WO2023116803A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2023116803A1
WO2023116803A1 PCT/CN2022/140888 CN2022140888W WO2023116803A1 WO 2023116803 A1 WO2023116803 A1 WO 2023116803A1 CN 2022140888 W CN2022140888 W CN 2022140888W WO 2023116803 A1 WO2023116803 A1 WO 2023116803A1
Authority
WO
WIPO (PCT)
Prior art keywords
coherence
carrier
frequency band
parameters
terminal device
Prior art date
Application number
PCT/CN2022/140888
Other languages
English (en)
French (fr)
Inventor
王�锋
张旭
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023116803A1 publication Critical patent/WO2023116803A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • H04W16/10Dynamic resource partitioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present application relates to the technical field of communication, and in particular to a communication method and device.
  • new radio (new radio, NR) supports two transmission modes: codebook-based uplink physical uplink shared channel (PUSCH) transmission and non-codebook-based PUSCH transmission.
  • codebook-based PUSCH transmission the base station needs to restrict the use of the codebook according to the coherence capability of the UE.
  • the coherence capability of the frequency band reported by the UE is fixed, it is impossible to make full use of the high-coherence codebook for uplink transmission, which affects the throughput of uplink transmission.
  • Embodiments of the present application provide a communication method and device, which can improve the throughput of uplink transmission.
  • the embodiment of the present application provides a communication method, including: a terminal device acquires first configuration information, and the first configuration information is used to indicate that the downlink control information DCI or the media access control control unit MAC CE is allowed to indicate Coherence on at least one carrier; receiving the DCI or the MAC CE from the network device, the DCI or the MAC CE includes first indication information, and the first indication information is used to indicate the at least one carrier The coherence of the at least one carrier does not exceed the coherence capability supported by the frequency band to which the at least one carrier belongs.
  • the terminal device sends multiple sets of parameters corresponding to the first frequency band combination to the network device, and each set of parameters in the multiple sets of parameters includes the first frequency band supported by the terminal device
  • the coherence capability of each frequency band in the combination, the coherence capability of at least one frequency band in the at least two groups of parameters corresponding to the first frequency band combination is different.
  • the network device can learn that the coherence capability of the terminal device on at least one frequency band in the first frequency band combination may change, so that through dynamic Or switch the coherence on at least one frequency band of the first frequency band combination in a semi-static manner.
  • the highest coherence capabilities of at least two frequency bands in the first frequency band combination are located in different two groups of parameters among the multiple groups of parameters.
  • the network device can learn that the highest coherence capabilities of the terminal device on at least two frequency bands are respectively located in two sets of parameters, and the coherence capabilities on at least two frequency bands can change, and the network device can switch in a dynamic or semi-static manner Coherence across at least two frequency bands of the first combination of frequency bands.
  • the terminal device sends at least one set of parameters corresponding to the first frequency band combination to the network device, and the at least one set of parameters includes the parameters in the first frequency band combination supported by the terminal device.
  • the coherence capabilities of at least two frequency bands, the coherence capabilities on the at least two frequency bands cannot be the coherence capabilities indicated by the at least one set of parameters at the same time.
  • the network device may learn that the coherence capability of the terminal device on at least one frequency band in the first frequency band combination may change , so that the coherence on at least one frequency band of the first frequency band combination is switched dynamically or semi-statically. Moreover, by reporting parameters in this manner, the number of parameters reported by the UE can be reduced.
  • the terminal device sends second indication information to the network device, where the second indication information is used to indicate that the terminal device supports switching coherence of the frequency band to which the at least one carrier belongs.
  • the base station can know the UE's coherence capability more clearly, reducing the process of the base station judging whether the UE supports dynamic switching coherence, making the judgment process easier.
  • the terminal device receives second configuration information from the network device, where the second configuration information is used to configure the coherence of at least two carriers, and the at least two carriers include the at least A carrier, the coherence of the at least two carriers is the highest coherence of at least two frequency bands in the combination of frequency bands to which the at least two carriers belong.
  • the coherence of the carrier can be flexibly changed through DCI or MAC CE without exceeding the coherence of the carrier configured by the base station.
  • the first indication information carries the highest bit in the indication field in the DCI, or a column in the time domain resource allocation information element.
  • the first indication information is indicated by the highest bit in the indication field in the DCI or a column in the resource allocation information element in the time domain, so as to reduce the amount of data transmission and improve the efficiency of data transmission.
  • the first indication information indicates the value range of the value indicated by the TPMI field, or the value of the value indicated by the precoding information and the layer number field through the transmit precoding matrix in the DCI range to indicate.
  • the value range of the value indicated by the TPMI field, or the value range of the value indicated by the precoding information and the layer number field indicates the first indication information, so as to reduce the amount of data transmission and improve the efficiency of data transmission.
  • the terminal device when the current coherence of the at least one carrier is less than the coherence of the at least one carrier indicated by the first indication information, the terminal device, after at least a first duration, Send uplink data to the network device on the at least one carrier, where the first duration is the duration of switching carriers, the duration of switching coherence, the duration of switching carriers, and the duration of switching coherence , or a predefined duration.
  • the first duration is the duration of switching carriers, the duration of switching coherence, the duration of switching carriers, and the duration of switching coherence , or a predefined duration.
  • the embodiment of the present application provides a communication method, including: the network device sends the first configuration information to the terminal device, and the first configuration information is used to indicate that the downlink control information DCI or the media access control control unit is allowed to pass
  • the MAC CE indicates coherence on at least one carrier; sending the DCI or the MAC CE to the terminal device, where the DCI or the MAC CE includes first indication information, and the first indication information is used to indicate the The coherence of the at least one carrier, where the coherence of the at least one carrier does not exceed the coherence capability supported by the frequency band to which the at least one carrier belongs.
  • the network device receives multiple sets of parameters corresponding to the first frequency band combination from the terminal device, and each set of parameters in the multiple sets of parameters includes the first frequency band supported by the terminal device.
  • the coherence capability of each frequency band in the frequency band combination, the coherence capability of at least one frequency band in the at least two groups of parameters corresponding to the first frequency band combination is different.
  • the network device can learn that the coherence capability of the terminal device on at least one frequency band in the first frequency band combination may change, so that through dynamic Or switch the coherence on at least one frequency band of the first frequency band combination in a semi-static manner.
  • the highest coherence capabilities of at least two frequency bands in the first frequency band combination are located in different two groups of parameters among the multiple groups of parameters.
  • the network device can learn that the highest coherence capabilities of the terminal device on at least two frequency bands are respectively located in two sets of parameters, and the coherence capabilities on at least two frequency bands can change, and the network device can switch in a dynamic or semi-static manner Coherence across at least two frequency bands of the first combination of frequency bands.
  • the network device receives at least one set of parameters corresponding to the first frequency band combination from the terminal device, and the at least one set of parameters includes the first frequency band combination supported by the terminal device
  • the coherence capabilities of at least two frequency bands in the at least two frequency bands cannot be the coherence capabilities indicated by the at least one set of parameters at the same time.
  • the network device may learn that the coherence capability of the terminal device on at least one frequency band in the first frequency band combination may change , so that the coherence on at least one frequency band of the first frequency band combination is switched dynamically or semi-statically. Moreover, by reporting parameters in this manner, the number of parameters reported by the UE can be reduced.
  • the network device receives second indication information from the terminal device, where the second indication information is used to indicate that the terminal device supports switching of the coherent frequency band of the frequency band to which the at least one carrier belongs. sex.
  • the base station can know the UE's coherence capability more clearly, reducing the process of the base station judging whether the UE supports dynamic switching coherence, making the judgment process easier.
  • the network device sends second configuration information to the terminal device, the second configuration information is used to configure the coherence of at least two carriers, and the at least two carriers include the At least one carrier, the coherence of the at least two carriers is the highest coherence of at least two frequency bands in the combination of frequency bands to which the at least two carriers belong.
  • the coherence of the carrier can be flexibly changed through DCI or MAC CE without exceeding the coherence of the carrier configured by the base station.
  • the first indication information carries the highest bit in the indication field in the DCI, or a column in the time domain resource allocation information element.
  • the first indication information is indicated by the highest bit in the indication field in the DCI or a column in the resource allocation information element in the time domain, so as to reduce the amount of data transmission and improve the efficiency of data transmission.
  • the first indication information indicates the value range of the value indicated by the TPMI field, or the value of the value indicated by the precoding information and the layer number field through the transmit precoding matrix in the DCI range to indicate.
  • the value range of the value indicated by the TPMI field, or the value range of the value indicated by the precoding information and the layer number field indicates the first indication information, so as to reduce the amount of data transmission and improve the efficiency of data transmission.
  • the network device when the current coherence of the at least one carrier is smaller than the coherence of the at least one carrier indicated by the first indication information, the network device receives the The uplink data sent on the at least one carrier after the first duration, wherein the first duration is the duration of switching carriers, the duration of switching coherence, the duration of switching carriers, and the duration of switching coherence , or a predefined duration.
  • the first duration is the duration of switching carriers, the duration of switching coherence, the duration of switching carriers, and the duration of switching coherence , or a predefined duration.
  • the embodiment of the present application provides a communication device, and the device includes:
  • a receiving module configured to obtain first configuration information, where the first configuration information is used to indicate that the coherence on at least one carrier is indicated through downlink control information DCI or a medium access control control element MAC CE;
  • the receiving module is further configured to receive the DCI or the MAC CE from the network device, the DCI or the MAC CE includes first indication information, and the first indication information is used to indicate the at least one carrier The coherence of the at least one carrier does not exceed the coherence capability supported by the frequency band to which the at least one carrier belongs.
  • the device also includes:
  • a sending module configured to send multiple sets of parameters corresponding to the first frequency band combination to the network device, where each set of parameters in the multiple sets of parameters includes the coherence of each frequency band in the first frequency band combination supported by the terminal device.
  • the coherence capability of at least one frequency band in the at least two groups of parameters corresponding to the first frequency band combination is different.
  • the highest coherence capabilities of at least two frequency bands in the first frequency band combination are located in different two groups of parameters among the multiple groups of parameters.
  • the device also includes:
  • a sending module configured to send at least one set of parameters corresponding to the first frequency band combination to the network device, where the at least one set of parameters includes coherence capabilities of at least two frequency bands in the first frequency band combination supported by the terminal device , the coherence on the at least two frequency bands cannot be the coherence capability indicated by the at least one set of parameters at the same time.
  • the sending module is further configured to send second indication information to the network device, where the second indication information is used to indicate that the terminal device supports switching of the carrier to which the at least one carrier belongs. frequency band coherence.
  • the receiving module is further configured to receive second configuration information from the network device, where the second configuration information is used to configure the coherence of at least two carriers, and the at least two The carriers include the at least one carrier, and the coherence of the at least two carriers is the highest coherence of at least two frequency bands in the combination of frequency bands to which the at least two carriers belong.
  • the first indication information carries the highest bit in the indication field in the DCI, or a column in the time domain resource allocation information element.
  • the first indication information indicates the value range of the value indicated by the TPMI field, or the value of the value indicated by the precoding information and the layer number field through the transmit precoding matrix in the DCI range to indicate.
  • the sending module is configured to, when the current coherence of the at least one carrier is smaller than the coherence of the at least one carrier indicated by the first indication information, after at least a first duration , sending uplink data to the network device on the at least one carrier, wherein the first duration is the duration of switching carriers, the duration of switching coherence, the duration of switching carriers, and the duration of switching dryness The larger value of , or a predefined duration.
  • the embodiment of the present application provides a communication device, and the device includes:
  • a sending module configured to send first configuration information to a terminal device, where the first configuration information is used to indicate that the coherence on at least one carrier is indicated through downlink control information DCI or a media access control control unit MAC CE;
  • the sending module is further configured to send the DCI or the MAC CE to the terminal device, the DCI or the MAC CE includes first indication information, and the first indication information is used to indicate the at least one The coherence of the carrier, the coherence of the at least one carrier does not exceed the coherence capability supported by the frequency band to which the at least one carrier belongs.
  • the device also includes:
  • a receiving module configured to receive multiple sets of parameters corresponding to the first frequency band combination from the terminal device, where each set of parameters in the multiple sets of parameters includes each frequency band in the first frequency band combination supported by the terminal device Coherence capability, the coherence capability of at least one frequency band in the at least two groups of parameters corresponding to the first frequency band combination is different.
  • the highest coherence capabilities of at least two frequency bands in the first frequency band combination are located in different two groups of parameters among the multiple groups of parameters.
  • the device also includes:
  • a receiving module configured to receive at least one set of parameters corresponding to the first frequency band combination from the terminal device, the at least one set of parameters including the coherence of at least two frequency bands in the first frequency band combination supported by the terminal device capability, the coherence capability on the at least two frequency bands cannot be the coherence capability indicated by the at least one set of parameters at the same time.
  • the receiving module is further configured to receive second indication information from the terminal device, where the second indication information is used to indicate that the terminal device supports switching of the at least one carrier to which the at least one carrier belongs.
  • the coherence of the frequency band is further configured to indicate that the terminal device supports switching of the at least one carrier to which the at least one carrier belongs.
  • the sending module is further configured to send second configuration information to the terminal device, where the second configuration information is used to configure the coherence of at least two carriers, and the at least two The carrier includes the at least one carrier, and the coherence of the at least two carriers is the highest coherence of at least two frequency bands in the combination of frequency bands to which the at least two carriers belong.
  • the first indication information carries the highest bit in the indication field in the DCI, or a column in the time domain resource allocation information element.
  • the first indication information indicates the value range of the value indicated by the TPMI field, or the value of the value indicated by the precoding information and the layer number field through the transmit precoding matrix in the DCI range to indicate.
  • the device also includes:
  • a receiving module configured to, when the current coherence of the at least one carrier is smaller than the coherence of the at least one carrier indicated by the first indication information, receive the at least The uplink data sent on one carrier, wherein the first duration is the duration of switching carriers, the duration of switching coherence, the larger value of the duration of switching carriers and the duration of switching coherence, or a predefined duration.
  • the embodiment of the present application provides a communication device, which is configured to implement the method and function performed by the terminal device in the first aspect above, and is implemented by hardware/software, and its hardware/software includes the above functions corresponding module.
  • the embodiment of the present application provides a communication device, which is configured to implement the method and function performed by the network device in the second aspect above, and is implemented by hardware/software, and its hardware/software includes the functions described above corresponding module.
  • the present application provides a communication device.
  • the device may be a terminal device, or a device in the terminal device, or a device that can be matched with the terminal device.
  • the communication device may also be a system on a chip.
  • the communication device can execute the method described in the first aspect.
  • the functions of the communication device may be realized by hardware, or may be realized by executing corresponding software by hardware.
  • the hardware or software includes one or more modules corresponding to the above functions. This module can be software and/or hardware.
  • the present application provides a communication device.
  • the device may be a network device, or a device in the network device, or a device that can be matched with the network device.
  • the communication device may also be a system on a chip.
  • the communication device can execute the method described in the second aspect.
  • the functions of the communication device may be realized by hardware, or may be realized by executing corresponding software by hardware.
  • the hardware or software includes one or more modules corresponding to the above functions. This module can be software and/or hardware.
  • the present application provides a communication device, the communication device includes a processor, and when the processor calls the computer program in the memory, the method described in any one of the first aspect and the second aspect be executed.
  • the present application provides a communication device, the communication device includes a processor and a memory, the memory is used to store computer-executable instructions; the processor is used to execute the computer-executable instructions stored in the memory, to The communication device is made to execute the method according to any one of the first aspect and the second aspect.
  • the present application provides a communication device, the communication device includes a processor, a memory, and a transceiver, the transceiver is used to receive a channel or a signal, or send a channel or a signal; the memory is used to storing program code; the processor is configured to call the program code from the memory to execute the method according to any one of the first aspect and the second aspect.
  • the present application provides a communication device, the communication device includes a processor and an interface circuit, the interface circuit is used to receive code instructions and transmit them to the processor; the processor runs the Code instructions to perform the method described in any one of the first aspect and the second aspect.
  • the present application provides a computer-readable storage medium, the computer-readable storage medium is used to store a computer program, and when the computer program is executed, any A described method is implemented.
  • the present application provides a computer program product including a computer program.
  • the computer program When the computer program is executed, the method described in any one of the first aspect and the second aspect is implemented.
  • the embodiment of the present application provides a communication system, the communication system includes at least one terminal device and at least one network device, the terminal device is used to perform the steps in the above first aspect, and the network device is used to perform The steps in the second aspect above.
  • FIG. 1 is a schematic structural diagram of a communication system provided by an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a communication method provided in an embodiment of the present application.
  • FIG. 3 is a schematic diagram of parameters corresponding to a frequency band combination provided in an embodiment of the present application.
  • FIG. 4 is a schematic diagram of parameters corresponding to another frequency band combination provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a terminal device provided in an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a network communication device provided by an embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of a communication system 100 provided in an embodiment of the present application.
  • the communication system 100 may include a network device 110 and terminal devices 101 - 106 . It should be understood that more or less network devices or terminal devices may be included in the communication system 100 to which the method of the embodiment of the present application can be applied.
  • a network device or a terminal device may be hardware, or functionally divided software, or a combination of the above two. Network devices and terminal devices can communicate through other devices or network elements.
  • the network device 110 can send downlink data to the terminal devices 101 - 106 .
  • the terminal devices 101 - 106 may also send uplink data to the network device 110 .
  • Terminal equipment 101 ⁇ terminal equipment 106 can be cellular phone, smart phone, portable computer, handheld communication device, handheld computing device, satellite radio device, global positioning system, palm computer (personal digital assistant, PDA) and/or be used in wireless Any other suitable device for communicating over the communication system 100, and the like.
  • the network device 110 may be a long term evolution (long term evolution, LTE) and/or NR network device, specifically a base station (NodeB), an evolved base station (eNodeB), a base station in a 5G mobile communication system, a next-generation mobile Communication base station (Next generation Node B, gNB), the base station in the future mobile communication system or the access node in the Wi-Fi system.
  • LTE long term evolution
  • NR network device specifically a base station (NodeB), an evolved base station (eNodeB), a base station in a 5G mobile communication system, a next-generation mobile Communication base station (Next generation Node B, gNB), the base station in the future mobile communication system or the access node in
  • the communication system 100 may adopt public land mobile network (public land mobile network, PLMN), vehicle networking (vehicle to everything, V2X), device-to-device (device-to-device, D2D) network, machine to machine (machine to machine, M2M) network, Internet of things (IoT) or other networks.
  • PLMN public land mobile network
  • V2X vehicle networking
  • device-to-device device-to-device
  • D2D device-to-device
  • M2M machine to machine
  • IoT Internet of things
  • the terminal device 104 to the terminal device 106 may also form a communication system.
  • the terminal device 105 can send downlink data to the terminal device 104 or the terminal device 106.
  • the method in the embodiment of the present application may be applied to the communication system 100 shown in FIG. 1 .
  • UE is configured with multiple cells, and each cell includes one downlink carrier and 0-2 uplink carriers.
  • UE can activate some cells in multiple cells, but some UEs have limited uplink capabilities, at most they can only Configure and activate two uplink carriers.
  • NR supports two transmission modes: codebook-based PUSCH transmission and non-codebook-based PUSCH transmission.
  • Non-codebook-based uplink transmission Utilizing the mutual dissimilarity between uplink and downlink channels and without a predefined codebook, UE determines at least one candidate precoding based on downlink signal measurement, and sends SRS signals through candidate precoding, and one SRS corresponds to one candidate precoding Encoding, after receiving the SRS, the base station selects the optimal SRS, and sends an SRS resource indicator (SRS resource indicator, SRI) to the UE. Wherein, the SRI is used to indicate the SRS resource index value. The UE can determine precoding according to the SRI for sending the PUSCH.
  • the base station configures at least one SRS resource, each SRS resource has at least one SRS port, and each SRS port corresponds to a UE transmit antenna/transmit channel/transmit link.
  • the UE sends SRS signals on SRS resources according to the SRS configuration.
  • the base station determines the TPMI from the codebook through the received SRS signals and sends them to the UE.
  • the UE can determine the precoding for sending the PUSCH according to the TPMI. That is, the antenna and phase for sending the PUSCH are determined through the TPMI.
  • TPMI can also be used to indicate the number of transport layers.
  • the TPMI is expressed in the form of an M*N matrix, where M corresponds to the number of transmit antennas and also corresponds to the number of SRS resource ports, and N corresponds to the number of transmission layers.
  • a sequence of coded bits [y (0) (i) ... y ( ⁇ -1) (i)] T can be precoded according to TPMI: in, ⁇ p 0 ,...,p ⁇ -1 ⁇ represent UE transmit antenna ports, corresponding to SRS ports.
  • the base station can pre-select a table, then select a TPMI from the table, and send the selected TPMI to the UE through DCI.
  • the value of the TPMI index can be any one of 0-5, and one TPMI index corresponds to one precoding matrix.
  • the TPMI index can be any one of 0-2, and one TPMI index corresponds to one precoding matrix.
  • the TPMI index can be any one of 0-27, and one TPMI index corresponds to one precoding matrix.
  • TPMI index can be any one of 0-27, and one TPMI index corresponds to one precoding matrix.
  • the value of TPMI index can be any one of 0-21, and one TPMI index corresponds to one precoding matrix.
  • TPMI index can be any one of 0-6, and one TPMI index corresponds to one precoding matrix.
  • TPMI index can be any one of 0-4, and one TPMI index corresponds to one precoding matrix.
  • the values of the TPMI indexes in the above tables do not consider the coherence capability of different UEs.
  • the UE supports uplink multi-antenna transmission, but the hardware and radio frequency design of different UEs may result in situations where the uplink multiple antenna ports meet coherent transmission or do not meet coherent transmission. For example, factors such as the distance between antennas of the UE, radio frequency channel amplifiers, and phase control capabilities. Therefore, the uplink transmission needs to take into account the coherence capabilities of different UEs.
  • NR Three UE coherence capabilities are defined in NR:
  • Fully-Coherent fully coherent, all antenna ports of the UE can perform coherent transmission.
  • Patial-Coherent Partially coherent, that is, it is divided into coherent groups, and two coherent antennas in each group can perform coherent transmission, and coherent transmission cannot be performed between different groups.
  • Non-Coherent Non-coherent, multi-antenna ports cannot perform coherent transmission.
  • the base station restricts the use of the codebook according to the coherence capability of the UE.
  • the codebook subset configuration is indicated through a radio resource control (radio resource control, RRC) parameter codebook subset (codebookSubset).
  • codebookSubset includes fullyAndPartialAndNonCoherent, nonCoherent and partialAndNonCoherent.
  • RRC radio resource control
  • codebookSubset includes fullyAndPartialAndNonCoherent, nonCoherent and partialAndNonCoherent.
  • the number of TPMIs or TPMI ranges that can be indicated by the DCI are different.
  • the base station configures full coherence for the UE, which can be equivalent to fullyAndPartialAndNonCoherent; the base station configures partial coherence for the UE, which can be equivalent to partialAndNonCoherent; the base station configures non-coherence for the UE, which can be equivalent to NonCoherent.
  • the table below illustrates the design of DCI indicating TPMI and number of transport layers under different configurations.
  • the number of TPMIs or TPMI ranges that can be indicated by the DCI are different.
  • x layer indicates that the number of transmission layers is x
  • the number of transmission layers can be understood as the number of MIMO layers, or can be understood as the number of columns of the codebook matrix.
  • TPMI 0 or 1
  • the number of non-zero elements in each column of the corresponding codebook (such as Table 1) in the right column is 1.
  • the TPMI can also be 2, 3, 4 or 5, and the number of non-zero elements in each column of the codebook corresponding to the left column (such as Table 1) can be 2.
  • the codebookSubset of the UE is configured as fullyAndPartialAndNonCoherent
  • the TPMI can also be 2, 3, 4 or 5, and the number of non-zero elements in each column of the codebook corresponding to the left column (such as Table 1) can be 2.
  • the codebookSubset of the UE is configured as fullyAndPartialAndNonCoherent
  • the TPMI can also be 2, 3, 4 or 5, and the number of non-zero elements in each column of the codebook corresponding to the left column (such as Table 1) can be 2.
  • the codebookSubset of the UE is configured as fullyAndPartialAndNonCoherent
  • the TPMI value in Table 9 corresponds to the corresponding precoding matrix in Table 1 or Table 2, and the DCI indicates a row in the table.
  • the codebookSubset is configured as fullyAndPartialAndNonCoherent, interpret it according to the left column, and when the codebookSubset is configured as NonCoherent, interpret it according to the right column.
  • the TPMI value in Table 10 corresponds to the corresponding precoding matrix in Table 3 or Table 4, and the DCI indicates a row in the table.
  • codebookSubset is configured as fullyAndPartialAndNonCoherent, interpret according to the left column; when codebookSubset is configured as partialAndNonCoherent, interpret according to the middle column; when codebookSubset is configured as NonCoherent, interpret according to the right column.
  • the value of the TPMI index is any one of 0-3, and the number of non-zero elements in each column of the codebook (such as Table 3) corresponding to the right column is 1.
  • the codebookSubset of the UE is configured as partially coherent, the value of the TPMI index can be any one of 4-11, and the number of non-zero elements in each column of the codebook (such as Table 3) corresponding to the middle column can be 2.
  • the four radio frequency chains when the four radio frequency chains are partially coherent, two elements among the four elements corresponding to the same column of the codebook of the four radio frequency chains may be non-zero elements.
  • the codebookSubset of the UE When the codebookSubset of the UE is configured as fully coherent, the value of the TPMI index can be any one of 12-27, and the number of non-zero elements in each column of the codebook corresponding to the left column (such as Table 3) can be 4.
  • the four radio frequency chains when the four radio frequency chains are coherent, the four elements corresponding to the same column of the codebook of the four radio frequency chains may be non-zero elements at the same time.
  • the coherence switching or changing of the UE can be understood as the range of the codebook that the UE can select changes when the base station schedules or configures the UE for transmission.
  • the coherence of the carrier of the UE is non-coherent.
  • the base station instructs the UE to switch the coherence of the carrier to full coherence.
  • the UE uses the codebook contained in the left column .
  • the coherence of the carrier of the UE is non-coherent.
  • the base station instructs the UE to switch the coherence of the carrier to full coherence.
  • the base station instructs the UE to switch the coherence of the carrier to partial coherence.
  • the TPMI value in Table 11 corresponds to the corresponding precoding matrix in Table 3-Table 7, and the DCI instruction table A row in the .
  • codebookSubset is configured as fullyAndPartialAndNonCoherent, interpret according to the left column; when codebookSubset is configured as partialAndNonCoherent, interpret according to the middle column; when codebookSubset is configured as NonCoherent, interpret according to the right column.
  • NC means nonCoherent
  • PC means partialAndNonCoherent
  • FC means fullyAndPartialAndNonCoherent.
  • the maximum number of transmission layers 1
  • the configuration of codebookSubset is nonCoherent
  • 1 bit in the DCI is required for indication.
  • the codebookSubset is configured as partialAndNonCoherent, 5 bits in the DCI are required for indication.
  • One SRS resource can be configured for codebook-based uplink transmission. If multiple SRS resources are configured, one SRS resource corresponds to one transmit beam/transmit antenna group.
  • the base station needs to first use SRI to select an SRS resource from multiple SRS resources, namely Select the transmit beam/transmit antenna group, and further indicate the TPMI, where the TPMI is used to indicate the precoding matrix acting on the transmit beam/transmit antenna group corresponding to the selected SRS resource.
  • a transmit channel is a physical concept, and may also be called a radio frequency (radio frequency, RF) transmit channel, which is collectively referred to as a transmit channel in this application.
  • the transmission channel can work in the following manner, but is not limited to the following manner: the transmission channel can receive the baseband signal from the baseband chip, and perform radio frequency processing (such as up-conversion, amplification and filtering) on the baseband signal to obtain radio frequency signal, and finally radiate the radio frequency signal into space through the antenna.
  • radio frequency processing such as up-conversion, amplification and filtering
  • the transmit channel may include an antenna switch, an antenna tuner, a low noise amplifier (low noise amplifier, LNA), a power amplifier (power amplifier, PA), a mixer (mixer), a local oscillator (local oscillator, LO) , filter (filter) and other electronic devices, these electronic devices can be integrated into one or more chips as required.
  • the antenna can also sometimes be considered as part of the transmit channel.
  • the transmit channels are referred to as radio frequency chains for short.
  • the radio frequency chain in this application may also be replaced by Tx, antenna, radio frequency, transmission channel, transmission port, reception channel or any combination thereof.
  • the UE's coherence capability is reported per band.
  • Per band means that whether it is a single Band or in a band combination (band combination, BC), the coherence capability of the UE in each Band remains unchanged.
  • per band per BC indicates uplink (uplink, UL) multiple-input multiple-output (multiple-input multiple-output, MIMO) coherence capability.
  • uplink uplink
  • UL multiple-input multiple-output
  • MIMO multiple-input multiple-output
  • two Tx in Band1 may be coherent (radio frequency chain 1 and radio frequency chain 2 share one LO).
  • the relationship between 4Tx can be fully coherent (four RF chains share one LO), partially coherent (RF chain 1 and RF chain 2 share one LO, and RF chain 3 and RF chain 4 share another LO), or non-coherent (RF Chain 1 and RF Chain 2 share one LO, and RF Chain 3 and RF Chain 4 use the other two LOs).
  • the LOs used by two radio frequency chains are not the same LO, the phases of the two radio frequency chains may not be synchronized, and coherent transmission cannot be performed, so the UE cannot use coherent transmission when using the two radio frequency chains for uplink transmission. codebook. That is, the elements corresponding to the two radio frequency chains in the same column of the codebook cannot be non-zero elements at the same time.
  • the UE notifies the base station on which Bands the UE supports carrier aggregation by reporting the BC.
  • the UE also reports the parameters corresponding to the BC.
  • the parameters corresponding to the BC include the parameters of the UE on each Band in the BC.
  • the UE can report multiple sets of parameters, and each set of parameters includes parameters of each Band in the BC, so that the base station can select a set of parameters from multiple sets of parameters to configure the UE.
  • the parameters on each Band include carrier parameters on each carrier in the Band.
  • the UE can also report multiple sets of carrier parameters, and the number of sets of carrier parameters must be greater than or equal to the number of carriers supported by the UE on the Band.
  • the base station may configure any set of carrier parameters of the Band reported by the UE to any carrier in the Band. That is, the Band-level parameters reported by the UE correspond to the Bands in the BC, but the carrier parameters of the Band have no corresponding relationship with the carriers of the Band, and can be configured for any carrier in the Band.
  • the coherence capability reported by the UE is fixed, so that when the UE switches the radio frequency chain between different Bands or carriers included in different Bands, it cannot make full use of the frequency band or carrier. High coherence affects the throughput of uplink transmission.
  • switching radio frequency chains between frequency bands or carriers can be understood as UE adjusting the parameters of the radio frequency chain so that the UE can use the radio frequency chain to switch from the first frequency band to the second frequency band for uplink transmission, or use the radio frequency chain Switch from the first carrier to the second carrier for uplink transmission. If multiple frequency bands or multiple carriers are close in frequency, the multiple frequency bands or multiple carriers may simultaneously use the same radio frequency chain for transmission.
  • Figure 2 is a schematic flowchart of a communication method provided in the embodiment of the present application, the method includes but is not limited to the following steps:
  • the UE acquires first configuration information, where the first configuration information is used to indicate that the coherence on at least one carrier is allowed to be indicated through downlink control information DCI or a medium access control control element MAC CE.
  • the base station may send the first configuration information to the UE, and the UE receives the first configuration information sent by the base station.
  • the first configuration information may be included in the RRC signaling, and the first configuration information may be a parameter in the RRC signaling.
  • the UE can know whether the base station allows the UE to change the dynamic coherence, so that the UE can determine whether to recognize the signaling for dynamically changing the coherence.
  • this parameter For example, if the value of this parameter is 1 or True, it means that DCI or MAC CE is allowed to indicate the coherence on at least one carrier; if the value of this parameter is 0 or False, it means that DCI or MAC CE is not allowed to indicate at least one carrier on coherence.
  • the UE may report the parameters corresponding to the frequency band combination (band combination, BC) to the base station, including the following two optional methods:
  • the UE sends multiple sets of parameters corresponding to the first frequency band combination to the base station, and each set of parameters in the multiple sets of parameters includes the coherence capability of each frequency band in the first frequency band combination supported by the UE,
  • the coherence capability of at least one frequency band in the at least two groups of parameters corresponding to the first frequency band combination is different. Since the coherence capability on at least one frequency band in the at least two groups of parameters corresponding to the first frequency band combination is different, the base station can learn that the coherence capability of the UE on at least one frequency band in the first frequency band combination may change, and the base station may dynamically or semi- The coherence on at least one frequency band of the first frequency band combination is switched in a static manner.
  • the base station UE can be notified of the coherence status of other frequency bands or other carriers when coherence dynamic switching can be performed in one frequency band or one carrier.
  • explicit signaling is avoided to indicate that the UE can perform dynamic coherence switching, which saves signaling overhead.
  • each group of parameters in the multiple groups of parameters may also include one or more of the following: number of transmission layers supported by the UE, subcarrier spacing and bandwidth.
  • a BC includes at least frequency band A (Band A) and frequency band B (Band B), and the UE reports at least two sets of parameters corresponding to the BC to the base station, the first set of parameters: the coherence of Band A
  • the performance capability is partially coherent (the radio frequency chains on this frequency band are radio frequency chain 1 and radio frequency chain 2)
  • the coherence capability of Band B is non-coherent (the radio frequency chains on this frequency band are radio frequency chain 3 and radio frequency chain 4)
  • the second Group parameters The coherence capability of Band A is non-coherent (the RF chains on this frequency band are RF chain 3 and RF chain 4), and the coherence capability of Band B is partially coherent (the RF chains on this frequency band are RF chain 1 and RF chain 4).
  • radio frequency chain 1 and radio frequency chain 2 of the UE share one LO
  • radio frequency chain 3 and radio frequency chain 4 do not share one LO
  • radio frequency chain 3 uses one LO
  • radio frequency chain 4 uses another LO.
  • the coherence capabilities of frequency band A and frequency band B are different, and the base station can learn that the coherence capability of the UE on frequency band A and frequency band B can change, and the base station can switch between frequency band A and frequency band dynamically or semi-statically. Or band B coherence.
  • 8Tx level coherence means that all 8 Tx are coherent
  • 4Tx level coherence means that all 4 Tx in two groups of 4Tx are coherent
  • 2Tx level coherence means that 2 Tx in four groups of 2Tx are coherent
  • Coherent, non-coherent means that all 8 Tx are non-coherent.
  • a UE with 2Tx-level coherence cannot be configured as 8Tx and 4Tx-level coherent, and so on.
  • 4Tx-level coherence means that among all the Tx of a Band, at least one of the 4 Tx in the Tx group containing 4 Tx is all coherent, and any Tx in the Tx group with more than 4 Tx is incomplete relevant.
  • 2Tx level coherence means that at least one Tx in a Tx group containing 2 Tx in all Tx of a Band is coherent, any Tx in a Tx group with more than 2 Tx is incompletely coherent, and so on .
  • the number of uplink ports is 4, 4Tx level coherence corresponds to full coherence, and 2Tx level corresponds to partial coherence.
  • a BC includes at least frequency band A (Band A) and frequency band B (Band B), and the UE reports at least two sets of parameters corresponding to the BC to the base station, the first set of parameters: the coherence of Band A
  • the performance capability is 4Tx-level coherence
  • Band A corresponds to RF chain 1, RF chain 2, RF chain 3, and RF chain 4
  • the coherence capability of Band B is 2Tx-level coherence
  • Band B corresponds to RF chain 5, RF chain 6, and RF chain 7 and RF chain 8.
  • the second set of parameters the coherence capability of Band A is 2Tx-level coherence, and Band A corresponds to RF chain 5, RF chain 6, RF chain 7, and RF chain 8; the coherence capability of Band B is 4Tx-level coherence, and Band B corresponds to RF Chain 1, RF Chain 2, RF Chain 3, and RF Chain 4.
  • radio frequency chain 1, radio frequency chain 2, radio frequency chain 3 and radio frequency chain 4 of the UE share LO1; radio frequency chain 5 and radio frequency chain 6 share LO2; radio frequency chain 7 and radio frequency chain 8 share LO3.
  • the base station can learn that the coherence capability of the UE on frequency band A and frequency band B can change, and the base station can switch between frequency band A and frequency band dynamically or semi-statically. Or band B coherence.
  • the highest coherence capabilities of at least two frequency bands in the first frequency band combination are located in different two groups of parameters among the multiple groups of parameters.
  • the first set of parameters the coherence capability of Band A is 4Tx-level coherence, and the coherence capability of Band B is 2Tx-level coherence
  • the second set of parameters Band The coherence capability of A is 2Tx level coherence
  • the coherence capability of Band B is 4Tx level coherence.
  • Band A's highest coherence capabilities are in the first set of parameters, while Band B's highest coherence capabilities are in the second set of parameters.
  • the highest coherence capabilities of Band A and Band B are located in two sets of parameters respectively. In this way, the base station can learn that the highest coherence capabilities of the UE in Band A and Band B are respectively located in two sets of parameters, and the coherence capabilities on Band A or Band B can change, and the base station can switch the first one in a dynamic or semi-static manner. Coherence on Band A or Band B of the band combination.
  • the coherence of a frequency band may be understood as the coherence of carriers included in the frequency band.
  • the coherence of a carrier can also be understood as the coherence of the frequency band to which the carrier belongs.
  • the UE may send second indication information to the base station, where the second indication information is used to indicate that the UE supports switching coherence of the frequency band to which the at least one carrier belongs. That is to say, the second indication information may be used to indicate that the UE supports dynamic switching or dynamically changes the coherence of the frequency band to which at least one carrier belongs.
  • the base station can know the UE's coherence capability more clearly, reduce the process of the base station judging whether the UE supports dynamic switching coherence, and simplify the judgment process.
  • the UE reports two sets of parameters corresponding to a BC.
  • the coherence capability of Band B is 2Tx-level coherence
  • the second set of parameters the coherence capability of Band A It is 2Tx level coherent
  • the coherence capability of Band B is 2Tx level coherent.
  • the coherence capabilities of Band A are different in the two groups of parameters. Among them, carrier 1 belongs to Band A, and carrier 2 belongs to Band B.
  • the UE may report the second indication information to the base station, where the second indication information is used to indicate that the UE supports dynamic switching of the coherence of the Band A to which the carrier 1 belongs.
  • the UE reports two sets of parameters corresponding to a BC.
  • the first set of parameters the coherence capability of Band A is 4Tx-level coherence, and the coherence capability of Band B is 2Tx-level coherence; the second set of parameters: the coherence of Band A
  • the capability is 2Tx level coherent, and the coherence capability of Band B is 4Tx level coherent.
  • the coherence capabilities of Band A in the two groups of parameters are different, and the coherence capabilities of Band B in the two groups of parameters are also different.
  • the UE may report second indication information to the base station, where the second indication information is used to indicate that the UE supports dynamic switching of the coherence of Band A to which carrier 1 belongs and/or the coherence of Band B to which carrier 2 belongs.
  • a second optional manner the UE sends at least one set of parameters corresponding to the first frequency band combination to the base station, where the at least one set of parameters includes coherence capabilities of at least two frequency bands in the first frequency band combination supported by the UE,
  • the coherence capability on the at least two frequency bands cannot be the coherence capability indicated by the at least one set of parameters at the same time.
  • the UE reports a set of parameters corresponding to a BC, including: the coherence capability of Band A is 4Tx-level coherence, and the coherence capability of Band B is 4Tx-level coherence.
  • 4Tx level coherence is the highest coherence capability of Band A and the highest coherence capability of Band B.
  • the 4Tx-level coherence of Band A and the 4Tx-level coherence of Band B cannot be achieved at the same time. Reporting parameters in this manner can reduce the number of parameters reported by the UE.
  • the 4Tx-level coherence of Band A and the 4Tx-level coherence of Band B cannot be achieved at the same time. It can be understood that Band A and Band B cannot be 4Tx-level coherent at the same time.
  • both carrier A and carrier B are configured with 4Tx-level coherence, but the UE does not want the base station to instruct the UE to schedule 4-port transmission on the two carriers at the same time through DCI or MAC CE, or 4Tx-level coherent and greater than 2Tx-level coherent transmission. That is, the UE does not want the base station to indicate to the UE that the number of non-zero elements in any column of the codebook used by carrier A and carrier B at the same time is greater than 2 through DCI or MAC CE.
  • the coherence of Band A of the UE is 4Tx level coherence at the first time
  • the coherence of Band B cannot be 4Tx level coherence at the first time.
  • the coherence of Band B can be 4Tx level coherence.
  • the UE sends third indication information to the base station, where the third indication information is used to indicate that the coherence on the at least two frequency bands cannot be the coherence capability indicated by the at least one set of parameters at the same time.
  • the third indication information may be an indication field, or a set including at least two frequency bands, and coherence capabilities of at least two frequency bands in the set cannot be achieved at the same time.
  • a BC contains at least frequency band A (Band A) and frequency band B (Band B), and the UE reports at least a set of parameters corresponding to the BC to the base station:
  • the coherence capability of Band A is 4Tx level coherence (when the frequency band on the When the radio frequency chain is radio frequency chain 1, radio frequency chain 2, radio frequency chain 3 and radio frequency chain 4), 4Tx level coherence is the highest coherence capability of Band A
  • the coherence capability of Band B is 4Tx level coherence (when the radio frequency on this frequency band When the chain is radio frequency chain 1, radio frequency chain 2, radio frequency chain 3 and radio frequency chain 4), 4Tx level coherence is the highest coherence capability of Band B.
  • the UE may send third indication information to the base station, informing the base station that the coherence between Band A and Band B cannot be 4Tx level coherence at the same time. By reporting the third indication information, the base station can know the coherence capability of the UE more clearly, reducing the judgment process of the base station.
  • the radio frequency chain 1, radio frequency chain 2, radio frequency chain 3 and radio frequency chain 4 of the UE correspond to one LO.
  • the third indication information may be an indication field, or a set including Band A and Band B, in which the coherence capability of Band A and Band B cannot be achieved at the same time.
  • the coherence of any one of the at least two frequency bands in the first frequency band combination is less than the reported coherence capability
  • the coherence of the at least two frequency bands may be equal to that of the at least one frequency band at the same time.
  • the highest coherence capability of Band A and Band B is 4Tx level coherence
  • the current coherence of Band A is 4Tx level coherence
  • the current coherence of Band B is 2Tx level coherence
  • the current 4Tx level coherence of Band A and Band B's current 2Tx-level coherence can be achieved at the same time.
  • the current coherence of Band A is 4Tx-level coherence
  • the current coherence of Band B is 4Tx-level coherence
  • the current 4Tx-level coherence of Band A and the current 4Tx-level coherence of Band B cannot be achieved at the same time.
  • the current coherence of Band A is 4Tx-level coherence
  • the current coherence of Band B cannot be 4Tx-level coherence
  • the current coherence of Band B can be 2Tx-level coherent or non-coherent.
  • the base station may send second configuration information to the UE, where the second configuration information is used to configure the coherence of at least two carriers, the at least two carriers include the at least one carrier, and the at least two carriers
  • the coherence of may be the highest coherence of at least two frequency bands in the frequency band combination to which the at least two carriers belong.
  • the highest coherence of the at least two frequency bands is included in at least two groups of parameters reported by the UE, and the coherence capabilities of at least two frequency bands in the at least two groups of parameters are different.
  • the highest coherence of the at least two frequency bands is included in a set of parameters reported by the UE, and the coherence capabilities of the at least two frequency bands in the set of parameters cannot be achieved at the same time.
  • carrier 1 belongs to Band A
  • carrier 2 belongs to Band B.
  • the base station can configure the coherence of carrier 1 and carrier 2 to be 4Tx-level coherence through the second configuration information.
  • 4Tx-level coherence is the highest coherence reported by Band A and Band B
  • the 4Tx-level coherence of carrier 1 and the 4Tx-level coherence of carrier 2 cannot be achieved at the same time.
  • the coherence of the carrier can be flexibly changed through DCI or MAC CE without exceeding the coherence of the carrier configured by the base station.
  • the at least two carriers are carriers supporting uplink Tx switching.
  • the at least two carriers are carriers that can support dynamic switching of coherence.
  • the coherence capability of at least one frequency band in at least two groups of parameters corresponding to the combination of frequency bands to which the at least two carriers belong is different.
  • the coherence on the frequency bands to which the at least two carriers belong cannot be the coherence capability indicated by the at least one set of parameters at the same time.
  • the base station does not need to configure the coherence of the at least two carriers for the UE to be the highest coherence of at least two frequency bands in the frequency band combination to which the at least two carriers belong without according to the parameters corresponding to the frequency band combination reported by the UE.
  • the first set of parameters reported by the UE is: the coherence capability of Band A is 4Tx-level coherence
  • the coherence capability of Band B is 2Tx-level coherence
  • the second set of parameters is: the coherence capability of Band A is 2Tx-level coherence
  • the coherence capability of B is 4Tx level coherence.
  • the base station may configure the coherence of carrier 1 to be 4Tx level coherence for the UE, and configure the coherence of carrier 2 to be 4Tx level coherence.
  • the 4Tx-level coherence of carrier 1 and the 4Tx-level coherence of carrier 2 have nothing to do with the parameters reported by the UE, that is, the coherence of the carrier configured by the base station to the UE is neither the first set of parameters nor the second set of parameters, but two sets of parameters The highest coherence in each frequency band.
  • carrier 1 belongs to Band A
  • carrier 2 belongs to Band B.
  • the base station may also configure the coherence of at least two carriers for the UE according to parameters corresponding to the frequency band combination reported by the UE.
  • the UE reports a set of parameters, including: the coherence capability of Band A is 4Tx-level coherence, and the coherence capability of Band B is 2Tx-level coherence.
  • the base station may configure the coherence of carrier 1 to be 4Tx level coherence for the UE, and configure the coherence of carrier 2 to be 2Tx level coherence.
  • the 4Tx-level coherence of carrier 1 and the 2Tx-level coherence of carrier 2 correspond to the parameters reported by the UE.
  • carrier 1 belongs to Band A
  • carrier 2 belongs to Band B.
  • the first configuration information and the second configuration information may be two different signalings, for example, the first configuration information may be included in the RRC signaling, and the second configuration information may be included in the second RRC signaling .
  • the first configuration information and the second configuration information may be included in the same RRC signaling.
  • a field in the RRC signaling carries the second configuration information
  • the second configuration information is a special value (the special value can be 0 or 1, True or False, or special coherence), and the special value indicates that DCI is allowed to pass
  • the MAC CE indicates coherence on at least one carrier.
  • the first configuration information is implicitly indicated by using the second configuration information to indicate that coherence of at least two configured carriers cannot be achieved at the same time.
  • the first configuration information is implicitly indicated by configuring the coherence of at least two carriers as the highest coherence that cannot be achieved at the same time through the second configuration information.
  • the highest coherence of the at least two carriers may be reported separately through at least two sets of parameters, or may be reported through the same set of parameters.
  • the UE reports a set of parameters corresponding to a BC, including: the coherence capability of Band A is 4Tx-level coherence, the coherence capability of Band B is 4Tx-level coherence, and the coherence capability of Band A and Band B cannot be at the same time is up.
  • the two sets of parameters corresponding to a BC reported by the UE are: the coherence capability of Band A is 4Tx level coherence, the coherence capability of Band B is 2Tx level coherence; the coherence capability of Band A is 2Tx level coherence, and the coherence capability of Band B
  • the coherence capability is 4Tx level coherence.
  • the base station configures the coherence of Band A as 4Tx level coherence for the UE, and configures the coherence of Band B as 4Tx level coherence.
  • the 4Tx level coherence of Band A and the 4Tx level coherence of Band B cannot be achieved at the same time.
  • the first configuration information is implicitly indicated, that is, the coherence on at least one carrier is indicated through DCI or MAC CE. That is, the implicit indication can dynamically change the coherence on at least one carrier through DCI or MAC CE.
  • the UE may obtain the first configuration information implicitly through the indication of the second configuration information.
  • the UE receives the DCI or the MAC CE from the base station, where the DCI or the MAC CE includes first indication information, and the first indication information is used to indicate the coherence of the at least one carrier, the The coherence of the at least one carrier does not exceed the coherence capability supported by the frequency band to which the at least one carrier belongs.
  • the first indication information may include the following indication modes:
  • the first indication information carries the highest bit in the indication field in the DCI, the indication field in the DCI, or the bits in the indication field in the DCI, or the time domain resource allocation information element a row.
  • the time domain resource allocation information element may be a PUSCH time domain resource allocation information element (PUSCH-Time Domain Resource Allocation) or a PUSCH allocation information element (PUSCH-Allocation).
  • the coherence of carrier 1 and carrier 2 is configured through the second configuration information to be 4Tx-level coherence, and 4Tx-level coherence is the highest coherence between Band A and Band B, and cannot be achieved at the same time.
  • the coherence between carrier 1 and carrier 2 is dynamically switched through the indication field in DCI. Before switching the coherence between carrier 1 and carrier 2, the coherence of carrier 1 is 2Tx level coherence, and the coherence of carrier 2 is 4Tx level coherence. After the coherence of carrier 1 and carrier 2 is switched, the coherence of carrier 1 is 4Tx level coherence, and the coherence of carrier 2 is 2Tx level coherence.
  • the coherence of carrier 1 and carrier 2 is configured to be 4Tx level coherence through the second configuration information, and 4Tx level coherence is the highest coherence between Band A and Band B, and cannot be achieved at the same time.
  • the coherence of carrier 1 and carrier 2 is dynamically switched through the indication field in DCI. Before switching the coherence of carrier 1 and carrier 2, the coherence of carrier 1 is 4Tx level coherence, and the coherence of carrier 2 is 4Tx level coherence, and The 4Tx level coherence of carrier 1 and the 4Tx level coherence of carrier 2 cannot be achieved at the same time. After the coherence of carrier 1 and carrier 2 is switched, the coherence of carrier 1 is 4Tx level coherence, and the coherence of carrier 2 is 2Tx level coherence.
  • a column in the PUSCH time-domain resource allocation information element indicates coherence
  • the base station may configure one or more PUSCH time-domain resource allocation information elements for the UE, and part of the one or more PUSCH time-domain resource allocation information elements or All may include coherence.
  • the base station selects a PUSCH time-domain resource allocation information element through DCI
  • the coherence of the carrier is determined by the coherence indication in the selected PUSCH time-domain resource allocation information element.
  • PUSCH allocation cells are also similar. This approach may not increase the size of the DCI.
  • the first indication information is indicated by the transmission precoding matrix in the DCI indicating the value range of the value indicated by the TPMI field, or the value range of the value indicated by the precoding information and layer number field .
  • the coherence of the carrier 1 is the second coherence
  • the coherence of the carrier 2 is the third coherence.
  • the range indicated by the TPMI field of carrier 1 belongs to the value range corresponding to the first coherence, but not the value range corresponding to the second coherence, so the coherence of carrier 1 changes from the second The coherence switches to the first coherency.
  • the value interval indicated by the TPMI field of carrier 2 belongs to the value range corresponding to the third coherence, so the coherence of carrier 2 is still the third coherence.
  • the second coherence is smaller than the first coherence. "Less than" can also be understood as "less than”.
  • the first coherence is full coherence
  • the second coherence is partial coherence
  • the first coherence is partial coherence
  • the second coherence is non-coherence. Since non-coherent coherence is lower than partial coherence, the second coherence is lower than the first coherence.
  • both carrier 1 and carrier 2 are configured as 4Tx-level coherence (or fully coherent), and the 4Tx-level coherence of carrier 1 and the 4Tx-level coherence of carrier 2 cannot be achieved at the same time (or after receiving Before DCI, carrier 1 is 2Tx-level coherent and carrier 2 is 4Tx-level coherent), and the maximum number of transmission layers on carrier 1 and carrier 2 is 2 or 3 or 4 (corresponding to Table 11).
  • the precoding information of carrier 1 and the value indicated by the layer number field range from 32 to 61, and the precoding information of carrier 2 and the value indicated by the layer number field range from 0 to 31 Between, it means that the coherence of the UE on carrier 1 is switched to 4Tx level coherence (or full coherence), and the coherence of carrier 2 is switched to 2Tx level coherence (or partial coherence). In this way, the coherence switching of carriers is realized through DCI indication .
  • carrier 1 and carrier 2 are carriers that can support uplink Tx switching.
  • carrier 1 and carrier 2 are carriers that can support dynamic switching of coherence.
  • the frequency bands to which the carrier 1 and the carrier 2 belong have different coherence capabilities in at least two groups of parameters.
  • the UE indicates that the coherence capabilities of the frequency band to which the carrier 1 belongs and the frequency band to which the carrier 2 belongs cannot be achieved at the same time.
  • the UE After the UE receives the DCI or MAC CE from the base station, when the current coherence of the at least one carrier is less than the coherence of the at least one carrier indicated by the first indication information, the UE passes through at least the first After a period of time, send uplink data to the base station on the at least one carrier.
  • the UE if the coherence of the UE on a carrier during the current transmission is greater than the coherence of the UE on the carrier during the last transmission, the UE generates a transmission interruption on the carrier for at least the first duration. If the coherence of each of the multiple carriers of the UE in a carrier group at the time of this transmission is not greater than the coherence of the respective carriers of the UE in the carrier group at the time of the previous transmission, then in the carrier group There will be no interruption of transmission on multiple carriers.
  • the carrier group is configured by the base station, and the carriers in the carrier group can switch Tx between each other, or can switch coherence.
  • the carriers in the carrier group are the carriers included in the frequency band reported by the UE that can perform coherence switching or Tx switching.
  • the first duration is the duration of carrier switching, the duration of switching coherence, the larger value of the duration of switching carriers and the duration of switching coherence, or a predefined duration.
  • the transmission of the UE is interrupted within the first time period, and cannot send uplink data to the base station within the first time period. If the current coherence of the at least one carrier is greater than or equal to the coherence of the at least one carrier indicated by the first indication information, the UE may send uplink data to the base station within the first duration, that is, before the UE performs uplink transmission No interruption of transmission occurs on the at least one carrier.
  • the coherence of carrier 1 is 2Tx level coherence. After receiving the DCI, it is determined that the coherence of carrier 1 indicated by the first indication information is 4Tx-level coherence. Since 2Tx-level coherence is smaller than 4Tx-level coherence, after the Tx switching or coherence switching of carrier 1 is completed within the first duration, the Uplink data can be sent to the base station on carrier 1.
  • the coherence of at least one carrier remains unchanged. For example, if the coherence of carrier 1 is 4Tx-level correlation and the coherence of carrier 2 is 2Tx-level correlation during the last transmission, but there is no transmission interruption of the first duration or the UE does not perform coherence switching or Tx switching, then in the next transmission Even if only carrier 2 is scheduled during transmission, the coherence of carrier 2 is still 2Tx-level coherence, not 4Tx-level coherence.
  • the coherence of at least one carrier is indicated by DCI or MAC CE, and the coherence of at least one carrier is switched dynamically or semi-statically, making full use of the high coherence between multiple transmission channels, allowing as many The UE can transmit with high coherence between different frequency bands, improving the throughput of uplink transmission.
  • the methods and operations implemented by the terminal equipment can also be implemented by components (such as chips or circuits) that can be used in the terminal equipment, and the methods and operations implemented by the network equipment can also be implemented by A component (such as a chip or a circuit) implementation that can be used in a network device.
  • components such as chips or circuits
  • a component such as a chip or a circuit
  • each network element such as a transmitter device or a receiver device
  • each network element includes a corresponding hardware structure and/or software module for performing each function in order to realize the above functions.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software drives hardware depends on the specific application and design constraints of the technical solution. Skilled artisans may use different methods to implement the described functions for each specific application, but such implementation should not be regarded as exceeding the scope of the present application.
  • the embodiments of the present application may divide the functional modules of the terminal device or network device according to the above method example, for example, each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or in the form of software function modules. It should be noted that the division of modules in the embodiment of the present application is schematic, and is only a logical function division, and there may be other division methods in actual implementation. In the following, the description will be made by taking the division of each functional module corresponding to each function as an example.
  • FIG. 5 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the communication device may include a receiving module 501 and a sending module 502 .
  • the receiving module 501 and the sending module 502 can communicate with the outside.
  • the receiving module 501 and the sending module 502 may also be referred to as a communication interface, a transceiver unit or a transceiver module.
  • the receiving module 501 and the sending module 502 may be used to perform the actions performed by the terminal device in the above method embodiments.
  • the receiving module 501 and the sending module 502 may also be referred to as a transceiver module or a transceiver unit (including a receiving unit and/or a sending unit), which are respectively used to perform the receiving and sending steps of the terminal device in the above method embodiments.
  • the communication device may implement the steps or processes corresponding to the execution of the terminal device in the above method embodiments, for example, it may be the terminal device, or a chip or circuit configured in the terminal device.
  • the receiving module 501 and the sending module 502 are configured to perform transceiving-related operations on the terminal device side in the above method embodiments.
  • a receiving module configured to obtain first configuration information, where the first configuration information is used to indicate that the coherence on at least one carrier is indicated through downlink control information DCI or a medium access control control element MAC CE;
  • the receiving module is further configured to receive the DCI or the MAC CE from the network device, the DCI or the MAC CE includes first indication information, and the first indication information is used to indicate the coherence of the at least one carrier The coherence of the at least one carrier does not exceed the coherence capability supported by the frequency band to which the at least one carrier belongs.
  • the sending module 502 is configured to send multiple sets of parameters corresponding to the first frequency band combination to the network device, where each set of parameters in the multiple sets of parameters includes the parameters in the first frequency band combination supported by the terminal device.
  • each set of parameters in the multiple sets of parameters includes the parameters in the first frequency band combination supported by the terminal device.
  • the coherence capability of at least one frequency band in the at least two groups of parameters corresponding to the first frequency band combination is different.
  • the highest coherence capabilities of at least two frequency bands in the first frequency band combination are located in different two groups of parameters among the multiple groups of parameters.
  • the sending module 502 is configured to send at least one set of parameters corresponding to the first frequency band combination to the network device, where the at least one set of parameters includes at least two parameters in the first frequency band combination supported by the terminal device.
  • the coherence capability of the frequency bands, the coherence capabilities on the at least two frequency bands cannot be the coherence capability indicated by the at least one set of parameters at the same time.
  • the sending module 502 is further configured to send second indication information to the network device, where the second indication information is used to indicate that the terminal device supports switching coherence of the frequency band to which the at least one carrier belongs.
  • the receiving module 501 is further configured to receive second configuration information from the network device, the second configuration information is used to configure the coherence of at least two carriers, the at least two carriers include the at least A carrier, the coherence of the at least two carriers is the highest coherence of at least two frequency bands in the combination of frequency bands to which the at least two carriers belong.
  • the first indication information carries the highest bit in the indication field in the DCI, or a column in the time domain resource allocation information element.
  • the first indication information is indicated by the range of values indicated by the transmit precoding matrix indication TPMI field in the DCI, or the value range of values indicated by the precoding information and layer number fields.
  • the sending module 502 is configured to: when the current coherence of the at least one carrier is smaller than the coherence of the at least one carrier indicated by the first indication information, after at least a first duration, in the Send uplink data to the network device on at least one carrier, where the first duration is the greater of the duration of switching carriers, the duration of switching coherence, the duration of switching carriers, and the duration of switching coherence value, or a predefined duration.
  • each module may also refer to the corresponding description of the method embodiment shown in FIG. 2 to execute the methods and functions performed by the terminal device in the foregoing embodiments.
  • FIG. 6 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the communication device may include a sending module 601 and a receiving module 602, and the sending module 601 and the receiving module 602 may communicate with the outside.
  • the sending module 601 and the receiving module 602 may also be referred to as a communication interface, a transceiver module or a transceiver unit.
  • the sending module 601 and the receiving module 602 may be used to perform actions performed by the network device in the above method embodiments.
  • the sending module 601 and the receiving module 602 may also be called a transceiver module or a transceiver unit (including a sending unit and/or a receiving unit), and are respectively used to perform the steps of sending and receiving by the network device in the above method embodiments.
  • the communication device may implement the steps or processes corresponding to the execution of the network device in the above method embodiments, for example, it may be a network device, or a chip or a circuit configured in the network device.
  • the sending module 601 and the receiving module 602 are configured to perform transceiving-related operations on the network device side in the above method embodiments.
  • the sending module 601 is configured to send first configuration information to the terminal device, where the first configuration information is used to indicate that the coherence on at least one carrier is indicated through downlink control information DCI or a media access control control unit MAC CE;
  • the sending module 601 is further configured to send the DCI or the MAC CE to the terminal device, the DCI or the MAC CE includes first indication information, and the first indication information is used to indicate the at least one carrier The coherence of the at least one carrier does not exceed the coherence capability supported by the frequency band to which the at least one carrier belongs.
  • the receiving module 602 is configured to receive multiple sets of parameters corresponding to the first frequency band combination from the terminal device, where each set of parameters in the multiple sets of parameters includes the first frequency band combination supported by the terminal device
  • the coherence capability of each frequency band in the first frequency band combination is different in the coherence capability of at least one frequency band in the at least two groups of parameters corresponding to the first frequency band combination.
  • the highest coherence capabilities of at least two frequency bands in the first frequency band combination are located in different two groups of parameters among the multiple groups of parameters.
  • the receiving module 602 is configured to receive at least one set of parameters corresponding to the first frequency band combination from the terminal device, where the at least one set of parameters includes at least two parameters in the first frequency band combination supported by the terminal device.
  • the coherence capability of the at least two frequency bands cannot be the coherence capability indicated by the at least one set of parameters at the same time.
  • the receiving module 602 is further configured to receive second indication information from the terminal device, where the second indication information is used to indicate that the terminal device supports switching coherence of the frequency band to which the at least one carrier belongs.
  • the sending module 601 is further configured to send second configuration information to the terminal device, where the second configuration information is used to configure the coherence of at least two carriers, and the at least two carriers include the at least one Carriers, the coherence of the at least two carriers is the highest coherence of at least two frequency bands in the combination of frequency bands to which the at least two carriers belong.
  • the first indication information carries the highest bit in the indication field in the DCI, or a column in the time domain resource allocation information element.
  • the first indication information is indicated by the range of values indicated by the transmit precoding matrix indication TPMI field in the DCI, or the value range of values indicated by the precoding information and layer number fields.
  • the receiving module 602 is configured to, when the current coherence of the at least one carrier is smaller than the coherence of the at least one carrier indicated by the first indication information, receive the message that the terminal device has passed at least a first duration The uplink data later sent on the at least one carrier, wherein the first duration is the greater of the duration of switching carriers, the duration of switching coherence, the duration of switching carriers, and the duration of switching coherence value, or a predefined duration.
  • each module may also refer to the corresponding description of the method embodiment shown in FIG. 2 to execute the methods and functions performed by the network device in the above embodiments.
  • FIG. 7 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • the terminal device may be applied to the system shown in FIG. 1 to perform the functions of the terminal device in the foregoing method embodiments, or implement the steps or processes executed by the terminal device in the foregoing method embodiments.
  • the terminal device includes a processor 701 and a transceiver 702 .
  • the terminal device further includes a memory 703 .
  • the processor 701, the transceiver 702, and the memory 703 can communicate with each other through an internal connection path, and transmit control and/or data signals. Call and run the computer program to control the transceiver 702 to send and receive signals.
  • the terminal device may further include an antenna, configured to send the uplink data or uplink control signaling output by the transceiver 702 through wireless signals.
  • the processor 701 and the memory 703 may be combined into a processing device, and the processor 701 is configured to execute the program codes stored in the memory 703 to realize the above functions.
  • the memory 703 may also be integrated in the processor 701 , or be independent of the processor 701 .
  • the above-mentioned transceiver 702 may correspond to the receiving module and the sending module in FIG. 5 , and may also be called a transceiver unit or a transceiver module.
  • the transceiver 702 may include a receiver (or receiver, receiving circuit) and a transmitter (or transmitter, transmitting circuit). Among them, the receiver is used to receive signals, and the transmitter is used to transmit signals.
  • the terminal device shown in FIG. 7 can implement various processes involving the terminal device in the method embodiment shown in FIG. 2 .
  • the operations and/or functions of the various modules in the terminal device are respectively for realizing the corresponding processes in the foregoing method embodiments.
  • the above-mentioned processor 701 can be used to execute the actions implemented by the terminal device described in the previous method embodiments, and the transceiver 702 can be used to execute the actions described in the previous method embodiments sent by the terminal device to the network device or received from the network device. action.
  • the transceiver 702 can be used to execute the actions described in the previous method embodiments sent by the terminal device to the network device or received from the network device. action.
  • the processor 701 may be a central processing unit, a general purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic devices, transistor logic devices, hardware components or any combination thereof. It can implement or execute the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor 701 may also be a combination that implements computing functions, such as a combination of one or more microprocessors, a combination of a digital signal processor and a microprocessor, and the like.
  • the communication bus 704 may be a peripheral component interconnection standard PCI bus or an extended industry standard structure EISA bus or the like. The bus can be divided into address bus, data bus, control bus and so on.
  • the communication bus 704 is used to realize connection communication between these components.
  • the transceiver 702 is used for signaling or data communication with other node devices.
  • the memory 703 may include a volatile memory, such as nonvolatile random access memory (nonvolatile random access memory, NVRAM), phase change random access memory (phase change RAM, PRAM), magnetoresistive random access memory (magetoresistive) RAM, MRAM), etc., can also include non-volatile memory, such as at least one magnetic disk storage device, electronically erasable programmable read-only memory (electrically erasable programmable read-only memory, EEPROM), flash memory devices, such as reverse or flash memory (NOR flash memory) or NAND flash memory (NAND flash memory), semiconductor devices, such as solid state disk (solid state disk, SSD) and so on.
  • nonvolatile random access memory nonvolatile random access memory
  • phase change RAM phase change RAM
  • PRAM phase change RAM
  • MRAM magnetoresistive random access memory
  • MRAM magnetoresistive random access memory
  • non-volatile memory such as at least one magnetic disk storage device, electronically erasable programmable read-only memory (electrically era
  • the memory 703 may also be at least one storage device located away from the aforementioned processor 701 .
  • a set of computer program codes or configuration information may optionally be stored in the memory 703.
  • the processor 701 may also execute programs stored in the memory 703 .
  • the processor may cooperate with the memory and the transceiver to execute any method and function of the terminal device in the foregoing application embodiments.
  • FIG. 8 is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • the network device can be applied to the system shown in FIG. 1 to execute the functions of the network device in the above method embodiments, or implement the steps or processes performed by the network device in the above method embodiments.
  • the network device includes a processor 801 and a transceiver 802 .
  • the network device further includes a memory 803 .
  • the processor 801, the transceiver 802, and the memory 803 can communicate with each other through an internal connection path, and transmit control and/or data signals.
  • the memory 803 is used to store computer programs, and the processor 801 is used to obtain the Call and run the computer program to control the transceiver 802 to send and receive signals.
  • the network device may further include an antenna, configured to send the uplink data or uplink control signaling output by the transceiver 802 through wireless signals.
  • the processor 801 and the memory 803 may be combined into a processing device, and the processor 801 is configured to execute the program codes stored in the memory 803 to realize the above functions.
  • the memory 803 may also be integrated in the processor 801 , or be independent of the processor 801 .
  • the above-mentioned transceiver 802 may correspond to the receiving module and the sending module in FIG. 6 , and may also be called a transceiver unit or a transceiver module.
  • the transceiver 802 may include a receiver (or called a receiver, a receiving circuit) and a transmitter (or called a transmitter, a transmitting circuit). Among them, the receiver is used to receive signals, and the transmitter is used to transmit signals.
  • the network device shown in FIG. 8 can implement various processes involving the network device in the method embodiment shown in FIG. 2 .
  • the operations and/or functions of the various modules in the network device are respectively for realizing the corresponding processes in the foregoing method embodiments.
  • the above-mentioned processor 801 can be used to execute the actions implemented by the network device described in the previous method embodiments, and the transceiver 802 can be used to execute the actions described in the previous method embodiments sent by the network device to the terminal device or received from the terminal device. action.
  • the transceiver 802 can be used to execute the actions described in the previous method embodiments sent by the network device to the terminal device or received from the terminal device. action.
  • the processor 801 may be various types of processors mentioned above.
  • the communication bus 804 may be a peripheral component interconnection standard PCI bus or an extended industry standard structure EISA bus or the like. The bus can be divided into address bus, data bus, control bus and so on. For ease of representation, only one thick line is used in FIG. 8 , but it does not mean that there is only one bus or one type of bus.
  • the communication bus 804 is used to realize connection communication between these components.
  • the transceiver 802 of the device in the embodiment of the present application is used for signaling or data communication with other devices.
  • the memory 803 may be various types of memory mentioned above.
  • the memory 803 may also be at least one storage device located away from the aforementioned processor 801 .
  • the memory 803 stores a set of computer program codes or configuration information, and the processor 801 executes the programs in the memory 803 .
  • the processor may cooperate with the memory and the transceiver to execute any method and function of the network device in the foregoing application embodiments.
  • An embodiment of the present application also provides a chip system, which includes a processor, configured to support terminal devices or network devices to implement the functions involved in any of the above embodiments, such as generating or processing the SDT data.
  • the chip system may further include a memory, and the memory is used for necessary program instructions and data of a terminal device or a network device.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices. Wherein, the input and output of the chip system respectively correspond to the receiving and sending operations of the terminal device or the network device in the method embodiment.
  • the embodiment of the present application also provides a processing device, including a processor and an interface.
  • the processor may be used to execute the methods in the foregoing method embodiments.
  • the above processing device may be a chip.
  • the processing device may be a field programmable gate array (field programmable gate array, FPGA), an application specific integrated circuit (ASIC), or a system chip (system on chip, SoC). It can be a central processor unit (CPU), a network processor (network processor, NP), a digital signal processing circuit (digital signal processor, DSP), or a microcontroller (micro controller unit) , MCU), can also be a programmable controller (programmable logic device, PLD) or other integrated chips.
  • CPU central processor unit
  • NP network processor
  • DSP digital signal processor
  • microcontroller micro controller unit
  • PLD programmable logic device
  • each step of the above method can be completed by an integrated logic circuit of hardware in a processor or an instruction in the form of software.
  • the steps of the methods disclosed in connection with the embodiments of the present application may be directly implemented by a hardware processor, or implemented by a combination of hardware and software modules in the processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware. To avoid repetition, no detailed description is given here.
  • the processor in the embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
  • each step of the above-mentioned method embodiments may be completed by an integrated logic circuit of hardware in a processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (DSP), an application-specific integrated circuit (ASIC), a field-programmable gate array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components .
  • DSP digital signal processor
  • ASIC application-specific integrated circuit
  • FPGA field-programmable gate array
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly implemented by a hardware decoding processor, or implemented by a combination of hardware and software modules in the decoding processor.
  • the software module may be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the present application also provides a computer program product, the computer program product including: a computer program, when the computer program is run on the computer, the computer is made to execute any of the embodiments shown in FIG. The method of one embodiment.
  • the present application also provides a computer-readable medium, the computer-readable medium stores a computer program, and when the computer program is run on a computer, the computer is made to execute the embodiment shown in FIG. 2 The method of any one of the embodiments.
  • the present application further provides a communication system, which includes the aforementioned one or more terminal devices and one or more network devices.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer instructions are loaded and executed on the computer, the processes or functions according to the embodiments of the present application will be generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server or data center Transmission to another website site, computer, server or data center by wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a high-density digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state disk (solid state disc, SSD)) etc.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a high-density digital video disc (digital video disc, DVD)
  • a semiconductor medium for example, a solid state disk (solid state disc, SSD)
  • the network equipment in each of the above device embodiments corresponds to the terminal equipment and the network equipment or terminal equipment in the method embodiments, and the corresponding modules or units perform corresponding steps, such as the receiving module and the sending module (transceiver) in the method embodiments.
  • the step of receiving or sending, other steps besides sending and receiving may be performed by a processing module (processor).
  • processors for the functions of the specific modules, reference may be made to the corresponding method embodiments. Wherein, there may be one or more processors.
  • a component may be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • an application running on a computing device and the computing device can be components.
  • One or more components can reside within a process and/or thread of execution and a component can be localized on one computer and/or distributed between two or more computers.
  • these components can execute from various computer readable media having various data structures stored thereon.
  • a component may, for example, be based on a signal having one or more packets of data (e.g., data from two components interacting with another component between a local system, a distributed system, and/or a network, such as the Internet via a signal interacting with other systems). Communicate through local and/or remote processes.
  • packets of data e.g., data from two components interacting with another component between a local system, a distributed system, and/or a network, such as the Internet via a signal interacting with other systems.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional module in each embodiment of the present application may be integrated into one processing module, each module may exist separately physically, or two or more modules may be integrated into one module.
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disc and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种通信方法及装置。该方法包括:终端设备获取第一配置信息,所述第一配置信息用于指示允许通过下行控制信息DCI或媒体接入控制控制单元MAC CE指示至少一个载波上的相干性;所述终端设备接收来自网络设备的所述DCI或所述MAC CE,所述DCI或所述MAC CE包括第一指示信息,所述第一指示信息用于指示所述至少一个载波的相干性,所述至少一个载波的相干性不超过所述至少一个载波所属的频段支持的相干性能力采用本申请实施例。充分利用多发射通道之间的高相干性,尽可能多的让终端设备在不同频段之间均可以进行高相干性发送,提高上行传输的吞吐。

Description

一种通信方法及装置
本申请要求于2021年12月23日提交中国国家知识产权局、申请号为202111587123.6、发明名称为“一种通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
不同用户设备(user equipment,UE)的硬件射频设计,会产生上行多个天线满足相干传输或者不满足相干传输的情况。例如UE的天线之间的距离、射频通道放大器、相位控制能力等因素。在上行传输方向,新无线(new radio,NR)支持两种传输模式:基于码本上行物理共享信道(physical uplink shared channel,PUSCH)传输和基于非码本的PUSCH传输。对于基于码本PUSCH传输,基站需要根据UE的相干性能力,对码本使用进行限制。但是,由于UE上报的频段的相干性能力都是固定的,无法充分利用高相干性码本进行上行传输,影响上行传输的吞吐。
发明内容
本申请实施例提供一种通信方法及装置,能够提高上行传输的吞吐。
第一方面,本申请实施例提供了一种通信方法,包括:终端设备获取第一配置信息,所述第一配置信息用于指示允许通过下行控制信息DCI或媒体接入控制控制单元MAC CE指示至少一个载波上的相干性;接收来自网络设备的所述DCI或所述MAC CE,所述DCI或所述MAC CE包括第一指示信息,所述第一指示信息用于指示所述至少一个载波的相干性,所述至少一个载波的相干性不超过所述至少一个载波所属的频段支持的相干性能力。通过DCI或MAC CE指示至少一个载波的相干性,动态或半静态方式切换至少一个载波的相干性,充分利用多发射通道之间的高相干性,尽可能多的让终端设备在不同频段之间进行高相干性发送,提高上行传输的吞吐。
在一种可能的设计中,所述终端设备向所述网络设备发送第一频段组合对应的多组参数,所述多组参数中的每组参数包括所述终端设备支持的所述第一频段组合中每个频段的相干性能力,所述第一频段组合对应的至少两组参数中至少一个频段上的相干性能力不同。通过指示第一频段组合对应的至少两组参数中至少一个频段上的相干性能力不同,网络设备可以获知终端设备在第一频段组合中至少一个频段上的相干性能力可以发生变化,从而通过动态或半静态方式切换第一频段组合的至少一个频段上的相干性。
在另一种可能的设计中,所述第一频段组合中至少两个频段的最高相干性能力位于所述多组参数中不同的两组参数中。这样,网络设备可以获知终端设备在至少两个频段上的最高相干性能力分别位于两组参数中,在至少两个频段上的相干性能力可以发生变化,网络设备可以通过动态或半静态方式切换第一频段组合的至少两个频段上的相干性。
在另一种可能的设计中,所述终端设备向所述网络设备发送第一频段组合对应的至少一 组参数,所述至少一组参数包括所述终端设备支持的所述第一频段组合中至少两个频段的相干性能力,所述至少两个频段上的相干性不能在同一时间为所述至少一组参数指示的相干性能力。通过指示至少两个频段上的相干性不能在同一时间为所述至少一组参数指示的相干性能力,网络设备可以获知终端设备在第一频段组合中至少一个频段上的相干性能力可以发生变化,从而通过动态或半静态方式切换第一频段组合的至少一个频段上的相干性。并且,通过这种方式上报参数,可以使减少UE上报参数的数量。
在另一种可能的设计中,终端设备向所述网络设备发送第二指示信息,所述第二指示信息用于指示所述终端设备支持切换所述至少一个载波所属的频段的相干性。通过直接通知基站UE是否支持动态切换相干性,基站可以更清晰的获知UE的相干性能力,减少基站判断UE是否支持动态切换相干性的过程,使得判断过程更加简单。
在另一种可能的设计中,终端设备接收来自所述网络设备的第二配置信息,所述第二配置信息用于配置至少两个载波的相干性,所述至少两个载波包含所述至少一个载波,所述至少两个载波的相干性为所述至少两个载波所属的频段组合中至少两个频段的最高相干性。通过配置载波的最高相干性,在不超过基站配置的载波的相干性的情况下,通过DCI或MAC CE灵活改变载波的相干性。
在另一种可能的设计中,所述第一指示信息携带在所述DCI中指示域中的最高位、或时域资源分配信元中的一列。通过DCI中指示域中的最高位、或时域资源分配信元中的一列指示第一指示信息,减少数据传输量,提高数据传输效率。
在另一种可能的设计中,所述第一指示信息通过所述DCI中的发射预编码矩阵指示TPMI域指示的数值的取值范围、或预编码信息和层数域指示的数值的取值范围进行指示。通过TPMI域指示的数值的取值范围、或预编码信息和层数域指示的数值的取值范围指示第一指示信息,减少数据传输量,提高数据传输效率。
在另一种可能的设计中,当所述至少一个载波当前的相干性小于所述第一指示信息指示的所述至少一个载波的相干性时,所述终端设备在经过至少第一时长后,在所述至少一个载波上向所述网络设备发送上行数据,其中,所述第一时长为切换载波的时长、切换相干性的时长、所述切换载波的时长和所述切换干性的时长中的较大值、或预先定义的时长。通过在经过至少第一时长后进行上行传输,保障至少一个载波的相干性切换成功。
第二方面,本申请实施例提供了一种通信方法,包括:网络设备向终端设备发送第一配置信息,所述第一配置信息用于指示允许通过下行控制信息DCI或媒体接入控制控制单元MAC CE指示至少一个载波上的相干性;向所述终端设备发送所述DCI或所述MAC CE,所述DCI或所述MAC CE包括第一指示信息,所述第一指示信息用于指示所述至少一个载波的相干性,所述至少一个载波的相干性不超过所述至少一个载波所属的频段支持的相干性能力。通过DCI或MAC CE指示至少一个载波的相干性,动态或半静态方式切换至少一个载波的相干性,充分利用多发射通道之间的高相干性,尽可能多的让终端设备在不同频段之间进行高相干性发送,提高上行传输的吞吐。
在一种可能的设计中,所述网络设备接收来自所述终端设备的第一频段组合对应的多组参数,所述多组参数中的每组参数包括所述终端设备支持的所述第一频段组合中每个频段的相干性能力,所述第一频段组合对应的至少两组参数中至少一个频段上的相干性能力不同。通过指示第一频段组合对应的至少两组参数中至少一个频段上的相干性能力不同,网络设备可以获知终端设备在第一频段组合中至少一个频段上的相干性能力可以发生变化,从而通过动态或半静态方式切换第一频段组合的至少一个频段上的相干性。
在另一种可能的设计中,所述第一频段组合中至少两个频段的最高相干性能力位于所述多组参数中不同的两组参数中。这样,网络设备可以获知终端设备在至少两个频段上的最高相干性能力分别位于两组参数中,在至少两个频段上的相干性能力可以发生变化,网络设备可以通过动态或半静态方式切换第一频段组合的至少两个频段上的相干性。
在另一种可能的设计中,所述网络设备接收来自所述终端设备的第一频段组合对应的至少一组参数,所述至少一组参数包括所述终端设备支持的所述第一频段组合中至少两个频段的相干性能力,所述至少两个频段上的相干性不能在同一时间为所述至少一组参数指示的相干性能力。通过指示至少两个频段上的相干性不能在同一时间为所述至少一组参数指示的相干性能力,网络设备可以获知终端设备在第一频段组合中至少一个频段上的相干性能力可以发生变化,从而通过动态或半静态方式切换第一频段组合的至少一个频段上的相干性。并且,通过这种方式上报参数,可以使减少UE上报参数的数量。
在另一种可能的设计中,所述网络设备接收来自所述终端设备的第二指示信息,所述第二指示信息用于指示所述终端设备支持切换所述至少一个载波所属的频段的相干性。通过直接通知基站UE是否支持动态切换相干性,基站可以更清晰的获知UE的相干性能力,减少基站判断UE是否支持动态切换相干性的过程,使得判断过程更加简单。
在另一种可能的设计中,所述网络设备向所述终端设备发送第二配置信息,所述第二配置信息用于配置至少两个载波的相干性,所述至少两个载波包含所述至少一个载波,所述至少两个载波的相干性为所述至少两个载波所属的频段组合中至少两个频段的最高相干性。通过配置载波的最高相干性,在不超过基站配置的载波的相干性的情况下,通过DCI或MAC CE灵活改变载波的相干性。
在另一种可能的设计中,所述第一指示信息携带在所述DCI中指示域中的最高位、或时域资源分配信元中的一列。通过DCI中指示域中的最高位、或时域资源分配信元中的一列指示第一指示信息,减少数据传输量,提高数据传输效率。
在另一种可能的设计中,所述第一指示信息通过所述DCI中的发射预编码矩阵指示TPMI域指示的数值的取值范围、或预编码信息和层数域指示的数值的取值范围进行指示。通过TPMI域指示的数值的取值范围、或预编码信息和层数域指示的数值的取值范围指示第一指示信息,减少数据传输量,提高数据传输效率。
在另一种可能的设计中,当所述至少一个载波当前的相干性小于所述第一指示信息指示的所述至少一个载波的相干性时,所述网络设备接收所述终端设备在经过至少第一时长后在所述至少一个载波上发送的上行数据,其中,所述第一时长为切换载波的时长、切换相干性的时长、所述切换载波的时长和所述切换干性的时长中的较大值、或预先定义的时长。通过在经过至少第一时长后进行上行传输,保障至少一个载波完成相干性的切换。
第三方面,本申请实施例提供了一种通信装置,所述装置包括:
接收模块,用于获取第一配置信息,所述第一配置信息用于指示允许通过下行控制信息DCI或媒体接入控制控制单元MAC CE指示至少一个载波上的相干性;
所述接收模块,还用于接收来自网络设备的所述DCI或所述MAC CE,所述DCI或所述MAC CE包括第一指示信息,所述第一指示信息用于指示所述至少一个载波的相干性,所述至少一个载波的相干性不超过所述至少一个载波所属的频段支持的相干性能力。
在另一种可能的设计中,所述装置还包括:
发送模块,用于向所述网络设备发送第一频段组合对应的多组参数,所述多组参数中的每组参数包括所述终端设备支持的所述第一频段组合中每个频段的相干性能力,所述第一频 段组合对应的至少两组参数中至少一个频段上的相干性能力不同。
在另一种可能的设计中,所述第一频段组合中至少两个频段的最高相干性能力位于所述多组参数中不同的两组参数中。
在另一种可能的设计中,所述装置还包括:
发送模块,用于向所述网络设备发送第一频段组合对应的至少一组参数,所述至少一组参数包括所述终端设备支持的所述第一频段组合中至少两个频段的相干性能力,所述至少两个频段上的相干性不能在同一时间为所述至少一组参数指示的相干性能力。
在另一种可能的设计中,所述发送模块,还用于向所述网络设备发送第二指示信息,所述第二指示信息用于指示所述终端设备支持切换所述至少一个载波所属的频段的相干性。
在另一种可能的设计中,所述接收模块,还用于接收来自所述网络设备的第二配置信息,所述第二配置信息用于配置至少两个载波的相干性,所述至少两个载波包含所述至少一个载波,所述至少两个载波的相干性为所述至少两个载波所属的频段组合中至少两个频段的最高相干性。
在另一种可能的设计中,所述第一指示信息携带在所述DCI中指示域中的最高位、或时域资源分配信元中的一列。
在另一种可能的设计中,所述第一指示信息通过所述DCI中的发射预编码矩阵指示TPMI域指示的数值的取值范围、或预编码信息和层数域指示的数值的取值范围进行指示。
在另一种可能的设计中,发送模块,用于当所述至少一个载波当前的相干性小于所述第一指示信息指示的所述至少一个载波的相干性时,在经过至少第一时长后,在所述至少一个载波上向所述网络设备发送上行数据,其中,所述第一时长为切换载波的时长、切换相干性的时长、所述切换载波的时长和所述切换干性的时长中的较大值、或预先定义的时长。
该通信装置执行的操作及有益效果可以参见上述第一方面所述的方法以及有益效果,重复之处不再赘述。
第四方面,本申请实施例提供了一种通信装置,所述装置包括:
发送模块,用于向终端设备发送第一配置信息,所述第一配置信息用于指示允许通过下行控制信息DCI或媒体接入控制控制单元MAC CE指示至少一个载波上的相干性;
所述发送模块,还用于向所述终端设备发送所述DCI或所述MAC CE,所述DCI或所述MAC CE包括第一指示信息,所述第一指示信息用于指示所述至少一个载波的相干性,所述至少一个载波的相干性不超过所述至少一个载波所属的频段支持的相干性能力。
在另一种可能的设计中,所述装置还包括:
接收模块,用于接收来自所述终端设备的第一频段组合对应的多组参数,所述多组参数中的每组参数包括所述终端设备支持的所述第一频段组合中每个频段的相干性能力,所述第一频段组合对应的至少两组参数中至少一个频段上的相干性能力不同。
在另一种可能的设计中,所述第一频段组合中至少两个频段的最高相干性能力位于所述多组参数中不同的两组参数中。
在另一种可能的设计中,所述装置还包括:
接收模块,用于接收来自所述终端设备的第一频段组合对应的至少一组参数,所述至少一组参数包括所述终端设备支持的所述第一频段组合中至少两个频段的相干性能力,所述至少两个频段上的相干性不能在同一时间为所述至少一组参数指示的相干性能力。
在另一种可能的设计中,所述接收模块,还用于接收来自所述终端设备的第二指示信息,所述第二指示信息用于指示所述终端设备支持切换所述至少一个载波所属的频段的相干性。
在另一种可能的设计中,所述发送模块,还用于向所述终端设备发送第二配置信息,所述第二配置信息用于配置至少两个载波的相干性,所述至少两个载波包含所述至少一个载波,所述至少两个载波的相干性为所述至少两个载波所属的频段组合中至少两个频段的最高相干性。
在另一种可能的设计中,所述第一指示信息携带在所述DCI中指示域中的最高位、或时域资源分配信元中的一列。
在另一种可能的设计中,所述第一指示信息通过所述DCI中的发射预编码矩阵指示TPMI域指示的数值的取值范围、或预编码信息和层数域指示的数值的取值范围进行指示。
在另一种可能的设计中,所述装置还包括:
接收模块,用于当所述至少一个载波当前的相干性小于所述第一指示信息指示的所述至少一个载波的相干性时,接收所述终端设备在经过至少第一时长后在所述至少一个载波上发送的上行数据,其中,所述第一时长为切换载波的时长、切换相干性的时长、所述切换载波的时长和所述切换干性的时长中的较大值、或预先定义的时长。
该通信装置执行的操作及有益效果可以参见上述第二方面所述的方法以及有益效果,重复之处不再赘述。
第五方面,本申请实施例提供了一种通信装置,该通信装置被配置为实现上述第一方面中终端设备所执行的方法和功能,由硬件/软件实现,其硬件/软件包括与上述功能相应的模块。
第六方面,本申请实施例提供了一种通信装置,该通信装置被配置为实现上述第二方面中网络设备所执行的方法和功能,由硬件/软件实现,其硬件/软件包括与上述功能相应的模块。
第七方面,本申请提供了一种通信装置,该装置可以是终端设备,也可以是终端设备中的装置,或者是能够和终端设备匹配使用的装置。其中,该通信装置还可以为芯片系统。该通信装置可执行第一方面所述的方法。该通信装置的功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。该模块可以是软件和/或硬件。该通信装置执行的操作及有益效果可以参见上述第一方面所述的方法以及有益效果,重复之处不再赘述。
第八方面,本申请提供了一种通信装置,该装置可以是网络设备,也可以是网络设备中的装置,或者是能够和网络设备匹配使用的装置。其中,该通信装置还可以为芯片系统。该通信装置可执行第二方面所述的方法。该通信装置的功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。该模块可以是软件和/或硬件。该通信装置执行的操作及有益效果可以参见上述第二方面所述的方法以及有益效果,重复之处不再赘述。
第九方面,本申请提供了一种通信装置,所述通信装置包括处理器,当所述处理器调用存储器中的计算机程序时,如第一方面和第二方面中任意一项所述的方法被执行。
第十方面,本申请提供了一种通信装置,所述通信装置包括处理器和存储器,所述存储器用于存储计算机执行指令;所述处理器用于执行所述存储器所存储的计算机执行指令,以使所述通信装置执行如第一方面和第二方面中任意一项所述的方法。
第十一方面,本申请提供了一种通信装置,所述通信装置包括处理器、存储器和收发器,所述收发器,用于接收信道或信号,或者发送信道或信号;所述存储器,用于存储程序代码;所述处理器,用于从所述存储器调用所述程序代码执行如第一方面和第二方面中任意一项所述的方法。
第十二方面,本申请提供了一种通信装置,所述通信装置包括处理器和接口电路,所述 接口电路,用于接收代码指令并传输至所述处理器;所述处理器运行所述代码指令以执行如第一方面和第二方面面中任意一项所述的方法。
第十三方面,本申请提供了一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机程序,当所述计算机程序被执行时,使得如第一方面和第二方面中任意一项所述的方法被实现。
第十四方面,本申请提供一种包括计算机程序的计算机程序产品,当所述计算机程序被执行时,使得如第一方面和第二方面中任意一项所述的方法被实现。
第十五方面,本申请实施例提供了一种通信系统,该通信系统包括至少一个终端设备和至少一个网络设备,该终端设备用于执行上述第一方面中的步骤,该网络设备用于执行上述第二方面中的步骤。
附图说明
为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所需要使用的附图进行说明。
图1是本申请实施例提供的一种通信系统的架构示意图;
图2是本申请实施例提供的一种通信方法的流程示意图;
图3是本申请实施例提供的一种频段组合对应的参数的示意图;
图4是本申请实施例提供的另一种频段组合对应的参数的示意图;
图5是本申请实施例提供的一种通信装置的结构示意图;
图6是本申请实施例提供的另一种通信装置的结构示意图;
图7是本申请实施例提供的一种终端设备的结构示意图;
图8是本申请实施例提供的一种通网络设备的结构示意图。
具体实施方式
如图1所示,图1是本申请实施例提供的一种通信系统100的架构示意图。该通信系统100可以包括网络设备110和终端设备101~终端设备106。应理解,可以应用本申请实施例的方法的通信系统100中可以包括更多或更少的网络设备或终端设备。网络设备或终端设备可以是硬件,也可以是从功能上划分的软件或者以上二者的结合。网络设备与终端设备之间可以通过其他设备或网元通信。在该通信系统100中,网络设备110可以向终端设备101~终端设备106发送下行数据。当然,终端设备101~终端设备106也可以向网络设备110发送上行数据。终端设备101~终端设备106可以是蜂窝电话、智能电话、便携式电脑、手持通信设备、手持计算设备、卫星无线电装置、全球定位系统、掌上电脑(personal digital assistant,PDA)和/或用于在无线通信系统100上通信的任意其它适合设备等等。网络设备110可以为是长期演进(long term evolution,LTE)和/或NR的网络设备,具体的可以是基站(NodeB)、演进型基站(eNodeB)、5G移动通信系统中的基站、下一代移动通信基站(Next generation Node B,gNB),未来移动通信系统中的基站或Wi-Fi系统中的接入节点。下面以终端设备为UE,网络设备为基站进行描述。
通信系统100可以采用公共陆地移动网络(public land mobile network,PLMN)、车联网(vehicle to everything,V2X)、设备到设备(device-to-device,D2D)网络、机器到机器(machine to machine,M2M)网络、物联网(internet of things,IoT)或其他网络。此外,终端设备104~终端设备106也可以组成一个通信系统。在该通信系统中,终端设备105可以发送下行 数据给终端设备104或终端设备106。在本申请实施例中的方法可以应用于图1所示的通信系统100中。
以下对本申请涉及的名词进行解释:
载波聚合:UE被配置多个小区,每个小区内包括一个下行载波、和0-2个上行载波,UE可以激活多个小区中的部分小区,但有些UE的上行能力受限,最多只能配置和激活两个上行载波。
在上行传输方向,NR支持两种传输模式:基于码本的PUSCH传输和基于非码本的PUSCH传输。
基于非码本的上行传输:利用上下行信道互异性,没有预定义码本,UE根据下行信号测量,确定至少一个候选的预编码,通过候选的预编码发送SRS信号,一个SRS对应一个候选预编码,基站接收到SRS之后,选择最优的SRS,并向UE发送SRS资源指示(SRS resource indicator,SRI)。其中,SRI用于指示SRS资源索引值。UE根据SRI可以确定预编码,用于发送PUSCH。
对于基于码本的PUSCH传输,基站配置至少一个SRS资源,每个SRS资源具有至少一个SRS端口,每个SRS端口对应一个UE发送天线/发送通道/发送链路。UE根据SRS配置,在SRS资源上发送SRS信号,基站通过接收到的SRS信号从码本中确定TPMI发送给UE,UE根据TPMI,可以确定发送PUSCH的预编码。也即通过TPMI确定发送PUSCH的天线以及相位。TPMI还可以用于指示传输层数。TPMI以M*N的矩阵形式表示,M对应发送天线数,也对应了SRS资源的端口数,N对应传输层数。
例如,一串编码比特[y (0)(i) ... y (υ-1)(i)] T,可以根据TPMI进行预编码:
Figure PCTCN2022140888-appb-000001
其中,
Figure PCTCN2022140888-appb-000002
{p 0,...,p ρ-1}表示UE发送天线端口,对应SRS端口。
下表中示例了不同配置下的预先约定的码本,基站可以预先选择一个表格,然后从该表格中选择一个TPMI,通过DCI将选择的TPMI发送给UE。
如表1所示,在发送天线端口数=2,传输层数=1的情况下,TPMI索引(index)的取值可以为0-5中任意一个,一个TPMI index对应一个预编码矩阵。
表1
Figure PCTCN2022140888-appb-000003
如表2所示,在发送天线端口数=2,传输层数=2的情况下,TPMI index可以为0-2中任意一个,一个TPMI index对应一个预编码矩阵。
表2
Figure PCTCN2022140888-appb-000004
Figure PCTCN2022140888-appb-000005
如表3所示,在发送天线端口数=4,传输层数=1的情况下,采用循环前缀正交频分复用(cyclic prefix-orthogonal frequency division multiplexing,CP-OFDM)波形,TPMI index的取值可以为0-27中任意一个,一个TPMI index对应一个预编码矩阵。
表3
Figure PCTCN2022140888-appb-000006
如表4所示,在发送天线端口数=4,传输层数=1的情况下,采用离散傅里叶变换扩频正交频分复用(Discrete Fourier Transform-Spread OFDM,DFT-S-OFDM)波形,TPMI index的取值可以为0-27中任意一个,一个TPMI index对应一个预编码矩阵。
表4
Figure PCTCN2022140888-appb-000007
Figure PCTCN2022140888-appb-000008
如表5所示,在发送天线端口数=4,传输层数=2的情况下,TPMI index的取值可以为0-21中任意一个,一个TPMI index对应一个预编码矩阵。
表5
Figure PCTCN2022140888-appb-000009
如表6所示,在发送天线端口数=4,传输层数=3的情况下,TPMI index的取值可以为0-6中任意一个,一个TPMI index对应一个预编码矩阵。
表6
Figure PCTCN2022140888-appb-000010
Figure PCTCN2022140888-appb-000011
如表7所示,在发送天线端口数=4,传输层数=4的情况下,TPMI index的取值可以为0-4中任意一个,一个TPMI index对应一个预编码矩阵。
表7
Figure PCTCN2022140888-appb-000012
以上各表中TPMI索引的取值并没有考虑不同UE的相干性能力情况。UE支持上行多天线发送,但是不同UE的硬件射频设计,会产生上行多个天线端口满足相干传输或者不满足相干传输的情况。例如UE的天线之间的距离、射频通道放大器、相位控制能力等因素。因此上行传输需要考虑到不同UE的相干性能力。
NR中定义了三种UE的相干性能力:
(1)Fully-Coherent:全相干,UE的所有天线端口都可以进行相干传输。
(2)Patial-Coherent:部分相干,即分为相干组,每组内两个相干天线,可以进行相干传输,不同组之间不能进行相干传输。
(3)Non-Coherent:非相干,多天线端口不能进行相干传输。
在基于码本的PUSCH传输时,基站根据UE的相干性能力,对码本使用进行限制。具体的,通过无线资源控制(radio resource control,RRC)参数码本子集(codebookSubset),来指示码本子集配置。其中,codebookSubset包括fullyAndPartialAndNonCoherent、nonCoherent和partialAndNonCoherent。在不同码本子集下,DCI能够指示的TPMI数量或TPMI范围不同。现有协议中,规定了部分相干的UE不能配置全相干,非相干的UE不能配置全相干和部分相干。
在本申请中,基站给UE配置全相干,可以等同于fullyAndPartialAndNonCoherent;基站给UE配置部分相干,可以等同于partialAndNonCoherent;基站给UE配置非相干,可以等同于NonCoherent。
下表示例了不同配置下DCI指示TPMI和传输层数的设计。在不同码本子集下,DCI能 够指示的TPMI数量或TPMI范围不同。其中,x layer表示传输层数为x,TPMI=x与上述各表中编号为x的预编码矩阵相对应。传输层数可以理解为MIMO层数,或者可以理解为码本矩阵的列数。
如表8所示,在发送天线端口数=2,传输层数=1的情况下,表8中TPMI的取值对应表1中相应的预编码矩阵,DCI指示表格中的一行,当codebookSubset配置为fullyAndPartialAndNonCoherent按照左边列解读,当codebookSubset配置为NonCoherent按照右边列解读。
例如,在UE的codebookSubset配置为非相干时,TPMI=0或1,右边列对应码本(如表1)的每一列的非零元素个数为1。或者,可以理解为,当两个射频链非相干时,该两个射频链在码本同一列对应的元素不能同时为非零元素。在UE的codebookSubset配置为fullyAndPartialAndNonCoherent时,TPMI还可以为2、3、4或5,左边列对应的码本(如表1)的每一列的非零元素个数可以为2。或者,可以理解为,当两个射频链相干时,该两个射频链在码本同一列对应的元素可以同时为非零元素。
表8
Figure PCTCN2022140888-appb-000013
如表9所示,在发送天线端口数=2,最大传输层数=2的情况下,表9中TPMI取值对应表1或表2中相应的预编码矩阵,DCI指示表格中的一行。当codebookSubset配置为fullyAndPartialAndNonCoherent,按照左边列解读,当codebookSubset配置为NonCoherent按照右边列解读。
表9
Figure PCTCN2022140888-appb-000014
Figure PCTCN2022140888-appb-000015
如表10所示,在发送天线端口数=4,最大传输层数=1的情况下,表10中TPMI取值对应表3或表4中相应的预编码矩阵,DCI指示表格中的一行。当codebookSubset配置为fullyAndPartialAndNonCoherent,按照左边列解读;当codebookSubset配置为partialAndNonCoherent,按照中间列解读;当codebookSubset配置为NonCoherent按照右边列解读。
例如,在UE的codebookSubset配置为非相干时,TPMI索引的取值为0-3中任意一个,右边列对应的码本(如表3)的每一列的非零元素个数为1。或者,可以理解为,当四个射频链非相干时,该四个射频链在码本同一列对应的四个元素中一个元素为非零元素。在UE的codebookSubset配置为部分相干时,TPMI索引的取值还可以为4-11中任意一个,中间列对应的码本(如表3)的每一列的非零元素个数可以为2。或者,可以理解为,当四个射频链部分相干时,该四个射频链在码本同一列对应的四个元素中的两个元素可以为非零元素。在UE的codebookSubset配置为全相干时,TPMI索引的取值还可以为12-27中任意一个,左边列对应的码本(如表3)的每一列的非零元素个数可以为4。或者,可以理解为,当四个射频链相干时,该四个射频链在码本同一列对应的四个元素可以同时为非零元素。
本申请中,UE的相干性切换或改变(或者在某个频段或者载波的相干性切换或改变),可以理解为基站在调度或配置UE进行传输时UE可以选择的码本的范围发生变化。例如,在切换相干性之前,UE的载波的相干性为非相干的,如表8所示,在发送天线端口数=2,传输层数=1的情况下,UE只能使用右边列包含的码本。在切换相干性之后,基站指示UE的载波的相干性切换为全相干,如表8所示,在发送天线端口数=2,传输层数=1的情况下,UE使用左边列包含的码本。又例如,在切换相干性之前,UE的载波的相干性为非相干的,如表10所示,在发送天线端口数=4,传输层数=1的情况下,UE只能使用右边列包含的码本。在切换相干性之后,基站指示UE的载波的相干性切换为全相干,如表10所示,在发送天线端口数=4,传输层数=1的情况下,UE使用左边列包含的码本。或者,在切换相干性之后,基站指示UE的载波的相干性切换为部分相干,如表10所示,在发送天线端口数=4,传输层数=1的情况下,UE使用中间列包含的码本。
表10
Figure PCTCN2022140888-appb-000016
Figure PCTCN2022140888-appb-000017
如表11所示,在发送天线端口数=4,最大传输层数=2/3/4的情况下,表11中TPMI取值对应表3-表7中相应的预编码矩阵,DCI指示表格中的一行。当codebookSubset配置为fullyAndPartialAndNonCoherent,按照左边列解读;当codebookSubset配置为partialAndNonCoherent,按照中间列解读;当codebookSubset配置为NonCoherent按照右边列解读。
表11
Figure PCTCN2022140888-appb-000018
Figure PCTCN2022140888-appb-000019
如表12所示,表12对不同配置下的DCI比特开销进行了统计。其中,NC表示nonCoherent,PC表示partialAndNonCoherent,FC表示fullyAndPartialAndNonCoherent。例如,当发送天线端口数为2、最大传输层数=1、且codebookSubset配置为nonCoherent时,需要DCI中的1个比特进行指示。当发送天线端口数为4、最大传输层数=2、且codebookSubset配置为partialAndNonCoherent时,需要DCI中的5个比特进行指示。
表12
  2T NC 2T FC 4T NC 4T PC 4T FC
最大传输层数=1 1bit 3bit 2bit 4bit 5bit
最大传输层数=2 2bit 4bit 4bit 5bit 6bit
最大传输层数=3     4bit 5bit 6bit
最大传输层数=4     4bit 5bit 6bit
基于码本的上行传输可以配置1个SRS资源,若配置多个SRS资源,则一个SRS资源对应一个发送波束/发送天线组,基站需要首先使用SRI从多个SRS资源中选择一个SRS资源,即选择发送波束/发送天线组,再进一步指示TPMI,TPMI用于指示选择的SRS资源对应的发送波束/发送天线组上作用的预编码矩阵。
发射通道(transmitter,TX),是一个物理概念,也可以称为射频(radio frequency,RF)发射通道,本申请中统一简称为发射通道。在本申请实施例中,发射通道可以是按照如下方式工作的,但不仅限于如下方式:发射通道可接收来自基带芯片的基带信号,对基带信号进行射频处理(如上变频、放大和滤波)得到射频信号,并最终通过天线将该射频信号辐射到 空间中。具体地,发射通道可以包括天线开关、天线调谐器、低噪声放大器(low noise amplifier,LNA),功率放大器(power amplifier,PA)、混频器(mixer)、本地振荡器(local oscillator,LO)、滤波器(filter)等电子器件,这些电子器件可以根据需要集成到一个或多个芯片中。天线有时也可以认为是发射通道的一部分。在本申请实施例中,发射通道均简称为射频链。可选的,本申请中射频链也可以替换为Tx、天线、射频、发射通道、发送端口、接收通道或者它们的任意组合。
以下介绍两种上报相干性能力的方法,包括:
第一种方法,UE的相干性能力是per band上报的。per band意思是无论是单个Band,还是在频段组合(band combination,BC)中,UE在每个Band的相干性能力都是不变的。
第二种方法,per band per BC指示上行(uplink,UL)多输入多输出(multiple-input multiple-output,MIMO)相干性能力。原因在于同一个Band在不同BC中可能是不同的UL MIMO相干性能力。本申请中,UL MIMO相干性能力与相干性能力可以互相替换。
例如,不同BC下,同一个Band使用的天线集合不同。又如,UE在载波聚合(carrier aggregation,CA)情况下,在Band1的两个Tx可以是相干的(射频链1和射频链2共用一个LO)。在非CA情况下,4Tx之间的关系可以是全相干的(4个射频链共用一个LO)、部分相干(射频链1和射频链2共用一个LO,射频链3和射频链4共用另外一个LO)、或非相干(射频链1和射频链2共用一个LO,射频链3和射频链4用的则是另外两个LO)。如果某两个射频链使用的LO不是同一个LO,则这两个射频链的相位可能不同步,无法进行相干性发送,因此UE在使用这两个射频链进行上行传输时无法使用具有相干性的码本。也即这两个射频链在码本的同一列中对应的元素不能同时为非零元素。
UE通过上报BC,通知基站UE在哪些Band上支持载波聚合。UE在上报BC时,同时上报该BC对应的参数。其中,BC对应的参数包括UE在该BC中每个Band上的参数。UE可以上报多组参数,每组参数包括BC中的每个Band的参数,以便于基站从多组参数中选择一组参数对UE进行配置。其中,每个Band上的参数包括该Band中每个载波上的载波参数。UE也可以上报多套载波参数,载波参数的套数需要大于等于UE在该Band上支持的载波数目。基站可以将UE上报的该Band的载波参数中的任意一套配置给该Band中的任意一个载波。也即UE上报的Band级别的参数与BC中的Band一一对应,但是Band的载波参数与该Band的载波没有对应关系,可以配置给该Band中的任何一个载波。
无论是per band上报能力,还是per band per BC上报能力,UE上报的相干性能力都是固定的,使得UE在不同Band或不同Band包含的载波间切换射频链时,无法充分利用频段或载波的高相干性,影响上行传输的吞吐。为了解决上述技术问题,本申请实施例提供了如下解决方案。
本申请中在频段或载波之间切换射频链,可以理解为UE调整该射频链的参数,使得UE可以使用该射频链从第一频段切换到第二频段上进行上行传输,或者使用该射频链从第一载波切换到第二载波进行上行传输。如果多个频段或者多个载波在频率上相近,那么所述多个频段或多个载波可以同时使用同一个射频链进行传输。
请参见图2,图2是本申请实施例提供的一种通信方法的流程示意图,该方法包括但不限于如下步骤:
S201,UE获取第一配置信息,所述第一配置信息用于指示允许通过下行控制信息DCI或媒体接入控制控制单元MAC CE指示至少一个载波上的相干性。
可选的,基站可以向UE发送第一配置信息,UE接收基站发送的第一配置信息。其中,第一配置信息可以包含于RRC信令中,第一配置信息可以为RRC信令中的一个参数。通过第一配置信息,UE可以获知基站是否允许UE进行动态相干性改变,便于UE确定是否识别动态改变相干性的信令。
具体的,可以通过RRC信令中是否包含该参数确定是否允许通过DCI或MAC CE指示至少一个载波上的相干性。例如,如果RRC信令中包含该参数,则表示允许通过DCI或MAC CE指示至少一个载波上的相干性;如果RRC信令中不包含该参数,则表示不允许通过DCI或MAC CE指示至少一个载波上的相干性。或者,通过RRC信令中该参数的数值确定是否允许通过DCI或MAC CE指示至少一个载波上的相干性。例如,如果该参数的数值为1或Ture,表示允许通过DCI或MAC CE指示至少一个载波上的相干性,如果该参数的数值为0或False,表示不允许通过DCI或MAC CE指示至少一个载波上的相干性。
可选的,在UE获取第一配置信息之前,可以向基站上报频段组合(band combination,BC)对应的参数,包括以下两种可选方式:
第一种可选方式,UE向基站发送第一频段组合对应的多组参数,所述多组参数中的每组参数包括UE支持的所述第一频段组合中每个频段的相干性能力,所述第一频段组合对应的至少两组参数中至少一个频段上的相干性能力不同。由于第一频段组合对应的至少两组参数中至少一个频段上的相干性能力不同,基站可以获知UE在第一频段组合中至少一个频段上的相干性能力可以发生变化,基站可以通过动态或半静态方式切换第一频段组合的至少一个频段上的相干性。采用上述上报方式,可以通知基站UE可以在一个频段或一个载波进行相干性动态切换时,其他频段或其他载波的相干性情况。同时避免了通过显式信令指示UE可以进行动态相干性切换,节省了信令开销。
其中,多组参数中的每组参数还可以包括以下中一项或多项:UE支持的传输层数、子载波间隔和带宽。
例如,如图3所示,一个BC中至少包括频段A(Band A)和频段B(Band B),UE向基站上报该BC对应的至少两组参数中,第一组参数:Band A的相干性能力为部分相干(该频段上的射频链为射频链1和射频链2),Band B的相干性能力为非相干(该频段上的射频链为射频链3和射频链4);第二组参数:Band A的相干性能力为非相干(该频段上的射频链为射频链3和射频链4),Band B的相干性能力为部分相干(该频段上的射频链为射频链1和射频链2)。其中,UE的射频链1和射频链2共用一个LO,射频链3和射频链4没有共用一个LO,射频链3使用一个LO,射频链4使用另一个LO。这样,在两组参数中,频段A和频段B的相干性能力不同,基站可以获知UE在频段A和频段B上的相干性能力可以发生变化,基站可以通过动态或半静态方式切换频段A和或频段B的相干性。
需要说明的是,由于上行端口(port)数最大只支持4,当一个频段的端口数为4时,通过三个量(全相干、部分相干和非相干)可以表示4个Tx全相干、4Tx中的2个Tx相干和4Tx中的任何两个Tx都非相干。当一个频段的端口数为2时,通过两个量(全相干和非相干)可以表示2个Tx全相干和两个Tx非相干。但是,通过两个量或三个量表示8个Tx的相干性能力是不够的,例如,如果UE在一个载波上支持8Tx,那么可以使用8Tx级相干,4Tx级相干,2Tx级相干,非相干来表示相干性。其中,8Tx级相干表示8个Tx之间均是相干的,4Tx级相干表示两组4Tx内的4个Tx之间均是相干的,2Tx级相干表示四组2Tx内的2个Tx之间是相干的,非相干表示8个Tx之间均是非相干的。相干性能力为4Tx级相干的UE不能被配置为8Tx级相干,相干性能力是为2Tx级相干的UE不能被配置为8Tx和4Tx级相 干,以此类推。
在本申请中,4Tx级相干表示一个Band的所有Tx中至少有一个包含4个Tx的Tx组内的4个Tx是全部相干的,任何一个大于4个Tx的Tx组内的Tx是不完全相干的。2Tx级相干表示一个Band的所有Tx中至少有一个包含2个Tx的Tx组内的2个Tx是相干的,任何一个大于2个Tx的Tx组内的Tx是不完全相干的,以此类推。以下举例均是以上行端口数为4,4Tx级相干对应全相干,2Tx级对应部分相干进行说明。
例如,如图4所示,一个BC中至少包含频段A(Band A)和频段B(Band B),UE向基站上报该BC对应的至少两组参数中,第一组参数:Band A的相干性能力为4Tx级相干,Band A对应射频链1、射频链2、射频链3和射频链4;Band B的相干性能力为2Tx级相干,Band B对应射频链5、射频链6、射频链7和射频链8。第二组参数:Band A的相干性能力为2Tx级相干,Band A对应射频链5、射频链6、射频链7和射频链8;Band B的相干性能力为4Tx级相干,Band B对应射频链1、射频链2、射频链3和射频链4。此时可以理解为,UE的射频链1、射频链2、射频链3和射频链4共用LO1;射频链5和射频链6共用LO2,射频链7和射频链8共用LO3。这样,在两组参数中,频段A和频段B的相干性能力不同,基站可以获知UE在频段A和频段B上的相干性能力可以发生变化,基站可以通过动态或半静态方式切换频段A和或频段B的相干性。
可选的,所述第一频段组合中至少两个频段的最高相干性能力位于所述多组参数中不同的两组参数中。例如,如图4所示,BC对应的至少两组参数中,第一组参数:Band A的相干性能力为4Tx级相干,Band B的相干性能力为2Tx级相干;第二组参数:Band A的相干性能力为2Tx级相干,Band B的相干性能力为4Tx级相干。Band A的最高相干性能力位于第一组参数中,而Band B的最高相干性能力位于第二组参数中。Band A和Band B的最高相干性能力分别位于两组参数中。这样,基站可以获知UE在Band A和Band B的最高相干性能力分别位于两组参数中,在Band A或Band B上的相干性能力可以发生变化,基站可以通过动态或半静态方式切换第一频段组合的Band A或Band B上的相干性。
本申请中,一个频段的相干性可以理解为频段所包含的载波的相干性。一个载波的相干性也可以理解为载波所属频段的相干性。
可选的,UE可以向基站发送第二指示信息,所述第二指示信息用于指示UE支持切换所述至少一个载波所属的频段的相干性。也就是说,第二指示信息可以用于指示UE支持动态切换或动态改变至少一个载波所属的频段的相干性。通过直接通知基站UE是否支持动态切换相干性,基站可以更清晰的获知UE的相干性能力,减少基站判断UE是否支持动态切换相干性的过程,简化判断流程。
例如,UE上报一个BC对应的两组参数,第一组参数:Band A的相干性能力为4Tx级相干,Band B的相干性能力为2Tx级相干,第二组参数:Band A的相干性能力为2Tx级相干,Band B的相干性能力为2Tx级相干。两组参数中Band A的相干性能力不同。其中,载波1属于Band A,载波2属于Band B。此时UE可以向基站上报第二指示信息,该第二指示信息用于指示UE支持动态切换载波1所属的Band A的相干性。
又如,UE上报一个BC对应的两组参数,第一组参数:Band A的相干性能力为4Tx级相干,Band B的相干性能力为2Tx级相干;第二组参数:Band A的相干性能力为2Tx级相干,Band B的相干性能力为4Tx级相干。两组参数中Band A的相干性能力不同,两组参数中Band B的相干性能力也不同。此时UE可以向基站上报第二指示信息,该第二指示信息用于指示UE支持动态切换载波1所属的Band A的相干性和/或载波2所属的Band B的相干性。
第二种可选方式:UE向基站发送第一频段组合对应的至少一组参数,所述至少一组参数包括所述UE支持的所述第一频段组合中至少两个频段的相干性能力,所述至少两个频段上的相干性不能在同一时间为所述至少一组参数指示的相干性能力。例如,UE上报一个BC对应的一组参数,包括:Band A的相干性能力为4Tx级相干,Band B的相干性能力为4Tx级相干。其中,4Tx级相干均为Band A的最高相干性能力和Band B的最高相干性能力。Band A的4Tx级相干和Band B的4Tx级相干不能在同一时间达到。采用这种方式上报参数,可以使减少UE上报参数的数量。
其中,Band A的4Tx级相干和Band B的4Tx级相干不能在同一时间达到,可以理解为Band A和Band B不能在同一时间为4Tx级相干。例如,载波A和载波B都被配置4Tx级相干,但是,UE不希望基站通过DCI或MAC CE指示UE在同一时间在两个载波上调度4port传输、或4Tx级相干且大于2Tx级相干传输。也即UE不希望基站通过DCI或MAC CE指示UE在同一时间在载波A和载波B使用的码本的任何一列中非零元素的个数均大于2。又如,如果UE在第一时间Band A的相干性为4Tx级相干,则在第一时间Band B的相干性不能为4Tx级相干。在到达第二时间后,如果Band A的相干性为2Tx级相干,则Band B的相干性可以为4Tx级相干。
可选的,UE向基站发送第三指示信息,所述第三指示信息用于指示所述至少两个频段上的相干性不能在同一时间为所述至少一组参数指示的相干性能力。其中,第三指示信息可以为一个指示域,或者是一个包括至少两个频段的集合,在该集合内至少两个频段的相干性能力不能在同一时间达到。
例如,一个BC中至少包含频段A(Band A)和频段B(Band B),UE向基站上报该BC对应的至少一组参数:Band A的相干性能力为4Tx级相干(当该频段上的射频链为射频链1、射频链2、射频链3和射频链4时),4Tx级相干为Band A的最高相干性能力,Band B的相干性能力为4Tx级相干(当该频段上的射频链为射频链1、射频链2、射频链3和射频链4时),4Tx级相干为Band B的最高相干性能力。当Band A的相干性能力和Band B的相干性能力均为4Tx级相干时,Band A和Band B使用的射频链相同,因此Band A的4Tx级相干和Band B的4Tx级相干不能在同一时间达到。UE可以向基站发送第三指示信息,通知基站Band A和Band B的相干性不能在同一时间为4Tx级相干。通过上报第三指示信息,基站可以更清晰的获知UE的相干性能力,减少基站的判断过程。
需要说明的是,UE的射频链1、射频链2、射频链3和射频链4对应一个LO。第三指示信息可以是一个指示域,或者是一个包含Band A和Band B的集合,在该集合内Band A和Band B的相干性能力不能同一时间达到。
可选的,当所述第一频段组合中至少两个频段中的任何一个频段的相干性小于上报的相干能力时,所述至少两个频段上的相干性可以在同一时间为所述至少一组参数指示的相干性能力。
例如,Band A和Band B的最高相干性能力为4Tx级相干,如果Band A当前的相干性为4Tx级相干,Band B当前的相干性为2Tx级相干,则Band A当前的4Tx级相干和Band B当前的2Tx级相干可以在同一时间达到。但是,如果Band A当前的相干性为4Tx级相干,Band B当前的相干性也为4Tx级相干,Band A当前的4Tx级相干和Band B当前的4Tx级相干不可以在同一时间达到。或者,如果Band A当前的相干性为4Tx级相干,那么Band B当前的相干性不能为4Tx级相干,Band B当前的相干性可以为2Tx级相干或非相干。
可选的,基站可以向UE发送第二配置信息,所述第二配置信息用于配置至少两个载波 的相干性,所述至少两个载波包含所述至少一个载波,所述至少两个载波的相干性可以为所述至少两个载波所属的频段组合中至少两个频段的最高相干性。其中,所述至少两个频段的最高相干性包含于UE上报的至少两组参数中,所述至少两组参数中至少两个频段上的相干性能力不同。或者,所述至少两个频段的最高相干性包含于UE上报的一组参数中,该组参数中所述至少两个频段的相干性能力不能在同一时间达到。
例如,载波1属于Band A,载波2属于Band B,基站可以通过第二配置信息配置载波1和载波2的相干性均为4Tx级相干。其中,4Tx级相干为Band A和Band B上报的最高相干性,且载波1的4Tx级相干和载波2的4Tx级相干不能在同一时间达到。通过配置载波的最高相干性,在不超过基站配置的载波的相干性的情况下,通过DCI或MAC CE灵活改变载波的相干性。
其中,所述至少两个载波是支持上行Tx切换的载波。或者,所述至少两个载波是可以支持动态切换相干性的载波。或者,所述至少两个载波所属的频段组合对应的至少两组参数中至少一个频段上的相干性能力不同。或者,所述至少两个载波所属的频段上的相干性不能在同一时间为所述至少一组参数指示的相干性能力。
进一步的,基站无需按照UE上报的频段组合对应的参数,为UE配置至少两个载波的相干性为至少两个载波所属的频段组合中至少两个频段的最高相干性。例如,UE上报第一组参数为:Band A的相干性能力为4Tx级相干,Band B的相干性能力为2Tx级相干,第二组参数为:Band A的相干性能力为2Tx级相干,Band B的相干性能力为4Tx级相干。基站可以给UE配置载波1的相干性为4Tx级相干,配置载波2的相干性为4Tx级相干。载波1的4Tx级相干和载波2的4Tx级相干与UE上报的参数无关,也即基站给UE配置的载波的相干性既不是第一组参数,也不是第二组参数,而是两组参数中各个频段的最高相干性。其中,载波1属于Band A,载波2属于Band B。
或者,基站也可以按照UE上报的频段组合对应的参数,为UE配置至少两个载波的相干性。例如,UE上报一组参数,包括:Band A的相干性能力为4Tx级相干,Band B的相干性能力为2Tx级相干。基站可以给UE配置载波1的相干性为4Tx级相干,配置载波2的相干性为2Tx级相干。载波1的4Tx级相干和载波2的2Tx级相干与UE上报的参数对应。其中,载波1属于Band A,载波2属于Band B。
需要说明的是,第一配置信息和第二配置信息可以分别为不同的两条信令,例如第一配置信息可以包含于RRC信令中,第二配置信息可以包含于第二RRC信令中。或者,第一配置信息和第二配置信息可以包含于同一个RRC信令中。或者,RRC信令中的一个字段携带第二配置信息,第二配置信息为特殊值(该特殊值可以为0或1,Ture或False,或特殊的相干性),通过特殊值表示允许通过DCI或MAC CE指示至少一个载波上的相干性。或者,通过第二配置信息指示配置的至少两个载波的相干性不能在同一时间达到,来隐式指示第一配置信息。或者,通过第二配置信息为至少两个载波的相干性配置为不能在同一时间达到的最高相干性,来隐式指示第一配置信息。该至少两个载波的最高相干性可以是通过至少两组参数分别上报的,也可以是通过同一组参数上报的。
例如,UE上报一个BC对应的一组参数,包括:Band A的相干性能力为4Tx级相干,Band B的相干性能力为4Tx级相干,Band A相干性能力和Band B相干性能力不能在同一时间达到。或者,UE上报的一个BC对应的两组参数分别为:Band A的相干性能力为4Tx级相干,Band B的相干性能力为2Tx级相干;Band A的相干性能力为2Tx级相干,Band B的相干性能力为4Tx级相干。然后,基站给UE配置Band A的相干性为4Tx级相干,配置Band  B的相干性为4Tx级相干,Band A的4Tx级相干和Band B的4Tx级相干不能在同一时间达到。这样,隐式的指示第一配置信息,也即指示通过DCI或MAC CE指示至少一个载波上的相干性。也即隐式指示可以通过DCI或者MAC CE动态改变至少一个载波上的相干性。此时UE可以通过第二配置信息的指示,隐式获得第一配置信息。
S202,UE接收来自基站的所述DCI或所述MAC CE,所述DCI或所述MAC CE包括第一指示信息,所述第一指示信息用于指示所述至少一个载波的相干性,所述至少一个载波的相干性不超过所述至少一个载波所属的频段支持的相干性能力。
具体的,第一指示信息可以包括以下几种指示方式:
第一种指示方式,所述第一指示信息携带在所述DCI中指示域中的最高位、DCI中的指示域、或DCI中指示域中的比特位,或时域资源分配信元中的一列。例如,时域资源分配信元可以是PUSCH时域资源分配信元(PUSCH-Time Domain Resource Allocation)或PUSCH分配信元(PUSCH-Allocation)。
例如,通过第二配置信息配置载波1和载波2的相干性均为4Tx级相干,4Tx级相干为Band A和Band B的最高相干性,且不能在同一时间达到。通过DCI中指示域指示动态切换载波1和载波2的相干性,在切换载波1和载波2的相干性之前,载波1的相干性为2Tx级相干,载波2的相干性为4Tx级相干。在切换载波1和载波2的相干性后,载波1的相干性为4Tx级相干,载波2相干性为2Tx级相干。
又例如,通过第二配置信息配置载波1和载波2的相干性均为4Tx级相干,4Tx级相干为Band A和Band B的最高相干性,且不能在同一时间达到。通过DCI中指示域指示动态切换载波1和载波2的相干性,在切换载波1和载波2的相干性之前,载波1的相干性为4Tx级相干,载波2的相干性为4Tx级相干,且载波1的4Tx级相干和载波2的4Tx级相干不能在同一时间达到。在切换载波1和载波2的相干性后,载波1的相干性为4Tx级相干,载波2相干性为2Tx级相干。
又如,PUSCH时域资源分配信元中的一列表示相干性,基站可以给UE配置一个或多个PUSCH时域资源分配信元,所述一个或多个PUSCH时域资源分配信元中部分或全部可以包含相干性,基站通过DCI选择一个PUSCH时域资源分配信元时,载波的相干性由该选择的PUSCH时域资源分配信元中的相干性的指示确定。PUSCH分配信元也是类似。这种方法可以不增加DCI的大小。
第二种指示方式,所述第一指示信息通过所述DCI中的发射预编码矩阵指示TPMI域指示的数值的取值范围、或预编码信息和层数域指示的数值的取值范围进行指示。
例如,UE在接收到DCI之前,载波1的相干性为第二相干性,载波2的相干性为第三相干性。在接收到DCI之后,载波1的TPMI域指示的数值所在的区间属于第一相干性对应的取值范围,但不属于第二相干性对应的取值范围,因此载波1的相干性从第二相干性切换到第一相干性。载波2的TPMI域指示的数值所在的区间属于第三相干性对应的取值范围,因此载波2的相干性仍然为第三相干性。其中,第二相干性小于第一相干性。“小于”也可以理解为“低于”。例如,第一相干性为全相干,第二相干性为部分相干,由于部分相干的相干性低于全相干的相干性,因此第二相干性低于第一相干性。或者,第一相干性为部分相干,第二相干性为非相干,由于非相干的相干性低于部分相干的相干性,因此第二相干性低于第一相干性。
又如,在接收到DCI之前,载波1和载波2都被配置为4Tx级相干(或全相干),载波1的4Tx级相干和载波2的4Tx级相干不能在同一时间达到(或在接收到DCI之前,载波1为 2Tx级相干和载波2为4Tx级相干),且在载波1和载波2的最大传输层数均为2或3或4(对应表11)。在接收到DCI之后,载波1的预编码信息和层数域指示的数值的取值范围为32-61之间,载波2的预编码信息和层数域指示的数值取值范围为0-31之间,则表示UE在载波1的相干性切换为4Tx级相干(或全相干),载波2的相干性切换为2Tx级相干(或部分相干),这样通过DCI指示实现了载波的相干性切换。
需要说明的是,载波1和载波2是可以支持上行Tx切换的载波。或者,载波1和载波2是可以支持动态切换相干性的载波。或者,载波1和载波2所属的频段在至少两组参数中的相干性能力不同。或者,UE指示载波1所属的频段和载波2所属的频段的相干性能力不能在同一时间达到。
可选的,在UE接收来自基站的DCI或MAC CE之后,当所述至少一个载波当前的相干性小于所述第一指示信息指示的所述至少一个载波的相干性时,UE在经过至少第一时长后,在所述至少一个载波上向基站发送上行数据。
或者,如果在本次传输时UE在一个载波上的相干性大于在上次传输时UE在该载波上的相干性,则UE在至少第一时长内在该载波上会产生传输中断。如果在本次传输时UE在一个载波组中多个载波中的每个载波的相干性均不大于在上次传输时UE在该载波组中的各自载波的相干性,则在该载波组中的多个载波上不会产生传输中断。其中,载波组为基站配置的,载波组中的载波可以进行相互切换Tx、或者可以切换相干性。或者,载波组中的载波为UE上报的可以进行相干性切换或Tx切换的频段包含的载波。
其中,所述第一时长为切换载波的时长、切换相干性的时长、所述切换载波的时长和所述切换相干性的时长中的较大值、或预先定义的时长。UE在第一时长内传输中断,不能在第一时长内向基站发送上行数据。如果所述至少一个载波当前的相干性大于等于所述第一指示信息指示的所述至少一个载波的相干性时,UE可以在第一时长内向基站发送上行数据,也即UE在进行上行传输之前在所述至少一个载波上不会产生传输中断。
例如,在接收到DCI时或接收到DCI之前,载波1的相干性为2Tx级相干。在接收到DCI之后,确定第一指示信息指示的载波1的相干性为4Tx级相干,由于2Tx级相干小于4Tx级相干,在第一时长内完成载波1的Tx切换或相干性切换之后,才可以在载波1上向基站发送上行数据。
进一步的,在上次传输后,如果UE没有经过第一时长的传输中断、或者UE没有进行相干性切换或Tx切换,那么至少一个载波的相干性保持不变。例如,如果上次传输时载波1的相干性为4Tx级相关,载波2的相干性为2Tx级相关,但是没有经过第一时长的传输中断或者UE没有进行相干性切换或Tx切换,则在下次传输时即使只调度载波2,那么载波2的相干性依然是2Tx级相干,不能是4Tx级相干。
在本申请实施例中,通过DCI或MAC CE指示至少一个载波的相干性,动态或半静态方式切换至少一个载波的相干性,充分利用多发射通道之间的高相干性,尽可能多的让UE在不同频段之间均可以进行高相干性发送,提高上行传输的吞吐。
可以理解的是,上述各个方法实施例中,由终端设备实现的方法和操作,也可以由可用于终端设备的部件(例如芯片或者电路)实现,由网络设备实现的方法和操作,也可以由可用于网络设备的部件(例如芯片或者电路)实现。
上述主要从各个交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,各个网元,例如发射端设备或者接收端设备,为了实现上述功能,其包含了执行各个功能相应 的硬件结构和/或软件模块。本领域技术人员应该可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对终端设备或者网络设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以使用硬件的形式实现,也可以使用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面以使用对应各个功能划分各个功能模块为例进行说明。
以上,结合图2详细说明了本申请实施例提供的方法。以下,结合图5至图6详细说明本申请实施例提供的通信装置。应理解,装置实施例的描述与方法实施例的描述相互对应,因此,未详细描述的内容可以参见上文方法实施例,为了简洁,这里不再赘述。
请参见图5,图5是本申请实施例提供的一种通信装置的结构示意图。该通信装置可以包括接收模块501和发送模块502。接收模块501和发送模块502可以与外部进行通信。接收模块501和发送模块502还可以称为通信接口、收发单元或收发模块。该接收模块501和发送模块502可以用于执行上文方法实施例中终端设备所执行的动作。
例如:接收模块501和发送模块502也可以称为收发模块或收发单元(包括接收单元和/或发送单元),分别用于执行上文方法实施例中终端设备接收和发送的步骤。
在一种可能的设计中,该通信装置可实现对应于上文方法实施例中的终端设备执行的步骤或者流程,例如,可以为终端设备,或者配置于终端设备中的芯片或电路。接收模块501和发送模块502用于执行上文方法实施例中终端设备侧的收发相关操作。
接收模块,用于获取第一配置信息,所述第一配置信息用于指示允许通过下行控制信息DCI或媒体接入控制控制单元MAC CE指示至少一个载波上的相干性;
接收模块,还用于接收来自网络设备的所述DCI或所述MAC CE,所述DCI或所述MAC CE包括第一指示信息,所述第一指示信息用于指示所述至少一个载波的相干性,所述至少一个载波的相干性不超过所述至少一个载波所属的频段支持的相干性能力。
可选的,发送模块502,用于向所述网络设备发送第一频段组合对应的多组参数,所述多组参数中的每组参数包括所述终端设备支持的所述第一频段组合中每个频段的相干性能力,所述第一频段组合对应的至少两组参数中至少一个频段上的相干性能力不同。
其中,所述第一频段组合中至少两个频段的最高相干性能力位于所述多组参数中不同的两组参数中。
可选的,发送模块502,用于向所述网络设备发送第一频段组合对应的至少一组参数,所述至少一组参数包括所述终端设备支持的所述第一频段组合中至少两个频段的相干性能力,所述至少两个频段上的相干性不能在同一时间为所述至少一组参数指示的相干性能力。
可选的,发送模块502,还用于向所述网络设备发送第二指示信息,所述第二指示信息用于指示所述终端设备支持切换所述至少一个载波所属的频段的相干性。
可选的,接收模块501,还用于接收来自所述网络设备的第二配置信息,所述第二配置信息用于配置至少两个载波的相干性,所述至少两个载波包含所述至少一个载波,所述至少两个载波的相干性为所述至少两个载波所属的频段组合中至少两个频段的最高相干性。
可选的,所述第一指示信息携带在所述DCI中指示域中的最高位、或时域资源分配信元 中的一列。
可选的,所述第一指示信息通过所述DCI中的发射预编码矩阵指示TPMI域指示的数值的取值范围、或预编码信息和层数域指示的数值的取值范围进行指示。
可选的,发送模块502,用于当所述至少一个载波当前的相干性小于所述第一指示信息指示的所述至少一个载波的相干性时,在经过至少第一时长后,在所述至少一个载波上向所述网络设备发送上行数据,其中,所述第一时长为切换载波的时长、切换相干性的时长、所述切换载波的时长和所述切换干性的时长中的较大值、或预先定义的时长。
需要说明的是,各个模块的实现还可以对应参照图2所示的方法实施例的相应描述,执行上述实施例中终端设备所执行的方法和功能。
请参见图6,图6是本申请实施例提供的一种通信装置的结构示意图。该通信装置可以包括发送模块601和接收模块602,发送模块601和接收模块602可以与外部进行通信。发送模块601和接收模块602还可以称为通信接口、收发模块或收发单元。该发送模块601和接收模块602可以用于执行上文方法实施例中网络设备所执行的动作。
例如:发送模块601和接收模块602也可以称为收发模块或收发单元(包括发送单元和/或接收单元),分别用于执行上文方法实施例中网络设备发送和接收的步骤。
在一种可能的设计中,该通信装置可实现对应于上文方法实施例中的网络设备执行的步骤或者流程,例如,可以为网络设备,或者配置于网络设备中的芯片或电路。发送模块601和接收模块602用于执行上文方法实施例中网络设备侧的收发相关操作。
发送模块601,用于向终端设备发送第一配置信息,所述第一配置信息用于指示允许通过下行控制信息DCI或媒体接入控制控制单元MAC CE指示至少一个载波上的相干性;
发送模块601,还用于向所述终端设备发送所述DCI或所述MAC CE,所述DCI或所述MAC CE包括第一指示信息,所述第一指示信息用于指示所述至少一个载波的相干性,所述至少一个载波的相干性不超过所述至少一个载波所属的频段支持的相干性能力。
可选的,接收模块602,用于接收来自所述终端设备的第一频段组合对应的多组参数,所述多组参数中的每组参数包括所述终端设备支持的所述第一频段组合中每个频段的相干性能力,所述第一频段组合对应的至少两组参数中至少一个频段上的相干性能力不同。
其中,所述第一频段组合中至少两个频段的最高相干性能力位于所述多组参数中不同的两组参数中。
可选的,接收模块602,用于接收来自所述终端设备的第一频段组合对应的至少一组参数,所述至少一组参数包括所述终端设备支持的所述第一频段组合中至少两个频段的相干性能力,所述至少两个频段上的相干性不能在同一时间为所述至少一组参数指示的相干性能力。
可选的,接收模块602,还用于接收来自所述终端设备的第二指示信息,所述第二指示信息用于指示所述终端设备支持切换所述至少一个载波所属的频段的相干性。
可选的,发送模块601,还用于向所述终端设备发送第二配置信息,所述第二配置信息用于配置至少两个载波的相干性,所述至少两个载波包含所述至少一个载波,所述至少两个载波的相干性为所述至少两个载波所属的频段组合中至少两个频段的最高相干性。
可选的,所述第一指示信息携带在所述DCI中指示域中的最高位、或时域资源分配信元中的一列。
可选的,所述第一指示信息通过所述DCI中的发射预编码矩阵指示TPMI域指示的数值的取值范围、或预编码信息和层数域指示的数值的取值范围进行指示。
可选的,接收模块602,用于当所述至少一个载波当前的相干性小于所述第一指示信息 指示的所述至少一个载波的相干性时,接收所述终端设备在经过至少第一时长后在所述至少一个载波上发送的上行数据,其中,所述第一时长为切换载波的时长、切换相干性的时长、所述切换载波的时长和所述切换干性的时长中的较大值、或预先定义的时长。
需要说明的是,各个模块的实现还可以对应参照图2所示的方法实施例的相应描述,执行上述实施例中网络设备所执行的方法和功能。
图7是本申请实施例提供的一种终端设备的结构示意图。该终端设备可应用于如图1所示的系统中,执行上述方法实施例中终端设备的功能,或者实现上述方法实施例中终端设备执行的步骤或者流程。
如图7所示,该终端设备包括处理器701和收发器702。可选地,该终端设备还包括存储器703。其中,处理器701、收发器702和存储器703之间可以通过内部连接通路互相通信,传递控制和/或数据信号,该存储器703用于存储计算机程序,该处理器701用于从该存储器703中调用并运行该计算机程序,以控制该收发器702收发信号。可选地,终端设备还可以包括天线,用于将收发器702输出的上行数据或上行控制信令通过无线信号发送出去。
上述处理器701可以和存储器703可以合成一个处理装置,处理器701用于执行存储器703中存储的程序代码来实现上述功能。具体实现时,该存储器703也可以集成在处理器701中,或者独立于处理器701。
上述收发器702可以与图5中的接收模块和发送模块对应,也可以称为收发单元或收发模块。收发器702可以包括接收器(或称接收机、接收电路)和发射器(或称发射机、发射电路)。其中,接收器用于接收信号,发射器用于发射信号。
应理解,图7所示的终端设备能够实现图2所示方法实施例中涉及终端设备的各个过程。终端设备中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详述描述。
上述处理器701可以用于执行前面方法实施例中描述的由终端设备内部实现的动作,而收发器702可以用于执行前面方法实施例中描述的终端设备向网络设备发送或从网络设备接收的动作。具体请见前面方法实施例中的描述,此处不再赘述。
其中,处理器701可以是中央处理器单元,通用处理器,数字信号处理器,专用集成电路,现场可编程门阵列或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。处理器701也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,数字信号处理器和微处理器的组合等等。通信总线704可以是外设部件互连标准PCI总线或扩展工业标准结构EISA总线等。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图7中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。通信总线704用于实现这些组件之间的连接通信。其中,本申请实施例中收发器702用于与其他节点设备进行信令或数据的通信。存储器703可以包括易失性存储器,例如非挥发性动态随机存取内存(nonvolatile random access memory,NVRAM)、相变化随机存取内存(phase change RAM,PRAM)、磁阻式随机存取内存(magetoresistive RAM,MRAM)等,还可以包括非易失性存储器,例如至少一个磁盘存储器件、电子可擦除可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、闪存器件,例如反或闪存(NOR flash memory)或是反及闪存(NAND flash memory)、半导体器件,例如固态硬盘(solid state disk,SSD)等。存储器703可选的还可以是至少一个位于远离前述处理器701的存储装置。存储器703中可 选的还可以存储一组计算机程序代码或配置信息。可选的,处理器701还可以执行存储器703中所存储的程序。处理器可以与存储器和收发器相配合,执行上述申请实施例中终端设备的任意一种方法和功能。
图8是本申请实施例提供的一种网络设备的结构示意图。该网络设备可应用于如图1所示的系统中,执行上述方法实施例中网络设备的功能,或者实现上述方法实施例中网络设备执行的步骤或者流程。
如图8所示,该网络设备包括处理器801和收发器802。可选地,该网络设备还包括存储器803。其中,处理器801、收发器802和存储器803之间可以通过内部连接通路互相通信,传递控制和/或数据信号,该存储器803用于存储计算机程序,该处理器801用于从该存储器803中调用并运行该计算机程序,以控制该收发器802收发信号。可选地,网络设备还可以包括天线,用于将收发器802输出的上行数据或上行控制信令通过无线信号发送出去。
上述处理器801可以和存储器803可以合成一个处理装置,处理器801用于执行存储器803中存储的程序代码来实现上述功能。具体实现时,该存储器803也可以集成在处理器801中,或者独立于处理器801。
上述收发器802可以与图6中的接收模块和发送模块对应,也可以称为收发单元或收发模块。收发器802可以包括接收器(或称接收机、接收电路)和发射器(或称发射机、发射电路)。其中,接收器用于接收信号,发射器用于发射信号。
应理解,图8所示的网络设备能够实现图2所示方法实施例中涉及网络设备的各个过程。网络设备中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详述描述。
上述处理器801可以用于执行前面方法实施例中描述的由网络设备内部实现的动作,而收发器802可以用于执行前面方法实施例中描述的网络设备向终端设备发送或从终端设备接收的动作。具体请见前面方法实施例中的描述,此处不再赘述。
其中,处理器801可以是前文提及的各种类型的处理器。通信总线804可以是外设部件互连标准PCI总线或扩展工业标准结构EISA总线等。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图8中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。通信总线804用于实现这些组件之间的连接通信。其中,本申请实施例中设备的收发器802用于与其他设备进行信令或数据的通信。存储器803可以是前文提及的各种类型的存储器。存储器803可选的还可以是至少一个位于远离前述处理器801的存储装置。存储器803中存储一组计算机程序代码或配置信息,且处理器801执行存储器803中程序。处理器可以与存储器和收发器相配合,执行上述申请实施例中网络设备的任意一种方法和功能。
本申请实施例还提供了一种芯片系统,该芯片系统包括处理器,用于支持终端设备或网络设备以实现上述任一实施例中所涉及的功能,例如生成或处理上述方法中所涉及的SDT数据。在一种可能的设计中,所述芯片系统还可以包括存储器,所述存储器,用于终端设备或网络设备必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件。其中,芯片系统的输入和输出,分别对应方法实施例终端设备或网络设备的接收与发送操作。
本申请实施例还提供了一种处理装置,包括处理器和接口。所述处理器可用于执行上述方法实施例中的方法。
应理解,上述处理装置可以是一个芯片。例如,该处理装置可以是现场可编程门阵列(field programmable gate array,FPGA),可以是专用集成芯片(application specific integrated circuit, ASIC),还可以是系统芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序,当该计算机程序在计算机上运行时,使得该计算机执行图2所示实施例中任意一个实施例的方法。
根据本申请实施例提供的方法,本申请还提供一种计算机可读介质,该计算机可读介质存储有计算机程序,当该计算机程序在计算机上运行时,使得该计算机执行图2所示实施例中任意一个实施例的方法。
根据本申请实施例提供的方法,本申请还提供一种通信系统,其包括前述的一个或多个终端设备以及一个或多个网络设备。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disc,SSD))等。
上述各个装置实施例中网络设备与终端设备和方法实施例中的网络设备或终端设备对 应,由相应的模块或单元执行相应的步骤,例如接收模块和发送模块(收发器)执行方法实施例中接收或发送的步骤,除发送、接收外的其它步骤可以由处理模块(处理器)执行。具体模块的功能可以参考相应的方法实施例。其中,处理器可以为一个或多个。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在两个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各种说明性逻辑块(illustrative logical block)和步骤(step),能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能模块可以集成在一个处理模块中,也可以是各个模块单独物理存在,也可以两个或两个以上模块集成在一个模块中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (41)

  1. 一种通信方法,其特征在于,所述方法包括:
    终端设备获取第一配置信息,所述第一配置信息用于指示允许通过下行控制信息DCI或媒体接入控制控制单元MAC CE指示至少一个载波上的相干性;
    所述终端设备接收来自网络设备的所述DCI或所述MAC CE,所述DCI或所述MAC CE包括第一指示信息,所述第一指示信息用于指示所述至少一个载波的相干性,所述至少一个载波的相干性不超过所述至少一个载波所属的频段支持的相干性能力。
  2. 如权利要求1所述的方法,其特征在于,所述方法还包括:
    所述终端设备向所述网络设备发送第一频段组合对应的多组参数,所述多组参数中的每组参数包括所述终端设备支持的所述第一频段组合中每个频段的相干性能力,所述第一频段组合对应的至少两组参数中至少一个频段上的相干性能力不同。
  3. 如权利要求2所述的方法,其特征在于,所述第一频段组合中至少两个频段的最高相干性能力位于所述多组参数中不同的两组参数中。
  4. 如权利要求1所述的方法,其特征在于,所述方法还包括:
    所述终端设备向所述网络设备发送第一频段组合对应的至少一组参数,所述至少一组参数包括所述终端设备支持的所述第一频段组合中至少两个频段的相干性能力,所述至少两个频段上的相干性不能在同一时间为所述至少一组参数指示的相干性能力。
  5. 如权利要求1-4任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备向所述网络设备发送第二指示信息,所述第二指示信息用于指示所述终端设备支持切换所述至少一个载波所属的频段的相干性。
  6. 如权利要求1-5任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收来自所述网络设备的第二配置信息,所述第二配置信息用于配置至少两个载波的相干性,所述至少两个载波包含所述至少一个载波,所述至少两个载波的相干性为所述至少两个载波所属的频段组合中至少两个频段的最高相干性。
  7. 如权利要求1-6任一项所述的方法,其特征在于,所述第一指示信息携带在所述DCI中指示域中的最高位、或时域资源分配信元中的一列。
  8. 如权利要求1-6任一项所述的方法,其特征在于,所述第一指示信息通过所述DCI中的发射预编码矩阵指示TPMI域指示的数值的取值范围、或预编码信息和层数域指示的数值的取值范围进行指示。
  9. 如权利要求1-8任一项所述的方法,其特征在于,所述终端设备接收来自所述网络设备的DCI或MAC CE之后,还包括:
    当所述至少一个载波当前的相干性小于所述第一指示信息指示的所述至少一个载波的相 干性时,所述终端设备在经过至少第一时长后,在所述至少一个载波上向所述网络设备发送上行数据,其中,所述第一时长为切换载波的时长、切换相干性的时长、所述切换载波的时长和所述切换干性的时长中的较大值、或预先定义的时长。
  10. 一种通信方法,其特征在于,所述方法包括:
    网络设备向终端设备发送第一配置信息,所述第一配置信息用于指示允许通过下行控制信息DCI或媒体接入控制控制单元MAC CE指示至少一个载波上的相干性;
    所述网络设备向所述终端设备发送所述DCI或所述MAC CE,所述DCI或所述MAC CE包括第一指示信息,所述第一指示信息用于指示所述至少一个载波的相干性,所述至少一个载波的相干性不超过所述至少一个载波所属的频段支持的相干性能力。
  11. 如权利要求10所述的方法,其特征在于,所述方法还包括:
    所述网络设备接收来自所述终端设备的第一频段组合对应的多组参数,所述多组参数中的每组参数包括所述终端设备支持的所述第一频段组合中每个频段的相干性能力,所述第一频段组合对应的至少两组参数中至少一个频段上的相干性能力不同。
  12. 如权利要求11所述的方法,其特征在于,所述第一频段组合中至少两个频段的最高相干性能力位于所述多组参数中不同的两组参数中。
  13. 如权利要求10所述的方法,其特征在于,所述方法还包括:
    所述网络设备接收来自所述终端设备的第一频段组合对应的至少一组参数,所述至少一组参数包括所述终端设备支持的所述第一频段组合中至少两个频段的相干性能力,所述至少两个频段上的相干性不能在同一时间为所述至少一组参数指示的相干性能力。
  14. 如权利要求10-13中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备接收来自所述终端设备的第二指示信息,所述第二指示信息用于指示所述终端设备支持切换所述至少一个载波所属的频段的相干性。
  15. 如权利要求10-14任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送第二配置信息,所述第二配置信息用于配置至少两个载波的相干性,所述至少两个载波包含所述至少一个载波,所述至少两个载波的相干性为所述至少两个载波所属的频段组合中至少两个频段的最高相干性。
  16. 如权利要求10-15任一项所述的方法,其特征在于,所述第一指示信息携带在所述DCI中指示域中的最高位、或时域资源分配信元中的一列。
  17. 如权利要求10-15任一项所述的方法,其特征在于,所述第一指示信息通过所述DCI中的发射预编码矩阵指示TPMI域指示的数值的取值范围、或预编码信息和层数域指示的数值的取值范围进行指示。
  18. 如权利要求10-17任一项所述的方法,其特征在于,所述网络设备向所述终端设备 发送所述DCI或所述MAC CE之后,还包括:
    当所述至少一个载波当前的相干性小于所述第一指示信息指示的所述至少一个载波的相干性时,所述网络设备接收所述终端设备在经过至少第一时长后在所述至少一个载波上发送的上行数据,其中,所述第一时长为切换载波的时长、切换相干性的时长、所述切换载波的时长和所述切换干性的时长中的较大值、或预先定义的时长。
  19. 一种通信装置,其特征在于,所述装置包括:
    接收模块,用于获取第一配置信息,所述第一配置信息用于指示允许通过下行控制信息DCI或媒体接入控制控制单元MAC CE指示至少一个载波上的相干性;
    所述接收模块,还用于接收来自网络设备的所述DCI或所述MAC CE,所述DCI或所述MAC CE包括第一指示信息,所述第一指示信息用于指示所述至少一个载波的相干性,所述至少一个载波的相干性不超过所述至少一个载波所属的频段支持的相干性能力。
  20. 如权利要求19所述的装置,其特征在于,所述装置还包括:
    发送模块,用于向所述网络设备发送第一频段组合对应的多组参数,所述多组参数中的每组参数包括所述终端设备支持的所述第一频段组合中每个频段的相干性能力,所述第一频段组合对应的至少两组参数中至少一个频段上的相干性能力不同。
  21. 如权利要求20所述的装置,其特征在于,所述第一频段组合中至少两个频段的最高相干性能力位于所述多组参数中不同的两组参数中。
  22. 如权利要求19所述的装置,其特征在于,所述装置还包括:
    发送模块,用于向所述网络设备发送第一频段组合对应的至少一组参数,所述至少一组参数包括所述终端设备支持的所述第一频段组合中至少两个频段的相干性能力,所述至少两个频段上的相干性不能在同一时间为所述至少一组参数指示的相干性能力。
  23. 如权利要求20-22任一项所述的装置,其特征在于,
    所述发送模块,还用于向所述网络设备发送第二指示信息,所述第二指示信息用于指示所述终端设备支持切换所述至少一个载波所属的频段的相干性。
  24. 如权利要求19-23任一项所述的装置,其特征在于,
    所述接收模块,还用于接收来自所述网络设备的第二配置信息,所述第二配置信息用于配置至少两个载波的相干性,所述至少两个载波包含所述至少一个载波,所述至少两个载波的相干性为所述至少两个载波所属的频段组合中至少两个频段的最高相干性。
  25. 如权利要求19-24任一项所述的装置,其特征在于,所述第一指示信息携带在所述DCI中指示域中的最高位、或时域资源分配信元中的一列。
  26. 如权利要求19-24任一项所述的装置,其特征在于,所述第一指示信息通过所述DCI中的发射预编码矩阵指示TPMI域指示的数值的取值范围、或预编码信息和层数域指示的数值的取值范围进行指示。
  27. 如权利要求19-26任一项所述的装置,其特征在于,所述装置还包括:
    发送模块,用于当所述至少一个载波当前的相干性小于所述第一指示信息指示的所述至少一个载波的相干性时,在经过至少第一时长后,在所述至少一个载波上向所述网络设备发送上行数据,其中,所述第一时长为切换载波的时长、切换相干性的时长、所述切换载波的时长和所述切换干性的时长中的较大值、或预先定义的时长。
  28. 一种通信装置,其特征在于,所述装置包括:
    发送模块,用于向终端设备发送第一配置信息,所述第一配置信息用于指示允许通过下行控制信息DCI或媒体接入控制控制单元MAC CE指示至少一个载波上的相干性;
    所述发送模块,还用于向所述终端设备发送所述DCI或所述MAC CE,所述DCI或所述MAC CE包括第一指示信息,所述第一指示信息用于指示所述至少一个载波的相干性,所述至少一个载波的相干性不超过所述至少一个载波所属的频段支持的相干性能力。
  29. 如权利要求28所述的装置,其特征在于,所述装置还包括:
    接收模块,用于接收来自所述终端设备的第一频段组合对应的多组参数,所述多组参数中的每组参数包括所述终端设备支持的所述第一频段组合中每个频段的相干性能力,所述第一频段组合对应的至少两组参数中至少一个频段上的相干性能力不同。
  30. 如权利要求29所述的装置,其特征在于,所述第一频段组合中至少两个频段的最高相干性能力位于所述多组参数中不同的两组参数中。
  31. 如权利要求28所述的装置,其特征在于,所述装置还包括:
    接收模块,用于接收来自所述终端设备的第一频段组合对应的至少一组参数,所述至少一组参数包括所述终端设备支持的所述第一频段组合中至少两个频段的相干性能力,所述至少两个频段上的相干性不能在同一时间为所述至少一组参数指示的相干性能力。
  32. 如权利要求28-31中任一项所述的装置,其特征在于,
    所述接收模块,还用于接收来自所述终端设备的第二指示信息,所述第二指示信息用于指示所述终端设备支持切换所述至少一个载波所属的频段的相干性。
  33. 如权利要求28-32任一项所述的装置,其特征在于,
    所述发送模块,还用于向所述终端设备发送第二配置信息,所述第二配置信息用于配置至少两个载波的相干性,所述至少两个载波包含所述至少一个载波,所述至少两个载波的相干性为所述至少两个载波所属的频段组合中至少两个频段的最高相干性。
  34. 如权利要求28-33任一项所述的装置,其特征在于,所述第一指示信息携带在所述DCI中指示域中的最高位、或时域资源分配信元中的一列。
  35. 如权利要求28-33任一项所述的装置,其特征在于,所述第一指示信息通过所述DCI中的发射预编码矩阵指示TPMI域指示的数值的取值范围、或预编码信息和层数域指示的数 值的取值范围进行指示。
  36. 如权利要求28-35任一项所述的装置,其特征在于,所述装置还包括:
    接收模块,用于当所述至少一个载波当前的相干性小于所述第一指示信息指示的所述至少一个载波的相干性时,接收所述终端设备在经过至少第一时长后在所述至少一个载波上发送的上行数据,其中,所述第一时长为切换载波的时长、切换相干性的时长、所述切换载波的时长和所述切换干性的时长中的较大值、或预先定义的时长。
  37. 一种通信装置,其特征在于,包括处理器和存储器,所述存储器用于存储计算机程序,所述处理器运行所述计算机程序以使得所述装置执行权利要求1-9中任一项或权利要求10-18中任一项所述的方法。
  38. 一种芯片,其特征在于,所述芯片为终端设备和网络设备内的芯片,所述芯片包括处理器和与所述处理器连接的输入接口和输出接口,所述芯片还包括存储器,当所述存储器中计算机程序被执行时,所述权利要求1-9中任一项或权利要求10-18中任一项所述的方法被执行。
  39. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,当所述计算机程序在计算机上运行时,使所述计算机执行权利要求1-9中任一项或权利要求10-18中任一项所述的方法。
  40. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机程序,当所述计算机程序在计算机上运行时,使所述计算机执行权利要求1-9中任一项或权利要求10-18中任一项所述的方法。
  41. 一种通信系统,其特征在于,所述系统包括终端设备和网络设备,所述终端设备执行权利要求1-9中任一项所述的方法,所述网络设备执行权利要求10-18中任一项所述的方法。
PCT/CN2022/140888 2021-12-23 2022-12-22 一种通信方法及装置 WO2023116803A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111587123.6 2021-12-23
CN202111587123.6A CN116367168A (zh) 2021-12-23 2021-12-23 一种通信方法及装置

Publications (1)

Publication Number Publication Date
WO2023116803A1 true WO2023116803A1 (zh) 2023-06-29

Family

ID=86901296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/140888 WO2023116803A1 (zh) 2021-12-23 2022-12-22 一种通信方法及装置

Country Status (2)

Country Link
CN (1) CN116367168A (zh)
WO (1) WO2023116803A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190081671A1 (en) * 2017-09-12 2019-03-14 Mediatek Inc. Codebook-Based Uplink Transmission In Wireless Communications
US20190327693A1 (en) * 2018-04-19 2019-10-24 Samsung Electronics Co., Ltd. Uplink power control for advanced wireless communication systems
WO2020143805A1 (zh) * 2019-01-11 2020-07-16 华为技术有限公司 一种通信方法及装置
WO2021223722A1 (zh) * 2020-05-07 2021-11-11 维沃移动通信有限公司 控制信息的获取方法、指示方法、终端及网络设备
WO2021226884A1 (en) * 2020-05-13 2021-11-18 Qualcomm Incorporated Ue indication of coherent uplink transmission

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190081671A1 (en) * 2017-09-12 2019-03-14 Mediatek Inc. Codebook-Based Uplink Transmission In Wireless Communications
US20190327693A1 (en) * 2018-04-19 2019-10-24 Samsung Electronics Co., Ltd. Uplink power control for advanced wireless communication systems
WO2020143805A1 (zh) * 2019-01-11 2020-07-16 华为技术有限公司 一种通信方法及装置
WO2021223722A1 (zh) * 2020-05-07 2021-11-11 维沃移动通信有限公司 控制信息的获取方法、指示方法、终端及网络设备
WO2021226884A1 (en) * 2020-05-13 2021-11-18 Qualcomm Incorporated Ue indication of coherent uplink transmission

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "On UL MIMO coherence capability for Rel-17 Tx switching", 3GPP DRAFT; R4-2119090, vol. RAN WG4, 22 October 2021 (2021-10-22), pages 1 - 3, XP052070464 *

Also Published As

Publication number Publication date
CN116367168A (zh) 2023-06-30

Similar Documents

Publication Publication Date Title
US11825491B2 (en) Method for monitoring PDCCH, terminal and network device
US11569949B2 (en) Communication method and communications apparatus
US11139936B2 (en) Data transmission method, terminal device, and network device
US10757566B2 (en) User equipment capability reporting
US8289917B1 (en) Method and apparatus for defining resource elements for the provision of channel state information reference signals
JP2020535750A (ja) 情報伝送方法、端末装置、およびネットワーク装置
CN110831198A (zh) 带宽资源切换方法、指示带宽资源切换方法、终端和网络设备
JP7130747B2 (ja) 位相追従参照信号送信方法及び装置
EP3664344A1 (en) Pdsch reception information indication method, data receiving method and devices
CN110730480B (zh) 一种终端设备功率优化的方法及装置
US11089587B2 (en) Physical uplink shared channel transmission method and terminal device
WO2020063308A1 (zh) 一种无线通信网络中的指示波束信息的方法和设备
TW201906445A (zh) 波束管理方法、網路設備和終端
US20220393826A1 (en) Information configuration method and apparatus, and terminal
KR20220035336A (ko) 정보 구성 방법 및 장치, 단말기
US20220416857A1 (en) Data transmission method and apparatus
WO2019096210A1 (zh) 资源分配的方法和装置
JP6617839B2 (ja) リモート無線ユニットのチャネル送信電力設定方法および基地局
US11871403B2 (en) Resource use status reporting method and communications apparatus
CN108901071B (zh) 信道测量方法和用户设备
CN114430315B (zh) 一种信息处理方法、网络设备、用户设备
CN110574415B (zh) 信道测量方法和用户设备
US20220239424A1 (en) Single carrier pdcch transmission and reception
WO2023116803A1 (zh) 一种通信方法及装置
US11671985B2 (en) Downlink control information transmission method and apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22910115

Country of ref document: EP

Kind code of ref document: A1