,机械臂可选定目标截骨面,进行自动定位,本申请实施例提供的定位方法及系统,利于医护人员的使用,交互更佳,且可缩短手术时间。
应该理解的是,虽然如上所述的各实施例所涉及的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,如上所述的各实施例所涉及的流程图中的至少一部分步骤可以包括多个步骤或者多个阶段,这些步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤中的步骤或者阶段的至少一部分轮流或者交替地执行。
基于同样的发明构思,本申请实施例还提供了一种用于实现上述所涉及的定位方法的定位装置。该装置所提供的解决问题的实现方案与上述方法中所记载的实现方案相似,故下面所提供的一个或多个定位装置实施例中的具体限定可以参见上文中对于定位方法的限定,在此不再赘述。
在一个实施例中,如图29所示,提供了一种定位装置2900,包括:规划模块2902、确定模块2904和定位模块2906,其中:规划模块2902,用于根据目标部位的图像信息进行截骨面规划,得到所述目标部位的至少一个截骨面;确定模块2904,用于根据机械臂末端安装的截骨导块装置与所述目标部位中各个所述截骨面的位姿关系,从所述截骨面中确定目标截骨面;定位模块2906,用于当所述截骨导块装置与所述目标截骨面的位姿关系满足定位条件时,采用自动模式控制所述机械臂将截骨导块装置定位到所述目标截骨面。
上述定位装置,可根据目标部位的图像信息进行截骨面规划,得到目标部位的至少一个截骨面,根据机械臂末端安装的截骨导块装置与目标部位中各个截骨面的位姿关系,从截骨面中确定目标截骨面,并当截骨导块装置与目标截骨面的位姿关系满足定位条件时,采用自动模式控制机械臂将截骨导块装置定位到目标截骨面。本申请实施例提供的定位装置,可在手术前规划好针对目标部位的截骨面,并通过视觉定位控制机械臂选择目标截骨面进行自动定位,也即摆位及定位过程全部自动化,可以简化截骨过程中机械臂的定位流程,提高截骨面的定位效率,进而能够降低人工成本以及降低截骨手术的耗时,能够提高截骨手术的手术效率。
在其中一个实施例中,规划模块2902还用于:从目标部位的图像信息中,确定所述目标部位的特征点信息;根据所述特征点信息,确定所述目标部位的至少一个截骨面。
在其中一个实施例中,规划模块2902还用于:根据所述特征点信息确定所述目标部位的至少一个初始截骨面;根据所述目标部位的假体装置对各所述初始截骨面进行调整,得到所述目标部位的至少一个截骨面。
在其中一个实施例中,所述确定模块2904还用于:通过图像采集设备采集所述目标部位的实时图像信息;根据所述实时图像信息以及各个所述截骨面,确定所述目标部位的截骨区域;当检测到机械臂末端安装的所述截骨导块装置移动至所述截骨区域内时,确定所述截骨导块装置与各个所述截骨面的位姿关系;根据所述截骨导块装置与各个所述截骨面的位姿关系,从所述截骨面中确定目标截骨面,所述位姿关系用于表征所述截骨导块装置与所述截骨面之间的距离及呈现的角度关系。
在其中一个实施例中,所述确定模块2904还用于:根据所述目标部位及各所述截骨面,生成对应的初始截骨区域;根据所述目标部位的实时图像信息,对所述目标部位与所述目标部位的三维模型进行空间配准后,在显示界面中展示所述三维模型,所述三维模型中包括所述初始截骨区域及各个所述截骨面,各个所述截骨面均位于所述初始截骨区域内;响应于针对所述初始截骨区域的调整操作,得到所述目标部位的截骨区域。
在其中一个实施例中,所述确定模块2904还用于:实时获取所述机械臂末端安装的所述截骨导块装置的截面在图像采集设备坐标系下的截面位姿信息;根据所述截骨导块装置的所述截面位姿信息,确定所述截骨导块装置是否移动至所述截骨区域内;当确定所述截骨导块装置移动至所述截骨导块区域内时,根据所述 截骨导块装置的所述截面位姿信息,以及各所述截骨面的位姿信息,确定所述截骨导块装置与各所述截骨面的位姿关系。
在其中一个实施例中,所述确定模块2904还用于:当所述截骨导块装置移动至所述截骨导块区域内时,实时检测所述机械臂是否存在外力控制;在检测到所述机械臂不存在外力控制时,根据所述截骨导块装置的所述截面位姿信息,以及各所述截骨面的位姿信息,确定所述截骨导块装置与各所述截骨面的位姿关系。
在其中一个实施例中,所述确定模块2904还用于:针对任一所述截骨面,根据所述截骨导块装置的所述截面位姿信息,以及所述截骨面的位姿信息,确定所述截骨导块装置与所述截骨面的角度和距离;根据所述角度和所述距离,确定所述截骨导块装置与所述截骨面的位姿关系。
上述定位装置中的各个模块可全部或部分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于计算机设备中的处理器中,也可以以软件形式存储于计算机设备中的存储器中,以便于处理器调用执行以上各个模块对应的操作。
在一个实施例中,提供了一种计算机设备,该计算机设备可以是终端,其内部结构图可以如图30所示。该计算机设备包括通过系统总线连接的处理器、存储器、通信接口、显示屏和输入装置。其中,该计算机设备的处理器用于提供计算和控制能力。该计算机设备的存储器包括非易失性存储介质、内存储器。该非易失性存储介质存储有操作系统和计算机程序。该内存储器为非易失性存储介质中的操作系统和计算机程序的运行提供环境。该计算机设备的通信接口用于与外部的终端进行有线或无线方式的通信,无线方式可通过WIFI、移动蜂窝网络、NFC(近场通信)或其他技术实现。该计算机程序被处理器执行时以实现一种定位方法。该计算机设备的显示屏可以是液晶显示屏或者电子墨水显示屏,该计算机设备的输入装置可以是显示屏上覆盖的触摸层,也可以是计算机设备外壳上设置的按键、轨迹球或触控板,还可以是外接的键盘、触控板或鼠标等。
本领域技术人员可以理解,图30中示出的结构,仅仅是与本申请方案相关的部分结构的框图,并不构成对本申请方案所应用于其上的计算机设备的限定,具体的计算机设备可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。
在一个实施例中,还提供了一种计算机设备,包括存储器和处理器,存储器中存储有计算机程序,该处理器执行计算机程序时实现上述各方法实施例中的步骤。
在一个实施例中,提供了一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现上述各方法实施例中的步骤。
在一个实施例中,提供了一种计算机程序产品,包括计算机程序,该计算机程序被处理器执行时实现上述各方法实施例中的步骤。
需要说明的是,本申请所涉及的用户信息(包括但不限于用户设备信息、用户个人信息等)和数据(包括但不限于用于分析的数据、存储的数据、展示的数据等)均为经用户授权或者经各方充分授权的信息和数据。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一非易失性计算机可读取存储介质中,该计算机程序在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、数据库或其它介质的任何引用,均可包括非易失性和易失性存储器中的至少一种。非易失性存储器可包括只读存储器(Read-Only Memory,ROM)、磁带、软盘、闪存、光存储器、高密度嵌入式非易失性存储器、阻变存储器(ReRAM)、磁变存储器(Magnetoresistive Random Access Memory,MRAM)、铁电存储器(Ferroelectric Random Access Memory,FRAM)、相变存储器(Phase Change Memory,PCM)、石墨烯存储器等。易失性存储器可包括随机存取存储器(Random Access Memory,RAM)或外部高速缓冲存储器等。作为说明而非局限,RAM可以是多种形式,比如静态随机存取存储器(Static Random Access Memory,SRAM)或动态随机存取存储器(Dynamic Random Access Memory,DRAM)等。本申请所提供的各实施例中所涉及的数据库可包括关系型数据库和非关系型数据库中至少一种。非关系型数据库可包括基于区块链的分布式数据库等,不限于此。本申请所提供的各实施例中所涉及的处理器可为通用处理器、中央处理器、图形处理器、数字信号处理器、可编程逻辑器、基于量子计算的数据处理逻辑器等,不限于此。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请的保护范围应以所附权利要求为准。

Claims (15)

  1. 一种定位方法,所述方法包括:
    根据目标部位的图像信息进行截骨面规划,得到所述目标部位的至少一个截骨面;
    根据机械臂末端安装的截骨导块装置与所述目标部位的所述至少一个截骨面中各个所述截骨面的位姿关系,从所述截骨面中确定目标截骨面;
    当所述截骨导块装置与所述目标截骨面的位姿关系满足定位条件时,采用自动模式控制所述机械臂将截骨导块装置定位到所述目标截骨面。
  2. 根据权利要求1所述的方法,其特征在于,所述根据目标部位的图像信息进行截骨面规划,得到所述目标部位的至少一个截骨面,包括:
    从目标部位的图像信息中,确定所述目标部位的特征点信息;
    根据所述特征点信息,确定所述目标部位的至少一个截骨面。
  3. 根据权利要求2所述的方法,其特征在于,所述根据所述特征点信息,确定所述目标部位的至少一个截骨面,包括:
    根据所述特征点信息确定所述目标部位的至少一个初始截骨面;
    根据所述目标部位的假体装置对各所述初始截骨面进行调整,得到所述目标部位的至少一个截骨面。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述根据机械臂末端安装的截骨导块装置与所述目标部位的所述至少一个截骨面中各个所述截骨面的位姿关系,从所述截骨面中确定目标截骨面,包括:
    通过图像采集设备采集所述目标部位的实时图像信息;
    根据所述实时图像信息以及各个所述截骨面,确定所述目标部位的截骨区域;
    当检测到机械臂末端安装的所述截骨导块装置移动至所述截骨区域内时,确定所述截骨导块装置与各个所述截骨面的位姿关系;
    根据所述截骨导块装置与各个所述截骨面的位姿关系,从所述截骨面中确定目标截骨面,所述位姿关系用于表征所述截骨导块装置与所述截骨面之间的距离及角度关系。
  5. 根据权利要求4所述的方法,其特征在于,根据所述实时图像信息以及各个所述截骨面,确定所述目标部位的截骨区域,包括:
    根据所述目标部位及各所述截骨面,生成对应的初始截骨区域;
    根据所述目标部位的实时图像信息,对所述目标部位与所述目标部位的三维模型进行空间配准后,在显示界面中展示所述三维模型,所述三维模型中包括所述初始截骨区域及各个所述截骨面,各个所述截骨面均位于所述初始截骨区域内;
    响应于针对所述初始截骨区域的调整操作,得到所述目标部位的截骨区域。
  6. 根据权利要求4所述的方法,其特征在于,所述当检测到所述机械臂末端安装的所述截骨导块装置移动至所述截骨区域内时,确定所述截骨导块装置与各个所述截骨面的位姿关系,包括:
    实时获取所述机械臂末端安装的所述截骨导块装置的截面在图像采集设备坐标系下的截面位姿信息;
    根据所述截骨导块装置的所述截面位姿信息,确定所述截骨导块装置是否移动至所述截骨区域内;
    当确定所述截骨导块装置移动至所述截骨导块区域内时,根据所述截骨导块装置的所述截面位姿信息,以及各所述截骨面的位姿信息,确定所述截骨导块装置与各所述截骨面的位姿关系。
  7. 根据权利要求6所述的方法,其特征在于,所述当确定所述截骨导块装置移动至所述截骨导块区域内时,根据所述截骨导块装置的所述截面位姿信息,以及各所述截骨面的位姿信息,确定所述截骨导块装置与各所述截骨面的位姿关系,包括:
    当所述截骨导块装置移动至所述截骨导块区域内时,实时检测所述机械臂是否存在外力控制;
    在检测到所述机械臂不存在外力控制时,根据所述截骨导块装置的所述截面位姿信息,以及各所述截骨面的位姿信息,确定所述截骨导块装置与各所述截骨面的位姿关系。
  8. 根据权利要求6或7所述的方法,其特征在于,所述根据所述截骨导块装置的所述截面位姿信息,以及各所述截骨面的位姿信息,确定所述截骨导块装置与各所述截骨面的位姿关系,包括:
    针对任一所述截骨面,根据所述截骨导块装置的所述截面位姿信息,以及所述截骨面的位姿信息,确定所述截骨导块装置与所述截骨面的角度和距离;
    根据所述角度和所述距离,确定所述截骨导块装置与所述截骨面的位姿关系。
  9. 一种定位系统,所述系统包括:图像采集装置、机械臂及安装于机械臂末端的截骨导块装置,其中,
    所述图像采集装置用于根据目标部位的图像信息进行截骨面规划,得到所述目标部位的至少一个截骨面;
    所述图像采集装置还用于根据所述截骨导块装置与所述目标部位中各所述截骨面的位姿关系,从所述截骨面中确定目标截骨面后,发送所述目标截骨面的位姿信息至所述机械臂;
    所述机械臂用于在自动模式下,根据所述目标截骨面的位姿信息将所述截骨导块装置定位到所述目标截骨面。
  10. 根据权利要求9所述的系统,其特征在于,所述图像采集设备还用于采集目标部位的实时图像信息,根据所述实时图像信息及各个所述截骨面,确定针对目标部位的截骨区域,并在确定所述截骨导块装置移动至所述截骨区域内时,根据所述截骨导块装置与各所述截骨面的位姿关系,从所述截骨面中确定目标截骨面。
  11. 根据权利要求10所述的系统,其特征在于,所述图像采集设备还用于实时获取所述截骨导块装置的截面在所述图像采集设备坐标系下的截面位姿信息,根据所述截面位姿信息检测所述截骨导块装置是否移动至所述截骨区域内,并在检测到所述截骨导块装置移动至所述截骨导块区域内时,根据所述截骨导块装置的所述截面位姿信息,以及各所述截骨面的位姿信息,确定所述截骨导块装置与各所述截骨面的位姿关系。
  12. 根据权利要求11所述的系统,其特征在于,所述截骨导块装置包括卡槽、所述系统还包括安装于所述机械臂末端的标记构件;
    所述图像采集设备还用于在获取所述标记构件在所述图像采集设备坐标系下的位姿信息后,根据所述截骨导块装置与所述标记构件的坐标转换矩阵、以及所述标记构件在所述图像采集设备坐标系下的位姿信息,确定所述截骨导块装置在所述图像采集设备坐标系下的位姿信息;
    所述图像采集设备还用于根据所述截骨导块装置与所述卡槽的坐标转换矩阵、以及所述截骨导块装置在所述图像采集设备坐标系下的位姿信息,确定所述截骨导块装置的截面在所述图像采集设备坐标系下的位姿信息。
  13. 一种定位装置,所述装置包括:
    规划模块,用于根据目标部位的图像信息进行截骨面规划,得到所述目标部位的至少一个截骨面;
    确定模块,用于根据机械臂末端安装的截骨导块装置与所述目标部位的所述至少一个截骨面中各个所述截骨面的位姿关系,从所述截骨面中确定目标截骨面;
    定位模块,用于当所述截骨导块装置与所述目标截骨面的位姿关系满足定位条件时,采用自动模式控制所述机械臂将截骨导块装置定位到所述目标截骨面。
  14. 一种计算机设备,包括存储器和处理器,所述存储器存储有计算机程序,所述处理器执行所述计算机程序时实现权利要求1至8中任一项所述的方法的步骤。
  15. 一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现权利要求1至8中任一项所述的方法的步骤。
PCT/CN2022/141017 2021-12-24 2022-12-22 定位方法、系统、装置、计算机设备和存储介质 WO2023116823A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111604601.XA CN114404047A (zh) 2021-12-24 2021-12-24 定位方法、系统、装置、计算机设备和存储介质
CN202111604601.X 2021-12-24

Publications (1)

Publication Number Publication Date
WO2023116823A1 true WO2023116823A1 (zh) 2023-06-29

Family

ID=81269749

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/141017 WO2023116823A1 (zh) 2021-12-24 2022-12-22 定位方法、系统、装置、计算机设备和存储介质

Country Status (2)

Country Link
CN (1) CN114404047A (zh)
WO (1) WO2023116823A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114404047A (zh) * 2021-12-24 2022-04-29 苏州微创畅行机器人有限公司 定位方法、系统、装置、计算机设备和存储介质
CN117204910A (zh) * 2023-09-26 2023-12-12 北京长木谷医疗科技股份有限公司 基于深度学习的膝关节位置实时追踪的自动截骨方法
CN117860380A (zh) * 2024-03-11 2024-04-12 北京壹点灵动科技有限公司 膝关节置换的数据处理方法和装置、存储介质及电子设备

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116747026A (zh) * 2023-06-05 2023-09-15 北京长木谷医疗科技股份有限公司 基于深度强化学习的机器人智能截骨方法、装置及设备
CN116531111A (zh) * 2023-07-04 2023-08-04 梅奥心磁(杭州)医疗科技有限公司 一种双级自适应动力手术机械臂装置及控制方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5806518A (en) * 1995-09-11 1998-09-15 Integrated Surgical Systems Method and system for positioning surgical robot
JP2004008707A (ja) * 2002-06-11 2004-01-15 Osaka Industrial Promotion Organization 人工膝関節置換術支援方法,人工膝関節置換術支援装置,コンピュータプログラム及び記録媒体
CN109567942A (zh) * 2018-10-31 2019-04-05 上海盼研机器人科技有限公司 采用人工智能技术的颅颌面外科手术机器人辅助系统
CN110811832A (zh) * 2019-11-21 2020-02-21 苏州微创畅行机器人有限公司 截骨校验方法、校验设备、可读存储介质及骨科手术系统
CN111345896A (zh) * 2020-03-13 2020-06-30 北京天智航医疗科技股份有限公司 截骨执行系统及定位、控制和模拟执行方法与电子设备
CN113662660A (zh) * 2021-10-22 2021-11-19 杭州键嘉机器人有限公司 关节置换术前规划方法、装置、设备及存储介质
CN113662665A (zh) * 2021-07-30 2021-11-19 北京天智航医疗科技股份有限公司 膝关节置换手术机器人系统的精度检测方法和装置
CN114404047A (zh) * 2021-12-24 2022-04-29 苏州微创畅行机器人有限公司 定位方法、系统、装置、计算机设备和存储介质

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113208689B (zh) * 2019-09-30 2022-08-02 苏州微创畅行机器人有限公司 截骨导向工具
CN111345895B (zh) * 2020-03-13 2021-08-20 北京天智航医疗科技股份有限公司 全膝关节置换手术机器人辅助系统、控制方法及电子设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5806518A (en) * 1995-09-11 1998-09-15 Integrated Surgical Systems Method and system for positioning surgical robot
JP2004008707A (ja) * 2002-06-11 2004-01-15 Osaka Industrial Promotion Organization 人工膝関節置換術支援方法,人工膝関節置換術支援装置,コンピュータプログラム及び記録媒体
CN109567942A (zh) * 2018-10-31 2019-04-05 上海盼研机器人科技有限公司 采用人工智能技术的颅颌面外科手术机器人辅助系统
CN110811832A (zh) * 2019-11-21 2020-02-21 苏州微创畅行机器人有限公司 截骨校验方法、校验设备、可读存储介质及骨科手术系统
CN111345896A (zh) * 2020-03-13 2020-06-30 北京天智航医疗科技股份有限公司 截骨执行系统及定位、控制和模拟执行方法与电子设备
CN113662665A (zh) * 2021-07-30 2021-11-19 北京天智航医疗科技股份有限公司 膝关节置换手术机器人系统的精度检测方法和装置
CN113662660A (zh) * 2021-10-22 2021-11-19 杭州键嘉机器人有限公司 关节置换术前规划方法、装置、设备及存储介质
CN114404047A (zh) * 2021-12-24 2022-04-29 苏州微创畅行机器人有限公司 定位方法、系统、装置、计算机设备和存储介质

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114404047A (zh) * 2021-12-24 2022-04-29 苏州微创畅行机器人有限公司 定位方法、系统、装置、计算机设备和存储介质
CN117204910A (zh) * 2023-09-26 2023-12-12 北京长木谷医疗科技股份有限公司 基于深度学习的膝关节位置实时追踪的自动截骨方法
CN117860380A (zh) * 2024-03-11 2024-04-12 北京壹点灵动科技有限公司 膝关节置换的数据处理方法和装置、存储介质及电子设备

Also Published As

Publication number Publication date
CN114404047A (zh) 2022-04-29

Similar Documents

Publication Publication Date Title
WO2023116823A1 (zh) 定位方法、系统、装置、计算机设备和存储介质
US20220211454A1 (en) Systems and methods for navigation and control of an implant positioning device
JP6685580B2 (ja) 術中画像分析のためのシステム及び方法
DiGioia III et al. Computer assisted orthopaedic surgery: image guided and robotic assistive technologies
US20110306873A1 (en) System for performing highly accurate surgery
US11653976B2 (en) Automated arthroplasty planning
US20210391058A1 (en) Machine learning system for navigated orthopedic surgeries
US20220071720A1 (en) System and method for interaction and definition of tool pathways for a robotic cutting tool
US20230165649A1 (en) A collaborative surgical robotic platform for autonomous task execution
JP2023548466A (ja) コンピュータ支援の手術における超音波ベースの複数の骨の位置決めの手術システム及び使用方法
US11523868B2 (en) Bone registration methods for robotic surgical procedures
US11957417B2 (en) Surgical registration tools, systems, and methods of use in computer-assisted surgery
KR20220024055A (ko) 추적 시스템 시야 위치설정 시스템 및 방법
EP3328308A1 (en) Efficient positioning of a mechatronic arm
EP4026511A1 (en) Systems and methods for single image registration update
CN114224508A (zh) 医学图像处理方法、系统、计算机设备和存储介质
Luo et al. Survey of Navigation Guided Robotics for Orthopedic Surgical Assistance–Concept and Components
Masjedi et al. Protocol for evaluation of robotic technology in orthopedic surgery
Song et al. Medical robotic system for minimally invasive spine surgery
WO2024081388A1 (en) System and method for implantable sensor registration
Thomas Real-time Navigation Procedure for Robot-assisted Surgery
Żuk et al. An Application of a Haptic Device in a Computer Aided Surgery
Haidegger et al. Manufacturing the human body–the era of surgical robots

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22910135

Country of ref document: EP

Kind code of ref document: A1