WO2023115835A1 - 一种电源分配器 - Google Patents

一种电源分配器 Download PDF

Info

Publication number
WO2023115835A1
WO2023115835A1 PCT/CN2022/097427 CN2022097427W WO2023115835A1 WO 2023115835 A1 WO2023115835 A1 WO 2023115835A1 CN 2022097427 W CN2022097427 W CN 2022097427W WO 2023115835 A1 WO2023115835 A1 WO 2023115835A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
switch
target
socket
star
Prior art date
Application number
PCT/CN2022/097427
Other languages
English (en)
French (fr)
Inventor
吴名伟
Original Assignee
苏州浪潮智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州浪潮智能科技有限公司 filed Critical 苏州浪潮智能科技有限公司
Publication of WO2023115835A1 publication Critical patent/WO2023115835A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks

Definitions

  • This application relates to the technical field of data centers, in particular to a power distributor.
  • delta connection ( ⁇ ) and star connection (Y).
  • delta connection
  • star connection (Y)
  • the delta connection means that the power supply or load of each phase is connected end to end in turn to form a delta ring.
  • star connection is that one end of each phase power supply or load is connected at one point to form a neutral point.
  • This connection is also called a three-phase three-wire system; if from this The neutral point leads to a neutral line, and the whole structure becomes a three-phase four-wire system.
  • the delta connection allows only one voltage to exist because the phases are connected end to end, while the star connection allows different voltages to be applied to each phase.
  • distribution transformers are usually used in combination with PDUs (Power Distribution Units, power distributors) to distribute power to electrical equipment in racks or cabinets.
  • the distribution transformer is used to transform the three-phase power input from the primary side according to the power distribution requirements of the data center, and input the transformed three-phase power to the PDU through the secondary side.
  • PDUs are divided into delta-connected PDUs and star-connected PDUs. It is necessary to deploy correspondingly wired PDUs in advance according to the three-phase electrical wiring requirements of the data center for PDUs.
  • the PDU is used to connect the three-phase windings on the secondary side of the distribution transformer according to its own wiring mode, and obtain the three-phase electrical output of the corresponding wiring.
  • the three-phase power output by the PDU is three single-phase power, and each single-phase power can be used by electrical equipment that meets the voltage of the single-phase power. It should be noted that a single PDU only supports one wiring method, so if the three-phase electrical wiring requirements of the PDU are changed in the data center, the PDU with the corresponding wiring needs to be re-deployed. The connecting wires of the circuit, which is not easy to implement, results in longer deployment time and lower deployment efficiency.
  • the application provides a power distributor, including:
  • any one of the target single-phase sockets in the three single-phase sockets is used to access electrical equipment that meets the voltage of the target single-phase socket;
  • a star switch circuit connected to the three-phase winding on the secondary side of the distribution transformer and the three single-phase sockets;
  • a controller respectively connected to the star switch circuit and the delta switch circuit, for correspondingly controlling the star switch circuit or the delta switch circuit to be turned on according to the current three-phase electrical wiring requirement of the power distributor , so as to connect the three-phase windings according to the target wiring mode meeting the three-phase electrical wiring requirements, and supply the three-phase electricity in the target wiring mode to the three single-phase sockets one by one.
  • the three-phase windings include a-phase windings, b-phase windings, and c-phase windings;
  • the three single-phase sockets include a-phase sockets, b-phase sockets, and c-phase sockets;
  • the star The star switch circuit includes a first star switch, a second star switch, a third star switch, a fourth star switch, a fifth star switch and a sixth star switch; wherein:
  • the first end of the first star switch is connected to the first end of the a-phase winding, the second end of the a-phase winding is connected to the live wire terminal of the a-phase socket, and the second star switch
  • the first end of the b-phase winding is connected to the first end of the b-phase winding, the second end of the b-phase winding is connected to the live wire terminal of the b-phase socket, the first end of the third star switch is connected to the The first end of the c-phase winding is connected, the second end of the c-phase winding is connected to the live wire terminal of the c-phase socket, and the first end of the fourth star switch is connected to the neutral wire terminal of the a-phase socket connection, the first end of the fifth star switch is connected to the neutral line terminal of the b-phase socket, the first end of the sixth star switch is connected to the neutral line terminal of the c-phase socket, and the first A star switch is connected to the second terminal of the sixth star switch, the control terminals of
  • the controller is specifically configured to control the six star switches in the star switch circuit to be turned on if the current three-phase electrical connection requirement of the power distributor is a star connection requirement.
  • the three-phase windings include a-phase windings, b-phase windings, and c-phase windings;
  • the three single-phase sockets include a-phase sockets, b-phase sockets, and c-phase sockets;
  • the triangular The switching circuit includes a first delta switch, a second delta switch, a third delta switch, a fourth delta switch, a fifth delta switch and a sixth delta switch; wherein:
  • the first end of the first delta switch is respectively connected to the second end of the a-phase winding, the live wire terminal of the a-phase socket and the first end of the sixth delta switch, and the first end of the first delta switch
  • the second end is connected to the first end of the b-phase winding
  • the first end of the second triangular switch is respectively connected to the second end of the b-phase winding, the live wire terminal of the b-phase socket and the fourth
  • the first end of the delta switch is connected, the second end of the second delta switch is connected to the first end of the c-phase winding, and the first end of the third delta switch is respectively connected to the second end of the c-phase winding.
  • the second end of the third delta switch is connected to the first end of the a-phase winding
  • the fourth delta The second end of the switch is connected to the zero line terminal of the a-phase socket
  • the second end of the fifth delta switch is connected to the neutral line terminal of the b-phase socket
  • the second end of the sixth delta switch is connected to the neutral line terminal of the b-phase socket.
  • the neutral line terminal of the c-phase socket is connected, and the ground terminals of the a-phase socket, the b-phase socket and the c-phase socket are all grounded;
  • the controller is specifically configured to control the six delta switches in the delta switch circuit to be turned on if the current three-phase electrical connection requirement of the power distributor is a delta connection requirement.
  • the power distributor also includes:
  • a voltage and current detection circuit respectively connected to the three-phase winding and the three single-phase sockets, used to detect the input voltage of each phase, the input current of each phase, the output voltage of each phase and the output current of each phase of the power distributor ;
  • a protective switch circuit arranged on the connection line between the three-phase winding and the three single-phase sockets and connected to the controller;
  • the controller is also used to control the circuit breaker of the protection switch when the input voltage and/or input current and/or output voltage and/or output current of any target phase of the power distributor does not meet the preset safety standard. Open the target connection line between the target phase winding and the target phase socket.
  • the voltage and current detection circuit includes three sub-detection circuits for detecting the three single-phase electricity input by the three-phase winding and one for detecting the three single-phase electrical outlets respectively output Three sub-detection circuits for single-phase electricity; each of said sub-detection circuits includes:
  • the current sensing element is used to detect the current signal of the corresponding target single-phase electricity
  • a first differential amplifier connected to the current sensing element, configured to amplify the current signal to obtain an amplified current signal
  • the second differential amplifier connected to the voltage sensing element is used to amplify the voltage signal to obtain a voltage amplified signal
  • the three-phase winding includes a-phase winding, b-phase winding and c-phase winding;
  • the three single-phase sockets include a-phase socket, b-phase socket and c-phase socket;
  • the protection switch circuit includes a-phase protection switch, b-phase protection switch and c-phase protection switch;
  • the first end of the a-phase protection switch is connected to the second end of the a-phase winding, the second end of the a-phase protection switch is connected to the live wire terminal of the a-phase socket, and the b-phase protection switch
  • the first end is connected to the second end of the b-phase winding, the second end of the b-phase protection switch is connected to the live wire terminal of the b-phase socket, the first end of the c-phase protection switch is connected to the c
  • the second end of the phase winding is connected, the second end of the c-phase protection switch is connected to the live wire terminal of the c-phase socket, the a-phase protection switch, the b-phase protection switch and the c-phase protection switch
  • the control terminals are all connected to the controller;
  • the controller is specifically configured to control the protection switch corresponding to the target single-phase electricity to turn off when the current amplified signal and/or voltage amplified signal of the target single-phase electricity do not meet a preset safety standard.
  • the controller is specifically used for:
  • the protection switch circuit In response to the output current of the target phase being greater than a preset second high current threshold for more than a preset fifth time, the protection switch circuit is controlled to disconnect the target connection line.
  • the controller is also used for:
  • the output power consumption of the target phase is obtained by multiplying the output voltage of the target phase by the output current of the target phase and then multiplying by the output power factor.
  • the controller also includes:
  • the controller is also used for performing data communication with the external device through the communication interface, so as to complete corresponding processing functions.
  • the controller also includes:
  • Expansion interface connected with the display
  • the controller is also used to control the display to display specified content through the expansion interface.
  • the communication interface includes:
  • An Ethernet interface for remote communication with an upper computer through an Ethernet connection; the upper computer is used to remotely access the controller through the Ethernet to obtain relevant control information of the controller;
  • a serial communication interface connected to a second PC; the second PC is used to upgrade the firmware of the controller through the serial communication interface.
  • Fig. 1 is a structural schematic diagram of a delta connection method in the prior art
  • Fig. 2 is a structural schematic diagram of a star connection method in the prior art
  • Fig. 3 is a schematic structural diagram of a power distributor according to one or more embodiments.
  • Fig. 4 is a schematic structural diagram of a primary side of a distribution transformer according to one or more embodiments
  • Fig. 5 is a schematic structural diagram of a power distributor according to one or more embodiments.
  • Fig. 6 is a schematic structural diagram of a power distributor according to one or more embodiments.
  • FIG. 7 is a schematic structural diagram of a voltage and current detection circuit of a three-phase winding on the secondary side of a distribution transformer according to one or more embodiments;
  • Fig. 8 is a schematic structural diagram of voltage and current detection circuits of three single-phase sockets according to one or more embodiments
  • Fig. 9 is a structural schematic diagram of six star switches driven by a controller according to one or more embodiments.
  • Fig. 10 is a schematic structural diagram of a controller according to one or more embodiments.
  • Fig. 11 is a star connection diagram of a power distributor according to one or more embodiments.
  • Fig. 12 is a delta connection diagram of a power distributor according to one or more embodiments.
  • Fig. 13 is a protection diagram of phase A of the star connection method of the power distributor according to one or more embodiments
  • Fig. 14 is a B-phase protection diagram of the delta connection method of the power distributor according to one or more embodiments.
  • Fig. 15 is a protection diagram of phase C in a star connection method of a power distributor according to one or more embodiments.
  • FIG. 3 is a schematic structural diagram of a power distributor provided in an embodiment of the present application.
  • This power splitter includes:
  • any target single-phase socket in the three single-phase sockets S is used to connect electrical equipment that meets the voltage of the target single-phase socket;
  • a star switch circuit 100 respectively connected to the three-phase winding on the secondary side of the distribution transformer and three single-phase sockets S;
  • a delta switch circuit 200 connected to the three-phase windings and three single-phase sockets S respectively;
  • the controller 300 connected to the star switch circuit 100 and the delta switch circuit 200 respectively is used to control the star switch circuit 100 or the delta switch circuit 200 to connect according to the current three-phase electrical wiring requirements of the power distributor, so as to connect the three-phase
  • the windings are connected according to the target wiring mode that meets the three-phase electrical wiring requirements, and the three-phase electricity under the target wiring mode is supplied to three single-phase sockets S one by one.
  • the power distributor of the present application includes three single-phase sockets S, a star switch circuit 100, a delta switch circuit 200 and a controller 300, and its working principle is as follows:
  • the star switch circuit 100 is respectively connected to the three-phase winding on the secondary side of the distribution transformer and three single-phase sockets S.
  • the delta switch circuit 200 is connected to the three-phase winding on the secondary side of the distribution transformer and three single-phase sockets S respectively.
  • the controller 300 controls the connection of the star switch circuit 100 or the delta switch circuit 200 according to the current three-phase electrical wiring requirements of the power distributor, so as to connect the three-phase windings on the secondary side of the distribution transformer according to the target of meeting the three-phase electrical wiring requirements.
  • the wiring mode is connected, and the three-phase power under the target wiring mode is supplied to the three single-phase sockets S one by one, so as to supply power for the electrical equipment connected to each of the three single-phase sockets S.
  • the controller 300 controls the star switch circuit 100 to turn on when the current three-phase electrical wiring demand of the power distributor is a star wiring demand, so that the three-phase windings on the secondary side of the distribution transformer are phased in accordance with the star wiring mode. Connect, and supply the three-phase power under the star connection mode to three single-phase sockets S one by one.
  • the controller 300 controls the delta switch circuit 200 to be turned on when the current three-phase electrical wiring demand of the power distributor is a delta wiring demand, so as to connect the three-phase windings on the secondary side of the distribution transformer according to the delta connection mode, and connect the delta The three-phase electricity under the wiring mode is supplied to three single-phase sockets S one by one.
  • the star switch circuit 100 and the delta switch circuit 200 are not turned on at the same time.
  • the advantage of the star connection method is that it allows different voltages to be applied to each phase. For example, in the common 230/400V three-phase AC, 230V is added to the neutral point and any one phase, and 400V is added to the remaining two phases. Voltage.
  • the advantage of the delta connection is that even if one of the three phases fails, the entire system can still operate (the efficiency is 57.7% of the original).
  • there are two types of power distributors namely basic power distributors and intelligent power distributors (Smart PDU). Although both can provide reliable power distribution for key equipment in the rack or cabinet, Smart PDU provides more functions, so this application adopts Smart PDU for improvement.
  • the wiring method of the three-phase windings on the primary side of the distribution transformer is best to use the star connection method, which has the following advantages: 1) Reduce harmonic currents and improve the quality of power supply sine waves; 2) Zero-sequence impedance 3) Under the condition of three-phase unbalanced load, the transformer capacity can be fully utilized, and the transformer loss can be reduced at the same time.
  • the power distributor of the present application supports delta connection mode and star connection mode at the same time, and can automatically select the corresponding wiring mode according to the current three-phase electrical wiring requirements of the power distributor, so there is no need to redeploy the PDU, thereby saving deployment time , improving deployment efficiency.
  • FIG. 5 is a schematic structural diagram of a power distributor provided by an embodiment of the present application.
  • the three-phase winding includes a-phase winding, b-phase winding and c-phase winding;
  • the three single-phase sockets S include a-phase socket Sa, b-phase socket Sb and c-phase Socket Sc;
  • the star switch circuit 100 includes a first star switch YSW1, a second star switch YSW2, a third star switch YSW3, a fourth star switch YSW4, a fifth star switch YSW5 and a sixth star switch YSW6; in:
  • the first end of the first star switch YSW1 is connected to the first end of the a-phase winding, the second end of the a-phase winding is connected to the live wire terminal of the a-phase socket Sa, and the first end of the second star switch YSW2 is connected to the b-phase
  • the first end of the winding is connected, the second end of the b-phase winding is connected to the live wire terminal of the b-phase socket Sb
  • the first end of the third star switch YSW3 is connected to the first end of the c-phase winding, the second end of the c-phase winding
  • the terminal is connected to the live wire terminal of the c-phase socket Sc
  • the first end of the fourth star switch YSW4 is connected to the neutral line terminal of the a-phase socket Sa
  • the first end of the fifth star switch YSW5 is connected to the neutral line terminal of the b-phase socket Sb connection
  • the first terminal of the sixth star switch YSW6 is connected to the neutral line terminal
  • the controller 300 is specifically configured to control the six star switches in the star switch circuit 100 to be turned on if the current three-phase electrical connection requirement of the power distributor is a star connection requirement.
  • the star switch circuit 100 of the present application includes a first star switch YSW1, a second star switch YSW2, a third star switch YSW3, a fourth star switch YSW4, a fifth star switch YSW5 and a sixth star switch YSW5.
  • Switch YSW6 its working principle is:
  • the controller 300 controls the first star switch YSW1, the second star switch YSW2, the third star switch YSW3, the fourth star switch YSW4, Both the fifth star switch YSW5 and the sixth star switch YSW6 are turned on to connect the three-phase windings on the secondary side of the distribution transformer according to the star connection mode (the star connection mode refers to connecting the three-phase windings on the secondary side of the distribution transformer The three-phase ends of the phase winding are connected together, and the first end of the three phases is the power supply end.
  • the three-phase winding includes a-phase winding, b-phase winding and c-phase winding;
  • the three single-phase sockets S include a-phase socket Sa, b-phase socket Sb and c-phase socket Sc;
  • the triangular switch circuit 200 includes a first delta switch ⁇ SW1, a second delta switch ⁇ SW2, a third delta switch ⁇ SW3, a fourth delta switch ⁇ SW4, a fifth delta switch ⁇ SW5 and a sixth delta switch ⁇ SW6;
  • the first end of the first triangular switch ⁇ SW1 is respectively connected to the second end of the a-phase winding, the live wire terminal of the a-phase socket Sa and the first end of the sixth triangular switch ⁇ SW6, and the second end of the first triangular switch ⁇ SW1 is connected to the b-phase
  • the first end of the winding is connected, the first end of the second delta switch ⁇ SW2 is respectively connected to the second end of the b-phase winding, the live wire terminal of the b-phase socket Sb, and the first end of the fourth delta switch ⁇ SW4, the second delta switch ⁇ SW2
  • the second end of the second end is connected to the first end of the c-phase winding, and the first end of the third delta switch ⁇ SW3 is respectively connected to the second end of the c-phase winding, the live wire terminal of the c-phase socket Sc and the first end of the fifth delta switch ⁇ SW5 connection, the second end of the third delta switch ⁇ SW3 is connected to the first end of
  • the controller 300 is specifically configured to control the six delta switches in the delta switch circuit 200 to be turned on if the current three-phase electrical connection requirement of the power distributor is a delta connection requirement.
  • the delta switch circuit 200 of the present application includes a first delta switch ⁇ SW1, a second delta switch ⁇ SW2, a third delta switch ⁇ SW3, a fourth delta switch ⁇ SW4, a fifth delta switch ⁇ SW5 and a sixth delta switch ⁇ SW6. for:
  • the controller 300 controls the first delta switch ⁇ SW1, the second delta switch ⁇ SW2, the third delta switch ⁇ SW3, the fourth delta switch ⁇ SW4, and the fifth delta switch ⁇ SW5 when the current three-phase electrical connection demand of the power distributor is a delta connection demand.
  • the delta connection method refers to connecting the three-phase windings on the secondary side of the distribution transformer from the end to the end, three The end point is the power supply end, at this time there is only one voltage level, the line voltage is equal to the phase voltage, and the line current is equal to about 1.73 times the phase current), and the three-phase electricity under the delta connection mode is supplied to three single-phase sockets one by one S .
  • FIG. 6 is a schematic structural diagram of another power distributor provided by an embodiment of the present application.
  • the power distributor also includes:
  • a voltage and current detection circuit 400 connected to the three-phase winding and three single-phase sockets S respectively, for detecting the input voltage of each phase, the input current of each phase, the output voltage of each phase and the output current of each phase of the power distributor;
  • Protective switch circuits 501, 502 arranged on the connecting lines between the three-phase windings and the three single-phase sockets S and connected to the controller 300;
  • the controller 300 is also used to control the protection switch circuits 501, 502 to disconnect the target phase when the input voltage and/or input current and/or output voltage and/or output current of any target phase of the power distributor does not meet the preset safety standard.
  • the power distributor of the present application also includes a voltage and current detection circuit 400 and protection switch circuits 501 and 502, the working principle of which is as follows:
  • the protection switch circuits 501 and 502 are arranged on the connecting lines between the three-phase windings on the secondary side of the distribution transformer and the three single-phase sockets S.
  • the voltage and current detection circuit 400 can detect the input voltage of each phase, the input current of each phase, the output voltage of each phase and the output current of each phase of the power distributor, and the input voltage of each phase, the input current of each phase, and the output of each phase of the power distributor The voltage and the output current of each phase are provided to the controller 300 .
  • the controller 300 controls the protection switch circuits 501 and 502 to cut off Open the target connection line between the target phase winding and the target phase socket.
  • the controller 300 controls the protection switch circuits 501 and 502 to shut off Open the a-phase connection line between the a-phase winding and the a-phase socket Sa.
  • the controller 300 controls the protection switch circuits 501 and 502 to disconnect b The b-phase connection line between the phase winding and the b-phase socket Sb.
  • the controller 300 controls the protection switch circuits 501 and 502 to disconnect c The c-phase connection line between the phase winding and the c-phase socket Sc.
  • Figure 7 is a schematic structural diagram of a voltage and current detection circuit 400 for a three-phase winding on the secondary side of a distribution transformer provided by an embodiment of the present application; A schematic structural diagram of the voltage and current detection circuit 400 for three single-phase sockets.
  • the voltage and current detection circuit 400 includes three sub-detection circuits for detecting the three single-phase electricity input by the three-phase winding and one for detecting the single-phase electricity output by each of the three single-phase sockets S Three sub-detection circuits; each sub-detection circuit consists of:
  • the current sensing element CS is used to detect the current signal of the corresponding target single-phase electricity
  • the first differential amplifier A1 connected to the current sensing element CS is used to amplify the current signal to obtain the current amplified signal;
  • the voltage sensing element VS is used to detect the voltage signal of the target single-phase electricity.
  • the second differential amplifier A2 connected to the voltage sensing element VS is used to amplify the voltage signal to obtain a voltage amplified signal;
  • the three-phase winding includes a-phase winding, b-phase winding and c-phase winding;
  • the three single-phase sockets S include a-phase socket Sa, b-phase socket Sb and c-phase socket Sc;
  • the protection switch circuit includes a-phase protection switches Breaker1, b Phase protection switch Breaker2 and c-phase protection switch Breaker3;
  • the first end of the a-phase protection switch Breaker1 is connected to the second end of the a-phase winding, the second end of the a-phase protection switch Breaker1 is connected to the live wire terminal of the a-phase socket Sa, and the first end of the b-phase protection switch Breaker2 is connected to the b-phase
  • the second end of the winding is connected, the second end of the b-phase protection switch Breaker2 is connected to the live wire terminal of the b-phase socket Sb, the first end of the c-phase protection switch Breaker3 is connected to the second end of the c-phase winding, and the c-phase protection switch Breaker3
  • the second terminal of the second terminal of the c-phase socket Sc is connected to the live wire terminal, and the control terminals of the a-phase protection switch Breaker1, the b-phase protection switch Breaker2 and the c-phase protection switch Breaker3 are all connected to the controller 300;
  • the controller 300 is specifically configured to control the protection switch corresponding to the target single-phase power to be turned off when the current amplified signal and/or the voltage amplified signal of the target single-phase power do not meet the preset safety standard.
  • the voltage and current detection circuit 400 of the present application includes three sub-detection circuits (as shown in FIG. Three sub-detection circuits (as shown in FIG. 8 ) for the single-phase electricity respectively output by the single-phase socket S; each sub-detection circuit includes a current sensing element CS, a first differential amplifier A1, a voltage sensing element VS and a second The differential amplifier A2; the protection switch circuit includes a-phase protection switch Breaker1, b-phase protection switch Breaker2 and c-phase protection switch Breaker3, and its working principle is as follows:
  • the current sensing element CS detects the current signal of the a-phase electricity input by the a-phase winding, and converts the a-phase electricity
  • the current signal is input to the first differential amplifier A1; the first differential amplifier A1 amplifies the current signal of phase a to obtain the amplified current signal of phase a, and provides the amplified current signal of phase a to the controller 300 (such as MCU (Microcontroller Unit, microprocessor), through the ADC (Analog-to-digital converter, analog-to-digital converter) interface to receive the detection signal);
  • the voltage sensing element VS detects the voltage signal of a-phase electricity input by the a-phase winding, and sends
  • the voltage signal of phase a is input to the second differential amplifier A2; the second differential amplifier A2 amplifies the voltage signal of phase a to obtain the amplified voltage signal
  • each sub-detection circuit may further include a resistor R1 and a transient diode TVS connected in parallel with the voltage sensing element VS, and may also include resistors R2 and R3 provided at the input terminals of the first differential amplifier A1 and the second differential amplifier A2 , R4, R5; Among them, the resistor R1 is used to match the input impedance and improve the measurement accuracy; the transient diode TVS is used to resist lightning; the resistors R2, R3, R4, and R5 are used to limit the current.
  • each switch in the star switch circuit 100, the delta switch circuit 200 and the protection switch circuit of the present application can have three options: relay, electromagnetic contact switch and IGBT (Insulated Gate Bipolar Transistor, insulated gate bipolar transistor) switch.
  • relay electromagnetic contact switch
  • IGBT Insulated Gate Bipolar Transistor, insulated gate bipolar transistor
  • the relay also known as the relay, is an electronic control component. It has a control system (also known as the input circuit) and a controlled system (also known as the output circuit). It is usually used in automatic control circuits. It actually uses a smaller It is an automatic switch that controls the large current, so it plays the role of automatic adjustment, safety protection, conversion circuit, etc. in the circuit.
  • the electromagnetic contact switch is a switch controlled by an electromagnet, that is, a combination of an electromagnet and a switch.
  • electromagnet coil When the electromagnet coil is energized, electromagnetic attraction is generated, and the movable iron core pushes or pulls the switch contacts to close, thereby connecting the controlled circuit.
  • Electromagnetic switches are widely used in various industries, the most common being contactors in the industrial field.
  • the electromagnetic switch is the control switch on the starter, and it is one of the three major components of the starter (DC motor, transmission meshing mechanism, electromagnetic switch).
  • the transmission meshing mechanism moves the starter pinion forward to mesh with the flywheel ring gear of the engine, and on the other hand, pushes the switch contact to connect to make the DC motor energize and run, thereby driving the engine to start.
  • IGBT switch is a kind of semiconductor device, which is mainly used for the output control of AC motors of electric vehicles, railway locomotives and EMUs.
  • the traditional BJT Bipolar Junction Transistor, Bipolar Junction Transistor
  • MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor, Metal-Oxide-Semiconductor Field-Effect Transistor
  • IGBT combines the advantages of both: not only the driving current is small, but also the on-resistance is very low.
  • Relays and electromagnetic contact switches are generally composed of iron cores, coils, armatures, contact reeds, etc., with mechanical movement, including moving parts, contacts, and sparks when switching, so the response speed is slow and the life is short.
  • the IGBT switch can be regarded as a kind of solid state relay, which is a kind of relay without mechanical movement and no moving parts, but it has essentially the same function as the electromagnetic relay.
  • Solid state relay is a non-contact switch assembly composed of solid-state electronic components. It uses the electrical, magnetic and optical characteristics of electronic components to complete the isolation of input and output.
  • Solid state relays have high agility, low control power, relatively long life, and good reliability. The switching speed can reach several milliseconds to several microseconds. Most of the AC output solid state relay is a zero voltage switch, which is turned on at zero voltage and turned off at zero current, which reduces the sudden interruption of the current waveform, thereby reducing the switching transient effect. Therefore, the switch in this application is preferably an IGBT switch.
  • the controller (such as MCU) generates six PWM (Pulse Width Modulation, pulse width modulation) signals from one to six IGBT switches (here referred to as star switches) through the IGBT drive circuit to drive six IGBT switches connection status.
  • PWM Pulse Width Modulation, pulse width modulation
  • star switches the three-phase windings on the secondary side of the distribution transformer are connected in a star connection.
  • the voltage and current detection circuit can detect the voltage/current signal input by each phase winding on the secondary side of the distribution transformer, and feed back the detected voltage/current signal to the MCU.
  • the MCU adjusts the PWM signal generated by the IGBT drive circuit according to the feedback voltage/current signal, so that each phase winding on the secondary side of the distribution transformer inputs the target voltage/current signal.
  • controller 300 is specifically used for:
  • the protection switch circuit In response to the output current of the target phase being greater than the preset second high current threshold for more than a preset fifth time, the protection switch circuit is controlled to disconnect the target connection line.
  • the criteria for the controller 300 to judge whether the input and output of any target phase are normal are as follows:
  • the control protection switch circuit turns off the corresponding protection switch of the target, and the single-phase socket of the target phase has no output.
  • the input UVP (Under Voltage Protection, undervoltage protection) of the target phase will control the protection switch circuit to disconnect the corresponding protection switch of the target, and the single-phase socket of the target phase will have no output.
  • the preset low voltage threshold such as 90% of the input nominal voltage of the target phase
  • the duration of being less than the preset low voltage threshold exceeds the preset second time (such as 20ms)
  • the control protection switch circuit turns off the corresponding protection switch of the target, and the single-phase socket of the target phase has no output.
  • the protection switch circuit If the output voltage of the target phase is greater than the preset second high voltage threshold (such as 250Vac), and the time that is greater than the preset second high voltage threshold exceeds the preset fourth time (such as 20ms), it is regarded as the output OVP of the target phase , then control the protection switch circuit to disconnect the protection switch corresponding to the target, and the single-phase socket of the target phase has no output.
  • the preset second high voltage threshold such as 250Vac
  • the preset fourth time such as 20ms
  • the protection switch circuit If the output current of the target phase is greater than the preset second high current threshold (such as 10A), and the time that is greater than the preset second high current threshold exceeds the preset fifth time (such as 20ms), it is regarded as the output OCP of the target phase , then control the protection switch circuit to disconnect the protection switch corresponding to the target, and the single-phase socket of the target phase has no output.
  • the preset second high current threshold such as 10A
  • the preset fifth time such as 20ms
  • controller 300 is also used for:
  • FIG. 10 is a schematic structural diagram of a controller provided by an embodiment of the present invention.
  • controller 300 also includes:
  • a communication interface 301 connected with external equipment
  • the controller 300 is also configured to perform data communication with external devices through the communication interface 301 to complete corresponding processing functions.
  • controller 300 of the present application further includes a communication interface 301, which is connected to external devices, and the controller 300 can perform data communication with the external devices through the communication interface 301 to complete corresponding processing functions.
  • controller 300 also includes:
  • An extension interface 302 connected to the display
  • the controller 300 is also configured to control the display to display specified content through the extension interface 302 .
  • controller 300 of the present application further includes an extension interface 302 , which is connected to the display, and the controller 300 can control the display to display specified content through the extension interface 302 .
  • controller 300 drives an 8-bit data bus LCD (such as Liquid Crystal Display, liquid crystal display) screen through the expansion interface, and simultaneously supports the basic drawing operation of GUI (Graphical User Interface, Graphical User Interface).
  • LCD liquid Crystal Display
  • GUI Graphical User Interface
  • the communication interface 301 includes:
  • the Ethernet interface for realizing remote communication with the host computer by accessing the Ethernet; the host computer is used to remotely access the controller 300 through the Ethernet to obtain relevant control information of the controller 300;
  • the communication interface 301 of the controller 300 includes an Ethernet interface (such as an RJ45 interface, which supports 10M and 100M adaptive network connection speeds, and there are two types of common RJ45 interfaces: DTE (Data Terminal) for Ethernet network cards Equipment, data terminal equipment) type, DTE type used for router Ethernet interface, connect the RJ45 pin to the controller communication pin through a set of isolation transformers), GUI interface and serial communication interface (such as RS232 interface).
  • Ethernet interface such as an RJ45 interface, which supports 10M and 100M adaptive network connection speeds, and there are two types of common RJ45 interfaces: DTE (Data Terminal) for Ethernet network cards Equipment, data terminal equipment) type, DTE type used for router Ethernet interface, connect the RJ45 pin to the controller communication pin through a set of isolation transformers), GUI interface and serial communication interface (such as RS232 interface).
  • DTE Data Terminal
  • DTE type used for router Ethernet interface
  • GUI interface such as RS232 interface
  • the Ethernet interface realizes remote communication with the upper computer by accessing the Ethernet, and the upper computer can remotely access the controller 300 through the Ethernet to obtain relevant control information (such as logs, events, alarms, notifications, etc.) of the controller 300, or A control instruction is sent to the controller 300 through the Ethernet, so that the controller 300 performs a corresponding control operation according to the control instruction.
  • relevant control information such as logs, events, alarms, notifications, etc.
  • the GUI interface is connected with the first PC (Personal Computer, personal computer), and the first PC can send user instructions to the controller 300 through the GUI interface, so that the controller 300 performs corresponding control operations according to the user instructions.
  • the first PC may send a display instruction including the target display content to the controller 300 through the GUI interface, so that the controller 300 controls the display to display the target display content according to the display instruction.
  • the serial communication interface is connected with the second PC, and the second PC can upgrade the firmware of the controller 300 through the serial communication interface.
  • the controller 300 can also include EEPROM (Electrically-Erasable Programmable Read-Only Memory, electronically erasable rewritable read-only memory) 303, and the controller 300 can input and output voltage/current/power and PDU connection status of each phase Stored in the EEPRM 303, the content stored in the EEPRM 303 can also be displayed on the LCD screen.
  • the controller 300 can also be connected with some function switches. If different function switches are turned on, and the display needs to display different display contents, the controller 300 can control the display to display corresponding display contents according to the conduction of the function switches.
  • the controller 300 can also be connected with the indicator light, and the controller 300 can control the indicator light to be on when the input voltage of any target phase is overvoltage or input voltage undervoltage or the input current is overcurrent or the output voltage is overvoltage or the output current is overcurrent. Act as an alarm.
  • FIG 12 it is a triangle connection diagram of the power distributor.
  • the controller opens YSW1 ⁇ YSW6 (not shown in Figure 12 because of the open circuit), ⁇ SW1 ⁇ SW6 starts and continues to be connected, and Breaker1 ⁇ Breaker3 are kept connected. , only disconnect when there is protection.
  • FIG 14 it is the B-phase protection diagram of the delta connection method of the power distributor.
  • the controller opens YSW1 ⁇ YSW6 (not shown in Figure 14 because of the open circuit), ⁇ SW1 ⁇ SW6 starts and continues to be on, and Breaker2 protection is off , Breaker1 and Breaker3 all remain on.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本申请公开了一种电源分配器,包括三个单相插座、星型开关电路、三角形开关电路及控制器。控制器用于根据电源分配器当前的三相电接线需求相应控制星型开关电路或三角形开关电路接通,以将配电变压器二次侧的三相绕组按照符合三相电接线需求的目标接线方式相连接,并将目标接线方式下的三相电一一供至三个单相插座。本申请的电源分配器同时支持三角形接线方式和星型接线方式,并可根据电源分配器当前的三相电接线需求自动选用相应的接线方式,不必重新部署PDU,节约部署时间,提高部署效率。

Description

一种电源分配器
相关申请的交叉引用
本申请要求于2021年12月24日提交中国专利局,申请号为202111593762.3,申请名称为“一种电源分配器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及数据中心技术领域,特别是涉及一种用电源分配器。
背景技术
目前,数据中心都采用三相供电。三相电的接线方式分为三角形接法(Δ)和星型接法(Y)两种。如图1所示,为三角形接法,三角形接法即为各相电源或负载依次首尾相连,形成一个三角环。如图2所示,为星型接法,星型接法即为各相电源或负载的一端连接在一点,形成一个中性点,这种接法又称为三相三线制;如果从该中性点再引出一条中性线,则整个结构变为三相四线制。三角形接法由于各相首尾相连,所以只能存在一种电压,而星型接法允许对各相加上不同的电压。
在数据中心中,通常采用配电变压器结合PDU(Power Distribution Units,电源分配器)的方式向机架或机柜内的用电设备配电。配电变压器用于根据数据中心的配电需求将一次侧输入的三相电进行变压操作,并将变压后的三相电经二次侧输入至PDU。PDU分为三角形接法的PDU和星型接法的PDU两种,需提前根据数据中心对PDU的三相电接线需求部署相应接线的PDU。PDU用于将配电变压器二次侧的三相绕组按照自身接线方式相连接,并得到相应接线的三相电输出。可以理解的是,PDU输出的三相电即为三个单相电,每个单相电均可供符合此单相电电压的用电设备使用。需要说明的是,单个PDU只支持一种接线方式,所以如果数据中心对PDU的三相电接线需求改变,则需要重新部署相应接线的PDU,但是,发明人意识到,重新部署PDU需改接电路的连接线,这并不容易实现,导致部署时间较长,部署效率较低。
因此,如何提供一种解决上述技术问题的方案是本领域的技术人员目前需要解决的问题。
发明内容
本申请提供了一种电源分配器,包括:
三个单相插座;三个所述单相插座中任一目标单相插座均用于接入符合所述目标单相插座的电压的用电设备;
分别与配电变压器二次侧的三相绕组和三个所述单相插座连接的星型开关电路;
分别与所述三相绕组和三个所述单相插座连接的三角形开关电路;及
分别与所述星型开关电路和所述三角形开关电路连接的控制器,用于根据所述电源分配器当前的三相电接线需求相应控制所述星型开关电路或所述三角形开关电路接通,以将所述三相绕组按照符合所述三相电接线需求的目标接线方式相连接,并将所述目标接线方式下的三相电一一供至三个所述单相插座。
在一个或多个实施例中,所述三相绕组包括a相绕组、b相绕组及c相绕组;三个所述单相插座包括a相插座、b相插座及c相插座;所述星型开关电路包括第一星型开关、第二星型开关、第三星型开关、第四 星型开关、第五星型开关及第六星型开关;其中:
所述第一星型开关的第一端与所述a相绕组的第一端连接,所述a相绕组的第二端与所述a相插座的火线端子连接,所述第二星型开关的第一端与所述b相绕组的第一端连接,所述b相绕组的第二端与所述b相插座的火线端子连接,所述第三星型开关的第一端与所述c相绕组的第一端连接,所述c相绕组的第二端与所述c相插座的火线端子连接,所述第四星型开关的第一端与所述a相插座的零线端子连接,所述第五星型开关的第一端与所述b相插座的零线端子连接,所述第六星型开关的第一端与所述c相插座的零线端子连接,所述第一星型开关至所述第六星型开关的第二端相连接,所述第一星型开关至所述第六星型开关的控制端均与所述控制器连接,所述a相插座、所述b相插座及所述c相插座的地线端子均接地;
则所述控制器具体用于若所述电源分配器当前的三相电接线需求为星型接线需求,则控制所述星型开关电路内六个星型开关均接通。
在一个或多个实施例中,所述三相绕组包括a相绕组、b相绕组及c相绕组;三个所述单相插座包括a相插座、b相插座及c相插座;所述三角形开关电路包括第一三角形开关、第二三角形开关、第三三角形开关、第四三角形开关、第五三角形开关及第六三角形开关;其中:
所述第一三角形开关的第一端分别与所述a相绕组的第二端、所述a相插座的火线端子及所述第六三角形开关的第一端连接,所述第一三角形开关的第二端与所述b相绕组的第一端连接,所述第二三角形开关的第一端分别与所述b相绕组的第二端、所述b相插座的火线端子及所述第四三角形开关的第一端连接,所述第二三角形开关的第二端与所述c相绕组的第一端连接,所述第三三角形开关的第一端分别与所述c相绕组的第二端、所述c相插座的火线端子及所述第五三角形开关的第一端连接,所述第三三角形开关的第二端与所述a相绕组的第一端连接,所述第四三角形开关的第二端与所述a相插座的零线端子连接,所述第五三角形开关的第二端与所述b相插座的零线端子连接,所述第六三角形开关的第二端与所述c相插座的零线端子连接,所述a相插座、所述b相插座及所述c相插座的地线端子均接地;
则所述控制器具体用于若所述电源分配器当前的三相电接线需求为三角形接线需求,则控制所述三角形开关电路内六个三角形开关均接通。
在一个或多个实施例中,所述电源分配器还包括:
分别与所述三相绕组和三个所述单相插座连接的电压电流检测电路,用于检测所述电源分配器的各相输入电压、各相输入电流、各相输出电压及各相输出电流;及
设于所述三相绕组与三个所述单相插座之间的连接线路上、且与所述控制器连接的保护开关电路;
所述控制器还用于当所述电源分配器的任一目标相的输入电压和/或输入电流和/或输出电压和/或输出电流不满足预设安全标准时,控制所述保护开关电路断开目标相绕组与目标相插座之间的目标连接线路。
在一个或多个实施例中,所述电压电流检测电路包括一一检测所述三相绕组输入的三个单相电的三个子检测电路及一一检测三个所述单相插座各自输出的单相电的三个子检测电路;每个所述子检测电路均包括:
电流感测元件,用于检测对应的目标单相电的电流信号;
与所述电流感测元件连接的第一差动放大器,用于将所述电流信号进行放大处理,得到电流放大信号;
电压感测元件,用于检测所述目标单相电的电压信号;及
与所述电压感测元件连接的第二差动放大器,用于将所述电压信号进行放大处理,得到电压放大信 号;
且所述三相绕组包括a相绕组、b相绕组及c相绕组;三个所述单相插座包括a相插座、b相插座及c相插座;所述保护开关电路包括a相保护开关、b相保护开关及c相保护开关;其中:
所述a相保护开关的第一端与所述a相绕组的第二端连接,所述a相保护开关的第二端与所述a相插座的火线端子连接,所述b相保护开关的第一端与所述b相绕组的第二端连接,所述b相保护开关的第二端与所述b相插座的火线端子连接,所述c相保护开关的第一端与所述c相绕组的第二端连接,所述c相保护开关的第二端与所述c相插座的火线端子连接,所述a相保护开关、所述b相保护开关及所述c相保护开关的控制端均与所述控制器连接;
则所述控制器具体用于当所述目标单相电的电流放大信号和/或电压放大信号不满足预设安全标准时,控制所述目标单相电对应的保护开关断开。
在一个或多个实施例中,所述控制器具体用于:
响应于所述目标相的输入电压持续大于预设第一高电压阈值的时间超过预设第一时间,控制所述保护开关电路断开所述目标连接线路;
响应于所述目标相的输入电压持续小于预设低电压阈值的时间超过预设第二时间,控制所述保护开关电路断开所述目标连接线路;
响应于所述目标相的输入电流持续大于预设第一高电流阈值的时间超过预设第三时间,控制所述保护开关电路断开所述目标连接线路;
响应于所述目标相的输出电压持续大于预设第二高电压阈值的时间超过预设第四时间,控制所述保护开关电路断开所述目标连接线路;
响应于所述目标相的输出电流持续大于预设第二高电流阈值的时间超过预设第五时间,控制所述保护开关电路断开所述目标连接线路。
在一个或多个实施例中,所述控制器还用于:
计算所述目标相的输入电压和输入电流之间的第一相位角差θ1,并基于所述第一相位角差计算所述目标相的输入功率因数COSθ1;
将所述目标相的输入电压乘以所述目标相的输入电流后再乘以所述输入功率因数,得到所述目标相的输入功耗;
计算所述目标相的输出电压和输出电流之间的第二相位角差θ2,并基于所述第二相位角差计算所述目标相的输出功率因数COSθ2;及
将所述目标相的输出电压乘以所述目标相的输出电流后再乘以所述输出功率因数,得到所述目标相的输出功耗。
在一个或多个实施例中,所述控制器还包括:
与外部设备连接的通信接口;
所述控制器还用于通过所述通信接口与所述外部设备进行数据通信,以完成相应处理功能。
在一个或多个实施例中,所述控制器还包括:
与显示器连接的扩展接口;
所述控制器还用于通过所述扩展接口控制所述显示器显示指定内容。
在一个或多个实施例中,所述通信接口包括:
通过接入以太网与上位机实现远程通信的以太网接口;所述上位机用于通过所述以太网远程访问所述控制器,以获取所述控制器的相关控制信息;
与第一PC机连接的GUI接口;所述第一PC机用于通过所述GUI接口向所述控制器发送用户指令,以使所述控制器根据所述用户指令执行相应控制操作;及
与第二PC机连接的串行通信接口;所述第二PC机用于通过所述串行通信接口对所述控制器的固件进行升级。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其它特征和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对现有技术和实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为现有技术中一种三角形接法的结构示意图;
图2为现有技术中一种星型接法的结构示意图;
图3为根据一个或多个实施例中电源分配器的结构示意图;
图4为根据一个或多个实施例中配电变压器一次侧的结构示意图;
图5为根据一个或多个实施例中电源分配器的具体结构示意图;
图6为根据一个或多个实施例中电源分配器的结构示意图;
图7为根据一个或多个实施例中配电变压器二次侧的三相绕组的电压电流检测电路的结构示意图;
图8为根据一个或多个实施例中三个单相插座的电压电流检测电路的结构示意图;
图9为根据一个或多个实施例中控制器驱动六个星型开关的结构示意图;
图10为根据一个或多个实施例中控制器的结构示意图;
图11为根据一个或多个实施例中电源分配器的星型接法图;
图12为根据一个或多个实施例中电源分配器的三角形接法图;
图13为根据一个或多个实施例中电源分配器的星型接法A相保护图;
图14为根据一个或多个实施例中电源分配器的三角形接法B相保护图;
图15为根据一个或多个实施例中电源分配器的星型接法C相保护图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
请参照图3,图3为本申请实施例提供的一种电源分配器的结构示意图。
该电源分配器包括:
三个单相插座S;三个单相插座S中任一目标单相插座均用于接入符合目标单相插座的电压的用电设 备;
分别与配电变压器二次侧的三相绕组和三个单相插座S连接的星型开关电路100;
分别与三相绕组和三个单相插座S连接的三角形开关电路200;及
分别与星型开关电路100和三角形开关电路200连接的控制器300,用于根据电源分配器当前的三相电接线需求相应控制星型开关电路100或三角形开关电路200接通,以将三相绕组按照符合三相电接线需求的目标接线方式相连接,并将目标接线方式下的三相电一一供至三个单相插座S。
具体地,本申请的电源分配器包括三个单相插座S、星型开关电路100、三角形开关电路200及控制器300,其工作原理为:
星型开关电路100分别与配电变压器二次侧的三相绕组和三个单相插座S连接。三角形开关电路200分别与配电变压器二次侧的三相绕组和三个单相插座S连接。控制器300根据电源分配器当前的三相电接线需求相应控制星型开关电路100或三角形开关电路200接通,以将配电变压器二次侧的三相绕组按照符合三相电接线需求的目标接线方式相连接,并将目标接线方式下的三相电一一供至三个单相插座S,以为三个单相插座S各自接入的用电设备供电。
比如,控制器300在电源分配器当前的三相电接线需求为星型接线需求时,控制星型开关电路100接通,以将配电变压器二次侧的三相绕组按照星型接线方式相连接,并将星型接线方式下的三相电一一供至三个单相插座S。控制器300在电源分配器当前的三相电接线需求为三角形接线需求时,控制三角形开关电路200接通,以将配电变压器二次侧的三相绕组按照三角形接线方式相连接,并将三角形接线方式下的三相电一一供至三个单相插座S。
需要说明的是,星型开关电路100和三角形开关电路200不同时接通。星型接线方式的优点在于允许对各相加上不同的电压,如常见的230/400V三相交流电,就是在中性点和任意一相上加上230V,余下的两相各加上400V的电压。三角形接法的优点在于即使三相中有一相失去作用,整个系统仍然可以运作(效率为原来的57.7%)。还需要说明的是,电源分配器有两种型号,分别为基本型电源分配器和智能型电源分配器(Smart PDU)。虽然两者均能够为机架或机柜内的关键设备提供可靠的配电,但Smart PDU提供更多功能,所以本申请采用Smart PDU进行改进。
另外,如图4所示,配电变压器一次侧的三相绕组的接线方式最好选用星型接线方式,具有如下优点:1)降低谐波电流,改善供电正弦波质量;2)零序阻抗小,提高单相短路电流,有利于切除单相接地故障;3)三相不平衡负荷情况下能充分利用变压器容量,同时降低变压器损耗等优点。
可见,本申请的电源分配器同时支持三角形接线方式和星型接线方式,并可根据电源分配器当前的三相电接线需求自动选用相应的接线方式,因此不必重新部署PDU,从而节约了部署时间,提高了部署效率。
在上述实施例的基础上:
请参照图5,图5为本申请实施例提供的一种电源分配器的具体结构示意图。
如图5所示,作为一种可选的实施例,三相绕组包括a相绕组、b相绕组及c相绕组;三个单相插座S包括a相插座Sa、b相插座Sb及c相插座Sc;星型开关电路100包括第一星型开关YSW1、第二星型开关YSW2、第三星型开关YSW3、第四星型开关YSW4、第五星型开关YSW5及第六星型开关YSW6;其中:
第一星型开关YSW1的第一端与a相绕组的第一端连接,a相绕组的第二端与a相插座Sa的火线端子连接,第二星型开关YSW2的第一端与b相绕组的第一端连接,b相绕组的第二端与b相插座Sb的火线端子连接,第三星型开关YSW3的第一端与c相绕组的第一端连接,c相绕组的第二端与c相插座Sc的火线端子连 接,第四星型开关YSW4的第一端与a相插座Sa的零线端子连接,第五星型开关YSW5的第一端与b相插座Sb的零线端子连接,第六星型开关YSW6的第一端与c相插座Sc的零线端子连接,第一星型开关YSW1至第六星型开关YSW6的第二端相连接,第一星型开关YSW1至第六星型开关YSW6的控制端均与控制器300连接,a相插座Sa、b相插座Sb及c相插座Sc的地线端子均接地;
则控制器300具体用于若电源分配器当前的三相电接线需求为星型接线需求,则控制星型开关电路100内六个星型开关均接通。
具体地,本申请的星型开关电路100包括第一星型开关YSW1、第二星型开关YSW2、第三星型开关YSW3、第四星型开关YSW4、第五星型开关YSW5及第六星型开关YSW6,其工作原理为:
控制器300在电源分配器当前的三相电接线需求为星型接线需求时,控制第一星型开关YSW1、第二星型开关YSW2、第三星型开关YSW3、第四星型开关YSW4、第五星型开关YSW5及第六星型开关YSW6均接通,以将配电变压器二次侧的三相绕组按照星型接线方式相连接(星形接线方式指将配电变压器二次侧的三相绕组的三相末端接在一起,三相首端为电源端,这时有两种电压等级,即线电压和相电压,且线电压等于相电压的约1.73倍,线电流等于相电流),并将星型接线方式下的三相电一一供至三个单相插座S。
作为一种可选的实施例,三相绕组包括a相绕组、b相绕组及c相绕组;三个单相插座S包括a相插座Sa、b相插座Sb及c相插座Sc;三角形开关电路200包括第一三角形开关ΔSW1、第二三角形开关ΔSW2、第三三角形开关ΔSW3、第四三角形开关ΔSW4、第五三角形开关ΔSW5及第六三角形开关ΔSW6;其中:
第一三角形开关ΔSW1的第一端分别与a相绕组的第二端、a相插座Sa的火线端子及第六三角形开关ΔSW6的第一端连接,第一三角形开关ΔSW1的第二端与b相绕组的第一端连接,第二三角形开关ΔSW2的第一端分别与b相绕组的第二端、b相插座Sb的火线端子及第四三角形开关ΔSW4的第一端连接,第二三角形开关ΔSW2的第二端与c相绕组的第一端连接,第三三角形开关ΔSW3的第一端分别与c相绕组的第二端、c相插座Sc的火线端子及第五三角形开关ΔSW5的第一端连接,第三三角形开关ΔSW3的第二端与a相绕组的第一端连接,第四三角形开关ΔSW4的第二端与a相插座Sa的零线端子连接,第五三角形开关ΔSW5的第二端与b相插座Sb的零线端子连接,第六三角形开关ΔSW6的第二端与c相插座Sc的零线端子连接,a相插座Sa、b相插座Sb及c相插座Sc的地线端子均接地;
则控制器300具体用于若电源分配器当前的三相电接线需求为三角形接线需求,则控制三角形开关电路200内六个三角形开关均接通。
具体地,本申请的三角形开关电路200包括第一三角形开关ΔSW1、第二三角形开关ΔSW2、第三三角形开关ΔSW3、第四三角形开关ΔSW4、第五三角形开关ΔSW5及第六三角形开关ΔSW6,其工作原理为:
控制器300在电源分配器当前的三相电接线需求为三角形接线需求时,控制第一三角形开关ΔSW1、第二三角形开关ΔSW2、第三三角形开关ΔSW3、第四三角形开关ΔSW4、第五三角形开关ΔSW5及第六三角形开关ΔSW6均接通,以将配电变压器二次侧的三相绕组按照三角形接线方式相连接(三角形接线方式指将配电变压器二次侧的三相绕组首尾互相连接,三个端点为电源端,这时只有一种电压等级,线电压等于相电压,线电流等于相电流的约1.73倍),并将三角形接线方式下的三相电一一供至三个单相插座S。
请参照图6,图6为本申请实施例提供的另一种电源分配器的结构示意图。
作为一种可选的实施例,电源分配器还包括:
分别与三相绕组和三个单相插座S连接的电压电流检测电路400,用于检测电源分配器的各相输入电压、各相输入电流、各相输出电压及各相输出电流;
设于三相绕组与三个单相插座S之间的连接线路上、且与控制器300连接的保护开关电路501、502;
控制器300还用于当电源分配器的任一目标相的输入电压和/或输入电流和/或输出电压和/或输出电流不满足预设安全标准时,控制保护开关电路501、502断开目标相绕组与目标相插座之间的目标连接线路。
进一步地,本申请的电源分配器还包括电压电流检测电路400和保护开关电路501、502,其工作原理为:
保护开关电路501、502设于配电变压器二次侧的三相绕组与三个单相插座S之间的连接线路上。电压电流检测电路400可检测电源分配器的各相输入电压、各相输入电流、各相输出电压及各相输出电流,并将电源分配器的各相输入电压、各相输入电流、各相输出电压及各相输出电流提供给控制器300。控制器300当电源分配器的任一相(称为目标相)的输入电压和/或输入电流和/或输出电压和/或输出电流不满足预设安全标准时,控制保护开关电路501、502断开目标相绕组与目标相插座之间的目标连接线路。
比如,控制器300当电源分配器的a相输入电压和/或a相输入电流和/或a相输出电压和/或a相输出电流不满足预设安全标准时,控制保护开关电路501、502断开a相绕组与a相插座Sa之间的a相连接线路。控制器300当电源分配器的b相输入电压和/或b相输入电流和/或b相输出电压和/或b相输出电流不满足预设安全标准时,控制保护开关电路501、502断开b相绕组与b相插座Sb之间的b相连接线路。控制器300当电源分配器的c相输入电压和/或c相输入电流和/或c相输出电压和/或c相输出电流不满足预设安全标准时,控制保护开关电路501、502断开c相绕组与c相插座Sc之间的c相连接线路。
请参照图7及图8,图7为本申请实施例提供的一种配电变压器二次侧的三相绕组的电压电流检测电路400的结构示意图;图8为本申请实施例提供的一种三个单相插座的电压电流检测电路400的结构示意图。
作为一种可选的实施例,电压电流检测电路400包括一一检测三相绕组输入的三个单相电的三个子检测电路及一一检测三个单相插座S各自输出的单相电的三个子检测电路;每个子检测电路均包括:
电流感测元件CS,用于检测对应的目标单相电的电流信号;
与电流感测元件CS连接的第一差动放大器A1,用于将电流信号进行放大处理,得到电流放大信号;
电压感测元件VS,用于检测目标单相电的电压信号;及
与电压感测元件VS连接的第二差动放大器A2,用于将电压信号进行放大处理,得到电压放大信号;
且三相绕组包括a相绕组、b相绕组及c相绕组;三个单相插座S包括a相插座Sa、b相插座Sb及c相插座Sc;保护开关电路包括a相保护开关Breaker1、b相保护开关Breaker2及c相保护开关Breaker3;其中:
a相保护开关Breaker1的第一端与a相绕组的第二端连接,a相保护开关Breaker1的第二端与a相插座Sa的火线端子连接,b相保护开关Breaker2的第一端与b相绕组的第二端连接,b相保护开关Breaker2的第二端与b相插座Sb的火线端子连接,c相保护开关Breaker3的第一端与c相绕组的第二端连接,c相保护开关Breaker3的第二端与c相插座Sc的火线端子连接,a相保护开关Breaker1、b相保护开关Breaker2及c相保护开关Breaker3的控制端均与控制器300连接;
则控制器300具体用于当目标单相电的电流放大信号和/或电压放大信号不满足预设安全标准时,控制目标单相电对应的保护开关断开。
具体地,本申请的电压电流检测电路400包括一一检测配电变压器二次侧的三相绕组输入的三个单相电的三个子检测电路(如图7所示)及一一检测三个单相插座S各自输出的单相电的三个子检测电路(如图8所示);每个子检测电路均包括电流感测元件CS、第一差动放大器A1、电压感测元件VS及第二差动放 大器A2;保护开关电路包括a相保护开关Breaker1、b相保护开关Breaker2及c相保护开关Breaker3,其工作原理为:
以用于检测配电变压器二次侧的a相绕组输入的a相电的子检测电路为例,电流感测元件CS检测a相绕组输入的a相电的电流信号,并将a相电的电流信号输入至第一差动放大器A1;第一差动放大器A1将a相电的电流信号进行放大处理,得到a相电流放大信号,并将a相电流放大信号提供给控制器300(如MCU(Microcontroller Unit,微处理器),经ADC(Analog-to-digital converter,模拟数字转换器)接口接收检测信号);电压感测元件VS检测a相绕组输入的a相电的电压信号,并将a相电的电压信号输入至第二差动放大器A2;第二差动放大器A2将a相电的电压信号进行放大处理,得到a相电压放大信号,并将a相电压放大信号提供给控制器300;控制器300当a相电流放大信号和/或a相电压放大信号不满足预设安全标准时,控制a相保护开关Breaker1断开。需要说明的是,其余子检测电路的检测原理类似,本申请在此不再赘述。
另外,每个子检测电路还可包括与电压感测元件VS并联的电阻R1及瞬态二极管TVS,还可包括设于第一差动放大器A1和第二差动放大器A2的输入端的电阻R2、R3、R4、R5;其中,电阻R1用于匹配输入阻抗,提高测量精度;瞬态二极管TVS用于抗雷击;电阻R2、R3、R4、R5用于限流。
更具体地,本申请的星型开关电路100、三角形开关电路200及保护开关电路内各开关均可以有三种选择:继电器、电磁接触开关及IGBT(Insulated Gate Bipolar Transistor,绝缘栅双极电晶体)开关。
继电器也称电驿,是一种电子控制组件,它具有控制系统(又称输入回路)和被控制系统(又称输出回路),通常应用于自动控制电路中,它实际上是用较小的电流去控制较大电流的一种自动开关,故在电路中起着自动调节、安全保护、转换电路等作用。
电磁接触开关顾名思义就是用电磁铁控制的开关,也就是电磁铁与开关的结合体。当电磁铁线圈通电后产生电磁吸力,活动铁芯推或拉动开关触点闭合,从而接通所控制电路。电磁开关在各行业有广泛的应用,最常见的是工业领域的接触器。电磁开关是起动机上的控制开关,是起动机(直流电动机、传动啮合机构、电磁开关)三大部件之一,其工作原理是线圈通电后产生电磁吸力,使活动铁芯移动,从而一方面拉动传动啮合机构使起动机小齿轮前移与发动机飞轮齿圈啮合,另一方面推动开关触点接通,使直流电动机通电运转,从而带动发动机启动。
IGBT开关是半导体器件的一种,主要用于电动车辆、铁路机车及动车组的交流电电动机的输出控制。传统的BJT(Bipolar Junction Transistor,双极结型晶体管)导通电阻小,但是驱动电流大,而MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor,金氧半场效晶体管)的导通电阻大,却有着驱动电流小的优点。IGBT正是结合了这两者的优点:不仅驱动电流小,导通电阻也很低。
继电器及电磁接触开关一般是由铁芯、线圈、衔铁、触点簧片等组成的,有机械运动,含运动零件,有触点,开关时有火花,因此反应速度较慢且寿命较短。IGBT开关可以视为固态继电器的一种,固态继电器是一种没有机械运动,不含运动零件的继电器,但它具有与电磁继电器本质上相同的功能。固态继电器是一种全部由固态电子组件组成的无触点开关组件,它利用电子元器件的电、磁和光特性来完成输入与输出的隔离,利用大功率三极体、功率场效应管、单向可控硅或双向可控硅等器件的开关特性,来达到无触点、无火花地接通和断开被控电路。固态继电器敏捷度高,控制功率小,寿命比较高,可靠性好,切换速度可达到几毫秒至几微妙。大多数交流输出固态继电器是一个零电压开关,在零电压处导通,零电流处关断,减少了电流波形的溘然间断,从而减小了开关瞬态效应。因此,本申请开关优选IGBT开关。
如图9所示,控制器(如MCU)通过IGBT驱动电路生成六路PWM(Pulse Width Modulation,脉冲宽度调制)信号一一至六个IGBT开关(这里指星型开关),以驱动六个IGBT开关的接通情况。当六个IGBT开关接通时,配电变压器二次侧的三相绕组按照星型接线方式相连接。电压电流检测电路可检测配电变压器二次侧的各相绕组输入的电压/电流信号,并将检测的电压/电流信号反馈至MCU。MCU根据反馈的电压/电流信号调整IGBT驱动电路生成的PWM信号,以使配电变压器二次侧的各相绕组输入目标电压/电流信号。
作为一种可选的实施例,控制器300具体用于:
响应于目标相的输入电压持续大于预设第一高电压阈值的时间超过预设第一时间,控制保护开关电路断开目标连接线路;
响应于目标相的输入电压持续小于预设低电压阈值的时间超过预设第二时间,控制保护开关电路断开目标连接线路;
响应于目标相的输入电流持续大于预设第一高电流阈值的时间超过预设第三时间,控制保护开关电路断开目标连接线路;
响应于目标相的输出电压持续大于预设第二高电压阈值的时间超过预设第四时间,控制保护开关电路断开目标连接线路;
响应于目标相的输出电流持续大于预设第二高电流阈值的时间超过预设第五时间,控制保护开关电路断开目标连接线路。
具体地,控制器300对任一目标相的输入输出是否正常的判断标准如下:
1)输入判断标准:
①若目标相的输入电压大于预设第一高电压阈值(如目标相的输入标称电压的110%),且持续大于预设第一高电压阈值的时间超过预设第一时间(如20ms),视为目标相的输入OVP(Over Voltage Protection,过电压保护),则控制保护开关电路断开目标相对应的保护开关,目标相的单相插座没有输出。
②若目标相的输入电压小于预设低电压阈值(如目标相的输入标称电压的90%),且持续小于预设低电压阈值的时间超过预设第二时间(如20ms),视为目标相的输入UVP(Under Voltage Protection,欠电压保护),则控制保护开关电路断开目标相对应的保护开关,目标相的单相插座没有输出。
③若目标相的输入电流大于预设第一高电流阈值(如目标相的输入标称电流的120%),且持续大于预设第一高电流阈值的时间超过预设第三时间(如20ms),视为目标相的输入OCP(Over Current Protection,过电流保护),则控制保护开关电路断开目标相对应的保护开关,目标相的单相插座没有输出。
2)输出判断标准:
①若目标相的输出电压大于预设第二高电压阈值(如250Vac),且持续大于预设第二高电压阈值的时间超过预设第四时间(如20ms),视为目标相的输出OVP,则控制保护开关电路断开目标相对应的保护开关,目标相的单相插座没有输出。
②若目标相的输出电流大于预设第二高电流阈值(如10A),且持续大于预设第二高电流阈值的时间超过预设第五时间(如20ms),视为目标相的输出OCP,则控制保护开关电路断开目标相对应的保护开关,目标相的单相插座没有输出。
作为一种可选的实施例,控制器300还用于:
计算目标相的输入电压和输入电流之间的第一相位角差θ 1,并基于第一相位角差计算目标相的输入功率因数COSθ 1
将目标相的输入电压乘以目标相的输入电流后再乘以输入功率因数,得到目标相的输入功耗;
计算目标相的输出电压和输出电流之间的第二相位角差θ 2,并基于第二相位角差计算目标相的输出功率因数COSθ 2;及
将目标相的输出电压乘以目标相的输出电流后再乘以输出功率因数,得到目标相的输出功耗。
进一步地,在电压电流检测电路的信号检测下,控制器300还可计算任一目标相的输入功耗和输出功耗,目标相的输入功耗的计算过程包括:计算目标相的输入电压V in和输入电流I in之间的第一相位角差θ 1,并将第一相位角差θ 1的余弦COSθ 1作为目标相的输入功率因数,然后将目标相的输入电压V in乘以目标相的输入电流I in后再乘以输入功率因数COSθ 1,得到目标相的输入功耗P in,即P in=V in*I in*COSθ 1。同理,目标相的输出功耗的计算过程包括:计算目标相的输出电压V out和输出电流I out之间的第二相位角差θ 2,并将第二相位角差θ 2的余弦COSθ 2作为目标相的输出功率因数,然后将目标相的输出电压V out乘以目标相的输出电流I out后再乘以输出功率因数COSθ 2,得到目标相的输出功耗P out,即P out=V out*I out*COSθ 2
请参照图10,图10为本发明实施例提供的一种控制器的结构示意图。
作为一种可选的实施例,控制器300还包括:
与外部设备连接的通信接口301;
控制器300还用于通过通信接口301与外部设备进行数据通信,以完成相应处理功能。
进一步地,本申请的控制器300还包括通信接口301,通信接口301与外部设备连接,控制器300可通过通信接口301与外部设备进行数据通信,以完成相应处理功能。
作为一种可选的实施例,控制器300还包括:
与显示器连接的扩展接口302;
控制器300还用于通过扩展接口302控制显示器显示指定内容。
进一步地,本申请的控制器300还包括扩展接口302,扩展接口302与显示器连接,控制器300可通过扩展接口302控制显示器显示指定内容。
更具体地,控制器300通过拓展接口驱动一款8bit数据总线的LCD(如Liquid Crystal Display,液晶显示器)屏幕,并同步支持GUI(Graphical User Interface,图形用户界面)的基础绘图操作。
作为一种可选的实施例,通信接口301包括:
通过接入以太网与上位机实现远程通信的以太网接口;上位机用于通过以太网远程访问控制器300,以获取控制器300的相关控制信息;
与第一PC机连接的GUI接口;第一PC机用于通过GUI接口向控制器300发送用户指令,以使控制器300根据用户指令执行相应控制操作;及
与第二PC机连接的串行通信接口;第二PC机用于通过串行通信接口对控制器300的固件进行升级。
具体地,控制器300的通信接口301包括以太网接口(如RJ45接口,支持10兆和100兆自适应的网络连接速度,常见的RJ45接口有两类:用于以太网网卡的DTE(Data Terminal Equipment,数据终端设备)类型、用于路由器以太网接口的DTE类型,通过一组隔离变压器将RJ45脚位接入控制器通信脚位)、GUI接口及串行通信接口(如RS232接口),其工作原理为:
以太网接口通过接入以太网与上位机实现远程通信,上位机可通过以太网远程访问控制器300,以获取控制器300的相关控制信息(如日志、事件、警报、通知等),也可通过以太网向控制器300下发控制指令,以使控制器300根据控制指令执行相应控制操作。
GUI接口与第一PC(Personal Computer,个人计算机)机连接,第一PC机可通过GUI接口向控制器300发送用户指令,以使控制器300根据用户指令执行相应控制操作。比如,第一PC机可通过GUI接口向控制器300发送包含目标显示内容的显示指令,以使控制器300根据显示指令控制显示器显示目标显示内容。
串行通信接口与第二PC机连接,第二PC机可通过串行通信接口对控制器300的固件进行升级。
另外,控制器300还可包括EEPROM(Electrically-Erasable Programmable Read-Only Memory,电子抹除式可复写唯读记忆体)303,控制器300可将各相输入输出电压/电流/功率及PDU接线状态存放至EEPRM 303中,还可将EEPRM 303中存放的内容显示在LCD屏幕上。控制器300还可与一些功能开关连接,不同功能开关导通,显示器需显示不同显示内容,则控制器300可根据功能开关的导通情况控制显示器显示相应显示内容。控制器300还可与指示灯连接,控制器300可在任一目标相的输入电压过压或输入电压欠压或输入电流过流或输出电压过压或输出电流过流时,控制指示灯亮,以起到报警作用。
综上,给出一种星型接法状态、三角形接法状态及保护状态的控制实例:
如图11所示,为电源分配器的星型接法图,此时控制器将YSW1~YSW6启动持续接通、ΔSW1~ΔSW6开路(因开路未显示在图11)、Breaker1~Breaker3都保持接通,当有保护时才断开。
如图12所示,为电源分配器的三角形接法图,此时控制器将YSW1~YSW6开路(因开路未显示在图12)、ΔSW1~ΔSW6启动持续接通、Breaker1~Breaker3都保持接通,当有保护时才断开。
如图13所示,为电源分配器的星型接法A相保护图,此时控制器将YSW1~YSW6启动持续接通、ΔSW1~ΔSW6开路(因开路未显示在图13)、Breaker1保护断开、Breaker2和Breaker3都保持接通。
如图14所示,为电源分配器的三角形接法B相保护图,此时控制器将YSW1~YSW6开路(因开路未显示在图14)、ΔSW1~ΔSW6启动持续接通、Breaker2保护断开、Breaker1和Breaker3都保持接通。
如图15所示,为电源分配器的星型接法C相保护图,此时控制器将YSW1~YSW6启动持续接通、ΔSW1~ΔSW6开路(因开路未显示在图15)、Breaker3保护断开、Breaker1和Breaker2都保持接通。
需要说明的是,电源分配器的星型接法及三角形接法的各相保护原理类似,本申请在此不再全部叙述。
还需要说明的是,在本说明书中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种 修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其他实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

  1. 一种电源分配器,其特征在于,包括:
    三个单相插座;三个所述单相插座中任一目标单相插座均用于接入符合所述目标单相插座的电压的用电设备;
    分别与配电变压器二次侧的三相绕组和三个所述单相插座连接的星型开关电路;
    分别与所述三相绕组和三个所述单相插座连接的三角形开关电路;及
    分别与所述星型开关电路和所述三角形开关电路连接的控制器,用于根据所述电源分配器当前的三相电接线需求相应控制所述星型开关电路或所述三角形开关电路接通,以将所述三相绕组按照符合所述三相电接线需求的目标接线方式相连接,并将所述目标接线方式下的三相电一一供至三个所述单相插座。
  2. 如权利要求1所述的电源分配器,其特征在于,所述三相绕组包括a相绕组、b相绕组及c相绕组;三个所述单相插座包括a相插座、b相插座及c相插座;所述星型开关电路包括第一星型开关、第二星型开关、第三星型开关、第四星型开关、第五星型开关及第六星型开关;其中:
    所述第一星型开关的第一端与所述a相绕组的第一端连接,所述a相绕组的第二端与所述a相插座的火线端子连接,所述第二星型开关的第一端与所述b相绕组的第一端连接,所述b相绕组的第二端与所述b相插座的火线端子连接,所述第三星型开关的第一端与所述c相绕组的第一端连接,所述c相绕组的第二端与所述c相插座的火线端子连接,所述第四星型开关的第一端与所述a相插座的零线端子连接,所述第五星型开关的第一端与所述b相插座的零线端子连接,所述第六星型开关的第一端与所述c相插座的零线端子连接,所述第一星型开关至所述第六星型开关的第二端相连接,所述第一星型开关至所述第六星型开关的控制端均与所述控制器连接,所述a相插座、所述b相插座及所述c相插座的地线端子均接地;
    则所述控制器具体用于若所述电源分配器当前的三相电接线需求为星型接线需求,则控制所述星型开关电路内六个星型开关均接通。
  3. 如权利要求1所述的电源分配器,其特征在于,所述三相绕组包括a相绕组、b相绕组及c相绕组;三个所述单相插座包括a相插座、b相插座及c相插座;所述三角形开关电路包括第一三角形开关、第二三角形开关、第三三角形开关、第四三角形开关、第五三角形开关及第六三角形开关;其中:
    所述第一三角形开关的第一端分别与所述a相绕组的第二端、所述a相插座的火线端子及所述第六三角形开关的第一端连接,所述第一三角形开关的第二端与所述b相绕组的第一端连接,所述第二三角形开关的第一端分别与所述b相绕组的第二端、所述b相插座的火线端子及所述第四三角形开关的第一端连接,所述第二三角形开关的第二端与所述c相绕组的第一端连接,所述第三三角形开关的第一端分别与所述c相绕组的第二端、所述c相插座的火线端子及所述第五三角形开关的第一端连接,所述第三三角形开关的第二端与所述a相绕组的第一端连接,所述第四三角形开关的第二端与所述a相插座的零线端子连接,所述第五三角形开关的第二端与所述b相插座的零线端子连接,所述第六三角形开关的第二端与所述c相插座的零线端子连接,所述a相插座、所述b相插座及所述c相插座的地线端子均接地;
    则所述控制器具体用于若所述电源分配器当前的三相电接线需求为三角形接线需求,则控制所述三角形开关电路内六个三角形开关均接通。
  4. 如权利要求1-3任一项所述的电源分配器,其特征在于,所述电源分配器还包括:
    分别与所述三相绕组和三个所述单相插座连接的电压电流检测电路,用于检测所述电源分配器的各相 输入电压、各相输入电流、各相输出电压及各相输出电流;及
    设于所述三相绕组与三个所述单相插座之间的连接线路上、且与所述控制器连接的保护开关电路;
    所述控制器还用于当所述电源分配器的任一目标相的输入电压和/或输入电流和/或输出电压和/或输出电流不满足预设安全标准时,控制所述保护开关电路断开目标相绕组与目标相插座之间的目标连接线路。
  5. 如权利要求4所述的电源分配器,其特征在于,所述电压电流检测电路包括一一检测所述三相绕组输入的三个单相电的三个子检测电路及一一检测三个所述单相插座各自输出的单相电的三个子检测电路;每个所述子检测电路均包括:
    电流感测元件,用于检测对应的目标单相电的电流信号;
    与所述电流感测元件连接的第一差动放大器,用于将所述电流信号进行放大处理,得到电流放大信号;
    电压感测元件,用于检测所述目标单相电的电压信号;及
    与所述电压感测元件连接的第二差动放大器,用于将所述电压信号进行放大处理,得到电压放大信号;
    且所述三相绕组包括a相绕组、b相绕组及c相绕组;三个所述单相插座包括a相插座、b相插座及c相插座;所述保护开关电路包括a相保护开关、b相保护开关及c相保护开关;其中:
    所述a相保护开关的第一端与所述a相绕组的第二端连接,所述a相保护开关的第二端与所述a相插座的火线端子连接,所述b相保护开关的第一端与所述b相绕组的第二端连接,所述b相保护开关的第二端与所述b相插座的火线端子连接,所述c相保护开关的第一端与所述c相绕组的第二端连接,所述c相保护开关的第二端与所述c相插座的火线端子连接,所述a相保护开关、所述b相保护开关及所述c相保护开关的控制端均与所述控制器连接;
    则所述控制器具体用于当所述目标单相电的电流放大信号和/或电压放大信号不满足预设安全标准时,控制所述目标单相电对应的保护开关断开。
  6. 如权利要求4所述的电源分配器,其特征在于,所述控制器具体用于:
    响应于所述目标相的输入电压持续大于预设第一高电压阈值的时间超过预设第一时间,控制所述保护开关电路断开所述目标连接线路;
    响应于所述目标相的输入电压持续小于预设低电压阈值的时间超过预设第二时间,控制所述保护开关电路断开所述目标连接线路;
    响应于所述目标相的输入电流持续大于预设第一高电流阈值的时间超过预设第三时间,控制所述保护开关电路断开所述目标连接线路;
    响应于所述目标相的输出电压持续大于预设第二高电压阈值的时间超过预设第四时间,控制所述保护开关电路断开所述目标连接线路;
    响应于所述目标相的输出电流持续大于预设第二高电流阈值的时间超过预设第五时间,控制所述保护开关电路断开所述目标连接线路。
  7. 如权利要求4所述的电源分配器,其特征在于,所述控制器还用于:
    计算所述目标相的输入电压和输入电流之间的第一相位角差θ1,并基于所述第一相位角差计算所述目标相的输入功率因数COSθ1;
    将所述目标相的输入电压乘以所述目标相的输入电流后再乘以所述输入功率因数,得到所述目标相的 输入功耗;
    计算所述目标相的输出电压和输出电流之间的第二相位角差θ2,并基于所述第二相位角差计算所述目标相的输出功率因数COSθ2;及
    将所述目标相的输出电压乘以所述目标相的输出电流后再乘以所述输出功率因数,得到所述目标相的输出功耗。
  8. 如权利要求1-7任一项所述的电源分配器,其特征在于,所述控制器还包括:
    与外部设备连接的通信接口;
    所述控制器还用于通过所述通信接口与所述外部设备进行数据通信,以完成相应处理功能。
  9. 如权利要求8所述的电源分配器,其特征在于,所述控制器还包括:
    与显示器连接的扩展接口;
    所述控制器还用于通过所述扩展接口控制所述显示器显示指定内容。
  10. 如权利要求8或9所述的电源分配器,其特征在于,所述通信接口包括:
    通过接入以太网与上位机实现远程通信的以太网接口;所述上位机用于通过所述以太网远程访问所述控制器,以获取所述控制器的相关控制信息;
    与第一PC机连接的GUI接口;所述第一PC机用于通过所述GUI接口向所述控制器发送用户指令,以使所述控制器根据所述用户指令执行相应控制操作;及
    与第二PC机连接的串行通信接口;所述第二PC机用于通过所述串行通信接口对所述控制器的固件进行升级。
PCT/CN2022/097427 2021-12-24 2022-06-07 一种电源分配器 WO2023115835A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111593762.3A CN114024313B (zh) 2021-12-24 2021-12-24 一种电源分配器
CN202111593762.3 2021-12-24

Publications (1)

Publication Number Publication Date
WO2023115835A1 true WO2023115835A1 (zh) 2023-06-29

Family

ID=80069440

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/097427 WO2023115835A1 (zh) 2021-12-24 2022-06-07 一种电源分配器

Country Status (2)

Country Link
CN (1) CN114024313B (zh)
WO (1) WO2023115835A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114024313B (zh) * 2021-12-24 2022-03-22 苏州浪潮智能科技有限公司 一种电源分配器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN200990560Y (zh) * 2006-12-12 2007-12-12 乳源瑶族自治县东阳光化成箔有限公司 一种宽电压范围供电装置
CN102246376A (zh) * 2008-10-08 2011-11-16 阿沃森特.亨茨维勒公司 用于配电单元的通用电力入口系统
CN109983645A (zh) * 2016-11-15 2019-07-05 国际商业机器公司 具有自动建立输入电压连接配置的电力设备
CN110995065A (zh) * 2018-09-04 2020-04-10 Abb瑞士股份有限公司 用于同步电机的电动机启动器
CN114024313A (zh) * 2021-12-24 2022-02-08 苏州浪潮智能科技有限公司 一种电源分配器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN209462287U (zh) * 2018-12-27 2019-10-01 珠海格力电器股份有限公司 一种电机的控制装置及电机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN200990560Y (zh) * 2006-12-12 2007-12-12 乳源瑶族自治县东阳光化成箔有限公司 一种宽电压范围供电装置
CN102246376A (zh) * 2008-10-08 2011-11-16 阿沃森特.亨茨维勒公司 用于配电单元的通用电力入口系统
CN109983645A (zh) * 2016-11-15 2019-07-05 国际商业机器公司 具有自动建立输入电压连接配置的电力设备
CN110995065A (zh) * 2018-09-04 2020-04-10 Abb瑞士股份有限公司 用于同步电机的电动机启动器
CN114024313A (zh) * 2021-12-24 2022-02-08 苏州浪潮智能科技有限公司 一种电源分配器

Also Published As

Publication number Publication date
CN114024313A (zh) 2022-02-08
CN114024313B (zh) 2022-03-22

Similar Documents

Publication Publication Date Title
CN204089346U (zh) 一种电压自动调节的钻机网电供电系统
CN106300398B (zh) 一种基于稳态波形拟合的相间负荷转移终端装置
WO2023115835A1 (zh) 一种电源分配器
CN103441508A (zh) 一种多用途低压智能电容器
CN211089218U (zh) 大容量高可靠快速电源切换装置
CN104578170A (zh) 火电机组辅机变频器高低电压穿越装置
CN103594222A (zh) 变压器预充磁装置及其预充磁方法
CN106451500B (zh) 一种基于暂态波形拟合的相间负荷转移终端装置
CN208299708U (zh) 三相异步电机起动装置
CN203368000U (zh) 电机三相电路保护器
CN203588792U (zh) 变压器预充磁装置
CN209313424U (zh) 一种零序电流保护电路
CN100334790C (zh) 抽油机动态防窃电拖动装置
CN103426682A (zh) 具有安全装置的继电器及其继电器安全装置
CN208539574U (zh) 一种三相不平衡调节系统用换相开关
CN201699423U (zh) 具有三相和三个单相分别输出功能的三相电力稳压器
CN203339997U (zh) 电机降压启动保护器
CN214125542U (zh) 低压加热器控制电路
CN217607699U (zh) 一种三相并网星接链式换流器的缓启动装置
CN219697287U (zh) 一种利用时间继电器实现的抗晃电电路
CN101888089A (zh) 具有三相和三个单相分别输出功能的三相电力稳压器
CN209217700U (zh) 一种低压电机保护装置
CN109659938B (zh) 一种电压互感器低压侧的电压切换电路
CN216794852U (zh) 一种功率单元放电装置
CN213484506U (zh) 一种零线故障保护器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22909169

Country of ref document: EP

Kind code of ref document: A1