WO2023115923A1 - 一种可反复消毒的高检测精度压差流量计 - Google Patents

一种可反复消毒的高检测精度压差流量计 Download PDF

Info

Publication number
WO2023115923A1
WO2023115923A1 PCT/CN2022/106345 CN2022106345W WO2023115923A1 WO 2023115923 A1 WO2023115923 A1 WO 2023115923A1 CN 2022106345 W CN2022106345 W CN 2022106345W WO 2023115923 A1 WO2023115923 A1 WO 2023115923A1
Authority
WO
WIPO (PCT)
Prior art keywords
decompression
air
air passage
flow
assembly
Prior art date
Application number
PCT/CN2022/106345
Other languages
English (en)
French (fr)
Inventor
赵隆超
孙彩昕
董辉
Original Assignee
广州蓝仕威克医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州蓝仕威克医疗科技有限公司 filed Critical 广州蓝仕威克医疗科技有限公司
Priority to EP22902475.7A priority Critical patent/EP4279879A1/en
Publication of WO2023115923A1 publication Critical patent/WO2023115923A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • G01F1/36Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction
    • G01F1/40Details of construction of the flow constriction devices

Definitions

  • the invention relates to the technical field of flowmeters, and more specifically, the invention relates to a high detection precision differential pressure flowmeter that can be repeatedly sterilized.
  • the current flowmeters on the market are usually active devices such as hot wire (or hot film) anemometer, Screen pneumotacography, ultrasonic flowmeter, etc.
  • active devices such as hot wire (or hot film) anemometer, Screen pneumotacography, ultrasonic flowmeter, etc.
  • the patient When applied to the flow detection near the patient end, the patient will contaminate the device. If it is used for one time, use The cost is high, and if it is sterilized, it will cause damage to the electronic device due to the presence of the electronic device.
  • the main structure is passive. The manufacturing cost is lower than the former three.
  • the plate hole in the structure adopts a flexible material. If it is sterilized, the material will be deformed or it will be difficult to remove the substances attached to the plate hole. The substance remaining on the plate hole will affect its deformation, thereby affecting the detection accuracy.
  • the plate holes are made of flexible materials, when high-flow gas flows through, the plate holes vibrate and the measurement accuracy decreases. Therefore, it is necessary to propose a high detection precision differential pressure flowmeter that can be repeatedly sterilized, so as to at least partially solve the problems existing in the prior art.
  • the present invention provides a high-precision differential pressure flowmeter that can be repeatedly sterilized, including: a body and a processing module; the body is connected to a gas pipeline, and a pressure-reducing component, the two ends of the decompression component are respectively provided with a first air inlet and a second air inlet, the first air inlet is connected and communicated with the processing module through a first interface, and the second inlet
  • the gas port is connected and communicated with the processing module through the second interface, and the first interface and the second interface are both arranged on the body.
  • the decompression assembly also includes several groups of two-way decompression assemblies; each set of two-way decompression assemblies includes two decompression devices, and the two decompression devices in each group of two-way decompression assemblies are independent of each other And it is arranged symmetrically, which can respectively depressurize the forward airflow and reverse airflow on the gas pipeline.
  • the two-way decompression assembly is a set, and the two decompression devices are arranged on the inner wall of the body, and the airflow can only pass through the two decompression devices.
  • the two-way decompression assembly is a set, and there is an airflow channel between the inner wall of the body and the two decompression devices, and the airflow can flow from the two decompression devices and the airflow passages. to circulate.
  • the two-way decompression assembly is a group, and the inner wall of the body and the two decompression devices are sealed by a partition, and the air flow can only pass through the two decompression devices.
  • the decompression device includes a flow element; the outer wall of the flow element is connected to the inner wall of the body, and the flow element is provided with a first air channel, a second air channel, a third air channel and a first air channel. four airways;
  • the first air channel and the fourth air channel communicate in a straight line, and the first air channel and the fourth air channel pass through both ends of the flow member;
  • the second air channel is located above the first air channel, and the extension direction of the second air channel in the flow element is the same as that of the first air channel, and the second air channel passes through the first air channel.
  • the three airways communicate with the first airway;
  • the included angle between the third airway and the second airway is an acute angle, and the flow direction of gas in the third airway is different from the flow direction of gas in the first airway.
  • the two decompression devices in each group of the two-way decompression assemblies are connected through the outer wall of the flow element, and the port of the first airway on one of the decompression devices and The port of the second airway is located on the same side as the port of the fourth airway on the other pressure reducing device.
  • the fourth airway is provided with a partition assembly;
  • the partition assembly includes an outer tube, an inner tube, a seal and several deceleration components; one end of the outer tube is connected to the end of the fourth airway
  • the diameter of the port at the other end of the outer tube is smaller than the diameter of the outer tube
  • the inner tube is fixed inside the outer tube through the deceleration assembly
  • the seal is arranged in the inner tube
  • the One end of the inner tube is a sealing end, and the sealing end is located on a side away from the outer tube communicating with the fourth airway, and several air holes are arranged on the sealing end.
  • the sealing member is spherical, and several exhaust ports are provided on the side wall of the inner tube, the air holes and the exhaust ports are located on both sides of the deceleration assembly, and the sealing
  • the size of the component is smaller than the inner diameter of the inner tube and larger than the inner diameter of the connection between the outer tube and the fourth airway.
  • the speed reduction assembly is annularly arranged on the outer wall of the inner tube, the speed reduction assembly is V-shaped, and there is a gap between two adjacent speed reduction assemblies located on the same radial plane. There are gaps.
  • the present invention at least includes the following beneficial effects:
  • the flowmeter adopts the pressure-reducing component to perform the pressure-reducing operation, which can simplify the structure, thereby reducing the production cost, and the processing module is externally connected to the body, which can be disassembled during disinfection, thereby preventing damage to the electronic components , so that the structure of the flowmeter is passive, simple, sterilizable and low in cost, and can ensure the same detection accuracy as a new product after disinfection.
  • Fig. 1 is a top view of the high detection precision differential pressure flowmeter which can be repeatedly sterilized according to the present invention.
  • Fig. 2 is a schematic cross-sectional structure diagram of the repeatedly sterilizable differential pressure flowmeter with high detection accuracy according to the present invention.
  • Fig. 3 is a schematic cross-sectional structure diagram of the bottom view of the repeatedly sterilizable differential pressure flowmeter with high detection accuracy according to the present invention.
  • Fig. 4 is a schematic cross-sectional structural view of the pressure-reducing component in the bottom view of the repeatedly sterilizable differential pressure flowmeter with high detection accuracy according to the present invention.
  • Fig. 5 is a schematic cross-sectional structural diagram of the pressure-reducing component in the top view of the repeatedly sterilizable differential pressure flowmeter with high detection accuracy according to the present invention.
  • Fig. 6 is a schematic diagram of the gas circulation of the decompression device in the repeatedly sterilizable differential pressure flowmeter with high detection accuracy according to the present invention.
  • Fig. 7 is a schematic structural view of the main body of the repeatedly sterilizable differential pressure flowmeter with high detection accuracy according to the present invention.
  • Fig. 8a, Fig. 8b and Fig. 8c are graphs of pressure difference and flow rate of the high detection precision differential pressure flowmeter which can be repeatedly sterilized according to the present invention.
  • Fig. 9 is a schematic cross-sectional structure diagram of a partition assembly of a reproducible and highly accurate differential pressure flowmeter according to the present invention.
  • Figure 10 is a schematic diagram of the air flow of the partition assembly on one of the pressure relief devices when there is air flow therethrough.
  • Fig. 11 is a schematic diagram of the airflow of the partition assembly on the decompression device in the opposite direction to that of Fig. 10 when there is airflow passing through.
  • Fig. 12 is a schematic diagram of the airflow of the partition assembly in Fig. 11 when the flow rate of the airflow passing through Fig. 11 is relatively large.
  • FIG. 13 is a schematic diagram of the airflow in FIG. 10 flowing through the deceleration assembly.
  • FIG. 14 is a schematic diagram of the airflow in FIG. 11 flowing through the deceleration assembly.
  • the present invention provides a high-precision differential pressure flowmeter that can be repeatedly sterilized, including: a body 1 and a processing module 2; the body 1 is connected to the gas pipeline, and the body 1 There is a decompression assembly 3 inside, and the two ends of the decompression assembly 3 are respectively provided with a first air inlet 31 and a second air inlet 32, and the first air inlet 31 is connected to the first air inlet 33 through a first interface 33.
  • the processing module 2 is connected and communicated, the second air inlet 32 is connected and communicated with the processing module 2 through the second interface 34, and the first interface 33 and the second interface 34 are both arranged on the body 1 superior.
  • the working principle and beneficial effects of the above technical solution through the design of the above structure, when the air flow passes through the body 1, it will enter from the first air inlet 31 and enter the processing module 2 through the first interface 33 to detect the pressure of the upstream gas. After being depressurized by the decompression component 3 in the main body 1, it will enter from the second air inlet 32, and reach the processing module 2 through the second interface 34 to detect the pressure of the downstream gas, and perform an integrated calculation with the pressure of the upstream gas , the flow rate of the gas is calculated by measuring the pressure difference.
  • the flowmeter uses the pressure-reducing component 3 to perform the pressure-reducing operation, which can simplify the structure and thereby reduce the production cost.
  • the external connection of the processing module 2 to the body 1 can be carried out during disinfection. disassembly, so as to prevent damage to the electronic components, thereby making the structure of the flowmeter passive, simple, sterilizable and low in cost, and can ensure the same detection accuracy as a new product after disinfection.
  • the decompression assembly 3 also includes several sets of two-way decompression assemblies; each set of two-way decompression assemblies includes two decompression devices 4, and two of the two-way decompression assemblies in each set
  • the pressure devices 4 are mutually independent and symmetrically arranged, and can respectively depressurize the forward airflow and the reverse airflow on the gas pipeline.
  • the pressure-reducing component 3 includes several groups of two-way decompression components, so that when changing the air flow direction in the gas pipeline, it is not necessary to change the position of the body 1 , so that the flowmeter does not need to consider the direction problem when installing.
  • the airflow entering from the second air inlet 32 is the upstream gas
  • the airflow entering from the first air inlet 31 is changed to the downstream air.
  • multiple sets of two-way decompression assemblies can be set for decompression. Two sets of two-way decompression assemblies in each set
  • the pressure reducing devices 4 are independent of each other and symmetrically arranged in the body 1 .
  • the two-way decompression assembly is a set, and the two decompression devices 4 are arranged on the inner wall of the body 1 , and the airflow can only pass through the two decompression devices 4 . And the inner wall of the body 1 and the two decompression devices 4 are sealed by a partition.
  • a set of two-way decompression components is taken as an example.
  • the two decompression devices 4 can be symmetrically arranged on the inner wall of the body 1 and fill the entire body 1, so that the air flow It must pass through the decompression device 4 to circulate, or set a partition between the two decompression devices 4 and the inner wall of the body 1 to guide the flow of air from the decompression device 4, because the air flow can only pass through the decompression device 4, so
  • the decompression efficiency of the airflow can be improved, so that the pressure difference becomes larger, and the flow velocity of the downstream airflow can be accelerated while the pressure difference is increased.
  • the two-way decompression assembly is a set, and there is an air flow channel between the inner wall of the body 1 and the two decompression devices 4, and the air flow can flow from the two decompression devices 4 communicate with the airflow channel.
  • the decompression device 4 will reduce the flow area in the body 1, so part of the air flow will flow from the decompression device 4 to decompress, and the other part will flow through the airflow channel between the body 1 and the decompression device 4, which can achieve decompression without increasing the speed of the airflow, so that the overall flow of the airflow will not appear
  • Blockage when used on a ventilator, does not cause the patient to experience a sense of blockage in exhalation.
  • the decompression device 4 includes a flow element 5; the outer wall of the flow element 5 is connected to the inner wall of the body 1, and the flow element 5 is provided with a first air passage 51, a second air passage Road 52, third airway 53 and fourth airway 54;
  • the first air passage 51 and the fourth air passage 54 are connected in a straight line, and the first air passage 51 and the fourth air passage 54 run through both ends of the flow member 5 ;
  • the second air passage 52 is located above the first air passage 51, and the extension direction of the second air passage 52 in the flow element 5 is the same as that of the first air passage 51.
  • the passage 52 communicates with the first air passage 51 through the third air passage 53;
  • the included angle between the third air channel 53 and the second air channel 52 is an acute angle, and the gas flow direction in the third air channel 53 is different from the gas flow direction in the first air channel 51 .
  • the two decompression devices 4 in each group of the two-way decompression assembly are connected through the outer wall of the passage member 5, and the port of the first air channel 51 on one of the decompression devices 4 and The port of the second air channel 52 is located on the same side as the port of the fourth air channel 54 on the other decompression device 4 .
  • the direction of the airflow flowing out of the air passage 51 is consistent with that of the first air passage 51, so the airflow flowing out of the first air passage 51 will accelerate the airflow flowing out of the second air passage 52, and then make the second air passage 52 due to negative
  • the pressure will introduce more airflow from the third airway 53 so that the airflow velocity flowing out from the first airway 51 and the second airway 52 will be greater than the airflow velocity at the inlet end.
  • one of the decompression devices 4 in the two-way decompression assembly will decelerate the airflow, so that the airflow at both ends of the body 1 has a speed difference, and the symmetrically arranged decompression device 4, the airflow will be accelerated, and the accelerated airflow will drive the nearby airflow with a slow velocity to move, so that the pressure near the fourth air passage 54 at the outflow end of the airflow is lower than the pressure at the inflow end, so that a pressure difference occurs, thereby making the processing module 2
  • the flow rate can be calculated by differential pressure.
  • the fourth air passage 54 is provided with a partition assembly 6;
  • the partition assembly 6 includes an outer tube 61, an inner tube 62, a seal 63 and several deceleration assemblies 64;
  • the outer tube 61 One end of the outer tube 61 communicates with the end of the fourth air passage 54, the diameter of the other end port of the outer tube 61 is smaller than the diameter of the outer tube 61, and the inner tube 62 is fixed on the outer tube 62 through the speed reduction assembly 64.
  • the sealing member 63 is arranged in the inner tube 62, one end of the inner tube 62 is a sealing end, and the sealing end is located away from the outer tube 61 and the fourth air passage 54
  • several air holes 621 are arranged on the sealing end.
  • the sealing member 63 is spherical, and the side wall of the inner tube 62 is provided with several exhaust ports 622, and the air holes 621 and the exhaust ports 622 are located on both sides of the deceleration assembly 64, so The size of the sealing member 63 is smaller than the inner diameter of the inner tube 62 and larger than the inner diameter of the connection between the outer tube 61 and the fourth air passage 54 .
  • the deceleration assembly 64 is annularly arranged on the outer wall of the inner tube 62, the deceleration assembly 64 is V-shaped, and there is a gap between two adjacent deceleration assemblies 64 located on the same radial plane. There are gaps.
  • the airflow with a faster speed is accelerated again, thereby avoiding the impact of the high-speed airflow flowing out from the first air passage 51 on the low-speed airflow flowing out from the other fourth air passage 54, so as to reduce the error value of the measurement, because if the airflow velocity is too fast,
  • the decompression device 4 has a limited deceleration effect on the airflow. At this time, there will be almost the same flow rate difference between the accelerated airflow and the decelerated airflow, resulting in an insignificant pressure difference, which will increase the measurement error.
  • the seal 63 The fourth air passage 54 will not be blocked, and the airflow will not be affected by the deceleration component 64, so that the accelerated airflow can assist the decelerated airflow to generate a pressure lower than the pressure at the inflow end, thereby improving measurement accuracy.
  • the processing module 2 can measure the air pressure at the first air inlet 31 and the second air inlet 32 and calculate the flow rate of the airflow through a formula
  • Q is the flow rate of the air flow
  • C is the outflow coefficient
  • is the expandability coefficient
  • S 1 is the total area of the upstream gas flowing in the two-way decompression assembly (that is, the first air passage 51, the second air passage 52 and the second air passage 52 The sum of the flow areas of the three air passages 53);
  • S2 is the total area that the downstream gas circulates in the two-way decompression assembly (i.e. the flow area of the fourth air passage 54);
  • ⁇ P is the pressure difference at both ends of the two-way decompression assembly (i.e. The pressure difference measured by the processing module 2 from the first interface 33 and the second interface 34);
  • is the gas density;
  • P 1 is the air pressure value at the first air inlet 31 place (flowing to the second air inlet 32 with air flow from the first air inlet 31 is example);
  • P 2 is the air pressure value at the second air inlet 32 place Air pressure value;
  • is the kinematic viscosity of the air flow;
  • L 1 is the total length of the first air channel 51, the second air channel 52 and the third air channel 53;
  • L 2 is the length of the fourth air channel 54;
  • is the ratio of the flow area , that is, S 1 /S 2 ;
  • ⁇ P loss is the local loss of air pressure.
  • the decompression device 4 can be calculated by the above formula
  • the actual pressure difference at both ends, and substituting the calculated pressure difference into the Bernoulli equation can calculate the specific flow rate of the airflow.
  • the processing module 2 can quickly calculate the pressure difference through the above formula to convert it into a flow rate for display, and it can be seen from the above formula that the flowmeter has no special requirements for the pressure reducing device 4 when calculating the flow rate. After repeated disinfection, it can ensure that the flowmeter still has high detection accuracy, and it can be applied to more occasions compared with traditional hot-wire anemometer, Screen pneumotacography, ultrasonic flowmeter, orifice flowmeter, etc.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

一种可反复消毒的高检测精度压差流量计,包括:本体(1)和处理模块(2);本体(1)连接在气体管路上,本体(1)内设置有降压组件(3)。气流经过本体(1)的时候会从第一进气口(31)进入并经由第一接口(33)进入至处理模块(2)对上游气体进行气压检测,气流经过本体(1)内的降压组件(3)进行降压之后会从第二进气口(32)进入,并经由第二接口(34)到达处理模块(2)对下游气体的气压进行检测,并与上游气体的气压进行整合计算,通过压差测算出气体的流量,本流量计的结构无源、简单、可消毒且成本低廉并能保证在消毒后与新品有一样的检测精度。

Description

一种可反复消毒的高检测精度压差流量计 技术领域
本发明涉及流量计技术领域,更具体地说,本发明涉及一种可反复消毒的高检测精度压差流量计。
背景技术
目前市面上的流量计通常为热线(或者热膜)风速计、Screen pneumotacography、超声波流量计等有源器件,当应用于近病人端的流量检测时,患者会污染该器件,如果一次性使用,使用成本高,如果消毒,由于存在电子器件,会对电子器件产生损伤。而板孔流量计,主结构为无源的。制造成本较前三者低。但是该结构内的板孔采用柔性较好的材料,如果消毒,该材料会出现变形或者难以清除附着在该板孔上的物质。物质残留在板孔上,会影响其变形,从而影响检测精度。另外,由于板孔采用柔性材料,高流量气体流经时,板孔抖动,测量精度下降。因此,有必要提出一种可反复消毒的高检测精度压差流量计,以至少部分地解决现有技术中存在的问题。
发明内容
在发明内容部分中引入了一系列简化形式的概念,这将在具体实施方式部分中进一步详细说明。本发明的发明内容部分并不意味着要试图限定出所要求保护的技术方案的关键特征和必要技术特征,更不意味着试图确定所要求保护的技术方案的保护范围。
为至少部分地解决上述问题,本发明提供了一种可反复消毒的高检测精度压差流量计,包括:本体和处理模块;所述本体连接在气体管路上,所述本体内设置有降压组件,所述降压组件的两端分别设置有第一进气口和第二进气口,所述第一进气口通过第一接口与所述处理模块连接并连通,所述第二进气口通过第二接口与所述处理模块连接并连通,所述第一接口与所述第二接口均设置在所述本体上。
优选的是,所述降压组件还包括若干组双向减压组件;每组所述双向减压组件包括两个减压装置,每组双向减压组件中的两个所述减压装置相互独立且对称设置,可分别对气体管路上的正向气流和反向气流进行减压。
优选的是,所述双向减压组件为一组,并且两个所述减压装置设置在所述本体的内壁上,气流仅能通过两个所述减压装置流通。
优选的是,所述双向减压组件为一组,并且所述本体的内壁和两个所述减压装置之间留有气流通道,气流可从两个所述减压装置和所述气流通道进行流通。
优选的是,所述双向减压组件为一组,并且所述本体的内壁和两个所述减压装置之间通 过隔板进行密封,气流仅能通过两个所述减压装置流通。
优选的是,所述减压装置包括流通件;所述流通件的外壁与所述本体的内壁连接,所述流通件内设置有第一气道、第二气道、第三气道和第四气道;
所述第一气道和所述第四气道连通为直线型,并且所述第一气道和所述第四气道贯穿所述流通件的两端;
所述第二气道位于所述第一气道上方,且所述第二气道在所述流通件内的延伸方向和所述第一气道相同,所述第二气道通过所述第三气道与所述第一气道连通;
所述第三气道与所述第二气道之间的夹角为锐角,所述第三气道内气体的流通方向与所述第一气道内的气体流通方向不同。
优选的是,每组所述双向减压组件中的两个所述减压装置之间通过所述流通件的外壁连接,并且一个所述减压装置上的所述第一气道的端口和所述第二气道的端口与另一个所述减压装置上的第四气道的端口位于同一侧。
优选的是,所述第四气道上设置有隔断组件;所述隔断组件包括外管、内管、密封件和若干个降速组件;所述外管的一端与所述第四气道的端部连通,所述外管的另一端端口的直径小于外管的直径,所述内管通过所述降速组件固定在所述外管的内部,所述密封件设置在所述内管内,所述内管的一端为密封端,并且所述密封端位于远离所述外管与所述第四气道连通的一侧,所述密封端上设置有若干个气孔。
优选的是,所述密封件为球形,所述内管的侧壁上设置有若干个排气口,所述气孔和所述排气口均位于所述降速组件的两侧,所述密封件的尺寸小于所述内管的内径,大于所述外管与所述第四气道连通处的内径。
优选的是,所述降速组件呈环状设置在所述内管的外壁上,所述降速组件为V字型,并且位于同一径向平面的相邻的两个降速组件之间留有空隙。
相比现有技术,本发明至少包括以下有益效果:
1、本发明所述的可反复消毒的高检测精度压差流量计,气流经过本体的时候会从第一进气口进入并经由第一接口进入至处理模块对上游气体进行气压检测,气流经过本体内的降压组件进行降压之后会从第二进气口进入,并经由第二接口到达处理模块对下游气体的气压进行检测,并与上游气体的气压进行整合计算,通过压差测算出气体的流量,本流量计采用降压组件进行降压操作可以将结构简单化,从而降低生产成本,将处理模块外接于本体之外可以在进行消毒的时候进行拆卸,从而防止对电子元件造成损害,进而使得本流量计的结构无 源、简单、可消毒且成本低廉并能保证在消毒后与新品有一样的检测精度。
本发明所述的可反复消毒的高检测精度压差流量计,本发明的其它优点、目标和特征将部分通过下面的说明体现,部分还将通过对本发明的研究和实践而为本领域的技术人员所理解。
附图说明
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例一起用于解释本发明,并不构成对本发明的限制。在附图中:
图1为本发明所述的可反复消毒的高检测精度压差流量计的俯视图。
图2为本发明所述的可反复消毒的高检测精度压差流量计的剖面结构示意图。
图3为本发明所述的可反复消毒的高检测精度压差流量计仰视图的剖面结构示意图。
图4为本发明所述的可反复消毒的高检测精度压差流量计仰视图降压组件处的剖面结构示意图。
图5为本发明所述的可反复消毒的高检测精度压差流量计俯视图降压组件处的剖面结构示意图。
图6为本发明所述的可反复消毒的高检测精度压差流量计中减压装置的气体流通示意图。
图7为本发明所述的可反复消毒的高检测精度压差流量计的本体的结构示意图。
图8a、图8b、图8c为本发明所述的可反复消毒的高检测精度压差流量计的压差与流量的曲线图。
图9为本发明所述的可反复消毒的高检测精度压差流量计的隔断组件的剖面结构示意图。
图10为当有气流通过的时候其中一个减压装置上的隔断组件的气流示意图。
图11为当有气流通过的时候与图10方向相反的减压装置上的隔断组件的气流示意图。
图12为当通过图11的气流流量较大的时候,图11的隔断组件的气流示意图。
图13为图10中的气流流经降速组件的气流示意图。
图14为图11中的气流流经降速组件的气流示意图。
图中:1本体、2处理模块、3降压组件、31第一进气口、32第二进气口、33第一接口、34第二接口、4减压装置、5流通件、51第一气道、52第二气道、53第三气道、54第四气道、6隔断组件、61外管、62内管、621气孔、622排气口、63密封件、64降速组件。
具体实施方式
下面结合附图以及实施例对本发明做进一步的详细说明,以令本领域技术人员参照说明书文字能够据以实施。
应当理解,本文所使用的诸如“具有”、“包含”以及“包括”术语并不排除一个或多个其它元件或其组合的存在或添加。
如图1-图14所示,本发明提供了一种可反复消毒的高检测精度压差流量计,包括:本体1和处理模块2;所述本体1连接在气体管路上,所述本体1内设置有降压组件3,所述降压组件3的两端分别设置有第一进气口31和第二进气口32,所述第一进气口31通过第一接口33与所述处理模块2连接并连通,所述第二进气口32通过第二接口34与所述处理模块2连接并连通,所述第一接口33与所述第二接口34均设置在所述本体1上。
上述技术方案的工作原理及有益效果:通过上述结构的设计,气流经过本体1的时候会从第一进气口31进入并经由第一接口33进入至处理模块2对上游气体进行气压检测,气流经过本体1内的降压组件3进行降压之后会从第二进气口32进入,并经由第二接口34到达处理模块2对下游气体的气压进行检测,并与上游气体的气压进行整合计算,通过压差测算出气体的流量,本流量计采用降压组件3进行降压操作可以将结构简单化,从而降低生产成本,将处理模块2外接于本体1之外可以在进行消毒的时候进行拆卸,从而防止对电子元件造成损害,进而使得本流量计的结构无源、简单、可消毒且成本低廉并能保证在消毒后与新品有一样的检测精度。
在一个实施例中,所述降压组件3还包括若干组双向减压组件;每组所述双向减压组件包括两个减压装置4,每组双向减压组件中的两个所述减压装置4相互独立且对称设置,可分别对气体管路上的正向气流和反向气流进行减压。
上述技术方案的工作原理及有益效果:通过上述结构的设计,降压组件3包括若干组双向减压组件,使得在更换气体管路内的气流方向的时候,可以不需要对本体1进行位置调换,从而使得本流量计在安装的时候不需要考虑方向问题,在气流方向变更之后气流从第二进气口32进入的为上游气体,从第一进气口31进入的则变更为下游气体,对于处理模块2而言并不影响测量结果,为了保证降压组件3前后可以有足够大的压差变化,可以通过设置多组双向减压组件进行减压,每组双向减压组件中的两个减压装置4相互独立互不影响并且对称的设置在本体1内。
在一个实施例中,所述双向减压组件为一组,并且两个所述减压装置4设置在所述本体1的内壁上,气流仅能通过两个所述减压装置4流通。并且所述本体1的内壁和两个所述减压装置4之间通过隔板进行密封。
上述技术方案的工作原理及有益效果:本实施例中以设置一组双向减压组件为例,两个减压装置4可以对称的设置在本体1的内壁上并填充满整个本体1,使得气流必须经过减压装置4才能流通,或者在两个减压装置4和本体1的内壁之间设置隔板来引导气流从减压装置4中流通,因为气流仅能通过减压装置4进行流通因此可以提高气流的减压效率,从而使得压差变大,可以在增大压差的同时,加快下游气流的流速。
在一个实施例中,所述双向减压组件为一组,并且所述本体1的内壁和两个所述减压装置4之间留有气流通道,气流可从两个所述减压装置4和所述气流通道进行流通。
上述技术方案的工作原理及有益效果:在本实施例中,以仅采用一组双向减压组件为例,减压装置4会减小本体1内的流通面积,所以部分气流会从减压装置4中流过进行减压,另一部分则会从本体1和减压装置4之间的气流通道流过,可以在实现减压的同时不增加气流的速度,从而使气流整体流动的时候不会出现阻滞,当用于呼吸机的时候不会让患者出现呼气的阻滞感。
在一个实施例中,所述减压装置4包括流通件5;所述流通件5的外壁与所述本体1的内壁连接,所述流通件5内设置有第一气道51、第二气道52、第三气道53和第四气道54;
所述第一气道51和所述第四气道54连通为直线型,并且所述第一气道51和所述第四气道54贯穿所述流通件5的两端;
所述第二气道52位于所述第一气道51上方,且所述第二气道52在所述流通件5内的延伸方向和所述第一气道51相同,所述第二气道52通过所述第三气道53与所述第一气道51连通;
所述第三气道53与所述第二气道52之间的夹角为锐角,所述第三气道53内气体的流通方向与所述第一气道51内的气体流通方向不同。每组所述双向减压组件中的两个所述减压装置4之间通过所述流通件5的外壁连接,并且一个所述减压装置4上的所述第一气道51的端口和所述第二气道52的端口与另一个所述减压装置4上的第四气道54的端口位于同一侧。
上述技术方案的工作原理:以图6中气体流动的方向为例,气流在到达流通件5的时候会分别从第一气道51和第二气道52进入,第二气道52进入的气流在到达第三气道53的时候会改变气流方向,从而使得从第三气道53进入至第一气道51的气流方向与第一气道51内的气流方向相反,两个方向相反的气流在第一气道51和第三气道53的交汇处发生撞击,从而使得汇合后的气流流速小于第一气道51内的气流流速,然后汇合后的气流会经由第四气道 54贯穿至流通件5的另一侧;
而同一组的双向减压组件中的另一个减压装置4则会对气流进行加速,因为另一个减压装置4为对称设置的,所以气流会从第四气道54进入,然后少部分气流分流至第三气道53并从第二气道52流出,大部分则会从第一气道51流出,因为气流的流通面积减少所以会导致进入第四气道54的气流速度加快,第二气道51流出的气流与第一气道51流出的气流方向一致,所以第一气道51流出的气流会对第二气道52流出的气流进行加速,进而使得第二气道52内由于负压会从第三气道53引入更多的气流进而使得从第一气道51和第二气道52流出的气流速度会大于进入端处的气流速度。
上述技术方案的有益效果:通过上述结构的设计,双向减压组件中其中一个减压装置4会对气流进行减速的操作,从而使得本体1的两端的气流出现速度差,对称设置的减压装置4则会对气流进行加速,加速后的气流会带动附近流速慢的气流运动,进而使得气流流出端的第四气道54附近形成比流入端压力低的压力以致出现压差,进而使得处理模块2可以通过压差进行流量测算。
在一个实施例中,所述第四气道54上设置有隔断组件6;所述隔断组件6包括外管61、内管62、密封件63和若干个降速组件64;所述外管61的一端与所述第四气道54的端部连通,所述外管61的另一端端口的直径小于外管61的直径,所述内管62通过所述降速组件64固定在所述外管61的内部,所述密封件63设置在所述内管62内,所述内管62的一端为密封端,并且所述密封端位于远离所述外管61与所述第四气道54连通的一侧,所述密封端上设置有若干个气孔621。所述密封件63为球形,所述内管62的侧壁上设置有若干个排气口622,所述气孔621和所述排气口622均位于所述降速组件64的两侧,所述密封件63的尺寸小于所述内管62的内径,大于所述外管61与所述第四气道54连通处的内径。所述降速组件64呈环状设置在所述内管62的外壁上,所述降速组件64为V字型,并且位于同一径向平面的相邻的两个降速组件64之间留有空隙。
上述技术方案的工作原理及有益效果:通过上述结构的设计,当气流从第四气道54流出的时候,如图10所示,气流会经内管62上的排气口622流出,经过降速组件64进行二次降速,如图13所示,气流在撞击到V字型的内凹表面会进行反弹,进而降低气流速度,使得气流经过减压装置4的减速后可以二次减速;当气流从第四气道54流入的时候,若气流流速较大则会经由密封端的气孔621将密封件63吹至第四气道54处进行封堵,如图12所示,从而避免本就速度较快的气流再次被加速,进而避免从第一气道51流出高速气流对从另一个第 四气道54流出的低速气流造成影响,以减少测量的误差值,因为如果气流流速过快,减压装置4对气流的降速效果有限,此时便会出现加速后的气流和减速后的气流流速相差无几,导致压差不明显,进而加大测量误差,若气流流速适中则密封件63不会将第四气道54封堵,并且气流不会受到降速组件64的影响,使得加速后的气流可以协助减速后的气流产生比流入端压力低的压力,从而提高测量精度。
在一个实施例中,处理模块2可以对第一进气口31和第二进气口32处的气压进行测量并经由公式计算出气流的流量
Figure PCTCN2022106345-appb-000001
其中,Q为气流的流量;C为流出系数;ε为可膨胀性系数;S 1为上游气体在双向减压组件中流通的总面积(即第一气道51、第二气道52和第三气道53的流通面积之和);S 2为下游气体在双向减压组件中流通的总面积(即第四气道54的流通面积);ΔP为双向减压组件两端的压差(即处理模块2从第一接口33和第二接口34处测量的压力差值);ρ为气体密度;
在计算双向减压组件两端的压差的时候,忽略给气流加速的减压装置4对气压的影响,仅以减速后的气流产生的压力为流出端的压力值,由此可以通过公式
Figure PCTCN2022106345-appb-000002
求得,其中,P 1为第一进气口31处的气压值(以气流从第一进气口31流向第二进气口32为例);P 2为第二进气口32处的气压值;γ为气流的运动粘度;L 1为第一气道51、第二气道52和第三气道53的总长;L 2为第四气道54的长度;σ为流通面积的比值,即S 1/S 2;ΔP 为局部损失气压。
上述技术方案的工作原理及有益效果:通过上述公式可以得知,在计算压差的时候,可以通过气流的粘性项、惯性项、伯努利项和局部气损失的总和求得,虽然同一组双向减压组件中的另一个减压装置4可以给气流进行加速,并在减速端形成负压以减少局部损失的气压,但是在实际应用中无法直接得知气流的速度,仅能通过计算得知,所以为了避免因为气流的流速过大导致压差不明显的情况,直接对因气流加速增加的负压进行忽略,直接带着损耗进行计算,于是便可以通过上述公式计算出减压装置4两端的实际压差值,并将计算的压差值代入伯努利方程便可以计算出气流的具体流量,为了便于计算和使双向减压组件不受气流方 向的影响,压差始终取绝对值进行后续计算,通过上述公式可以使处理模块2快速计算出压差以转换成流量进行显示,并且通过上述公式可以看出本流量计在计算流量时对于减压装置4无特殊需求,因此在进行反复消毒之后能够保证流量计依旧具有较高的检测精度,并且相较于传统热线风速计、Screen pneumotacography、超声波流量计、板孔流量计等可以适用于更多场合。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接或彼此可通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
尽管本发明的实施方案已公开如上,但其并不仅仅限于说明书和实施方式中所列运用,它完全可以被适用于各种适合本发明的领域,对于熟悉本领域的人员而言,可容易地实现另外的修改,因此在不背离权利要求及等同范围所限定的一般概念下,本发明并不限于特定的细节与这里示出与描述的图例。

Claims (9)

  1. 一种可反复消毒的高检测精度压差流量计,其特征在于,包括:本体(1)和处理模块(2);所述本体(1)连接在气体管路上,所述本体(1)内设置有降压组件(3),所述降压组件(3)的两端分别设置有第一进气口(31)和第二进气口(32),所述第一进气口(31)通过第一接口(33)与所述处理模块(2)连接并连通,所述第二进气口(32)通过第二接口(34)与所述处理模块(2)连接并连通,所述第一接口(33)与所述第二接口(34)均设置在所述本体(1)上;
    所述降压组件(3)还包括若干组双向减压组件;每组所述双向减压组件包括两个减压装置(4),每组双向减压组件中的两个所述减压装置(4)相互独立且对称设置,可分别对气体管路上的正向气流和反向气流进行减压。
  2. 根据权利要求1所述的可反复消毒的高检测精度压差流量计,其特征在于,所述双向减压组件为一组,并且两个所述减压装置(4)设置在所述本体(1)的内壁上,气流仅能通过两个所述减压装置(4)流通。
  3. 根据权利要求1所述的可反复消毒的高检测精度压差流量计,其特征在于,所述双向减压组件为一组,并且所述本体(1)的内壁和两个所述减压装置(4)之间留有气流通道,气流可从两个所述减压装置(4)和所述气流通道进行流通。
  4. 根据权利要求2所述的可反复消毒的高检测精度压差流量计,其特征在于,所述双向减压组件为一组,并且所述本体(1)的内壁和两个所述减压装置(4)之间通过隔板进行密封,气流仅能通过两个所述减压装置(4)流通。
  5. 根据权利要求1所述的可反复消毒的高检测精度压差流量计,其特征在于,所述减压装置(4)包括流通件(5);所述流通件(5)的外壁与所述本体(1)的内壁连接,所述流通件(5)内设置有第一气道(51)、第二气道(52)、第三气道(53)和第四气道(54);
    所述第一气道(51)和所述第四气道(54)连通为直线型,并且所述第一气道(51)和所述第四气道(54)贯穿所述流通件(5)的两端;
    所述第二气道(52)位于所述第一气道(51)上方,且所述第二气道(52)在所述流通件(5)内的延伸方向和所述第一气道(51)相同,所述第二气道(52)通过所述第三气道(53)与所述第一气道(51)连通;
    所述第三气道(53)与所述第二气道(52)之间的夹角为锐角,所述第三气道(53)内气体的流通方向与所述第一气道(51)内的气体流通方向不同。
  6. 根据权利要求5所述的可反复消毒的高检测精度压差流量计,其特征在于,每组所述双向减压组件中的两个所述减压装置(4)之间通过所述流通件(5)的外壁连接,并且一个 所述减压装置(4)上的所述第一气道(51)的端口和所述第二气道(52)的端口与另一个所述减压装置(4)上的第四气道(54)的端口位于同一侧。
  7. 根据权利要求5所述的可反复消毒的高检测精度压差流量计,其特征在于,所述第四气道(54)上设置有隔断组件(6);所述隔断组件(6)包括外管(61)、内管(62)、密封件(63)和若干个降速组件(64);所述外管(61)的一端与所述第四气道(54)的端部连通,所述外管(61)的另一端端口的直径小于外管(61)的直径,所述内管(62)通过所述降速组件(64)固定在所述外管(61)的内部,所述密封件(63)设置在所述内管(62)内,所述内管(62)的一端为密封端,并且所述密封端位于远离所述外管(61)与所述第四气道(54)连通的一侧,所述密封端上设置有若干个气孔(621)。
  8. 根据权利要求7所述的可反复消毒的高检测精度压差流量计,其特征在于,所述密封件(63)为球形,所述内管(62)的侧壁上设置有若干个排气口(622),所述气孔(621)和所述排气口(622)均位于所述降速组件(64)的两侧,所述密封件(63)的尺寸小于所述内管(62)的内径,大于所述外管(61)与所述第四气道54连通处的内径。
  9. 根据权利要求7所述的可反复消毒的高检测精度压差流量计,其特征在于,所述降速组件(64)呈环状设置在所述内管(62)的外壁上,所述降速组件(64)为V字型,并且位于同一径向平面的相邻的两个降速组件(64)之间留有空隙。
PCT/CN2022/106345 2021-12-24 2022-07-19 一种可反复消毒的高检测精度压差流量计 WO2023115923A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22902475.7A EP4279879A1 (en) 2021-12-24 2022-07-19 High-measurement-precision differential pressure flowmeter capable of being repeatedly sterilized

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111596328.0A CN114279504B (zh) 2021-12-24 2021-12-24 一种可反复消毒的高检测精度压差流量计
CN202111596328.0 2021-12-24

Publications (1)

Publication Number Publication Date
WO2023115923A1 true WO2023115923A1 (zh) 2023-06-29

Family

ID=80874700

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/106345 WO2023115923A1 (zh) 2021-12-24 2022-07-19 一种可反复消毒的高检测精度压差流量计

Country Status (3)

Country Link
EP (1) EP4279879A1 (zh)
CN (1) CN114279504B (zh)
WO (1) WO2023115923A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114279504B (zh) * 2021-12-24 2022-07-22 广州蓝仕威克医疗科技有限公司 一种可反复消毒的高检测精度压差流量计

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0547617A1 (en) * 1991-12-18 1993-06-23 Pierre Delajoud Mass flow meter and method
CN101539444A (zh) * 2009-03-31 2009-09-23 锦州北方航海仪器有限公司 一种可实现直接取压双向测量的差压式流量传感器
CN102928028A (zh) * 2012-10-31 2013-02-13 浙江省计量科学研究院 全对称双锥流量计
CN205280157U (zh) * 2015-12-28 2016-06-01 广州七喜医疗设备有限公司 差压式流量测量机构
CN105698878A (zh) * 2016-03-24 2016-06-22 苏州鱼跃医疗科技有限公司 医疗仪器用喷射式流量检测装置
CN107830902A (zh) * 2017-12-12 2018-03-23 杭州天马计量科技有限公司 一种气体流量计
CN110514256A (zh) * 2019-09-29 2019-11-29 银川融神威自动化仪表厂(有限公司) 一种楔形陶瓷流量计
CN211602041U (zh) * 2020-04-20 2020-09-29 银川融神威自动化仪表厂(有限公司) 一种椭圆面双向差压检测的楔形流量计
CN114279504A (zh) * 2021-12-24 2022-04-05 广州蓝仕威克医疗科技有限公司 一种可反复消毒的高检测精度压差流量计

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101311683A (zh) * 2007-12-29 2008-11-26 北京谊安医疗系统股份有限公司 呼吸机及其低差压式流量检测机构
US10018490B2 (en) * 2014-02-28 2018-07-10 Breas Medical Ab Flow meter for use with a ventilator
CN106248159A (zh) * 2016-08-08 2016-12-21 广州七喜医疗设备有限公司 一种提高流量测量精度的装置及方法
US10598527B2 (en) * 2018-01-29 2020-03-24 Weatherford Technology Holdings, Llc Differential flow measurement with Coriolis flowmeter
JP2021092489A (ja) * 2019-12-12 2021-06-17 アズビル株式会社 差圧計測器
CN214502545U (zh) * 2020-09-15 2021-10-26 中国烟草总公司郑州烟草研究院 卷烟通风率检测装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0547617A1 (en) * 1991-12-18 1993-06-23 Pierre Delajoud Mass flow meter and method
CN101539444A (zh) * 2009-03-31 2009-09-23 锦州北方航海仪器有限公司 一种可实现直接取压双向测量的差压式流量传感器
CN102928028A (zh) * 2012-10-31 2013-02-13 浙江省计量科学研究院 全对称双锥流量计
CN205280157U (zh) * 2015-12-28 2016-06-01 广州七喜医疗设备有限公司 差压式流量测量机构
CN105698878A (zh) * 2016-03-24 2016-06-22 苏州鱼跃医疗科技有限公司 医疗仪器用喷射式流量检测装置
CN107830902A (zh) * 2017-12-12 2018-03-23 杭州天马计量科技有限公司 一种气体流量计
CN110514256A (zh) * 2019-09-29 2019-11-29 银川融神威自动化仪表厂(有限公司) 一种楔形陶瓷流量计
CN211602041U (zh) * 2020-04-20 2020-09-29 银川融神威自动化仪表厂(有限公司) 一种椭圆面双向差压检测的楔形流量计
CN114279504A (zh) * 2021-12-24 2022-04-05 广州蓝仕威克医疗科技有限公司 一种可反复消毒的高检测精度压差流量计

Also Published As

Publication number Publication date
CN114279504B (zh) 2022-07-22
CN114279504A (zh) 2022-04-05
EP4279879A1 (en) 2023-11-22

Similar Documents

Publication Publication Date Title
US7343823B2 (en) Ultra low pressure drop flow sensor
CN104048808B (zh) 一种动态熵探针
US5535633A (en) Differential pressure sensor for respiratory monitoring
US7730793B2 (en) Venturi flow sensor
US5379650A (en) Differential pressure sensor for respiratory monitoring
WO2023115923A1 (zh) 一种可反复消毒的高检测精度压差流量计
US5134890A (en) Fluid flow monitoring device
CN101311683A (zh) 呼吸机及其低差压式流量检测机构
CN105823517A (zh) 差压线性流量计
KR20020029595A (ko) 유량측정장치
JP6771254B2 (ja) 流量計測装置及び流量計測方法
US20110270541A1 (en) Air flow rate sensor
JPH0374570B2 (zh)
Raišutis Investigation of the flow velocity profile in a metering section of an invasive ultrasonic flowmeter
JP2010117276A (ja) 風量計及び風速センサ
JP2016176906A (ja) 流量測定装置
CN109443458A (zh) 一种凹弧形双流向均速管流量计
JP3179720U (ja) 流量計測装置
CN209342163U (zh) 长管流量计
WO2022110710A1 (zh) 压差式流量传感器及呼吸机
RU73600U1 (ru) Спирометр
JP2009186429A (ja) ガスメータ
JPH0236092Y2 (zh)
JP6886675B2 (ja) 流量計測装置
TR2021004544A2 (tr) Bi̇r akiş sensörü ci̇hazi

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22902475

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022902475

Country of ref document: EP

Effective date: 20230818