WO2023115305A1 - Antenna and radio arrangement - Google Patents

Antenna and radio arrangement Download PDF

Info

Publication number
WO2023115305A1
WO2023115305A1 PCT/CN2021/139938 CN2021139938W WO2023115305A1 WO 2023115305 A1 WO2023115305 A1 WO 2023115305A1 CN 2021139938 W CN2021139938 W CN 2021139938W WO 2023115305 A1 WO2023115305 A1 WO 2023115305A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
antenna elements
timeslot
uplink
operation mode
Prior art date
Application number
PCT/CN2021/139938
Other languages
French (fr)
Inventor
Chengan ZHANG
Mikko KOMULAINEN
Original Assignee
Nokia Shanghai Bell Co., Ltd.
Nokia Solutions And Networks Oy
Nokia Technologies Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nokia Shanghai Bell Co., Ltd., Nokia Solutions And Networks Oy, Nokia Technologies Oy filed Critical Nokia Shanghai Bell Co., Ltd.
Priority to PCT/CN2021/139938 priority Critical patent/WO2023115305A1/en
Publication of WO2023115305A1 publication Critical patent/WO2023115305A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0691Hybrid systems, i.e. switching and simultaneous transmission using subgroups of transmit antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals

Definitions

  • Embodiments of the present disclosure generally relate to the field of telecommunication and in particular to devices, methods, apparatuses and computer readable storage media of antenna and radio arrangement.
  • FWA Fixed Wireless Access
  • 5G fifth-generation broadband cellular networks
  • CPE Customer Premises Equipment
  • Antenna technology is one of the most important key points for 5G FWA CPE devices.
  • the study of the antenna technology may focus on creating and commercializing the highest gain antenna and throughput solutions.
  • example embodiments of the present disclosure provide a solution of antenna and radio arrangement.
  • a method comprises determining an uplink and downlink timeslot configuration for at least one timeslot associated with respective transmissions on a plurality of frequency ranges; and causing, based on the uplink and downlink timeslot configuration, a plurality of antenna elements to operate for the respective transmissions in the at least one timeslot with at least one of a first antenna operation mode in which a first group of antenna elements in the plurality of antenna elements are used for providing a first antenna gain level; or a second antenna operation mode in which a second group of antenna elements in the plurality of antenna elements are used providing a second antenna gain level, the first antenna gain level being higher than the second antenna gain level.
  • a device comprising at least one processor; and at least one memory including computer program codes; the at least one memory and the computer program codes are configured to, with the at least one processor, cause the device at least to carry out the method according to the first aspect.
  • an apparatus comprising means for determining an uplink and downlink timeslot configuration for at least one timeslot associated with respective transmissions on a plurality of frequency ranges; and means for causing, based on the uplink and downlink timeslot configuration, a plurality of antenna elements to operate for the respective transmissions in the at least one timeslot with at least one of a first antenna operation mode in which a first group of antenna elements in the plurality of antenna elements are used for providing a first antenna gain level; or a second antenna operation mode in which a second group of antenna elements in the plurality of antenna elements are used providing a second antenna gain level, the first antenna gain level being higher than the second antenna gain level.
  • a device comprising a plurality of antenna elements; and at least one switching elements configured to be reconfigured, based on an uplink and downlink timeslot configuration for at least one timeslot associated with respective transmissions on a plurality of frequency ranges, to cause the plurality of antenna elements to operate for the respective transmissions in the at least one timeslot with at least one of: a first antenna operation mode in which a first group of antenna elements in the plurality of antenna elements are used for providing a first antenna gain level; or a second antenna operation mode in which a second group of antenna elements in the plurality of antenna elements are used for providing a second antenna gain level, the first antenna gain level being higher than the second antenna gain level.
  • a communication system comprising the device according to the second aspect or the fourth aspect.
  • a computer readable medium having a computer program stored thereon which, when executed by at least one processor of a device, causes the device to carry out the method according to the first aspect.
  • FIG. 1 illustrates an example environment in which example embodiments of the present disclosure can be implemented
  • FIG. 2 shows a flowchart of an example method of antenna and radio arrangement according to some example embodiments of the present disclosure
  • FIG. 3 shows an example of antenna arrangement 300 for the terminal device 110 according to some example embodiments of the present disclosure
  • FIGs. 4A and 4B shows examples of the distribution of resources for transmission on the plurality of frequency ranges within a set of timeslots according to some example embodiments of the present disclosure
  • FIG. 5 shows an example of antenna arrangement implemented for causing the antenna elements to operate with different antenna operation mode according to some example embodiments of the present disclosure
  • FIG. 6 shows an example of antenna arrangement 600 for the terminal device 110 according to some example embodiments of the present disclosure
  • FIG. 7 shows an example of antenna arrangement implemented for operating with different antenna operation mode according to some example embodiments of the present disclosure
  • FIG. 8 shows a simplified block diagram of a device that is suitable for implementing example embodiments of the present disclosure.
  • FIG. 9 shows a block diagram of an example computer readable medium in accordance with some embodiments of the present disclosure.
  • references in the present disclosure to “one embodiment, ” “an embodiment, ” “an example embodiment, ” and the like indicate that the embodiment described may include a particular feature, structure, or characteristic, but it is not necessary that every embodiment includes the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an example embodiment, it is submitted that it is within the knowledge of one skilled in the art to affect such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described.
  • circuitry may refer to one or more or all of the following:
  • circuitry also covers an implementation of merely a hardware circuit or processor (or multiple processors) or portion of a hardware circuit or processor and its (or their) accompanying software and/or firmware.
  • circuitry also covers, for example and if applicable to the particular claim element, a baseband integrated circuit or processor integrated circuit for a mobile device or a similar integrated circuit in server, a cellular network device, or other computing or network device.
  • the term “communication network” refers to a network following any suitable communication standards, such as fifth generation (5G) systems, Long Term Evolution (LTE) , LTE-Advanced (LTE-A) , Wideband Code Division Multiple Access (WCDMA) , High-Speed Packet Access (HSPA) , Narrow Band Internet of Things (NB-IoT) and so on.
  • 5G fifth generation
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • WCDMA Wideband Code Division Multiple Access
  • HSPA High-Speed Packet Access
  • NB-IoT Narrow Band Internet of Things
  • the communications between a terminal device and a network device in the communication network may be performed according to any suitable generation communication protocols, including, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , the fourth generation (4G) , 4.5G, the future fifth generation (5G) new radio (NR) communication protocols, and/or any other protocols either currently known or to be developed in the future.
  • suitable generation communication protocols including, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , the fourth generation (4G) , 4.5G, the future fifth generation (5G) new radio (NR) communication protocols, and/or any other protocols either currently known or to be developed in the future.
  • Embodiments of the present disclosure may be applied in various communication systems. Given the rapid development in communications, there will of course also be future type communication technologies and systems with which the present disclosure may be embodied. It should not be seen as limiting the
  • the term “network device” refers to a node in a communication network via which a terminal device accesses the network and receives services therefrom.
  • the network device may refer to a base station (BS) or an access point (AP) , for example, a node B (NodeB or NB) , an evolved NodeB (eNodeB or eNB) , a NR Next Generation NodeB (gNB) , a Remote Radio Unit (RRU) , a radio header (RH) , a remote radio head (RRH) , a relay, a low power node such as a femto, a pico, and so forth, depending on the applied terminology and technology.
  • BS base station
  • AP access point
  • NodeB or NB node B
  • eNodeB or eNB evolved NodeB
  • gNB Next Generation NodeB
  • RRU Remote Radio Unit
  • RH radio header
  • RRH remote radio head
  • relay a
  • a RAN split architecture comprises a gNB-CU (Centralized unit, hosting RRC, SDAP and PDCP) controlling a plurality of gNB-DUs (Distributed unit, hosting RLC, MAC and PHY) .
  • a relay node may correspond to DU part of the IAB node.
  • the term “network device” may also refer to a network device in a regenerative NTN architecture, which may be collocated with a satellite.
  • terminal device refers to any end device that may be capable of wireless communication.
  • a terminal device may also be referred to as a communication device, user equipment (UE) , a subscriber station (SS) , a portable subscriber station, a mobile station (MS) , or an access terminal (AT) .
  • UE user equipment
  • SS subscriber station
  • MS mobile station
  • AT access terminal
  • the terminal device may include, but not limited to, a mobile phone, a cellular phone, a smart phone, voice over IP (VoIP) phones, wireless local loop phones, a tablet, a wearable terminal device, a personal digital assistant (PDA) , portable computers, desktop computer, image capture terminal devices such as digital cameras, gaming terminal devices, music storage and playback appliances, vehicle-mounted wireless terminal devices, wireless endpoints, mobile stations, laptop-embedded equipment (LEE) , laptop-mounted equipment (LME) , USB dongles, smart devices, wireless customer-premises equipment (CPE) , an Internet of Things (IoT) device, a watch or other wearable, a head-mounted display (HMD) , a vehicle, a drone, a medical device and applications (e.g., remote surgery) , an industrial device and applications (e.g., a robot and/or other wireless devices operating in an industrial and/or an automated processing chain contexts) , a consumer electronics device, a device operating on commercial and/
  • the terminal device may also correspond to Mobile Termination (MT) part of the integrated access and backhaul (IAB) node (a.k.a. a relay node) .
  • MT Mobile Termination
  • IAB integrated access and backhaul
  • the terms “terminal device” , “communication device” , “terminal” , “user equipment” and “UE” may be used interchangeably.
  • a user equipment apparatus such as a cell phone or tablet computer or laptop computer or desktop computer or mobile IoT device or fixed IoT device
  • This user equipment apparatus can, for example, be furnished with corresponding capabilities as described in connection with the fixed and/or the wireless network node (s) , as appropriate.
  • the user equipment apparatus may be the user equipment and/or or a control device, such as a chipset or processor, configured to control the user equipment when installed therein. Examples of such functionalities include the bootstrapping server function and/or the home subscriber server, which may be implemented in the user equipment apparatus by providing the user equipment apparatus with software configured to cause the user equipment apparatus to perform from the point of view of these functions/nodes.
  • FIG. 1 shows an example communication network 100 in which embodiments of the present disclosure can be implemented.
  • the communication network 100 may comprise a terminal device 110 and a network device 120.
  • the terminal device 110 and the network device 120 may communicate with each other.
  • the communication network 100 may include any suitable number of terminal devices and network devices.
  • the terminal device may refer to a FWA device, such as CPE.
  • the FWA device may be implemented as an outdoor device or an indoor device.
  • the network 100 may be a Code Division Multiple Access (CDMA) network, a Time Division Multiple Address (TDMA) network, a Frequency Division Multiple Access (FDMA) network, an Orthogonal Frequency-Division Multiple Access (OFDMA) network, a Single Carrier-Frequency Division Multiple Access (SC-FDMA) network or any others.
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Address
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency-Division Multiple Access
  • SC-FDMA Single Carrier-Frequency Division Multiple Access
  • Communications discussed in the network 100 may conform to any suitable standards including, but not limited to, New Radio Access (NR) , Long Term Evolution (LTE) , LTE-Evolution, LTE-Advanced (LTE-A) , Wideband Code Division Multiple Access (WCDMA) , Code Division Multiple Access (CDMA) , cdma2000, and Global System for Mobile Communications (GSM) and the like.
  • NR New Radio Access
  • LTE Long Term Evolution
  • LTE-A LTE-Evolution
  • WCDMA Wideband Code Division Multiple Access
  • CDMA Code Division Multiple Access
  • GSM Global System for Mobile Communications
  • the communications may be performed according to any generation communication protocols either currently known or to be developed in the future. Examples of the communication protocols include, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , the fourth generation (4G) , 4.5G, the fifth generation (5G) communication protocols.
  • the techniques described herein may be used for
  • the antenna technology is one of the most important key points for 5G FWA CPE devices.
  • the 5G FWA CPE device may be implemented as an outdoor device or an indoor device.
  • An outdoor CPE device may incorporate 5G UE modem and directive high gain antenna.
  • the antenna arrangement of the outdoor CPE device may allow the narrow high gain antenna beam to be pointed and aligned towards to direction of arrival of the strongest radio signal.
  • a typical antenna arrangement of the outdoor CPE device may be implemented for radio configurations Downlink (DL) 2x2 Multiple Input Multiple Output (MIMO) and DL 4x4 MIMO.
  • the DL 4x4 MIMO configuration must have two dual polarized antenna arrays for four receivers.
  • the DL 2x2 MIMO configuration may implement one dual polarized array. Assuming fixed device size, the antenna array implementation for DL 2x2 MIMO has twice more antennas compared to the implementation for DL 4x4 MIMO.
  • the indoor CPE device may also be called as the indoor 5G gateway, which is also widely used in FWA deployment.
  • the indoor CPE device may functionally consist essentially of 4G/5G UE modem and antennas for 3GPP wireless access and Wi-Fi and Ethernet interfaces for residential GW functions.
  • Primary use case for indoor FWA GW is use in urban and sub-urban residential environment.
  • Optimal UE downlink MIMO implementation of UE modem radio part for indoor GW is 4x4.
  • For UE uplink maximum MIMO scheme supported in commercial UE modems is SISO for the most of use cases and UL 2x2 MIMO for some 5G bands in Standalone (SA) .
  • SA Standalone
  • Typical FWA indoor GW antenna design is composed with omni-directional antenna with low or moderate gain and high antenna efficiency.
  • Design targe for antenna design is omni-directional overall horizontal plane antenna pattern which makes the device use orientation agnostic. This allows end user to locate the table standing device in any orientation in the residence without need
  • 5G 3GPP standards makes mandatory requirement for UEs to support DL 4x4 MIMO, while the UE uplink is either UL SISO or UL 2x2 MIMO and overall max transmit power is limited to max 26 dBm. This causes a problem where FWA receiver max antenna gain is reduced when moving from 4G to 5G assuming that the device or antenna size is unchanged. Such antenna gain reduction in UE UL has very significant negative on FWA service coverage /range.
  • the indoor CPE device which may need to use a low gain omni-directional antenna for Time Division Duplex (TDD) transceiver RF signal, which may be used for both transmit (Tx) and receive (Rx) .
  • TDD Time Division Duplex
  • the low gain omni-directional antenna may make the device to get omni-direction device orientation agnostic UL coverage while using moderate high gain antennas for Rx to provide better DL performance.
  • the Tx antenna gain is not allowed to cross a strict limit.
  • the use of moderate high gain may make great sense and the omni-directional low gain may impair the UE receive performance.
  • CA Carrier Aggregation
  • LTE/NR Long Term Evolution/New Radio
  • EN-DC E-UTRA-NR Dual Connection
  • a device may determine an uplink and downlink timeslot configuration for at least one timeslot associated with respective transmissions on a plurality of frequency ranges. Based on the uplink and downlink timeslot configuration, the device may cause a plurality of antenna elements to operate in the timeslot at one of a first antenna operation mode or a second antenna operation mode. In the first antenna operation mode, a first group of antenna elements in the plurality of antenna elements are used in the timeslot, while in the second antenna operation mode, a second group of antenna elements in the plurality of antenna elements are used in the timeslot.
  • the first group of the plurality of antenna elements may provide a first antenna gain level and the second group of the plurality of antenna elements may provide a second antenna gain level. The first antenna gain level is higher than the second antenna gain level.
  • FIG. 2 shows a flowchart of an example method 200 of antenna and radio arrangement according to some example embodiments of the present disclosure.
  • the method 200 can be implemented at the terminal device 110 or the network device 120 as shown in FIG. 1.
  • the method 200 will be described with reference to FIG. 1.
  • the method 200 and the corresponding embodiments will be described below as being implemented at the terminal device 110. It is to be understood that the method 200 and the corresponding embodiments can also be implemented at network device 120.
  • the terminal device 110 may determine an uplink and downlink timeslot configuration for at least one timeslot associated with respective transmissions on a plurality of frequency ranges.
  • the uplink and downlink timeslot configuration for at least one timeslot may indicate that each of respective resources on the plurality of frequency ranges within the timeslot is used for an uplink transmission or a downlink transmission.
  • the plurality of frequency ranges may refer to both intra-band and inter-band. That is, the plurality of frequency ranges may be located in a same frequency band or different frequency bands.
  • the terminal device 110 may cause the plurality of antenna elements arranged at the terminal device 110 to operate in the at least one timeslot at one of a first antenna operation mode or a second antenna operation mode.
  • a first group of antenna elements in the plurality of antenna elements are used in the at least one timeslot for providing a first antenna gain level
  • a second group of the plurality of antenna elements are used in the at least one timeslot for providing a second antenna gain level which is lower than the first antenna gain level
  • timeslot may be referred to any unit time associated with one or more transmissions.
  • a timeslot may refer to a slot, a sub-frame, a frame, etc.
  • the terminal device 110 can be implemented as an outdoor CPE.
  • the antenna arrangement can be implemented as 4x4 MIMO.
  • FIG. 3 shows an example of antenna arrangement 300 for the outdoor CPE according to some example embodiments of the present disclosure. It is to be understood that the antenna arrangement of the outdoor CPE can be implemented with other antenna arrangements.
  • the antenna arrangement 300 may comprises a plurality of antenna elements 301-308, which may be directive high gain antennas.
  • the plurality of antenna elements 301-308 can be operated with a full antenna array mode in which all the plurality of antenna elements 301-308 are used. It is possible that the plurality of antenna elements 301-308 can be operated with a sub-antenna array mode in which only a portion of the plurality of antenna elements 301-308 are used.
  • the full antenna array mode may also be referred the first antenna operation mode, while the sub-antenna array mode may also be referred to as the second antenna operation mode.
  • all the plurality of antenna elements 301-308 can be considered as a full antenna array 310.
  • the antenna elements 301-304 and the antenna elements 305-308 can be considered as sub-antenna arrays 321 and 322, respectively.
  • the sub-antenna arrays associated with the plurality of antenna elements 301-308 may also be implemented as any other suitable patterns.
  • the full antenna array 310 may provide a higher antenna gain than that the sub-antenna arrays 321 or 322.
  • the terminal device 110 may determine the uplink and downlink configuration for a set of timeslots on a plurality of frequency ranges. It is to be understood that the uplink and downlink configuration may also refer to a set of timeslots on a single frequency band.
  • the terminal device 110 may determine, based on the uplink and downlink configuration, that respective resources on the plurality of frequency ranges in each of the set of timeslots may be only used for the uplink transmission or the downlink transmission. That is, the uplink/downlink ratios in each of the plurality of frequency ranges within the set of timeslots are completely the same.
  • FIG. 4A shows an example of the distribution of resources for transmission on the plurality of frequency ranges within a set of timeslots according to some example embodiments of the present disclosure. For example, as shown in FIG.
  • the resources 411 and 412 on frequency band 431 and 432 are both used for downlink transmissions while in the timeslot 402, the resources 421 and 422 on frequency ranges 431 and 432 are both used for uplink transmissions.
  • the terminal device 110 may cause the plurality of antenna elements 301-308 to operate with a second antenna operation mode, i.e., the sub-antenna array mode in the timeslot 401 and at a first antenna operation mode, i.e., the full antenna array mode in the timeslot 402.
  • a second antenna operation mode i.e., the sub-antenna array mode in the timeslot 401
  • a first antenna operation mode i.e., the full antenna array mode in the timeslot 402.
  • all the plurality of antenna elements 301-308 are used in the full antenna array mode and either antenna elements 301-304 or the antenna elements 305-308 are used in the sub-antenna array mode.
  • the terminal device 110 may determine, based on the uplink and downlink configuration, that respective resources on the plurality of frequency ranges in each of a first portion of the set of timeslots may be only used for the uplink transmission or the downlink transmission, while respective resources on the plurality of frequency ranges in each of a second portion of the set of timeslots are used for different transmission, i.e., a part of resources in a timeslot may be used for uplink transmissions and another part of resources in the same timeslot may be used for downlink transmissions.
  • the uplink/downlink ratios in each of the plurality of frequency ranges within the set of timeslots are different or not completely the same.
  • FIG. 4B shows an example of the distribution of resources for transmission on the plurality of frequency ranges within a set of timeslots according to some example embodiments of the present disclosure.
  • the resource 413 on frequency band 431 is used for a downlink transmission
  • the resource 423 on frequency band 432 is used for an uplink transmission.
  • the resources 414 and 415 on frequency band 431 and 432 are both used for downlink transmissions while in the timeslot 405, the resources 424 and 425 on frequency band 431 and 432 are both used for uplink transmissions.
  • the terminal device 110 may cause the plurality of antenna elements 301-308 to operate with a first antenna operation mode, i.e., the full antenna array mode.
  • the terminal device 110 may cause the plurality of antenna elements 301-308 to operate with a second antenna operation mode, i.e., the sub-antenna array mode.
  • the terminal device 110 may cause the plurality of antenna elements 301-308 to operate with a second antenna operation mode, i.e., the sub-antenna array mode.
  • the antenna elements 301-308 may be caused to operate with the full antenna array mode in the timeslot 405, and to operate with the sub-antenna array mode in the timeslot 403 and 404.
  • the terminal device 110 may cause the plurality of antenna elements 301-308 to operate with a second antenna operation mode, i.e., the sub-antenna array mode. Meanwhile, the switching for the plurality of antenna elements 301-308 to operate with different operation mode may be disabled.
  • all the plurality of antenna elements 301-308 are used in the full antenna array mode and either antenna elements 301-304 or the antenna elements 305-308 are used in the sub-antenna array mode.
  • one or more switching elements can be arranged at the terminal device 110 and configured to be reconfigured to cause the plurality of antenna elements to operate with a first antenna operation mode or a second antenna operation mode.
  • FIG. 5 shows an example of antenna arrangement implemented for causing the antenna elements to operate with different antenna operation mode according to some example embodiments of the present disclosure. References to “right” and “left” in the figure are only provided for the sake of better understanding the present disclosure as one observes the figure, and are not to be construed in a limiting manner.
  • the implementation of the antenna arrangement may relate to only respective one antenna port (ports 501-508) for each dual polarized antenna, for example, the antenna elements 301-308 as shown in FIG. 3 and just two terminals 541 and 542 of the Radio Frequency (RF) signals (associated with the uplink transmission and the downlink transmission) are illustrated.
  • the terminal 542 may be used for RX RF signals and the terminal 541 may be used for both TX and RX RF signal.
  • a total number of antenna elements may be 16, provided as a physical arrangement of 8 dual-polarized antenna elements, such as the antenna elements 301-308 as shown in FIG. 3.
  • the example as shown in FIG. 5 shows just one polarization port of 8 dual polarized antenna elements.
  • the implementation of the antenna arrangement as shown in FIG. 5 may comprises 3 switching elements, namely switching elements 511-513, which may be implemented as a single pole double throw (SPDT) RF switching elements.
  • switching elements 511-513 which may be implemented as a single pole double throw (SPDT) RF switching elements.
  • the logic of the switching elements 511-513 may be shown as below.
  • the switching element 513 can be reconfigured to right to connect with the terminal 531, while the switching element 512 can be reconfigured to left to connect with the terminal 536 and the switching element 511 can be reconfigured to right to connect with the terminal 537. In this way, the full antenna array 310 may be used for uplink transmission.
  • the switching element 513 can be reconfigured to left to connect with the terminal 532, while the switching element 511 can be reconfigured to left to connect with the terminal 538 and the switching element 512 can be reconfigured to right to connect with the terminal 535.
  • the sub-antenna array 321 or 322 may be used for uplink transmission.
  • the terminal device 110 can be implemented as an indoor CPE.
  • FIG. 6 shows an example of antenna arrangement 600 for the indoor CPE according to some example embodiments of the present disclosure. It is to be understood that the antenna arrangement of the indoor CPE can be implemented with other antenna arrangements.
  • the antenna arrangement 600 may comprise a plurality of antenna elements 601-604, which may be directive high gain antennas.
  • the plurality of antenna elements 601-604 may be implemented as dual polarized antennas.
  • the antenna arrangement 600 may also comprise a further antenna element 605, which may be an omni-directional antenna.
  • the omni-directional overall horizontal plane antenna pattern may make the indoor CPE use orientation agnostic.
  • the plurality of antenna elements 601-605 can be operated with a moderate high antenna gain mode in which at least one of the antenna elements 601-604 may be used. It is possible that the plurality of antenna elements 601-605 can be operated with a low antenna gain mode in which only the antenna element 605 may be used.
  • the moderate high antenna gain mode may also be referred the first antenna operation mode, while the low antenna gain mode may also be referred to as the second antenna operation mode.
  • the terminal device 110 may determine the uplink and downlink configuration for a set of timeslots on a plurality of frequency ranges. It is to be understood that the uplink and downlink configuration may also refer to a set of timeslots on a single frequency band.
  • the terminal device 110 may determine, based on the uplink and downlink configuration, that respective resources on the plurality of frequency ranges in each of the set of timeslots may be only used for the uplink transmission or the downlink transmission. That is, the uplink/downlink ratios in each of the plurality of frequency ranges within the set of timeslots are completely the same, which may be with reference to the example shown in FIG. 4A.
  • the terminal device 110 may determine, based on the uplink and downlink configuration, that respective resources on the plurality of frequency ranges in each of the set of timeslots may be only used for the uplink transmission or the downlink transmission. That is, the uplink/downlink ratios in each of the plurality of frequency ranges within the set of timeslots are completely the same, which may be with reference to the example shown in FIG. 4A.
  • the terminal device 110 may determine, based on the uplink and downlink configuration, that respective resources on the plurality of frequency ranges in each of the set of timeslots may be only used for the uplink transmission or
  • the terminal device 110 may cause the plurality of antenna elements 601-605 to operate with a first antenna operation mode, i.e., the moderate high antenna gain mode in the timeslot 401 and at a second antenna operation mode, i.e., the low antenna gain mode in the timeslot 402.
  • a first antenna operation mode i.e., the moderate high antenna gain mode in the timeslot 401
  • a second antenna operation mode i.e., the low antenna gain mode in the timeslot 402.
  • at least one of the antenna elements 601-604 may be used in the moderate high antenna gain mode and the antenna element 605 may be used in the low antenna gain mode.
  • the terminal device 110 may determine, based on the uplink and downlink configuration, that respective resources on the plurality of frequency ranges in each of a first portion of the set of timeslots may be only used for the uplink transmission or the downlink transmission, while respective resources on the plurality of frequency ranges in each of a second portion of the set of timeslots are used for different transmission, i.e., a part of resources in a timeslot may be used for uplink transmissions and another part of resources in the same timeslot may be used for downlink transmissions.
  • the uplink/downlink ratios in each of the plurality of frequency ranges within the set of timeslots are different or not completely the same, which may be with reference to the example shown in FIG. 4B.
  • the resource 413 on frequency band 431 is used for a downlink transmission
  • the resource 423 on frequency band 432 is used for an uplink transmission
  • the resources 414 and 415 on frequency band 431 and 432 are both used for downlink transmissions while in the timeslot 405, the resources 424 and 425 on frequency band 431 and 432 are both used for uplink transmissions.
  • the terminal device 110 may cause the antenna elements 601-605 to operate with a second antenna operation mode, i.e., the low antenna gain mode.
  • the terminal device 110 may cause the antenna elements 601-605 to operate with a first antenna operation mode, i.e., the moderate high antenna gain mode.
  • the terminal device 110 may cause the antenna elements 601-605 to operate with a second antenna operation mode, i.e., the low antenna gain mode.
  • the antenna elements 601-605 may be caused to operate with the moderate high antenna gain mode in the timeslot 404, and to operate with the low antenna gain mode in the timeslot 403 and 405.
  • the terminal device 110 may cause the plurality of antenna elements 601-605 to operate with a second antenna operation mode, i.e., the sub-antenna array mode. Meanwhile, the switching for the antenna elements 601-605 to operate with different operation mode may be disabled.
  • one or more switching elements can be arranged at the terminal device 110 and configured to be reconfigured to cause the plurality of antenna elements to operate with a first antenna operation mode or a second antenna operation mode.
  • FIG. 7 shows an example of antenna arrangement implemented for causing the antenna elements to operate with different antenna operation mode according to some example embodiments of the present disclosure.
  • respective two antenna ports 701-702, 703-704, 705-706 and 707-708 for each dual polarized antenna and one antenna port 722 for the omni-directional low gain antenna are illustrated.
  • the dual polarized antenna may be the antenna elements 601-604 as shown in FIG. 6 and the omni-directional low gain antenna may be the antenna element 605 as shown in FIG. 6.
  • a terminal 721 for the RF signals (associated with the Tx and the Rx) is illustrated. It is to be understood that other terminals only for RF signals associated with antenna ports 701-702, 703-704, 705-706 and 707 are not shown. It is also possible that any number of the antenna ports for Rx may also be implemented but not limit to the example as shown in FIG. 7.
  • a switching element 711 is added to transceiver signal (TX0+RX0) RF path, which may be is used to lead the RF signal to omni-directional low gain antenna, i.e., the antenna element 605 during the timeslots associated with the uplink transmission and to the moderate high gain antenna, i.e., at least one of antenna elements 601-604 during the timeslots only for the downlink transmission.
  • the switching element 711 may be reconfigured (e.g. to left in the figure) to connect with the terminal 733, to cause the moderate high gain antenna mode to operate.
  • the connection path can be established from the terminal 733 to port 708. It is to be understood that the connection path from the terminal 733 may be towards any of ports 701-708.
  • the switching element 711 may be reconfigured (e.g. to right in the figure) to connect with the terminal 731, to cause the low gain antenna mode to operate.
  • an apparatus capable of performing the method 200 may comprise means for performing the respective steps of the method 200.
  • the means may be implemented in any suitable form.
  • the means may be implemented in a circuitry or software module.
  • the apparatus comprises means for determining an uplink and downlink timeslot configuration for at least one timeslot associated with respective transmissions on a plurality of frequency ranges; and means for causing, based on the uplink and downlink timeslot configuration, a plurality of antenna elements to operate for the respective transmissions in the at least one timeslot with at least one of a first antenna operation mode in which a first group of antenna elements in the plurality of antenna elements are used for providing a first antenna gain level; or a second antenna operation mode in which a second group of antenna elements in the plurality of antenna elements are used providing a second antenna gain level, the first antenna gain level being higher than the second antenna gain level.
  • the means for causing the plurality of antenna elements to operate comprise means for in accordance with a determination, based on the uplink and downlink timeslot configuration, that resources on the plurality of frequency ranges in a timeslot of the at least one timeslot are allocated for uplink transmissions, causing the plurality of antenna elements to be reconfigured to the first antenna operation mode in the timeslot.
  • the means for causing the plurality of antenna elements to operate comprise means for in accordance with a determination, based on the uplink and downlink timeslot configuration, that at least one resource on the plurality of frequency ranges in a timeslot of the at least one timeslot is allocated for a downlink transmission, causing the plurality of antenna elements to be reconfigured to the second antenna operation mode in the timeslot.
  • the means for causing the plurality of antenna elements to operate comprise means for in accordance with a determination, based on the uplink and downlink timeslot configuration, that resources on the plurality of frequency ranges in a timeslot of the at least one timeslot are allocated for downlink transmissions, causing the plurality of antenna elements to be reconfigured to the first antenna operation mode in the timeslot.
  • the means for causing the plurality of antenna elements to operate comprise means for in accordance with a determination, based on the uplink and downlink timeslot configuration, that at least one resource on the plurality of frequency ranges in a timeslot of the at least one timeslot is allocated for an uplink transmission, causing the plurality of antenna elements to be reconfigured to the second antenna operation mode in the timeslot.
  • the means for causing the plurality of antenna elements to operate comprise means for in accordance with a determination, based on the uplink and downlink timeslot configuration, that there is no timeslot of the at the one timeslot in which respective resources on the plurality of frequency ranges are only allocated for uplink transmissions or only allocated for downlink transmissions, causing the plurality of antenna elements to operate with the second antenna operation mode in the at least one timeslot.
  • FIG. 8 is a simplified block diagram of a device 800 that is suitable for implementing embodiments of the present disclosure.
  • the device 800 may be provided to implement the communication device, for example the terminal device 110 or the network device 120 as shown in FIG. 1.
  • the device 800 includes one or more processors 810, one or more memories 840 coupled to the processor 810, and one or more communication modules 840 coupled to the processor 810.
  • the communication module 840 may be for bidirectional communications.
  • the communication module 840 may have one or more communication interfaces to facilitate communication with one or more other modules or devices.
  • the communication interfaces may represent any interface that is necessary for communication with other network elements.
  • the communication module 840 may include at least one antenna.
  • the processor 810 may be of any type suitable to the local technical network and may include one or more of the following: general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs) and processors based on multicore processor architecture, as non-limiting examples.
  • the device 800 may have multiple processors, such as an application specific integrated circuit chip that is slaved in time to a clock which synchronizes the main processor.
  • the memory 820 may include one or more non-volatile memories and one or more volatile memories.
  • the non-volatile memories include, but are not limited to, a Read Only Memory (ROM) 824, an electrically programmable read only memory (EPROM) , a flash memory, a hard disk, a compact disc (CD) , a digital video disk (DVD) , and other magnetic storage and/or optical storage.
  • the volatile memories include, but are not limited to, a random access memory (RAM) 822 and other volatile memories that will not last in the power-down duration.
  • a computer program 830 includes computer executable instructions that may be executed by the associated processor 810.
  • the program 830 may be stored in the ROM 824.
  • the processor 810 may perform any suitable actions and processing by loading the program 830 into the RAM 822.
  • the embodiments of the present disclosure may be implemented by means of the program 830 so that the device 800 may perform any process of the disclosure as discussed with reference to FIGs. 2 to 7.
  • the embodiments of the present disclosure may also be implemented by hardware or by a combination of software and hardware.
  • the program 830 may be tangibly contained in a computer readable medium which may be included in the device 800 (such as in the memory 820) or other storage devices that are accessible by the device 800.
  • the device 800 may load the program 830 from the computer readable medium to the RAM 822 for execution.
  • the computer readable medium may include any types of tangible non-volatile storage, such as ROM, EPROM, a flash memory, a hard disk, CD, DVD, and the like.
  • FIG. 9 shows an example of the computer readable medium 900 in form of CD or DVD.
  • the computer readable medium has the program 830 stored thereon.
  • various embodiments of the present disclosure may be implemented in hardware or special purpose circuits, software, logic or any combination thereof. Some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software which may be executed by a controller, microprocessor or other computing device. While various aspects of embodiments of the present disclosure are illustrated and described as block diagrams, flowcharts, or using some other pictorial representations, it is to be understood that the block, device, system, technique or method described herein may be implemented in, as non-limiting examples, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controller or other computing devices, or some combination thereof.
  • the present disclosure also provides at least one computer program product tangibly stored on a non-transitory computer readable storage medium.
  • the computer program product includes computer-executable instructions, such as those included in program modules, being executed in a device on a target real or virtual processor, to carry out the method 200 as described above with reference to FIG. 200.
  • program modules include routines, programs, libraries, objects, classes, components, data structures, or the like that perform particular tasks or implement particular abstract data types.
  • the functionality of the program modules may be combined or split between program modules as desired in various embodiments.
  • Machine-executable instructions for program modules may be executed within a local or distributed device. In a distributed device, program modules may be located in both local and remote storage media.
  • Program code for carrying out methods of the present disclosure may be written in any combination of one or more programming languages. These program codes may be provided to a processor or controller of a general purpose computer, special purpose computer, or other programmable data processing device, such that the program codes, when executed by the processor or controller, cause the functions/operations specified in the flowcharts and/or block diagrams to be implemented.
  • the program code may execute entirely on a machine, partly on the machine, as a stand-alone software package, partly on the machine and partly on a remote machine or entirely on the remote machine or server.
  • the computer program codes or related data may be carried by any suitable carrier to enable the device, device or processor to perform various processes and operations as described above.
  • Examples of the carrier include a signal, computer readable medium, and the like.
  • the computer readable medium may be a computer readable signal medium or a computer readable storage medium.
  • a computer readable medium may include but not limited to an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, device, or device, or any suitable combination of the foregoing. More specific examples of the computer readable storage medium would include an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM) , a read-only memory (ROM) , an erasable programmable read-only memory (EPROM or Flash memory) , an optical fiber, a portable compact disc read-only memory (CD-ROM) , an optical storage device, a magnetic storage device, or any suitable combination of the foregoing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Embodiments of the present disclosure relate to methods, devices, apparatuses, communication systems and computer readable storage media of antenna and radio arrangement. The method comprises determining an uplink and downlink timeslot configuration for at least one timeslot associated with respective transmissions on a plurality of frequency ranges; and causing, based on the uplink and downlink timeslot configuration, a plurality of antenna elements to operate for the respective transmissions in the at least one timeslot with at least one of a first antenna operation mode in which a first group of antenna elements in the plurality of antenna elements are used for providing a first antenna gain level; or a second antenna operation mode in which a second group of antenna elements in the plurality of antenna elements are used providing a second antenna gain level, the first antenna gain level being higher than the second antenna gain level. In this way, a solution of antenna and radio arrangement and corresponding operation mode is proposed for both indoor and outdoor FWA device supporting wider operating band. Meanwhile, different suitable antenna gains can be flexible achieved for both uplink and transmissions with an uncomplicated structure.

Description

ANTENNA AND RADIO ARRANGEMENT FIELD
Embodiments of the present disclosure generally relate to the field of telecommunication and in particular to devices, methods, apparatuses and computer readable storage media of antenna and radio arrangement.
BACKGROUND
Fixed Wireless Access (FWA) is one of the major use-cases for the fifth-generation broadband cellular networks (5G) , which may provide high speed internet connection to residents and small enterprises. Therefore, 5G FWA Customer Premises Equipment (CPE) is anticipated to rapidly grow in near future.
Antenna technology is one of the most important key points for 5G FWA CPE devices. The study of the antenna technology may focus on creating and commercializing the highest gain antenna and throughput solutions.
SUMMARY
In general, example embodiments of the present disclosure provide a solution of antenna and radio arrangement.
In a first aspect, there is provided a method. The method comprises determining an uplink and downlink timeslot configuration for at least one timeslot associated with respective transmissions on a plurality of frequency ranges; and causing, based on the uplink and downlink timeslot configuration, a plurality of antenna elements to operate for the respective transmissions in the at least one timeslot with at least one of a first antenna operation mode in which a first group of antenna elements in the plurality of antenna elements are used for providing a first antenna gain level; or a second antenna operation mode in which a second group of antenna elements in the plurality of antenna elements are used providing a second antenna gain level, the first antenna gain level being higher than the second antenna gain level.
In a second aspect, there is provided a device. The device comprises at least one processor; and at least one memory including computer program codes; the at least one memory and the computer program codes are configured to, with the at least one processor,  cause the device at least to carry out the method according to the first aspect.
In a third aspect, there is provided an apparatus comprising means for determining an uplink and downlink timeslot configuration for at least one timeslot associated with respective transmissions on a plurality of frequency ranges; and means for causing, based on the uplink and downlink timeslot configuration, a plurality of antenna elements to operate for the respective transmissions in the at least one timeslot with at least one of a first antenna operation mode in which a first group of antenna elements in the plurality of antenna elements are used for providing a first antenna gain level; or a second antenna operation mode in which a second group of antenna elements in the plurality of antenna elements are used providing a second antenna gain level, the first antenna gain level being higher than the second antenna gain level.
In a fourth aspect, there is provided a device. The device comprises a plurality of antenna elements; and at least one switching elements configured to be reconfigured, based on an uplink and downlink timeslot configuration for at least one timeslot associated with respective transmissions on a plurality of frequency ranges, to cause the plurality of antenna elements to operate for the respective transmissions in the at least one timeslot with at least one of: a first antenna operation mode in which a first group of antenna elements in the plurality of antenna elements are used for providing a first antenna gain level; or a second antenna operation mode in which a second group of antenna elements in the plurality of antenna elements are used for providing a second antenna gain level, the first antenna gain level being higher than the second antenna gain level.
In a fifth aspect, there is provided a communication system comprising the device according to the second aspect or the fourth aspect.
In a sixth aspect, there is provided a computer readable medium having a computer program stored thereon which, when executed by at least one processor of a device, causes the device to carry out the method according to the first aspect.
Other features and advantages of the embodiments of the present disclosure will also be apparent from the following description of specific embodiments when read in conjunction with the accompanying drawings, which illustrate, by way of example, the principles of embodiments of the disclosure.
BRIEF DESCRIPTION OF THE DRAWINGS
Embodiments of the disclosure are presented in the sense of examples and their advantages are explained in greater detail below, with reference to the accompanying drawings, where
FIG. 1 illustrates an example environment in which example embodiments of the present disclosure can be implemented;
FIG. 2 shows a flowchart of an example method of antenna and radio arrangement according to some example embodiments of the present disclosure;
FIG. 3 shows an example of antenna arrangement 300 for the terminal device 110 according to some example embodiments of the present disclosure;
FIGs. 4A and 4B shows examples of the distribution of resources for transmission on the plurality of frequency ranges within a set of timeslots according to some example embodiments of the present disclosure;
FIG. 5 shows an example of antenna arrangement implemented for causing the antenna elements to operate with different antenna operation mode according to some example embodiments of the present disclosure;
FIG. 6 shows an example of antenna arrangement 600 for the terminal device 110 according to some example embodiments of the present disclosure;
FIG. 7 shows an example of antenna arrangement implemented for operating with different antenna operation mode according to some example embodiments of the present disclosure;
FIG. 8 shows a simplified block diagram of a device that is suitable for implementing example embodiments of the present disclosure; and
FIG. 9 shows a block diagram of an example computer readable medium in accordance with some embodiments of the present disclosure.
Throughout the drawings, the same or similar reference numerals represent the same or similar element.
DETAILED DESCRIPTION
Principle of the present disclosure will now be described with reference to some example embodiments. It is to be understood that these embodiments are described only  for the purpose of illustration and help those skilled in the art to understand and implement the present disclosure, without suggesting any limitation as to the scope of the disclosure. The disclosure described herein can be implemented in various manners other than the ones described below.
In the following description and claims, unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skills in the art to which this disclosure belongs.
References in the present disclosure to “one embodiment, ” “an embodiment, ” “an example embodiment, ” and the like indicate that the embodiment described may include a particular feature, structure, or characteristic, but it is not necessary that every embodiment includes the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an example embodiment, it is submitted that it is within the knowledge of one skilled in the art to affect such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described.
It shall be understood that although the terms “first” and “second” etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish functionalities of various elements. As used herein, the term “and/or” includes any and all combinations of one or more of the listed terms.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of example embodiments. As used herein, the singular forms “a” , “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” , “comprising” , “has” , “having” , “includes” and/or “including” , when used herein, specify the presence of stated features, elements, and/or components etc., but do not preclude the presence or addition of one or more other features, elements, components and/or combinations thereof.
As used in this application, the term “circuitry” may refer to one or more or all of the following:
(a) hardware-only circuit implementations (such as implementations in only analog and/or digital circuitry) and
(b) combinations of hardware circuits and software, such as (as applicable) :
(i) a combination of analog and/or digital hardware circuit (s) with software/firmware and
(ii) any portions of hardware processor (s) with software (including digital signal processor (s) ) , software, and memory (ies) that work together to cause an apparatus, such as a mobile phone or server, to perform various functions) and
(c) hardware circuit (s) and or processor (s) , such as a microprocessor (s) or a portion of a microprocessor (s) , that requires software (e.g., firmware) for operation, but the software may not be present when it is not needed for operation.
This definition of circuitry applies to all uses of this term in this application, including in any claims. As a further example, as used in this application, the term circuitry also covers an implementation of merely a hardware circuit or processor (or multiple processors) or portion of a hardware circuit or processor and its (or their) accompanying software and/or firmware. The term circuitry also covers, for example and if applicable to the particular claim element, a baseband integrated circuit or processor integrated circuit for a mobile device or a similar integrated circuit in server, a cellular network device, or other computing or network device.
As used herein, the term “communication network” refers to a network following any suitable communication standards, such as fifth generation (5G) systems, Long Term Evolution (LTE) , LTE-Advanced (LTE-A) , Wideband Code Division Multiple Access (WCDMA) , High-Speed Packet Access (HSPA) , Narrow Band Internet of Things (NB-IoT) and so on. Furthermore, the communications between a terminal device and a network device in the communication network may be performed according to any suitable generation communication protocols, including, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , the fourth generation (4G) , 4.5G, the future fifth generation (5G) new radio (NR) communication protocols, and/or any other protocols either currently known or to be developed in the future. Embodiments of the present disclosure may be applied in various communication systems. Given the rapid development in communications, there will of course also be future type communication technologies and systems with which the present disclosure may be embodied. It should not be seen as limiting the scope of the present disclosure to only the aforementioned system.
As used herein, the term “network device” refers to a node in a communication network via which a terminal device accesses the network and receives services therefrom. The network device may refer to a base station (BS) or an access point (AP) , for example, a node B (NodeB or NB) , an evolved NodeB (eNodeB or eNB) , a NR Next Generation NodeB (gNB) , a Remote Radio Unit (RRU) , a radio header (RH) , a remote radio head (RRH) , a relay, a low power node such as a femto, a pico, and so forth, depending on the applied terminology and technology. A RAN split architecture comprises a gNB-CU (Centralized unit, hosting RRC, SDAP and PDCP) controlling a plurality of gNB-DUs (Distributed unit, hosting RLC, MAC and PHY) . A relay node may correspond to DU part of the IAB node. Hereinafter, the term “network device” may also refer to a network device in a regenerative NTN architecture, which may be collocated with a satellite.
The term “terminal device” refers to any end device that may be capable of wireless communication. By way of example rather than limitation, a terminal device may also be referred to as a communication device, user equipment (UE) , a subscriber station (SS) , a portable subscriber station, a mobile station (MS) , or an access terminal (AT) . The terminal device may include, but not limited to, a mobile phone, a cellular phone, a smart phone, voice over IP (VoIP) phones, wireless local loop phones, a tablet, a wearable terminal device, a personal digital assistant (PDA) , portable computers, desktop computer, image capture terminal devices such as digital cameras, gaming terminal devices, music storage and playback appliances, vehicle-mounted wireless terminal devices, wireless endpoints, mobile stations, laptop-embedded equipment (LEE) , laptop-mounted equipment (LME) , USB dongles, smart devices, wireless customer-premises equipment (CPE) , an Internet of Things (IoT) device, a watch or other wearable, a head-mounted display (HMD) , a vehicle, a drone, a medical device and applications (e.g., remote surgery) , an industrial device and applications (e.g., a robot and/or other wireless devices operating in an industrial and/or an automated processing chain contexts) , a consumer electronics device, a device operating on commercial and/or industrial wireless networks, and the like. The terminal device may also correspond to Mobile Termination (MT) part of the integrated access and backhaul (IAB) node (a.k.a. a relay node) . In the following description, the terms “terminal device” , “communication device” , “terminal” , “user equipment” and “UE” may be used interchangeably.
Although functionalities described herein can be performed, in various example embodiments, in a fixed and/or a wireless network node, in other example embodiments,  functionalities may be implemented in a user equipment apparatus (such as a cell phone or tablet computer or laptop computer or desktop computer or mobile IoT device or fixed IoT device) . This user equipment apparatus can, for example, be furnished with corresponding capabilities as described in connection with the fixed and/or the wireless network node (s) , as appropriate. The user equipment apparatus may be the user equipment and/or or a control device, such as a chipset or processor, configured to control the user equipment when installed therein. Examples of such functionalities include the bootstrapping server function and/or the home subscriber server, which may be implemented in the user equipment apparatus by providing the user equipment apparatus with software configured to cause the user equipment apparatus to perform from the point of view of these functions/nodes.
FIG. 1 shows an example communication network 100 in which embodiments of the present disclosure can be implemented. As shown in FIG. 1, the communication network 100 may comprise a terminal device 110 and a network device 120. The terminal device 110 and the network device 120 may communicate with each other.
It is to be understood that the number of terminal devices and network devices shown in FIG. 1 is given for the purpose of illustration without suggesting any limitations. The communication network 100 may include any suitable number of terminal devices and network devices.
In some scenarios of the present disclosure, the terminal device may refer to a FWA device, such as CPE. The FWA device may be implemented as an outdoor device or an indoor device.
Depending on the communication technologies, the network 100 may be a Code Division Multiple Access (CDMA) network, a Time Division Multiple Address (TDMA) network, a Frequency Division Multiple Access (FDMA) network, an Orthogonal Frequency-Division Multiple Access (OFDMA) network, a Single Carrier-Frequency Division Multiple Access (SC-FDMA) network or any others. Communications discussed in the network 100 may conform to any suitable standards including, but not limited to, New Radio Access (NR) , Long Term Evolution (LTE) , LTE-Evolution, LTE-Advanced (LTE-A) , Wideband Code Division Multiple Access (WCDMA) , Code Division Multiple Access (CDMA) , cdma2000, and Global System for Mobile Communications (GSM) and the like. Furthermore, the communications may be performed according to any generation  communication protocols either currently known or to be developed in the future. Examples of the communication protocols include, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , the fourth generation (4G) , 4.5G, the fifth generation (5G) communication protocols. The techniques described herein may be used for the wireless networks and radio technologies mentioned above as well as other wireless networks and radio technologies. For clarity, certain aspects of the techniques are described below for LTE, and LTE terminology is used in much of the description below.
As described above, the antenna technology is one of the most important key points for 5G FWA CPE devices. In general, the 5G FWA CPE device may be implemented as an outdoor device or an indoor device. An outdoor CPE device may incorporate 5G UE modem and directive high gain antenna. The antenna arrangement of the outdoor CPE device may allow the narrow high gain antenna beam to be pointed and aligned towards to direction of arrival of the strongest radio signal.
A typical antenna arrangement of the outdoor CPE device may be implemented for radio configurations Downlink (DL) 2x2 Multiple Input Multiple Output (MIMO) and DL 4x4 MIMO. The DL 4x4 MIMO configuration must have two dual polarized antenna arrays for four receivers. The DL 2x2 MIMO configuration may implement one dual polarized array. Assuming fixed device size, the antenna array implementation for DL 2x2 MIMO has twice more antennas compared to the implementation for DL 4x4 MIMO.
The indoor CPE device may also be called as the indoor 5G gateway, which is also widely used in FWA deployment. The indoor CPE device may functionally consist essentially of 4G/5G UE modem and antennas for 3GPP wireless access and Wi-Fi and Ethernet interfaces for residential GW functions. Primary use case for indoor FWA GW is use in urban and sub-urban residential environment. Optimal UE downlink MIMO implementation of UE modem radio part for indoor GW is 4x4. For UE uplink maximum MIMO scheme supported in commercial UE modems is SISO for the most of use cases and UL 2x2 MIMO for some 5G bands in Standalone (SA) . Typical FWA indoor GW antenna design is composed with omni-directional antenna with low or moderate gain and high antenna efficiency. Design targe for antenna design is omni-directional overall horizontal plane antenna pattern which makes the device use orientation agnostic. This allows end user to locate the table standing device in any orientation in the residence without need pay attention on device orientation.
For the outdoor CPE device, 5G 3GPP standards makes mandatory requirement for UEs to support DL 4x4 MIMO, while the UE uplink is either UL SISO or UL 2x2 MIMO and overall max transmit power is limited to max 26 dBm. This causes a problem where FWA receiver max antenna gain is reduced when moving from 4G to 5G assuming that the device or antenna size is unchanged. Such antenna gain reduction in UE UL has very significant negative on FWA service coverage /range.
Regarding to the indoor CPE device, which may need to use a low gain omni-directional antenna for Time Division Duplex (TDD) transceiver RF signal, which may be used for both transmit (Tx) and receive (Rx) . The low gain omni-directional antenna may make the device to get omni-direction device orientation agnostic UL coverage while using moderate high gain antennas for Rx to provide better DL performance. In some regions, the Tx antenna gain is not allowed to cross a strict limit. For the RX, the use of moderate high gain may make great sense and the omni-directional low gain may impair the UE receive performance.
Furthermore, Carrier Aggregation (CA) is a feature for efficient use spectrum and high-end user throughputs in wireless communications. It is in particular important for FWA home devices. Unlike smartphones, FWA devices are intended to serve and split the throughput resource over multiple client devices over Wi-Fi and wired ethernet connections. Therefore, multi-bands FWA products may be required to obtain higher access rate for end user. The 3rd Generation Partnership Project (3GPP) had also defined many Long Term Evolution/New Radio (LTE/NR) CA and E-UTRA-NR Dual Connection (EN-DC) combinations. Therefore, the antenna design of FWA device may need to support wider operating band, including both TDD bands and FDD bands.
Therefore, it is to be expected that a solution of antenna and radio arrangement and corresponding operation mode can be proposed for both indoor and outdoor FWA device supporting wider operating band. Meanwhile, it is also to be expected that different suitable antenna gains can be flexibly achieved for both uplink and transmissions with an uncomplicated structure.
The present disclosure proposes a solution of antenna and radio arrangement. In this solution, a device may determine an uplink and downlink timeslot configuration for at least one timeslot associated with respective transmissions on a plurality of frequency ranges. Based on the uplink and downlink timeslot configuration, the device may cause a  plurality of antenna elements to operate in the timeslot at one of a first antenna operation mode or a second antenna operation mode. In the first antenna operation mode, a first group of antenna elements in the plurality of antenna elements are used in the timeslot, while in the second antenna operation mode, a second group of antenna elements in the plurality of antenna elements are used in the timeslot. The first group of the plurality of antenna elements may provide a first antenna gain level and the second group of the plurality of antenna elements may provide a second antenna gain level. The first antenna gain level is higher than the second antenna gain level.
Principle and implementations of the present disclosure will be described in detail below with reference to FIGs. 2-7. FIG. 2 shows a flowchart of an example method 200 of antenna and radio arrangement according to some example embodiments of the present disclosure. The method 200 can be implemented at the terminal device 110 or the network device 120 as shown in FIG. 1. For the purpose of discussion, the method 200 will be described with reference to FIG. 1. The method 200 and the corresponding embodiments will be described below as being implemented at the terminal device 110. It is to be understood that the method 200 and the corresponding embodiments can also be implemented at network device 120.
At 210, the terminal device 110 may determine an uplink and downlink timeslot configuration for at least one timeslot associated with respective transmissions on a plurality of frequency ranges.
The uplink and downlink timeslot configuration for at least one timeslot may indicate that each of respective resources on the plurality of frequency ranges within the timeslot is used for an uplink transmission or a downlink transmission.
Hereinafter the plurality of frequency ranges may refer to both intra-band and inter-band. That is, the plurality of frequency ranges may be located in a same frequency band or different frequency bands.
At 220, based on the uplink and downlink timeslot configuration, the terminal device 110 may cause the plurality of antenna elements arranged at the terminal device 110 to operate in the at least one timeslot at one of a first antenna operation mode or a second antenna operation mode.
In the first antenna operation mode, a first group of antenna elements in the plurality of antenna elements are used in the at least one timeslot for providing a first  antenna gain level, while in the second antenna operation mode, a second group of the plurality of antenna elements are used in the at least one timeslot for providing a second antenna gain level which is lower than the first antenna gain level.
Hereinafter the term “timeslot” may be referred to any unit time associated with one or more transmissions. For example, a timeslot may refer to a slot, a sub-frame, a frame, etc.
In some example embodiments, the terminal device 110 can be implemented as an outdoor CPE. As described above, the antenna arrangement can be implemented as 4x4 MIMO. FIG. 3 shows an example of antenna arrangement 300 for the outdoor CPE according to some example embodiments of the present disclosure. It is to be understood that the antenna arrangement of the outdoor CPE can be implemented with other antenna arrangements.
As shown in FIG. 3, the antenna arrangement 300 may comprises a plurality of antenna elements 301-308, which may be directive high gain antennas. The plurality of antenna elements 301-308 can be operated with a full antenna array mode in which all the plurality of antenna elements 301-308 are used. It is possible that the plurality of antenna elements 301-308 can be operated with a sub-antenna array mode in which only a portion of the plurality of antenna elements 301-308 are used.
In some example embodiments, the full antenna array mode may also be referred the first antenna operation mode, while the sub-antenna array mode may also be referred to as the second antenna operation mode.
For example, all the plurality of antenna elements 301-308 can be considered as a full antenna array 310. The antenna elements 301-304 and the antenna elements 305-308 can be considered as  sub-antenna arrays  321 and 322, respectively. It is to be understood that the sub-antenna arrays associated with the plurality of antenna elements 301-308 may also be implemented as any other suitable patterns. It is to be understood that the full antenna array 310 may provide a higher antenna gain than that the  sub-antenna arrays  321 or 322.
In some example embodiments, the terminal device 110 may determine the uplink and downlink configuration for a set of timeslots on a plurality of frequency ranges. It is to be understood that the uplink and downlink configuration may also refer to a set of timeslots on a single frequency band.
In some example embodiments, the terminal device 110 may determine, based on the uplink and downlink configuration, that respective resources on the plurality of frequency ranges in each of the set of timeslots may be only used for the uplink transmission or the downlink transmission. That is, the uplink/downlink ratios in each of the plurality of frequency ranges within the set of timeslots are completely the same. FIG. 4A shows an example of the distribution of resources for transmission on the plurality of frequency ranges within a set of timeslots according to some example embodiments of the present disclosure. For example, as shown in FIG. 4A, in the timeslot 401, the  resources  411 and 412 on frequency band 431 and 432 are both used for downlink transmissions while in the timeslot 402, the  resources  421 and 422 on frequency ranges 431 and 432 are both used for uplink transmissions.
In this case, to enhance the efficiency of the uplink transmission, the terminal device 110 may cause the plurality of antenna elements 301-308 to operate with a second antenna operation mode, i.e., the sub-antenna array mode in the timeslot 401 and at a first antenna operation mode, i.e., the full antenna array mode in the timeslot 402. As described above, with reference to FIG. 3, all the plurality of antenna elements 301-308 are used in the full antenna array mode and either antenna elements 301-304 or the antenna elements 305-308 are used in the sub-antenna array mode.
In some example embodiments, the terminal device 110 may determine, based on the uplink and downlink configuration, that respective resources on the plurality of frequency ranges in each of a first portion of the set of timeslots may be only used for the uplink transmission or the downlink transmission, while respective resources on the plurality of frequency ranges in each of a second portion of the set of timeslots are used for different transmission, i.e., a part of resources in a timeslot may be used for uplink transmissions and another part of resources in the same timeslot may be used for downlink transmissions. In this situation, the uplink/downlink ratios in each of the plurality of frequency ranges within the set of timeslots are different or not completely the same. FIG. 4B shows an example of the distribution of resources for transmission on the plurality of frequency ranges within a set of timeslots according to some example embodiments of the present disclosure. For example, as shown in FIG. 4B, in the timeslot 403, the resource 413 on frequency band 431 is used for a downlink transmission, while in the timeslot 403, the resource 423 on frequency band 432 is used for an uplink transmission. Furthermore, in the timeslot 404, the  resources  414 and 415 on frequency band 431 and 432 are both used for  downlink transmissions while in the timeslot 405, the  resources  424 and 425 on frequency band 431 and 432 are both used for uplink transmissions.
For a portion of the set of timeslots within which respective resources in each of timeslots on different frequency ranges are only used for uplink transmissions, the terminal device 110 may cause the plurality of antenna elements 301-308 to operate with a first antenna operation mode, i.e., the full antenna array mode. For a portion of the set of timeslots within which respective resources in each of timeslots on different frequency ranges are only used for uplink transmissions, the terminal device 110 may cause the plurality of antenna elements 301-308 to operate with a second antenna operation mode, i.e., the sub-antenna array mode.
For the one or more timeslots in the set of timeslots within which some resources in a same timeslot on different frequency ranges are used for uplink transmissions and other resource in the same timeslot on different frequency ranges are used for downlink transmissions, the terminal device 110 may cause the plurality of antenna elements 301-308 to operate with a second antenna operation mode, i.e., the sub-antenna array mode.
For example, as shown in FIG. 4B, the antenna elements 301-308 may be caused to operate with the full antenna array mode in the timeslot 405, and to operate with the sub-antenna array mode in the timeslot 403 and 404.
In some example embodiments, if the terminal device 110 determines that there are no same uplink/downlink ratios within a set of timeslots, the terminal device 110 may cause the plurality of antenna elements 301-308 to operate with a second antenna operation mode, i.e., the sub-antenna array mode. Meanwhile, the switching for the plurality of antenna elements 301-308 to operate with different operation mode may be disabled.
Similar as described above, with reference to FIG. 3, all the plurality of antenna elements 301-308 are used in the full antenna array mode and either antenna elements 301-304 or the antenna elements 305-308 are used in the sub-antenna array mode.
To cause the plurality of antenna elements arranged at the terminal device 110, for example, the antenna arrangement 300 as shown in FIG. 3, to operate with a first antenna operation mode and/or a second antenna operation mode in the set of timeslots, one or more switching elements can be arranged at the terminal device 110 and configured to be reconfigured to cause the plurality of antenna elements to operate with a first antenna operation mode or a second antenna operation mode. FIG. 5 shows an example of antenna  arrangement implemented for causing the antenna elements to operate with different antenna operation mode according to some example embodiments of the present disclosure. References to “right” and “left” in the figure are only provided for the sake of better understanding the present disclosure as one observes the figure, and are not to be construed in a limiting manner.
For the sake of simplicity, the implementation of the antenna arrangement may relate to only respective one antenna port (ports 501-508) for each dual polarized antenna, for example, the antenna elements 301-308 as shown in FIG. 3 and just two  terminals  541 and 542 of the Radio Frequency (RF) signals (associated with the uplink transmission and the downlink transmission) are illustrated. The terminal 542 may be used for RX RF signals and the terminal 541 may be used for both TX and RX RF signal.
It is to be understood that the implementation for the other antenna port and third (RX+TX) and fourth (RX) RF signals is analogous to that shown in FIG. 5. That is, a total number of antenna elements may be 16, provided as a physical arrangement of 8 dual-polarized antenna elements, such as the antenna elements 301-308 as shown in FIG. 3. The example as shown in FIG. 5 shows just one polarization port of 8 dual polarized antenna elements.
The implementation of the antenna arrangement as shown in FIG. 5 may comprises 3 switching elements, namely switching elements 511-513, which may be implemented as a single pole double throw (SPDT) RF switching elements.
The logic of the switching elements 511-513 may be shown as below.
Table 1: Operation logic of the switching elements
  Timeslot 1 Timeslot 2
switching element 513 right left
switching element
 512 left right
switching element
 511 right left
When the plurality of antenna elements 301-308 is caused to operate with a first antenna operation mode in a timeslot (timeslot 1 in Table 1) in which all resources on the plurality of frequency ranges in the timeslot are used for uplink transmissions, the switching element 513 can be reconfigured to right to connect with the terminal 531, while  the switching element 512 can be reconfigured to left to connect with the terminal 536 and the switching element 511 can be reconfigured to right to connect with the terminal 537. In this way, the full antenna array 310 may be used for uplink transmission.
When the plurality of antenna elements 301-308 is caused to operate with a second antenna operation mode in a timeslot (timeslot 2 in Table 1) in which at least one resource on the plurality of frequency ranges in the timeslot is used for a downlink transmission, the switching element 513 can be reconfigured to left to connect with the terminal 532, while the switching element 511 can be reconfigured to left to connect with the terminal 538 and the switching element 512 can be reconfigured to right to connect with the terminal 535. In this way, the  sub-antenna array  321 or 322 may be used for uplink transmission.
In some example embodiments, the terminal device 110 can be implemented as an indoor CPE. FIG. 6 shows an example of antenna arrangement 600 for the indoor CPE according to some example embodiments of the present disclosure. It is to be understood that the antenna arrangement of the indoor CPE can be implemented with other antenna arrangements.
As shown in FIG. 6, the antenna arrangement 600 may comprise a plurality of antenna elements 601-604, which may be directive high gain antennas. The plurality of antenna elements 601-604 may be implemented as dual polarized antennas.
The antenna arrangement 600 may also comprise a further antenna element 605, which may be an omni-directional antenna. The omni-directional overall horizontal plane antenna pattern may make the indoor CPE use orientation agnostic.
The plurality of antenna elements 601-605 can be operated with a moderate high antenna gain mode in which at least one of the antenna elements 601-604 may be used. It is possible that the plurality of antenna elements 601-605 can be operated with a low antenna gain mode in which only the antenna element 605 may be used.
In some example embodiments, the moderate high antenna gain mode may also be referred the first antenna operation mode, while the low antenna gain mode may also be referred to as the second antenna operation mode.
In some example embodiments, the terminal device 110 may determine the uplink and downlink configuration for a set of timeslots on a plurality of frequency ranges. It is to be understood that the uplink and downlink configuration may also refer to a set of timeslots on a single frequency band.
In some example embodiments, the terminal device 110 may determine, based on the uplink and downlink configuration, that respective resources on the plurality of frequency ranges in each of the set of timeslots may be only used for the uplink transmission or the downlink transmission. That is, the uplink/downlink ratios in each of the plurality of frequency ranges within the set of timeslots are completely the same, which may be with reference to the example shown in FIG. 4A. For example, as shown in FIG. 4A, in the timeslot 401, the  resources  411 and 412 on frequency band 431 and 432 are both used for downlink transmissions while in the timeslot 402, the  resources  421 and 422 on frequency band 431 and 432 are both used for uplink transmissions.
In this case, to limit the transmit power for the uplink transmission and meanwhile satisfy the antenna gain for receiving the downlink transmission, the terminal device 110 may cause the plurality of antenna elements 601-605 to operate with a first antenna operation mode, i.e., the moderate high antenna gain mode in the timeslot 401 and at a second antenna operation mode, i.e., the low antenna gain mode in the timeslot 402. As described above, with reference to FIG. 6, at least one of the antenna elements 601-604 may be used in the moderate high antenna gain mode and the antenna element 605 may be used in the low antenna gain mode.
In some example embodiments, the terminal device 110 may determine, based on the uplink and downlink configuration, that respective resources on the plurality of frequency ranges in each of a first portion of the set of timeslots may be only used for the uplink transmission or the downlink transmission, while respective resources on the plurality of frequency ranges in each of a second portion of the set of timeslots are used for different transmission, i.e., a part of resources in a timeslot may be used for uplink transmissions and another part of resources in the same timeslot may be used for downlink transmissions. In this situation, the uplink/downlink ratios in each of the plurality of frequency ranges within the set of timeslots are different or not completely the same, which may be with reference to the example shown in FIG. 4B. For example, as shown in FIG. 4B, in the timeslot 403, the resource 413 on frequency band 431 is used for a downlink transmission, while in the timeslot 403, the resource 423 on frequency band 432 is used for an uplink transmission. Furthermore, in the timeslot 404, the  resources  414 and 415 on frequency band 431 and 432 are both used for downlink transmissions while in the timeslot 405, the  resources  424 and 425 on frequency band 431 and 432 are both used for uplink transmissions.
For a portion of the set of timeslots within which respective resources in each of timeslots on different frequency ranges are only used for uplink transmissions, the terminal device 110 may cause the antenna elements 601-605 to operate with a second antenna operation mode, i.e., the low antenna gain mode. For a portion of the set of timeslots within which respective resources in each of timeslots on different frequency ranges are only used for uplink transmissions, the terminal device 110 may cause the antenna elements 601-605 to operate with a first antenna operation mode, i.e., the moderate high antenna gain mode.
For the one or more timeslots in the set of timeslots within which some resources in a same timeslot on different frequency ranges are used for uplink transmissions and other resource in the same timeslot on different frequency ranges are used for downlink transmissions, the terminal device 110 may cause the antenna elements 601-605 to operate with a second antenna operation mode, i.e., the low antenna gain mode.
For example, as shown in FIG. 4B, the antenna elements 601-605 may be caused to operate with the moderate high antenna gain mode in the timeslot 404, and to operate with the low antenna gain mode in the timeslot 403 and 405.
In some example embodiments, if the terminal device 110 determines that there are no same uplink/downlink ratios within a set of timeslots, the terminal device 110 may cause the plurality of antenna elements 601-605 to operate with a second antenna operation mode, i.e., the sub-antenna array mode. Meanwhile, the switching for the antenna elements 601-605 to operate with different operation mode may be disabled.
To cause the plurality of antenna elements arranged at the terminal device 110, for example, the antenna arrangement 600 as shown in FIG. 3, to operate with a first antenna operation mode and/or a second antenna operation mode in the set of timeslots, one or more switching elements can be arranged at the terminal device 110 and configured to be reconfigured to cause the plurality of antenna elements to operate with a first antenna operation mode or a second antenna operation mode. FIG. 7 shows an example of antenna arrangement implemented for causing the antenna elements to operate with different antenna operation mode according to some example embodiments of the present disclosure.
As shown in FIG. 7, respective two antenna ports 701-702, 703-704, 705-706 and 707-708 for each dual polarized antenna and one antenna port 722 for the omni-directional low gain antenna are illustrated. For example, the dual polarized antenna may be the  antenna elements 601-604 as shown in FIG. 6 and the omni-directional low gain antenna may be the antenna element 605 as shown in FIG. 6.
Furthermore, a terminal 721 for the RF signals (associated with the Tx and the Rx) is illustrated. It is to be understood that other terminals only for RF signals associated with antenna ports 701-702, 703-704, 705-706 and 707 are not shown. It is also possible that any number of the antenna ports for Rx may also be implemented but not limit to the example as shown in FIG. 7.
A switching element 711 is added to transceiver signal (TX0+RX0) RF path, which may be is used to lead the RF signal to omni-directional low gain antenna, i.e., the antenna element 605 during the timeslots associated with the uplink transmission and to the moderate high gain antenna, i.e., at least one of antenna elements 601-604 during the timeslots only for the downlink transmission.
As shown in FIG. 7, the switching element 711 may be reconfigured (e.g. to left in the figure) to connect with the terminal 733, to cause the moderate high gain antenna mode to operate. As shown, the connection path can be established from the terminal 733 to port 708. It is to be understood that the connection path from the terminal 733 may be towards any of ports 701-708. The switching element 711 may be reconfigured (e.g. to right in the figure) to connect with the terminal 731, to cause the low gain antenna mode to operate.
In this way, a solution of antenna and radio arrangement and corresponding operation mode is proposed for both indoor and outdoor FWA device supporting wider operating band. Meanwhile, different suitable antenna gains can be flexibly achieved for both uplink and transmissions with an uncomplicated structure.
In some example embodiments, an apparatus capable of performing the method 200 (for example, implemented at the terminal device 110 or the network device 120) may comprise means for performing the respective steps of the method 200. The means may be implemented in any suitable form. For example, the means may be implemented in a circuitry or software module.
In some example embodiments, the apparatus comprises means for determining an uplink and downlink timeslot configuration for at least one timeslot associated with respective transmissions on a plurality of frequency ranges; and means for causing, based on the uplink and downlink timeslot configuration, a plurality of antenna elements to operate for the respective transmissions in the at least one timeslot with at least one of a  first antenna operation mode in which a first group of antenna elements in the plurality of antenna elements are used for providing a first antenna gain level; or a second antenna operation mode in which a second group of antenna elements in the plurality of antenna elements are used providing a second antenna gain level, the first antenna gain level being higher than the second antenna gain level.
In some example embodiments, the means for causing the plurality of antenna elements to operate comprise means for in accordance with a determination, based on the uplink and downlink timeslot configuration, that resources on the plurality of frequency ranges in a timeslot of the at least one timeslot are allocated for uplink transmissions, causing the plurality of antenna elements to be reconfigured to the first antenna operation mode in the timeslot.
In some example embodiments, the means for causing the plurality of antenna elements to operate comprise means for in accordance with a determination, based on the uplink and downlink timeslot configuration, that at least one resource on the plurality of frequency ranges in a timeslot of the at least one timeslot is allocated for a downlink transmission, causing the plurality of antenna elements to be reconfigured to the second antenna operation mode in the timeslot.
In some example embodiments, the means for causing the plurality of antenna elements to operate comprise means for in accordance with a determination, based on the uplink and downlink timeslot configuration, that resources on the plurality of frequency ranges in a timeslot of the at least one timeslot are allocated for downlink transmissions, causing the plurality of antenna elements to be reconfigured to the first antenna operation mode in the timeslot.
In some example embodiments, the means for causing the plurality of antenna elements to operate comprise means for in accordance with a determination, based on the uplink and downlink timeslot configuration, that at least one resource on the plurality of frequency ranges in a timeslot of the at least one timeslot is allocated for an uplink transmission, causing the plurality of antenna elements to be reconfigured to the second antenna operation mode in the timeslot.
In some example embodiments, the means for causing the plurality of antenna elements to operate comprise means for in accordance with a determination, based on the uplink and downlink timeslot configuration, that there is no timeslot of the at the one  timeslot in which respective resources on the plurality of frequency ranges are only allocated for uplink transmissions or only allocated for downlink transmissions, causing the plurality of antenna elements to operate with the second antenna operation mode in the at least one timeslot.
FIG. 8 is a simplified block diagram of a device 800 that is suitable for implementing embodiments of the present disclosure. The device 800 may be provided to implement the communication device, for example the terminal device 110 or the network device 120 as shown in FIG. 1. As shown, the device 800 includes one or more processors 810, one or more memories 840 coupled to the processor 810, and one or more communication modules 840 coupled to the processor 810.
The communication module 840 may be for bidirectional communications. The communication module 840 may have one or more communication interfaces to facilitate communication with one or more other modules or devices. The communication interfaces may represent any interface that is necessary for communication with other network elements. In some example embodiments, the communication module 840 may include at least one antenna.
The processor 810 may be of any type suitable to the local technical network and may include one or more of the following: general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs) and processors based on multicore processor architecture, as non-limiting examples. The device 800 may have multiple processors, such as an application specific integrated circuit chip that is slaved in time to a clock which synchronizes the main processor.
The memory 820 may include one or more non-volatile memories and one or more volatile memories. Examples of the non-volatile memories include, but are not limited to, a Read Only Memory (ROM) 824, an electrically programmable read only memory (EPROM) , a flash memory, a hard disk, a compact disc (CD) , a digital video disk (DVD) , and other magnetic storage and/or optical storage. Examples of the volatile memories include, but are not limited to, a random access memory (RAM) 822 and other volatile memories that will not last in the power-down duration.
computer program 830 includes computer executable instructions that may be executed by the associated processor 810. The program 830 may be stored in the ROM 824. The processor 810 may perform any suitable actions and processing by loading the program  830 into the RAM 822.
The embodiments of the present disclosure may be implemented by means of the program 830 so that the device 800 may perform any process of the disclosure as discussed with reference to FIGs. 2 to 7. The embodiments of the present disclosure may also be implemented by hardware or by a combination of software and hardware.
In some embodiments, the program 830 may be tangibly contained in a computer readable medium which may be included in the device 800 (such as in the memory 820) or other storage devices that are accessible by the device 800. The device 800 may load the program 830 from the computer readable medium to the RAM 822 for execution. The computer readable medium may include any types of tangible non-volatile storage, such as ROM, EPROM, a flash memory, a hard disk, CD, DVD, and the like. FIG. 9 shows an example of the computer readable medium 900 in form of CD or DVD. The computer readable medium has the program 830 stored thereon.
Generally, various embodiments of the present disclosure may be implemented in hardware or special purpose circuits, software, logic or any combination thereof. Some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software which may be executed by a controller, microprocessor or other computing device. While various aspects of embodiments of the present disclosure are illustrated and described as block diagrams, flowcharts, or using some other pictorial representations, it is to be understood that the block, device, system, technique or method described herein may be implemented in, as non-limiting examples, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controller or other computing devices, or some combination thereof.
The present disclosure also provides at least one computer program product tangibly stored on a non-transitory computer readable storage medium. The computer program product includes computer-executable instructions, such as those included in program modules, being executed in a device on a target real or virtual processor, to carry out the method 200 as described above with reference to FIG. 200. Generally, program modules include routines, programs, libraries, objects, classes, components, data structures, or the like that perform particular tasks or implement particular abstract data types. The functionality of the program modules may be combined or split between program modules as desired in various embodiments. Machine-executable instructions for program modules  may be executed within a local or distributed device. In a distributed device, program modules may be located in both local and remote storage media.
Program code for carrying out methods of the present disclosure may be written in any combination of one or more programming languages. These program codes may be provided to a processor or controller of a general purpose computer, special purpose computer, or other programmable data processing device, such that the program codes, when executed by the processor or controller, cause the functions/operations specified in the flowcharts and/or block diagrams to be implemented. The program code may execute entirely on a machine, partly on the machine, as a stand-alone software package, partly on the machine and partly on a remote machine or entirely on the remote machine or server.
In the context of the present disclosure, the computer program codes or related data may be carried by any suitable carrier to enable the device, device or processor to perform various processes and operations as described above. Examples of the carrier include a signal, computer readable medium, and the like.
The computer readable medium may be a computer readable signal medium or a computer readable storage medium. A computer readable medium may include but not limited to an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, device, or device, or any suitable combination of the foregoing. More specific examples of the computer readable storage medium would include an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM) , a read-only memory (ROM) , an erasable programmable read-only memory (EPROM or Flash memory) , an optical fiber, a portable compact disc read-only memory (CD-ROM) , an optical storage device, a magnetic storage device, or any suitable combination of the foregoing.
Further, while operations are depicted in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. In certain circumstances, multitasking and parallel processing may be advantageous. Likewise, while several specific implementation details are contained in the above discussions, these should not be construed as limitations on the scope of the present disclosure, but rather as descriptions of features that may be specific to particular embodiments. Certain features that are described in the context of separate embodiments  may also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment may also be implemented in multiple embodiments separately or in any suitable sub-combination.
Although the present disclosure has been described in languages specific to structural features and/or methodological acts, it is to be understood that the present disclosure defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing the claims.

Claims (23)

  1. A method comprising:
    determining an uplink and downlink timeslot configuration for at least one timeslot associated with respective transmissions on a plurality of frequency ranges; and
    causing, based on the uplink and downlink timeslot configuration, a plurality of antenna elements to operate for the respective transmissions in the at least one timeslot with at least one of:
    a first antenna operation mode in which a first group of antenna elements in the plurality of antenna elements are used for providing a first antenna gain level; or
    a second antenna operation mode in which a second group of antenna elements in the plurality of antenna elements are used for providing a second antenna gain level, the first antenna gain level being higher than the second antenna gain level.
  2. The method of claim 1, wherein causing the plurality of antenna elements to operate comprises:
    in accordance with a determination, based on the uplink and downlink timeslot configuration, that resources on the plurality of frequency ranges in a timeslot of the at least one timeslot are allocated for uplink transmissions, causing the plurality of antenna elements to be reconfigured to the first antenna operation mode in the timeslot.
  3. The method of claim 1, wherein causing the plurality of antenna elements to operate comprises:
    in accordance with a determination, based on the uplink and downlink timeslot configuration, that at least one resource on the plurality of frequency ranges in a timeslot of the at least one timeslot is allocated for a downlink transmission, causing the plurality of antenna elements to be reconfigured to the second antenna operation mode in the timeslot.
  4. The method of claim 1, wherein causing the plurality of antenna elements to operate comprises:
    in accordance with a determination, based on the uplink and downlink timeslot configuration, that resources on the plurality of frequency ranges in a timeslot of the at least one timeslot are allocated for downlink transmissions, causing the plurality of antenna elements to be reconfigured to the first antenna operation mode in the timeslot.
  5. The method of claim 1, wherein causing the plurality of antenna elements to operate comprises:
    in accordance with a determination, based on the uplink and downlink timeslot configuration, that at least one resource on the plurality of frequency ranges in a timeslot of the at least one timeslot is allocated for an uplink transmission, causing the plurality of antenna elements to be reconfigured to the second antenna operation mode in the timeslot.
  6. The method of claim 1, wherein causing the plurality of antenna elements to operate comprises:
    in accordance with a determination, based on the uplink and downlink timeslot configuration, that there is no timeslot of the at the one timeslot in which respective resources on the plurality of frequency ranges are only allocated for uplink transmissions or only allocated for downlink transmissions, causing the plurality of antenna elements to operate with the second antenna operation mode in the at least one timeslot.
  7. The method of any of claims 1 and 4-6, wherein the plurality of antenna elements comprises at least one omni-directional antenna element dedicated for an uplink transmission and having an antenna gain level lower than a threshold level, and wherein the first group of antenna elements comprises at least one antenna element in the plurality of antenna elements excluding the at least one omni-directional antenna element and the second group of antenna elements comprises the at least one omni-directional antenna.
  8. The method of any of claims 1-3 and 6, wherein the plurality of antenna elements comprises directional antenna elements, and wherein the first group of antenna elements comprises substantially all of the plurality of antenna elements and the second group of antenna elements comprise at least two antenna elements of the plurality of antenna elements.
  9. A device comprising:
    at least one processor; and
    at least one memory including computer program codes;
    the at least one memory and the computer program codes are configured to, with the at least one processor, cause the device at least to:
    determine an uplink and downlink timeslot configuration for at least one timeslot associated with respective transmissions on a plurality of frequency ranges; and
    cause, based on the uplink and downlink timeslot configuration, a plurality of antenna elements to operate for the respective transmissions in the at least one timeslot with at least one of:
    a first antenna operation mode in which a first group of antenna elements in the plurality of antenna elements are used for providing a first antenna gain level; or
    a second antenna operation mode in which a second group of antenna elements in the plurality of antenna elements are used for providing a second antenna gain level, the first antenna gain level being higher than the second antenna gain level.
  10. The device of claim 9, wherein the device is configured to cause the plurality of antenna elements to operate by:
    in accordance with a determination, based on the uplink and downlink timeslot configuration, that resources on the plurality of frequency ranges in a timeslot of the at least one timeslot are allocated for uplink transmissions, causing the plurality of antenna elements to be reconfigured to the first antenna operation mode in the timeslot.
  11. The device of claim 9, wherein the device is configured to cause the plurality of antenna elements to operate by:
    in accordance with a determination, based on the uplink and downlink timeslot configuration, that at least one resource on the plurality of frequency ranges in a timeslot of the at least one timeslot is allocated for a downlink transmission, causing the plurality of antenna elements to be reconfigured to the second antenna operation mode in the timeslot.
  12. The device of claim 9, wherein the device is configured to cause the plurality of antenna element to operate by:
    in accordance with a determination, based on the uplink and downlink timeslot configuration, that resources on the plurality of frequency ranges in a timeslot of the at least one timeslot are allocated for downlink transmissions, causing the plurality of antenna elements to be reconfigured to the first antenna operation mode in the timeslot.
  13. The device of claim 9, wherein the device is configured to cause the plurality  of antenna elements to operate by:
    in accordance with a determination, based on the uplink and downlink timeslot configuration, that at least one resource on the plurality of frequency ranges in a timeslot of the at least one timeslot is allocated for an uplink transmission, causing the plurality of antenna elements to be reconfigured to the second antenna operation mode in the timeslot.
  14. The device of claim 9, wherein the device is configured to cause the plurality of antenna elements to operate by:
    in accordance with a determination, based on the uplink and downlink timeslot configuration, that there is no timeslot of the at the one timeslot in which respective resources on the plurality of frequency ranges are only allocated for uplink transmissions or only allocated for downlink transmissions, causing the plurality of antenna elements to operate with the second antenna operation mode in the at least one timeslot.
  15. The device of any of claims 9 and 12-14, wherein the plurality of antenna elements comprises at least one omni-directional antenna element dedicated for an uplink transmission and having an antenna gain level lower than a threshold level, and wherein the first group of antenna elements comprise at least one antenna element in the plurality of antenna elements excluding the at least one omni-directional antenna element and the second group of antenna elements comprise the at least one omni-directional antenna.
  16. The device of any of claims 9-11 and 14, wherein the plurality of antenna elements comprises directional antenna elements, and wherein the first group of antenna elements comprise substantially all of the plurality of antenna elements and the second group of antenna elements comprises at least two antenna elements of the plurality of antenna elements.
  17. The device of claim 9, wherein the device is a terminal device or a network device.
  18. An apparatus comprising:
    means for determining an uplink and downlink timeslot configuration for at least one timeslot associated with respective transmissions on a plurality of frequency ranges; and
    means for causing, based on the uplink and downlink timeslot configuration, a plurality of antenna elements in the at least one timeslot with at least one of:
    a first antenna operation mode in which a first group of antenna elements in the plurality of antenna elements are used for providing a first antenna gain level; or
    a second antenna operation mode in which a second group of antenna elements in the plurality of antenna elements are used for providing a second antenna gain level, the first antenna gain level being higher than the second antenna gain level.
  19. A device comprising:
    a plurality of antenna elements; and
    at least one switching element configured to be reconfigured, based on an uplink and downlink timeslot configuration for at least one timeslot associated with respective transmissions on a plurality of frequency ranges, to cause the plurality of antenna elements to operate for the respective transmissions in the at least one timeslot with at least one of:
    a first antenna operation mode in which a first group of antenna elements in the plurality of antenna elements are used for providing a first antenna gain level; or
    a second antenna operation mode in which a second group of antenna elements in the plurality of antenna elements are used for providing a second antenna gain level, the first antenna gain level being higher than the second antenna gain level.
  20. The device of claim 19, wherein the plurality of antenna elements comprises at least one omni-directional antenna element dedicated for an uplink transmission and having an antenna gain level lower than a threshold level, and wherein the first group of antenna elements comprise at least one antenna elements in the plurality of antenna elements excluding the at least one omni-directional antenna element and the second group of antenna elements comprise the at least one omni-directional antenna.
  21. The device of claim 19, wherein the plurality of antenna elements comprises directional antenna elements, and wherein the first group of antenna elements comprise substantially all of the plurality of antenna elements and the second group of antenna elements comprise at least two antenna elements of the plurality of antenna elements.
  22. A communication system comprising the device of any of claims 9-17 or any of claims 19-21.
  23. A computer readable medium comprising program instructions for causing an apparatus to perform at least the method of any of claims 1-8.
PCT/CN2021/139938 2021-12-21 2021-12-21 Antenna and radio arrangement WO2023115305A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/139938 WO2023115305A1 (en) 2021-12-21 2021-12-21 Antenna and radio arrangement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/139938 WO2023115305A1 (en) 2021-12-21 2021-12-21 Antenna and radio arrangement

Publications (1)

Publication Number Publication Date
WO2023115305A1 true WO2023115305A1 (en) 2023-06-29

Family

ID=86900866

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/139938 WO2023115305A1 (en) 2021-12-21 2021-12-21 Antenna and radio arrangement

Country Status (1)

Country Link
WO (1) WO2023115305A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07135675A (en) * 1993-11-11 1995-05-23 Nippon Telegr & Teleph Corp <Ntt> Antenna selection method
US20020122393A1 (en) * 2001-03-01 2002-09-05 Koninklijke Philips Electronics N.V. Antenna diversity in a wireless local area network
JP2003023379A (en) * 2001-07-10 2003-01-24 Matsushita Electric Ind Co Ltd Transmitting diversity method and antenna switching device
US20070270155A1 (en) * 2002-05-07 2007-11-22 Interdigital Technology Corporation Antenna adaptation in a time division duplexing system
CN103181114A (en) * 2012-09-04 2013-06-26 华为技术有限公司 Transmission method and apparatus for reference signal
EP2663140A1 (en) * 2012-05-10 2013-11-13 BlackBerry Limited Power based gain control adjustment

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07135675A (en) * 1993-11-11 1995-05-23 Nippon Telegr & Teleph Corp <Ntt> Antenna selection method
US20020122393A1 (en) * 2001-03-01 2002-09-05 Koninklijke Philips Electronics N.V. Antenna diversity in a wireless local area network
JP2003023379A (en) * 2001-07-10 2003-01-24 Matsushita Electric Ind Co Ltd Transmitting diversity method and antenna switching device
US20070270155A1 (en) * 2002-05-07 2007-11-22 Interdigital Technology Corporation Antenna adaptation in a time division duplexing system
EP2663140A1 (en) * 2012-05-10 2013-11-13 BlackBerry Limited Power based gain control adjustment
CN103181114A (en) * 2012-09-04 2013-06-26 华为技术有限公司 Transmission method and apparatus for reference signal

Similar Documents

Publication Publication Date Title
US11516688B2 (en) Terminal apparatus, base station apparatus, and communication method
US11949553B2 (en) Transmission parameter configuration method and apparatus
US11290171B2 (en) Method and apparatus for signal detection in a MIMO communication system
WO2021007854A1 (en) Methods, devices and computer storage media for multi-trp communication
WO2022170512A1 (en) Multiplexing of sidelink positioning reference signal with physical sidelink feedback channel
JP6509758B2 (en) Wireless base station using directivity switching antenna and antenna directivity switching method
WO2023115305A1 (en) Antenna and radio arrangement
WO2020164027A1 (en) Beam selection of multi-trp
US9585161B2 (en) Method and arrangement for acquiring scheduling information
WO2021155533A1 (en) Beam selection under multiple transmission points
WO2021022556A1 (en) Beam alignment
WO2023108482A1 (en) Bandwidth part selection for random access procedures
KR102265987B1 (en) Methods and apparatus for managing adaptive receiver
WO2024065845A1 (en) Cell reselection control
WO2023065248A1 (en) Resource selection for random access procedures
WO2023044723A1 (en) Physical uplink control channel reliability enhancement
WO2024031678A1 (en) Transmission reception point adaptation
WO2022000377A1 (en) Power control of spatial reuse for supporting time sensitive communication in the unlicensed band
WO2024092798A1 (en) Flexible physical random access channel operation
WO2020191673A1 (en) Bandwidth part switch mechanism
EP4346295A1 (en) Devices, methods and apparatuses for power headroom report
US20240113825A1 (en) Method and apparatus for sounding reference signal transmission
WO2024031365A1 (en) Initiation for radio resource control connected state
WO2023155119A1 (en) Procedure selection for small data transmission
WO2023225874A1 (en) Method and apparatus for power headroom report

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21968459

Country of ref document: EP

Kind code of ref document: A1