WO2023116468A1 - 一种通信方法及通信装置 - Google Patents

一种通信方法及通信装置 Download PDF

Info

Publication number
WO2023116468A1
WO2023116468A1 PCT/CN2022/137969 CN2022137969W WO2023116468A1 WO 2023116468 A1 WO2023116468 A1 WO 2023116468A1 CN 2022137969 W CN2022137969 W CN 2022137969W WO 2023116468 A1 WO2023116468 A1 WO 2023116468A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
communication device
information
processing
identifier
Prior art date
Application number
PCT/CN2022/137969
Other languages
English (en)
French (fr)
Inventor
黄谢田
王耀光
曹龙雨
叶方宇
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023116468A1 publication Critical patent/WO2023116468A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/50Network service management, e.g. ensuring proper service fulfilment according to agreements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/04Processing captured monitoring data, e.g. for logfile generation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0805Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters by checking availability
    • H04L43/0817Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters by checking availability by checking functioning

Definitions

  • the present application relates to the technical field of communication, and in particular, to a communication method and a communication device.
  • Network operation, administration, and maintenance refers to the production organization and management activities adopted to ensure the normal, safe and effective operation of telecommunications networks and services.
  • OAM Network operation, administration, and maintenance
  • measurement task control service producers support the collection of network measurement data according to a fixed measurement period, and the collected network measurement data according to a fixed reporting period Sent to the measurement task control consumer.
  • Measurement task control Consumers can analyze the network measurement data to understand the operation status of various aspects of the network, the operation quality of various services, daily maintenance, and problem location.
  • the measurement cycle needs to be shortened accordingly.
  • shortening the measurement cycle will increase the amount of network measurement data to be reported, increase network overhead, and cause network congestion. The problem of failure.
  • Embodiments of the present application provide a communication method and a communication device, which are used to reduce the overhead of reporting network measurement data, improve the utilization rate of network resources, and improve the accuracy of network measurement data.
  • the present application provides a communication method, and the method may be executed by a first communication device, or by a component (such as a chip or a chip system) of the first communication device.
  • the first communication device obtains the first data; the first communication device obtains the second data according to the first processing method and the first data, and the second data is the first data in the first data partial data, wherein the second data is used to acquire third data, and the error value between the third data and the first data is less than or equal to the target threshold; the first communication device sends the second communication device Send the second data.
  • the first data may be network measurement data. It should be understood that the first data may also be other forms of data, such as parameter values of target parameters, image data, etc., and the specific implementation form of the first data in the embodiment of the present application is not limited thereto.
  • the second data is part of the first data, and generally the smaller the amount of data to be transmitted, the less network overhead is required. Therefore, compared to the first communication device sending the second data to the second communication device In terms of data, the manner in which the first communication device sends the second data to the second communication device can reduce the overhead of data transmission and improve the utilization rate of network resources. In this way, under the condition of consuming the same overhead, the first communication device can support a measurement cycle with second-level granularity or millisecond-level granularity or finer granularity, and can improve the accuracy of the first data.
  • the first communication device obtains the second data from the first data according to the first processing method, and the second data is used to obtain the third data, and the error value between the third data and the first data is less than or equal to the target threshold, which can Guarantee the accuracy of the data and avoid errors in locating network problems caused by low data accuracy.
  • the method may further include: the first communication device receiving first information from the second communication device, the first information including the target threshold, calculation method or fourth At least one item of data identification, wherein the calculation method is used to determine the error value between the third data and the first data, and the fourth data is what the first communication device needs to send data, the second data includes the fourth data; the first communication device determines the first processing mode according to the first information.
  • the first communication device can use the first information from the second communication device to determine the method of obtaining the second data, the method of calculating the error value between the third data and the first data, and the method allowed by the second communication device. error value etc.
  • the method may further include: the first communication device sends second information to the second communication device, the second information includes a first data recovery mode, and the first data The recovery mode corresponds to the first processing mode, and the first data recovery mode is used to obtain the third data according to the second data; or the second information includes an identifier of the first processing mode.
  • the first communication device can flexibly indicate to the second communication device how to obtain the third data according to the second data in various ways, so that the second communication device can use a method corresponding to the first processing method to obtain the third data.
  • the first information may further include an identifier of the first processing method
  • the first communication device determines the first processing method according to the first information, which may be: The first communication device determines the first processing method according to the identifier of the first processing method.
  • the first communication device can process the first data according to the processing method specified by the second communication device to obtain the second data.
  • the method may further include: the first communication device sending third information to the second communication device, where the third information includes one or more information supported by the first communication device.
  • An identifier of a processing manner where the identifiers of the one or more processing manners include the identifier of the first processing manner.
  • the first communication device can send the identifiers of one or more processing modes supported by itself to the second communication device, and can support the second communication device to specify the first processing mode.
  • the method may further include: the first communication device sending fourth information to the second communication device, the fourth information including the third data and the first data at least one of an error value between them and a ratio of the data volume of the second data to the data volume of the first data.
  • the method may further include: the first communication device receiving an updated target threshold from the second communication device.
  • the first communication device can send the fourth information indicating the processing effect of the first processing method to the second communication device, so that the second communication device can use the fourth information to determine whether to update the target threshold and the way to update the target threshold , such as reducing the target threshold to further reduce overhead, or increasing the target threshold to increase the accuracy of the third data.
  • the first communication device is a network element management device
  • the second communication device is a network management device
  • the first communication device is an access network element
  • the second communication device is a network element management device
  • the first communication device is an access network element
  • the second communication device is a network management device
  • the first communication device is a client terminal device
  • the second communication device is an automatic matching server.
  • the present application provides a communication method, and the method may be executed by a second communication device, or by a component (such as a chip or a chip system, etc.) of the second communication device.
  • the second communication device receives second data from the first communication device, and the second data is part of the first data; Second data, acquiring third data, where the difference between the third data and the first data is less than or equal to a target threshold.
  • the first data may be network measurement data. It should be understood that the first data may also be other forms of data, such as parameter values of target parameters, image data, etc., and the specific implementation form of the first data in the embodiment of the present application is not limited thereto.
  • the method may further include: the second communication device sending first information to the first communication device, the first information including the target threshold, calculation method or fourth data at least one of the identifiers, wherein the calculation method is used to determine the error value between the third data and the first data, and the fourth data is the data that the first communication device needs to send , the second data includes the fourth data.
  • the first communication device is an access network element
  • the second communication device is a network element management device
  • the method may further include: the second communication device sends a network management device Send the third data.
  • the network resources between the network element management device and the network management device are abundant, and the network element management device obtains the third After the data, the third data may be sent to the network management device in a manner of reporting in full, so as to reduce the number of compressions of the network measurement data.
  • the method may further include: the second communication device receiving the first information from the network management device.
  • the second communication device may forward the first information to the first communication device, so that the first communication device reports the second data according to the first information.
  • the method may further include: the second communication device receiving second information from the first communication device, the second information including the first data recovery method or the An identification of a first processing method, the first processing method corresponds to the first data recovery method, and the first processing method is used to obtain the second data from the first data; the second communication The device determines the first data recovery mode according to the second information.
  • the first information further includes an identifier of the first processing mode
  • the first processing mode corresponds to the first data recovery mode
  • the first processing mode is used to obtain the Obtaining the second data from the first data
  • the method may further include: determining, by the second communication device, the first data restoration method according to the identifier of the first processing method.
  • the method may further include: the second communication device receiving third information from the first communication device, the third information including one or more information supported by the first communication device Identifications of multiple processing modes, where the identifications of the one or more processing modes include the identification of the first processing mode.
  • the method may further include: the second communication device receiving fourth information from the first communication device, the fourth information including the third data and the first At least one of an error value between data and a ratio of the data volume of the second data to the data volume of the first data.
  • the method may further include: the second communication device updating the target threshold according to the fourth information; the second communication device sending the updated target threshold.
  • the first communication device is a network element management device
  • the second communication device is a network management device
  • the first communication device is an access network element
  • the second communication device is a network element management device
  • the first communication device is an access network element
  • the second communication device is a network management device
  • the first communication device is a client terminal device
  • the second communication device is an automatic matching server.
  • an embodiment of the present application provides a communication device, which may be a first communication device, and has functions of the first communication device in the first aspect or each possible design example of the first aspect.
  • the functions may be realized by hardware, or may be realized by executing corresponding software by hardware.
  • Hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the structure of the communication device may include a transceiver module and a processing module, and these modules may perform the corresponding functions of the first communication device in the above-mentioned first aspect or each possible design example of the first aspect.
  • these modules may perform the corresponding functions of the first communication device in the above-mentioned first aspect or each possible design example of the first aspect.
  • the method The detailed description in the example is not repeated here.
  • the structure of the communication device may include an interface circuit and one or more processors.
  • the communication device further includes a memory.
  • the interface circuit is used for sending and receiving data, and for communicating and interacting with other devices in the communication system.
  • the one or more processors are configured to support the communication device to execute the corresponding functions of the first communication device in the first aspect or each possible design example of the first aspect.
  • a memory coupled to the one or more processors, holds program instructions and data necessary for the communication device.
  • the structure of the communication device may include memory and one or more processors.
  • the memory is coupled to the one or more processors; the memory is used to store computer programs or instructions, and when the computer programs or instructions are executed by the one or more processors, the communication device performs the first aspect or the first aspect above. Corresponding functions of the first communication device in each possible design example of one aspect.
  • an embodiment of the present application provides a communication device, which may be a second communication device, and has functions of the second communication device in the second aspect or each possible design example of the second aspect.
  • the functions may be realized by hardware, or may be realized by executing corresponding software by hardware.
  • Hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the structure of the communication device may include a transceiver module and a processing module, and these modules may perform the corresponding functions of the second communication device in the above-mentioned second aspect or each possible design example of the second aspect.
  • these modules may perform the corresponding functions of the second communication device in the above-mentioned second aspect or each possible design example of the second aspect.
  • the method The detailed description in the example is not repeated here.
  • the structure of the communication device may include an interface circuit and one or more processors.
  • the communication device further includes a memory.
  • the interface circuit is used for sending and receiving data, and for communicating and interacting with other devices in the communication system.
  • the one or more processors are configured to support the communication device to execute the corresponding functions of the second communication device in the second aspect or each possible design example of the second aspect.
  • a memory coupled to the one or more processors, holds program instructions and data necessary for the communication device.
  • the structure of the communication device may include memory and one or more processors.
  • the memory is coupled with the one or more processors; the memory is used to store computer programs or instructions, and when the computer programs or instructions are executed by the one or more processors, the communication device performs the above-mentioned second aspect or the first aspect. Corresponding functions of the second communication device in each possible design example of the two aspects.
  • the present application provides a communication system, including the communication device in the third aspect and/or the communication device in the fourth aspect.
  • the present application provides a computer-readable storage medium, in which computer programs or instructions are stored, and when the computer programs or instructions are executed, any design of the above-mentioned first aspect or the first aspect can be realized method described in .
  • the present application provides a computer-readable storage medium, in which computer programs or instructions are stored, and when the computer programs or instructions are executed, any design of the above-mentioned second aspect or the second aspect can be realized method described in .
  • the present application provides a computer program product, the computer program product including: a computer program (also referred to as code, or instruction), when the computer program is executed, the computer executes the above-mentioned first aspect or the first The method described in any one of the designs of the aspect.
  • a computer program also referred to as code, or instruction
  • the present application provides a computer program product, which includes: a computer program (also referred to as code, or an instruction), which, when the computer program is executed, causes the computer to perform the above-mentioned second aspect or the second The method described in any one of the designs of the aspect.
  • a computer program also referred to as code, or an instruction
  • the present application provides a chip system, which includes a processor and an interface, configured to support a communication device to implement the method described in the first aspect or any one of the designs of the first aspect.
  • the chip system further includes a memory, and the memory is used to store necessary information and data of the aforementioned communication device.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • the present application provides a chip system, which includes a processor and an interface, configured to support a communication device to implement the method described in the second aspect or any one of the designs of the second aspect.
  • the chip system further includes a memory, and the memory is used to store necessary information and data of the aforementioned communication device.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • FIG. 1 is a schematic diagram of a communication system provided by an embodiment of the present application.
  • FIG. 2 is a schematic flow diagram of a measurement task control service in an embodiment of the present application
  • FIG. 3 is a schematic flow diagram of a parameter value query service in an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a communication method provided in an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of a communication method provided in an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of a communication method provided in an embodiment of the present application.
  • FIG. 7 is a schematic flowchart of a communication method provided in an embodiment of the present application.
  • FIG. 8 is another schematic flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 9 is another schematic flowchart of a communication method provided in an embodiment of the present application.
  • FIG. 10 is another schematic flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 11 is another schematic flowchart of the communication method provided by the embodiment of the present application.
  • FIG. 12 is another schematic flowchart of the communication method provided by the embodiment of the present application.
  • FIG. 13 is another schematic flowchart of the communication method provided by the embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 15 is another schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the present application provides a communication method and a communication device, which are used to reduce the overhead of measurement reporting, improve the utilization rate of network resources, improve measurement accuracy, and help effectively monitor and analyze problems in the network.
  • the method and the device are based on the same technical conception. Since the method and the device solve the problem similarly, the implementation of the device and the method can be referred to each other, and the repetition will not be repeated.
  • a and/or B which may mean: A exists alone, and A and B, there are three situations of B alone.
  • the character "/” generally indicates that the contextual objects are an "or" relationship.
  • a plurality referred to in this application refers to two or more than two. At least one means one or more.
  • FIG. 1 shows a schematic structural diagram of a communication system to which this embodiment of the present application applies.
  • the communication system 100 includes a network management system (network management system, NMS), a network element management system (element management system, EMS), an access network element (radio access network, RAN), an automatic matching server ( auto-configuration server (ACS) and customer premises equipment (CPE).
  • NMS network management system
  • EMS network element management system
  • RAN radio access network
  • ACS automatic matching server
  • CPE customer premises equipment
  • the NMS may include one or more network management devices (or network managers), which mainly provide network management functions and can manage networks of different regions and different equipment suppliers. Network administrators can monitor the network comprehensively through NMS.
  • NMS can provide basic functions of network management, such as fault, configuration, accounting, performance and security management.
  • the NMS may serve as a measurement task control service consumer, and is used to receive network measurement data from the EMS or the RAN.
  • the EMS may include one or more network element management devices for managing one or more types of network elements.
  • the network element management apparatus may be a network element manager (element management, EM) or a domain manager (domain management, DM).
  • EM is a network module for managing network elements, which can be set on the network elements or set separately.
  • DM is a management system module with a larger management scope than EM, for example, it can manage one or more EMs.
  • the EMS can be used as a measurement task control service consumer to receive network measurement data from the RAN; or it can also be used as a measurement task control service producer to collect network measurement data and send the network measurement data to the NMS data.
  • RAN is a sub-network of an operator's network and an implementation system between service nodes and terminal devices in an operator's network.
  • the terminal equipment To access the operator's network, the terminal equipment first passes through the RAN, and then can be connected to the service node of the operator's network through the RAN.
  • a RAN device is a device that provides a wireless communication function for a terminal device, and the RAN device is also called an access network device.
  • RAN equipment includes but is not limited to: next-generation base station (g nodeB, gNB), evolved node B (evolved node B, eNB), radio network controller (radio network controller, RNC), node B (node B, NB), base station controller (base station controller, BSC), base transceiver station (base transceiver station, BTS), home base station (for example, home evolved nodeB, or home node B, HNB), baseband unit (baseBand unit, BBU) , transmission point (transmitting and receiving point, TRP), transmission point (transmitting point, TP), mobile switching center, etc.
  • next-generation base station g nodeB, gNB
  • evolved node B evolved node B
  • eNB evolved node B
  • RNC radio network controller
  • node B node B
  • base station controller base station controller
  • BTS base transceiver station
  • home base station for example, home evolved nodeB, or home node B, HNB
  • the RAN can be used as a measurement task control service producer to collect network measurement data and send the network measurement data to the NMS or EMS.
  • the ACS is mainly responsible for the configuration and management of the CPE, querying the configuration parameters of the CPE, etc.
  • the ACS may be used to receive parameter values sent from the CPE.
  • the CPE deployed on the user side, connects to the operator's base station through the air interface, and can be managed by the ACS.
  • the CPE can be used to obtain the parameter value and send the parameter value to the ACS.
  • Fig. 2 shows a schematic flow chart of the measurement task control service. As shown in Fig. 2, the process may include the following contents.
  • the measurement job control service consumer sends a create measurement job (create measurement job) request message to the measurement job control service producer; correspondingly, the measurement job control service producer receives the create measurement job request message.
  • the create measurement task request message may be used to request the measurement task control service producer to create a measurement task for the target measurement object.
  • the measurement task creation request message may include one or more of the identifier of the measurement object, the type of network measurement data, the measurement reporting method, the measurement period, and the reporting period.
  • measurement object may be one or more cells managed by the measurement task control service producer.
  • the type of network measurement data may include but is not limited to the average delay of the uplink air interface, the average delay of the downlink air interface, the average throughput of uplink users, the average throughput of downlink users, and the utilization rate of uplink physical resource block (PRB) , downlink PRB utilization rate, average number of radio resource control (radio resource control, RRC) connections, and the like.
  • PRB physical resource block
  • RRC radio resource control
  • the reporting method refers to the method in which the measurement task control service producer sends the network measurement data to the measurement task control service consumer, for example, reporting in the form of a file or in the form of a data stream.
  • the measurement period means that the measurement task control service producer can obtain the network measurement data of the measurement object according to the measurement period.
  • the reporting period means that the measurement task control service producer can send the network measurement data of the measurement object to the measurement task control service consumer according to the reporting period.
  • the reporting period is an integer multiple of the measurement period.
  • the measurement cycle and reporting cycle are minute-level granularity, such as 5 minutes, 15 minutes, 30 minutes, 60 minutes, etc.
  • the measurement task control service producer can be EMS or RAN; or, if the measurement task control service consumer is EMS, then the measurement task control service producer can be RAN.
  • the measurement task control service producer sends a measurement task creation response message to the measurement task control service consumer; correspondingly, the measurement task control service consumer receives the measurement task creation response message.
  • the creation measurement task response message may include a task identifier and creation status (such as creation success or creation failure or partial creation success). And when the creation fails or part of the creation is successful, the creating measurement task response message may further include an unsupported measurement list.
  • the task identifier means that after receiving the measurement task creation request message, the measurement task control service producer creates a corresponding measurement task according to specified parameters and assigns a task identifier.
  • the unsupported measurement list may include types of network measurement data and reasons for unsuccessful creation.
  • the measurement task of measurement object 1 is successfully created; the measurement task of measurement object 2 is partially created successfully, and the types of network measurement data that fail to be created include network measurement data 1 and network measurement data 2, and network measurement data 1 is due to reasons 1 failed to be created, network measurement data 2 failed to be created due to reason 2; measurement task creation of measurement object 3 failed, the type of network measurement data that failed to be created was network measurement data 3, and network measurement data 3 failed to be created due to reason 3.
  • the data in Table 1 is only an example, and is not limited to the specific implementation manner of creating the measurement task response message.
  • the embodiment of the present application takes the successful creation of a measurement task as an example for description.
  • the measurement task control service producer acquires network measurement data.
  • the measurement task control service producer may collect network measurement data according to one or more of the measurement object identifier, network measurement data type, and measurement period.
  • the measurement task control service producer sends the network measurement data to the measurement task control service consumer; correspondingly, the measurement task control service consumer receives the network measurement data.
  • the measurement task control service producer may send network measurement data to the measurement task control service consumer according to at least one of a reporting manner and a reporting period. Furthermore, after receiving the network measurement data, the measurement task control service consumer can process the network measurement data, such as analyzing network performance and locating problems.
  • Fig. 3 shows a schematic flowchart of the parameter value query service. As shown in Fig. 3, the process may include the following contents.
  • the ACS sends a parameter value query (get parameter values) request message to the CPE; correspondingly, the CPE receives the parameter value query request message.
  • the parameter value query request message may include an identifier of the target parameter, such as a parameter name of the target parameter.
  • the target parameter may include but not limited to the total number of device accesses, the number of device access failures, the total downlink traffic, the total uplink traffic, the device uplink delay, the device downlink delay, the device uplink packet loss rate, and One or more items such as the downlink packet loss rate of the device.
  • the CPE acquires the parameter value of the target parameter. For example, the CPE acquires the parameter value of the target parameter according to the identifier of the target parameter.
  • the CPE sends a parameter value query response message to the ACS; correspondingly, the ACS receives the parameter value query response message.
  • the parameter value query response message carries the parameter value of the target parameter.
  • the ACS can analyze related problems according to the parameter value of the target parameter, such as identification of network problems (such as problems with large delay and high packet loss rate), and problem location (such as location of video blurred screen problems, etc.).
  • the measurement task control service producer sends the collected network measurement data to the measurement task control service consumer.
  • the network measurement data is minute-level granularity, which is not conducive to obtaining high-precision Network measurement data, but shortening the measurement period will increase the amount of network measurement data to be reported, increase network overhead, cause network congestion, and fail to report network measurement data.
  • the parameter value query service shown in FIG. 3 if the network resources are relatively tight or there are many parameter values to be transmitted, network congestion will also be caused, and the parameter value report failure will occur.
  • an embodiment of the present application provides a communication method and a communication device, so as to reduce the overhead of reporting network measurement data, improve the utilization rate of network resources, and improve the accuracy of network measurement data.
  • the communication method provided by the embodiment of the present application can be applied to the measurement task control service scenario shown in FIG. 2 to reduce the overhead of reporting network measurement data and improve the accuracy of network measurement data;
  • the parameter value query service scenario shown in Figure 3 it is used to reduce the cost of parameter value reporting; or, it can also be applied to other scenarios, such as the image data sending scene, the video data sending scene, etc., to reduce the number of data to be transmitted Data overhead; the embodiment of the present application is not limited thereto.
  • the following uses the measurement task control service scenario and the parameter value query service scenario as examples for introduction.
  • FIG. 4 shows a schematic flowchart of a communication method provided by an embodiment of the present application.
  • the method can be applied to the communication system 100 shown in FIG. 1 , such as the measurement task control service scenario between the NMS and the EMS shown in FIG. 1 , or the measurement between the NMS and the RAN shown in FIG. 1
  • the task control service scenario is either applied to the measurement task control service scenario between the EMS and the RAN shown in FIG. 1 , or applied to the parameter value query service scenario between the ACS and the CPE shown in FIG. 1 .
  • the first communication device may be an EMS or a component of an EMS (such as a chip or a system on a chip), and the second communication device may be an NMS or a component of an NMS (such as a chip or a system on a chip); or, the first communication device may be It is RAN or a part of RAN (such as a chip or a chip system), and the second communication device can be an NMS or a part of the NMS (such as a chip or a chip system); or, the first communication device can be a RAN (such as a chip or a chip system).
  • the second communication device may be an EMS or a component of an EMS (such as a chip or a chip system); or, the first communication device may be a CPE or a component of a CPE (such as a chip or a chip system), and the second communication device Then it may be an ACS or a component of an ACS (such as a chip or a system-on-a-chip).
  • S401 The first communication device acquires first data.
  • the first data may be the network measurement data of the measurement object, or the parameter value of the target parameter, or image data, video data, etc., and the specific implementation form of the first data in the embodiment of the present application is not limited thereto.
  • the first data is the network measurement data of the measurement object or the parameter value of the target parameter.
  • the first communication device may collect network measurement data of the measurement object.
  • the first telecommunications device may collect parameter values of target parameters.
  • the measurement object may be one or more cells managed by the first communication device.
  • the types of network measurement data may include, but are not limited to: average uplink air interface delay, downlink air interface average delay, uplink user average throughput, downlink user average throughput, uplink PRB utilization, downlink PRB utilization, average RRC connection One or more of numbers etc.
  • the target parameters may include, but are not limited to: total number of device accesses, number of device access failures, total downlink traffic, total uplink traffic, device uplink delay, device downlink delay, device uplink packet loss rate, and device One or more items in downlink packet loss rate, etc.
  • the first communication device may actively acquire the first data.
  • the first communication device may collect network measurement data of the measurement object or actively collect parameter values of target parameters according to a pre-configured measurement period, network measurement data type, etc., to obtain the first data.
  • the first communication device may also acquire the first data in response to the first request message of the second communication device.
  • the second communication device may send a first request message to the first communication device, and correspondingly, the first communication device receives the first request message.
  • the first request message is used to request to obtain the first data.
  • the first request message may be a measurement task creation request message, or a parameter value query request message, etc., which is not limited in this embodiment of the present application.
  • the first request message may include but not limited to: an identifier of the measurement object, a type of network measurement data, a reporting method, a measurement period, and one or more of the reporting period multiple items; correspondingly, after receiving the first request message, the first communication device may collect the network measurement data of the measurement object according to the type of the network measurement data and the measurement period to obtain the first data.
  • the first request message may include an identifier of the target parameter; correspondingly, after receiving the first request message, the first communication device may collect the parameter value of the target parameter according to the identifier of the target parameter, Get the first data.
  • the measurement period and reporting period involved in the embodiment of the present application may be minute-level granularity, second-level granularity, or millisecond-level granularity, etc., and the embodiment of the present application is not limited thereto.
  • the description of the reporting method and the reporting period please refer to the relevant description in the aforementioned step S201, which will not be repeated here.
  • the first communication device may send the first response message to the second communication device, and correspondingly, the second communication device receives the first response message.
  • the first response message may be a measurement task creation response message.
  • the first response message may include the identifier of the measurement object and the creation status (such as creation success, or creation failure, or partial creation success).
  • the first response message may also include one or more of the type of the measurement parameter whose creation failed and the reasons for the creation failure, as shown in Table 1.
  • the first communication device is a CPE
  • the first response message may be a parameter value query response message.
  • the first communication device acquires second data according to the first processing manner and the first data.
  • the second data is part of the first data.
  • the second data can be used to obtain third data.
  • the error value between the third data and the first data is less than or equal to the target threshold.
  • the first processing manner is used to obtain part of the original data from the original data, which can reduce the amount of data to be transmitted.
  • the first processing manner may be, for example, a compression algorithm based on column subspace filling or a compression algorithm based on matrix filling, which is not limited in this embodiment of the present application.
  • the target threshold involved in the embodiment of the present application may be an error threshold or an accuracy threshold, which is not limited in the embodiment of the present application.
  • the target threshold is an error threshold
  • the error value between the third data and the first data is less than or equal to the target threshold.
  • the target threshold is an accuracy threshold
  • the accuracy of the third data obtained when restoring the first data according to the second data is greater than or equal to the target threshold.
  • the description below takes the target threshold as an error threshold as an example.
  • the target threshold may be preset, such as determined by the first communication device according to its own data processing capability, or determined according to the reporting of historical data, etc.; or it may be indicated by the second communication device, such as the first communication device.
  • the second communication device determines according to one or more of the requirements of the second communication device, the bandwidth resource allocation of the second communication device, the data processing capability of the second communication device, and the data processing capability of the first communication device;
  • the embodiment of the present application is not limited thereto.
  • the second communication device may send first information to the first communication device, and the first information may include a target threshold; correspondingly, the first communication device receives the first information.
  • the first information may be carried in the first request message or in other messages, which is not limited in this embodiment of the present application. It should be understood that the number of the target thresholds is one or more. For example, when there are multiple measurement objects, there may be multiple target thresholds.
  • the first information may also include a calculation method, or include an identifier of the fourth data, or include a calculation method and an identifier of the fourth data.
  • This calculation method can be used to evaluate the actual effect of the first processing method. For example, this calculation method can be used to determine the error value between the third data and the first data, such as mean absolute error, root mean square error, etc.; or it can be used to determine the accuracy rate of the third data.
  • the fourth data is data to be sent by the first communication device. That is, the fourth data is included in the second data.
  • the identifier of the fourth data may be, for example, a row identifier or a column identifier, and the row identifier or column identifier corresponds to a type of network measurement data or a measurement time point.
  • the first communication device may determine the first processing manner, and process the first data according to the first processing manner to obtain the second data.
  • the first communication device supports one or more processing modes, and the first communication device may determine the first processing mode from the one or more processing modes.
  • the first communication device may determine the first processing mode according to its own data processing capability, or its own bandwidth resource allocation, or its own data processing capability and its own bandwidth resource allocation. For example, the first communication device may select a processing method with the least computational complexity from multiple processing methods according to its own data processing capability as the first processing method. For example, the first communication device may select the processing method corresponding to the smallest amount of second data from multiple processing methods according to its own bandwidth resource allocation as the first processing method.
  • the first communication device may determine the first processing manner according to the first information. Specifically, the first communication device may determine from multiple processing methods according to the calculation method that the processing method corresponding to the smallest error value between the third data and the first data is the first processing method; or, according to the calculation method, select from the multiple processing methods It is determined that the processing method corresponding to the highest accuracy rate of the third data is the first processing method; or, according to the target threshold, it is determined from multiple methods that a processing method that meets the target threshold is the first processing method; the embodiment of the present application also Not limited to this.
  • the first communication device may determine the first processing manner according to the identifier of the first processing manner.
  • the second communication device may send the identifier of the first processing method to the first communication device, and correspondingly, the first communication device receives the identifier of the first processing method, and determines the first processing method according to the identifier of the first processing method Way.
  • the identifier of the first processing manner may be included in the first information, or may be included in other information sent by the second communication device to the first communication device, which is not limited in this embodiment of the present application.
  • the first communication device may report the identifications of one or more processing modes supported by itself to the second communication device, where the identifications of the one or more processing modes include the identification of the first processing mode.
  • the first communication device may send third information to the second communication device, and the third information may include the identifiers of one or more processing methods supported by the first communication device; correspondingly, the second communication device receives the third information.
  • the second communication device may determine a first processing method from the one or more processing methods, and send an identifier of the first processing method to the first communication device.
  • the second communication device may determine one processing method from the one or more processing methods as the first processing method according to its own needs, its own data processing capabilities, and its own bandwidth resource allocation, such as the first processing method
  • the corresponding data recovery method has the lowest computational complexity.
  • the third information may also include one or more data recovery methods (such as calculation formulas or names of data recovery methods, etc.).
  • one or more data recovery modes correspond to one or more processing modes.
  • the processing method is a compression algorithm based on column subspace
  • the data recovery method corresponding to the processing method may be a data reconstruction formula.
  • the one or more data recovery methods are used to obtain the third data according to the second data.
  • the third information may also include the computational complexity of the one or more data restoration methods.
  • the computational complexity of the one or more data recovery methods can be used to determine the target threshold (such as adaptively adjusting the target threshold according to the computational complexity and its own data processing capability), or used to determine the first processing method (such as determining the computational complexity
  • the processing method corresponding to the data recovery method with the smallest degree is the first processing method
  • the second communication device may determine the target threshold, or determine the first processing manner, or determine the target threshold and the first processing manner according to the computational complexity.
  • the first communication device may report to the second communication device one or more processing methods supported by itself (such as the calculation formula or name of the processing method, etc.), and one or more of the one or more data recovery methods. multiple.
  • the second communication device may determine one or more data restoration methods corresponding to the one or more processing methods according to the one or more processing methods.
  • the second communication device receives one or more data restoration methods, and may determine one or more processing methods corresponding to the one or more data restoration methods according to the one or more data restoration methods.
  • the third information may include a reference threshold.
  • the reference threshold may be an estimated error threshold, or an estimated accuracy threshold, or both an estimated error threshold and an estimated accuracy threshold by the first communication device according to historical data reporting and its own data processing capability.
  • the reference threshold may be used as a reference for the second communication device to determine the target threshold and/or the first processing manner. That is, the second communication device may determine the target threshold according to the reference threshold, or determine the first processing manner, or determine the target threshold and the first processing manner.
  • the first communication device may actively send the third information to the second communication device, or may send the third information to the second communication device in response to a second request message from the second communication device.
  • the second communication device sends a second request message to the first communication device, and the second request message is used to request to obtain the identifiers of one or more processing modes supported by the first communication device; correspondingly, the first communication device receives the first After the second request message, a second response message may be sent to the second communication device, where the second response message includes the third information.
  • S403 The first communication device sends second data to the second communication device.
  • the second communication device receives the second data.
  • the first communication device may send the second data to the second communication device according to at least one of a reporting manner and a reporting period.
  • the reporting period may be at the minute level granularity, second level granularity, or millisecond level granularity, which is not limited in this embodiment of the present application.
  • the first communication device sends part of the first data to the second communication device.
  • the smaller the amount of data to be transmitted the less overhead required for data transmission. Therefore, this application can reduce data Reported overhead to improve network resource utilization.
  • the first communication device may send the second information to the second communication device, and the second information may include the identifier of the first processing mode or the first data recovery mode; correspondingly, the second communication device receives the second information.
  • the second information is used to determine the first data recovery mode.
  • the first communication device may send the second information to the second communication device, the second information includes the first data recovery method (such as the first data recovery The calculation formula of the method or the name of the first data recovery method, etc.), so that the second communication device can obtain the first data recovery method.
  • the first communication device when the first communication device sends the third information to the second communication device, the first communication device may send the second information to the second communication device, and the second information includes the identifier of the first processing mode, so that the second The communication device may determine the first data recovery mode according to the identifier of the first processing mode and the corresponding relationship between the first processing mode and the first data recovery mode.
  • the second information and the second data may be carried in one message, or may be carried in different messages, which is not limited in this embodiment of the present application.
  • the second information may include a data restoration identifier, where the data restoration identifier is used to identify a position of the second data in the first data.
  • the first processing method is a compression algorithm based on the column subspace
  • the data restoration identifier may be the column identifier of the column subspace of the first data and the position index of the second data in the first data, such as row number or column number.
  • S404 The second communication device acquires third data according to the first data restoration method and the second data.
  • the second communication device may process the second data according to the first data restoration method to obtain the third data.
  • the second communication device may determine the first data recovery mode, and process the second data according to the first data recovery mode to obtain the third data.
  • the second communication device may determine the first data restoration mode according to the second information.
  • the second communication device may analyze the second information after receiving the second information to obtain the first data restoration method.
  • the second communication device parses it to obtain the identification of the first output mode, and according to the identification of the first processing mode, the first processing mode and The corresponding relationship of the first data recovery mode determines the first data recovery mode. For another example, when the second communication device sends an identifier of the first processing method to the first communication device, the second communication device may determine the first data recovery method according to the identifier of the first processing method, such as according to the first processing method The identification, the correspondence between the first processing mode and the first data recovery mode, determines the first data recovery mode.
  • the first communication device may send the fourth information to the second communication device, and correspondingly, the second communication device receives the fourth information.
  • the fourth information may include the error value between the third data and the first data (or the accuracy rate of the third data), or include the ratio of the data volume of the second data to the data volume of the first data, or include the third data The error value between the data and the first data and the ratio of the data volume of the second data to the data volume of the first data.
  • the first communication device may obtain the fourth information, and send the fourth information to the second communication device.
  • the first communication device after the first communication device acquires the second data, it can calculate the error value between the third data and the first data (or calculate the accuracy rate of the third data obtained when restoring the first data according to the second data). ), and calculate the ratio of the data volume of the second data to the data volume of the first data to obtain the fourth information.
  • the fourth information and the second data may be carried in one message, or may be carried in different messages, which is not limited in this embodiment of the present application.
  • the second communication device may update the target threshold according to the fourth information, and send the updated target threshold to the first communication device; correspondingly, the first communication device receives the updated target threshold.
  • the second telecommunications device may adjust the target threshold according to the fourth information in one or more measurement periods. For example, if the accuracy rate of the third data is greater than the target accuracy rate threshold in multiple consecutive measurement periods, the second communication device may adaptively increase the target accuracy rate threshold according to the ratio of the data volume of the second data to the data volume of the first data . For another example, if the error value between the third data and the first data is greater than the target error threshold in multiple consecutive measurement periods, the second communication device may adaptively Decrease the target error threshold.
  • the first communication device is a RAN
  • the second communication device is an EMS
  • the second communication device may send the third data to the NMS.
  • the EMS may actively send the third data to the NMS, or may send the third data to the NMS in response to a third request message from the NMS.
  • the NMS sends a third request message to the EMS, where the third request message is used to request to obtain the first data, and the third request message may include the first information; after the EMS obtains the third data, it sends the third data to the NMS.
  • the measurement task control service involves three network elements, namely NMS, EMS, and RAN, where RAN and EMS are a group of measurement task control service producers and measurement task control service consumers, and EMS and NMS are A set of measurement tasks control service producers and measurement tasks control service consumers.
  • Sending part of the data by the RAN to the EMS can reduce the overhead of transmission resources between the RAN and the EMS, and ease the pressure on transmission resources between the RAN and the EMS.
  • the EMS can report the full amount of third data to the NMS, thereby reducing the number of times of data compression and improving the accuracy of the reported data.
  • the EMS may send the third data to the NMS, and may also send the second data to the NMS, which is not limited in this embodiment of the present application.
  • the EMS may forward the second data to the NMS, and the NMS obtains the third data according to the second data and the first processing method, which not only reduces the transmission resource overhead between the RAN and the EMS, The overhead of transmission resources between the EMS and the NMS can also be reduced.
  • the second data is part of the first data, and generally the smaller the amount of data to be transmitted, the less network overhead is required. Therefore, compared with the first communication device to the second communication device In terms of sending the first data, the manner in which the first communication device sends the second data to the second communication device can reduce data transmission overhead and improve utilization of network resources. In this way, under the condition of consuming the same overhead, the first communication device can support a measurement cycle with second-level granularity or millisecond-level granularity or finer granularity, and can improve the accuracy of the first data.
  • the first communication device obtains the second data from the first data according to the first processing method, and the second data is used to obtain the third data, and the error value between the third data and the first data is less than or equal to the target threshold, which can Guarantee the accuracy of the data and avoid errors in locating network problems caused by low data accuracy.
  • FIG. 4 The flow shown in FIG. 4 will be described in detail below with reference to FIGS. 5 to 13 .
  • FIG. 5 shows a schematic flowchart of a communication method provided by an embodiment of the present application.
  • the first communication device may be an EMS or a component of an EMS (such as a chip or a system on a chip)
  • the second communication device may be an NMS or a component of an NMS (such as a chip or a system on a chip).
  • the first communication device may be a RAN or a component of the RAN (such as a chip or a chip system), and the second communication device may be an NMS or a component of the NMS (such as a chip or a chip system); or, the first communication device It may be a RAN (such as a chip or a chip system), and the second communication device may be an EMS or a component of an EMS (such as a chip or a chip system).
  • FIG. 5 uses an example in which the first communication device is an EMS and the second communication device is an NMS. Wherein, the dotted line in FIG. 5 is used to indicate that this step is an optional step, that is, this step may or may not be executed.
  • the first communication device does not send the identification of one or more processing methods supported by itself to the second communication device, and the second communication device determines the first recovery processing method according to the first recovery processing method from the first communication device.
  • Data recovery method As shown in Fig. 5, the process may include the following contents.
  • S501 The NMS sends a first request message to the EMS; correspondingly, the EMS receives the first request message.
  • the first request message is used to request to obtain the first data.
  • the first request message may be a measurement task creation request message, but this application is not limited thereto.
  • the first request message may include first information, and the first information includes one or more items of a target threshold, a calculation method, and an identifier of the fourth data.
  • the first request message may also include one or more items of an identifier of the measurement object, a type of network measurement data, a reporting method, a measurement period, and a reporting period.
  • step S501 please refer to the relevant descriptions in the aforementioned steps S401 and S402, which will not be repeated here.
  • S502 The EMS sends a first response message to the NMS; correspondingly, the NMS receives the first response message.
  • the first response message may include an identifier of the measurement object and a creation status (such as creation success, or creation failure, or partial creation success).
  • a creation status such as creation success, or creation failure, or partial creation success.
  • the first response message may also include one or more of the type of the measurement parameter whose creation failed and the reasons for the creation failure, as shown in Table 1.
  • Figure 5 takes the successful task creation as an example.
  • the EMS may collect the network measurement data of the measurement object according to the identifier of the measurement object, the measurement period, the type of the network measurement data, and the identifier of the fourth data to obtain the first data.
  • S504 The EMS determines a first processing manner according to the first information.
  • the EMS may determine the first processing manner according to the first information.
  • EMS supports one or more processing methods, and EMS can determine from multiple processing methods according to the calculation method that the processing method corresponding to the smallest error value between the third data and the first data is the first processing method; or, according to the calculation method Determining from multiple processing modes that the processing mode corresponding to the highest accuracy rate of the third data is the first processing mode; or, according to the target threshold, determining a processing mode that satisfies the target threshold as the first processing mode from multiple modes;
  • the embodiment of the present application is not limited thereto.
  • S505 The EMS acquires second data according to the first processing manner and the first data.
  • the second data is part of the first data.
  • the second data can be used to obtain third data.
  • the error value between the third data and the first data is less than or equal to the target threshold.
  • the first processing manner is used to obtain part of the original data from the original data, which can reduce the amount of data to be transmitted.
  • the first processing manner may be, for example, a compression algorithm based on column subspace filling or a compression algorithm based on matrix filling, which is not limited in this embodiment of the present application.
  • S506 The EMS acquires fourth information.
  • step S506 is an optional step.
  • the fourth information may include the error value between the third data and the first data (or the accuracy rate of the third data), or include the ratio of the data volume of the second data to the data volume of the first data, or include the third data
  • the error value between the first data and the ratio of the data volume of the second data to the data volume of the first data is calculated.
  • S507 The EMS sends the first message to the NMS; correspondingly, the NMS receives the first message.
  • the first message includes second data, second information and fourth information.
  • the second information includes the first data recovery method (such as a calculation formula of the first data recovery method or a name of the first data recovery method).
  • the second information may also include a data recovery identifier.
  • the data recovery identifier is used to identify the position of the second data in the first data.
  • the first processing method is a compression algorithm based on the column subspace, and the data recovery identifier can be the column identifier of the column subspace of the first data and the column identifier of the second data Position index in the first data.
  • the second data, the second information and the fourth information may be carried in the same message or in different messages. In FIG. 5 , the second data, the second information and the fourth information are carried in the same message. Take a message as an example.
  • the second information includes the first data recovery mode.
  • the NMS parses it to obtain the first data recovery mode.
  • the NMS acquires third data according to the first data recovery mode and the second data.
  • the NMS may process the second data according to the first data recovery manner to obtain the third data.
  • the NMS may process the second data according to the data recovery identifier and the first data recovery mode to obtain the third data.
  • S510 The NMS updates the target threshold according to the fourth information.
  • step S510 is an optional step.
  • the NMS may update the target threshold according to the fourth information of one or more measurement periods. For example, if the accuracy rate of the third data is greater than the target accuracy rate threshold in multiple consecutive measurement periods, the NMS may adaptively increase the target accuracy rate threshold according to the ratio of the data volume of the second data to the data volume of the first data. For another example, if the error value between the third data and the first data is greater than the target error threshold in multiple consecutive measurement periods, the NMS can adaptively reduce the target according to the ratio of the data volume of the second data to the data volume of the first data error threshold.
  • the NMS sends the updated target threshold to the EMS; correspondingly, the EMS receives the updated target threshold.
  • step S511 is an optional step.
  • the NMS may send the updated target threshold to the EMS, so that the EMS may determine the first processing manner and the like according to the updated target threshold.
  • the EMS collects the first data and sends part of the first data to the NMS, which can reduce the transmission resource overhead between the EMS and the NMS, and supports second-level or millisecond-level or finer-grained measurement periods, which can Improve the accuracy of network measurement data.
  • the EMS obtains the second data from the first data through the first processing method, and sends the first data recovery method corresponding to the first processing method to the NMS, so that the NMS can obtain the third data according to the second data, and the third data
  • the error value with the first data is less than or equal to the target threshold, so that the accuracy of the network measurement data can be improved.
  • FIG. 6 shows a schematic flowchart of a communication method provided by an embodiment of the present application. This embodiment relates to a measurement task control service scenario.
  • the first communication device may be an EMS or a component of an EMS (such as a chip or a system on a chip), and the second communication device may be an NMS or a component of an NMS (such as a chip or a system on a chip).
  • the first communication device may be a RAN or a component of the RAN (such as a chip or a chip system), and the second communication device may be an NMS or a component of the NMS (such as a chip or a chip system); or, the first communication device It may be a RAN (such as a chip or a chip system), and the second communication device may be an EMS or a component of an EMS (such as a chip or a chip system).
  • FIG. 6 uses an example in which the first communication device is the RAN and the second communication device is the NMS. Wherein, the dotted line in FIG. 6 is used to indicate that this step is an optional step, that is, this step may or may not be performed.
  • the first communication device sends the identifiers of one or more processing methods it supports to the second communication device, and the second communication device determines the first processing method according to the identifier of the first processing method from the first communication device.
  • Data recovery method wherein, steps S602-S607, S610-S612 are correspondingly the same as steps S501-S506, S609-S611 in Fig. 5, the difference is that:
  • the RAN sends third information to the NMS; correspondingly, the NMS receives the third information.
  • the third information includes the identification of one or more processing methods supported by the RAN, or includes one or more data recovery methods (such as calculation formulas of one or more data recovery methods or one or more data recovery methods) method name, etc.), or include the identification of one or more processing methods and one or more data recovery methods.
  • the identification of the one or more processing modes includes the identification of the first processing mode.
  • One or more processing methods correspond one to one to one or more data recovery methods.
  • the data recovery method corresponding to the processing method may be a data reconstruction formula.
  • the third information may also include a reference threshold.
  • the reference threshold may be an error threshold estimated by the RAN based on historical data reporting, or an accuracy threshold, or an error threshold and an accuracy threshold.
  • the reference threshold can be used as a reference for the NMS to determine the target threshold. That is, the NMS may determine the target threshold, or determine the first processing manner, or determine the target threshold and the first processing manner according to the reference threshold.
  • the RAN may actively send the third information to the NMS, or may send the third information to the NMS in response to the second request message of the NMS.
  • the NMS sends a second request message to the RAN, and the second request message is used to request to obtain the identifiers of one or more processing modes supported by the RAN; correspondingly, after receiving the second request message, the RAN may send a second response to the NMS message, the second response message includes the third information.
  • S608 The RAN sends the first message to the NMS; correspondingly, the NMS receives the first message.
  • the first message includes second data, second information and fourth information.
  • the second information includes an identifier of the first processing manner.
  • the second information may also include a data recovery identifier.
  • the data recovery identifier is used to identify the position of the second data in the first data.
  • the first processing method is a compression algorithm based on the column subspace, and the data recovery identifier can be the column identifier of the column subspace of the first data and the column identifier of the second data Position index in the first data.
  • the second data, the second information and the fourth information may be carried in the same message or in different messages. In FIG. 6 , the second data, the second information and the fourth information are carried in the same message. Take a message as an example.
  • S609 The NMS determines the first data recovery mode according to the identifier of the first processing mode.
  • the NMS acquires the identifier of the first processing method according to the first message, and then determines the first data recovery method according to the identifier of the first processing method and the correspondence between the first processing method and the first data recovery method.
  • the RAN collects the first data and sends part of the first data to the NMS, which can reduce the transmission resource overhead between the RAN and the NMS, supports second-level or millisecond-level or update granularity measurement periods, and can improve The accuracy of network measurement data.
  • the RAN supports reporting one or more processing methods and/or one or more data recovery methods supported by itself to the NMS, so that the NMS can base on the data processing capabilities of the RAN, its own requirements for accuracy, and its own bandwidth resource allocation and so on to determine a reasonable target threshold.
  • the RAN obtains the second data from the first data through the first processing method, and sends the identifier of the first processing method to the NMS, so that the NMS can use the identifier of the first processing method, and the first processing method and the first data
  • the correspondence between the data restoration methods determines the first data restoration method, and obtains third data according to the first data restoration method and the second data, and the error value between the third data and the first data is less than or equal to a target threshold, Therefore, the accuracy of network measurement data can be improved.
  • FIG. 7 shows a schematic flowchart of a communication method provided by an embodiment of the present application.
  • the first communication device may be an EMS or a component of an EMS (such as a chip or a system on a chip)
  • the second communication device may be an NMS or a component of an NMS (such as a chip or a system on a chip).
  • the first communication device may be a RAN or a component of the RAN (such as a chip or a chip system), and the second communication device may be an NMS or a component of the NMS (such as a chip or a chip system); or, the first communication device It may be a RAN (such as a chip or a chip system), and the second communication device may be an EMS or a component of an EMS (such as a chip or a chip system).
  • FIG. 7 uses an example in which the first communication device is the RAN and the second communication device is the EMS. Wherein, the dotted line in FIG. 7 is used to indicate that this step is an optional step, that is, this step may or may not be performed.
  • the first communication device sends the identification of one or more processing modes supported by itself to the second communication device
  • the second communication device sends the identification of the first processing mode to the first communication device.
  • steps S703-S704, S706-S707, S709-S712 are correspondingly the same as steps S603-S604, S606-S607, S609-S612 in FIG. 6, the difference is that:
  • the RAN sends the third information to the EMS; correspondingly, the NMS receives the third information.
  • the third information includes the identification of one or more processing methods supported by the RAN, or includes one or more data recovery methods supported by the RAN (such as calculation formulas of one or more data recovery methods or one or more the name of a data recovery method, etc.), or include the identification of one or more processing methods supported by the RAN and one or more data recovery methods.
  • the third information may also include a reference threshold and computational complexity of one or more data restoration methods.
  • the identification of the one or more processing modes includes the identification of the first processing mode.
  • One or more processing methods correspond one to one to one or more data recovery methods.
  • the data recovery method corresponding to the processing method may be a data reconstruction formula.
  • the reference threshold may be an error threshold, or an accuracy threshold, or an error threshold and an accuracy threshold estimated by the RAN based on at least one of historical data reporting and its own processing capability.
  • the reference threshold may be used as a reference for the EMS to determine the target threshold and/or the first processing manner.
  • the EMS may determine the target threshold according to the reference threshold, or determine the first processing manner, or determine the target threshold and the first processing manner.
  • the computational complexity of the one or more data recovery methods can be used to determine the target threshold (such as adaptively adjusting the target threshold according to the computational complexity and its own data processing capability), or used to determine the first processing method (such as determining the computational complexity
  • the processing method corresponding to the data recovery method with the smallest degree is the first processing method), or used to determine the target threshold and the first processing method.
  • the RAN may actively send the third information to the NMS, or send the third information to the NMS in response to the NMS's second request message.
  • the RAN may actively send the third information to the NMS, or send the third information to the NMS in response to the NMS's second request message.
  • S702 The EMS sends a first request message to the RAN; correspondingly, the RAN receives the first request message.
  • the first request message is used to request to obtain the first data.
  • the first request message may include first information, and the first information includes a target threshold, a calculation method, an identifier of the fourth data, and an identifier of the first processing method.
  • the first request message may also include one or more items of an identifier of the measurement object, a type of network measurement data, a reporting method, a measurement period, and a reporting period.
  • the EMS may be based on one of the reference threshold, one or more processing methods supported by the RAN, the computational complexity of one or more data recovery methods, the bandwidth resource allocation of the EMS, the requirements of the EMS, and the data processing capabilities of the EMS itself. Item or items, determine the target threshold.
  • the EMS may be based on the reference threshold, one or more processing methods supported by the RAN, the computational complexity of one or more data recovery methods, the bandwidth resource allocation of the EMS, the requirements of the EMS, and the data processing capabilities of the EMS itself.
  • One or more items determine the first processing mode.
  • the EMS may be based on the reference threshold, one or more processing methods supported by the RAN, the computational complexity of one or more data recovery methods, the bandwidth resource allocation of the EMS, the requirements of the EMS, and the data processing capabilities of the EMS itself.
  • One or more items determine the target threshold and the first processing manner.
  • the RAN determines the first processing manner according to the identifier of the first processing manner.
  • the RAN may obtain the identifier of the first processing method according to the first information, for example, the identifier of the first processing method may be obtained by parsing the first information; further, the RAN may determine the first processing method according to the identifier of the first processing method .
  • S708 The RAN sends the first message to the EMS; correspondingly, the EMS receives the first message.
  • the first message includes second data and fourth information.
  • the first message may also include a data recovery identifier.
  • the data recovery identifier is used to identify the position of the second data in the first data.
  • the first processing method is a compression algorithm based on the column subspace, and the data recovery identifier can be the column identifier of the column subspace of the first data and the column identifier of the second data Position index in the first data.
  • the RAN collects the first data and sends part of the first data to the EMS, which can reduce the transmission resource overhead between the RAN and the EMS, and supports measurement cycles at the second level or millisecond level or update granularity, which can improve The accuracy of network measurement data.
  • RAN supports reporting one or more processing methods and/or one or more data recovery methods supported by itself to EMS, so that EMS can base on RAN's data processing capabilities, its own requirements for accuracy, and its own data processing capabilities, etc. Determine a reasonable target threshold.
  • the EMS supports indicating the first processing method to the RAN, such as sending the identifier of the first processing method to the RAN.
  • the RAN can obtain the second data from the first data through the first processing method, and the second data can be used When acquiring the third data, the error value between the third data and the first data is less than or equal to the target threshold.
  • the first processing method is specified by EMS, if it is determined according to the needs of EMS, the actual situation of EMS, etc., then the second data obtained by the first processing method and the third data determined by the second data can satisfy The needs of EMS are in line with the actual situation of EMS.
  • FIGS. 8 to 10 describe the measurement task control service flow between a group of measurement task control service producers and measurement task control service consumers.
  • the measurement task control service flow between two groups of measurement task control service producers and measurement task control service consumers will be introduced with reference to FIGS. 8 to 10 .
  • FIG. 8 shows another schematic flowchart of the communication method provided by the embodiment of the present application.
  • This embodiment relates to a measurement task control service scenario, and involves two groups of measurement task control service producers and measurement task control service consumers.
  • the dotted line in FIG. 8 is used to indicate that this step is an optional step, that is, this step may or may not be performed.
  • the RAN does not send the identifiers of one or more processing modes supported by itself to the EMS and the NMS, and the EMS determines the first data recovery mode according to the first recovery processing mode from the RAN.
  • the process may include the following contents.
  • S801 The NMS sends a first request message to the EMS; correspondingly, the EMS receives the first request message.
  • the first request message is used to request to obtain the first data.
  • the first request message may be a measurement task creation request message, but this application is not limited thereto.
  • the first request message may include first information, and the first information includes one or more items of a target threshold, a calculation method, and an identifier of the fourth data.
  • the first request message may also include one or more of the identifier of the measurement object, the type of network measurement data, the reporting method, the measurement period, and the reporting period.
  • S802 The EMS sends a third request message to the RAN; correspondingly, the RAN receives the third request message.
  • the EMS may send a third request message to the RAN to which the measurement object belongs.
  • the third request message may be a measurement task creation request message, but this application is not limited thereto.
  • the third request message may include first information, and the first information includes one or more items of a target threshold, a calculation method, and an identifier of the fourth data.
  • the third request message may also include one or more of the identifier of the measurement object, the type of network measurement data, the reporting method, the measurement period, and the reporting period.
  • the content included in the first request message may be the same as or different from the content included in the third request message.
  • the first request message is used to request to acquire the network measurement data of measurement object A and measurement object B.
  • the third request message may be used to request to acquire the network measurement data of the measurement object A, for example, the EMS stores the network measurement data of the measurement object B.
  • the third request message may be used to request to obtain the network measurement data of the measurement object A, the measurement object B, and the measurement object C, for example, the network measurement data of the measurement object C is the network measurement data required by the EMS.
  • the description below takes an example in which the content included in the first request message is the same as the content included in the third request message.
  • S803 The RAN sends a third response message to the EMS; correspondingly, the EMS receives the third response message.
  • S804 The EMS sends a first response message to the NMS; correspondingly, the NMS receives the first response message.
  • step S502 for the specific implementation process of steps S803 and S804, please refer to the relevant description of the aforementioned step S502, which will not be repeated here.
  • the RAN may collect the network measurement data of the measurement object according to the identifier of the measurement object, the measurement period, the type of the network measurement data, and the identifier of the fourth data to obtain the first data.
  • the RAN determines a first processing manner according to the first information.
  • the RAN may determine the first processing manner according to the first information.
  • the RAN supports one or more processing methods, and the RAN may determine from multiple processing methods according to the calculation method that the processing method corresponding to the smallest error value between the third data and the first data is the first processing method; or, according to the calculation method Determining from multiple processing modes that the processing mode corresponding to the highest accuracy rate of the third data is the first processing mode; or, according to the target threshold, determining a processing mode that satisfies the target threshold as the first processing mode from multiple modes;
  • the embodiment of the present application is not limited thereto.
  • the RAN acquires the second data according to the first processing manner and the first data.
  • the second data is part of the first data.
  • the second data can be used to obtain third data.
  • the error value between the third data and the first data is less than or equal to the target threshold.
  • the first processing manner is used to obtain part of the original data from the original data, which can reduce the amount of data to be transmitted.
  • the first processing manner may be, for example, a compression algorithm based on column subspace filling or a compression algorithm based on matrix filling, which is not limited in this embodiment of the present application.
  • Step S808 is an optional step.
  • the fourth information may include the error value between the third data and the first data (or the accuracy rate of the third data), or include the ratio of the data volume of the second data to the data volume of the first data, or include the third data.
  • the RAN may calculate the error value between the third data and the first data (or calculate the accuracy rate of the third data obtained when restoring the first data according to the second data), and The ratio of the data volume of the second data to the data volume of the first data is calculated to obtain the fourth information.
  • the RAN sends the first message to the EMS; correspondingly, the EMS receives the first message.
  • the first message includes second data, second information and fourth information.
  • the second information includes the first data recovery method (such as a calculation formula of the first data recovery method or a name of the first data recovery method).
  • the second information may also include a data recovery identifier.
  • the data recovery identifier is used to identify the position of the second data in the first data.
  • the first processing method is a compression algorithm based on the column subspace
  • the data recovery identifier can be the column identifier of the column subspace of the first data and the column identifier of the second data Position index in the first data.
  • the second information includes the first data recovery mode.
  • the EMS parses it to obtain the first data recovery mode.
  • S811 The EMS acquires third data according to the first data recovery method and the second data.
  • the EMS may process the second data according to the first data recovery method to obtain the third data.
  • the EMS may process the second data according to the data recovery identifier and the first data recovery mode to obtain the third data.
  • S812 The EMS sends the second message to the NMS; correspondingly, the NMS receives the second message.
  • the second message includes the third data.
  • the second message may also include fourth information.
  • Step S813 is an optional step. Wherein, for the specific implementation process of step S813, please refer to the relevant description of the aforementioned step S510, which will not be repeated here.
  • S814 The NMS sends the updated target threshold to the EMS; correspondingly, the EMS receives the updated target threshold from the NMS.
  • Step S814 is an optional step.
  • the NMS can send the updated target threshold to the EMS.
  • S815 The EMS updates the target threshold according to the updated target threshold and the fourth information from the NMS.
  • Step S815 is an optional step.
  • the EMS may send the updated target threshold from the NMS to the RAN, or update the target threshold according to the updated target threshold from the NMS and the fourth information.
  • the EMS may update the target threshold according to one or more items such as the updated target threshold of the NMS, the fourth information, and its own bandwidth resource usage, so that the updated target threshold conforms to the actual situation of the EMS.
  • S816 The EMS sends the updated target threshold to the RAN; correspondingly, the RAN receives the updated target threshold.
  • Step S816 is an optional step. After receiving the updated target threshold, the RAN may determine a first processing manner and the like according to the updated target threshold.
  • the above embodiment involves two groups of measurement task control service producers and measurement task control service consumers.
  • the RAN collects the first data and sends part of the first data to the EMS, which can reduce the transmission resource overhead between the RAN and the EMS, and support
  • the second-level or millisecond-level or update granularity measurement period can improve the accuracy of network measurement data.
  • the MS After the MS obtains the third data, it can report the full amount of the third data, so as to reduce the times of data compression, reduce the time delay, and improve the accuracy of the network measurement data.
  • the RAN supports sending the first data recovery mode corresponding to the first processing mode to the EMS, so that the EMS acquires the third data according to the second data and the first data recovery mode.
  • FIG. 9 shows another schematic flowchart of the communication method provided by the embodiment of the present application.
  • This embodiment relates to a measurement task control service scenario, and involves two groups of measurement task control service producers and measurement task control service consumers.
  • the dotted line in FIG. 9 is used to indicate that this step is an optional step, that is, this step may or may not be performed.
  • the RAN sends the identifications of one or more processing modes supported by itself to the EMS and the NMS, and the EMS determines the first data recovery mode according to the identification of the first processing mode from the RAN.
  • steps S902-S909, S912-S917 are correspondingly the same as steps S801-S808, S811-S816 in Fig. 8, the difference is:
  • S901 The EMS and the NMS acquire third information.
  • the EMS may obtain the third information, or the NMS may obtain the third information, or the EMS and the NMS may obtain the third information.
  • the RAN reports the third information to the EMS, or the RAN reports the third information to the NMS, or the RAN reports the third information to the EMS and the NMS.
  • the EMS and the NMS obtain the third information as an example.
  • the specific implementation process of the RAN sending the third information to the EMS and the NMS reference may be made to the relevant description of step S601, which will not be repeated here.
  • the third information includes the identifiers of one or more processing methods supported by the RAN and one or more data recovery methods (such as calculation formulas of one or more data recovery methods or name, etc.).
  • the identification of the one or more processing modes includes the identification of the first processing mode.
  • One or more processing methods correspond one to one to one or more data recovery methods.
  • the data recovery method corresponding to the processing method may be a data reconstruction formula.
  • the third information may also include a reference threshold.
  • the reference threshold may be an error threshold, or an accuracy rate threshold, or an error threshold and an accuracy rate threshold estimated by the RAN based on historical data reporting and its own data processing capability.
  • the reference threshold can be used as a reference for the NMS (and/or EMS) to determine the target threshold. That is, the NMS (and/or EMS) may determine the target threshold, or determine the first processing manner, or determine the target threshold and the first processing manner according to the reference threshold.
  • S910 The RAN sends the first message to the EMS; correspondingly, the EMS receives the first message.
  • the first message includes second data, second information and fourth information.
  • the second information includes an identifier of the first processing manner.
  • the second information may also include a data recovery identifier.
  • the data recovery identifier is used to identify the position of the second data in the first data.
  • the first processing method is a compression algorithm based on the column subspace, and the data recovery identifier can be the column identifier of the column subspace of the first data and the column identifier of the second data Position index in the first data.
  • S911 The EMS determines a first data recovery method according to the identifier of the first processing method.
  • the EMS acquires the identifier of the first processing method according to the first message, and then determines the first data recovery method according to the identifier of the first processing method and the corresponding relationship between the first processing method and the first data recovery method.
  • the above embodiment involves two groups of measurement task control service producers and measurement task control service consumers.
  • the RAN collects the first data and sends part of the first data to the EMS, which can reduce the transmission resource overhead between the RAN and the EMS, and support The second-level or millisecond-level or update granularity measurement period can improve the accuracy of network measurement data.
  • the EMS After the EMS obtains the third data, it can report the full amount of the third data, so as to reduce the number of times of data compression, reduce the time delay, and improve the accuracy of the network measurement data.
  • the RAN supports sending one or more processing methods and/or one or more data recovery methods supported by itself to the EMS and NMS.
  • the NMS can Determine a reasonable target threshold based on the needs of the network and its own bandwidth resource allocation.
  • the RAN can send the identification of the first processing method to the EMS, so that the EMS can determine the first data recovery method according to the identification of the first processing method, and The third data is acquired according to the second data and the first data restoration method.
  • Fig. 10 shows another schematic flowchart of the communication method provided by the embodiment of the present application.
  • This embodiment relates to a measurement task control service scenario, and involves two groups of measurement task control service producers and measurement task control service consumers.
  • the dotted line in FIG. 10 is used to indicate that this step is an optional step, that is, this step may or may not be performed.
  • the RAN sends the identification of one or more processing modes supported by itself to the EMS and the NMS, and the EMS sends the identification of the first processing mode to the RAN.
  • steps S1004-S1006, S1008-S1009, S1011-S1017 are correspondingly the same as steps S904-S906, S908-S909, S911-S917 in Fig. 9, the difference lies in:
  • the EMS may obtain the third information, or the NMS may obtain the third information, or the EMS and the NMS may obtain the third information.
  • the RAN reports the third information to the EMS, or the RAN reports the third information to the NMS, or the RAN reports the third information to the EMS and the NMS.
  • the EMS and the NMS obtain the third information as an example.
  • the specific implementation process of the RAN sending the third information to the EMS and the NMS reference may be made to the relevant description of step S601, which will not be repeated here.
  • the third information includes the identification of one or more processing methods supported by the RAN, or includes one or more data recovery methods supported by the RAN (such as calculation formulas of one or more data recovery methods or one or more the name of a data recovery method, etc.), or include the identification of one or more processing methods supported by the RAN and one or more data recovery methods.
  • the identification of the one or more processing modes includes the identification of the first processing mode.
  • One or more processing methods correspond one to one to one or more data recovery methods.
  • the processing method is a compression algorithm based on column subspace
  • the data recovery method corresponding to the processing method may be a data reconstruction formula.
  • the third information may also include a reference threshold and computational complexity of one or more data restoration methods. For the relevant description of the reference threshold and the computational complexity, please refer to the relevant content of step S701 , which will not be repeated here.
  • the NMS sends a first request message to the EMS; correspondingly, the EMS receives the first request message.
  • the first request message is used to request to obtain the first data.
  • the first request message may include first information, and the first information includes a target threshold, a calculation method, an identifier of the fourth data, and an identifier of the first processing method.
  • S1003 The EMS sends a third request message to the NMS; correspondingly, the RSN receives the third request message.
  • the third request message is used to request to obtain the first data.
  • the third request message may include first information, and the first information includes a target threshold, a calculation method, an identifier of the fourth data, and an identifier of the first processing method.
  • step S702 for the specific implementation process of steps S1002 and S1003, please refer to the related description of step S702, which will not be repeated here.
  • the RAN determines the first processing manner according to the identifier of the first processing manner.
  • the RAN may obtain the identifier of the first processing method according to the first information, for example, the identifier of the first processing method may be obtained by parsing the first information; further, the RAN may determine the first processing method according to the identifier of the first processing method .
  • S1010 The RAN sends the first message to the EMS; correspondingly, the EMS receives the first message.
  • the first message includes second data and fourth information.
  • the first message may also include a data recovery identifier.
  • the data recovery identifier is used to identify the position of the second data in the first data.
  • the first processing method is a compression algorithm based on the column subspace, and the data recovery identifier can be the column identifier of the column subspace of the first data and the column identifier of the second data Position index in the first data.
  • the above embodiment involves two groups of measurement task control service producers and measurement task control service consumers.
  • the RAN collects the first data and sends part of the first data to the EMS, which can reduce the transmission resource overhead between the RAN and the EMS, and support
  • the second-level or millisecond-level or update granularity measurement period can improve the accuracy of network measurement data.
  • the EMS After the EMS obtains the third data, it can report the full amount of the third data, so as to reduce the number of times of data compression, reduce the time delay, and improve the accuracy of the network measurement data.
  • the RAN supports reporting the identities of one or more processing methods supported by itself and/or one or more data recovery methods to the EMS and NMS.
  • the NMS supports indicating the first processing method to the RAN through the EMS.
  • the RAN can obtain the second data from the first data through the first processing method, and the second data can be used to obtain the third data, and the third data and The error value between the first data is less than or equal to the target threshold.
  • the first processing method is specified by the NMS, if it is determined according to the needs of the NMS, the actual situation of the NMS, etc., then the second data acquired by the first processing method and the third data determined by the second data can satisfy The requirements of NMS are in line with the actual situation of NMS.
  • FIG. 11 the implementation process of the measurement task control service scenario.
  • FIG. 12 the implementation process of the parameter value query service scenario.
  • FIG. 11 shows another schematic flowchart of the communication manner provided by the embodiment of the present application.
  • This embodiment relates to a parameter value query service scenario.
  • the first communication device may be a CPE or a component of a CPE (such as a chip or a chip system), and the second communication device may be an ACS or a component of an ACS (such as a chip or a chip system).
  • the dotted line in FIG. 11 is used to indicate that this step is an optional step, that is, this step may or may not be performed.
  • the first communication device does not send the identification of one or more processing methods supported by itself to the second communication device, and the second communication device determines the first recovery processing method according to the first recovery processing method from the first communication device.
  • Data recovery method As shown in FIG. 11 , the process may include the following contents.
  • the ACS sends a first request message to the CPE; correspondingly, the CPE receives the first request message.
  • the first request message is used to request to obtain the first data.
  • the first request message may be a parameter value query request message, but this application is not limited thereto.
  • the first request message may include first information, and the first information includes one or more items of a target threshold, a calculation method, and an identifier of the fourth data.
  • the first request message may also include a parameter name of the target parameter.
  • the CPE may collect the parameter value of the target parameter according to the parameter name of the target parameter to obtain the first data.
  • S1103 The CPE determines a first processing manner according to the first information.
  • the CPE may determine the first processing manner according to the first information.
  • the CPE supports one or more processing methods, and the CPE can determine from the multiple processing methods according to the calculation method that the processing method corresponding to the smallest error value between the third data and the first data is the first processing method; or, according to the calculation method Determining from multiple processing modes that the processing mode corresponding to the highest accuracy rate of the third data is the first processing mode; or, according to the target threshold, determining a processing mode that satisfies the target threshold as the first processing mode from multiple modes;
  • the first processing manner may be, for example, a compression algorithm based on column subspace filling or a compression algorithm based on matrix filling, which is not limited in this embodiment of the present application.
  • S1104 The CPE acquires the second data according to the first processing manner and the first data.
  • the second data is part of the first data.
  • the second data can be used to obtain third data.
  • the error value between the third data and the first data is less than or equal to the target threshold.
  • the first processing manner is used to obtain part of the original data from the original data, which can reduce the amount of data to be transmitted.
  • S1105 The CPE acquires fourth information.
  • step S1105 is an optional step.
  • the fourth information may include the error value between the third data and the first data (or the accuracy rate of the third data), or include the ratio of the data volume of the second data to the data volume of the first data, or include the third data
  • the error value between the first data and the ratio of the data volume of the second data to the data volume of the first data may be calculated.
  • the CPE may calculate the error value between the third data and the first data (or calculate the accuracy rate of the third data obtained when restoring the first data according to the second data), and The ratio of the data volume of the second data to the data volume of the first data is calculated to obtain the fourth information.
  • S1106 The CPE sends a first response message to the ACS; correspondingly, the ACS receives the first response message.
  • the first response message may be a parameter value query response message, but this application is not limited thereto.
  • the first response message may include second data, second information and fourth information.
  • the second information includes the first data recovery method (such as a calculation formula of the first data recovery method or a name of the first data recovery method).
  • the second information may also include a data recovery identifier.
  • the data recovery identifier is used to identify the position of the second data in the first data.
  • the first processing method is a compression algorithm based on the column subspace, and the data recovery identifier can be the column identifier of the column subspace of the first data and the column identifier of the second data Position index in the first data.
  • the second data, the second information and the fourth information may be carried in the same message or in different messages. In FIG. 11, the second data, the second information and the fourth information are carried in the same message. Take a message as an example.
  • the second information includes the first data recovery mode.
  • the ACS parses it to obtain the first data recovery mode.
  • S1108 The ACS acquires the third data according to the first data recovery method and the second data.
  • the ACS may process the second data according to the first data restoration manner to obtain the third data.
  • the ACS may process the second data according to the data recovery identifier and the first data recovery mode to obtain the third data.
  • step S1109 is an optional step.
  • the ACS may update the target threshold according to one or more pieces of fourth information. For example, if the accuracy rate of a plurality of consecutive third data is greater than the target accuracy rate threshold, the ACS may adaptively increase the target accuracy rate threshold according to the ratio of the data volume of the second data to the data volume of the first data. For another example, if the error value between multiple consecutive third data and the first data is greater than the target error threshold, the ACS may adaptively reduce the target error threshold according to the ratio of the data volume of the second data to the data volume of the first data.
  • S1110 The ACS sends the updated target threshold to the CPE; correspondingly, the CPE receives the updated target threshold.
  • step S1110 is an optional step.
  • the ACS may send the updated target threshold to the CPE, so that the CPE may determine the first processing manner and the like according to the updated target threshold.
  • the CPE collects the first data and sends part of the first data to the ACS, which can reduce transmission resource overhead between the CPE and the ACS and improve utilization of network resources.
  • the CPE obtains the second data from the first data through the first processing method, and sends the first data recovery method corresponding to the first processing method to the ACS, so that the ACS can obtain the third data according to the second data, and the third data
  • the error value with the first data is less than or equal to the target threshold, so that the accuracy of the parameter value can be improved.
  • FIG. 12 shows another schematic flowchart of the communication manner provided by the embodiment of the present application.
  • This embodiment relates to a parameter value query service scenario.
  • the first communication device may be a CPE or a component of a CPE (such as a chip or a chip system), and the second communication device may be an ACS or a component of an ACS (such as a chip or a chip system).
  • the dotted line in FIG. 12 is used to indicate that this step is an optional step, that is, this step may or may not be performed.
  • the first communication device sends the identifiers of one or more processing methods it supports to the second communication device, and the second communication device determines the first processing method according to the identifier of the first processing method from the first communication device.
  • Data recovery method wherein, steps S1202-S1206, S1209-S1211 are correspondingly the same as steps S1101-S1105, S1108-S1110 in Fig. 11, the difference lies in:
  • the CPE sends third information to the ACS; correspondingly, the ACS receives the third information.
  • the third information includes the identification of one or more processing methods supported by the CPE, or includes one or more data recovery methods supported by the CPE (such as calculation formulas of one or more data recovery methods or one or more the name of a data recovery method, etc.), or include the identification of one or more processing methods supported by the CPE and one or more data recovery methods.
  • the identification of the one or more processing modes includes the identification of the first processing mode.
  • One or more processing methods correspond one to one to one or more data recovery methods.
  • the data recovery method corresponding to the processing method may be a data reconstruction formula.
  • the third information may also include a reference threshold.
  • the reference threshold may be an error threshold, or an accuracy rate threshold, or an error threshold and an accuracy rate threshold estimated by the CPE according to at least one of historical data reporting and its own data processing capabilities.
  • the reference threshold may be used as a reference for the ACS to determine the target threshold and/or the first processing manner. That is, the ACS may determine the target threshold, or determine the first processing manner, or determine the target threshold and the first processing manner according to the reference threshold.
  • the CPE may actively send the third information to the ACS, or may respond to the second request message of the ACS, and send the third information to the ACS.
  • the ACS sends a second request message to the RAN, and the second request message is used to request to obtain the identifiers of one or more processing methods supported by the CPE; correspondingly, after receiving the second request message, the CPE may send a second response to the ACS message, the second response message includes the third information.
  • S1207 The CPE sends a first response message to the ACS; correspondingly, the ACS receives the first response message.
  • the first response message may be a parameter value query response message, but this embodiment of the application is not limited thereto.
  • the first response message includes second data, second information and fourth information.
  • the second information includes an identifier of the first processing manner.
  • the second information may also include a data recovery identifier.
  • the data recovery identifier is used to identify the position of the second data in the first data.
  • the first processing method is a compression algorithm based on the column subspace
  • the data recovery identifier can be the column identifier of the column subspace of the first data and the column identifier of the second data Position index in the first data.
  • the second data, the second information and the fourth information may be carried in the same message or in different messages. In FIG. 12, the second data, the second information and the fourth information are carried in the same message. Take a message as an example.
  • S1208 The ACS determines a first data recovery method according to the identifier of the first processing method.
  • the ACS acquires the identifier of the first processing method according to the first response message, and then determines the first data recovery method according to the identifier of the first processing method and the corresponding relationship between the first processing method and the first data recovery method.
  • the CPE collects the first data and sends part of the first data to the CPE, which can reduce transmission resource overhead between the CPE and the ACS and improve network resource utilization.
  • CPE supports reporting one or more processing methods and/or one or more data recovery methods supported by itself to ACS, so that ACS can determine according to the data processing capability of CPE, its corresponding accuracy requirements, and its own bandwidth resource allocation, etc. Reasonable target threshold.
  • the CPE obtains the second data from the first data through the first processing method, and sends the identifier of the first processing method to the ACS, so that the ACS can
  • the correspondence between the data restoration methods determines the first data restoration method, and obtains third data according to the first data restoration method and the second data, and the error value between the third data and the first data is less than or equal to a target threshold, Thereby, the accuracy of parameter values can be improved.
  • FIG. 13 shows another schematic flowchart of the communication method provided by the embodiment of the present application.
  • This embodiment relates to a parameter value query service scenario.
  • the first communication device may be a CPE or a component of a CPE (such as a chip or a chip system), and the second communication device may be an ACS or a component of an ACS (such as a chip or a chip system).
  • the dotted line in FIG. 13 is used to indicate that this step is an optional step, that is, this step may or may not be performed.
  • the first communication device sends the identification of one or more processing modes supported by itself to the second communication device
  • the second communication device sends the identification of the first processing mode to the first communication device.
  • the CPE sends third information to the ACS; correspondingly, the ACS receives the third information.
  • the third information includes the identification of one or more processing methods supported by the CPE, or includes one or more data recovery methods supported by the CPE (such as calculation formulas of one or more data recovery methods or one or more the name of a data recovery method, etc.), or include the identification of one or more processing methods supported by the CPE and one or more data recovery methods.
  • the identification of the one or more processing modes includes the identification of the first processing mode.
  • One or more processing methods correspond one to one to one or more data recovery methods.
  • the data recovery method corresponding to the processing method may be a data reconstruction formula.
  • the third information may also include a reference threshold and computational complexity of one or more data restoration methods.
  • the computational complexity of the one or more data recovery methods can be used to determine the target threshold (such as adaptively adjusting the target threshold according to the computational complexity and its own data processing capability), or used to determine the first processing method (such as determining the computational complexity The processing method corresponding to the data recovery method with the smallest degree is the first processing method), or used to determine the target threshold and the first processing method. That is, the ACS may determine the target threshold, or determine the first processing manner, or determine the target threshold and the first processing manner according to one or more items of the target threshold and computational complexity.
  • the CPE may actively send the third information to the ACS, or may respond to the second request message of the ACS, and send the third information to the ACS.
  • the CPE may actively send the third information to the ACS, or may respond to the second request message of the ACS, and send the third information to the ACS.
  • the CPE may actively send the third information to the ACS, or may respond to the second request message of the ACS, and send the third information to the ACS.
  • the CPE may actively send the third information to the ACS, or may respond to the second request message of the ACS, and send the third information to the ACS.
  • the ACS sends a first request message to the CPE; correspondingly, the CPE receives the first request message.
  • the first request message is used to request to obtain the first data.
  • the first request message may be a parameter value query request message, but this embodiment of the application is not limited thereto.
  • the first request message may include first information, where the first information includes a target threshold, a calculation method, an identifier of the fourth data, and an identifier of the first processing method.
  • the first request message may also include a parameter name of the target parameter.
  • the ACS may base on the reference threshold, one or more processing methods supported by the CPE, the computational complexity of one or more data recovery methods, the bandwidth resource allocation of the ACS, the requirements of the ACS, and the data processing capabilities of the ACS itself. One or more, determine the target threshold.
  • the ACS can determine the data based on the reference threshold, one or more processing methods supported by the CPE, the computational complexity of one or more data recovery methods, the bandwidth resource allocation of the ACS, the requirements of the ACS, and the data processing capabilities of the ACS itself. One or more items to determine the first processing method.
  • the ACS can determine the data based on the reference threshold, one or more processing methods supported by the CPE, the computational complexity of one or more data recovery methods, the bandwidth resource allocation of the ACS, the requirements of the ACS, and the data processing capabilities of the ACS itself. One or more items of the target threshold and the first processing manner are determined.
  • the CPE determines the first processing method according to the identifier of the first processing method.
  • the CPE may obtain the identifier of the first processing method according to the first information, for example, the identifier of the first processing method may be obtained by parsing the first information; further, the CPE may determine the first processing method according to the identifier of the first processing method .
  • the CPE sends a first response message to the ACS; correspondingly, the ACS receives the first response message.
  • the first response message may be a parameter value query response message, but this embodiment of the application is not limited thereto.
  • the first response message includes second data and fourth information.
  • the first response message may also include a data recovery identifier.
  • the data recovery identifier is used to identify the position of the second data in the first data.
  • the first processing method is a compression algorithm based on the column subspace, and the data recovery identifier can be the column identifier of the column subspace of the first data and the column identifier of the second data Position index in the first data.
  • the CPE collects the first data and sends part of the first data to the ACS, which can reduce transmission resource overhead between the CPE and the ACS and improve utilization of network resources.
  • the CPE supports reporting one or more processing methods and/or one or more data recovery methods supported by itself to the ACS, so that the ACS can use the data processing capabilities of the CPE, its corresponding accuracy requirements, its own data processing capabilities, and its own Determine a reasonable target threshold based on bandwidth resource allocation and the like.
  • the ACS supports indicating the first processing method to the CPE, such as sending the identifier of the first processing method to the CPE, and correspondingly, the CPE can obtain the second data from the first data through the first processing method, and the second data can be used When acquiring the third data, the error value between the third data and the first data is less than or equal to the target threshold.
  • the first processing method is specified by the ACS. If it is determined according to the needs of the ACS, the actual situation of the ACS, etc., then the second data acquired by the first processing method and the third data determined by the second data can satisfy The demand of ACS is in line with the actual situation of ACS.
  • each device may include a corresponding hardware structure and/or software module for performing each function.
  • the embodiments of the present application can be implemented in the form of hardware or a combination of hardware and computer software in combination with the units and algorithm steps of each example described in the embodiments disclosed herein. Whether a certain function is executed by hardware or computer software drives the hardware depends on the specific application and implementation constraints of the technical solution. Skilled artisans may use different methods to implement the described functions for each specific application, but such implementation should not be regarded as exceeding the scope of the present application.
  • each functional unit may be divided corresponding to each function, or two or more functions may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units.
  • FIG. 14 shows a possible exemplary block diagram of a communication device involved in the embodiment of the present application.
  • a communication device 1400 may include: a transceiver module 1401 and a processing module 1402 .
  • the processing module 1402 is used to control and manage the actions of the communication device 1400 .
  • the transceiver module 1401 is used to support communication between the communication device 1400 and other devices, such as performing sending and receiving operations under the control of the processing module 1402 .
  • the transceiver module 1401 may be one module, or two modules, such as a receiving module and a sending module.
  • the communication device 1400 may further include a storage module 1403 configured to store program codes and/or data of the communication device 1400 .
  • the processing module 1402 may support the communication device 1400 to execute the first communication device or the actions of the first communication device in the above method examples.
  • the processing module 1402 mainly executes the first communication device or internal actions of the first communication device in the method example.
  • the communication device 1400 may be the first communication device in the foregoing embodiments, or may also be a component (such as a chip) of the first communications device in the foregoing embodiments.
  • the processing module 1402 is configured to obtain the first data, obtain the second data according to the first processing method and the first data, and the second data is part of the first data, wherein the The second data is used to obtain third data, and an error value between the third data and the first data is less than or equal to a target threshold.
  • the transceiver module 1401 may also be configured to receive first information from the second communication device, where the first information includes one or more of the following: the target threshold, A calculation method and an identification of the fourth data, wherein the calculation method is used to determine an error value between the third data and the first data, and the fourth data is what the first communication device needs to send data, the second data includes the fourth data; the processing module 1402 may also be configured to determine the first processing manner according to the first information.
  • the transceiver module 1401 may also be configured to send second information to the second communication device, where the second information includes a first data recovery method, and the first data recovery method is the same as the first data recovery method.
  • the first data recovery method is used to obtain the third data according to the second data; or the second information includes an identifier of the first processing method.
  • the first information may further include an identifier of the first processing manner, and when determining the first processing manner according to the first information, the processing module 1402 is specifically configured to: Determine the first processing manner according to the identifier of the first processing manner.
  • the transceiver module 1401 may also be configured to send third information to the second communication device, where the third information includes one or more processing methods supported by the first communication device An identifier, where the identifiers of the one or more processing manners include the identifier of the first processing manner.
  • the transceiver module 1401 may also be configured to send fourth information to the second communication device, where the fourth information includes one or more of the following:
  • a ratio of the data volume of the second data to the data volume of the first data is
  • the transceiving module 1401 may also be configured to receive an updated target threshold from the second communication device.
  • the first communication device is a network element management device
  • the second communication device is a network management device
  • the first communication device is an access network element
  • the second communication device is a network element management device
  • the first communication device is an access network element
  • the second communication device is a network management device
  • the first communication device is a client terminal device
  • the second communication device is an automatic matching server.
  • the communication device 1400 may be the second communication device in the foregoing embodiments, or may also be a component (such as a chip) of the second communications device in the foregoing embodiments.
  • the transceiver module 1401 is configured to receive second data from the first communication device, and the second data is part of the first data.
  • the processing module 1402 is configured to acquire third data according to the first data recovery method and the second data, and the difference between the third data and the first data is less than or equal to a target threshold.
  • the transceiver module 1401 may also be configured to send first information to the first communication device, where the first information includes the target threshold, the calculation method, or the identification of the fourth data. At least one item, wherein the calculation method is used to determine the error value between the third data and the first data, the fourth data is the data that the first communication device needs to send, and the first The second data includes the fourth data.
  • the first communication device is an access network element
  • the second communication device is a network element management device
  • the transceiver module 1401 can also be used for the second communication device to communicate with the network
  • the management device sends the third data.
  • the transceiver module 1401 may also be configured to receive first information from the network management apparatus.
  • the transceiver module 1401 may also be configured to receive second information from the first communication device, where the second information includes the first data recovery mode or the first processing mode , the first processing method corresponds to the first data recovery method, and the first processing method is used to obtain the second data from the first data; the second communication device according to the The second information is to determine the first data recovery mode.
  • the first information further includes an identifier of the first processing mode
  • the first processing mode corresponds to the first data recovery mode
  • the first processing mode is used to retrieve data from The second data is acquired from the first data
  • the processing module 1402 may also be configured to determine the first data restoration method according to the identifier of the first processing method.
  • the transceiver module 1401 may also be configured to receive third information from the first communication device, where the third information includes one or more processing modes supported by the first communication device The identification of the one or more processing modes includes the identification of the first processing mode.
  • the transceiver module 1401 may also be configured to receive fourth information from the first communication device, where the fourth information includes information between the third data and the first data At least one of an error value and a ratio of the data volume of the second data to the data volume of the first data.
  • the processing module 1402 may also be configured to update the target threshold according to the fourth information; the transceiver module 1401 may also be configured to send the updated target threshold to the first communication device. threshold.
  • the first communication device is a network element management device
  • the second communication device is a network management device
  • the first communication device is an access network element
  • the second communication device is a network element management device
  • the first communication device is an access network element
  • the second communication device is a network management device
  • the first communication device is a client terminal device
  • the second communication device is an automatic matching server.
  • each unit in the device can be implemented in the form of software called by the processing element; they can also be implemented in the form of hardware; some units can also be implemented in the form of software called by the processing element, and some units can be implemented in the form of hardware.
  • each unit can be a separate processing element, or it can be integrated in a certain chip of the device.
  • it can also be stored in the memory in the form of a program, which is called and executed by a certain processing element of the device. Function.
  • all or part of these units can be integrated together, or implemented independently.
  • the processing element here may also be a processor, which may be an integrated circuit with a signal processing capability.
  • each operation of the above method or each unit above may be realized by an integrated logic circuit of hardware in the processor element, or implemented in the form of software called by the processing element.
  • the units in any of the above devices may be one or more integrated circuits configured to implement the above method, for example: one or more specific integrated circuits (application specific integrated circuit, ASIC), or, one or Multiple microprocessors (digital signal processor, DSP), or, one or more field programmable gate arrays (field programmable gate array, FPGA), or a combination of at least two of these integrated circuit forms.
  • ASIC application specific integrated circuit
  • DSP digital signal processor
  • FPGA field programmable gate array
  • the units in the device can be implemented in the form of a processing element scheduler
  • the processing element can be a processor, such as a general-purpose central processing unit (central processing unit, CPU), or other processors that can call programs.
  • CPU central processing unit
  • these units can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • the above unit for receiving is an interface circuit of the device for receiving signals from other devices.
  • the receiving unit is an interface circuit for the chip to receive signals from other chips or devices.
  • the above sending unit is an interface circuit of the device, and is used to send signals to other devices.
  • the sending unit is an interface circuit used by the chip to send signals to other chips or devices.
  • FIG. 15 is a schematic diagram of a communication device provided by an embodiment of the present application, which is used to implement operations of the first communication device or the second communication device in the above-mentioned embodiments.
  • the communication device 1500 includes: a processor 1510 and an interface 1530 , and optionally, the communication device 1500 further includes a memory 1520 .
  • the interface 1530 is used to communicate with other devices.
  • the method executed by the first communication device or the second communication device may be called by the processor 1510 in the memory (which may be the memory 1520 in the first communication device or the second communication device, or may be an external memory) Stored program to achieve.
  • the communication device 1500 for realizing the functions of the first communication device or the second communication device may include a processor 1510, and the processor 1510 executes the first communication device in the above method embodiment by calling a program in the memory. , or a method executed by the second communication device.
  • the processor here may be an integrated circuit with signal processing capabilities, such as a CPU, and the means for the first communication device and the second communication device may be realized by one or more integrated circuits configured to implement the above method. For example: one or more ASICs, or one or more microprocessors DSP, or one or more FPGAs, etc., or a combination of at least two of these integrated circuit forms.
  • the above implementation manners may be combined.
  • the processor 1510 is used to implement the functions of the processing module 1402
  • the interface 1530 is used to implement the functions of the transceiver module 1401 above.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on the computer, the processes or functions according to the embodiments of the present application will be generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, e.g.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device including a server, a data center, and the like integrated with one or more available media.
  • the available medium may be a magnetic medium (such as a floppy disk, a hard disk, or a magnetic tape), an optical medium (such as a DVD), or a semiconductor medium (such as a solid state disk (solid state disk, SSD)), etc.
  • the various illustrative logic units and circuits described in the embodiments of the present application can be implemented by a general-purpose processor, a digital signal processor, an application-specific integrated circuit (ASIC), a field-programmable gate array (FPGA) or other programmable logic devices, Discrete gate or transistor logic, discrete hardware components, or an implementation of any combination of the above to implement or operate the described functions.
  • the general-purpose processor may be a microprocessor, and optionally, the general-purpose processor may also be any conventional processor, controller, microcontroller or state machine.
  • a processor may also be implemented by a combination of computing devices, such as a digital signal processor and a microprocessor, multiple microprocessors, one or more microprocessors combined with a digital signal processor core, or any other similar configuration to accomplish.
  • the steps of the method or algorithm described in the embodiments of this application may be directly embedded in hardware, a software unit executed by a processor, or a combination of both.
  • the software unit can be stored in random access memory (random access memory, RAM), flash memory, read-only memory (read-only memory, ROM), EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM or notebook In any other form of storage media in the field.
  • the storage medium can be connected to the processor, so that the processor can read information from the storage medium, and can write information to the storage medium.
  • the storage medium can also be integrated into the processor.
  • the processor and storage medium can be provided in an ASIC.
  • the above functions described in the embodiments of the present application may be implemented in hardware, software, firmware or any combination of the three. If implemented in software, the functions can be stored on or transmitted over as one or more instructions or code on a computer-readable medium.
  • Computer-readable media includes computer storage media and communication media that facilitate transfer of a computer program from one place to another. Storage media may be any available media that can be accessed by a general purpose or special computer.
  • Such computer-readable media may include, but are not limited to, RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other device that can be used to carry or store instructions or data structures and Other medium of program code in a form readable by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor.
  • any connection is properly defined as a computer-readable medium, for example, if the software is transmitted from a web site, server, or other remote source via a coaxial cable, fiber optic computer, twisted pair, digital subscriber line (DSL) Or transmitted by wireless means such as infrared, wireless and microwave are also included in the definition of computer readable media.
  • DSL digital subscriber line
  • the disk (disk) and disk (disc) include compact disk, laser disk, optical disc, digital versatile disc (digital versatile disc, DVD), floppy disk and Blu-ray disc. Disks usually reproduce data magnetically, while discs usually use laser Make an optical copy of the data. Combinations of the above can also be contained on a computer readable medium.
  • the functions described in the embodiments of the present application may be implemented by hardware, software, firmware or any combination thereof.
  • the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium.
  • Computer-readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a storage media may be any available media that can be accessed by a general purpose or special purpose computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Mining & Analysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开一种通信方法及通信装置,具体可以包括:第一通信装置获取第一数据,该第一数据可以是网络测量数据;第一通信装置根据第一处理方式和第一数据,获取第二数据,该第二数据是第一数据中的部分数据,其中,第二数据用于获取第三数据,第三数据与第一数据之间的误差值小于或等于目标阈值;第一通信装置向第二通信装置发送第二数据。通过本申请可以降低网络测量数据上报的开销,提高网络资源利用率。

Description

一种通信方法及通信装置
相关申请的交叉引用
本申请要求在2021年12月20日提交中国国家知识产权局、申请号为202111567007.8、申请名称为“一种通信方法及通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及通信装置。
背景技术
网络运行、管理和维护(operation,administration,and maintenance,OAM)是指为保障电信网络与业务正常、安全、有效运行而采取的生产组织管理活动。为了维护并确保通信服务的高可用性,以及不断优化系统架构提升部署效率,测量任务控制服务生产者支持按照固定的测量周期进行网络测量数据收集,并按照固定的上报周期将收集到的网络测量数据发送给测量任务控制消费者。测量任务控制消费者可以对该网络测量数据进行分析,了解网络各个方面的运行状态,了解各个业务的运行质量,日常维护,问题定位等。
随着对网络测量数据精度的需求的不断增加,需要相应的缩短测量周期,但是,测量周期缩短会增大待上报的网络测量数据的数据量,增大网络开销,导致网络拥塞,测量数据上报失败的问题。
发明内容
本申请实施例提供一种通信方法及通信装置,用以降低网络测量数据上报的开销,提高网络资源利用率,提高网络测量数据的精度。
第一方面,本申请提供一种通信方法,该方法可以由第一通信装置执行,或者由第一通信装置的部件(如芯片或芯片系统)执行。在该方法中,第一通信装置获取第一数据;所述第一通信装置根据第一处理方式和所述第一数据,获取第二数据,所述第二数据是所述第一数据中的部分数据,其中,所述第二数据用于获取第三数据,所述第三数据与所述第一数据之间的误差值小于或等于目标阈值;所述第一通信装置向第二通信装置发送所述第二数据。
其中,第一数据可以是网络测量数据。应理解的是,第一数据还可以是其它形式的数据,如目标参数的参数值,图像数据等,本申请实施例对第一数据的具体实现形式并不限定于此。
在上述实施例中,第二数据是第一数据中的部分数据,通常传输的数据量越少所需要的网络开销也越少,所以,相较于第一通信装置向第二通信装置发送第一数据而言,第一通信装置向第二通信装置发送第二数据的方式可以减少数据传输的开销,提高网络资源的利用率。这样,在消耗相同开销的情况下,第一通信装置可以支持秒级粒度或毫秒级粒度或更细粒度的测量周期,可以提高第一数据的精度。第一通信装置按照第一处理方式从第 一数据中获取第二数据,该第二数据用于获取第三数据,第三数据与第一数据之间的误差值小于或等于目标阈值,这样能够保证数据的准确率,避免数据的准确率低导致网络问题定位错误等。
在一种可能的设计中,所述方法还可以包括:所述第一通信装置接收来自所述第二通信装置的第一信息,所述第一信息包括所述目标阈值、计算方式或第四数据的标识中的至少一项,其中,所述计算方式用于确定所述第三数据和所述第一数据之间的误差值,所述第四数据是所述第一通信装置需要发送的数据,所述第二数据中包括所述第四数据;所述第一通信装置根据所述第一信息,确定所述第一处理方式。
通过上述设计,第一通信装置可以通过来自第二通信装置的第一信息,确定获取第二数据的方式,计算第三数据与第一数据之间的误差值的方式以及第二通信装置允许的误差值等。
在一种可能的设计中,所述方法还可以包括:所述第一通信装置向所述第二通信装置发送第二信息,所述第二信息包括第一数据恢复方式,所述第一数据恢复方式与所述第一处理方式对应,所述第一数据恢复方式用于根据所述第二数据获取所述第三数据;或者所述第二信息包括所述第一处理方式的标识。
通过上述设计,第一通信装置可以采用多种方式灵活地向第二通信装置指示根据第二数据获取第三数据的方式,以使得第二通信装置能够采用与第一处理方式对应的方式获取第三数据。
在一种可能的设计中,所述第一信息还可以包括所述第一处理方式的标识,所述第一通信装置根据所述第一信息,确定所述第一处理方式,可以为:所述第一通信装置根据所述第一处理方式的标识,确定所述第一处理方式。
通过上述设计,第一通信装置可以按照第二通信装置所指定的处理方式对第一数据进行处理,以得到第二数据。
在一种可能的设计中,所述方法还可以包括:所述第一通信装置向所述第二通信装置发送第三信息,所述第三信息包括所述第一通信装置支持的一个或多个处理方式的标识,所述一个或多个处理方式的标识中包括所述第一处理方式的标识。
通过上述设计,第一通信装置可以将自身支持的一个或多个处理方式的标识发送给第二通信装置,可以支持由第二通信装置指定第一处理方式。
在一种可能的设计中,所述方法还可以包括:所述第一通信装置向所述第二通信装置发送第四信息,所述第四信息包括所述第三数据与所述第一数据之间的误差值和所述第二数据的数据量与所述第一数据的数据量的比值中的至少一项。可选的,该方法还可以包括:所述第一通信装置接收来自所述第二通信装置的更新后的目标阈值。
通过上述设计,第一通信装置可以将表示第一处理方式的处理效果的第四信息发送给第二通信装置,这样第二通信装置可以通过第四信息确定是否更新目标阈值以及更新目标阈值的方式,如减小目标阈值以进一步减少开销,或者增大目标阈值以增大第三数据的准确率。
在一种可能的设计中,所述第一通信装置是网元管理装置,所述第二通信装置是网络管理装置;
或者,所述第一通信装置是接入网网元,所述第二通信装置是网元管理装置;
或者,所述第一通信装置是接入网网元,所述第二通信装置是网络管理装置;
或者,所述第一通信装置是客户终端设备,所述第二通信装置是自动匹配服务器。
第二方面,本申请提供一种通信方法,该方法可以由第二通信装置执行,或者由第二通信装置的部件(如芯片或芯片系统等)执行。在该方法中,第二通信装置接收来自第一通信装置的第二数据,所述第二数据是第一数据中的部分数据;所述第二通信装置根据第一数据恢复方式和所述第二数据,获取第三数据,所述第三数据与所述第一数据之间的差值小于或等于目标阈值。
其中,第一数据可以是网络测量数据。应理解的是,第一数据还可以是其它形式的数据,如目标参数的参数值,图像数据等,本申请实施例对第一数据的具体实现形式并不限定于此。
在一种可能的设计中,所述方法还可以包括:所述第二通信装置向所述第一通信装置发送第一信息,所述第一信息包括所述目标阈值、计算方式或第四数据的标识中的至少一项,其中,所述计算方式用于确定所述第三数据和所述第一数据之间的误差值,所述第四数据是所述第一通信装置需要发送的数据,所述第二数据中包括所述第四数据。
在一种可能的设计中,所述第一通信装置是接入网网元,所述第二通信装置是网元管理装置,所述方法还可以包括:所述第二通信装置向网络管理装置发送所述第三数据。
通过上述设计,在第一通信装置是接入网网元,第二通信装置是网元管理装置时,网元管理装置与网络管理装置之间的网络资源丰富,网元管理装置获取到第三数据后可以按照全量上报的方式向网络管理装置发送该第三数据,减少网络测量数据的压缩次数。
在一种可能的设计中,所述方法还可以包括:所述第二通信装置接收来自所述网络管理装置的所述第一信息。
通过上述设计,第二通信装置接收到网络管理装置的第一信息后,可以将第一信息转发给第一通信装置,以使第一通信装置根据该第一信息上报第二数据。
在一种可能的设计中,所述方法还可以包括:所述第二通信装置接收来自所述第一通信装置的第二信息,所述第二信息包括所述第一数据恢复方式或者所述第一处理方式的标识,所述第一处理方式与所述第一数据恢复方式对应,所述第一处理方式用于从所述第一数据中获取所述第二数据;所述第二通信装置根据所述第二信息,确定所述第一数据恢复方式。
在一种可能的设计中,所述第一信息还包括所述第一处理方式的标识,所述第一处理方式与所述第一数据恢复方式对应,所述第一处理方式用于从所述第一数据中获取所述第二数据,所述方法还可以包括:所述第二通信装置根据所述第一处理方式的标识,确定所述第一数据恢复方式。
在一种可能的设计中,所述方法还可以包括:所述第二通信装置接收来自所述第一通信装置的第三信息,所述第三信息包括所述第一通信装置支持的一个或多个处理方式的标识,所述一个或多个处理方式的标识中包括所述第一处理方式的标识。
在一种可能的设计中,所述方法还可以包括:所述第二通信装置接收来自所述第一通信装置的第四信息,所述第四信息包括所述第三数据与所述第一数据之间的误差值和所述第二数据的数据量与所述第一数据的数据量的比值中的至少一项。
在一种可能的设计中,所述方法还可以包括:所述第二通信装置根据所述第四信息,更新所述目标阈值;所述第二通信装置向所述第一通信装置发送更新后的目标阈值。
在一种可能的设计中,所述第一通信装置是网元管理装置,所述第二通信装置是网络 管理装置;
或者,所述第一通信装置是接入网网元,所述第二通信装置是网元管理装置;
或者,所述第一通信装置是接入网网元,所述第二通信装置是网络管理装置;
或者,所述第一通信装置是客户终端设备,所述第二通信装置是自动匹配服务器。
第三方面,本申请实施例提供一种通信装置,该通信装置可以是第一通信装置,具有实现上述第一方面或第一方面的各个可能的设计示例中第一通信装置的功能。其中,功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,通信装置的结构中可以包括收发模块和处理模块,这些模块可以执行上述第一方面或第一方面的各个可能的设计示例中第一通信装置的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
在一个可能的设计中,通信装置的结构中可以包括接口电路和一个或多个处理器。可选的,该通信装置还包括存储器。其中,接口电路用于收发数据,以及用于与通信系统中的其他设备进行通信交互。一个或多个处理器被配置为支持通信装置执行上述第一方面或第一方面的各个可能的设计示例中第一通信装置的相应功能。存储器与一个或多个处理器耦合,其保存通信装置必要的程序指令和数据。
在一种可能的设计中,通信装置的结构中可以包括存储器和一个或多个处理器。该存储器与该一个或多个处理器耦合;存储器用于存储计算机程序或指令,当所述计算机程序或指令被一个或多个处理器执行时,使得所述通信装置执行上述第一方面或第一方面的各个可能的设计示例中第一通信装置的相应功能。
第四方面,本申请实施例提供一种通信装置,该通信装置可以是第二通信装置,具有实现上述第二方面或第二方面的各个可能的设计示例中第二通信装置的功能。其中,功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,通信装置的结构中可以包括收发模块和处理模块,这些模块可以执行上述第二方面或第二方面的各个可能的设计示例中第二通信装置的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
在一个可能的设计中,通信装置的结构中可以包括接口电路和一个或多个处理器。可选的,该通信装置还包括存储器。其中,接口电路用于收发数据,以及用于与通信系统中的其他设备进行通信交互。一个或多个处理器被配置为支持通信装置执行上述第二方面或第二方面的各个可能的设计示例中第二通信装置的相应功能。存储器与一个或多个处理器耦合,其保存通信装置必要的程序指令和数据。
在一种可能的设计中,通信装置的结构中可以包括存储器和一个或多个处理器。该存储器与该一个或多个处理器耦合;存储器用于存储计算机程序或指令,当所述计算机程序或指令被一个或多个处理器执行时,使得所述通信装置执行上述第二方面或第二方面的各个可能的设计示例中第二通信装置的相应功能。
第五方面,本申请提供一种通信系统,包括第三方面中的通信装置和/或第四方面中的通信装置。
第六方面,本申请提供一种计算机可读存储介质,该存储介质中存储有计算机程序或指令,当计算机程序或指令被执行时,可实现上述第一方面或第一方面的任一项设计中所 述的方法。
第七方面,本申请提供一种计算机可读存储介质,该存储介质中存储有计算机程序或指令,当计算机程序或指令被执行时,可实现上述第二方面或第二方面的任一项设计中所述的方法。
第八方面,本申请提供一种计算机程序产品,该计算机程序产品包括:计算机程序(也可以称为代码,或指令),当该计算机程序被运行时,使得计算机执行上述第一方面或第一方面的任一项设计中所述的方法。
第九方面,本申请提供一种计算机程序产品,该计算机程序产品包括:计算机程序(也可以称为代码,或指令),当该计算机程序被运行时,使得计算机执行上述第二方面或第二方面的任一项设计中所述的方法。
第十方面,本申请提供一种芯片系统,该芯片系统包括处理器和接口,用于支持通信装置实现上述第一方面或第一方面的任一项设计中所述的方法。
在一种可能的设计中,芯片系统还包括存储器,存储器,用于保存前述通信装置的必要的信息和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第十一方面,本申请提供一种芯片系统,该芯片系统包括处理器和接口,用于支持通信装置实现上述第二方面或第二方面的任一项设计中所述的方法。
在一种可能的设计中,芯片系统还包括存储器,存储器,用于保存前述通信装置的必要的信息和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
上述第二方面至第十一方面以及各个可能的设计的有益效果,请对应参照第一方面及其各个可能的设计的有益效果,这里不再赘述。
附图说明
图1为本申请实施例提供的通信系统的一种示意图;
图2为本申请实施例中测量任务控制服务的一种流程示意图;
图3为本申请实施例中参数值查询服务的一种流程示意图;
图4为本申请实施例提供的通信方法的一种流程示意图;
图5为本申请实施例提供的通信方法的一种流程示意图;
图6为本申请实施例提供的通信方法的一种流程示意图;
图7为本申请实施例提供的通信方法的一种流程示意图;
图8为本申请实施例提供的通信方法的又一种流程示意图;
图9为本申请实施例提供的通信方法的又一种流程示意图;
图10为本申请实施例提供的通信方法的又一种流程示意图;
图11为本申请实施例提供的通信方法的再一种流程示意图;
图12为本申请实施例提供的通信方法的再一种流程示意图;
图13为本申请实施例提供的通信方法的再一种流程示意图;
图14为本申请实施例提供的通信装置的一种结构示意图;
图15为本申请实施例提供的通信装置的又一种结构示意图。
具体实施方式
本申请提供一种通信方法及通信装置,用以降低测量上报的开销,提高网络资源利用率,提高测量精度,帮助有效监测和分析网络中的问题。其中,方法和设备是基于同一技术构思的,由于方法及装置解决问题的原理相似,因此设备与方法的实施可以相互参见,重复之处不再赘述。
需要说明的是,本申请实施例涉及的“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。本申请中所涉及的多个,是指两个或两个以上。至少一个,是指一个或多个。
另外,需要理解的是,在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
首先介绍本申请实施例适用的通信场景。
图1示出了本申请实施例适用的一种通信系统的结构示意图。如图1所示,通信系统100包括网络管理系统(network management system,NMS),网元管理系统(element management system,EMS),接入网网元(radio access network,RAN)、自动匹配服务器(auto-configuration server,ACS)以及客户终端设备(customer premises equipment,CPE)。NMS与EMS之间有接口,可以相互通信。EMS与RAN之间有接口,可以相互通信。NMS与RAN之间有接口,可以相互通信。CPE与ACS之间也有接口,可以相互通信。
其中,NMS,可以包括一个或多个网络管理装置(或称为网络管理器),其主要提供网络管理功能,可以管理不同地域、不同设备供应商的网络。网络管理员可以通过NMS对网络进行全面监控。NMS可提供网络管理的基本功能,如故障、配置、计费、性能和安全等的管理。在本申请实施例中NMS可以作为测量任务控制服务消费者,用于接收来自EMS或RAN的网络测量数据。
EMS,可以包括一个或多个网元管理装置,用于管理一个或多个类型的网元。该网元管理装置可以是网元管理器(element management,EM),或者是域管理器(domain management,DM)。其中,EM是用于管理网元的网络模块,其可以设置在网元上也可以单独设置。DM是比EM的管理范围更大一级的管理系统模块,如可以管理一个或多个EM。在本申请实施例中EMS可以作为测量任务控制服务消费者,用于接收来自RAN的网络测量数据;或者也可以作为测量任务控制服务生产者,用于收集网络测量数据以及向NMS发送该网络测量数据。
RAN,是运营商网络的子网络,是运营商网络中业务节点与终端设备之间的实施系统。终端设备要接入运营商网络,首先是经过RAN,进而可通过RAN与运营商网络的业务节点连接。RAN设备,是一种为终端设备提供无线通信功能的设备,RAN设备也称为接入网设备。RAN设备包括但不限于:5G中的下一代基站(g nodeB,gNB)、演进型节点B(evolved node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved nodeB,或home node B,HNB)、基带单元(baseBand unit,BBU)、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、移动交换中心等。
在本申请实施例中,RAN可以作为测量任务控制服务生产者,用于收集网络测量数据 以及向NMS或EMS发送给网络测量数据。
ACS,主要负责CPE的配置和管理,查询CPE的配置参数等。在本申请实施例中ACS可用于接收来自CPE发送的参数值。
CPE,部署在用户侧,通过空口接入运营商基站,能够被ACS管理。在本申请实施例中,CPE可用于获取参数值以及向ACS发送该参数值。
接下来介绍与本申请实施例相关的技术特征。
图2示出了测量任务控制服务的一种流程示意图。如图2所示,该流程可以包括如下内容。
S201:测量任务控制服务消费者向测量任务控制服务生产者发送创建测量任务(create measurement job)请求消息;相应的,测量任务控制服务生产者接收该创建测量任务请求消息。
该创建测量任务请求消息可用于请求测量任务控制服务生产者创建针对目标测量对象的测量任务。该创建测量任务请求消息中可以包括测量对象的标识,网络测量数据的类型,测量上报方式,测量周期,以及上报周期中的一项或多项。
测量对象可以是一个或多个,该测量对象可以是该测量任务控制服务生产者所管理的一个或多个小区。
网络测量数据的类型,例如可以包括但不限定于上行空口平均时延、下行空口平均时延、上行用户平均吞吐量、下行用户平均吞吐量、上行物理资源块(physical resource block,PRB)利用率、下行PRB利用率、平均无线资源控制(radio resource control,RRC)连接数等中的一项或多项。
上报方式,是指测量任务控制服务生产者向测量任务控制服务消费者发送网络测量数据的方式,例如以文件的方式上报或者以数据流的方式上报。
测量周期,是指测量任务控制服务生产者可以按照该测量周期获取该测量对象的网络测量数据。
上报周期则是指测量任务控制服务生产者可以按照该上报周期向测量任务控制服务消费者发送该测量对象的网络测量数据。一般上报周期是测量周期的整数倍。目前,测量周期和上报周期为分钟级粒度,如5分钟、15分钟、30分钟、60分钟等。
其中,若测量任务控制服务消费者是NMS,则测量任务控制服务生产者可以是EMS或RAN;或者,若测量任务控制服务消费者是EMS,则测量任务控制服务生产者可以是RAN。
S202:测量任务控制服务生产者向测量任务控制服务消费者发送创建测量任务响应消息;相应的,测量任务控制服务消费者接收创建测量任务响应消息。
该创建测量任务响应消息可以包括任务标识,创建状态(如创建成功或创建失败或部分创建成功)。以及在创建失败或部分创建成功时,该创建测量任务响应消息还可以包括不支持的测量列表。其中,任务标识是测量任务控制服务生产者接收到创建测量任务请求消息后根据指定的参数创建相应的测量任务,并分配任务标识。该不支持的测量列表可以包括网络测量数据的类型,以及创建不成功的原因。
以表1为例,测量对象1的测量任务创建成功;测量对象2的测量任务部分创建成功,创建失败的网络测量数据的类型包括网络测量数据1和网络测量数据2,网络测量数据1因原因1创建失败,网络测量数据2因原因2创建失败;测量对象3的测量任务创建失败, 创建失败的网络测量数据的类型为网络测量数据3,网络测量数据3因原因3创建失败。应理解的是,表1的各项数据仅为一种示例,并不对创建测量任务响应消息的具体实现方式限定于此。另外,为了便于表述,本申请实施例以成功创建测量任务为例进行描述。
表1
Figure PCTCN2022137969-appb-000001
S203:测量任务控制服务生产者获取网络测量数据。
示例性的,测量任务控制服务生产者可以根据测量对象的标识,网络测量数据的类型,以及测量周期中的一项或多项收集网络测量数据。
S204:测量任务控制服务生产者向测量任务控制服务消费者发送网络测量数据;相应的,测量任务控制服务消费者接收网络测量数据。
示例性的,测量任务控制服务生产者可以根据上报方式和上报周期中的至少一项,向测量任务控制服务消费者发送网络测量数据。进一步,测量任务控制服务消费者接收到网络测量数据后可以该网络测量数据进行处理,如网络性能分析,问题定位等。
图3示出了参数值查询服务的一种流程示意图。如图3所示,该流程可以包括如下内容。
S301:ACS向CPE发送参数值查询(get parameter values)请求消息;相应的,CPE接收参数值查询请求消息。该参数值查询请求消息可以包括目标参数的标识,如目标参数的参数名称。其中,该目标参数可以包括但不限定于设备接入总次数、设备接入失败次数、下行业务总流量、上行业务总流量、设备上行时延、设备下行时延、设备上行丢包率、以及设备下行丢包率等中的一项或多项。
S302:CPE获取目标参数的参数值。例如,CPE根据目标参数的标识,获取该目标参数的参数值。
S303:CPE向ACS发送参数值查询响应消息;相应的,ACS接收该参数值查询响应消息。其中,该参数值查询响应消息携带该目标参数的参数值。进一步,ACS可以根据该目标参数的参数值进行相关问题的分析,如网络问题识别(如时延大、丢包率高的问题),问题定位(如视频花屏问题定位等)。
在图2所示的测量任务控制服务中,测量任务控制服务生产者将收集到的网络测量数据发送给测量任务控制服务消费者,该网络测量数据是分钟级粒度的,不利于获取高精度的网络测量数据,但是缩短测量周期,会增大待上报的网络测量数据的数据量,增大网络开销,导致网络拥塞,网络测量数据上报失败的问题。而在图3所示的参数值查询服务中, 若网络资源比较紧张或待传输的参数值较多时,也会导致网络拥塞,参数值上报失败的问题。
鉴于此,本申请实施例提供一种通信方法以及通信装置,用以降低网络测量数据上报的开销,提高网络资源利用率,提高网络测量数据精度。
需要说明的是,本申请实施例所提供的通信方法可以应用于图2所示的测量任务控制服务场景,用以减少网络测量数据上报的开销,提高网络测量数据的精度;或者,也可以应用于图3所示的参数值查询服务场景,用以减少参数值上报的开销;或者,还可以应用于其它场景中,如图像数据的发送场景,视频数据的发送场景等,用以减少待传输数据的开销;本申请实施例并不限定于此。为了便于理解本申请实施例,下文中以测量任务控制服务场景以及参数值查询服务场景为例进行介绍。
图4示出了本申请实施例提供的通信方法的一种流程示意图。该方法可以应用于图1所示的通信系统100中,如应用于图1所示的NMS与EMS之间的测量任务控制服务场景,或者应用于图1所示的NMS与RAN之间的测量任务控制服务场景,或者应用于图1所示的EMS与RAN之间的测量任务控制服务场景,或者应用于图1所示的ACS与CPE之间的参数值查询服务场景。例如,第一通信装置可以是EMS或者是EMS的部件(如芯片或芯片系统),第二通信装置则可以是NMS或者是NMS的部件(如芯片或芯片系统);或者,第一通信装置可以是RAN或者是RAN的部件(如芯片或芯片系统),第二通信装置则可以是NMS或者是NMS的部件(如芯片或芯片系统);或者,第一通信装置可以是RAN(如芯片或芯片系统),第二通信装置则可以是EMS或者是EMS的部件(如芯片或芯片系统);或者,第一通信装置可以是CPE或者是CPE的部件(如芯片或芯片系统),第二通信装置则可以是ACS或者是ACS的部件(如芯片或芯片系统)。
S401:第一通信装置获取第一数据。
其中,第一数据可以是测量对象的网络测量数据,或者是目标参数的参数值,或者是图像数据,视频数据等,本申请实施例对第一数据的具体实现形式并不限定于此。下文中以第一数据是测量对象的网络测量数据或者是目标参数的参数值为例进行描述。
示例性的,在第一通信装置是EMS或RAN时,第一通信装置可以收集测量对象的网络测量数据。在第一通信装置是CPE时,第一通信装置可以收集目标参数的参数值。其中,测量对象可以是第一通信装置所管理的一个或多个小区。网络测量数据的类型例如可以包括但不限定于:上行空口平均时延、下行空口平均时延、上行用户平均吞吐量、下行用户平均吞吐量、上行PRB利用率、下行PRB利用率、平均RRC连接数等中的一项或多项。该目标参数可以包括但不限定于:设备接入总次数、设备接入失败次数、下行业务总流量、上行业务总流量、设备上行时延、设备下行时延、设备上行丢包率、以及设备下行丢包率等中的一项或多项。
作为一个示例,第一通信装置可以主动获取第一数据。例如,第一通信装置可以根据预先配置的测量周期、网络测量数据的类型等收集测量对象的网络测量数据或者主动收集目标参数的参数值,得到第一数据。或者,第一通信装置也可以响应于第二通信装置的第一请求消息获取第一数据。例如,第二通信装置可以向第一通信装置发送第一请求消息,相应的,第一通信装置接收第一请求消息。该第一请求消息用于请求获取第一数据,例如第一请求消息可以是创建测量任务请求消息,或者是参数值查询请求消息等,本申请实施例对此不作限定。进一步,在第一通信装置是EMS或RAN时,该第一请求消息可以包括 但不限定于:测量对象的标识、网络测量数据的类型、上报方式、测量周期、以及上报周期中的一项或多项;相应的,第一通信装置接收到第一请求消息后,可以根据网络测量数据的类型和测量周期收集该测量对象的网络测量数据,得到第一数据。而在第一通信装置是CPE时,该第一请求消息可以包括目标参数的标识;相应的,第一通信装置接收到第一请求消息后,可以根据目标参数的标识收集目标参数的参数值,得到第一数据。
值得注意的是,本申请实施例涉及的测量周期、上报周期可以是分钟级粒度,也可以是秒级粒度,还可以是毫秒级粒度等,本申请实施例并不限定于此。另外,有关上报方式和上报周期的描述请参考前述步骤S201中的相关描述,在此不再赘述。
作为一个示例,第一通信装置可以向第二通信装置发送第一响应消息,相应的,第二通信装置接收第一响应消息。若第一通信装置是EMS或RAN,则该第一响应消息可以是创建测量任务响应消息。该第一响应消息可以包括测量对象的标识,创建状态(如创建成功,或创建失败,或部分创建成功)。在创建失败或部分创建成功时,该第一响应消息还可以包括创建失败的测量参数的类型,以及创建失败的原因中的一项或多项,如表1所示。若第一通信装置是CPE,则该第一响应消息可以是参数值查询响应消息。
S402:第一通信装置根据第一处理方式和第一数据,获取第二数据。
其中,第二数据是第一数据中的部分数据。该第二数据可以用于获取第三数据。第三数据与第一数据之间的误差值小于或等于目标阈值。第一处理方式用于从原始数据中获取该原始数据中的部分数据,能够减少待传输数据的数据量。该第一处理方式例如可以是基于列子空间填充的压缩算法,或基于矩阵填充的压缩算法等,本申请实施例并不限定于此。
需要说明的是,本申请实施例涉及的目标阈值可以是误差阈值,也可以是准确率阈值,本申请实施例对此不作限定。例如,目标阈值是误差阈值,则第三数据与第一数据之间的误差值小于或等于该目标阈值。又例如,目标阈值是准确率阈值,则根据第二数据恢复第一数据时所得到的第三数据的准确率大于或等于该目标阈值。为了便于表述,下文中以目标阈值为误差阈值为例进行描述。
另外,该目标阈值可以是预先设定的,如第一通信装置根据自身的数据处理能力确定的,或者根据历史数据的上报情况确定的等;或者也可以是第二通信装置指示的,如第二通信装置根据第二通信装置的需求、第二通信装置的带宽资源分配情况、第二通信装置的数据处理能力、以及第一通信装置的数据处理能力等中的一项或多项确定的;本申请实施例并不限定于此。例如,第二通信装置可以向第一通信装置发送第一信息,该第一信息可以包括目标阈值;相应的,第一通信装置接收第一信息。另外,该第一信息可以承载在第一请求消息中,也可以承载在其它消息中,本申请实施例对此不作限定。应理解的是,该目标阈值的数量是一个或多个。例如,测量对象为多个时,该目标阈值也可以是多个。
可选的,该第一信息还可以包括计算方式,或者包括第四数据的标识,或者包括计算方式和第四数据的标识。该计算方式可以用于评估第一处理方式的实际效果。例如,该计算方式可以用于确定第三数据和第一数据之间的误差值,如平均绝对误差、或均方根误差等;或者可以用于确定第三数据的准确率。第四数据是第一通信装置需要发送的数据。即,第二数据中包括该第四数据。该第四数据的标识例如可以是行标识或列标识,该行标识或列标识对应于网络测量数据的类型或者测量时间点等。
第一通信装置可以确定第一处理方式,并根据第一处理方式对第一数据进行处理,得到第二数据。第一通信装置支持一个或多个处理方式,第一通信装置可以从该一个或多个 处理方式中确定第一处理方式。
例如,第一通信装置可以根据自身的数据处理能力,或者根据自身的带宽资源分配情况,或者自身的数据处理的能力以及自身的带宽资源分配情况等,确定第一处理方式。例如,第一通信装置可以根据自身的数据处理能力从多个处理方式中选择计算复杂度最小的处理方式为第一处理方式。例如,第一通信装置可以根据自身的带宽资源分配情况从多个处理方式中选择第二数据的数据量最小的所对应的处理方式为第一处理方式。
又例如,第一通信装置可以根据第一信息确定第一处理方式。具体的,第一通信装置可以根据计算方式从多个处理方式中确定第三数据与第一数据的误差值最小所对应的处理方式为第一处理方式;或者,根据计算方式从多个处理方式中确定第三数据的准确率最高所对应的处理方式为第一处理方式;或者,根据目标阈值从多个方式中确定满足该目标阈值的一个处理方式为第一处理方式;本申请实施例并不限定于此。
再例如,第一通信装置可以根据第一处理方式的标识,确定第一处理方式。例如,第二通信装置可以向第一通信装置发送第一处理方式的标识,相应的,第一通信装置接收该第一处理方式的标识,并根据该第一处理方式的标识,确定第一处理方式。其中,该第一处理方式的标识可以包括在第一信息中,也可以包括在第二通信装置发送给第一通信装置的其它信息中,本申请实施例并不限定。
第一通信装置可以向第二通信装置上报自身支持的一个或多个处理方式的标识,该一个或多个处理方式的标识包括第一处理方式的标识。具体的,第一通信装置可以向第二通信装置发送第三信息,该第三信息可以包括第一通信装置支持的一个或多个处理方式的标识;相应的,第二通信装置接收该第三信息。进一步,第二通信装置可以从该一个或多个处理方式中确定第一处理方式,并向第一通信装置发送该第一处理方式的标识。例如,第二通信装置可以根据自身的需求、自身的数据处理能力以及自身的带宽资源分配情况等从该一个或多个处理方式中确定一个处理方式为第一处理方式,如该第一处理方式对应的数据恢复方式的计算复杂度最低。
示例性的,该第三信息还可以包括一个或多个数据恢复方式(如数据恢复方式的计算公式或名称等)。其中,一个或多个数据恢复方式与一个或多个处理方式一一对应。例如,处理方式是基于列子空间的压缩算法时,该处理方式对应的数据恢复方式可以是数据重构公式。该一个或多个数据恢复方式用于根据第二数据获取第三数据。可选的,该第三信息还可以包括该一个或多个数据恢复方式的计算复杂度。该一个或多个数据恢复方式的计算复杂度可用于确定目标阈值(如根据计算复杂度和自身的数据处理能力适应性地调整目标阈值),或者用于确定第一处理方式(如确定计算复杂度最小的数据恢复方式所对应的处理方式为第一处理方式),或者用于确定目标阈值和第一处理方式。即,第二通信装置可以根据该计算复杂度,确定目标阈值,或者确定第一处理方式,或者确定目标阈值和第一处理方式。
可以理解的是,第一通信装置可以向第二通信装置上报自身支持的一个或多个处理方式(如处理方式的计算公式或名称等),以及一个或多个数据恢复方式中的一项或多项。例如,第二通信装置接收到一个或多个处理方式时,可以根据该一个或多个处理方式,确定该一个或多个处理方式所对应的一个或多个数据恢复方式。又例如,第二通信装置接收到一个或多个数据恢复方式,可以根据该一个或多个数据恢复方式,确定该一个或多个数据恢复方式所对应的一个或多个处理方式。
示例性的,该第三信息可以包括参考阈值。该参考阈值可以是第一通信装置根据历史数据的上报情况以及自身的数据处理能力,预估的误差阈值,或预估的准确率阈值,或预估的误差阈值和预估的准确率阈值。该参考阈值可作为第二通信装置确定目标阈值和/或第一处理方式的一个参考。即,第二通信装置可以根据该参考阈值确定目标阈值,或者确定第一处理方式,或者确定目标阈值和第一处理方式。
其中,第一通信装置可以主动向第二通信装置发送第三信息,也可以响应于第二通信装置的第二请求消息,向第二通信装置发送第三信息。例如,第二通信装置向第一通信装置发送第二请求消息,第二请求消息用于请求获取第一通信装置支持的一个或多个处理方式的标识;相应的,第一通信装置接收到第二请求消息后,可以向第二通信装置发送第二响应消息,该第二响应消息中包括第三信息。
S403:第一通信装置向第二通信装置发送第二数据。相应的,第二通信装置接收第二数据。
示例性的,第一通信装置可以根据上报方式和上报周期中的至少一项,向第二通信装置发送第二数据。其中,上报周期可以是分钟级粒度,也可以是秒级粒度,还可以是毫秒级粒度,本申请实施例并不限定于此。在本申请实施例中,第一通信装置向第二通信装置发送第一数据的部分数据,通常传输的数据的数据量越少,数据传输所需要的开销越少,所以,本申请能够降低数据上报的开销,提高网络资源利用率。
作为一个示例,第一通信装置可以向第二通信装置发送第二信息,第二信息可以包括第一处理方式的标识或者第一数据恢复方式;相应的,第二通信装置接收第二信息。该第二信息用于确定第一数据恢复方式。例如,在第一通信装置没有向第二通信装置发送第三信息时,第一通信装置可以向第二通信装置发送第二信息,该第二信息包括第一数据恢复方式(如第一数据恢复方式的计算公式或第一数据恢复方式的名称等),以便第二通信装置获取该第一数据恢复方式。又例如,在第一通信装置有向第二通信装置发送第三信息时,第一通信装置可以向第二通信装置发送第二信息,该第二信息包括第一处理方式的标识,这样第二通信装置可以根据第一处理方式的标识,第一处理方式与第一数据恢复方式的对应关系,确定该第一数据恢复方式。其中,第二信息与第二数据可以承载在一个消息中,也可以承载在不同的消息中,本申请实施例对此不作限定。
可选的,第二信息可以包括数据恢复标识,该数据恢复标识用于标识第二数据在第一数据中的位置。例如,第一处理方式为基于列子空间的压缩算法,该数据恢复标识可以是第一数据的列子空间的列标识以及第二数据在第一数据中的位置索引,如行号或列号等。
S404:第二通信装置根据第一数据恢复方式和第二数据,获取第三数据。
示例性的,第二通信装置可以根据第一数据恢复方式对第二数据进行处理,得到第三数据。例如,第二通信装置可以确定第一数据恢复方式,并根据第一数据恢复方式对第二数据进行处理,得到第三数据。例如,在第二通信装置接收到来自第一通信装置的第二信息时,第二通信装置可以根据该第二信息确定第一数据恢复方式。其中,在第二信息包括第一数据恢复方式时,第二通信装置接收到第二信息后,对其解析,可以得到第一数据恢复方式。再第二信息包括第一处理方式的标识时,第二通信装置接收到第二信息后,对其解析,得到第一出来方式的标识,并根据第一处理方式的标识,第一处理方式与第一数据恢复方式的对应关系,确定第一数据恢复方式。又例如,在第二通信装置有向第一通信装置发送第一处理方式的标识时,第二通信装置可以根据该第一处理方式的标识确定第一数 据恢复方式,如根据第一处理方式的标识,第一处理方式与第一数据恢复方式的对应关系,确定第一数据恢复方式。
在一种可能的实现方式中,第一通信装置可以向第二通信装置发送第四信息,相应的,第二通信装置接收第四信息。该第四信息可以包括第三数据与第一数据之间的误差值(或第三数据的准确率),或者包括第二数据的数据量与第一数据的数据量的比值,或者包括第三数据与第一数据之间的误差值和第二数据的数据量与第一数据的数据量的比值。例如,第一通信装置可以获取该第四信息,并向第二通信装置发送第四信息。例如,第一通信装置在获取到第二数据后,可以计算第三数据与第一数据之间的误差值(或者计算根据第二数据恢复到第一数据时所得到的第三数据的准确率),以及计算第二数据的数据量与第一数据的数据量的比值,得到第四信息。其中,该第四信息与第二数据可以承载在一个消息中,也可以承载不同的消息中,本申请实施例不作限定。
示例性的,第二通信装置可以根据第四信息更新目标阈值,以及向第一通信装置发送更新后的目标阈值;相应的,第一通信装置接收更新后的目标阈值。例如,第二通信装置可以根据一个或多个测量周期内的第四信息调整目标阈值。例如,连续多个测量周期内第三数据的准确率大于目标准确率阈值,第二通信装置可以根据第二数据的数据量与第一数据的数据量的比值适应性的增大目标准确率阈值。又例如,连续多个测量周期内第三数据与第一数据之间的误差值大于目标误差阈值,第二通信装置可以根据第二数据的数据量与第一数据的数据量的比值适应性的减小目标误差阈值。
在另一种可能的实现方式中,第一通信装置是RAN,第二通信装置是EMS,第二通信装置获取到第三数据后,可以向NMS发送该第三数据。例如,EMS可以主动向NMS发送第三数据,也可以响应于NMS的第三请求消息,向NMS发送该第三数据。例如,NMS向EMS发送第三请求消息,该第三请求消息用于请求获取第一数据,该第三请求消息可以包括第一信息;EMS获取到第三数据后,向NMS发送第三数据。在本实现方式中,测量任务控制服务中涉及三个网元,即NMS,EMS以及RAN,其中,RAN与EMS为一组测量任务控制服务生产者和测量任务控制服务消费者,EMS与NMS为一组测量任务控制服务生产者和测量任务控制服务消费者。RAN将部分数据发送给EMS可以减少RAN与EMS之间的传输资源的开销,缓解RAN与EMS之间的传输资源压力。考虑到EMS与NMS之间的传输资源充足,EMS可以将第三数据全量上报给NMS,这样减少数据的压缩次数,提高上报数据的准确性。
应理解的是,EMS可以向NMS发送第三数据,也可以向NMS发送第二数据,本申请实施例对此不作限定。例如,EMS接收到第二数据后,可以将第二数据转发给NMS,NMS再根据第二数据和第一处理方式获取第三数据,这样不仅能够减少RAN与EMS之间的传输资源的开销,也可以减少EMS与NMS之间的传输资源的开销。
在上述实施例中,第二数据是第一数据中的部分数据,通常传输的数据的数据量越少所需要的网络开销也越少,所以,相较于第一通信装置向第二通信装置发送第一数据而言,第一通信装置向第二通信装置发送第二数据的方式可以减少数据传输的开销,提高网络资源的利用率。这样,在消耗相同开销的情况下,第一通信装置可以支持秒级粒度或毫秒级粒度或更细粒度的测量周期,可以提高第一数据的精度。第一通信装置按照第一处理方式从第一数据中获取第二数据,该第二数据用于获取第三数据,第三数据与第一数据之间的误差值小于或等于目标阈值,这样能够保证数据的准确率,避免数据的准确率低导致网络 问题定位错误等。
下面结合图5至图13对图4所示的流程进行详细介绍。
图5示出了本申请实施例提供的通信方法的一种流程示意图。本实施例涉及测量任务控制服务场景,第一通信装置可以是EMS或者是EMS的部件(如芯片或芯片系统),第二通信装置则可以是NMS或者是NMS的部件(如芯片或芯片系统);或者,第一通信装置可以是RAN或者是RAN的部件(如芯片或芯片系统),第二通信装置则可以是NMS或者是NMS的部件(如芯片或芯片系统);或者,第一通信装置可以是RAN(如芯片或芯片系统),第二通信装置则可以是EMS或者是EMS的部件(如芯片或芯片系统)。图5以第一通信装置是EMS,第二通信装置是NMS为例进行介绍。其中,图5中的虚线用于表示该步骤是可选的步骤,即该步骤可以执行,也可以不执行。
在本实施例中,第一通信装置没有将自身支持的一个或多个处理方式的标识发送给第二通信装置,第二通信装置根据来自第一通信装置的第一恢复处理方式确定该第一数据恢复方式。如图5所示,该流程可以包括如下内容。
S501:NMS向EMS发送第一请求消息;相应的,EMS接收第一请求消息。
第一请求消息用于请求获取第一数据。在本实施例中,该第一请求消息可以是创建测量任务请求消息,但本申请并不限定于此。该第一请求消息可以包括第一信息,第一信息包括目标阈值、计算方式和第四数据的标识中的一项或多项。可选的,该第一请求消息还可以包括测量对象的标识、网络测量数据的类型、上报方式、测量周期以及上报周期中的一项或多项。其中,步骤S501的具体实现方式请参考前述步骤S401、S402中的相关描述,在此不再赘述。
S502:EMS向NMS发送第一响应消息;相应的,NMS接收第一响应消息。
在本实施例中,该第一响应消息可以包括测量对象的标识,创建状态(如创建成功,或创建失败,或部分创建成功)。在创建失败或部分创建成功时,该第一响应消息还可以包括创建失败的测量参数的类型,以及创建失败的原因中的一项或多项,如表1所示。图5以任务创建成功为例。
S503:EMS获取第一数据。
例如,EMS可以根据测量对象的标识、测量周期、网络测量数据的类型以及第四数据的标识等收集该测量对象的网络测量数据,得到第一数据。
S504:EMS根据第一信息确定第一处理方式。
在本实施例中,EMS可以根据第一信息确定第一处理方式。例如,EMS支持一个或多个处理方式,EMS可以根据计算方式从多个处理方式中确定第三数据与第一数据的误差值最小所对应的处理方式为第一处理方式;或者,根据计算方式从多个处理方式中确定第三数据的准确率最高所对应的处理方式为第一处理方式;或者,根据目标阈值从多个方式中确定满足该目标阈值的一个处理方式为第一处理方式;本申请实施例并不限定于此。
S505:EMS根据第一处理方式和第一数据,获取第二数据。
其中,第二数据是第一数据中的部分数据。该第二数据可以用于获取第三数据。第三数据与第一数据之间的误差值小于或等于目标阈值。第一处理方式用于从原始数据中获取该原始数据中的部分数据,能够减少待传输数据的数据量。该第一处理方式例如可以是基于列子空间填充的压缩算法,或基于矩阵填充的压缩算法等,本申请实施例并不限定于此。
S506:EMS获取第四信息。
其中,步骤S506是可选的步骤。第四信息可以包括第三数据与第一数据之间的误差值(或第三数据的准确率),或者包括第二数据的数据量与第一数据的数据量的比值,或者包括第三数据与第一数据之间的误差值和第二数据的数据量与第一数据的数据量的比值。例如,EMS在获取到第二数据后,可以计算第三数据与第一数据之间的误差值(或者计算根据第二数据恢复到第一数据时所得到的第三数据的准确率),以及计算第二数据的数据量与第一数据的数据量的比值,得到第四信息。
S507:EMS向NMS发送第一消息;相应的,NMS接收第一消息。
第一消息包括第二数据、第二信息和第四信息。在本实施例中,第二信息包括第一数据恢复方式(如第一数据恢复方式的计算公式或者第一数据恢复方式的名称)。可选的,第二信息还可以包括数据恢复标识。该数据恢复标识用于标识第二数据在第一数据中的位置,例如第一处理方式为基于列子空间的压缩算法,该数据恢复标识可以是第一数据的列子空间的列标识以及第二数据在第一数据中的位置索引。应理解的是,第二数据、第二信息和第四信息可以承载在同一个消息中,也可以承载在不同的消息中,图5以第二数据、第二信息和第四信息承载在同一个消息为例。
S508:NMS获取第一数据恢复方式。
在本实施例中,第二信息中包括第一数据恢复方式。NMS接收到第一消息后对其解析可以得到第一数据恢复方式。
S509:NMS根据第一数据恢复方式和第二数据,获取第三数据。
示例性的,NMS可以根据第一数据恢复方式对第二数据进行处理,得到第三数据。例如,NMS可以根据数据恢复标识和第一数据恢复方式对第二数据进行处理,得到第三数据。
S510:NMS根据第四信息,更新目标阈值。
其中,步骤S510是可选的步骤。例如,NMS可以根据一个或多个测量周期的第四信息,更新目标阈值。例如,连续多个测量周期内第三数据的准确率大于目标准确率阈值,NMS可以根据第二数据的数据量与第一数据的数据量的比值适应性的增大目标准确率阈值。又例如,连续多个测量周期内第三数据与第一数据之间的误差值大于目标误差阈值,NMS可以根据第二数据的数据量与第一数据的数据量的比值适应性的减小目标误差阈值。
S511:NMS向EMS发送更新后的目标阈值;相应的,EMS接收更新后的目标阈值。
其中,步骤S511是可选的步骤。NMS可以将更新后的目标阈值发送给EMS,以便EMS可以根据该更新后的目标阈值确定第一处理方式等。
在上述实施例中,EMS收集第一数据,将第一数据的部分数据发送给NMS,可以降低EMS与NMS之间的传输资源开销,支持秒级或毫秒级或更细粒度的测量周期,能够提高网络测量数据的精度。EMS通过第一处理方式从第一数据中获取第二数据,并将第一处理方式对应的第一数据恢复方式发送给NMS,以使得NMS能够根据第二数据获取第三数据,该第三数据与第一数据之间的误差值小于或等于目标阈值,从而能够提高网络测量数据的准确率。
图6示出了本申请实施例提供的通信方法的一种流程示意图。本实施例涉及测量任务控制服务场景,第一通信装置可以是EMS或者是EMS的部件(如芯片或芯片系统),第二通信装置则可以是NMS或者是NMS的部件(如芯片或芯片系统);或者,第一通信装 置可以是RAN或者是RAN的部件(如芯片或芯片系统),第二通信装置则可以是NMS或者是NMS的部件(如芯片或芯片系统);或者,第一通信装置可以是RAN(如芯片或芯片系统),第二通信装置则可以是EMS或者是EMS的部件(如芯片或芯片系统)。图6以第一通信装置是RAN,第二通信装置是NMS为例进行介绍。其中,图6中的虚线用于表示该步骤是可选的步骤,即该步骤可以执行,也可以不执行。
在本实施例中,第一通信装置有将自身支持的一个或多个处理方式的标识发送给第二通信装置,第二通信装置根据来自第一通信装置的第一处理方式的标识确定第一数据恢复方式。其中,步骤S602-S607、S610-S612与图5中的步骤S501-S506、S609-S611对应相同,不同之处在于:
S601:RAN向NMS发送第三信息;相应的,NMS接收第三信息。
在本实施例中,第三信息包括RAN支持的一个或多个处理方式的标识,或者包括一个或多个数据恢复方式(如一个或多个数据恢复方式的计算公式或者一个或多个数据恢复方式的名称等),或者包括一个或多个处理方式的标识和一个或多个数据恢复方式。该一个或多个处理方式的标识包括第一处理方式的标识。一个或多个处理方式与一个或多个数据恢复方式一一对应。例如,处理方式是基于列子空间的压缩算法时,该处理方式对应的数据恢复方式可以是数据重构公式。
可选的,该第三信息还可以包括参考阈值。该参考阈值可以是RAN根据历史数据的上报情况预估的误差阈值,或准确率阈值,或误差阈值和准确率阈值。该参考阈值可作为NMS确定目标阈值的一个参考。即,NMS可以根据该参考阈值,确定目标阈值,或者确定第一处理方式,或者确定目标阈值和第一处理方式。
其中,RAN可以主动向NMS发送第三信息,也可以响应于NMS的第二请求消息,向NMS发送第三信息。例如,NMS向RAN发送第二请求消息,第二请求消息用于请求获取RAN支持的一个或多个处理方式的标识;相应的,RAN接收到第二请求消息后,可以向NMS发送第二响应消息,该第二响应消息中包括第三信息。
S608:RAN向NMS发送第一消息;相应的,NMS接收第一消息。
第一消息包括第二数据、第二信息和第四信息。在本实施例中,第二信息包括第一处理方式的标识。可选的,第二信息还可以包括数据恢复标识。该数据恢复标识用于标识第二数据在第一数据中的位置,例如第一处理方式为基于列子空间的压缩算法,该数据恢复标识可以是第一数据的列子空间的列标识以及第二数据在第一数据中的位置索引。应理解的是,第二数据、第二信息和第四信息可以承载在同一个消息中,也可以承载在不同的消息中,图6以第二数据、第二信息和第四信息承载在同一个消息为例。
S609:NMS根据第一处理方式的标识,确定第一数据恢复方式。
例如,NMS根据第一消息,获取第一处理方式的标识,再根据第一处理方式的标识以及第一处理方式与第一数据恢复方式的对应关系,确定第一数据恢复方式。
在上述实施例中,RAN收集第一数据,将第一数据的部分数据发送给NMS,可以降低RAN与NMS之间的传输资源开销,支持秒级或毫秒级或更新粒度的测量周期,能够提高网络测量数据的精度。RAN支持将自身支持的一个或多个处理方式和/或一个或多个数据恢复方式上报给NMS,这样,NMS可以根据RAN的数据处理能力、自身对于准确度的需求、以及自身带宽资源分配情况等确定合理的目标阈值。进一步,RAN通过第一处理方式从第一数据中获取第二数据,并将第一处理方式的标识发送给NMS,以使得NMS能够 根据第一处理方式的标识,以及第一处理方式与第一数据恢复方式的对应关系确定该第一数据恢复方式,并根据该第一数据恢复方式和第二数据获取第三数据,该第三数据与第一数据之间的误差值小于或等于目标阈值,从而能够提高网络测量数据的准确率。
图7示出了本申请实施例提供的通信方法的一种流程示意图。本实施例涉及测量任务控制服务场景,第一通信装置可以是EMS或者是EMS的部件(如芯片或芯片系统),第二通信装置则可以是NMS或者是NMS的部件(如芯片或芯片系统);或者,第一通信装置可以是RAN或者是RAN的部件(如芯片或芯片系统),第二通信装置则可以是NMS或者是NMS的部件(如芯片或芯片系统);或者,第一通信装置可以是RAN(如芯片或芯片系统),第二通信装置则可以是EMS或者是EMS的部件(如芯片或芯片系统)。图7以第一通信装置是RAN,第二通信装置是EMS为例进行介绍。其中,图7中的虚线用于表示该步骤是可选的步骤,即该步骤可以执行,也可以不执行。
在本实施例中,第一通信装置有将自身支持的一个或多个处理方式的标识发送给第二通信装置,第二通信装置向第一通信装置发送第一处理方式的标识。其中,步骤S703-S704、S706-S707、S709-S712与图6中的步骤S603-S604、S606-S607、S609-S612对应相同,不同之处在于:
S701:RAN向EMS发送第三信息;相应的,NMS接收第三信息。
在本实施例中,第三信息包括RAN支持的一个或多个处理方式的标识,或者包括RAN支持的一个或多个数据恢复方式(如一个或多个数据恢复方式的计算公式或者一个或多个数据恢复方式的名称等),或者包括RAN支持的一个或多个处理方式的标识和一个或多个数据恢复方式。可选的,该第三信息还可以包括参考阈值以及一个或多个数据恢复方式的计算复杂度。该一个或多个处理方式的标识包括第一处理方式的标识。一个或多个处理方式与一个或多个数据恢复方式一一对应。例如,处理方式是基于列子空间的压缩算法时,该处理方式对应的数据恢复方式可以是数据重构公式。
该参考阈值可以是RAN根据历史数据的上报情况以及自身的处理能力中的至少一项,预估的误差阈值,或准确率阈值,或误差阈值和准确率阈值。在本实施例中,该参考阈值可作为EMS确定目标阈值和/或第一处理方式的一个参考。例如,EMS可以根据该参考阈值确定目标阈值,或者确定第一处理方式,或者确定目标阈值和第一处理方式。
该一个或多个数据恢复方式的计算复杂度可用于确定目标阈值(如根据计算复杂度和自身的数据处理能力适应性地调整目标阈值),或者用于确定第一处理方式(如确定计算复杂度最小的数据恢复方式所对应的处理方式为第一处理方式),或者用于确定目标阈值和第一处理方式。
其中,RAN可以主动向NMS发送第三信息,也可以响应于NMS的第二请求消息,向NMS发送第三信息,具体实现过程请参考前述步骤S601的相关描述,在此不再赘述。
S702:EMS向RAN发送第一请求消息;相应的,RAN接收第一请求消息。
第一请求消息用于请求获取第一数据。在本实施例中,该第一请求消息可以包括第一信息,第一信息包括目标阈值、计算方式、第四数据的标识以及第一处理方式的标识。可选的,该第一请求消息还可以包括测量对象的标识、网络测量数据的类型、上报方式、测量周期以及上报周期中的一项或多项。例如,EMS可以根据参考阈值、RAN支持的一个或多个处理方式、一个或多个数据恢复方式的计算复杂度、EMS的带宽资源分配情况、EMS 的需求以及EMS自身的数据处理能力中的一项或多项,确定该目标阈值。又例如,EMS可以根据参考阈值、RAN支持的一个或多个处理方式、一个或多个数据恢复方式的计算复杂度、EMS的带宽资源分配情况、EMS的需求以及EMS自身的数据处理能力中的一项或多项,确定该第一处理方式。再例如,EMS可以根据参考阈值、RAN支持的一个或多个处理方式、一个或多个数据恢复方式的计算复杂度、EMS的带宽资源分配情况、EMS的需求以及EMS自身的数据处理能力中的一项或多项,确定该目标阈值和该第一处理方式。
S705:RAN根据第一处理方式的标识确定第一处理方式。
示例性的,RAN可以根据第一信息获取第一处理方式的标识,如解析第一信息可以得到第一处理方式的标识;进一步,RAN可以根据该第一处理方式的标识,确定第一处理方式。
S708:RAN向EMS发送第一消息;相应的,EMS接收第一消息。
在本实施例中,第一消息包括第二数据和第四信息。可选的,该第一消息还可以包括数据恢复标识。该数据恢复标识用于标识第二数据在第一数据中的位置,例如第一处理方式为基于列子空间的压缩算法,该数据恢复标识可以是第一数据的列子空间的列标识以及第二数据在第一数据中的位置索引。
在上述实施例中,RAN收集第一数据,将第一数据的部分数据发送给EMS,可以降低RAN与EMS之间的传输资源开销,支持秒级或毫秒级或更新粒度的测量周期,能够提高网络测量数据的精度。RAN支持将自身支持的一个或多个处理方式和/或一个或多个数据恢复方式上报给EMS,这样,EMS可以根据RAN的数据处理能力、自身对于准确度的需求以及自身的数据处理能力等确定合理的目标阈值。进一步,EMS支持向RAN指示第一处理方式,如将第一处理方式的标识发送给RAN,相应的,RAN可以通过该第一处理方式从第一数据中获取第二数据,该第二数据可用于获取第三数据,第三数据与第一数据之间的误差值小于或等于目标阈值。该第一处理方式是EMS指定的,如根据EMS的需求、EMS的实际情况等确定,那么,由该第一处理方式获取的第二数据,以及由该第二数据确定的第三数据能够满足EMS的需求,符合EMS的实际情况。
前面的图5至图7描述了一组测量任务控制服务生产者和测量任务控制服务消费者之间的测量任务控制服务流程。接下来结合图8至图10介绍两组测量任务控制服务生产者和测量任务控制服务消费者之间的测量任务控制服务流程。
图8示出了本申请实施例提供的通信方法的又一种流程示意图。本实施例涉及测量任务控制服务场景,以及涉及两组测量任务控制服务生产者和测量任务控制服务消费者。其中,图8中的虚线用于表示该步骤是可选的步骤,即该步骤可以执行,也可以不执行。
在本实施例中,RAN没有将自身支持的一个或多个处理方式的标识发送给EMS和NMS,EMS根据来自RAN的第一恢复处理方式确定该第一数据恢复方式。如图8所示,该流程可以包括如下内容。
S801:NMS向EMS发送第一请求消息;相应的,EMS接收第一请求消息。
第一请求消息用于请求获取第一数据。在本实施例中,该第一请求消息可以是创建测量任务请求消息,但本申请并不限定于此。该第一请求消息可以包括第一信息,第一信息包括目标阈值、计算方式和第四数据的标识中的一项或多项。可选的,该第一请求消息还可以包括测量对象的标识、网络测量数据的类型、上报方式、测量周期以及上报周期中的 一项或多项。其中,步骤S801的具体实现方式请参考前述步骤S401、S402中的相关描述,在此不再赘述。
S802:EMS向RAN发送第三请求消息;相应的,RAN接收第三请求消息。
EMS接收第一请求消息后,可以向测量对象所属的RAN发送第三请求消息。在本实施例中,第三请求消息可以是创建测量任务请求消息,但本申请并不限定于此。该第三请求消息可以包括第一信息,第一信息包括目标阈值、计算方式和第四数据的标识中的一项或多项。可选的,该第三请求消息还可以包括测量对象的标识、网络测量数据的类型、上报方式、测量周期以及上报周期中的一项或多项。
值得注意的是,第一请求消息所包括的内容与第三请求消息所包括的内容可以相同,也可以不同。例如,第一请求消息用于请求获取测量对象A、测量对象B的网络测量数据。第三请求消息可用于请求获取测量对象A的网络测量数据,如EMS存储有测量对象B的网络测量数据。或者,第三请求消息可用于请求获取测量对象A、测量对象B以及测量对象C的网络测量数据,如测量对象C的网络测量数据是EMS需要的网络测量数据。为了便于理解,下文中以第一请求消息所包括的内容与第三请求消息所包括的内容相同为例进行描述。
S803:RAN向EMS发送第三响应消息;相应的,EMS接收第三响应消息。
S804:EMS向NMS发送第一响应消息;相应的,NMS接收第一响应消息。
其中,步骤S803、S804的具体实现过程请参考前述步骤S502的相关描述,在此不再赘述。
S805:RAN获取第一数据。
例如,RAN可以根据测量对象的标识、测量周期、网络测量数据的类型以及第四数据的标识等收集该测量对象的网络测量数据,得到第一数据。
S806:RAN根据第一信息确定第一处理方式。
在本实施例中,RAN可以根据第一信息确定第一处理方式。例如,RAN支持一个或多个处理方式,RAN可以根据计算方式从多个处理方式中确定第三数据与第一数据的误差值最小所对应的处理方式为第一处理方式;或者,根据计算方式从多个处理方式中确定第三数据的准确率最高所对应的处理方式为第一处理方式;或者,根据目标阈值从多个方式中确定满足该目标阈值的一个处理方式为第一处理方式;本申请实施例并不限定于此。
S807:RAN根据第一处理方式和第一数据,获取第二数据。
其中,第二数据是第一数据中的部分数据。该第二数据可以用于获取第三数据。第三数据与第一数据之间的误差值小于或等于目标阈值。第一处理方式用于从原始数据中获取该原始数据中的部分数据,能够减少待传输数据的数据量。该第一处理方式例如可以是基于列子空间填充的压缩算法,或基于矩阵填充的压缩算法等,本申请实施例并不限定于此。
S808:RAN获取第四信息。
步骤S808为可选的步骤。第四信息可以包括第三数据与第一数据之间的误差值(或第三数据的准确率),或者包括第二数据的数据量与第一数据的数据量的比值,或者包括第三数据与第一数据之间的误差值和第二数据的数据量与第一数据的数据量的比值。例如,RAN在获取到第二数据后,可以计算第三数据与第一数据之间的误差值(或者计算根据第二数据恢复到第一数据时所得到的第三数据的准确率),以及计算第二数据的数据量与第一数据的数据量的比值,得到第四信息。
S809:RAN向EMS发送第一消息;相应的,EMS接收第一消息。
第一消息包括第二数据、第二信息和第四信息。在本实施例中,第二信息包括第一数据恢复方式(如第一数据恢复方式的计算公式或者第一数据恢复方式的名称)。可选的,第二信息还可以包括数据恢复标识。该数据恢复标识用于标识第二数据在第一数据中的位置,例如第一处理方式为基于列子空间的压缩算法,该数据恢复标识可以是第一数据的列子空间的列标识以及第二数据在第一数据中的位置索引。
S810:EMS获取第一数据恢复方式。
在本实施例中,第二信息中包括第一数据恢复方式。EMS接收到第一消息后对其解析可以得到第一数据恢复方式。
S811:EMS根据第一数据恢复方式和第二数据,获取第三数据。
示例性的,EMS可以根据第一数据恢复方式对第二数据进行处理,得到第三数据。例如,EMS可以根据数据恢复标识和第一数据恢复方式对第二数据进行处理,得到第三数据。
S812:EMS向NMS发送第二消息;相应的,NMS接收第二消息。
在本实施例中,第二消息中包括第三数据。可选的,该第二消息还可以包括第四信息。
S813:NMS根据第四信息更新目标阈值。
步骤S813是可选的步骤。其中,步骤S813的具体实现过程请参考前述步骤S510的相关描述,在此不再赘述。
S814:NMS向EMS发送更新后的目标阈值;相应的,EMS接收NMS更新后的目标阈值。
步骤S814是可选的步骤。NMS可以将更新后的目标阈值发送给EMS。
S815:EMS根据NMS更新后的目标阈值以及第四信息,更新目标阈值。
步骤S815是可选的步骤。EMS接收到NMS更新后的目标阈值后,可以将NMS更新后的目标阈值发送给RAN,或者根据该NMS更新后的目标阈值和第四信息,更新目标阈值。例如,EMS可以根据NMS更新后的目标阈值、第四信息、自身的带宽资源使用情况等一项或多项,更新目标阈值,以使得更新后的目标阈值符合EMS的实际情况。
S816:EMS向RAN发送更新后的目标阈值;相应的,RAN接收更新后的目标阈值。
步骤S816是可选的步骤。RAN接收到更新后的目标阈值后,可以根据该更新后的目标阈值确定第一处理方式等。
上述实施例涉及两组测量任务控制服务生产者和测量任务控制服务消费者,RAN收集第一数据,将第一数据的部分数据发送给EMS,可以降低RAN与EMS之间的传输资源开销,支持秒级或毫秒级或更新粒度的测量周期,能够提高网络测量数据的精度。MS获取到第三数据后,可以对该第三数据进行全量上报,以减少数据的压缩次数,减少时延,提高网络测量数据的准确性。另外,本实施例中RAN支持将第一处理方式对应的第一数据恢复方式发送给EMS,以使得EMS根据第二数据和该第一数据恢复方式获取第三数据。
图9示出了本申请实施例提供的通信方法的又一种流程示意图。本实施例涉及测量任务控制服务场景,以及涉及两组测量任务控制服务生产者和测量任务控制服务消费者。其中,图9中的虚线用于表示该步骤是可选的步骤,即该步骤可以执行,也可以不执行。
在本实施例中,RAN有将自身支持的一个或多个处理方式的标识发送给EMS和NMS,EMS根据来自RAN的第一处理方式的标识确定该第一数据恢复方式。其中,步骤 S902-S909、S912-S917与图8中的步骤S801-S808、S811-S816对应相同,不同之处在于:
S901:EMS和NMS获取第三信息。
EMS可以获取第三信息,或者NMS可以获取第三信息,或者EMS和NMS可以获取第三信息。例如,RAN向EMS上报第三信息,或者RAN向NMS上报第三信息,或者RAN向EMS和NMS上报第三信息。本申请实施例以EMS和NMS获取第三信息为例。另外,RAN向EMS、NMS发送第三信息的具体实现过程可参考步骤S601的相关描述,在此不再赘述。
在本实施例中,第三信息包括RAN支持的一个或多个处理方式的标识以及一个或多个数据恢复方式(如一个或多个数据恢复方式的计算公式或者一个或多个数据恢复方式的名称等)。该一个或多个处理方式的标识包括第一处理方式的标识。一个或多个处理方式与一个或多个数据恢复方式一一对应。例如,处理方式是基于列子空间的压缩算法时,该处理方式对应的数据恢复方式可以是数据重构公式。
可选的,该第三信息还可以包括参考阈值。该参考阈值可以是RAN根据历史数据的上报情况以及自身的数据处理能力预估的误差阈值,或准确率阈值,或误差阈值和准确率阈值。该参考阈值可作为NMS(和/或EMS)确定目标阈值的一个参考。即,NMS(和/或EMS)可以根据该参考阈值,确定目标阈值,或者确定第一处理方式,或者确定目标阈值和第一处理方式。
S910:RAN向EMS发送第一消息;相应的,EMS接收第一消息。
第一消息包括第二数据、第二信息和第四信息。在本实施例中,第二信息包括第一处理方式的标识。可选的,第二信息还可以包括数据恢复标识。该数据恢复标识用于标识第二数据在第一数据中的位置,例如第一处理方式为基于列子空间的压缩算法,该数据恢复标识可以是第一数据的列子空间的列标识以及第二数据在第一数据中的位置索引。
S911:EMS根据第一处理方式的标识,确定第一数据恢复方式。
例如,EMS根据第一消息,获取第一处理方式的标识,再根据第一处理方式的标识以及第一处理方式与第一数据恢复方式的对应关系,确定第一数据恢复方式。
上述实施例涉及两组测量任务控制服务生产者和测量任务控制服务消费者,RAN收集第一数据,将第一数据的部分数据发送给EMS,可以降低RAN与EMS之间的传输资源开销,支持秒级或毫秒级或更新粒度的测量周期,能够提高网络测量数据的精度。EMS获取到第三数据后,可以对该第三数据进行全量上报,以减少数据的压缩次数,减少时延,提高网络测量数据的准确性。另外,本实施例中RAN支持将自身支持的一个或多个处理方式和/或一个或多个数据恢复方式发送给EMS和NMS,一方面,NMS可以根据RAN的数据处理能力、自身对于准确度的需要以及自身带宽资源分配情况等确定合理的目标阈值,另一方面,RAN可以将第一处理方式的标识发送给EMS,以便EMS根据该第一处理方式的标识确定第一数据恢复方式,以及根据第二数据和该第一数据恢复方式获取第三数据。
图10示出了本申请实施例提供的通信方法的又一种流程示意图。本实施例涉及测量任务控制服务场景,以及涉及两组测量任务控制服务生产者和测量任务控制服务消费者。其中,图10中的虚线用于表示该步骤是可选的步骤,即该步骤可以执行,也可以不执行。
在本实施例中,RAN有将自身支持的一个或多个处理方式的标识发送给EMS和NMS,EMS向RAN发送第一处理方式的标识。其中,步骤S1004-S1006、S1008-S1009、S1011-S1017 与图9中的步骤S904-S906、S908-S909、S911-S917对应相同,不同之处在于:
S1001:EMS和NMS获取第三信息。
EMS可以获取第三信息,或者NMS可以获取第三信息,或者EMS和NMS可以获取第三信息。例如,RAN向EMS上报第三信息,或者RAN向NMS上报第三信息,或者RAN向EMS和NMS上报第三信息。本申请实施例以EMS和NMS获取第三信息为例。另外,RAN向EMS、NMS发送第三信息的具体实现过程可参考步骤S601的相关描述,在此不再赘述。
在本实施例中,第三信息包括RAN支持的一个或多个处理方式的标识,或者包括RAN支持的一个或多个数据恢复方式(如一个或多个数据恢复方式的计算公式或者一个或多个数据恢复方式的名称等),或者包括RAN支持的一个或多个处理方式的标识以及一个或多个数据恢复方式。该一个或多个处理方式的标识包括第一处理方式的标识。一个或多个处理方式与一个或多个数据恢复方式一一对应。例如,处理方式是基于列子空间的压缩算法时,该处理方式对应的数据恢复方式可以是数据重构公式。可选的,该第三信息还可以包括参考阈值以及一个或多个数据恢复方式的计算复杂度。有关参考阈值以及计算复杂度的相关描述请参考步骤S701的相关内容,在此不再赘述。
S1002:NMS向EMS发送第一请求消息;相应的,EMS接收第一请求消息。
第一请求消息用于请求获取第一数据。在本实施例中,该第一请求消息可以包括第一信息,第一信息包括目标阈值、计算方式、第四数据的标识以及第一处理方式的标识。
S1003:EMS向NMS发送第三请消息;相应的,RSN接收第三请求消息。
第三请求消息用于请求获取第一数据。在本实施例中,该第三请求消息可以包括第一信息,第一信息包括目标阈值、计算方式、第四数据的标识以及第一处理方式的标识。
其中,步骤S1002、S1003的具体实现过程请参考步骤S702的相关描述,在此不再赘述。
S1007:RAN根据第一处理方式的标识确定第一处理方式。
示例性的,RAN可以根据第一信息获取第一处理方式的标识,如解析第一信息可以得到第一处理方式的标识;进一步,RAN可以根据该第一处理方式的标识,确定第一处理方式。
S1010:RAN向EMS发送第一消息;相应的,EMS接收第一消息。
在本实施例中,第一消息包括第二数据和第四信息。可选的,该第一消息还可以包括数据恢复标识。该数据恢复标识用于标识第二数据在第一数据中的位置,例如第一处理方式为基于列子空间的压缩算法,该数据恢复标识可以是第一数据的列子空间的列标识以及第二数据在第一数据中的位置索引。
上述实施例涉及两组测量任务控制服务生产者和测量任务控制服务消费者,RAN收集第一数据,将第一数据的部分数据发送给EMS,可以降低RAN与EMS之间的传输资源开销,支持秒级或毫秒级或更新粒度的测量周期,能够提高网络测量数据的精度。EMS获取到第三数据后,可以对该第三数据进行全量上报,以减少数据的压缩次数,减少时延,提高网络测量数据的准确性。另外,本实施例中RAN支持将自身支持的一个或多个处理方式的标识和/或一个或多个数据恢复方式上报给EMS、NMS,这样,NMS可以根据RAN的数据处理能力、自身对于准确度的需求、自身的数据处理能力、以及自身带宽资源分配情况等确定合理的目标阈值。进一步,NMS支持通过EMS向RAN指示第一处理方式, 相应的,RAN可以通过该第一处理方式从第一数据中获取第二数据,该第二数据可用于获取第三数据,第三数据与第一数据之间的误差值小于或等于目标阈值。该第一处理方式是NMS指定的,如根据NMS的需求、NMS的实际情况等确定,那么,由该第一处理方式获取的第二数据,以及由该第二数据确定的第三数据能够满足NMS的需求,符合NMS的实际情况。
前面的图5至图10描述了测量任务控制服务场景的实现流程。接下来结合图11、图12和图13描述参数值查询服务场景的实现流程。
图11示出了本申请实施例提供的通信方式的再一种流程示意图。本实施例涉及参数值查询服务场景,第一通信装置可以是CPE或者是CPE的部件(如芯片或芯片系统),第二通信装置则是ACS或者是ACS的部件(如芯片或芯片系统)。其中,图11中的虚线用于表示该步骤是可选的步骤,即该步骤可以执行,也可以不执行。
在本实施例中,第一通信装置没有将自身支持的一个或多个处理方式的标识发送给第二通信装置,第二通信装置根据来自第一通信装置的第一恢复处理方式确定该第一数据恢复方式。如图11所示,该流程可以包括如下内容。
S1101:ACS向CPE发送第一请求消息;相应的,CPE接收第一请求消息。
第一请求消息用于请求获取第一数据。在本实施例中,该第一请求消息可以是参数值查询请求消息,但本申请并不限定于此。该第一请求消息可以包括第一信息,第一信息包括目标阈值、计算方式和第四数据的标识中的一项或多项。可选的,该第一请求消息还可以包括目标参数的参数名。
S1102:CPE获取第一数据。
例如,CPE可以根据目标参数的参数名收集目标参数的参数值,得到该第一数据。
S1103:CPE根据第一信息确定第一处理方式。
在本实施例中,CPE可以根据第一信息确定第一处理方式。例如,CPE支持一个或多个处理方式,CPE可以根据计算方式从多个处理方式中确定第三数据与第一数据的误差值最小所对应的处理方式为第一处理方式;或者,根据计算方式从多个处理方式中确定第三数据的准确率最高所对应的处理方式为第一处理方式;或者,根据目标阈值从多个方式中确定满足该目标阈值的一个处理方式为第一处理方式;本申请实施例并不限定于此。其中,该第一处理方式例如可以是基于列子空间填充的压缩算法,或基于矩阵填充的压缩算法等,本申请实施例并不限定于此。
S1104:CPE根据第一处理方式和第一数据,获取第二数据。
其中,第二数据是第一数据中的部分数据。该第二数据可以用于获取第三数据。第三数据与第一数据之间的误差值小于或等于目标阈值。第一处理方式用于从原始数据中获取该原始数据中的部分数据,能够减少待传输数据的数据量。
上述步骤S1104、S1104的具体实现过程请参考前述步骤S402的相关内容,在此不再赘述。
S1105:CPE获取第四信息。
其中,步骤S1105是可选的步骤。第四信息可以包括第三数据与第一数据之间的误差值(或第三数据的准确率),或者包括第二数据的数据量与第一数据的数据量的比值,或者包括第三数据与第一数据之间的误差值和第二数据的数据量与第一数据的数据量的比 值。例如,CPE在获取到第二数据后,可以计算第三数据与第一数据之间的误差值(或者计算根据第二数据恢复到第一数据时所得到的第三数据的准确率),以及计算第二数据的数据量与第一数据的数据量的比值,得到第四信息。
S1106:CPE向ACS发送第一响应消息;相应的,ACS接收第一响应消息。
在本实施例中,该第一响应消息可以是参数值查询响应消息,但本申请并不限定于此。第一响应消息可以包括第二数据、第二信息和第四信息。在本实施例中,该第二信息包括第一数据恢复方式(如第一数据恢复方式的计算公式或者第一数据恢复方式的名称)。可选的,该第二信息还可以包括数据恢复标识。该数据恢复标识用于标识第二数据在第一数据中的位置,例如第一处理方式为基于列子空间的压缩算法,该数据恢复标识可以是第一数据的列子空间的列标识以及第二数据在第一数据中的位置索引。应理解的是,第二数据、第二信息和第四信息可以承载在同一个消息中,也可以承载在不同的消息中,图11以第二数据、第二信息和第四信息承载在同一个消息为例。
S1107:ACS获取第一数据恢复方式。
在本实施例中,第二信息中包括第一数据恢复方式。ACS接收到第一消息后对其解析可以得到第一数据恢复方式。
S1108:ACS根据第一数据恢复方式和第二数据,获取第三数据。
示例性的,ACS可以根据第一数据恢复方式对第二数据进行处理,得到第三数据。例如,ACS可以根据数据恢复标识和第一数据恢复方式对第二数据进行处理,得到第三数据。
S1109:ACS根据第四信息,更新目标阈值。
其中,步骤S1109是可选的步骤。例如,ACS可以根据一个或多个第四信息,更新目标阈值。例如,连续多个第三数据的准确率大于目标准确率阈值,ACS可以根据第二数据的数据量与第一数据的数据量的比值适应性的增大目标准确率阈值。又例如,连续多个第三数据与第一数据之间的误差值大于目标误差阈值,ACS可以根据第二数据的数据量与第一数据的数据量的比值适应性的减小目标误差阈值。
S1110:ACS向CPE发送更新后的目标阈值;相应的,CPE接收更新后的目标阈值。
其中,步骤S1110是可选的步骤。ACS可以将更新后的目标阈值发送给CPE,以便CPE可以根据该更新后的目标阈值确定第一处理方式等。
在上述实施例中,CPE收集第一数据,将第一数据的部分数据发送给ACS,可以降低CPE与ACS之间的传输资源开销,提高网络资源的利用率。CPE通过第一处理方式从第一数据中获取第二数据,并将第一处理方式对应的第一数据恢复方式发送给ACS,以使得ACS能够根据第二数据获取第三数据,该第三数据与第一数据之间的误差值小于或等于目标阈值,从而能够提高参数值的准确率。
图12示出了本申请实施例提供的通信方式的再一种流程示意图。本实施例涉及参数值查询服务场景,第一通信装置可以是CPE或者是CPE的部件(如芯片或芯片系统),第二通信装置则是ACS或者是ACS的部件(如芯片或芯片系统)。其中,图12中的虚线用于表示该步骤是可选的步骤,即该步骤可以执行,也可以不执行。
在本实施例中,第一通信装置有将自身支持的一个或多个处理方式的标识发送给第二通信装置,第二通信装置根据来自第一通信装置的第一处理方式的标识确定第一数据恢复方式。其中,步骤S1202-S1206、S1209-S1211与图11中的步骤S1101-S1105、S1108-S1110 对应相同,不同之处在于:
S1201:CPE向ACS发送第三信息;相应的,ACS接收第三信息。
在本实施例中,第三信息包括CPE支持的一个或多个处理方式的标识,或者包括CPE支持的一个或多个数据恢复方式(如一个或多个数据恢复方式的计算公式或者一个或多个数据恢复方式的名称等),或者包括CPE支持的一个或多个处理方式的标识以及一个或多个数据恢复方式。该一个或多个处理方式的标识包括第一处理方式的标识。一个或多个处理方式与一个或多个数据恢复方式一一对应。例如,处理方式是基于列子空间的压缩算法时,该处理方式对应的数据恢复方式可以是数据重构公式。
可选的,该第三信息还可以包括参考阈值。该参考阈值可以是CPE根据历史数据的上报情况以及自身的数据处理能力中的至少一项预估的误差阈值,或准确率阈值,或误差阈值和准确率阈值。该参考阈值可作为ACS确定目标阈值和/或第一处理方式的一个参考。即,ACS可以根据该参考阈值,确定目标阈值,或者确定第一处理方式,或者确定目标阈值和第一处理方式。
其中,CPE可以主动向ACS发送第三信息,也可以响应于ACS的第二请求消息,向ACS发送第三信息。例如,ACS向RAN发送第二请求消息,第二请求消息用于请求获取CPE支持的一个或多个处理方式的标识;相应的,CPE接收到第二请求消息后,可以向ACS发送第二响应消息,该第二响应消息中包括第三信息。
S1207:CPE向ACS发送第一响应消息;相应的,ACS接收第一响应消息。
在本实施例中,第一响应消息可以是参数值查询响应消息,但本申请实施例并不限定于此。第一响应消息包括第二数据、第二信息和第四信息。在本实施例中,第二信息包括第一处理方式的标识。可选的,第二信息还可以包括数据恢复标识。该数据恢复标识用于标识第二数据在第一数据中的位置,例如第一处理方式为基于列子空间的压缩算法,该数据恢复标识可以是第一数据的列子空间的列标识以及第二数据在第一数据中的位置索引。应理解的是,第二数据、第二信息和第四信息可以承载在同一个消息中,也可以承载在不同的消息中,图12以第二数据、第二信息和第四信息承载在同一个消息为例。
S1208:ACS根据第一处理方式的标识,确定第一数据恢复方式。
例如,ACS根据第一响应消息,获取第一处理方式的标识,再根据第一处理方式的标识以及第一处理方式与第一数据恢复方式的对应关系,确定第一数据恢复方式。
在上述实施例中,CPE收集第一数据,将第一数据的部分数据发送给CPE,可以降低CPE与ACS之间的传输资源开销,提高网络资源的利用率。CPE支持将自身支持的一个或多个处理方式和/或一个或多个数据恢复方式上报给ACS,这样ACS可以根据CPE的数据处理能力、自身对应准确度的需求以及自身带宽资源分配情况等确定合理的目标阈值。进一步,CPE通过第一处理方式从第一数据中获取第二数据,并将第一处理方式的标识发送给ACS,以使得ACS能够根据第一处理方式的标识,以及第一处理方式与第一数据恢复方式的对应关系确定该第一数据恢复方式,并根据该第一数据恢复方式和第二数据获取第三数据,该第三数据与第一数据之间的误差值小于或等于目标阈值,从而能够提高参数值的准确率。
图13示出了本申请实施例提供的通信方法的再一种流程示意图。本实施例涉及参数值查询服务场景,第一通信装置可以是CPE或者是CPE的部件(如芯片或芯片系统),第 二通信装置则是ACS或者是ACS的部件(如芯片或芯片系统)。其中,图13中的虚线用于表示该步骤是可选的步骤,即该步骤可以执行,也可以不执行。
在本实施例中,第一通信装置有将自身支持的一个或多个处理方式的标识发送给第二通信装置,第二通信装置向第一通信装置发送第一处理方式的标识。其中,步骤S1303、S1305-S1306、S1308-S1311与图12中的步骤S1203、S1205-S1206、S1208-S1211对应相同,不同之处在于:
S1301:CPE向ACS发送第三信息;相应的,ACS接收第三信息。
在本实施例中,第三信息包括CPE支持的一个或多个处理方式的标识,或者包括CPE支持的一个或多个数据恢复方式(如一个或多个数据恢复方式的计算公式或者一个或多个数据恢复方式的名称等),或者包括CPE支持的一个或多个处理方式的标识以及一个或多个数据恢复方式。该一个或多个处理方式的标识包括第一处理方式的标识。一个或多个处理方式与一个或多个数据恢复方式一一对应。例如,处理方式是基于列子空间的压缩算法时,该处理方式对应的数据恢复方式可以是数据重构公式。
可选的,该第三信息还可以包括参考阈值以及一个或多个数据恢复方式的计算复杂度。其中,有关参考阈值的描述请参考前述步骤S1201中的相关描述,在此不再赘述。该一个或多个数据恢复方式的计算复杂度可用于确定目标阈值(如根据计算复杂度和自身的数据处理能力适应性地调整目标阈值),或者用于确定第一处理方式(如确定计算复杂度最小的数据恢复方式所对应的处理方式为第一处理方式),或者用于确定目标阈值和第一处理方式。即,ACS可以根据目标阈值和计算复杂度中的一项或多项,确定目标阈值,或者确定第一处理方式,或者确定目标阈值和第一处理方式。
其中,CPE可以主动向ACS发送第三信息,也可以响应于ACS的第二请求消息,向ACS发送第三信息,具体实现过程请参考前述步骤S1201的相关描述,在此不再赘述。
S1302:ACS向CPE发送第一请求消息;相应的,CPE接收第一请求消息。
第一请求消息用于请求获取第一数据。在本实施例中,该第一请求消息可以是参数值查询请求消息,但本申请实施例并不限定于此。该第一请求消息可以包括第一信息,第一信息包括目标阈值、计算方式、第四数据的标识以及第一处理方式的标识。可选的,该第一请求消息还可以包括目标参数的参数名。例如,ACS可以根据参考阈值、CPE支持的一个或多个处理方式、一个或多个数据恢复方式的计算复杂度、ACS的带宽资源分配情况、ACS的需求以及ACS自身的数据处理能力等中的一项或多项,确定该目标阈值。又例如,ACS可以根据参考阈值、CPE支持的一个或多个处理方式、一个或多个数据恢复方式的计算复杂度、ACS的带宽资源分配情况、ACS的需求以及ACS自身的数据处理能力等中的一项或多项,确定该第一处理方式。再例如,ACS可以根据参考阈值、CPE支持的一个或多个处理方式、一个或多个数据恢复方式的计算复杂度、ACS的带宽资源分配情况、ACS的需求以及ACS自身的数据处理能力等中的一项或多项,确定该目标阈值和该第一处理方式。
S1304:CPE根据第一处理方式的标识确定第一处理方式。
示例性的,CPE可以根据第一信息获取第一处理方式的标识,如解析第一信息可以得到第一处理方式的标识;进一步,CPE可以根据该第一处理方式的标识,确定第一处理方式。
S1307:CPE向ACS发送第一响应消息;相应的,ACS接收第一响应消息。
在本实施例中,第一响应消息可以是参数值查询响应消息,但本申请实施例并不限定于此。该第一响应消息包括第二数据和第四信息。可选的,该第一响应消息还可以包括数据恢复标识。该数据恢复标识用于标识第二数据在第一数据中的位置,例如第一处理方式为基于列子空间的压缩算法,该数据恢复标识可以是第一数据的列子空间的列标识以及第二数据在第一数据中的位置索引。
在上述实施例中,CPE收集第一数据,将第一数据的部分数据发送给ACS,可以降低CPE与ACS之间的传输资源开销,提高网络资源的利用率。CPE支持将自身支持的一个或多个处理方式和/或一个或多个数据恢复方式上报给ACS,这样ACS可以根据CPE的数据处理能力、自身对应准确度的需求、自身的数据处理能力以及自身带宽资源分配情况等确定合理的目标阈值。进一步,ACS支持向CPE指示第一处理方式,如将第一处理方式的标识发送给CPE,相应的,CPE可以通过该第一处理方式从第一数据中获取第二数据,该第二数据可用于获取第三数据,第三数据与第一数据之间的误差值小于或等于目标阈值。该第一处理方式是ACS指定的,如根据ACS的需求、ACS的实际情况等确定,那么,由该第一处理方式获取的第二数据,以及由该第二数据确定的第三数据能够满足ACS的需求,符合ACS的实际情况。
上述主要从设备的角度以及设备交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,为了实现上述功能,各个设备可以包括执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请的实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和实现方式约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对设备进行功能单元的划分,例如,可以对应各个功能划分各个功能单元,也可以将两个或两个以上的功能集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
在采用集成的单元的情况下,图14示出了本申请实施例中所涉及的通信装置的可能的示例性框图。如图14所示,通信装置1400可以包括:收发模块1401,以及处理模块1402。处理模块1402用于对通信装置1400的动作进行控制管理。收发模块1401用于支持通信装置1400与其他设备的通信,如在处理模块1402的控制下执行发送和接收操作。可选的,收发模块1401可以是一个模块,也可以是两个模块,如接收模块和发送模块。可选的,通信装置1400还可以包括存储模块1403,用于存储通信装置1400的程序代码和/或数据。
作为一个示例,处理模块1402可以支持通信装置1400执行上文中各方法示例中第一通信装置或第一通信装置的动作。或者,处理模块1402主要执行方法示例中的第一通信装置或第一通信装置的内部动作。
例如,通信装置1400可以为上述各个实施例中的第一通信装置,或者还可以是上述各个实施例中的第一通信装置的部件(如芯片)。其中,处理模块1402,用于获取第一数据,根据第一处理方式和所述第一数据,获取第二数据,所述第二数据是所述第一数据中的部分数据,其中,所述第二数据用于获取第三数据,所述第三数据与所述第一数据之间 的误差值小于或等于目标阈值。收发模块1401,用于向第二通信装置发送所述第二数据。
在一种可能的实现方式中,收发模块1401,还可以用于接收来自所述第二通信装置的第一信息,所述第一信息包括如下中的一项或多项:所述目标阈值、计算方式以及第四数据的标识,其中,所述计算方式用于确定所述第三数据和所述第一数据之间的误差值,所述第四数据是所述第一通信装置需要发送的数据,所述第二数据中包括所述第四数据;处理模块1402,还可以用于根据所述第一信息,确定所述第一处理方式。
在一种可能的实现方式中,收发模块1401,还可以用于向所述第二通信装置发送第二信息,所述第二信息包括第一数据恢复方式,所述第一数据恢复方式与所述第一处理方式对应,所述第一数据恢复方式用于根据所述第二数据获取所述第三数据;或者所述第二信息包括所述第一处理方式的标识。
在一种可能的实现方式中,所述第一信息还可以包括所述第一处理方式的标识,在根据所述第一信息,确定所述第一处理方式时,处理模块1402具体用于:根据所述第一处理方式的标识,确定所述第一处理方式。
在一种可能的实现方式中,收发模块1401,还可以用于向所述第二通信装置发送第三信息,所述第三信息包括所述第一通信装置支持的一个或多个处理方式的标识,所述一个或多个处理方式的标识中包括所述第一处理方式的标识。
在一种可能的实现方式中,收发模块1401,还可以用于向所述第二通信装置发送第四信息,所述第四信息包括如下中的一项或多项:
所述第三数据与所述第一数据之间的误差值;
所述第二数据的数据量与所述第一数据的数据量的比值。
可选的,该收发模块1401,还可以用于接收来自所述第二通信装置的更新后的目标阈值。
在一种可能的实现方式中,所述第一通信装置是网元管理装置,所述第二通信装置是网络管理装置;
或者,所述第一通信装置是接入网网元,所述第二通信装置是网元管理装置;
或者,所述第一通信装置是接入网网元,所述第二通信装置是网络管理装置;
或者,所述第一通信装置是客户终端设备,所述第二通信装置是自动匹配服务器。
又例如,通信装置1400可以为上述各个实施例中的第二通信装置,或者还可以是上述各个实施例中的第二通信装置的部件(如芯片)。其中,收发模块1401,用于接收来自第一通信装置的第二数据,所述第二数据是第一数据中的部分数据。处理模块1402,用于根据第一数据恢复方式和所述第二数据,获取第三数据,所述第三数据与所述第一数据之间的差值小于或等于目标阈值。
在一种可能的实现方式中,收发模块1401,还可以用于向所述第一通信装置发送第一信息,所述第一信息包括所述目标阈值、计算方式或第四数据的标识中的至少一项,其中,所述计算方式用于确定所述第三数据和所述第一数据之间的误差值,所述第四数据是所述第一通信装置需要发送的数据,所述第二数据中包括所述第四数据。
在一种可能的实现方式中,所述第一通信装置是接入网网元,所述第二通信装置是网元管理装置,收发模块1401,还可以用于所述第二通信装置向网络管理装置发送所述第三数据。
在一种可能的实现方式中,收发模块1401,还可以用于接收来自所述网络管理装置的第一信息。
在一种可能的实现方式中,收发模块1401,还可以用于接收来自所述第一通信装置的第二信息,所述第二信息包括所述第一数据恢复方式或者所述第一处理方式的标识,所述第一处理方式与所述第一数据恢复方式对应,所述第一处理方式用于从所述第一数据中获取所述第二数据;所述第二通信装置根据所述第二信息,确定所述第一数据恢复方式。
在一种可能的实现方式中,所述第一信息还包括所述第一处理方式的标识,所述第一处理方式与所述第一数据恢复方式对应,所述第一处理方式用于从所述第一数据中获取所述第二数据,处理模块1402,还可以用于根据所述第一处理方式的标识,确定所述第一数据恢复方式。
在一种可能的实现方式中,收发模块1401,还可以用于接收来自所述第一通信装置的第三信息,所述第三信息包括所述第一通信装置支持的一个或多个处理方式的标识,所述一个或多个处理方式的标识中包括所述第一处理方式的标识。
在一种可能的实现方式中,收发模块1401,还可以用于接收来自所述第一通信装置的第四信息,所述第四信息包括所述第三数据与所述第一数据之间的误差值和所述第二数据的数据量与所述第一数据的数据量的比值中的至少一项。
在一种可能的实现方式中,处理模块1402,还可以用于根据所述第四信息,更新所述目标阈值;收发模块1401,还可以用于向所述第一通信装置发送更新后的目标阈值。
在一种可能的实现方式中,所述第一通信装置是网元管理装置,所述第二通信装置是网络管理装置;
或者,所述第一通信装置是接入网网元,所述第二通信装置是网元管理装置;
或者,所述第一通信装置是接入网网元,所述第二通信装置是网络管理装置;
或者,所述第一通信装置是客户终端设备,所述第二通信装置是自动匹配服务器。
应理解以上装置中单元的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且装置中的单元可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分单元以软件通过处理元件调用的形式实现,部分单元以硬件的形式实现。例如,各个单元可以为单独设立的处理元件,也可以集成在装置的某一个芯片中实现,此外,也可以以程序的形式存储于存储器中,由装置的某一个处理元件调用并执行该单元的功能。此外这些单元全部或部分可以集成在一起,也可以独立实现。这里的处理元件又可以成为处理器,可以是一种具有信号的处理能力的集成电路。在实现过程中,上述方法的各操作或以上各个单元可以通过处理器元件中的硬件的集成逻辑电路实现或者以软件通过处理元件调用的形式实现。
在一个例子中,以上任一装置中的单元可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(application specific integrated circuit,ASIC),或,一个或多个微处理器(digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA),或这些集成电路形式中至少两种的组合。再如,当装置中的单元可以通过处理元件调度程序的形式实现时,该处理元件可以是处理器,比如通用中央处理器(central processing unit,CPU),或其它可以调用程序的处理器。再如,这些单元可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
以上用于接收的单元是一种该装置的接口电路,用于从其它装置接收信号。例如,当该装置以芯片的方式实现时,该接收单元是该芯片用于从其它芯片或装置接收信号的接口电路。以上用于发送的单元是一种该装置的接口电路,用于向其它装置发送信号。例如,当该装置以芯片的方式实现时,该发送单元是该芯片用于向其它芯片或装置发送信号的接口电路。
请参考图15,为本申请实施例提供的一种通信装置示意图,用于实现上述各个实施例中第一通信装置,或第二通信装置的操作。该通信装置1500包括:处理器1510和接口1530,可选的,该通信装置1500还包括存储器1520。接口1530用于实现与其他设备进行通信。
以上实施例中,第一通信装置,或第二通信装置执行的方法可以通过处理器1510调用存储器(可以是第一通信装置,或第二通信装置中的存储器1520,也可以是外部存储器)中存储的程序来实现。即,用于实现第一通信装置,或第二通信装置的功能的通信装置1500可以包括处理器1510,该处理器1510通过调用存储器中的程序,以执行以上方法实施例中的第一通信装置,或第二通信装置执行的方法。这里的处理器可以是一种具有信号的处理能力的集成电路,例如CPU,用于第一通信装置第二通信装置的装置可以通过配置成实施以上方法的一个或多个集成电路来实现。例如:一个或多个ASIC,或,一个或多个微处理器DSP,或,一个或者多个FPGA等,或这些集成电路形式中至少两种的组合。或者,可以结合以上实现方式。
当通信装置1500用于上述方法时,处理器1510用于实现上述处理模块1402的功能,接口1530用于实现上述收发模块1401的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行该计算机程序指令时,全部或部分地产生按照本申请实施例该的流程或功能。该计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。该计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,该计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。该计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包括一个或多个可用介质集成的服务器、数据中心等数据存储设备。该可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
本申请实施例中所描述的各种说明性的逻辑单元和电路可以通过通用处理器,数字信号处理器,专用集成电路(ASIC),现场可编程门阵列(FPGA)或其它可编程逻辑装置,离散门或晶体管逻辑,离散硬件部件,或上述任何组合的实现方式来实现或操作所描述的功能。通用处理器可以为微处理器,可选地,该通用处理器也可以为任何传统的处理器、控制器、微控制器或状态机。处理器也可以通过计算装置的组合来实现,例如数字信号处理器和微处理器,多个微处理器,一个或多个微处理器联合一个数字信号处理器核,或任何其它类似的配置来实现。
本申请实施例中所描述的方法或算法的步骤可以直接嵌入硬件、处理器执行的软件单 元、或者这两者的结合。软件单元可以存储于随机存取存储器(random access memory,RAM)、闪存、只读存储器(read-only memory,ROM)、EPROM存储器、EEPROM存储器、寄存器、硬盘、可移动磁盘、CD-ROM或本领域中其它任意形式的存储媒介中。示例性地,存储媒介可以与处理器连接,以使得处理器可以从存储媒介中读取信息,并可以向存储媒介存写信息。可选地,存储媒介还可以集成到处理器中。处理器和存储媒介可以设置于ASIC中。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
在一个或多个示例性的实现方式中,本申请实施例所描述的上述功能可以在硬件、软件、固件或这三者的任意组合来实现。如果在软件中实现,这些功能可以存储与电脑可读的媒介上,或以一个或多个指令或代码形式传输于电脑可读的媒介上。电脑可读媒介包括电脑存储媒介和便于使得让电脑程序从一个地方转移到其它地方的通信媒介。存储媒介可以是任何通用或特殊电脑可以接入访问的可用媒体。例如,这样的电脑可读媒体可以包括但不限于RAM、ROM、EEPROM、CD-ROM或其它光盘存储、磁盘存储或其它磁性存储装置,或其它任何可以用于承载或存储以指令或数据结构和其它可被通用或特殊电脑、或通用或特殊处理器读取形式的程序代码的媒介。此外,任何连接都可以被适当地定义为电脑可读媒介,例如,如果软件是从一个网站站点、服务器或其它远程资源通过一个同轴电缆、光纤电脑、双绞线、数字用户线(DSL)或以例如红外、无线和微波等无线方式传输的也被包含在所定义的电脑可读媒介中。该的碟片(disk)和磁盘(disc)包括压缩磁盘、镭射盘、光盘、数字通用光盘(digital versatile disc,DVD)、软盘和蓝光光盘,磁盘通常以磁性复制数据,而碟片通常以激光进行光学复制数据。上述的组合也可以包含在电脑可读媒介中。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请实施例所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上所述的具体实施方式,对本申请实施例的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本申请实施例的具体实施方式而已,并不用于限定本申请实施例的保护范围,凡在本申请实施例的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本申请实施例的保护范围之内。本申请说明书的上述描述可以使得本领域技术任何可以利用或实现本申请实施例的内容,任何基于所公开内容的修改都应该被认为是本领域显而易见的,本申请实施例所描述的基本原则可以应用到其它变形中而不偏离本申请的发明本质和范围。因此,本申请实施例所公开的内容不仅仅局限于所描述的实施例和实现方式,还可以扩展到与本申请原则和所公开的新特征一致的最大范围。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请实 施例的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请实施例也意图包括这些改动和变型在内。

Claims (45)

  1. 一种通信方法,其特征在于,包括:
    第一通信装置获取第一数据,所述第一数据是网络测量数据;
    所述第一通信装置根据第一处理方式和所述第一数据,获取第二数据,所述第二数据是所述第一数据中的部分数据,其中,所述第二数据用于获取第三数据,所述第三数据与所述第一数据之间的误差值小于或等于目标阈值;
    所述第一通信装置向第二通信装置发送所述第二数据。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述第一通信装置接收来自所述第二通信装置的第一信息,所述第一信息包括所述目标阈值、计算方式或第四数据的标识中的至少一项,其中,所述计算方式用于确定所述第三数据和所述第一数据之间的误差值,所述第四数据是所述第一通信装置需要发送的数据,所述第二数据中包括所述第四数据;
    所述第一通信装置根据所述第一信息,确定所述第一处理方式。
  3. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    所述第一通信装置向所述第二通信装置发送第二信息,所述第二信息包括第一数据恢复方式,所述第一数据恢复方式与所述第一处理方式对应,所述第一数据恢复方式用于根据所述第二数据获取所述第三数据;或者所述第二信息包括所述第一处理方式的标识。
  4. 根据权利要求2所述的方法,其特征在于,所述第一信息还包括所述第一处理方式的标识,所述第一通信装置根据所述第一信息,确定所述第一处理方式,包括:
    所述第一通信装置根据所述第一处理方式的标识,确定所述第一处理方式。
  5. 根据权利要求3或4所述的方法,其特征在于,所述方法还包括:
    所述第一通信装置向所述第二通信装置发送第三信息,所述第三信息包括所述第一通信装置支持的一个或多个处理方式的标识,所述一个或多个处理方式的标识中包括所述第一处理方式的标识。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一通信装置向所述第二通信装置发送第四信息,所述第四信息包括下述中的至少一项:
    所述第三数据与所述第一数据之间的误差值;
    和所述第二数据的数据量与所述第一数据的数据量的比值。
  7. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    所述第一通信装置接收来自所述第二通信装置的更新后的所述目标阈值。
  8. 一种通信方法,其特征在于,包括:
    第二通信装置接收来自第一通信装置的第二数据,所述第二数据是第一数据中的部分数据,所述第一数据是网络测量数据;
    所述第二通信装置根据第一数据恢复方式和所述第二数据,获取第三数据,所述第三数据与所述第一数据之间的差值小于或等于目标阈值。
  9. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    所述第二通信装置向所述第一通信装置发送第一信息,所述第一信息包括所述目标阈值、计算方式或第四数据的标识中的至少一项,其中,所述计算方式用于确定所述第三数 据和所述第一数据之间的误差值,所述第四数据是所述第一通信装置需要发送的数据,所述第二数据中包括所述第四数据。
  10. 根据权利要求9所述的方法,其特征在于,所述第一通信装置是接入网网元,所述第二通信装置是网元管理装置,所述方法还包括:
    所述第二通信装置向网络管理装置发送所述第三数据。
  11. 根据权利要求10所述的方法,其特征在于,所述方法还包括:
    所述第二通信装置接收来自所述网络管理装置的所述第一信息。
  12. 根据权利要求8至11中任一项所述的方法,其特征在于,所述方法还包括:
    所述第二通信装置接收来自所述第一通信装置的第二信息,所述第二信息包括所述第一数据恢复方式或者第一处理方式的标识,所述第一处理方式与所述第一数据恢复方式对应,所述第一处理方式用于从所述第一数据中获取所述第二数据;
    所述第二通信装置根据所述第二信息,确定所述第一数据恢复方式。
  13. 根据权利要求9至11中任一项所述的方法,其特征在于,所述第一信息还包括第一处理方式的标识,所述第一处理方式与所述第一数据恢复方式对应,所述第一处理方式用于从所述第一数据中获取所述第二数据,所述方法还包括:
    所述第二通信装置根据所述第一处理方式的标识,确定所述第一数据恢复方式。
  14. 根据权利要求12或13所述的方法,其特征在于,所述方法还包括:
    所述第二通信装置接收来自所述第一通信装置的第三信息,所述第三信息包括所述第一通信装置支持的一个或多个处理方式的标识,所述一个或多个处理方式的标识中包括所述第一处理方式的标识。
  15. 根据权利要求8至14中任一项所述的方法,其特征在于,所述方法还包括:
    所述第二通信装置接收来自所述第一通信装置的第四信息,所述第四信息包括下述中的至少一项:
    所述第三数据与所述第一数据之间的误差值;
    所述第二数据的数据量与所述第一数据的数据量的比值。
  16. 根据权利要求15所述的方法,其特征在于,所述方法还包括:
    所述第二通信装置根据所述第四信息,更新所述目标阈值;
    所述第二通信装置向所述第一通信装置发送更新后的目标阈值。
  17. 一种通信装置,其特征在于,所述通信装置包括处理模块和收发模块;
    其中,所述处理模块,用于获取第一数据,所述第一数据是网络测量数据;根据第一处理方式和所述第一数据,获取第二数据,所述第二数据是所述第一数据中的部分数据,其中,所述第二数据用于获取第三数据,所述第三数据与所述第一数据之间的误差值小于或等于目标阈值;
    所述收发模块,用于向第二通信装置发送所述第二数据。
  18. 根据权利要求17所述的装置,其特征在于,
    所述收发模块,还用于接收来自所述第二通信装置的第一信息,所述第一信息包括所述目标阈值、计算方式或第四数据的标识中的至少一项,其中,所述计算方式用于确定所述第三数据和所述第一数据之间的误差值,所述第四数据是所述通信装置需要发送的数据,所述第二数据中包括所述第四数据;
    所述处理模块,还用于根据所述第一信息,确定所述第一处理方式。
  19. 根据权利要求18所述的装置,其特征在于,所述收发模块,还用于向所述第二通信装置发送第二信息,所述第二信息包括第一数据恢复方式,所述第一数据恢复方式与所述第一处理方式对应,所述第一数据恢复方式用于根据所述第二数据获取所述第三数据;或者所述第二信息包括所述第一处理方式的标识。
  20. 根据权利要求18所述的装置,其特征在于,所述第一信息还包括所述第一处理方式的标识,所述处理模块通过如下方式根据所述第一信息,确定所述第一处理方式:
    根据所述第一处理方式的标识,确定所述第一处理方式。
  21. 根据权利要求19或20所述的装置,其特征在于,所述收发模块,还用于向所述第二通信装置发送第三信息,所述第三信息包括所述通信装置支持的一个或多个处理方式的标识,所述一个或多个处理方式的标识中包括所述第一处理方式的标识。
  22. 根据权利要求17至21中任一项所述的装置,其特征在于,所述收发模块,还用于向所述第二通信装置发送第四信息,所述第四信息包括下述中的至少一项:
    所述第三数据与所述第一数据之间的误差值;
    和所述第二数据的数据量与所述第一数据的数据量的比值。
  23. 根据权利要求22所述的装置,其特征在于,所述收发模块,还用于接收来自所述第二通信装置的更新后的所述目标阈值。
  24. 一种通信装置,其特征在于,所述通信装置包括处理模块和收发模块;
    其中,所述收发模块,用于接收来自第一通信装置的第二数据,所述第二数据是第一数据中的部分数据,所述第一数据是网络测量数据;
    所述处理模块,用于根据第一数据恢复方式和所述第二数据,获取第三数据,所述第三数据与所述第一数据之间的差值小于或等于目标阈值。
  25. 根据权利要求24所述的装置,其特征在于,所述收发模块,还用于向所述第一通信装置发送第一信息,所述第一信息包括所述目标阈值、计算方式或第四数据的标识中的至少一项,其中,所述计算方式用于确定所述第三数据和所述第一数据之间的误差值,所述第四数据是所述第一通信装置需要发送的数据,所述第二数据中包括所述第四数据。
  26. 根据权利要求25所述的装置,其特征在于,所述第一通信装置是接入网网元,所述通信装置是网元管理装置,所述收发模块,还用于向网络管理装置发送所述第三数据。
  27. 根据权利要求26所述的装置,其特征在于,所述收发模块,还用于接收来自所述网络管理装置的所述第一信息。
  28. 根据权利要求24至27中任一项所述的装置,其特征在于,
    所述收发模块,还用于接收来自所述第一通信装置的第二信息,所述第二信息包括所述第一数据恢复方式或者第一处理方式的标识,所述第一处理方式与所述第一数据恢复方式对应,所述第一处理方式用于从所述第一数据中获取所述第二数据;
    所述处理模块,还用于根据所述第二信息,确定所述第一数据恢复方式。
  29. 根据权利要求25至27中任一项所述的装置,其特征在于,所述第一信息还包括第一处理方式的标识,所述第一处理方式与所述第一数据恢复方式对应,所述第一处理方式用于从所述第一数据中获取所述第二数据;
    所述处理模块,还用于根据所述第一处理方式的标识,确定所述第一数据恢复方式。
  30. 根据权利要求28或29所述的装置,其特征在于,所述收发模块,还用于接收来自所述第一通信装置的第三信息,所述第三信息包括所述第一通信装置支持的一个或多个处 理方式的标识,所述一个或多个处理方式的标识中包括所述第一处理方式的标识。
  31. 根据权利要求24至30中任一项所述的装置,其特征在于,所述收发模块,还用于接收来自所述第一通信装置的第四信息,所述第四信息包括下述中的至少一项:
    所述第三数据与所述第一数据之间的误差值;
    所述第二数据的数据量与所述第一数据的数据量的比值。
  32. 根据权利要求31所述的装置,其特征在于,
    所述处理模块,还用于根据所述第四信息,更新所述目标阈值;
    所述收发模块,还用于向所述第一通信装置发送更新后的目标阈值。
  33. 一种通信方法,其特征在于,所述通信方法应用于包括第一通信装置和第二通信装置的通信系统,所述方法包括:
    所述第一通信装置获取第一数据,根据第一处理方式和所述第一数据获取第二数据,以及向所述第二通信装置发送所述第二数据;其中,所述第一数据是网络测量数据,所述第二数据是所述第一数据中的部分数据;
    所述第二通信装置接收来自所述第一通信装置的所述第二数据,根据第一数据恢复方式和所述第二数据获取第三数据;其中,所述第三数据与所述第一数据之间的差值小于或等于目标阈值。
  34. 根据权利要求33所述的方法,其特征在于,所述方法还包括:
    所述第二通信装置向所述第一通信装置发送第一信息,所述第一信息包括所述目标阈值、计算方式或第四数据的标识中的至少一项,其中,所述计算方式用于确定所述第三数据和所述第一数据之间的误差值,所述第四数据是所述第一通信装置需要发送的数据,所述第二数据中包括所述第四数据;
    所述第一通信装置接收来自所述第二通信装置的所述第一信息,根据所述第一信息确定所述第一处理方式。
  35. 根据权利要求34所述的方法,其特征在于,所述第一通信装置是接入网网元,所述第二通信装置是网元管理装置,所述方法还包括:
    所述第二通信装置向网络管理装置发送所述第三数据。
  36. 根据权利要求35所述的方法,其特征在于,所述方法还包括:
    所述第二通信装置接收来自所述网络管理装置的所述第一信息。
  37. 根据权利要求34至36中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一通信装置向所述第二通信装置发送第二信息,所述第二信息包括所述第一数据恢复方式,或者所述第二信息包括所述第一处理方式的标识,其中,所述第一数据恢复方式与所述第一处理方式对应;
    所述第二通信装置接收来自所述第一通信装置的所述第二信息,根据所述第二信息确定所述第一数据恢复方式。
  38. 根据权利要求34至36中任一项所述的方法,其特征在于,所述第一信息还包括所述第一处理方式的标识,所述第一通信装置根据所述第一信息确定所述第一处理方式,包括:
    所述第一通信装置根据所述第一处理方式的标识确定所述第一处理方式。
  39. 根据权利要求34至38中任一项所述的方法,其特征在于,所述第一信息还包括第一处理方式的标识,所述第一处理方式与所述第一数据恢复方式对应,所述方法还包括:
    所述第二通信装置根据所述第一处理方式的标识,确定所述第一数据恢复方式。
  40. 根据权利要求37至39中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一通信装置向所述第二通信装置发送第三信息,所述第三信息包括所述第一通信装置支持的一个或多个处理方式的标识,所述一个或多个处理方式的标识中包括所述第一处理方式的标识;
    所述第二通信装置接收来自所述第一通信装置的所述第三信息。
  41. 根据权利要求33至40中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一通信装置向所述第二通信装置发送第四信息;
    所述第二通信装置接收来自所述第一通信装置的所述第四信息;
    其中,所述第四信息包括下述中的至少一项:
    所述第三数据与所述第一数据之间的误差值;
    和所述第二数据的数据量与所述第一数据的数据量的比值。
  42. 根据权利要求41所述的方法,其特征在于,所述方法还包括:
    所述第二通信装置根据所述第四信息更新所述目标阈值,向所述第一通信装置发送更新后的目标阈值
    所述第一通信装置接收来自所述第二通信装置的所述更新后的所述目标阈值。
  43. 一种通信系统,其特征在于,所述通信系统包括如权利要求17至23中任一项所述的通信装置和如权利要求24至32中任一项所述的通信装置。
  44. 一种通信装置,其特征在于,包括一个或多个处理器,所述一个或多个处理器与存储器耦合;
    所述一个或多个处理器用于执行所述存储器中存储的计算机程序或指令,使得所述通信装置执行如权利要求1至7中任一项所述的方法,或执行如权利要求8至16中任一项所述的方法。
  45. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有指令,当所述指令在计算机上运行时,使得所述计算机执行如权利要求1至7中任一项所述的方法,或执行如权利要求8至16中任一项所述的方法。
PCT/CN2022/137969 2021-12-20 2022-12-09 一种通信方法及通信装置 WO2023116468A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111567007.8 2021-12-20
CN202111567007.8A CN116319394A (zh) 2021-12-20 2021-12-20 一种通信方法及通信装置

Publications (1)

Publication Number Publication Date
WO2023116468A1 true WO2023116468A1 (zh) 2023-06-29

Family

ID=86832814

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/137969 WO2023116468A1 (zh) 2021-12-20 2022-12-09 一种通信方法及通信装置

Country Status (2)

Country Link
CN (1) CN116319394A (zh)
WO (1) WO2023116468A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109194647A (zh) * 2018-08-30 2019-01-11 北京金山安全软件有限公司 数据传输方法、装置、电子设备及存储介质
CN110120878A (zh) * 2018-02-05 2019-08-13 华为技术有限公司 获取链路质量的方法和装置
CN110636554A (zh) * 2019-09-17 2019-12-31 华为技术有限公司 数据传输方法及装置
CN112584398A (zh) * 2019-09-29 2021-03-30 华为技术有限公司 数据处理方法、装置及存储介质
WO2021254211A1 (zh) * 2020-06-15 2021-12-23 索尼集团公司 用于无线通信的电子设备和方法、计算机可读存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110120878A (zh) * 2018-02-05 2019-08-13 华为技术有限公司 获取链路质量的方法和装置
CN109194647A (zh) * 2018-08-30 2019-01-11 北京金山安全软件有限公司 数据传输方法、装置、电子设备及存储介质
CN110636554A (zh) * 2019-09-17 2019-12-31 华为技术有限公司 数据传输方法及装置
CN112584398A (zh) * 2019-09-29 2021-03-30 华为技术有限公司 数据处理方法、装置及存储介质
WO2021254211A1 (zh) * 2020-06-15 2021-12-23 索尼集团公司 用于无线通信的电子设备和方法、计算机可读存储介质

Also Published As

Publication number Publication date
CN116319394A (zh) 2023-06-23

Similar Documents

Publication Publication Date Title
EP3557818B1 (en) Method, device and system for managing network slice instance
US20220006707A1 (en) Sharable storage method and system for network data analytics
US11202240B2 (en) Systems and methods for managing and monitoring communication sessions
US20200120580A1 (en) Communication method, network device, terminal device, and system
US20210274418A1 (en) Information Transmission Method and Apparatus
WO2018196856A1 (zh) 通信方法、装置和系统
US11070989B2 (en) Network slice management method, management unit, and system
WO2019158737A1 (en) Network data analytics for oam
AU2019323009B2 (en) Quality of service monitoring method and system, and device
US20090111382A1 (en) Methods for scheduling collection of key performance indicators from elements in a communications network
US20210014707A1 (en) Communications method and apparatus
US20220166664A1 (en) Method and Apparatus for Obtaining Management Data
WO2019029522A1 (zh) 网络组件的管理方法和网络设备
WO2019141089A1 (zh) 网络告警方法、装置、系统及终端
US20220239761A1 (en) Data Subscription Method, Apparatus, and System
US20230147591A1 (en) Residential gateway with traffic scheduling
US11929938B2 (en) Evaluating overall network resource congestion before scaling a network slice
US20220007219A1 (en) Trace management
WO2023116468A1 (zh) 一种通信方法及通信装置
US20220394595A1 (en) Communication method, apparatus, and system
US20220224552A1 (en) Network slice charging method and apparatus
US20220217005A1 (en) Network Slice Charging Method and Apparatus
WO2018177003A1 (zh) 一种计费方法、相关设备和系统
US20240214843A1 (en) Systems and methods for network management
US11909610B2 (en) Method and system for resource counter tracking

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22909783

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022909783

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022909783

Country of ref document: EP

Effective date: 20240524