WO2023115353A1 - Bwp切换方法、装置、设备及存储介质 - Google Patents

Bwp切换方法、装置、设备及存储介质 Download PDF

Info

Publication number
WO2023115353A1
WO2023115353A1 PCT/CN2021/140182 CN2021140182W WO2023115353A1 WO 2023115353 A1 WO2023115353 A1 WO 2023115353A1 CN 2021140182 W CN2021140182 W CN 2021140182W WO 2023115353 A1 WO2023115353 A1 WO 2023115353A1
Authority
WO
WIPO (PCT)
Prior art keywords
bwp
terminal
receiving state
activated
serving cell
Prior art date
Application number
PCT/CN2021/140182
Other languages
English (en)
French (fr)
Inventor
胡奕
李海涛
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2021/140182 priority Critical patent/WO2023115353A1/zh
Publication of WO2023115353A1 publication Critical patent/WO2023115353A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path

Definitions

  • the present application relates to the field of communication technology, and in particular to a bandwidth part (Bandwidth Part, BWP) switching method, device, device and storage medium.
  • BWP bandwidth part
  • the embodiment of the present application provides a BWP switching method, device, device, and storage medium, and provides a method for a terminal to determine to activate BWP when the first receiving state is switched to the second receiving state, and the technical solution is as follows :
  • a BWP switching method comprising:
  • the terminal determines the target BWP in the activated serving cell as the activated BWP in the activated serving cell;
  • the transmission parameters in the first receiving state and the second receiving state are different, and the transmission parameters include at least one of receiver, waveform, modulation mode, coding and multiple access mode.
  • a BWP switching method comprising:
  • the network device configures configuration parameters of the first BWP to the terminal
  • the first BWP is the activated BWP in the activated serving cell determined by the terminal when the first receiving state is switched to the second receiving state, the transmission parameters of the first receiving state and the second receiving state are different, and the transmission parameters include receiving At least one of machine, waveform, modulation method, coding and multiple access method.
  • a BWP switching device includes:
  • a determining module configured to determine the target BWP in the activated serving cell as the activated BWP in the activated serving cell when the first receiving state is switched to the second receiving state;
  • the transmission parameters in the first receiving state and the second receiving state are different, and the transmission parameters include at least one of receiver, waveform, modulation mode, coding and multiple access mode.
  • a BWP switching device includes:
  • a configuration module configured to configure configuration parameters of the first BWP to the terminal
  • the first BWP is the activated BWP in the activated serving cell determined by the terminal when the first receiving state is switched to the second receiving state, the transmission parameters of the first receiving state and the second receiving state are different, and the transmission parameters include receiving At least one of machine, waveform, modulation method, coding and multiple access method.
  • a terminal where the terminal includes a processor
  • the processor is configured to determine the target BWP in the activated serving cell as the activated BWP in the activated serving cell when the first receiving state is switched to the second receiving state;
  • the transmission parameters in the first receiving state and the second receiving state are different, and the transmission parameters include at least one of receiver, waveform, modulation mode, coding and multiple access mode.
  • a network device includes a processor
  • the processor is configured to configure configuration parameters of the first BWP to the terminal;
  • the first BWP is the activated BWP in the activated serving cell determined by the terminal when the first receiving state is switched to the second receiving state, the transmission parameters of the first receiving state and the second receiving state are different, and the transmission parameters include receiving At least one of machine, waveform, modulation method, coding and multiple access method.
  • a computer-readable storage medium is provided, and a computer program is stored in the storage medium, and the computer program is used to be executed by a processor to implement the BWP switching method as described above.
  • a chip includes a programmable logic circuit and/or program instructions for implementing the BWP switching method as described above when the chip is running.
  • a computer program product or computer program includes computer instructions, the computer instructions are stored in a computer-readable storage medium, and the processor reads and executes the instruction from the computer-readable storage medium. Execute computer instructions to implement the BWP switching method as described above.
  • a method for determining an activated BWP is provided.
  • the terminal determines the target BWP in the activated serving cell as the corresponding activated BWP of the serving cell, so that the terminal is in the The active BWP in the active serving cell can be determined after the state switching.
  • FIG. 1 is a schematic diagram of a terminal provided in an exemplary embodiment of the present application.
  • Fig. 2 is a schematic diagram of a mobile communication system provided by an exemplary embodiment of the present application.
  • FIG. 3 is a flowchart of a BWP switching method provided in an exemplary embodiment of the present application
  • FIG. 4 is a flowchart of a BWP switching method provided in an exemplary embodiment of the present application.
  • Fig. 5 is a schematic diagram of a terminal provided by an exemplary embodiment of the present application.
  • FIG. 6 is a flowchart of a BWP switching method provided in an exemplary embodiment of the present application.
  • FIG. 7 is a schematic diagram of a BWP switching method provided by an exemplary embodiment of the present application.
  • FIG. 8 is a flowchart of a BWP switching method provided in an exemplary embodiment of the present application.
  • FIG. 9 is a flowchart of a BWP switching method provided in an exemplary embodiment of the present application.
  • FIG. 10 is a schematic diagram of a BWP switching method provided by an exemplary embodiment of the present application.
  • FIG. 11 is a schematic diagram of a BWP switching device provided by an exemplary embodiment of the present application.
  • FIG. 12 is a schematic diagram of a BWP switching device provided by an exemplary embodiment of the present application.
  • Fig. 13 is a schematic structural diagram of a communication device provided by an exemplary embodiment of the present application.
  • 5G fifth-generation communication
  • eMBB Enhanced Mobile Broadband
  • URLLC Ultra-Reliable & Low-Latency Communication
  • mMTC Massive Machine Type of Communication
  • the new air interface (New Radio, NR) can also be deployed independently.
  • a new radio resource control (Radio Resource Control, RRC) state is defined. , that is, the RRC inactive (RRC_INACTIVE) state. This state is different from the RRC idle (RRC_IDLE) state and the RRC active (RRC_ACTIVE) state.
  • RRC Radio Resource Control
  • RRC_IDLE Mobility is terminal-based cell selection and reselection, paging is initiated by the terminal, and the paging area is configured by the terminal. There is no terminal access layer (Access Stratum, AS) context on the network device side, and there is no RRC connection.
  • AS Access Stratum
  • RRC_CONNECTED There is an RRC connection, and the network device and the terminal have a terminal access layer context.
  • the network device side determines the location of the terminal at the specific cell level, and the mobility is controlled by the network device side.
  • Unicast data can be transmitted between terminals and network devices.
  • RRC_INACTIVE Mobility is terminal-based cell selection and reselection, there is a connection between the core network (Core Network, CN) and NR, which can be abbreviated as a connection between CN-NR, and there is a certain network device in the context of the terminal access layer
  • paging is triggered by the radio access network (Radio Access Network, RAN), and the RAN-based paging area is managed by the RAN, and the network device side determines the location of the terminal based on the RAN paging area level.
  • Radio Access Network Radio Access Network
  • 5G NR further increases the system bandwidth on the basis of 4G.
  • the maximum bandwidth supported by a single carrier is 100MHz; for frequency bands above 6GHz, the maximum bandwidth supported by a single carrier is 400MHz.
  • the bandwidth that the terminal needs to use is often very limited. If the terminal is always detected and measured on the entire bandwidth, it will bring great challenges to the power consumption of the terminal, which is not conducive to the terminal's power saving. Therefore, the concept of BWP is introduced in 5G NR, that is, a part of continuous bandwidth is allocated in the entire large-bandwidth carrier for terminals to transmit and receive data. The terminal only needs to perform relevant operations within this part of the bandwidth configured by the network device, so as to achieve the effect of terminal energy saving.
  • the network device can configure one or more BWPs for the terminal on this serving cell through RRC messages, and the maximum number of configurable BWPs is 4.
  • the terminal can only have one activated downlink BWP (Downlink BWP, DL BWP) and one activated uplink BWP (Uplink BWP, UL BWP) on this serving cell, and the terminal can only be on the activated BWP Send and receive data.
  • the terminal may have a need to adjust the BWP. For example, when the service volume of the terminal is large and the terminal wants to obtain high-speed services, it needs to use a BWP with a large bandwidth to transmit data for the terminal; when the service volume of the terminal is small, a BWP with a small bandwidth can be used at this time.
  • the terminal performs data transmission.
  • the terminal can change the activated BWP of the terminal on the corresponding serving cell by means of BWP switching.
  • the network device sends a PDCCH to the terminal to inform the terminal of the handover target BWP.
  • the network device configures the handover BWP for the terminal on the corresponding serving cell through an RRC configuration message or an RRC reconfiguration message.
  • the switched BWP includes an initially activated downlink BWP identifier (firstActiveDownlinkBWP-Id) and/or an initially activated uplink BWP identifier (firstActiveUplinkBWP-Id).
  • the active BWP of the terminal on the SpCell is the initial activation of the downlink BWP identity and/or Or initially activate the uplink BWP identity.
  • the activation BWP of the terminal on the SCell is the initial activation of the downlink BWP identity and/or Or initially activate the uplink BWP identity.
  • the network device configures a BWP inactivity timer (BWP-InactivityTimer) for the terminal.
  • BWP-InactivityTimer For each cell:
  • the terminal is configured with a default BWP (default BWP) on the serving cell, and the currently activated DL BWP of the terminal is a BWP other than the default BWP and dormant BWP (dormant BWP); or,
  • the terminal does not have a default BWP configured on the serving cell, and the currently activated DL BWP of the terminal is a BWP other than the initial BWP (initial BWP) and the dormant BWP;
  • the terminal when the terminal receives the PDCCH indicating the UE's uplink or downlink scheduling on the currently activated BWP, or the terminal receives the PDCCH indicating the UE's uplink or downlink scheduling on the currently activated BWP, or the terminal receives the configured uplink authorization
  • the terminal When an uplink transmission is sent on a (Configured Grant, CG) resource, or a terminal receives a downlink transmission on a semi-persistent scheduling (Semi-Persistent Scheduling, SPS) resource, the terminal starts or restarts the BWP inactivity timer.
  • CG Configured Grant
  • SPS semi-persistent Scheduling
  • the terminal When the BWP inactivation timer expires, the terminal automatically switches to the default BWP or the initial BWP. Wherein, both the default BWP and the initial BWP are determined by the RRC configuration.
  • RACH Random Access Channel
  • FIG. 1 shows a terminal 100 with a wake-up receiver provided by an exemplary embodiment of the present application.
  • the terminal 100 includes: a wake-up receiver 120 and a main receiver 140 .
  • the wake-up receiver 120 is a zero-power receiver or a low-power receiver whose energy consumption is less than a predetermined condition.
  • the wake-up receiver 120 uses the first transmission parameter to receive the energy-saving signal and send a response signal to the energy-saving signal.
  • the main receiver 140 is a conventional receiver.
  • the main receiver 140 uses the second transmission parameter to receive and transmit the control channel and other traditional communication signals.
  • the wake-up receiver 120 may also be referred to as a low-power receiver, a low-power receiver, a zero-power receiver, and other titles that can indicate signal transmission and reception with lower power consumption.
  • the energy consumption of the first transmission parameter is less than the energy consumption of the second transmission parameter.
  • Fig. 2 shows a schematic diagram of a mobile communication system 200 provided by an exemplary embodiment of the present application.
  • the mobile communication system 200 includes at least the following functional nodes:
  • Terminal 100 having a wake-up receiver 120 and a main receiver 140 at the same time, as shown in FIG. 2 .
  • the network device 20 provides a communication link for the terminal 100, and/or provides the terminal 100 with radio waves collected based on the RF energy harvesting module, that is, energy supply.
  • Core network (Corn Network, CN) equipment 30 data processing and reception, control and management of functions such as related services, mobility, user plane, control plane, and gateway of the terminal 100.
  • the terminal After the terminal monitors the LP-WUS, the terminal switches from the receiving state corresponding to the LP-WUS monitoring back to the receiving state corresponding to the main receiver, how to determine the active bandwidth part of the terminal still needs to be discussed.
  • FIG. 3 shows a flowchart of a BWP switching method provided in an exemplary embodiment of the present application. The method is applied to a terminal and includes the following steps:
  • Step 102 When the terminal switches from the first receiving state to the second receiving state, the terminal determines the target BWP in the activated serving cell as the activated BWP in the activated serving cell.
  • the transmission parameters in the first receiving state and the second receiving state are different, and the transmission parameters include at least one of receiver, waveform, modulation mode, coding and multiple access mode.
  • the receiver includes a wake-up receiver and a main receiver.
  • the first receiving state is the receiving state when the wake-up receiver is in the working state and the main receiver is in the off state or in the deep sleep state.
  • the first receiving state can also be referred to as low Power consumption receiving state, wake-up receiving state;
  • the second receiving state is the receiving state when the main receiver is in the working state, and the second receiving state can also be called the normal receiving state.
  • the first transmission parameter is the transmission corresponding to the wake-up receiver or the low-power receiver parameter
  • the second transmission parameter is a transmission parameter corresponding to a conventional receiver
  • a transmission parameter corresponding to a conventional receiver is the transmission parameter in the first receiving state.
  • the modulation method of the first transmission parameter includes any one of amplitude keying (Amplitude Shift Keying, ASK) modulation, frequency shift keying (Frequency Shift Keying, FSK) modulation, binary phase shift keying (2Phase-Shift Keying, 2PSK) modulation item.
  • the modulation method of the second transmission parameter includes Orthogonal Frequency-Division Multiplexing (OFDM) modulation, quadrature phase-shift keying (Quadrature Phase-Shift Keying, QPSK) modulation, quadrature phase-shift keying (QPSK) modulation, Any one of Quadrature Amplitude Modulation (QAM).
  • OFDM Orthogonal Frequency-Division Multiplexing
  • QPSK Quadrature Phase-Shift Keying
  • QPSK quadrature phase-shift keying
  • ASK is a digital modulation in which the amplitude of a carrier wave varies with a digital baseband signal.
  • the digital baseband signal is binary, it is binary amplitude keying 2ASK.
  • 2ASK is also called on-off keying or on-off keying (On-Off Keying, OOK), which uses a unipolar non-return-to-zero code sequence to control the opening and closing of the positive line carrier.
  • OOK On-Off Keying
  • ASK also includes 4ASK, 8ASK, etc., which is not limited in this embodiment.
  • FSK is a digital modulation in which the frequency of the carrier varies with the digital baseband signal.
  • the digital baseband signal is binary, it is binary frequency shift keying 2FSK.
  • 2FSK completes information transmission by transforming two different carrier signals into digital signals.
  • the state of the transmitted information is characterized by the change of the carrier frequency, and the frequency of the modulated carrier changes with the state of the binary sequence 0, 1.
  • FSK also includes 4FSK, 8FSK, etc., which are not limited in this embodiment.
  • PSK is a digital modulation in which the phase of a carrier varies with a digital baseband signal.
  • 2PSK is the simplest form of phase shift keying. It uses two carrier waves with an initial phase interval of 180 to transmit binary information, also known as BPSK.
  • QPSK is quaternary phase-shift keying, which uses four different phase differences of the carrier to represent the input digital information.
  • OFDM is a kind of multi-carrier modulation (Multi Carrier Modulation, MCM). Its main principle is to divide the channel into several orthogonal sub-channels, convert high-speed data signals into parallel low-speed sub-data streams, and modulate them on each sub-channel for transmission. .
  • OFDM includes V-OFDM, W-OFDM, F-OFDM, MIMO-OFDM, multi-band-OFDM, etc., which is not limited in this embodiment.
  • QAM is to use two independent baseband digital signals to suppress the broadcast double sideband modulation of two mutually orthogonal co-frequency carriers, and use the nature of spectrum orthogonality of this modulated signal in the same bandwidth to realize two parallel channels Digital information transmission. It is a modulation technique that combines the multi-ary digital amplitude modulation MASK and the multi-ary digital phase modulation MPSK, which doubles the bandwidth.
  • the first transmission parameter adopts a simple, low-order digital modulation method
  • the second transmission parameter adopts a relatively complex, high-order, orthogonal digital modulation method
  • the signal complexity of the first transmission parameter is lower than that of the second transmission parameter .
  • the examples of the modulation method of the first transmission parameter and the modulation method of the second transmission parameter in the above embodiment are only examples, and should not constitute any limitation to the application, and do not exclude the use of other existing or future defined
  • the modulation method generates the first transmission parameter or the second transmission parameter.
  • the coding modes of the first transmission parameter and the second transmission parameter are different.
  • the encoding method of the first transmission parameter includes any one of reverse non-return-to-zero encoding, Manchester encoding, unipolar return-to-zero encoding, differential bi-phase encoding, Miller encoding, and differential encoding.
  • the encoding method of the second transmission parameter includes a new block (Reed-Muller, RM) code, tail biting convolutional code (Tail Biting CC, TBCC), Turbo code, outer code, low density parity check code (Low Density Parity Check Code, LDPC), any one of Polar code.
  • the multiple access modes of the first transmission parameter and the second transmission parameter are different.
  • the multiple access mode of the first transmission parameter includes Frequency Division Multiple Access (Frequency-Division Multiple Access, FDMA), Time Division Multiple Access (Time-Division Multiple Access, TDMA), Code Division Multiple Access (Code-Division Multiple Access, CDMA) any one.
  • the multiple access mode of the second transmission parameter includes Orthogonal Frequency-Division Multiple Access (OFDMA), discrete Fourier transform extended Orthogonal Frequency-Division Multiplexing (DFT-Spread OFDM, DFTS-OFDM) any one.
  • signal waveforms generated by using different modulation modes are different.
  • the modulation modes of the first feedback signal and the second feedback signal are different, so the waveforms of the first feedback signal and the second feedback signal are different.
  • the terminal is in an RRC connection state.
  • the target BWP is a BWP in the corresponding activated serving cell.
  • the activated serving cell has one activated BWP, and different activated serving cells have different activated BWPs.
  • the target BWP includes one of the following:
  • the network device configures the first BWP for the terminal, and the terminal determines the first BWP as the activated BWP of the activated serving cell according to the configuration information of the network device.
  • the first BWP is a downlink BWP.
  • the initial active BWP is firstActiveBWP, including the initial active downlink BWP (firstActiveDownlinkBWP-Id) or/and the initial active uplink BWP (firstActiveUplinkBWP-Id).
  • the initially activated BWP is configured for the terminal by the network device through high-layer signaling.
  • the network device can configure an initial activation BWP on the serving cell through an RRC configuration or reconfiguration message.
  • the activated BWP of the terminal on the SpCell is the initially activated downlink BWP identifier and/or the initially activated uplink BWP identifier.
  • the activated BWP of the terminal on the SCell is the initially activated downlink BWP identifier and/or the initially activated uplink BWP identifier .
  • the terminal determines the second BWP on the activated serving cell as the activated BWP on the activated serving cell, so that the ( The active) BWP is the same BWP that is the second BWP.
  • the first receiving state is a low-power receiving state
  • the second receiving state is a normal receiving state
  • the terminal receives the configuration parameters of the first BWP configured by the network device, and when switching from the low-power receiving state to the normal receiving state, for each activated serving cell, the terminal The first BWP in the serving cell is determined as the active BWP. Wherein, the first BWP in each activated serving cell is different.
  • the terminal determines the initially activated BWP in the activated serving cell as the activated BWP. Wherein, the initial activated BWP in each activated serving cell is different.
  • the terminal In the case where the target BWP is the second BWP, the terminal is in the normal receiving state before entering the low power receiving state, and the BWP activated by the terminal at this time is the second BWP; when switching from the low power receiving state to the normal receiving state, For each activated serving cell, the terminal determines the second BWP in the activated serving cell as the activated BWP. Wherein, the second BWP in each activated serving cell is different.
  • the terminal when switching from the first receiving state to the second receiving state, the terminal determines the target BWP in the activated serving cell as the activated BWP corresponding to the serving cell , so that the terminal can determine the activated BWP in the activated serving cell after the state switching.
  • FIG. 4 shows a flowchart of a BWP switching method provided in an exemplary embodiment of the present application, including the following steps:
  • Step 201 When in a first receiving state, the terminal monitors a wake-up signal by using a first receiver.
  • the first receiver of the terminal is in the working state
  • the second receiver of the terminal is in the off state or deep sleep state
  • the first receiver is the receiver used in the first receiving state
  • the second receiver is in the second receiving state the receiver in use.
  • the wake-up signal is used to instruct the terminal to wake up the second receiver.
  • the wake-up signal is an ultra-low power wake-up signal (ultra-Low Power Wake-Up Signal, LP-WUS).
  • the terminal uses a wake-up receiver to monitor the wake-up signal, and the first receiving state may also be called a wake-up receiving state or a low-power receiving state.
  • Step 202 the network device sends a wake-up signal to the terminal.
  • Step 203 When receiving the wake-up signal, the terminal wakes up the second receiver.
  • the terminal uses the first receiver to monitor the wake-up signal, and then, after receiving the wake-up signal sent by the network device, the terminal wakes up the second receiver.
  • the first receiver is the wake-up receiver and the second receiver is the main receiver.
  • the terminal After receiving the wake-up signal sent by the network device, the terminal wakes up the main receiver.
  • Fig. 5 shows a schematic diagram of a terminal provided by an exemplary embodiment of the present application.
  • the terminal includes a first receiver and a second receiver, and the first receiver is used to monitor a wake-up signal.
  • the terminal is in a first receiving state, and monitors a wake-up signal through a first receiver.
  • the first receiver is in a working state
  • the second receiver is in an off state or a deep sleep state. At this time, the power consumption of the terminal in the first receiving state is relatively low.
  • the terminal monitors a wake-up signal through the first receiver, and the first receiver wakes up the second receiver. At this time, the terminal wakes up the second receiver, and the second receiver is turned on to be in a working state. At this time, the terminal will switch from the first receiving state to the second receiving state; and since the second receiver is in the working state, the power consumption of the terminal in the second receiving state will be higher than that in the first receiving state.
  • the first receiver is a wake-up receiver
  • the second receiver is a main receiver
  • Step 204 When the first receiving state is switched to the second receiving state, the terminal determines the target BWP in the activated serving cell as the activated BWP in the activated serving cell.
  • the transmission parameters in the first receiving state and the second receiving state are different, and the transmission parameters include at least one of receiver, waveform, modulation mode, coding and multiple access mode.
  • the first receiving state is the receiving state when the wake-up receiver is in the working state and the main receiver is in the off state or in the deep sleep state.
  • the first receiving state can also be referred to as low Power consumption receiving state, wake-up receiving state;
  • the second receiving state is the receiving state when the main receiver is in the working state, and the second receiving state can also be called the normal receiving state.
  • the target BWP includes one of the following: a first BWP configured by the network device; an initially activated BWP; and a second BWP activated by the terminal before entering the first receiving state.
  • step 204 is the same as step 102, which can be used as a reference and will not be repeated here.
  • the steps on the terminal side can be an embodiment of the BWP switching method applied to the terminal, and the steps on the network device side can be independently applied to the BWP switching method in the network device.
  • the switching method and the steps of the BWP switching method reference may be made to the above content, and details are not repeated here.
  • the BWP switching method provided by the embodiment of the present application provides different states of the receiver of the terminal when the state is switched: when the terminal is in the first receiving state, the terminal uses the first receiver to monitor the wake-up signal , at this time the first receiver is in the working state, and the second receiver is in the off state or in the deep sleep state; in the case of receiving the wake-up signal, the terminal wakes up the second receiver, and the second receiver is in the working state at this time.
  • the target BWP includes one of the following: the first BWP configured by the network device; the initial activation BWP; and the second BWP activated before the terminal enters the first receiving state.
  • the embodiment of this application provides at least one or any one of the following three BWP switching methods:
  • the target BWP is the first BWP configured by the network device.
  • FIG. 6 shows a flowchart of a BWP switching method provided in an exemplary embodiment of the present application, including the following steps:
  • Step 301 The network device configures configuration parameters of the first BWP to the terminal.
  • the first BWP is the activated BWP in the activated serving cell determined by the terminal when the first receiving state is switched to the second receiving state.
  • the transmission parameters in the first receiving state and the second receiving state are different, and the transmission parameters include at least one of receiver, waveform, modulation mode, coding and multiple access mode.
  • the transmission parameters of the first receiving state and the second receiving state reference may be made to the foregoing content, and details are not repeated here.
  • the configuration parameters of the first BWP include but are not limited to at least one of the following: frequency domain position, size, and basic parameter set (Numerology) configuration of the BWP.
  • the high-level signaling parameter corresponding to the size of the BWP is locationAndBandwidth; the subcarrier spacing in the basic parameter set is represented by the parameter ⁇ .
  • the configuration parameters of the first BWP are configured through system messages or terminal-specific signaling.
  • step 301 can be implemented as follows:
  • the network device configures the configuration parameters of the first BWP to the terminal through a system message
  • the network device configures configuration parameters of the first BWP to the terminal through terminal-specific signaling.
  • terminal-specific signaling optionally includes one of the following signalings:
  • MAC CE Media Access Control Element
  • PDCCH Physical Downlink Control Channel
  • Low power wake up signal Low power wake up signal (Low power wake up signal, LPW).
  • Step 302 When the first receiving state is switched to the second receiving state, the terminal determines the first BWP in the activated serving cell as the activated BWP in the activated serving cell.
  • the first BWP is used to indicate the activated BWP of the terminal on the activated serving cell when the first receiving state is switched to the second receiving state.
  • Step 302 is similar to step 102, which can be used as a reference and will not be repeated here.
  • FIG. 7 shows a schematic diagram of a BWP switching method provided by an exemplary embodiment of the present application.
  • the active BWP of the terminal on each activated serving cell is determined to be the first BWP.
  • the first BWP on each activated serving cell is different.
  • the first BWP is configured by the network device.
  • the first BWP is a downlink BWP.
  • the first BWP is a BWP in the corresponding activated serving cell.
  • the activated BWPs in different activated serving cells are different.
  • the serving cell is in an activated state, the first BWP on the activated serving cell may be determined as the activated BWP, and the first BWP is different for different activated serving cells.
  • the terminal receives configuration parameters of the first BWP configured by the network device.
  • a first BWP is configured, and the first initial BWP is used to indicate the active BWP of the terminal on the serving cell when the terminal transitions from a low-power receiver state to a normal receiving state.
  • the serving cell includes a primary secondary cell and a secondary cell.
  • the first BWP is configured to the terminal by the network device through a system message or terminal-specific signaling.
  • the terminal-specific signaling optionally includes one of the following signalings: RRC signaling, MAC CE, PDCCH, and LPW.
  • the active BWP of the terminal on the serving cell is the first BWP.
  • the switching of the terminal from the low-power receiving state to the normal receiving state can be realized by turning on or off the receiver.
  • the terminal uses a low-power receiver to monitor the LP-WUS.
  • the terminal wakes up the main receiver, and the terminal switches from a low-power receiving state to a normal receiving state.
  • the terminal uses the active BWP; in the second normal receiving state, the terminal uses the first BWP.
  • the two BWPs can be the same or different .
  • the BWP inactivity timer (BWP-InactivityTimer) provided in the embodiment of the present application is started or resumed when a preset condition is met.
  • the duration of the BWP inactivation timer is configured by the network device, for example, the network device configures the duration of the BWP inactivation timer through RRC signaling. Among them, the relevant content of the BWP inactivation timer and preset conditions will be expanded below.
  • the terminal When the terminal transmits and receives data through a BWP, the terminal starts a BWP inactivation timer corresponding to the BWP. When the BWP inactivation timer expires, it is considered that the terminal has not transmitted or received data on the BWP within the time period, and the terminal will switch from the BWP to the default BWP or the initially configured BWP.
  • the terminal when the target BWP is the first BWP configured by the network device, the terminal can determine the first BWP in the activated serving cell as the activated serving cell. BWP, making BWP switching more flexible.
  • the network device may configure the first BWP through system messages or terminal-specific signaling, so that the terminal can determine the opportunity BWP of the activated serving cell according to the configuration of the network device.
  • the target BWP is the initial activation BWP.
  • the first receiving state is a low-power receiving state
  • the second receiving state is a normal receiving state
  • the active BWP of the terminal on each activated serving cell is determined as the initial active BWP.
  • the initial active BWP is firstActiveBWP, including the initial active downlink and/or the initial active uplink.
  • the network device configures the terminal to initially activate the BWP through terminal-specific high-layer signaling.
  • the initial activation BWP is a BWP in the corresponding serving cell.
  • the activated BWPs in different activated serving cells are different.
  • the terminal in the RRC connection state monitors the LP-WUS in the low power receiving state.
  • the terminal monitors the LP-WUS by using a low-power receiver (such as an LP-WUS receiver).
  • a low-power receiver such as an LP-WUS receiver
  • the LP-WUS receiver is in the working state
  • the main receiver main radio
  • the activated BWP of the terminal on the serving cell is determined as the initial activated BWP.
  • the terminal when the target BWP is the initial activation BWP configured by the network device, the terminal can determine the initial activation BWP in the activated serving cell as the activation of the serving cell.
  • the BWP enables the terminal to determine to activate the BWP according to the originally configured BWP, and does not require the network device to reconfigure the activated BWP.
  • the target BWP is the second BWP activated before the terminal enters the first receiving state.
  • the terminal when the terminal transmits and receives data through a BWP, the terminal starts the BWP inactivation timer corresponding to the BWP.
  • the BWP inactivation timer expires, it is considered that the terminal does not send or receive data on the BWP within the time period.
  • the BWP inactivation timer is in the running state. Taking the first receiving state as a low-power receiving state and the second receiving state as a normal receiving state as an example, before the terminal is in the low-power receiving state, it can be considered that the terminal is in the normal receiving state. At this time, the BWP inactive timer is in the Operating status.
  • the terminal controls the BWP-Inactivity Timer when a preset condition is met. For example, when the preset condition is met, the terminal starts or resumes running the BWP inactivation timer.
  • the preset conditions include:
  • the network device configures the default downlink BWP (default Downlink BWP) to the terminal, the second BWP is not the default downlink BWP and the second BWP is not the dormant BWP (dormant BWP);
  • the network device does not configure a default downlink BWP for the terminal, the second BWP is not an initial downlink BWP (initial Downlink BWP), and the second BWP is not a dormant BWP.
  • the terminal may stop or suspend the BWP inactivation timer.
  • the embodiment of the present application provides two different BWP switching methods, as follows:
  • FIG. 8 shows a flowchart of a BWP switching method provided in an exemplary embodiment of the present application, including the following steps:
  • Step 4011 When the second receiving state is switched to the first receiving state, if the preset condition is satisfied, the terminal stops the BWP inactivation timer corresponding to the second BWP.
  • Step 4021 When the first receiving state is switched to the second receiving state, the terminal determines the second BWP in the activated serving cell as the activated BWP in the activated serving cell.
  • the second BWP is a BWP activated by the terminal before entering the first receiving state.
  • the first receiving state is a low-power receiving state
  • the second receiving state is a normal receiving state.
  • the terminal Before the terminal enters the low-power receiving state, the terminal is in the normal receiving state, and the second BWP is a BWP activated when the terminal is in the normal receiving state.
  • the second BWP is a BWP in the corresponding activated serving cell.
  • the activated BWPs in different activated serving cells are different.
  • step 4021 can be implemented as follows:
  • the terminal determines the second BWP corresponding to the activated serving cell as the activated BWP corresponding to the activated serving cell;
  • the terminal starts the BWP inactivation timer.
  • starting the BWP inactivation timer means that the terminal restarts timing of the BWP inactivation timer.
  • the first receiving state is a low-power receiving state
  • the second receiving state is a normal receiving state
  • the terminal stops the BWP inactivation timer, and uses a low-power receiver to monitor the wake-up signal.
  • the terminal determines the second BWP corresponding to the activated serving cell as the activated BWP corresponding to the activated serving cell; When the preset condition is met, the terminal restarts the BWP inactivation timer.
  • the second BWP corresponding to the serving cell is a BWP activated when the terminal is in a normal receiving state.
  • step 4021 is similar to step 102, which can be used as a reference and will not be repeated here.
  • FIG. 9 shows a flowchart of a BWP switching method provided in an exemplary embodiment of the present application, including the following steps:
  • Step 4012 When the second receiving state is switched to the first receiving state, if the preset condition is satisfied, the terminal suspends the BWP inactivation timer corresponding to the second BWP.
  • suspending the BWP inactivation timer refers to that when the second BWP satisfies a preset condition, the terminal suspends timing of the BWP inactivation timer.
  • the terminal suspends the timing of the BWP inactive timer, using The low-power receiver listens for a wake-up signal.
  • Step 4022 When the first receiving state is switched to the second receiving state, the terminal determines the second BWP in the activated serving cell as the activated BWP in the activated serving cell.
  • the second BWP is a BWP activated by the terminal before entering the first receiving state.
  • the first receiving state is a low-power receiving state
  • the second receiving state is a normal receiving state.
  • the terminal Before the terminal enters the low-power receiving state, the terminal is in the normal receiving state, and the second BWP is a BWP activated when the terminal is in the normal receiving state.
  • step 4022 can be implemented as follows:
  • the terminal determines the second BWP corresponding to the activated serving cell as the activated BWP corresponding to the activated serving cell;
  • the terminal resumes running the BWP inactivation timer.
  • resuming the operation of the BWP inactivation timer refers to that the terminal continues to resume timing of the BWP inactivation timer.
  • the first receiving state is a low-power receiving state
  • the second receiving state is a normal receiving state
  • the terminal suspends timing of the BWP inactive timer and uses a low-power receiver to monitor the wake-up signal if the preset condition is met.
  • the terminal determines the second BWP corresponding to the activated serving cell as the activated BWP corresponding to the activated serving cell; When the preset condition is satisfied, the terminal continues to resume timing of the BWP inactivation timer.
  • the second BWP corresponding to the serving cell is a BWP activated when the terminal is in a normal receiving state.
  • step 4022 is similar to step 102, which can be used as a reference and will not be repeated here.
  • FIG. 10 shows a schematic diagram of a BWP switching method provided by an exemplary embodiment of the present application.
  • the terminal when switching from the normal receiving state to the low power receiving state, the terminal stops or suspends the running BWP inactivation timer. In the case of transitioning from the low-power receiving state to the normal receiving state, the terminal continues to work on the original active BWP, and at the same time starts or resumes running the BWP inactive timer.
  • the terminal For a terminal in an RRC connection state, the terminal is in a normal receiving state.
  • the current active BWP of the terminal is the second BWP, and meanwhile, the BWP inactivation timer corresponding to the second BWP is running.
  • the terminal performs one of the following operations on the BWP inactivation timer corresponding to the second BWP:
  • the terminal monitors the LP-WUS.
  • the terminal uses the LP-WUS receiver to monitor the LP-WUS.
  • the LP-WUS receiver is in the working state, and the main receiver is in the off state or deep sleep state.
  • the terminal After receiving the LP-WUS, the terminal wakes up the main receiver.
  • the activated BWP of the terminal on the serving cell is the second BWP.
  • the terminal performs one of the following operations on the BWP inactivity timer corresponding to the second BWP:
  • execution of operation three corresponds to the execution of operation one
  • execution of operation four corresponds to the execution of operation two
  • preset conditions include:
  • the network device configures a default downlink BWP to the terminal, the second BWP is not the default downlink BWP and the second BWP is not the dormant BWP;
  • the network device does not configure a default downlink BWP for the terminal, the second BWP is not the initial downlink BWP, and the second BWP is not the dormant BWP.
  • the terminal when the target BWP is the second BWP activated by the terminal before entering the first receiving state, the terminal can determine the second BWP in the activated serving cell For the activated BWP of the serving cell, the terminal can determine the activated BWP according to the originally used BWP, without requiring the network device to reconfigure the activated BWP.
  • the BWP inactivation timer corresponding to the second BWP is in the running state.
  • the terminal in addition to determining to activate the BWP, can also perform different processing on the BWP inactivation timer: first, when the terminal switches from the second receiving state to the first receiving state state, the terminal stops the BWP inactive timer, and when the terminal switches from the first receiving state to the second receiving state, the terminal starts the BWP inactive timer; secondly, when the terminal switches from the second receiving state to In the case of the first receiving state, the terminal suspends the BWP inactive timer, and when the terminal switches from the first receiving state to the second receiving state, the terminal resumes running the BWP inactive timer.
  • FIG. 11 shows a structural diagram of a BWP switching device provided in an exemplary embodiment of the present application, and the device includes:
  • a determining module 1120 configured to determine the target BWP in the activated serving cell as the activated BWP in the activated serving cell when the first receiving state is switched to the second receiving state;
  • the transmission parameters in the first receiving state and the second receiving state are different, and the transmission parameters include at least one of receiver, waveform, modulation mode, coding and multiple access mode.
  • the target BWP includes one of the following: a first BWP configured by the network device; an initially activated BWP; and a second BWP activated by the terminal before entering the first receiving state.
  • the target BWP includes the first BWP
  • the apparatus further includes a receiving module 1140, configured to receive configuration parameters of the first BWP configured by the network device.
  • the first BWP is used to indicate the active BWP of the terminal on the activated serving cell when the first receiving state is switched to the second receiving state.
  • the configuration parameters of the first BWP are configured through system messages or terminal-specific signaling.
  • the terminal-specific signaling includes one of the following signalings: RRC signaling; MAC CE; PDCCH; LPW.
  • the target BWP includes a second BWP
  • the device further includes a timer module 1160, configured to stop communicating with the first receiving state when a preset condition is met when the second receiving state is switched to the first receiving state.
  • the BWP inactivation timer corresponding to the two BWPs; the determining module 1120, configured to determine the second BWP in the activated serving cell as the activated BWP in the activated serving cell.
  • the determining module 1120 is configured to, when the first receiving state is switched to the second receiving state, for each activated serving cell, the terminal determines the second BWP corresponding to the activated serving cell as the activated serving cell Activated BWP corresponding to the cell; timer module 1160, configured to start the BWP inactivation timer by the terminal when the preset condition is met.
  • the target BWP includes a second BWP
  • the timer module 1160 is configured to suspend the second BWP corresponding to the second BWP when the preset condition is met when the second receiving state is switched to the first receiving state.
  • BWP inactivation timer a determining module 1120, configured to determine the second BWP in the activated serving cell as the activated BWP in the activated serving cell.
  • the determining module 1120 is configured to, when the first receiving state is switched to the second receiving state, for each activated serving cell, the terminal determines the second BWP corresponding to the activated serving cell as the activated serving cell The active BWP corresponding to the cell; the timer module 1160, configured to resume running the BWP inactive timer in the terminal when the preset condition is met.
  • the preset conditions include: the network device configures a default downlink BWP to the terminal, the second BWP is not the default downlink BWP and the second BWP is not a dormant BWP; or, the network device does not configure a default downlink BWP to the terminal, and the second BWP is not the initial The downlink BWP and the second BWP is not a dormant BWP.
  • the BWP inactivation timer is in the running state.
  • the terminal is in a radio resource control RRC connected state.
  • the device further includes a receiver module 1180, configured to use the first receiver to monitor the wake-up signal when the terminal is in the first receiving state; wherein, the first receiver of the terminal is in the working state, and the terminal's The second receiver is in an off state or a deep sleep state, the first receiver is a receiver used in the first receiving state, and the second receiver is used in a second receiving state.
  • a receiver module 1180 configured to use the first receiver to monitor the wake-up signal when the terminal is in the first receiving state; wherein, the first receiver of the terminal is in the working state, and the terminal's The second receiver is in an off state or a deep sleep state, the first receiver is a receiver used in the first receiving state, and the second receiver is used in a second receiving state.
  • the receiver module 1180 is further configured to wake up the second receiver by the terminal when the wake-up signal is received.
  • FIG. 12 shows a structural diagram of a BWP switching device provided in an exemplary embodiment of the present application, and the device includes:
  • the configuration module 1220 is used for the terminal to configure the configuration parameters of the first BWP; wherein, the first BWP is the activated BWP in the activated serving cell determined by the terminal when the first receiving state is switched to the second receiving state, and the first receiving The transmission parameters of the state and the second receiving state are different, and the transmission parameters include at least one of receiver, waveform, modulation mode, coding and multiple access mode.
  • the first BWP is used to indicate the active BWP of the terminal on the activated serving cell when the first receiving state is switched to the second receiving state.
  • the configuration module 1220 is used for the network device to configure the configuration parameters of the first BWP to the terminal through system messages; or, the network device configures the configuration parameters of the first BWP to the terminal through terminal-specific signaling.
  • the terminal-specific signaling includes one of the following: RRC signaling; MAC CE; PDCCH; LPW.
  • FIG. 13 shows a schematic structural diagram of a communication device (terminal or network device) provided by an exemplary embodiment of the present application.
  • the communication device includes: a processor 1301 , a receiver 1302 , a transmitter 1303 , a memory 1304 and a bus 1305 .
  • the processor 1301 includes one or more processing cores, and the processor 1301 executes various functional applications and information processing by running software programs and modules.
  • the receiver 1302 and the transmitter 1303 can be implemented as a communication component, which can be a communication chip.
  • the memory 1304 is connected to the processor 1301 through the bus 1305 .
  • the memory 1304 may be used to store at least one instruction, and the processor 1301 is used to execute the at least one instruction, so as to implement various steps of the BWP switching method mentioned in the above method embodiments.
  • volatile or non-volatile storage device includes but not limited to: magnetic disk or optical disk, electrically erasable and programmable Electrically-Erasable Programmable Read Only Memory (EEPROM), Erasable Programmable Read Only Memory (EPROM), Static Random Access Memory (SRAM), Read-Only Memory (Read-Only Memory, ROM), magnetic memory, flash memory, programmable read-only memory (Programmable Read-Only Memory, PROM).
  • EEPROM Electrically-Erasable Programmable Read Only Memory
  • EPROM Erasable Programmable Read Only Memory
  • SRAM Static Random Access Memory
  • Read-Only Memory Read-Only Memory
  • PROM Programmable Read-Only Memory
  • the embodiment of the present application also provides a terminal, the terminal includes a processor; the processor is configured to determine the target BWP in the activated serving cell as the activated service when the first receiving state is switched to the second receiving state The activated BWP in the cell; wherein, the transmission parameters in the first receiving state and the second receiving state are different, and the transmission parameters include at least one of receiver, waveform, modulation mode, coding and multiple access mode.
  • the embodiment of the present application also provides a network device.
  • the network device includes a processor; the processor is used to configure the configuration parameters of the first BWP to the terminal;
  • the activated BWP in the activated serving cell determined under the state, the transmission parameters of the first receiving state and the second receiving state are different, and the transmission parameters include at least one of the receiver, waveform, modulation method, coding and multiple access method .
  • the embodiment of the present application also provides a computer-readable storage medium, where a computer program is stored in the storage medium, and the computer program is used to be executed by a processor, so as to implement the above-mentioned BWP switching method.
  • the embodiment of the present application also provides a chip, the chip includes a programmable logic circuit and/or program instructions, and is used to implement the BWP switching method as described above when the chip is running.
  • the embodiment of the present application also provides a computer program product or computer program, the computer program product or computer program includes computer instructions, the computer instructions are stored in a computer-readable storage medium, and the processor reads and executes the computer program from the computer-readable storage medium. instruction to implement the BWP switching method as described above.

Abstract

本申请公开了一种BWP切换方法、装置、设备及存储介质,涉及通信技术领域。所述方法包括:终端在第一接收状态切换到第二接收状态的情况下,终端将激活的服务小区中的目标BWP确定为激活的服务小区中的激活BWP;其中,第一接收状态和第二接收状态的传输参数不同,传输参数包括接收机、波形、调制方式、编码和多址方式中的至少一项。

Description

BWP切换方法、装置、设备及存储介质 技术领域
本申请涉及通信技术领域,特别涉及一种带宽部分(Bandwidth Part,BWP)切换方法、装置、设备及存储介质。
背景技术
在第5代移动通信系统(5G)的演进中,对处于连接态的用户设备(User Equipment,UE)节电提出了更高的要求。
发明内容
本申请实施例提供了一种BWP切换方法、装置、设备及存储介质,提供了一种在第一接收状态切换到第二接收状态的情况下,终端确定激活BWP的方法,所述技术方案如下:
根据本申请的一个方面,提供了一种BWP切换方法,所述方法包括:
终端在第一接收状态切换到第二接收状态的情况下,终端将激活的服务小区中的目标BWP确定为激活的服务小区中的激活BWP;
其中,第一接收状态和第二接收状态的传输参数不同,传输参数包括接收机、波形、调制方式、编码和多址方式中的至少一项。
根据本申请的一个方面,提供了一种BWP切换方法,所述方法包括:
网络设备向终端配置第一BWP的配置参数;
其中,第一BWP是终端在第一接收状态切换到第二接收状态的情况下确定的激活的服务小区中的激活BWP,第一接收状态和第二接收状态的传输参数不同,传输参数包括接收机、波形、调制方式、编码和多址方式中的至少一项。
根据本申请的一个方面,提供了一种BWP切换装置,所述装置包括:
确定模块,用于在第一接收状态切换到第二接收状态的情况下,将激活的服务小区中的目标BWP确定为激活的服务小区中的激活BWP;
其中,第一接收状态和第二接收状态的传输参数不同,传输参数包括接收机、波形、调制方式、编码和多址方式中的至少一项。
根据本申请的一个方面,提供了一种BWP切换装置,所述装置包括:
配置模块,用于向终端配置第一BWP的配置参数;
其中,第一BWP是终端在第一接收状态切换到第二接收状态的情况下确定的激活的服务小区中的激活BWP,第一接收状态和第二接收状态的传输参数不同,传输参数包括接收机、波形、调制方式、编码和多址方式中的至少一项。
根据本申请的一个方面,提供了一种终端,该终端包括处理器;
所述处理器,用于在第一接收状态切换到第二接收状态的情况下,将激活的服务小区中的目标BWP确定为激活的服务小区中的激活BWP;
其中,第一接收状态和第二接收状态的传输参数不同,传输参数包括接收机、波形、调制方式、编码和多址方式中的至少一项。
根据本申请的一个方面,提供了一种网络设备,该网络设备包括处理器;
所述处理器,用于向终端配置第一BWP的配置参数;
其中,第一BWP是终端在第一接收状态切换到第二接收状态的情况下确定的激活的服务小区中的激活BWP,第一接收状态和第二接收状态的传输参数不同,传输参数包括接收机、波形、调制方式、编码和多址方式中的至少一项。
根据本申请的一个方面,提供了一种计算机可读存储介质,存储介质中存储有计算机程 序,所述计算机程序用于被处理器执行,以实现如上所述的BWP切换方法。
根据本申请的一个方面,提供了一种芯片,芯片包括可编程逻辑电路和/或程序指令,当芯片运行时,用于实现如上所述的BWP切换方法。
根据本申请的一个方面,提供了一种计算机程序产品或计算机程序,计算机程序产品或计算机程序包括计算机指令,计算机指令存储在计算机可读存储介质中,处理器从计算机可读存储介质读取并执行计算机指令,以实现如上所述的BWP切换方法。
本申请实施例提供的技术方案至少包括如下有益效果:
提供了一种确定激活BWP的方法,在从第一接收状态切换到第二接收状态的情况下,终端将激活的服务小区中的目标BWP确定为该服务小区对应的激活BWP,以使得终端在状态切换后能够确定激活的服务小区中的激活BWP。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一个示例性实施例提供的终端的示意图;
图2是本申请一个示例性实施例提供的移动通信系统的示意图;
图3是本申请一个示例性实施例提供的BWP切换方法的流程图;
图4是本申请一个示例性实施例提供的BWP切换方法的流程图;
图5是本申请一个示例性实施例提供的终端的示意图;
图6是本申请一个示例性实施例提供的BWP切换方法的流程图;
图7是本申请一个示例性实施例提供的BWP切换方法的示意图;
图8是本申请一个示例性实施例提供的BWP切换方法的流程图;
图9是本申请一个示例性实施例提供的BWP切换方法的流程图;
图10是本申请一个示例性实施例提供的BWP切换方法的示意图;
图11是本申请一个示例性实施例提供的BWP切换装置的示意图;
图12是本申请一个示例性实施例提供的BWP切换装置的示意图;
图13是本申请一个示例性实施例提供的通信设备的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
在介绍本申请技术方案之前,下面先对本申请相关知识进行说明:
当前,随着人们对速率、延迟、高速移动性、能效的追求以及未来生活中业务的多样性、复杂性,为此3GPP国际标准组织开始研发第五代通信(5th-Generation,5G)。5G的主要应用场景为:增强移动超宽带(Enhanced Mobile Broadband,eMBB)、低时延高可靠通信(Ultra-Reliable&Low-Latency Communication,URLLC)、大规模机器类通信(massive Machine Type of Communication,mMTC)。
新空口(New Radio,NR)也可以独立部署,5G网络环境中为了降低空口信令和快速恢复无线连接,快速恢复数据业务的目的,定义一个新的无线资源控制(Radio Resource Control,RRC)状态,即RRC不活跃(RRC_INACTIVE)状态。这种状态有别于RRC空闲(RRC_IDLE)状态和RRC活跃(RRC_ACTIVE)状态。
RRC_IDLE:移动性为基于终端的小区选择重选,寻呼由终端发起,寻呼区域由终端配置。网络设备侧不存在终端接入层(Access Stratum,AS)上下文,不存在RRC连接。
RRC_CONNECTED:存在RRC连接,网络设备和终端存在终端接入层上下文。网络设 备侧确定终端的位置是具体小区级别的进行的,移动性是网络设备侧控制的移动性。终端和网络设备之间可以传输单播数据。
RRC_INACTIVE:移动性为基于终端的小区选择重选,存在核心网(Core Network,CN)与NR之间的连接,可简写为CN-NR之间的连接,终端接入层上下文存在某个网络设备上,寻呼由无线接入网(Radio Access Network,RAN)触发,基于RAN的寻呼区域由RAN管理,网络设备侧确定终端的位置是基于RAN的寻呼区域级别的进行的。
5G NR带宽部分(Bandwidth Part,BWP)切换:
为了能够提供更大的数据传输速率,提升用户体验,5G NR在4G基础上进一步增大了系统带宽。在5G NR中,对于6GHz以下频段,单载波支持的最大带宽为100MHz;对于6GHz以上频段,单载波支持的最大带宽为400MHz。对于一个大的载波带宽,比如100HMz,终端需要使用的带宽往往非常有限,如果让终端始终在整个带宽上进行检测和测量,对终端功耗将带来极大的挑战,不利于终端省电。因此,在5G NR中引入了BWP的概念,即在整个大带宽的载波内划分出一部分连续的带宽给终端进行数据收发。终端只需要在网络设备配置的这部分带宽内进行相关操作,从而起到终端节能的效果。
基于5G NR协议标准规定,对于终端的每个服务小区,网络设备通过RRC消息可以为终端在这个服务小区上配置一个或者多个BWP,可配置的最大BWP数目为4。在每个时刻,终端在这个服务小区上只能有1个激活的下行BWP(Downlink BWP,DL BWP)和1个激活的上行BWP(Uplink BWP,UL BWP),终端只能在激活的BWP上进行数据收发。
考虑到终端业务的多样性以及不同业务特性的差异性等因素,终端可能会有调整BWP的需求。比如,当终端的业务量较大时,终端希望获得高速率服务,需要使用一个大带宽的BWP为该终端进行数据传输;当终端的业务量较小时,此时可以使用一个小带宽的BWP为该终端进行数据传输。终端可通过BWP切换的方式来改变终端在对应的服务小区上激活BWP。
示意性的,目前相关技术中支持的BWP切换方法有以下4种:
1.基于物理下行控制信道(Physical Downlink Control Channel,PDCCH)的BWP切换。
网络设备控制的BWP切换。
示意性的,网络设备向终端发送PDCCH,告知终端切换的目标BWP。
2.基于RRC配置或RRC重配置的BWP切换。
网络设备控制的BWP切换。
示意性的,对于终端的每个服务小区,网络设备通过RRC配置消息或RRC重配置消息为终端在对应的服务小区上配置切换的BWP。其中,切换的BWP包括初始激活下行BWP标识(firstActiveDownlinkBWP-Id)和/或初始激活上行BWP标识(firstActiveUplinkBWP-Id)。
如果在主辅小区(Special Cell,SpCell)上配置了初始激活下行BWP标识和/或初始激活上行BWP标识,则执行RRC重配置之后,终端在SpCell上的激活BWP为初始激活下行BWP标识和/或初始激活上行BWP标识。
如果在辅小区(Secondary Cell,SCell)上配置了初始激活下行BWP标识和/或初始激活上行BWP标识,则当终端激活该SCell之后终端在该SCell上的激活BWP为初始激活下行BWP标识和/或初始激活上行BWP标识。
3.基于定时器(timer)超时的BWP切换。
隐式方式的BWP切换。
示意性的,网络设备为终端配置一个BWP非激活定时器(BWP-InactivityTimer)。对于每个服务小区:
-如果终端在该服务小区上配置了默认BWP(default BWP),且终端当前激活的DL BWP是除默认BWP和休眠BWP(dormant BWP)以外的BWP;或者,
-如果终端在该服务小区上没有配置默认BWP,且终端当前激活的DL BWP是除初始 BWP(initial BWP)和休眠BWP以外的BWP;
-则:当终端在当前激活的BWP上收到指示该UE上行或下行调度的PDCCH,或者终端收到指示该UE在当前激活的BWP上上行或下行调度的PDCCH,或者终端在配置的上行授权(Configured Grant,CG)资源上发送了上行传输,或者终端在半持续调度(Semi-Persistent Scheduling,SPS)资源上接收了下行传输,终端都启动或重启BWP非激活定时器。
BWP非激活定时器超时的情况下,终端自动切换到默认BWP或者初始BWP。其中,默认BWP和初始BWP均由RRC配置决定。
4.随机接入初始化引起的BWP切换。
在随机接入信道(Random Access Channel,RACH)初始化过程中,如果终端在当前激活的UL BWP上没有配置物理随机接入信道(Physical Random Access Channel,PRACH)场景,则终端自动将UL BWP切换到初始上行BWP(initial UL BWP),同时将DL BWP切换到初始下行BWP(initial DL BWP)。
图1示出了本申请一个示例性实施例提供的一种具有唤醒接收机的终端100,终端100包括:唤醒接收机120和主接收机140。
其中,唤醒接收机120是零功耗接收机或者能耗小于预定条件的低功率接收机。唤醒接收机120采用第一传输参数进行节能信号的接收,以及节能信号的响应信号的发送。
主接收机140是传统的接收机。主接收机140采用第二传输参数进行控制信道以及其它传统的通信信号的接收和发送。
可选的,唤醒接收机120还可以称之为低功耗接收机、低功率接收机、零功率接收机,以及其他能够表示以较低功耗实现信号收发的称呼。在同等条件下,比如均用于传输节能信号或唤醒信号的情况下,第一传输参数的能耗小于第二传输参数的能耗。
图2示出了本申请一个示例性实施例提供的移动通信系统200的示意图。该移动通信系统200中至少包含如下功能节点:
终端100:同时具有唤醒接收机120和主接收机140,如图2所示。
网络设备20:为终端100提供通信链路,和/或给终端100提供基于RF能量采集模块采集无线电波能量的无线电波,即供能。
核心网(Corn Network,CN)设备30:数据处理和接收,对终端100的相关业务、移动性、用户面、控制面、网关等功能的控制和管理。
相关技术中,为避免主接收机长期处于开启状态,考虑引入超低功耗唤醒信号(ultra-Low Power Wake-Up Signal,LP-WUS)接收机,以实现终端节能。然而,在监听LP-WUS对应的接收状态下,终端将不接收网络设备的调度,且终端也不会进行数据收发,此时存在终端没有工作的BWP。
在终端监听到LP-WUS后,终端由监听LP-WUS对应的接收状态切换回主接收机对应的接收状态的情况下,如何确定终端的激活带宽部分的问题尚需讨论。
图3示出了本申请一个示例性实施例提供的BWP切换方法的流程图,该方法应用于终端,包括如下步骤:
步骤102:终端在第一接收状态切换到第二接收状态的情况下,终端将激活的服务小区中的目标BWP确定为激活的服务小区中的激活BWP。
示意性的,第一接收状态和第二接收状态的传输参数不同,传输参数包括接收机、波形、调制方式、编码和多址方式中的至少一项。
其中,接收机包括唤醒接收机和主接收机。
以终端包括唤醒接收机和主接收机为例,第一接收状态是唤醒接收机处于工作状态而主接收机处于关闭状态或者深度睡眠状态时的接收状态,第一接收状态还可称之为低功耗接收状态、唤醒接收状态;第二接收状态是主接收机处于工作状态时的接收状态,第二接收状态 还可以称之为正常接收状态。
示意性的,以第一接收状态的传输参数是第一传输参数,第二接收状态的传输参数是第二传输参数为例,第一传输参数是唤醒接收机或低功耗接收机对应的传输参数;第二传输参数是传统的接收机对应的传输参数;或者,常规的接收机对应的传输参数。
第一传输参数的调制方式包括振幅键控(Amplitude Shift Keying,ASK)调制、频移键控(Frequency Shift Keying,FSK)调制、二进制相移键控(2Phase-Shift Keying,2PSK)调制的任意一项。第二传输参数的调制方式包括正交频分复用(Orthogonal Frequency-Division Multiplexing,OFDM)调制、正交相移键控四相移相键控(Quadrature Phase-Shift Keying,QPSK)调制、正交幅度调制(Quadrature Amplitude Modulation,QAM)的任意一项。
ASK是载波的振幅随着数字基带信号而变化的数字调制。当数字基带信号为二进制时,则为二进制振幅键控2ASK。2ASK又称为开关键控或通断键控(On-Off Keying,OOK),它是以单极性不归零码序列来控制正线载波的开启与关闭。可选的,ASK还包括4ASK、8ASK等,对此本实施例不作任何限定。
FSK是载波的频率随着数字基带信号而变化的数字调制。当数字基带信号为二进制时,则为二进制频移键控2FSK。2FSK是通过对两个不同载波信号进行变换使其成为数字信号来完成信息传输的。是用载波频率的变化来表征被传信息的状态的,被调载波的频率随二进制序列0、1状态而变化。可选的,FSK还包括4FSK、8FSK等,对此本实施例不作任何限定。
PSK是载波的相位随着数字基带信号而变化的数字调制。2PSK是相移键控最简单的一种形式,它用两个初相相隔为180的载波来传递二进制信息,也称为BPSK。QPSK是四进制移相键控,利用载波的四种不同相位差表征输入的数字信息。
OFDM是多载波调制(Multi Carrier Modulation,MCM)的一种,其主要原理是将信道分成若干正交子信道,将高速数据信号转换成并行的低速子数据流,调制到每个子信道上进行传输。OFDM包括V-OFDM、W-OFDM、F-OFDM、MIMO-OFDM、多带-OFDM等,对此本实施例不作任何限制。
QAM是用两个独立的基带数字信号对两个互相正交的同频载波进行抑制在播的双边带调制,利用这种已调信号在同一带宽内频谱正交的性质来实现两路并行的数字信息传输。它是把多进制数字振幅调制MASK与多进制数字相位调制MPSK两种结合到一起的调制技术,使得带宽得到双倍拓展。
第一传输参数采用简单的、低阶的数字调制方式,第二传输参数采用相对复杂的、高阶的、正交的数字调制方式,第一传输参数相对于第二传输参数的信号复杂度低。
需要说明的是,上文实施例对第一传输参数的调制方式以及第二传输参数的调制方式的举例仅为示例,不应对本申请构成任何限制,不排除采用其他已有的或未来定义的调制方式生成第一传输参数或第二传输参数。
第一传输参数和第二传输参数的编码方式不同。第一传输参数的编码方式包括反向不归零编码、曼彻斯特编码、单极性归零编码、差动双相编码、米勒编码、差动编码的任意一项。第二传输参数的编码方式包括新的分组(Reed-Muller,RM)码、咬尾卷积码(Tail Biting CC,TBCC)、Turbo码、外码、低密度奇偶校验码(Low Density Parity Check Code,LDPC)、Polar码的任意一项。
第一传输参数和第二传输参数的多址方式不同。第一传输参数的多址方式包括频分多址(Frequenc-Division Multiple Access,FDMA)、时分多址(Time-Division Multiple Access,TDMA)、码分多址(Code-Division Multiple Access,CDMA)的任意一项。第二传输参数的多址方式包括正交频分多址(Orthogonal Frequency-Division Multiple Access,OFDMA)、离散傅里叶变换扩展的正交频分复用(DFT-Spread OFDM,DFTS-OFDM)的任意一项。
应理解,采用不同的调制方式生成的信号波形不同。本申请实施例中,第一反馈信号和第二反馈信号的调制方式不同,因此第一反馈信号和第二反馈信号的波形不同。
可选的,终端处于RRC连接态。
对于终端的每个服务小区来说,目标BWP是对应的激活的服务小区中的一个BWP。其中,在服务小区处于激活状态下,该激活的服务小区上具有一个激活BWP,且不同的激活的服务小区中的激活BWP不同。
可选的,目标BWP包括如下中的一种:
·网络设备配置的第一BWP。
比如,网络设备向终端配置第一BWP,终端根据网络设备的配置信息,将第一BWP确定为激活的服务小区的激活BWP。
可选的,第一BWP是下行BWP。
·初始激活BWP。
示意性的,初始激活BWP为firstActiveBWP,包括初始激活下行BWP(firstActiveDownlinkBWP-Id)或者/和初始激活上行BWP(firstActiveUplinkBWP-Id)。可选的,初始激活BWP由网络设备通过高层信令为终端配置。
对于终端的每个服务小区,网络设备可通过RRC配置或重配置消息在该服务小区上配置初始激活BWP。
比如,在SpCell上配置了初始激活下行BWP标识和/或初始激活上行BWP标识,则执行RRC重配置之后,终端在SpCell上的激活BWP为初始激活下行BWP标识和/或初始激活上行BWP标识。
比如,在SCell上配置了初始激活下行BWP标识和/或初始激活上行BWP标识,则当终端激活该SCell之后终端在该SCell上的激活BWP为初始激活下行BWP标识和/或初始激活上行BWP标识。
·终端在进入第一接收状态之前激活的第二BWP。
终端在第一接收状态切换到第二接收状态的情况下,将激活的服务小区上的第二BWP确定为所述激活的服务小区上的激活BWP,则使得终端在状态切换的前后使用的(激活的)BWP是同一个BWP,该BWP是第二BWP。
以第一接收状态是低功耗接收状态,第二接收状态是正常接收状态为例。
在目标BWP是第一BWP的情况下,终端接收网络设备配置的第一BWP的配置参数,在从低功耗接收状态切换到正常接收状态时,对于每个激活的服务小区,终端将该激活的服务小区中的第一BWP确定为激活BWP。其中,每个激活的服务小区中的第一BWP不同。
在目标BWP是初始激活BWP的情况下,在从低功耗接收状态切换到正常接收状态时,对于每个激活的服务小区,终端将该激活的服务小区中的初始激活BWP确定为激活BWP。其中,每个激活的服务小区中的初始激活BWP不同。
在目标BWP是第二BWP的情况下,终端在进入低功耗接收状态之前处于正常接收状态,此时终端激活的BWP是第二BWP;在从低功耗接收状态切换到正常接收状态时,对于每个激活的服务小区,终端将该激活的服务小区中的第二BWP确定为激活BWP。其中,每个激活的服务小区中的第二BWP不同。
综上所述,本申请实施例提供的BWP切换方法,在从第一接收状态切换到第二接收状态的情况下,终端将激活的服务小区中的目标BWP确定为该服务小区对应的激活BWP,以使得终端在状态切换后能够确定激活的服务小区中的激活BWP。
以终端包括唤醒接收机和主接收机为例,终端从第一接收状态切换到第二接收状态可通过接收器的开启和关闭实现。图4示出了本申请一个示例性实施例提供的BWP切换方法的流程图,包括如下步骤:
步骤201:在处于第一接收状态的情况下,终端采用第一接收机监听唤醒信号。
其中,终端的第一接收机处于工作状态,终端的第二接收机处于关闭状态或者深度睡眠 状态,第一接收机是第一接收状态下使用的接收机,第二接收机是第二接收状态下使用的接收机。
示意性的,唤醒信号用于指示终端唤醒第二接收机。可选的,唤醒信号是超低功耗唤醒信号(ultra-Low Power Wake-Up Signal,LP-WUS)。
以第一接收机是唤醒接收机,第二接收机是主接收机为例。在处于第一接收状态下,终端采用唤醒接收机监听唤醒信号,第一接收状态又可称之为唤醒接收状态或低功耗接收状态。
步骤202:网络设备向终端发送唤醒信号。
其中,唤醒信号可参考前述内容,不再赘述。
步骤203:在接收到唤醒信号的情况下,终端唤醒第二接收机。
在处于第一接收状态的情况下,终端采用第一接收机监听唤醒信号,随后,终端在接收到网络设备发送的唤醒信号后,唤醒第二接收机。
以第一接收机是唤醒接收机,第二接收机是主接收机为例。终端在接收到网络设备发送的唤醒信号后,唤醒主接收机。
图5示出了本申请一个示例性实施例提供的终端的示意图,终端包括第一接收机和第二接收机,第一接收机用于监听唤醒信号。
参考图5的(a),终端处于第一接收状态,通过第一接收机监听唤醒信号。其中,第一接收机处于工作状态,第二接收机处于关闭状态或者深度睡眠状态。此时,第一接收状态下的终端功耗较低。
参考图5的(b),终端通过第一接收机监听到唤醒信号,第一接收机唤醒第二接收机。此时,终端唤醒第二接收机,第二接收机打开以处于工作状态。此时,终端将从第一接收状态切换到第二接收状态;且由于第二接收机处于工作状态,将使得第二接收状态的终端功耗高于第一接收装填的终端功耗。
可选的,第一接收机是唤醒接收机,第二接收机是主接收机。
步骤204:在第一接收状态切换到第二接收状态的情况下,终端将激活的服务小区中的目标BWP确定为激活的服务小区中的激活BWP。
示意性的,第一接收状态和第二接收状态的传输参数不同,传输参数包括接收机、波形、调制方式、编码和多址方式中的至少一项。
其中,第一接收状态和第二接收状态的传输参数可参考前述内容,不再赘述。
以终端包括唤醒接收机和主接收机为例,第一接收状态是唤醒接收机处于工作状态而主接收机处于关闭状态或者深度睡眠状态时的接收状态,第一接收状态还可称之为低功耗接收状态、唤醒接收状态;第二接收状态是主接收机处于工作状态时的接收状态,第二接收状态还可以称之为正常接收状态。
可选的,目标BWP包括如下中的一种:网络设备配置的第一BWP;初始激活BWP;终端在进入第一接收状态之前激活的第二BWP。
示意性的,步骤204和步骤102相同,可作参考,不再赘述。
示意性的,上述内容给出的实施例中,终端一侧的步骤可单独成为应用于终端中的BWP切换方法的一个实施例,网络设备一侧的步骤可单独成为应用于网络设备中的BWP切换方法,BWP切换方法的步骤的具体阐释可参考上述内容,不再赘述。
综上所述,本申请实施例提供的BWP切换方法,给出了终端在状态切换时的接收机的不同状态:在终端处于第一接收状态的情况下,终端采用第一接收机监听唤醒信号,此时第一接收机处于工作状态,第二接收机处于关闭状态或者深度睡眠状态;在接收到唤醒信号的情况下,终端唤醒第二接收机,此时第二接收机处于工作状态。
根据前述内容,目标BWP包括如下中的一种:网络设备配置的第一BWP;初始激活BWP;终端在进入第一接收状态之前激活的第二BWP。
根据目标BWP的不同,本申请实施例给出如下三种BWP切换方法中的至少一种或任意一种:
1、目标BWP是网络设备配置的第一BWP。
图6示出了本申请一个示例性实施例提供的BWP切换方法的流程图,包括如下步骤:
步骤301:网络设备向终端配置第一BWP的配置参数。
示意性的,第一BWP是终端在第一接收状态切换到第二接收状态的情况下确定的激活的服务小区中的激活BWP。
其中,第一接收状态和第二接收状态的传输参数不同,传输参数包括接收机、波形、调制方式、编码和多址方式中的至少一项。第一接收状态和第二接收状态的传输参数可参考前述内容,不再赘述。
示意性的,第一BWP的配置参数包括但不限于如下中的至少一种:BWP的频域位置、大小和基础参数集(Numerology)配置。其中,BWP的大小对应的高层信令参数为locationAndBandwidth;基础参数集中的子载波间隔有参数μ表征。
可选的,第一BWP的配置参数通过系统消息或终端专属信令配置。
基于此,步骤301可实现为如下:
网络设备通过系统消息向终端配置第一BWP的配置参数;
或者,网络设备通过终端专属信令向终端配置第一BWP的配置参数。
其中,终端专属信令可选地包括如下信令中的一种:
RRC信令;
媒体接入控制控制单元(Media Access Control Control Element,MAC CE);
物理上行控制信道(Physical Downlink Control Channel,PDCCH);
低功耗唤醒信号(Low power wake up signal,LPW)。
步骤302:在第一接收状态切换到第二接收状态的情况下,终端将激活的服务小区中的第一BWP确定为激活的服务小区中的激活BWP。
其中,第一BWP用于指示在第一接收状态切换到第二接收状态的情况下,终端在激活的服务小区上的激活BWP。
步骤302与步骤102类似,可作参考,不再赘述。
以第一接收状态是低功耗接收状态,第二接收状态是正常接收状态为例,图7示出了本申请一个示例性实施例提供的BWP切换方法的示意图。
示意性的,处于RRC连接态的终端从低功耗接收状态转换到正常接收状态时,终端在每个激活的服务小区上的激活BWP确定为第一BWP。其中,每个激活的服务小区上的第一BWP不同。
可选的,第一BWP由网络设备配置。
可选的,第一BWP是下行BWP。
对于终端的每个服务小区来说,第一BWP是对应的激活的服务小区中的一个BWP。示意性的,存在多个激活的服务小区的情况下,不同的激活的服务小区中的激活BWP不同。在服务小区处于激活状态下,该激活的服务小区上具有的第一BWP可确定为激活BWP,对于不同的激活的服务小区,第一BWP也不同。
本申请实施例提供的BWP切换方法具体包括如下:
(1)终端接收来自网络设备配置的第一BWP的配置参数。
示意性的,对于每个服务小区,配置一个第一BWP,第一初始BWP用于指示终端从低功耗接收机状态转换至正常接收状态时,终端在该服务小区上的激活BWP。其中,服务小区包括主辅小区和辅小区。
可选的,第一BWP由网络设备通过系统消息或者终端专属信令的方式配置给终端。其中,终端专属信令可选地包括如下信令中的一种:RRC信令,MAC CE,PDCCH,LPW。
(2)处于RRC连接态的终端从低功耗接收状态转换到正常接收状态时,对于每个激活的服务小区,终端在该服务小区上的激活BWP为第一BWP。
其中,终端从低功耗接收状态切换到正常接收状态可通过接收机的开启或关闭实现。比如,终端采用低功耗接收机监听LP-WUS,在终端接收到LP-WUS时,终端唤醒主接收机,终端从低功耗接收状态转换到正常接收状态。
参考图7,在第一个正常接收状态下,终端使用激活BWP;在第二个正常接收状态下,终端使用第一BWP,可选的,两个BWP可以是相同的,也可以是不同的。
可选的,本申请实施例提供的BWP非激活定时器(BWP-InactivityTimer)在满足预设条件下启动或恢复运行。其中,BWP非激活定时器的时长由网络设备配置,比如网络设备通过RRC信令配置BWP非激活定时器的时长。其中,BWP非激活定时器、预设条件的相关内容将在下文展开。
在终端通过一个BWP进行数据收发时,终端启动与该BWP对应的BWP非激活定时器。在BWP非激活定时器超时的情况下,视为终端在该时长内未在该BWP上进行数据收发,此时终端将从该BWP切换到默认的BWP或者初始配置的BWP。
综上所述,本申请实施例提供的BWP切换方法中,在目标BWP是网络设备配置的第一BWP的情况下,终端可将激活的服务小区中的第一BWP确定为该服务小区的激活BWP,使得BWP切换更加灵活。可选的,网络设备可通过系统消息或者终端专属信令配置第一BWP,使得终端能够根据网络设备的配置确定激活的服务小区的机会BWP。
2、目标BWP是初始激活BWP。
以第一接收状态是低功耗接收状态,第二接收状态是正常接收状态为例。
示意性的,处于RRC连接态的终端从低功耗接收状态转换到正常接收状态时,终端在每个激活的服务小区上的激活BWP确定为初始激活BWP。
示意性的,初始激活BWP为firstActiveBWP,包括初始激活下行和/或初始激活上行。比如,网络设备通过终端专属高层信令为终端配置初始激活BWP。
对于终端的每个服务小区来说,初始激活BWP是对应的服务小区中的一个BWP。示意性的,存在多个激活的服务小区的情况下,不同的激活的服务小区中的激活BWP不同。
本申请实施例提供的BWP切换方法具体包括如下:
(1)处于RRC连接态的终端在低功耗接收状态下监听LP-WUS。
比如,终端采用低功耗接收机(如LP-WUS接收机)监听LP-WUS。此时,LP-WUS接收机处于工作状态,主接收机(main radio)处于关闭状态或者深度睡眠状态。
(2)终端在接收到LP-WUS的情况下,终端唤醒主接收机。
此时,对于每个激活的服务小区,终端在该服务小区上的激活BWP确定为初始激活BWP。
其中,初始激活BWP的相关阐述可参考前文,不再赘述。
综上所述,本申请实施例提供的BWP切换方法中,在目标BWP是网络设备配置的初始激活BWP的情况下,终端可将激活的服务小区中的初始激活BWP确定为该服务小区的激活BWP,使得终端可根据原有配置的BWP确定激活BWP,不需要网络设备对激活BWP进行重新配置。
3、目标BWP是终端在进入第一接收状态之前激活的第二BWP。
根据前述内容,在终端通过一个BWP进行数据收发时,终端启动与该BWP对应的BWP非激活定时器。在BWP非激活定时器超时的情况下,视为终端在该时长内未在该BWP上进行数据收发。
示意性的,在终端处于第一接收状态之前,BWP非激活定时器处于运行状态。以第一接收状态是低功耗接收状态,第二接收状态是正常接收状态为例,终端处于低功耗接收状态之前,可视为终端处于正常接收状态,此时,BWP非激活定时器处于运行状态。
可选的,本申请实施例涉及的BWP非激活定时器(BWP-InactivityTimer),终端在满足预设条件下对BWP非激活定时器进行控制。比如,在满足预设条件的情况下,终端启动或恢复运行BWP非激活定时器。
其中,预设条件包括:
网络设备向终端配置默认下行BWP(default Downlink BWP),第二BWP不是默认下行BWP且第二BWP不是休眠BWP(dormant BWP);
或,网络设备未向终端配置默认下行BWP,第二BWP不是初始下行BWP(initial Downlink BWP)且第二BWP不是休眠BWP。
可选的,在第一接收状态切换到第二接收状态的情况下,终端可停止或挂起BWP非激活定时器。根据终端的不同操作,参考图8和图9,本申请实施例提供了两种不同的BWP切换方法,具体如下:
图8示出了本申请一个示例性实施例提供的BWP切换方法的流程图,包括如下步骤:
步骤4011:在第二接收状态切换到第一接收状态的情况下,在满足预设条件的情况下,终端停止与第二BWP对应的BWP非激活定时器。
其中,预设条件可参考前述内容,不再赘述。
以第一接收状态是低功耗接收状态,第二接收状态是正常接收状态为例,在从正常接收状态切换到低功耗接收状态的情况下,在第二BWP满足预设条件的情况下,终端停止与第二BWP对应的BWP非激活定时器,采用低功耗接收机监听唤醒信号。步骤4021:在第一接收状态切换到第二接收状态的情况下,终端将激活的服务小区中的第二BWP,确定为激活的服务小区中的激活BWP。
其中,第二BWP是终端在进入第一接收状态之前激活的BWP。
以第一接收状态是低功耗接收状态,第二接收状态是正常接收状态为例。终端在进入低功耗接收状态之前,终端处于正常接收状态,则第二BWP是终端处于正常接收状态下激活的BWP。
对于终端的每个服务小区来说,第二BWP是对应的激活的服务小区中的一个BWP。示意性的,存在多个激活的服务小区的情况下,不同的激活的服务小区中的激活BWP不同。
可选的,步骤4021可实现为如下:
在第一接收状态切换到第二接收状态的情况下,对于每个激活的服务小区,终端将激活的服务小区对应的第二BWP,确定为激活的服务小区对应的激活BWP;
在满足预设条件的情况下,终端启动BWP非激活定时器。
其中,启动BWP非激活定时器是指,终端重新开始BWP非激活定时器的计时。
示意性的,预设条件可参考前述内容,不再赘述。
以第一接收状态是低功耗接收状态,第二接收状态是正常接收状态为例。
在从正常接收状态切换到低功耗接收状态的情况下,终端停止BWP非激活定时器,采用低功耗接收机监听唤醒信号。
随后,在从低功耗接收状态切换到正常接收状态的情况下,对于每个激活的服务小区,终端将激活的服务小区对应的第二BWP,确定为激活的服务小区对应的激活BWP;在满足预设条件的情况下,终端重新启动BWP非激活定时器。其中,服务小区对应的第二BWP是终端处于正常接收状态下激活的BWP。
示意性的,步骤4021与步骤102类似,可作参考,不再赘述。
图9示出了本申请一个示例性实施例提供的BWP切换方法的流程图,包括如下步骤:
步骤4012:在第二接收状态切换到第一接收状态的情况下,在满足预设条件的情况下,终端挂起与第二BWP对应的BWP非激活定时器。
其中,挂起BWP非激活定时器是指,当第二BWP满足预设条件的情况下,终端暂停 BWP非激活定时器的计时。
以第一接收状态是低功耗接收状态,第二接收状态是正常接收状态为例,在从正常接收状态切换到低功耗接收状态的情况下,终端暂停BWP非激活定时器的计时,采用低功耗接收机监听唤醒信号。
步骤4022:在第一接收状态切换到第二接收状态的情况下,终端将激活的服务小区中的第二BWP,确定为激活的服务小区中的激活BWP。
其中,第二BWP是终端在进入第一接收状态之前激活的BWP。
以第一接收状态是低功耗接收状态,第二接收状态是正常接收状态为例。终端在进入低功耗接收状态之前,终端处于正常接收状态,则第二BWP是终端处于正常接收状态下激活的BWP。
可选的,步骤4022可实现为如下:
在第一接收状态切换到第二接收状态的情况下,对于每个激活的服务小区,终端将激活的服务小区对应的第二BWP,确定为激活的服务小区对应的激活BWP;
在满足预设条件的情况下,终端恢复运行BWP非激活定时器。
其中,恢复运行BWP非激活定时器是指,终端继续恢复BWP非激活定时器的计时。
示意性的,预设条件可参考前述内容,不再赘述。
以第一接收状态是低功耗接收状态,第二接收状态是正常接收状态为例。
在从正常接收状态切换到低功耗接收状态的情况下,在满足预设条件的情况下,终端暂停BWP非激活定时器的计时,采用低功耗接收机监听唤醒信号。
随后,在从低功耗接收状态切换到正常接收状态的情况下,对于每个激活的服务小区,终端将激活的服务小区对应的第二BWP,确定为激活的服务小区对应的激活BWP;在满足预设条件的情况下,终端继续恢复BWP非激活定时器的计时。其中,服务小区对应的第二BWP是终端处于正常接收状态下激活的BWP。
示意性的,步骤4022与步骤102类似,可作参考,不再赘述。
以第一接收状态是低功耗接收状态,第二接收状态是正常接收状态为例,图10示出了本申请一个示例性实施例提供的BWP切换方法的示意图。
示意性的,对于处于RRC连接态的终端,从正常接收状态转换到低功耗接收状态的情况下,终端停止或者挂起正在运行的BWP非激活定时器。在从低功耗接收状态转换到正常接收状态的情况下,终端继续在原来的激活BWP上工作,同时启动或恢复运行BWP非激活定时器。
本申请实施例提供的BWP切换方法具体包括如下:
(1)对于处于RRC连接态的终端,终端处于正常接收状态。
对于激活的服务小区i,终端当前的激活BWP为第二BWP,同时,第二BWP对应的BWP非激活定时器正在运行。
在从正常接收状态转换到低功耗接收状态的情况下,在满足预设条件的情况下,终端对于第二BWP对应的BWP非激活定时器执行如下操作之一:
执行操作一:停止正在运行的BWP非激活定时器;
执行操作二:挂起正在运行的BWP非激活定时器。
(2)在低功耗接收状态下,终端监听LP-WUS。
比如,终端采用LP-WUS接收机监听LP-WUS。此时,LP-WUS接收机处于工作状态,主接收机处于关闭状态或者深度睡眠状态。
(3)终端在接收到LP-WUS,终端唤醒主接收机。
示意性的,对于激活的服务小区i,终端在该服务小区上的激活BWP为第二BWP。
在满足预设条件的情况下,终端对于第二BWP对应的BWP非激活定时器执行如下操作 之一:
执行操作三:启动BWP非激活定时器;
执行操作恢复运行BWP非激活定时器。
其中,执行操作三与执行操作一对应,执行操作四与执行操作二对应。
可选的,预设条件包括:
网络设备向终端配置默认下行BWP,第二BWP不是默认下行BWP且第二BWP不是休眠BWP;
或,网络设备未向终端配置默认下行BWP,第二BWP不是初始下行BWP且第二BWP不是休眠BWP。
综上所述,本申请实施例提供的BWP切换方法中,在目标BWP是终端在进入第一接收状态之前激活的第二BWP的情况下,终端可将激活的服务小区中的第二BWP确定为该服务小区的激活BWP,使得终端可根据原有使用的BWP确定激活BWP,不需要网络设备对激活BWP进行重新配置。
可选的,在终端处于第一接收状态之前,第二BWP对应的BWP非激活定时器处于运行状态。
可选的,在终端的不同状态切换的过程中,除确定激活BWP之外,终端还可对BWP非激活定时器进行不同的处理:其一,在终端从第二接收状态切换到第一接收状态的情况下,终端停止BWP非激活定时器,在终端从第一接收状态切换到第二接收状态的情况下,终端启动BWP非激活定时器;其二,在终端从第二接收状态切换到第一接收状态的情况下,终端挂起BWP非激活定时器,在终端从第一接收状态切换到第二接收状态的情况下,终端恢复运行BWP非激活定时器。
以下为本申请的装置实施例,对于装置实施例中未详细描述的细节,可以结合参考上述方法实施例中相应的记载,本文不再赘述。
图11示出了本申请一个示例性实施例提供的BWP切换装置的结构图,该装置包括:
确定模块1120,用于在第一接收状态切换到第二接收状态的情况下,将激活的服务小区中的目标BWP确定为激活的服务小区中的激活BWP;
其中,第一接收状态和第二接收状态的传输参数不同,传输参数包括接收机、波形、调制方式、编码和多址方式中的至少一项。
可选的,目标BWP包括如下中的一种:网络设备配置的第一BWP;初始激活BWP;终端在进入第一接收状态之前激活的第二BWP。
可选的,目标BWP包括第一BWP,所述装置还包括接收模块1140,用于接收网络设备配置的第一BWP的配置参数。
可选的,第一BWP用于指示在第一接收状态切换到第二接收状态的情况下,终端在激活的服务小区上的激活BWP。
可选的,第一BWP的配置参数通过系统消息或终端专属信令配置。
可选的,终端专属信令包括如下信令中的一种:RRC信令;MAC CE;PDCCH;LPW。
可选的,目标BWP包括第二BWP,所述装置还包括定时器模块1160,用于在第二接收状态切换到第一接收状态的情况下,在满足预设条件的情况下,停止与第二BWP对应的BWP非激活定时器;确定模块1120,用于将激活的服务小区中的第二BWP,确定为激活的服务小区中的激活BWP。
可选的,确定模块1120,用于在第一接收状态切换到第二接收状态的情况下,对于每个激活的服务小区,终端将激活的服务小区对应的第二BWP,确定为激活的服务小区对应的激活BWP;定时器模块1160,用于在满足预设条件的情况下,终端启动BWP非激活定时器。
可选的,目标BWP包括第二BWP,定时器模块1160,用于在第二接收状态切换到第一 接收状态的情况下,在满足预设条件的情况下,挂起与第二BWP对应的BWP非激活定时器;确定模块1120,用于将激活的服务小区中的第二BWP确定为激活的服务小区中的激活BWP。
可选的,确定模块1120,用于在第一接收状态切换到第二接收状态的情况下,对于每个激活的服务小区,终端将激活的服务小区对应的第二BWP,确定为激活的服务小区对应的激活BWP;定时器模块1160,用于在满足预设条件的情况下,终端恢复运行BWP非激活定时器。
可选的,预设条件包括:网络设备向终端配置默认下行BWP,第二BWP不是默认下行BWP且第二BWP不是休眠BWP;或,网络设备未向终端配置默认下行BWP,第二BWP不是初始下行BWP且第二BWP不是休眠BWP。
可选的,在终端处于第一接收状态之前,BWP非激活定时器处于运行状态。
可选的,终端处于无线资源控制RRC连接态。
可选的,所述装置还包括接收机模块1180,用于在处于第一接收状态的情况下,终端采用第一接收机监听唤醒信号;其中,终端的第一接收机处于工作状态,终端的第二接收机处于关闭状态或者深度睡眠状态,第一接收机是第一接收状态下使用的接收机,第二接收机是第二接收状态下使用的接收机。
可选的,接收机模块1180,还用于在接收到唤醒信号的情况下,终端唤醒第二接收机。
图12示出了本申请一个示例性实施例提供的BWP切换装置的结构图,该装置包括:
配置模块1220,用于终端配置第一BWP的配置参数;其中,第一BWP是终端在第一接收状态切换到第二接收状态的情况下确定的激活的服务小区中的激活BWP,第一接收状态和第二接收状态的传输参数不同,传输参数包括接收机、波形、调制方式、编码和多址方式中的至少一项。
可选的,第一BWP用于指示在第一接收状态切换到第二接收状态的情况下,终端在激活的服务小区上的激活BWP。
可选的,配置模块1220,用于网络设备通过系统消息向终端配置第一BWP的配置参数;或者,网络设备通过终端专属信令向终端配置第一BWP的配置参数。
可选的,终端专属信令包括如下中的一种:RRC信令;MAC CE;PDCCH;LPW。
图13示出了本申请一个示例性实施例提供的通信设备(终端或网络设备)的结构示意图,该通信设备包括:处理器1301、接收器1302、发射器1303、存储器1304和总线1305。
处理器1301包括一个或者一个以上处理核心,处理器1301通过运行软件程序以及模块,从而执行各种功能应用以及信息处理。
接收器1302和发射器1303可以实现为一个通信组件,该通信组件可以是一块通信芯片。
存储器1304通过总线1305与处理器1301相连。
存储器1304可用于存储至少一个指令,处理器1301用于执行该至少一个指令,以实现上述方法实施例中提到的BWP切换方法的各个步骤。
此外,存储器1304可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,易失性或非易失性存储设备包括但不限于:磁盘或光盘,电可擦除可编程只读存储器(Electrically-Erasable Programmable Read Only Memory,EEPROM),可擦除可编程只读存储器(Erasable Programmable Read Only Memory,EPROM),静态随时存取存储器(Static Random Access Memory,SRAM),只读存储器(Read-Only Memory,ROM),磁存储器,快闪存储器,可编程只读存储器(Programmable Read-Only Memory,PROM)。
本申请实施例还提供了一种终端,终端包括处理器;处理器,用于在第一接收状态切换到第二接收状态的情况下,将激活的服务小区中的目标BWP确定为激活的服务小区中的激活BWP;其中,第一接收状态和第二接收状态的传输参数不同,传输参数包括接收机、波形、 调制方式、编码和多址方式中的至少一项。
本申请实施例还提供了一种网络设备,网络设备包括处理器;处理器,用于向终端配置第一BWP的配置参数;其中,第一BWP是终端在第一接收状态切换到第二接收状态的情况下确定的激活的服务小区中的激活BWP,第一接收状态和第二接收状态的传输参数不同,传输参数包括接收机、波形、调制方式、编码和多址方式中的至少一项。
本申请实施例还提供了一种计算机可读存储介质,存储介质中存储有计算机程序,计算机程序用于被处理器执行,以实现如上所述的BWP切换方法。
本申请实施例还提供了一种芯片,芯片包括可编程逻辑电路和/或程序指令,当芯片运行时,用于实现如上所述的BWP切换方法。
本申请实施例还提供了一种计算机程序产品或计算机程序,计算机程序产品或计算机程序包括计算机指令,计算机指令存储在计算机可读存储介质中,处理器从计算机可读存储介质读取并执行计算机指令,以实现如上所述的BWP切换方法。
以上所述仅为本申请的可选实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (26)

  1. 一种带宽部分BWP切换方法,其特征在于,所述方法包括:
    终端在第一接收状态切换到第二接收状态的情况下,所述终端将激活的服务小区中的目标BWP确定为所述激活的服务小区中的激活BWP;
    其中,所述第一接收状态和所述第二接收状态的传输参数不同,所述传输参数包括接收机、波形、调制方式、编码和多址方式中的至少一项。
  2. 根据权利要求1所述的方法,其特征在于,所述目标BWP包括如下中的一种:
    网络设备配置的第一BWP;
    初始激活BWP;
    所述终端在进入所述第一接收状态之前激活的第二BWP。
  3. 根据权利要求2所述的方法,其特征在于,所述目标BWP包括所述第一BWP,所述方法还包括:
    所述终端接收所述网络设备配置的所述第一BWP的配置参数。
  4. 根据权利要求3所述的方法,其特征在于,所述第一BWP用于指示在所述第一接收状态切换到所述第二接收状态的情况下,所述终端在所述激活的服务小区上的激活BWP。
  5. 根据权利要求3所述的方法,其特征在于,所述第一BWP的配置参数通过系统消息或终端专属信令配置。
  6. 根据权利要求5所述的方法,其特征在于,所述终端专属信令包括如下信令中的一种:
    无线资源控制RRC信令;
    媒体接入控制控制单元MAC CE;
    物理上行控制信道PDCCH;
    低功耗唤醒信号LPW。
  7. 根据权利要求2所述的方法,其特征在于,所述目标BWP包括所述第二BWP,所述方法还包括:
    在所述第二接收状态切换到所述第一接收状态的情况下,在满足预设条件的情况下,所述终端停止与所述第二BWP对应的BWP非激活定时器;
    所述终端将激活的服务小区中的目标BWP确定为所述激活的服务小区中的激活BWP,包括:
    所述终端将所述激活的服务小区中的所述第二BWP,确定为所述激活的服务小区中的激活BWP。
  8. 根据权利要求7所述的方法,其特征在于,所述终端将所述激活的服务小区中的所述第二BWP确定为所述激活的服务小区中的激活BWP,包括:
    在所述第一接收状态切换到所述第二接收状态的情况下,对于每个激活的服务小区,所述终端将所述激活的服务小区对应的第二BWP,确定为所述激活的服务小区对应的激活BWP;
    在满足所述预设条件的情况下,所述终端启动所述BWP非激活定时器。
  9. 根据权利要求2所述的方法,其特征在于,所述目标BWP包括所述第二BWP,所述方法还包括:
    在所述第二接收状态切换到所述第一接收状态的情况下,在满足预设条件的情况下,所述终端挂起与所述第二BWP对应的BWP非激活定时器;
    所述终端将激活的服务小区中的目标BWP确定为所述激活的服务小区中的激活BWP,包括:
    所述终端将所述激活的服务小区中的所述第二BWP,确定为所述激活的服务小区中的激活BWP。
  10. 根据权利要求9所述的方法,其特征在于,所述终端将所述激活的服务小区中的所述第二BWP确定为激活的服务小区中的激活BWP,包括:
    在所述第一接收状态切换到所述第二接收状态的情况下,对于每个激活的服务小区,所述终端将所述激活的服务小区对应的第二BWP,确定为所述激活的服务小区对应的激活BWP;
    在满足所述预设条件的情况下,所述终端恢复运行所述BWP非激活定时器。
  11. 根据权利要求8或10所述的方法,其特征在于,所述预设条件包括:
    所述网络设备向所述终端配置默认下行BWP,所述第二BWP不是所述默认下行BWP且所述第二BWP不是休眠BWP;
    或,
    所述网络设备未向所述终端配置所述默认下行BWP,所述第二BWP不是初始下行BWP且所述第二BWP不是所述休眠BWP。
  12. 根据权利要求7至11任一所述的方法,其特征在于,在所述终端处于所述第一接收状态之前,所述BWP非激活定时器处于运行状态。
  13. 根据权利要求1至12任一所述的方法,其特征在于,所述终端处于无线资源控制RRC连接态。
  14. 根据权利要求1至12任一所述的方法,其特征在于,所述方法还包括:
    在处于所述第一接收状态的情况下,所述终端采用第一接收机监听唤醒信号;
    其中,所述终端的所述第一接收机处于工作状态,所述终端的第二接收机处于关闭状态或者深度睡眠状态,所述第一接收机是所述第一接收状态下使用的接收机,所述第二接收机是所述第二接收状态下使用的接收机。
  15. 根据权利要求14所述的方法,其特征在于,所述方法还包括:
    在接收到所述唤醒信号的情况下,所述终端唤醒所述第二接收机。
  16. 一种带宽部分BWP切换方法,其特征在于,所述方法包括:
    网络设备向终端配置第一BWP的配置参数;
    其中,所述第一BWP是所述终端在第一接收状态切换到第二接收状态的情况下确定的激活的服务小区中的激活BWP,所述第一接收状态和所述第二接收状态的传输参数不同,所述传输参数包括接收机、波形、调制方式、编码和多址方式中的至少一项。
  17. 根据权利要求16所述的方法,其特征在于,所述第一BWP用于指示在所述第一接收状态切换到所述第二接收状态的情况下,所述终端在所述激活的服务小区上的激活BWP。
  18. 根据权利要求16或17所述的方法,其特征在于,所述网络设备向终端配置第一BWP的配置参数,包括:
    所述网络设备通过系统消息向所述终端配置所述第一BWP的配置参数;
    或者,所述网络设备通过终端专属信令向所述终端配置所述第一BWP的配置参数。
  19. 根据权利要求18所述的方法,其特征在于,所述终端专属信令包括如下中的一种:
    无线资源控制RRC信令;
    媒体接入控制控制单元MAC CE;
    物理上行控制信道PDCCH;
    低功耗唤醒信号LPW。
  20. 一种带宽部分BWP切换装置,其特征在于,所述装置包括:
    确定模块,用于在第一接收状态切换到第二接收状态的情况下,将激活的服务小区中的目标BWP确定为所述激活的服务小区中的激活BWP;
    其中,所述第一接收状态和所述第二接收状态的传输参数不同,所述传输参数包括接收机、波形、调制方式、编码和多址方式中的至少一项。
  21. 一种带宽部分BWP切换装置,其特征在于,所述装置包括:
    配置模块,用于向终端配置第一BWP的配置参数;
    其中,所述第一BWP是所述终端在第一接收状态切换到第二接收状态的情况下确定的激活的服务小区中的激活BWP,所述第一接收状态和所述第二接收状态的传输参数不同,所述传输参数包括接收机、波形、调制方式、编码和多址方式中的至少一项。
  22. 一种终端,其特征在于,所述终端包括处理器;
    所述处理器,用于在第一接收状态切换到第二接收状态的情况下,将激活的服务小区中的目标BWP确定为所述激活的服务小区中的激活BWP;
    其中,所述第一接收状态和所述第二接收状态的传输参数不同,所述传输参数包括接收机、波形、调制方式、编码和多址方式中的至少一项。
  23. 一种网络设备,其特征在于,所述网络设备包括处理器;
    所述处理器,用于向终端配置第一BWP的配置参数;
    其中,所述第一BWP是所述终端在第一接收状态切换到第二接收状态的情况下确定的激活的服务小区中的激活BWP,所述第一接收状态和所述第二接收状态的传输参数不同,所述传输参数包括接收机、波形、调制方式、编码和多址方式中的至少一项。
  24. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序,所述计算机程序用于被处理器执行,以实现如权利要求1至19中任一项所述的带宽部分BWP切换方法。
  25. 一种芯片,其特征在于,所述芯片包括可编程逻辑电路和/或程序指令,当所述芯片运行时,用于实现如权利要求1至19中任一项所述的带宽部分BWP切换方法。
  26. 一种计算机程序产品或计算机程序,其特征在于,所述计算机程序产品或计算机程序包括计算机指令,所述计算机指令存储在计算机可读存储介质中,处理器从所述计算机可读存储介质读取并执行所述计算机指令,以实现如权利要求1至19中任一项所述的带宽部分BWP切换方法。
PCT/CN2021/140182 2021-12-21 2021-12-21 Bwp切换方法、装置、设备及存储介质 WO2023115353A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/140182 WO2023115353A1 (zh) 2021-12-21 2021-12-21 Bwp切换方法、装置、设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/140182 WO2023115353A1 (zh) 2021-12-21 2021-12-21 Bwp切换方法、装置、设备及存储介质

Publications (1)

Publication Number Publication Date
WO2023115353A1 true WO2023115353A1 (zh) 2023-06-29

Family

ID=86900952

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/140182 WO2023115353A1 (zh) 2021-12-21 2021-12-21 Bwp切换方法、装置、设备及存储介质

Country Status (1)

Country Link
WO (1) WO2023115353A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109496454A (zh) * 2018-10-17 2019-03-19 北京小米移动软件有限公司 带宽部分切换方法及装置
CN110351854A (zh) * 2018-04-04 2019-10-18 华为技术有限公司 配置信息指示方法及通信装置
US20200314749A1 (en) * 2019-03-29 2020-10-01 Qualcomm Incorporated Compression of group wake-up signal
CN113273256A (zh) * 2019-01-10 2021-08-17 高通股份有限公司 不连续接收中功率参数值的适配

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110351854A (zh) * 2018-04-04 2019-10-18 华为技术有限公司 配置信息指示方法及通信装置
CN109496454A (zh) * 2018-10-17 2019-03-19 北京小米移动软件有限公司 带宽部分切换方法及装置
CN113273256A (zh) * 2019-01-10 2021-08-17 高通股份有限公司 不连续接收中功率参数值的适配
US20200314749A1 (en) * 2019-03-29 2020-10-01 Qualcomm Incorporated Compression of group wake-up signal

Similar Documents

Publication Publication Date Title
CN114557051B (zh) 省电活动bwp
JP7433330B2 (ja) 省電力モードでのアップリンク送信
US11374723B2 (en) Cross-carrier scheduling activation for a dormant cell
JP7309901B2 (ja) 省電力コマンドの送受信
US11889524B2 (en) Communications system
US11910309B2 (en) Base station power state transition in the presence of uplink traffic
KR102320879B1 (ko) 무선 통신을 위한 방법 및 장치
JP2022516601A (ja) 省電力メカニズム
JP2022549513A (ja) 省電力およびセル休止動作
EP3845007A1 (en) Uplink transmission in a wireless communication system
EP2260663A1 (en) Drx functionality in multi-carrier wireless networks
CN113796128A (zh) 无线通信系统中用于节省用户设备的功率的方法和装置
JPWO2020198746A5 (zh)
US20230189139A1 (en) Wake-up signals and adaptive numerology
WO2016136960A1 (ja) 無線端末
TW202110228A (zh) 將啟動次級小區在休眠與活動行為之間轉換之方法與裝置
WO2020143806A1 (zh) 一种通信方法及装置
WO2021128341A1 (zh) 非连续接收控制方法、设备及存储介质
WO2023115353A1 (zh) Bwp切换方法、装置、设备及存储介质
KR20190076834A (ko) 세컨더리 셀 상태 제어 방법 및 장치
KR102094774B1 (ko) 세컨더리 셀 상태 제어 방법 및 장치
WO2023184441A1 (zh) 主小区配置或重配置方法、装置、设备和介质
WO2023183661A2 (en) System and method for wakeup signal design to facilitate ultra-low power reception

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21968504

Country of ref document: EP

Kind code of ref document: A1