WO2023115300A1 - Dynamic over-the-air testing - Google Patents

Dynamic over-the-air testing Download PDF

Info

Publication number
WO2023115300A1
WO2023115300A1 PCT/CN2021/139911 CN2021139911W WO2023115300A1 WO 2023115300 A1 WO2023115300 A1 WO 2023115300A1 CN 2021139911 W CN2021139911 W CN 2021139911W WO 2023115300 A1 WO2023115300 A1 WO 2023115300A1
Authority
WO
WIPO (PCT)
Prior art keywords
test
test point
channel parameters
channel
test points
Prior art date
Application number
PCT/CN2021/139911
Other languages
French (fr)
Inventor
Bin Han
Changhwan Park
Valentin Alexandru Gheorghiu
Yiqing Cao
Chu-Hsiang HUANG
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2021/139911 priority Critical patent/WO2023115300A1/en
Publication of WO2023115300A1 publication Critical patent/WO2023115300A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/06Testing, supervising or monitoring using simulated traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/29Performance testing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/15Performance testing

Definitions

  • the following relates to wireless communications, including dynamic over-the-air testing.
  • Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) .
  • Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems.
  • 4G systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems
  • 5G systems which may be referred to as New Radio (NR) systems.
  • a wireless multiple-access communications system may include one or more base stations or one or more network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE) .
  • UE user equipment
  • Some wireless communication techniques may be verified through modeling and testing. Techniques for modeling and testing dynamic characteristics of a channel may be improved.
  • the described techniques relate to improved methods, systems, devices, and apparatuses that support dynamic over-the-air testing.
  • the described techniques provide for modeling of a dynamic channel, which includes large-scale channel characteristics, for over-the-air testing in higher frequencies (e.g., mmW frequencies, Frequency Range 2 (FR2) ) .
  • a wireless device e.g., which may include an emulator and an antenna used to generate and transmit signals emulating particular channel parameters
  • UE user equipment
  • adjacent test points may be associated with respective correlation matrix distances, where a correlation matrix distance may represent a similarity of channel parameters between the adjacent test points.
  • the wireless device may perform an interpolation of each channel parameter between the adjacent test points over respective time periods based on the respective correlation matrix distances. For example, the wireless device may perform the interpolation based on whether a correlation matrix distance for the adjacent test points satisfies or fails to satisfy a threshold.
  • the wireless device may transmit, via an antenna and to the device under test within the test chamber, multiple signals which may generate the interpolated channel parameters between the antenna and the device. As such, the described techniques may verify the performance of the device in higher frequency ranges by emulating the dynamic geometry of a channel in a testing environment.
  • a method for wireless communications at a wireless device may include identifying a set of multiple test points for a trajectory for a device under test, where adjacent test points of the set of multiple test points are associated with respective correlation matrix distances, performing an interpolation of each channel parameter of a set of multiple channel parameters between the adjacent test points over respective time periods based on the respective correlation matrix distances, and transmitting, via a test antenna and to the device under test within a test chamber, a set of multiple signals over the respective time periods, where the set of multiple signals generate the interpolated channel parameters between the test antenna and the device under test.
  • the apparatus may include memory, a transceiver, and at least one processor of a wireless device, the at least one processor coupled with the memory and the transceiver.
  • the at least one processor may be configured to cause the apparatus to identify a set of multiple test points for a trajectory for a device under test, where adjacent test points of the set of multiple test points are associated with respective correlation matrix distances, perform an interpolation of each channel parameter of a set of multiple channel parameters between the adjacent test points over respective time periods based on the respective correlation matrix distances, and transmit, via a test antenna and to the device under test within a test chamber, a set of multiple signals over the respective time periods, where the set of multiple signals generate the interpolated channel parameters between the test antenna and the device under test.
  • the apparatus may include means for identifying a set of multiple test points for a trajectory for a device under test, where adjacent test points of the set of multiple test points are associated with respective correlation matrix distances, means for performing an interpolation of each channel parameter of a set of multiple channel parameters between the adjacent test points over respective time periods based on the respective correlation matrix distances, and means for transmitting, via a test antenna and to the device under test within a test chamber, a set of multiple signals over the respective time periods, where the set of multiple signals generate the interpolated channel parameters between the test antenna and the device under test.
  • a non-transitory computer-readable medium storing code for wireless communications at a wireless device is described.
  • the code may include instructions executable by a processor to identify a set of multiple test points for a trajectory for a device under test, where adjacent test points of the set of multiple test points are associated with respective correlation matrix distances, perform an interpolation of each channel parameter of a set of multiple channel parameters between the adjacent test points over respective time periods based on the respective correlation matrix distances, and transmit, via a test antenna and to the device under test within a test chamber, a set of multiple signals over the respective time periods, where the set of multiple signals generate the interpolated channel parameters between the test antenna and the device under test.
  • performing the interpolation of each channel parameter may include operations, features, means, or instructions for performing, based on the respective correlation matrix distance between a first set of adjacent test points being less than a threshold, the interpolation of each channel parameter of the set of multiple channel parameters based on a first set of channel parameters associated with a first test point of the first set of adjacent test points and a second set of channel parameters associated with a second test point of the first set of adjacent test points over the respective time period.
  • the first set of adjacent test points may be each associated with a first line-of-sight condition and may have a first quantity of clusters.
  • performing the interpolation of each channel parameter may include operations, features, means, or instructions for performing, based on the respective correlation matrix distance between a second set of adjacent test points being greater than a threshold, the interpolation of at least one channel parameter of the set of multiple channel parameters between a corresponding channel parameter associated with a third test point of the second set of adjacent test points and a virtual parameter associated with a fourth test point of the second set of adjacent test points over the respective time period, where a power metric for the virtual parameter may be set to a predetermined power level.
  • At least one of a line-of-sight condition or a quantity of clusters may be different between the third test point and the fourth test point.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for identifying a first set of multiple clusters associated with the fourth test point, where a cluster associated with the fourth test point may be excluded in a second set of multiple clusters associated with the third test point, generating a virtual cluster for the third test point having channel parameters set to the predetermined power level, and performing the interpolation of each channel parameter of the set of multiple channel parameters between the second set of adjacent test points over the respective time period, where performing the interpolation includes interpolating the channel parameters between the virtual cluster associated with the third test point and the cluster associated with the fourth test point.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for identifying a line-of-sight sub-path associated with the fourth test point, where the line-of-sight sub-path may be excluded in the third test point, generating a virtual sub-path associated with the third test point having channel parameters set to the predetermined power level, and performing the interpolation of each channel parameter of the set of multiple channel parameters between the second set of adjacent test points over the respective time period, where performing the interpolation includes interpolating the channel parameters between the virtual sub-path associated with the third test point and the line-of-sight sub-path associated with the fourth test point.
  • D includes a correlation matrix distance between the adjacent test points
  • R 1 includes a spatial correlation matrix for a first test point
  • R 2 includes a spatial correlation matrix for a second test point
  • P (t) includes the interpolated channel parameters at a time t
  • P (a) includes a first channel parameter of the set of multiple channel parameters between the adjacent test points
  • P (b) includes a second channel parameter of a set of multiple channel parameters between the adjacent test points
  • T ab includes a respective time period between the adjacent test points
  • the set of multiple channel parameters include an angle, an angle spread, a delay, a cluster power, a K-factor, a path loss, a speed of the device under test, a cross-polarization ratio, or any combination thereof.
  • FIG. 1 illustrates an example of a wireless communications system that supports dynamic over-the-air testing in accordance with aspects of the present disclosure.
  • FIG. 2 illustrates an example of a testing environment that supports dynamic over-the-air testing in accordance with aspects of the present disclosure.
  • FIG. 3 illustrates an example of a test scenario that supports dynamic over-the-air testing in accordance with aspects of the present disclosure.
  • FIGs. 4 and 5 show block diagrams of devices that support dynamic over-the-air testing in accordance with aspects of the present disclosure.
  • FIG. 6 shows a block diagram of a communications manager that supports dynamic over-the-air testing in accordance with aspects of the present disclosure.
  • FIG. 7 shows a diagram of a system including a device that supports dynamic over-the-air testing in accordance with aspects of the present disclosure.
  • FIGs. 8 through 12 show flowcharts illustrating methods that support dynamic over-the-air testing in accordance with aspects of the present disclosure.
  • some beamforming techniques may be used to enable high throughput communications in higher frequencies (e.g., mmW frequencies, Frequency Range 2 (FR2) ) . These beamforming techniques may be verified through tests, however current test mechanisms may be limiting. For example, an orientation of a device (e.g., a user equipment (UE) ) under test and a direction of the test (e.g., the orientation of an antenna with respect to the device under test) may be determined before a test and remain the same during the test. Even if device performance is measured over multiple test directions, the device may be provided sufficient beam dwell-time between updates to the test geometry such that the test may fail to verify dynamic beam management.
  • UE user equipment
  • some channel modeling techniques for FR2 over-the-air testing may be stationary (e.g., fixed) such that large-scale channel characteristics may be fixed during emulation of a channel.
  • some FR2 over-the-air modeling and testing techniques may produce results that fail to accurately verify device performance in FR2.
  • a wireless device may identify multiple test points for a trajectory for a device under test (e.g., a UE) .
  • a device under test e.g., a UE
  • adjacent test points may be associated with respective correlation matrix distances, where a correlation matrix distance may represent a similarity of channel parameters between the adjacent test points.
  • the wireless device may perform an interpolation of each channel parameter between the adjacent test points over respective time periods based on the respective correlation matrix distances.
  • the wireless device may perform the interpolation based on whether a correlation matrix distance for the adjacent test points satisfies or fails to satisfy a threshold.
  • the wireless device may transmit, via an antenna and to the device under test within the test chamber, multiple signals which may generate the interpolated channel parameters between the antenna and the device.
  • the generated interpolated channel parameters may emulate a dynamic channel with channel characteristics that vary throughout the channel (e.g., between test points) rather than remain static (e.g., fixed) .
  • the described techniques may verify the performance of the device in the FR2 by emulating the dynamic geometry of a channel in a testing environment.
  • aspects of the disclosure are initially described in the context of wireless communications systems. Aspects of the disclosure are then described in the context of testing environments and testing scenarios. Aspects of the disclosure are further illustrated by and described with reference to apparatus diagrams, system diagrams, and flowcharts that relate to dynamic over-the-air testing.
  • FIG. 1 illustrates an example of a wireless communications system 100 that supports dynamic over-the-air testing in accordance with aspects of the present disclosure.
  • the wireless communications system 100 may include one or more base stations 105, one or more UEs 115, and a core network 130.
  • the wireless communications system 100 may be a Long Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, an LTE-A Pro network, or a New Radio (NR) network.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • NR New Radio
  • the wireless communications system 100 may support enhanced broadband communications, ultra-reliable communications, low latency communications, communications with low-cost and low-complexity devices, or any combination thereof.
  • the base stations 105 may be dispersed throughout a geographic area to form the wireless communications system 100 and may be devices in different forms or having different capabilities.
  • the base stations 105 and the UEs 115 may wirelessly communicate via one or more communication links 125.
  • Each base station 105 may provide a coverage area 110 over which the UEs 115 and the base station 105 may establish one or more communication links 125.
  • the coverage area 110 may be an example of a geographic area over which a base station 105 and a UE 115 may support the communication of signals according to one or more radio access technologies.
  • the UEs 115 may be dispersed throughout a coverage area 110 of the wireless communications system 100, and each UE 115 may be stationary, or mobile, or both at different times.
  • the UEs 115 may be devices in different forms or having different capabilities. Some example UEs 115 are illustrated in FIG. 1.
  • the UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115, the base stations 105, or network equipment (e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment) , as shown in FIG. 1.
  • network equipment e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment
  • a network node may refer to any UE 115, base station 105, entity of a core network 130, apparatus, device, or computing system configured to perform any techniques described herein.
  • a network node may be a UE 115.
  • a network node may be a base station 105.
  • a first network node may be configured to communicate with a second network node or a third network node.
  • the first network node may be a UE 115
  • the second network node may be a base station 105
  • the third network node may be a UE 115.
  • the first network node may be a UE 115
  • the second network node may be a base station 105
  • the third network node may be a base station 105.
  • the first, second, and third network nodes may be different.
  • reference to a UE 115, a base station 105, an apparatus, a device, or a computing system may include disclosure of the UE 115, base station 105, apparatus, device, or computing system being a network node.
  • disclosure that a UE 115 is configured to receive information from a base station 105 also discloses that a first network node is configured to receive information from a second network node.
  • the first network node may refer to a first UE 115, a first base station 105, a first apparatus, a first device, or a first computing system configured to receive the information; and the second network node may refer to a second UE 115, a second base station 105, a second apparatus, a second device, or a second computing system.
  • the base stations 105 may communicate with the core network 130, or with one another, or both.
  • the base stations 105 may interface with the core network 130 through one or more backhaul links 120 (e.g., via an S1, N2, N3, or other interface) .
  • the base stations 105 may communicate with one another over the backhaul links 120 (e.g., via an X2, Xn, or other interface) either directly (e.g., directly between base stations 105) , or indirectly (e.g., via core network 130) , or both.
  • the backhaul links 120 may be or include one or more wireless links.
  • One or more of the base stations 105 described herein may include or may be referred to by a person having ordinary skill in the art as a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or a giga-NodeB (either of which may be referred to as a gNB) , a Home NodeB, a Home eNodeB, or other suitable terminology.
  • a base transceiver station a radio base station
  • an access point a radio transceiver
  • a NodeB an eNodeB (eNB)
  • eNB eNodeB
  • a next-generation NodeB or a giga-NodeB either of which may be referred to as a gNB
  • gNB giga-NodeB
  • a UE 115 may include or may be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, where the “device” may also be referred to as a unit, a station, a terminal, or a client, among other examples.
  • a UE 115 may also include or may be referred to as a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer.
  • PDA personal digital assistant
  • a UE 115 may include or be referred to as a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or a machine type communications (MTC) device, among other examples, which may be implemented in various objects such as appliances, or vehicles, meters, among other examples.
  • WLL wireless local loop
  • IoT Internet of Things
  • IoE Internet of Everything
  • MTC machine type communications
  • the UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
  • devices such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
  • the UEs 115 and the base stations 105 may wirelessly communicate with one another via one or more communication links 125 over one or more carriers.
  • the term “carrier” may refer to a set of radio frequency spectrum resources having a defined physical layer structure for supporting the communication links 125.
  • a carrier used for a communication link 125 may include a portion of a radio frequency spectrum band (e.g., a bandwidth part (BWP) ) that is operated according to one or more physical layer channels for a given radio access technology (e.g., LTE, LTE-A, LTE-APro, NR) .
  • BWP bandwidth part
  • Each physical layer channel may carry acquisition signaling (e.g., synchronization signals, system information) , control signaling that coordinates operation for the carrier, user data, or other signaling.
  • the wireless communications system 100 may support communication with a UE 115 using carrier aggregation or multi-carrier operation.
  • a UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a carrier aggregation configuration.
  • Carrier aggregation may be used with both frequency division duplexing (FDD) and time division duplexing (TDD) component carriers.
  • FDD frequency division duplexing
  • TDD time division duplexing
  • Signal waveforms transmitted over a carrier may be made up of multiple subcarriers (e.g., using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT-S-OFDM) ) .
  • MCM multi-carrier modulation
  • OFDM orthogonal frequency division multiplexing
  • DFT-S-OFDM discrete Fourier transform spread OFDM
  • a resource element may consist of one symbol period (e.g., a duration of one modulation symbol) and one subcarrier, where the symbol period and subcarrier spacing are inversely related.
  • the number of bits carried by each resource element may depend on the modulation scheme (e.g., the order of the modulation scheme, the coding rate of the modulation scheme, or both) .
  • a wireless communications resource may refer to a combination of a radio frequency spectrum resource, a time resource, and a spatial resource (e.g., spatial layers or beams) , and the use of multiple spatial layers may further increase the data rate or data integrity for communications with a UE 115.
  • Time intervals of a communications resource may be organized according to radio frames each having a specified duration (e.g., 10 milliseconds (ms) ) .
  • Each radio frame may be identified by a system frame number (SFN) (e.g., ranging from 0 to 1023) .
  • SFN system frame number
  • Each frame may include multiple consecutively numbered subframes or slots, and each subframe or slot may have the same duration.
  • a frame may be divided (e.g., in the time domain) into subframes, and each subframe may be further divided into a number of slots.
  • each frame may include a variable number of slots, and the number of slots may depend on subcarrier spacing.
  • Each slot may include a number of symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period) .
  • a slot may further be divided into multiple mini-slots containing one or more symbols. Excluding the cyclic prefix, each symbol period may contain one or more (e.g., N f ) sampling periods. The duration of a symbol period may depend on the subcarrier spacing or frequency band of operation.
  • a subframe, a slot, a mini-slot, or a symbol may be the smallest scheduling unit (e.g., in the time domain) of the wireless communications system 100 and may be referred to as a transmission time interval (TTI) .
  • TTI duration e.g., the number of symbol periods in a TTI
  • the smallest scheduling unit of the wireless communications system 100 may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) ) .
  • Physical channels may be multiplexed on a carrier according to various techniques.
  • a physical control channel and a physical data channel may be multiplexed on a downlink carrier, for example, using one or more of time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques.
  • a control region e.g., a control resource set (CORESET)
  • CORESET control resource set
  • a control region for a physical control channel may be defined by a number of symbol periods and may extend across the system bandwidth or a subset of the system bandwidth of the carrier.
  • One or more control regions (e.g., CORESETs) may be configured for a set of the UEs 115.
  • one or more of the UEs 115 may monitor or search control regions for control information according to one or more search space sets, and each search space set may include one or multiple control channel candidates in one or more aggregation levels arranged in a cascaded manner.
  • An aggregation level for a control channel candidate may refer to a number of control channel resources (e.g., control channel elements (CCEs) ) associated with encoded information for a control information format having a given payload size.
  • Search space sets may include common search space sets configured for sending control information to multiple UEs 115 and UE-specific search space sets for sending control information to a specific UE 115.
  • Each base station 105 may provide communication coverage via one or more cells, for example a macro cell, a small cell, a hot spot, or other types of cells, or any combination thereof.
  • the term “cell” may refer to a logical communication entity used for communication with a base station 105 (e.g., over a carrier) and may be associated with an identifier for distinguishing neighboring cells (e.g., a physical cell identifier (PCID) , a virtual cell identifier (VCID) , or others) .
  • a cell may also refer to a geographic coverage area 110 or a portion of a geographic coverage area 110 (e.g., a sector) over which the logical communication entity operates.
  • Such cells may range from smaller areas (e.g., a structure, a subset of structure) to larger areas depending on various factors such as the capabilities of the base station 105.
  • a cell may be or include a building, a subset of a building, or exterior spaces between or overlapping with geographic coverage areas 110, among other examples.
  • a macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by the UEs 115 with service subscriptions with the network provider supporting the macro cell.
  • a small cell may be associated with a lower-powered base station 105, as compared with a macro cell, and a small cell may operate in the same or different (e.g., licensed, unlicensed) frequency bands as macro cells.
  • Small cells may provide unrestricted access to the UEs 115 with service subscriptions with the network provider or may provide restricted access to the UEs 115 having an association with the small cell (e.g., the UEs 115 in a closed subscriber group (CSG) , the UEs 115 associated with users in a home or office) .
  • a base station 105 may support one or multiple cells and may also support communications over the one or more cells using one or multiple component carriers.
  • a carrier may support multiple cells, and different cells may be configured according to different protocol types (e.g., MTC, narrowband IoT (NB-IoT) , enhanced mobile broadband (eMBB) ) that may provide access for different types of devices.
  • protocol types e.g., MTC, narrowband IoT (NB-IoT) , enhanced mobile broadband (eMBB)
  • NB-IoT narrowband IoT
  • eMBB enhanced mobile broadband
  • a base station 105 may be movable and therefore provide communication coverage for a moving geographic coverage area 110.
  • different geographic coverage areas 110 associated with different technologies may overlap, but the different geographic coverage areas 110 may be supported by the same base station 105.
  • the overlapping geographic coverage areas 110 associated with different technologies may be supported by different base stations 105.
  • the wireless communications system 100 may include, for example, a heterogeneous network in which different types of the base stations 105 provide coverage for various geographic coverage areas 110 using the same or different radio access technologies.
  • Some UEs 115 may be low cost or low complexity devices and may provide for automated communication between machines (e.g., via Machine-to-Machine (M2M) communication) .
  • M2M communication or MTC may refer to data communication technologies that allow devices to communicate with one another or a base station 105 without human intervention.
  • M2M communication or MTC may include communications from devices that integrate sensors or meters to measure or capture information and relay such information to a central server or application program that makes use of the information or presents the information to humans interacting with the application program.
  • Some UEs 115 may be designed to collect information or enable automated behavior of machines or other devices. Examples of applications for MTC devices include smart metering, inventory monitoring, water level monitoring, equipment monitoring, healthcare monitoring, wildlife monitoring, weather and geological event monitoring, fleet management and tracking, remote security sensing, physical access control, and transaction-based business charging.
  • the wireless communications system 100 may be configured to support ultra-reliable communications or low-latency communications, or various combinations thereof.
  • the wireless communications system 100 may be configured to support ultra-reliable low-latency communications (URLLC) .
  • the UEs 115 may be designed to support ultra-reliable, low-latency, or critical functions.
  • Ultra-reliable communications may include private communication or group communication and may be supported by one or more services such as push-to-talk, video, or data.
  • Support for ultra-reliable, low-latency functions may include prioritization of services, and such services may be used for public safety or general commercial applications.
  • the terms ultra-reliable, low-latency, and ultra-reliable low-latency may be used interchangeably herein.
  • a UE 115 may also be able to communicate directly with other UEs 115 over a device-to-device (D2D) communication link 135 (e.g., using a peer-to-peer (P2P) or D2D protocol) .
  • D2D device-to-device
  • P2P peer-to-peer
  • One or more UEs 115 utilizing D2D communications may be within the geographic coverage area 110 of a base station 105.
  • Other UEs 115 in such a group may be outside the geographic coverage area 110 of a base station 105 or be otherwise unable to receive transmissions from a base station 105.
  • groups of the UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group.
  • a base station 105 facilitates the scheduling of resources for D2D communications. In other cases, D2D communications are carried out between the UEs 115 without the involvement of a base station 105.
  • the core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions.
  • the core network 130 may be an evolved packet core (EPC) or 5G core (5GC) , which may include at least one control plane entity that manages access and mobility (e.g., a mobility management entity (MME) , an access and mobility management function (AMF) ) and at least one user plane entity that routes packets or interconnects to external networks (e.g., a serving gateway (S-GW) , a Packet Data Network (PDN) gateway (P-GW) , or a user plane function (UPF) ) .
  • EPC evolved packet core
  • 5GC 5G core
  • MME mobility management entity
  • AMF access and mobility management function
  • S-GW serving gateway
  • PDN Packet Data Network gateway
  • UPF user plane function
  • the control plane entity may manage non-access stratum (NAS) functions such as mobility, authentication, and bearer management for the UEs 115 served by the base stations 105 associated with the core network 130.
  • NAS non-access stratum
  • User IP packets may be transferred through the user plane entity, which may provide IP address allocation as well as other functions.
  • the user plane entity may be connected to IP services 150 for one or more network operators.
  • the IP services 150 may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched Streaming Service.
  • Some of the network devices may include subcomponents such as an access network entity 140, which may be an example of an access node controller (ANC) .
  • Each access network entity 140 may communicate with the UEs 115 through one or more other access network transmission entities 145, which may be referred to as radio heads, smart radio heads, or transmission/reception points (TRPs) .
  • Each access network transmission entity 145 may include one or more antenna panels.
  • various functions of each access network entity 140 or base station 105 may be distributed across various network devices (e.g., radio heads and ANCs) or consolidated into a single network device (e.g., a base station 105) .
  • the wireless communications system 100 may operate using one or more frequency bands, typically in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) .
  • the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band because the wavelengths range from approximately one decimeter to one meter in length.
  • UHF waves may be blocked or redirected by buildings and environmental features, but the waves may penetrate structures sufficiently for a macro cell to provide service to the UEs 115 located indoors.
  • the transmission of UHF waves may be associated with smaller antennas and shorter ranges (e.g., less than 100 kilometers) compared to transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
  • HF high frequency
  • VHF very high frequency
  • the wireless communications system 100 may also operate in a super high frequency (SHF) region using frequency bands from 3 GHz to 30 GHz, also known as the centimeter band, or in an extremely high frequency (EHF) region of the spectrum (e.g., from 30 GHz to 300 GHz) , also known as the millimeter band.
  • SHF super high frequency
  • EHF extremely high frequency
  • the wireless communications system 100 may support millimeter wave (mmW) communications between the UEs 115 and the base stations 105, and EHF antennas of the respective devices may be smaller and more closely spaced than UHF antennas. In some examples, this may facilitate use of antenna arrays within a device.
  • mmW millimeter wave
  • the propagation of EHF transmissions may be subject to even greater atmospheric attenuation and shorter range than SHF or UHF transmissions.
  • the techniques disclosed herein may be employed across transmissions that use one or more different frequency regions, and designated use of bands across these frequency regions may differ by country or regulating body.
  • the wireless communications system 100 may utilize both licensed and unlicensed radio frequency spectrum bands.
  • the wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) radio access technology, or NR technology in an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band.
  • LAA License Assisted Access
  • LTE-U LTE-Unlicensed
  • NR NR technology
  • an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band.
  • devices such as the base stations 105 and the UEs 115 may employ carrier sensing for collision detection and avoidance.
  • operations in unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating in a licensed band (e.g., LAA) .
  • Operations in unlicensed spectrum may include downlink transmissions, uplink transmissions, P2P transmissions, or D2D transmissions, among other examples.
  • a base station 105 or a UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming.
  • the antennas of a base station 105 or a UE 115 may be located within one or more antenna arrays or antenna panels, which may support MIMO operations or transmit or receive beamforming.
  • one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower.
  • antennas or antenna arrays associated with a base station 105 may be located in diverse geographic locations.
  • a base station 105 may have an antenna array with a number of rows and columns of antenna ports that the base station 105 may use to support beamforming of communications with a UE 115.
  • a UE 115 may have one or more antenna arrays that may support various MIMO or beamforming operations.
  • an antenna panel may support radio frequency beamforming for a signal transmitted via an antenna port.
  • Beamforming which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a base station 105, a UE 115) to shape or steer an antenna beam (e.g., a transmit beam, a receive beam) along a spatial path between the transmitting device and the receiving device.
  • Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that some signals propagating at particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference.
  • the adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying amplitude offsets, phase offsets, or both to signals carried via the antenna elements associated with the device.
  • the adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
  • a base station 105 or a UE 115 may use beam sweeping techniques as part of beam forming operations.
  • a base station 105 may use multiple antennas or antenna arrays (e.g., antenna panels) to conduct beamforming operations for directional communications with a UE 115.
  • Some signals e.g., synchronization signals, reference signals, beam selection signals, or other control signals
  • the base station 105 may transmit a signal according to different beamforming weight sets associated with different directions of transmission.
  • Transmissions in different beam directions may be used to identify (e.g., by a transmitting device, such as a base station 105, or by a receiving device, such as a UE 115) a beam direction for later transmission or reception by the base station 105.
  • a transmitting device such as a base station 105
  • a receiving device such as a UE 115
  • Some signals may be transmitted by a base station 105 in a single beam direction (e.g., a direction associated with the receiving device, such as a UE 115) .
  • the beam direction associated with transmissions along a single beam direction may be determined based on a signal that was transmitted in one or more beam directions.
  • a UE 115 may receive one or more of the signals transmitted by the base station 105 in different directions and may report to the base station 105 an indication of the signal that the UE 115 received with a highest signal quality or an otherwise acceptable signal quality.
  • transmissions by a device may be performed using multiple beam directions, and the device may use a combination of digital precoding or radio frequency beamforming to generate a combined beam for transmission (e.g., from a base station 105 to a UE 115) .
  • the UE 115 may report feedback that indicates precoding weights for one or more beam directions, and the feedback may correspond to a configured number of beams across a system bandwidth or one or more sub-bands.
  • the base station 105 may transmit a reference signal (e.g., a cell-specific reference signal (CRS) , a channel state information reference signal (CSI-RS) ) , which may be precoded or unprecoded.
  • a reference signal e.g., a cell-specific reference signal (CRS) , a channel state information reference signal (CSI-RS)
  • CRS cell-specific reference signal
  • CSI-RS channel state information reference signal
  • the UE 115 may provide feedback for beam selection, which may be a precoding matrix indicator (PMI) or codebook-based feedback (e.g., a multi-panel type codebook, a linear combination type codebook, a port selection type codebook) .
  • PMI precoding matrix indicator
  • codebook-based feedback e.g., a multi-panel type codebook, a linear combination type codebook, a port selection type codebook
  • a UE 115 may employ similar techniques for transmitting signals multiple times in different directions (e.g., for identifying a beam direction for subsequent transmission or reception by the UE 115) or for transmitting a signal in a single direction (e.g., for transmitting data to a receiving device) .
  • a receiving device may try multiple receive configurations (e.g., directional listening) when receiving various signals from the base station 105, such as synchronization signals, reference signals, beam selection signals, or other control signals.
  • receive configurations e.g., directional listening
  • a receiving device may try multiple receive directions by receiving via different antenna subarrays, by processing received signals according to different antenna subarrays, by receiving according to different receive beamforming weight sets (e.g., different directional listening weight sets) applied to signals received at multiple antenna elements of an antenna array, or by processing received signals according to different receive beamforming weight sets applied to signals received at multiple antenna elements of an antenna array, any of which may be referred to as “listening” according to different receive configurations or receive directions.
  • receive beamforming weight sets e.g., different directional listening weight sets
  • a receiving device may use a single receive configuration to receive along a single beam direction (e.g., when receiving a data signal) .
  • the single receive configuration may be aligned in a beam direction determined based on listening according to different receive configuration directions (e.g., a beam direction determined to have a highest signal strength, highest signal-to-noise ratio (SNR) , or otherwise acceptable signal quality based on listening according to multiple beam directions) .
  • SNR signal-to-noise ratio
  • the wireless communication system 100 may support some beamforming techniques (e.g., analog, hybrid) that may enable high throughput in FR2.
  • the beamforming techniques may be verified by testing the behavior of a device (e.g., a UE 115) in FR2 environments.
  • a device e.g., a UE 115
  • an orientation of the device e.g., a physical orientation of the device under test in a test chamber
  • a test direction e.g., the direction an antenna is oriented with respect to the device in the test chamber
  • the device may be provided sufficient beam-swell time (e.g., enough time to perform beam refinement procedures) between updates to the test geometry such that test fails to verify dynamic beam management of the device.
  • sufficient beam-swell time e.g., enough time to perform beam refinement procedures
  • fixing testing conditions, inaccurately testing dynamic beam management, or both may result a test that fails to reflect a true user experience.
  • some channel modeling applied to FR2 over-the-air testing may be stationary. That is, the channel modeling may include multi-path effects and fast-fading, however large-scale channel characteristics may be fixed during emulation of the channel. For example, if the device moves and experiences a fast-fading channel during the test, the propagation environment of the channel (e.g., a path loss) may remain the same.
  • a channel may also have parameters such as changes to propagation angles, delays, and polarizations, and transitions between line-of-sight (LOS) and non-LOS (NLOS) conditions.
  • LOS line-of-sight
  • NLOS non-LOS
  • current channel modeling may fail to consider dynamic radio conditions and large-scale channel characteristics such as angular power distribution, a power delay profile, a Doppler power spectrum, and LOS and NLOS conditions, which may vary over a time period that the channel is being emulated.
  • a wireless device may identify multiple test points for a trajectory for a device under test.
  • adjacent test points may be associated with respective correlation matrix distances, where a correlation matrix distance may represent a similarity of channel parameters between the adjacent test points.
  • the wireless device may perform an interpolation of each channel parameter between the adjacent test points over respective time periods based on the respective correlation matrix distances.
  • the wireless device may perform the interpolation based on whether a correlation matrix distance for the adjacent test points satisfies or fails to satisfy a threshold.
  • the wireless device may transmit, via an antenna and to the device under test within the test chamber, multiple signals which may generate the interpolated channel parameters between the antenna and the device.
  • the described techniques may verify the performance of the device in the FR2 by emulating the dynamic geometry of a channel in a testing environment.
  • FIG. 2 illustrates an example of a testing environment 200 that supports dynamic over-the-air testing in accordance with aspects of the present disclosure.
  • the testing environment 200 may implement aspects of the wireless communications system 100 or may be implemented by aspects of the wireless communications system 100.
  • the testing environment 200 may include a device 205 (e.g., a UE) and a wireless device 210, which may be examples of corresponding devices described herein.
  • wireless device 210 may include a channel emulator 215 and an antenna 220, which may generate and transmit signals 225 that emulate particular channel parameters to the device 205.
  • the device 205 and the antenna 220 may be inside of a test chamber 230, and the channel emulator 215 may be inside or at least partially outside of the test chamber 230.
  • the testing environment 200 may support emulating a dynamic channel in the test chamber 230 for accurate FR2 over-the-air testing of the device 205.
  • the wireless device 210 may emulate channel characteristics that vary during a test duration (e.g., between test points) rather than remain fixed.
  • the testing environment 200 may support dynamic over-the-air testing, where the test may measure the response of the device 205 to changes in the channel characteristics (e.g., instead of testing the device 205 in a static environment) .
  • the wireless device 210 may identify multiple test points for a trajectory for the device 205.
  • the trajectory of the device 205 may model channel characteristics that occur due to different distances or orientations between the device 205 and the wireless device 210 over time.
  • the testing environment may be able to control a physical orientation of the device 205 in the test chamber 230.
  • the device 205 may be on a rotating device 235, which may rotate the device 205 to face different directions with respect to the antenna 220 (e.g., while the location of the device 205 within the test chamber 230 may remain fixed) .
  • the device 205 is generally maintained in a same orientation throughout a given test.
  • adjacent test points e.g., two test points of the multiple test points on the trajectory that are located next to each other
  • a correlation matrix distance may represent a similarity of channel parameters between the adjacent test points.
  • the trajectory of the device 205 may be divided into the multiple test points based on the similarity between channel parameters associated with each test point.
  • the correlation matrix distance may be used as a criteria for measuring similarity between the channel parameters associated with adjacent test points, and may be given as Equation 1:
  • D may represent a correlation matrix distance between two adjacent test points
  • R i may represent a spatial correlation matrix for an adjacent test point i
  • ⁇ R i ⁇ f may represent a Frobenius norm of the spatial correlation matrix R i
  • tr (R 1 R 2 ) may represent a trace of matrix R 1 R 2
  • (H) H may represent a Hermitian transpose
  • E ⁇ H*H H ⁇ may represent an expectation operator.
  • the wireless device 210 may perform an interpolation of each channel parameter between the adjacent test points over respective time periods based on the respective correlation matrix distances. For example, the wireless device 210 may perform the interpolation if a respective correlation matrix distance fails to satisfy a threshold, indicating that the channel parameters between the adjacent test points are relatively similar, if a respective correlation matrix distance satisfies the threshold, indicating that the channel parameters between the adjacent test points are relatively different, or both. Satisfying the threshold may mean that the correlation matrix distance is greater than the threshold while not satisfying the threshold may mean that the correlation matrix distance is less than or less than or equal to the threshold. Alternatively, satisfying the threshold may mean that the correlation matrix distance is greater than or greater than or equal to the threshold while not satisfying the threshold may mean that the correlation matrix distance is less than the threshold.
  • the wireless device 210 may interpolate the channel parameters according to Equation 2:
  • P (a) and P (b) may represent respective channel parameters associated with a test point a and a test point b
  • T ab may represent a time between the test point a and the test point b
  • P (t) may represent an interpolated channel parameter between a test point a and a test point b at a time t.
  • the channel parameters may include an angle (e.g., interpolated in degree units) , an angle spread (e.g., interpolated in degree units) , a delay (e.g., interpolated in nanoseconds) , a cluster power (e.g., interpolated in linear units) , a K-factor (e.g., interpolated in linear units) , a path loss, a device speed (e.g., interpolated in meters per second) , a cross-polarization ratio (e.g., interpolated in decibel units) , or any other channel parameters.
  • an angle e.g., interpolated in degree units
  • an angle spread e.g., interpolated in degree units
  • a delay e.g., interpolated in nanoseconds
  • a cluster power e.g., interpolated in linear units
  • K-factor e.g., interpolated in linear units
  • path loss e.g., a device speed (e
  • the wireless device 210 may transmit, via the antenna 220 and to the device 205 within the test chamber 230, multiple signals 225 over the respective time periods, including a signal 225-a and a signal 225-b.
  • the signals 225 may each generate the interpolated channel parameters between the antenna and the device 205 such that the device 205 is tested under dynamic channel conditions.
  • FIG. 3 illustrates an example of a test scenario 300 that supports dynamic over-the-air testing in accordance with aspects of the present disclosure.
  • the test scenario 300 may be implemented to model and test the performance of a device (e.g., a UE) in an FR2 communications system.
  • the test scenario 300 may include a device trajectory 305 and test points 310, where each set of adjacent test points 310 may be associated with a respective correlation matrix distance.
  • the device trajectory 305 may support dynamic over-the-air testing to measure the response of the device to changes in channel characteristics.
  • the test scenario 300 may emulate varying channel parameters between the test points 310 over a duration of the test and test how the response of the device changes with varying channel parameters.
  • the device trajectory 305 may be divided into multiple test points 310 based on a similarity of channel parameters between adjacent test points 310 (e.g., two test points 310 that are next to each other on the device trajectory 305) . The similarity between the channel parameters may be determined using respective correlation matrix distances.
  • a first set of channel parameters associated with a test point 310-a (e.g., test point 1–1) and a second set of channel parameters associated with a test point 310-b (e.g., test point 1–2) may fail to satisfy a threshold (e.g., X) .
  • a threshold e.g., X
  • the first set of channel parameters and the second set of channel parameters (e.g., the channel parameters between the test point 310-a and the test point 310-b) may have a relatively high similarity.
  • the first set of channel parameters associated with the test point 310-b and a third set of channel parameters associated with a test point 310-c (e.g., a test point 2–1) may satisfy the threshold.
  • the first set of channel parameters and the third set of channel parameters (e.g., the channel parameters between the test point 310-b and the test point 310-c) may have a relatively low similarity.
  • multiple sets of adjacent test points 310 may be associated with respective correlation matrix distances in a similar way.
  • channel parameters between the test point 310-c and a test point 310-d e.g., a test point 2–2
  • channel parameters between the test point 310-d and a test point 310-e e.g., a test point 3–1 may have a relatively low similarity based on a respective correlation matrix distance being greater than (e.g., satisfying) the threshold.
  • channel parameters between the test point 310-e and a test point 310-f may have a relatively high similarity while channel parameters between the test point 310-f and a test point 310-g (e.g., a test point 4–1) may have a relatively low similarity, channel parameters between the test point 310-g and a test point 310-h (e.g., a test point 4–2) may have a relatively high similarity, and so on.
  • the wireless device e.g., a channel emulator of the wireless device
  • the wireless device may interpolate channel parameters between sets of adjacent test points to emulate the channel and changes to the channel between different test points 310.
  • the wireless device may perform a channel emulation 315-a between the test point 310-a and the test point 310-b, a channel emulation 315-b between the test point 310-b and the test point 310-c, and so on for the remaining sets of adjacent test points.
  • the channel emulations 315 may enable the wireless device to transmit signals to a device under test, where the signals may generate the interpolated channel parameters.
  • a wireless device may use Equation 2 to interpolate (e.g., linearly interpolate) each channel parameter between each test point 310 of the first set of adjacent test points. That is, the wireless device may interpolate channel parameter between the test point 310-a and the test point 310-b (e.g., the first set of adjacent test points) based on a respective correlation matrix distance between the test point 310-a and the test point 310-b being less than a threshold using Equation 1 (e.g., the correlation matrix distance is greater than X) .
  • the test point 310-a and the test point 310-b may each be associated with an LOS condition and may have a first quantity of clusters that is the same for both test points 310.
  • the wireless device may use Equation 2 to interpolate each channel parameter between the each test point of the second set of adjacent test points while considering a birth and death criteria. For example, based on a correlation matrix distance for the test point 310-b and the test point 310-c being greater than a threshold, at least one LOS condition or a quantity of clusters between the test point 310-b and the test point 310-c (e.g., the second set of adjacent test points) may be different.
  • the wireless device may interpolate at least one channel parameter between a corresponding channel parameter associated with the test point 310-b and a virtual parameter associated with the test point 310-c over a respective time period, where a power metric for the virtual parameter may be set to a predetermined power level.
  • a cluster may refer to an object in a channel that reflects energy to a device under test (e.g., within a test chamber) in multiple paths.
  • a signal may reflect off of a cluster (e.g., a metallic or glass object) and as such, its energy may be reflected to the UE via one or more sub-paths.
  • a cluster e.g., a metallic or glass object
  • an area with a large quantity of buildings e.g., a cluster delay line (CDL) -C (CDL-C) scenario
  • CDL-C cluster delay line
  • the test scenario 300 may include different quantities of clusters modeled throughout a test chamber, where each cluster may have properties such as delays, angles, angle spreads, and the like.
  • a quantity of clusters (e.g., N) may be associated with the test point 310-b and a different quantity of clusters (e.g., N+1) may be associated with the test point 310-c. That is, the wireless device may identify a first set of clusters associated with the test point 310-c, wherein a cluster associated with the test point 310-c may be excluded from a second set of clusters associated with the test point 310-b (e.g., the test point 310-c may be associated with more clusters than the test point 310-b) .
  • the wireless device may set a virtual (e.g., non-existent) N+1 cluster for the test point 310-b having channel parameters set to a predetermined power level (e.g., a null or very low power level) .
  • the wireless device may generate a virtual cluster for the test point 310-b (e.g., which is associated with fewer clusters than the test point 310-c) , where the virtual cluster may have a power of -100 dB.
  • the wireless device may perform the interpolation of each channel parameter between the test point 310-b and the test point 310-c over the respective time period by interpolating the channel parameters between the virtual cluster associated with the test point 310-b and the cluster associated with the test point 310-c. As such, the wireless device may calculate the power of each cluster of between the test point 310-b and the test point 310-c.
  • an LOS condition between the test point 310-b and the test point 310-c may change based on the relatively low similarity between the test points 310.
  • the test points 310 may experience transitions from LOS to NLOS conditions, or from NLOS conditions to LOS conditions.
  • the wireless device may identify an LOS sub-path associated with the test point 310-c and excluded from the test point 310-b.
  • the wireless device may generate a virtual sub-path associated with the test point 310-b having channel parameters set to a predetermined power level (e.g., a null or very low power level) .
  • a direct LOS may be defined by a K-factor
  • the wireless device may generate the virtual sub-path with a power of -100 dB.
  • the wireless device may perform the interpolation of each channel parameter between the test point 310-b and the test point 310-c over the respective time period, which may include interpolating the channel parameters between the virtual sub-path associated with the test point 310-b and the LOS sub-path associated with the test point 310-c.
  • FIG. 4 shows a block diagram 400 of a device 405 that supports dynamic over-the-air testing in accordance with aspects of the present disclosure.
  • the device 405 may be an example of aspects of a wireless device as described herein.
  • the device 405 may include a receiver 410, a transmitter 415, and a communications manager 420.
  • the device 405 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 410 may provide a means for receiving information such as packets, user data, control information, or any combination thereof associated with various information channels (e.g., control channels, data channels, information channels related to dynamic over-the-air testing) . Information may be passed on to other components of the device 405.
  • the receiver 410 may utilize a single antenna or a set of multiple antennas.
  • the transmitter 415 may provide a means for transmitting signals generated by other components of the device 405.
  • the transmitter 415 may transmit information such as packets, user data, control information, or any combination thereof associated with various information channels (e.g., control channels, data channels, information channels related to dynamic over-the-air testing) .
  • the transmitter 415 may be co-located with a receiver 410 in a transceiver module.
  • the transmitter 415 may utilize a single antenna or a set of multiple antennas.
  • the communications manager 420, the receiver 410, the transmitter 415, or various combinations thereof or various components thereof may be examples of means for performing various aspects of dynamic over-the-air testing as described herein.
  • the communications manager 420, the receiver 410, the transmitter 415, or various combinations or components thereof may support a method for performing one or more of the functions described herein.
  • the communications manager 420, the receiver 410, the transmitter 415, or various combinations or components thereof may be implemented in hardware (e.g., in communications management circuitry) .
  • the hardware may include a processor, a DSP, an ASIC, an FPGA or other programmable logic device, a discrete gate or transistor logic, discrete hardware components, or any combination thereof configured as or otherwise supporting a means for performing the functions described in the present disclosure.
  • a processor and memory coupled with the processor may be configured to perform one or more of the functions described herein (e.g., by executing, by the processor, instructions stored in the memory) .
  • the communications manager 420, the receiver 410, the transmitter 415, or various combinations or components thereof may be implemented in code (e.g., as communications management software or firmware) executed by a processor. If implemented in code executed by a processor, the functions of the communications manager 420, the receiver 410, the transmitter 415, or various combinations or components thereof may be performed by a general-purpose processor, a DSP, a CPU, an ASIC, an FPGA, or any combination of these or other programmable logic devices (e.g., configured as or otherwise supporting a means for performing the functions described in the present disclosure) .
  • code e.g., as communications management software or firmware
  • the functions of the communications manager 420, the receiver 410, the transmitter 415, or various combinations or components thereof may be performed by a general-purpose processor, a DSP, a CPU, an ASIC, an FPGA, or any combination of these or other programmable logic devices (e.g., configured as or otherwise supporting a means for performing the functions described in the present disclosure)
  • the communications manager 420 may be configured to perform various operations (e.g., receiving, monitoring, transmitting) using or otherwise in cooperation with the receiver 410, the transmitter 415, or both.
  • the communications manager 420 may receive information from the receiver 410, send information to the transmitter 415, or be integrated in combination with the receiver 410, the transmitter 415, or both to receive information, transmit information, or perform various other operations as described herein.
  • the communications manager 420 may support wireless communications at a wireless device in accordance with examples as disclosed herein.
  • the communications manager 420 may be configured as or otherwise support a means for identifying a set of multiple test points for a trajectory for a device under test, where adjacent test points of the set of multiple test points are associated with respective correlation matrix distances.
  • the communications manager 420 may be configured as or otherwise support a means for performing an interpolation of each channel parameter of a set of multiple channel parameters between the adjacent test points over respective time periods based on the respective correlation matrix distances.
  • the communications manager 420 may be configured as or otherwise support a means for transmitting, via a test antenna and to the device under test within a test chamber, a set of multiple signals over the respective time periods, where the set of multiple signals generate the interpolated channel parameters between the test antenna and the device under test.
  • the device 405 e.g., a processor controlling or otherwise coupled to the receiver 410, the transmitter 415, the communications manager 420, or a combination thereof
  • the device 405 may support techniques for modeling and testing dynamic channel conditions in FR2, which may improve testing accuracy and as such, improve performance in verifying a device response in an FR2 environment.
  • FIG. 5 shows a block diagram 500 of a device 505 that supports dynamic over-the-air testing in accordance with aspects of the present disclosure.
  • the device 505 may be an example of aspects of a device 405 or a wireless device as described herein.
  • the device 505 may include a receiver 510, a transmitter 515, and a communications manager 520.
  • the device 505 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 510 may provide a means for receiving information such as packets, user data, control information, or any combination thereof associated with various information channels (e.g., control channels, data channels, information channels related to dynamic over-the-air testing) . Information may be passed on to other components of the device 505.
  • the receiver 510 may utilize a single antenna or a set of multiple antennas.
  • the transmitter 515 may provide a means for transmitting signals generated by other components of the device 505.
  • the transmitter 515 may transmit information such as packets, user data, control information, or any combination thereof associated with various information channels (e.g., control channels, data channels, information channels related to dynamic over-the-air testing) .
  • the transmitter 515 may be co-located with a receiver 510 in a transceiver module.
  • the transmitter 515 may utilize a single antenna or a set of multiple antennas.
  • the device 505, or various components thereof may be an example of means for performing various aspects of dynamic over-the-air testing as described herein.
  • the communications manager 520 may include a test point identification component 525, an interpolation component 530, a signal transmission component 535, or any combination thereof.
  • the communications manager 520 may be an example of aspects of a communications manager 420 as described herein.
  • the communications manager 520, or various components thereof may be configured to perform various operations (e.g., receiving, monitoring, transmitting) using or otherwise in cooperation with the receiver 510, the transmitter 515, or both.
  • the communications manager 520 may receive information from the receiver 510, send information to the transmitter 515, or be integrated in combination with the receiver 510, the transmitter 515, or both to receive information, transmit information, or perform various other operations as described herein.
  • the communications manager 520 may support wireless communications at a wireless device in accordance with examples as disclosed herein.
  • the test point identification component 525 may be configured as or otherwise support a means for identifying a set of multiple test points for a trajectory for a device under test, where adjacent test points of the set of multiple test points are associated with respective correlation matrix distances.
  • the interpolation component 530 may be configured as or otherwise support a means for performing an interpolation of each channel parameter of a set of multiple channel parameters between the adjacent test points over respective time periods based on the respective correlation matrix distances.
  • the signal transmission component 535 may be configured as or otherwise support a means for transmitting, via a test antenna and to the device under test within a test chamber, a set of multiple signals over the respective time periods, where the set of multiple signals generate the interpolated channel parameters between the test antenna and the device under test.
  • FIG. 6 shows a block diagram 600 of a communications manager 620 that supports dynamic over-the-air testing in accordance with aspects of the present disclosure.
  • the communications manager 620 may be an example of aspects of a communications manager 420, a communications manager 520, or both, as described herein.
  • the communications manager 620, or various components thereof, may be an example of means for performing various aspects of dynamic over-the-air testing as described herein.
  • the communications manager 620 may include a test point identification component 625, an interpolation component 630, a signal transmission component 635, a correlation matrix distance component 640, a cluster component 645, a LOS component 650, or any combination thereof. Each of these components may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
  • the communications manager 620 may support wireless communications at a wireless device in accordance with examples as disclosed herein.
  • the test point identification component 625 may be configured as or otherwise support a means for identifying a set of multiple test points for a trajectory for a device under test, where adjacent test points of the set of multiple test points are associated with respective correlation matrix distances.
  • the interpolation component 630 may be configured as or otherwise support a means for performing an interpolation of each channel parameter of a set of multiple channel parameters between the adjacent test points over respective time periods based on the respective correlation matrix distances.
  • the signal transmission component 635 may be configured as or otherwise support a means for transmitting, via a test antenna and to the device under test within a test chamber, a set of multiple signals over the respective time periods, where the set of multiple signals generate the interpolated channel parameters between the test antenna and the device under test.
  • the correlation matrix distance component 640 may be configured as or otherwise support a means for performing, based on the respective correlation matrix distance between a first set of adjacent test points being less than a threshold, the interpolation of each channel parameter of the set of multiple channel parameters based on a first set of channel parameters associated with a first test point of the first set of adjacent test points and a second set of channel parameters associated with a second test point of the first set of adjacent test points over the respective time period.
  • the first set of adjacent test points are each associated with a first line-of-sight condition and have a first quantity of clusters.
  • the correlation matrix distance component 640 may be configured as or otherwise support a means for performing, based on the respective correlation matrix distance between a second set of adjacent test points being greater than a threshold, the interpolation of at least one channel parameter of the set of multiple channel parameters between a corresponding channel parameter associated with a third test point of the second set of adjacent test points and a virtual parameter associated with a fourth test point of the second set of adjacent test points over the respective time period, where a power metric for the virtual parameter is set to a predetermined power level.
  • At least one of a line-of-sight condition or a quantity of clusters is different between the third test point and the fourth test point.
  • the cluster component 645 may be configured as or otherwise support a means for identifying a first set of multiple clusters associated with the fourth test point, where a cluster associated with the fourth test point is excluded in a second set of multiple clusters associated with the third test point. In some examples, the cluster component 645 may be configured as or otherwise support a means for generating a virtual cluster for the third test point having channel parameters set to the predetermined power level. In some examples, the interpolation component 630 may be configured as or otherwise support a means for performing the interpolation of each channel parameter of the set of multiple channel parameters between the second set of adjacent test points over the respective time period, where performing the interpolation includes interpolating the channel parameters between the virtual cluster associated with the third test point and the cluster associated with the fourth test point.
  • the LOS component 650 may be configured as or otherwise support a means for identifying a line-of-sight sub-path associated with the fourth test point, where the line-of-sight sub-path is excluded in the third test point. In some examples, the LOS component 650 may be configured as or otherwise support a means for generating a virtual sub-path associated with the third test point having channel parameters set to the predetermined power level.
  • the interpolation component 630 may be configured as or otherwise support a means for performing the interpolation of each channel parameter of the set of multiple channel parameters between the second set of adjacent test points over the respective time period, where performing the interpolation includes interpolating the channel parameters between the virtual sub-path associated with the third test point and the line-of-sight sub-path associated with the fourth test point.
  • R 1 includes a spatial correlation matrix for a first test point
  • R 2 includes a spatial correlation matrix for a second test point
  • the interpolation component 630 may be configured as or otherwise support a means for and where P (T) includes the interpolated channel parameters at a time t, P (a) includes a first channel parameter of the set of multiple channel parameters between the adjacent test points, P (b) includes a second channel parameter of a set of multiple channel parameters between the adjacent test points, and T ab includes a respective time period between the adjacent test points.
  • the set of multiple channel parameters include an angle, an angle spread, a delay, a cluster power, a K-factor, a path loss, a speed of the device under test, a cross-polarization ratio, or any combination thereof.
  • FIG. 7 shows a diagram of a system 700 including a device 705 that supports dynamic over-the-air testing in accordance with aspects of the present disclosure.
  • the device 705 may be an example of or include the components of a device 405, a device 505, or a wireless device as described herein.
  • the device 705 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, such as a communications manager 720, an I/O controller 710, a transceiver 715, an antenna 725, a memory 730, code 735, and a processor 740. These components may be in electronic communication or otherwise coupled (e.g., operatively, communicatively, functionally, electronically, electrically) via one or more buses (e.g., a bus 745) .
  • buses e.g., a bus 745
  • the I/O controller 710 may manage input and output signals for the device 705.
  • the I/O controller 710 may also manage peripherals not integrated into the device 705.
  • the I/O controller 710 may represent a physical connection or port to an external peripheral.
  • the I/O controller 710 may utilize an operating system such as or another known operating system.
  • the I/O controller 710 may represent or interact with a modem, a keyboard, a mouse, a touchscreen, or a similar device.
  • the I/O controller 710 may be implemented as part of a processor, such as the processor 740.
  • a user may interact with the device 705 via the I/O controller 710 or via hardware components controlled by the I/O controller 710.
  • the device 705 may include a single antenna 725. However, in some other cases, the device 705 may have more than one antenna 725, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
  • the transceiver 715 may communicate bi-directionally, via the one or more antennas 725, wired, or wireless links as described herein.
  • the transceiver 715 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver.
  • the transceiver 715 may also include a modem to modulate the packets, to provide the modulated packets to one or more antennas 725 for transmission, and to demodulate packets received from the one or more antennas 725.
  • the transceiver 715 may be an example of a transmitter 415, a transmitter 515, a receiver 410, a receiver 510, or any combination thereof or component thereof, as described herein.
  • the memory 730 may include RAM and ROM.
  • the memory 730 may store computer-readable, computer-executable code 735 including instructions that, when executed by the processor 740, cause the device 705 to perform various functions described herein.
  • the code 735 may be stored in a non-transitory computer-readable medium such as system memory or another type of memory.
  • the code 735 may not be directly executable by the processor 740 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
  • the memory 730 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
  • the processor 740 may include an intelligent hardware device (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) .
  • the processor 740 may be configured to operate a memory array using a memory controller.
  • a memory controller may be integrated into the processor 740.
  • the processor 740 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 730) to cause the device 705 to perform various functions (e.g., functions or tasks supporting dynamic over-the-air testing) .
  • the device 705 or a component of the device 705 may include a processor 740 and memory 730 coupled with or to the processor 740, the processor 740 and memory 730 configured to perform various functions described herein.
  • the communications manager 720 may support wireless communications at a wireless device in accordance with examples as disclosed herein.
  • the communications manager 720 may be configured as or otherwise support a means for identifying a set of multiple test points for a trajectory for a device under test, where adjacent test points of the set of multiple test points are associated with respective correlation matrix distances.
  • the communications manager 720 may be configured as or otherwise support a means for performing an interpolation of each channel parameter of a set of multiple channel parameters between the adjacent test points over respective time periods based on the respective correlation matrix distances.
  • the communications manager 720 may be configured as or otherwise support a means for transmitting, via a test antenna and to the device under test within a test chamber, a set of multiple signals over the respective time periods, where the set of multiple signals generate the interpolated channel parameters between the test antenna and the device under test.
  • the device 705 may support techniques for modeling and testing dynamic channel conditions in FR2, which may improve testing accuracy and as such, improve performance in verifying a device response in an FR2 environment.
  • the communications manager 720 may be configured to perform various operations (e.g., receiving, monitoring, transmitting) using or otherwise in cooperation with the transceiver 715, the one or more antennas 725, or any combination thereof.
  • the communications manager 720 may be configured to receive or transmit messages or other signaling as described herein via the transceiver 715.
  • the communications manager 720 is illustrated as a separate component, in some examples, one or more functions described with reference to the communications manager 720 may be supported by or performed by the processor 740, the memory 730, the code 735, or any combination thereof.
  • the code 735 may include instructions executable by the processor 740 to cause the device 705 to perform various aspects of dynamic over-the-air testing as described herein, or the processor 740 and the memory 730 may be otherwise configured to perform or support such operations.
  • FIG. 8 shows a flowchart illustrating a method 800 that supports dynamic over-the-air testing in accordance with aspects of the present disclosure.
  • the operations of the method 800 may be implemented by a wireless device or its components as described herein.
  • the operations of the method 800 may be performed by a wireless device as described with reference to FIGs. 1 through 7.
  • a wireless device may execute a set of instructions to control the functional elements of the wireless device to perform the described functions. Additionally or alternatively, the wireless device may perform aspects of the described functions using special-purpose hardware.
  • the method may include identifying a set of multiple test points for a trajectory for a device under test, where adjacent test points of the set of multiple test points are associated with respective correlation matrix distances.
  • the operations of 805 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 805 may be performed by a test point identification component 625 as described with reference to FIG. 6. Additionally or alternatively, means for performing 805 may, but not necessarily, include, for example, antenna 725, transceiver 715, communications manager 720, memory 730 (including code 735) , processor 740 and/or bus 745.
  • the method may include performing an interpolation of each channel parameter of a set of multiple channel parameters between the adjacent test points over respective time periods based on the respective correlation matrix distances.
  • the operations of 810 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 810 may be performed by an interpolation component 630 as described with reference to FIG. 6. Additionally or alternatively, means for performing 810 may, but not necessarily, include, for example, antenna 725, transceiver 715, communications manager 720, memory 730 (including code 735) , processor 740 and/or bus 745.
  • the method may include transmitting, via a test antenna and to the device under test within a test chamber, a set of multiple signals over the respective time periods, where the set of multiple signals generate the interpolated channel parameters between the test antenna and the device under test.
  • the operations of 815 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 815 may be performed by a signal transmission component 635 as described with reference to FIG. 6. Additionally or alternatively, means for performing 815 may, but not necessarily, include, for example, antenna 725, transceiver 715, communications manager 720, memory 730 (including code 735) , processor 740 and/or bus 745.
  • FIG. 9 shows a flowchart illustrating a method 900 that supports dynamic over-the-air testing in accordance with aspects of the present disclosure.
  • the operations of the method 900 may be implemented by a wireless device or its components as described herein.
  • the operations of the method 900 may be performed by a wireless device as described with reference to FIGs. 1 through 7.
  • a wireless device may execute a set of instructions to control the functional elements of the wireless device to perform the described functions. Additionally or alternatively, the wireless device may perform aspects of the described functions using special-purpose hardware.
  • the method may include identifying a set of multiple test points for a trajectory for a device under test, where adjacent test points of the set of multiple test points are associated with respective correlation matrix distances.
  • the operations of 905 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 905 may be performed by a test point identification component 625 as described with reference to FIG. 6. Additionally or alternatively, means for performing 905 may, but not necessarily, include, for example, antenna 725, transceiver 715, communications manager 720, memory 730 (including code 735) , processor 740 and/or bus 745.
  • the method may include performing, based on the respective correlation matrix distance between a first set of adjacent test points being less than a threshold, the interpolation of each channel parameter of the set of multiple channel parameters based on a first set of channel parameters associated with a first test point of the first set of adjacent test points and a second set of channel parameters associated with a second test point of the first set of adjacent test points over the respective time period.
  • the operations of 910 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 910 may be performed by a correlation matrix distance component 640 as described with reference to FIG. 6. Additionally or alternatively, means for performing 910 may, but not necessarily, include, for example, antenna 725, transceiver 715, communications manager 720, memory 730 (including code 735) , processor 740 and/or bus 745.
  • the method may include transmitting, via a test antenna and to the device under test within a test chamber, a set of multiple signals over the respective time periods, where the set of multiple signals generate the interpolated channel parameters between the test antenna and the device under test.
  • the operations of 915 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 915 may be performed by a signal transmission component 635 as described with reference to FIG. 6. Additionally or alternatively, means for performing 915 may, but not necessarily, include, for example, antenna 725, transceiver 715, communications manager 720, memory 730 (including code 735) , processor 740 and/or bus 745.
  • FIG. 10 shows a flowchart illustrating a method 1000 that supports dynamic over-the-air testing in accordance with aspects of the present disclosure.
  • the operations of the method 1000 may be implemented by a wireless device or its components as described herein.
  • the operations of the method 1000 may be performed by a wireless device as described with reference to FIGs. 1 through 7.
  • a wireless device may execute a set of instructions to control the functional elements of the wireless device to perform the described functions. Additionally or alternatively, the wireless device may perform aspects of the described functions using special-purpose hardware.
  • the method may include identifying a set of multiple test points for a trajectory for a device under test, where adjacent test points of the set of multiple test points are associated with respective correlation matrix distances.
  • the operations of 1005 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1005 may be performed by a test point identification component 625 as described with reference to FIG. 6. Additionally or alternatively, means for performing 1005 may, but not necessarily, include, for example, antenna 725, transceiver 715, communications manager 720, memory 730 (including code 735) , processor 740 and/or bus 745.
  • the method may include performing, based on the respective correlation matrix distance between a second set of adjacent test points being greater than a threshold, the interpolation of at least one channel parameter of the set of multiple channel parameters between a corresponding channel parameter associated with a third test point of the second set of adjacent test points and a virtual parameter associated with a fourth test point of the second set of adjacent test points over the respective time period, where a power metric for the virtual parameter is set to a predetermined power level.
  • the operations of 1010 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1010 may be performed by a correlation matrix distance component 640 as described with reference to FIG. 6. Additionally or alternatively, means for performing 1010 may, but not necessarily, include, for example, antenna 725, transceiver 715, communications manager 720, memory 730 (including code 735) , processor 740 and/or bus 745.
  • the method may include transmitting, via a test antenna and to the device under test within a test chamber, a set of multiple signals over the respective time periods, where the set of multiple signals generate the interpolated channel parameters between the test antenna and the device under test.
  • the operations of 1015 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1015 may be performed by a signal transmission component 635 as described with reference to FIG. 6. Additionally or alternatively, means for performing 1015 may, but not necessarily, include, for example, antenna 725, transceiver 715, communications manager 720, memory 730 (including code 735) , processor 740 and/or bus 745.
  • FIG. 11 shows a flowchart illustrating a method 1100 that supports dynamic over-the-air testing in accordance with aspects of the present disclosure.
  • the operations of the method 1100 may be implemented by a wireless device or its components as described herein.
  • the operations of the method 1100 may be performed by a wireless device as described with reference to FIGs. 1 through 7.
  • a wireless device may execute a set of instructions to control the functional elements of the wireless device to perform the described functions. Additionally or alternatively, the wireless device may perform aspects of the described functions using special-purpose hardware.
  • the method may include identifying a first set of multiple clusters associated with a fourth test point, where a cluster associated with the fourth test point is excluded in a second set of multiple clusters associated with a third test point.
  • the operations of 1105 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1105 may be performed by a cluster component 645 as described with reference to FIG. 6. Additionally or alternatively, means for performing 1105 may, but not necessarily, include, for example, antenna 725, transceiver 715, communications manager 720, memory 730 (including code 735) , processor 740 and/or bus 745.
  • the method may include generating a virtual cluster for the third test point having channel parameters set to the predetermined power level.
  • the operations of 1110 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1110 may be performed by a cluster component 645 as described with reference to FIG. 6. Additionally or alternatively, means for performing 1110 may, but not necessarily, include, for example, antenna 725, transceiver 715, communications manager 720, memory 730 (including code 735) , processor 740 and/or bus 745.
  • the method may include performing the interpolation of each channel parameter of the set of multiple channel parameters between the second set of adjacent test points over the respective time period, where performing the interpolation includes interpolating the channel parameters between the virtual cluster associated with the third test point and the cluster associated with the fourth test point.
  • the operations of 1115 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1115 may be performed by an interpolation component 630 as described with reference to FIG. 6. Additionally or alternatively, means for performing 1115 may, but not necessarily, include, for example, antenna 725, transceiver 715, communications manager 720, memory 730 (including code 735) , processor 740 and/or bus 745.
  • FIG. 12 shows a flowchart illustrating a method 1200 that supports dynamic over-the-air testing in accordance with aspects of the present disclosure.
  • the operations of the method 1200 may be implemented by a wireless device or its components as described herein.
  • the operations of the method 1200 may be performed by a wireless device as described with reference to FIGs. 1 through 7.
  • a wireless device may execute a set of instructions to control the functional elements of the wireless device to perform the described functions. Additionally or alternatively, the wireless device may perform aspects of the described functions using special-purpose hardware.
  • the method may include identifying a line-of-sight sub-path associated with a fourth test point, where the line-of-sight sub-path is excluded in a third test point.
  • the operations of 1205 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1205 may be performed by a LOS component 650 as described with reference to FIG. 6. Additionally or alternatively, means for performing 1205 may, but not necessarily, include, for example, antenna 725, transceiver 715, communications manager 720, memory 730 (including code 735) , processor 740 and/or bus 745.
  • the method may include generating a virtual sub-path associated with the third test point having channel parameters set to the predetermined power level.
  • the operations of 1210 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1210 may be performed by a LOS component 650 as described with reference to FIG. 6. Additionally or alternatively, means for performing 1210 may, but not necessarily, include, for example, antenna 725, transceiver 715, communications manager 720, memory 730 (including code 735) , processor 740 and/or bus 745.
  • the method may include performing the interpolation of each channel parameter of the set of multiple channel parameters between the second set of adjacent test points over the respective time period, where performing the interpolation includes interpolating the channel parameters between the virtual sub-path associated with the third test point and the line-of-sight sub-path associated with the fourth test point.
  • the operations of 1215 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1215 may be performed by an interpolation component 630 as described with reference to FIG. 6. Additionally or alternatively, means for performing 1215 may, but not necessarily, include, for example, antenna 725, transceiver 715, communications manager 720, memory 730 (including code 735) , processor 740 and/or bus 745.
  • a method for wireless communications at a wireless device comprising: identifying a plurality of test points for a trajectory for a device under test, wherein adjacent test points of the plurality of test points are associated with respective correlation matrix distances; performing an interpolation of each channel parameter of a plurality of channel parameters between the adjacent test points over respective time periods based at least in part on the respective correlation matrix distances; and transmitting, via a test antenna and to the device under test within a test chamber, a plurality of signals over the respective time periods, wherein the plurality of signals generate the interpolated channel parameters between the test antenna and the device under test.
  • Aspect 2 The method of aspect 1, wherein performing the interpolation of each channel parameter comprises: performing, based at least in part on the respective correlation matrix distance between a first set of adjacent test points being less than a threshold, the interpolation of each channel parameter of the plurality of channel parameters based at least in part on a first set of channel parameters associated with a first test point of the first set of adjacent test points and a second set of channel parameters associated with a second test point of the first set of adjacent test points over the respective time period.
  • Aspect 3 The method of aspect 2, wherein the first set of adjacent test points are each associated with a first line-of-sight condition and have a first quantity of clusters.
  • Aspect 4 The method of any of aspects 1 through 3, wherein performing the interpolation of each channel parameter comprises: performing, based at least in part on the respective correlation matrix distance between a second set of adjacent test points being greater than a threshold, the interpolation of at least one channel parameter of the plurality of channel parameters between a corresponding channel parameter associated with a third test point of the second set of adjacent test points and a virtual parameter associated with a fourth test point of the second set of adjacent test points over the respective time period, wherein a power metric for the virtual parameter is set to a predetermined power level.
  • Aspect 5 The method of aspect 4, wherein at least one of a line-of-sight condition or a quantity of clusters is different between the third test point and the fourth test point.
  • Aspect 6 The method of any of aspects 4 through 5, further comprising: identifying a first plurality of clusters associated with the fourth test point, wherein a cluster associated with the fourth test point is excluded in a second plurality of clusters associated with the third test point; generating a virtual cluster for the third test point having channel parameters set to the predetermined power level; and performing the interpolation of each channel parameter of the plurality of channel parameters between the second set of adjacent test points over the respective time period, wherein performing the interpolation comprises interpolating the channel parameters between the virtual cluster associated with the third test point and the cluster associated with the fourth test point.
  • Aspect 7 The method of any of aspects 4 through 6, further comprising: identifying a line-of-sight sub-path associated with the fourth test point, wherein the line-of-sight sub-path is excluded in the third test point; generating a virtual sub-path associated with the third test point having channel parameters set to the predetermined power level; performing the interpolation of each channel parameter of the plurality of channel parameters between the second set of adjacent test points over the respective time period, wherein performing the interpolation comprises interpolating the channel parameters between the virtual sub-path associated with the third test point and the line-of-sight sub-path associated with the fourth test point.
  • Aspect 8 The method of any of aspects 1 through 7, wherein the respective correlation matrix distances comprise and wherein D comprises a correlation matrix distance between the adjacent test points, R 1 comprises a spatial correlation matrix for a first test point, and R 2 comprises a spatial correlation matrix for a second test point.
  • Aspect 9 The method of any of aspects 1 through 8, wherein the interpolation comprises: P and wherein P (T) comprises the interpolated channel parameters at a time t, P (a) comprises a first channel parameter of the plurality of channel parameters between the adjacent test points, P (b) comprises a second channel parameter of a plurality of channel parameters between the adjacent test points, and T ab comprises a respective time period between the adjacent test points.
  • Aspect 10 The method of any of aspects 1 through 9, wherein the plurality of channel parameters comprise an angle, an angle spread, a delay, a cluster power, a K-factor, a path loss, a speed of the device under test, a cross-polarization ratio, or any combination thereof.
  • Aspect 11 An apparatus for wireless communications at a wireless device, comprising a memory, a transceiver, and at least one processor of a wireless device, the at least one processor coupled with the memory and the transceiver, the at least one processor configured to cause the apparatus to perform a method of any of aspects 1 through 10.
  • Aspect 12 An apparatus for wireless communications at a wireless device, comprising at least one means for performing a method of any of aspects 1 through 10.
  • Aspect 13 A non-transitory computer-readable medium storing code for wireless communications at a wireless device, the code comprising instructions executable by a processor to perform a method of any of aspects 1 through 10.
  • LTE, LTE-A, LTE-A Pro, or NR may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR networks.
  • the described techniques may be applicable to various other wireless communications systems such as Ultra Mobile Broadband (UMB) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, as well as other systems and radio technologies not explicitly mentioned herein.
  • UMB Ultra Mobile Broadband
  • IEEE Institute of Electrical and Electronics Engineers
  • Wi-Fi Institute of Electrical and Electronics Engineers
  • WiMAX IEEE 802.16
  • IEEE 802.20 Flash-OFDM
  • Information and signals described herein may be represented using any of a variety of different technologies and techniques.
  • data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
  • a general-purpose processor may be a microprocessor, but in the alternative, the processor may be any processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
  • the functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described herein may be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
  • Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a non-transitory storage medium may be any available medium that may be accessed by a general-purpose or special-purpose computer.
  • non-transitory computer-readable media may include RAM, ROM, electrically erasable programmable ROM (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor.
  • any connection is properly termed a computer-readable medium.
  • the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave
  • the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of computer-readable medium.
  • Disk and disc include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.
  • determining encompasses a wide variety of actions and, therefore, “determining” can include calculating, computing, processing, deriving, investigating, looking up (such as via looking up in a table, a database, or another data structure) , ascertaining and the like. Also, “determining” can include receiving (such as receiving information) , accessing (such as accessing data in a memory) and the like. Also, “determining” can include resolving, selecting, choosing, establishing and other such similar actions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Methods, systems, and devices for wireless communications are described. A wireless device may be enabled to model a dynamic channel, including channel characteristics, for over-the-air testing of a device. The wireless device may identify multiple test points for a trajectory for a device under test. Adjacent test points may be associated with respective correlation matrix distances, which may indicate a similarity of channel parameters between the adjacent test points. The wireless device may perform an interpolation of each channel parameter between the adjacent test points over respective time periods based on the correlation matrix distances, for example based on whether a correlation matrix distance satisfies or fails to satisfy a threshold. In some cases, the wireless device may transmit, via an antenna and to the device under test within a test chamber, multiple signals which may generate the interpolated channel parameters between the antenna and the device.

Description

DYNAMIC OVER-THE-AIR TESTING
FIELD OF TECHNOLOGY
The following relates to wireless communications, including dynamic over-the-air testing.
BACKGROUND
Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) . Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems. These systems may employ technologies such as code division multiple access (CDMA) , time division multiple access (TDMA) , frequency division multiple access (FDMA) , orthogonal FDMA (OFDMA) , or discrete Fourier transform spread orthogonal frequency division multiplexing (DFT-S-OFDM) . A wireless multiple-access communications system may include one or more base stations or one or more network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE) .
Some wireless communication techniques (e.g., beamforming techniques) may be verified through modeling and testing. Techniques for modeling and testing dynamic characteristics of a channel may be improved.
SUMMARY
The described techniques relate to improved methods, systems, devices, and apparatuses that support dynamic over-the-air testing. Generally, the described techniques provide for modeling of a dynamic channel, which includes large-scale channel characteristics, for over-the-air testing in higher frequencies (e.g., mmW frequencies, Frequency Range 2 (FR2) ) . In some examples, a wireless device (e.g.,  which may include an emulator and an antenna used to generate and transmit signals emulating particular channel parameters) may identify multiple test points for a trajectory for a device under test (e.g., a user equipment (UE) ) . In some examples, adjacent test points may be associated with respective correlation matrix distances, where a correlation matrix distance may represent a similarity of channel parameters between the adjacent test points. The wireless device may perform an interpolation of each channel parameter between the adjacent test points over respective time periods based on the respective correlation matrix distances. For example, the wireless device may perform the interpolation based on whether a correlation matrix distance for the adjacent test points satisfies or fails to satisfy a threshold. In some examples, the wireless device may transmit, via an antenna and to the device under test within the test chamber, multiple signals which may generate the interpolated channel parameters between the antenna and the device. As such, the described techniques may verify the performance of the device in higher frequency ranges by emulating the dynamic geometry of a channel in a testing environment.
A method for wireless communications at a wireless device is described. The method may include identifying a set of multiple test points for a trajectory for a device under test, where adjacent test points of the set of multiple test points are associated with respective correlation matrix distances, performing an interpolation of each channel parameter of a set of multiple channel parameters between the adjacent test points over respective time periods based on the respective correlation matrix distances, and transmitting, via a test antenna and to the device under test within a test chamber, a set of multiple signals over the respective time periods, where the set of multiple signals generate the interpolated channel parameters between the test antenna and the device under test.
An apparatus for wireless communications at a wireless device is described. The apparatus may include memory, a transceiver, and at least one processor of a wireless device, the at least one processor coupled with the memory and the transceiver. The at least one processor may be configured to cause the apparatus to identify a set of multiple test points for a trajectory for a device under test, where adjacent test points of the set of multiple test points are associated with respective correlation matrix distances, perform an interpolation of each channel parameter of a set of multiple channel  parameters between the adjacent test points over respective time periods based on the respective correlation matrix distances, and transmit, via a test antenna and to the device under test within a test chamber, a set of multiple signals over the respective time periods, where the set of multiple signals generate the interpolated channel parameters between the test antenna and the device under test.
Another apparatus for wireless communications at a wireless device is described. The apparatus may include means for identifying a set of multiple test points for a trajectory for a device under test, where adjacent test points of the set of multiple test points are associated with respective correlation matrix distances, means for performing an interpolation of each channel parameter of a set of multiple channel parameters between the adjacent test points over respective time periods based on the respective correlation matrix distances, and means for transmitting, via a test antenna and to the device under test within a test chamber, a set of multiple signals over the respective time periods, where the set of multiple signals generate the interpolated channel parameters between the test antenna and the device under test.
A non-transitory computer-readable medium storing code for wireless communications at a wireless device is described. The code may include instructions executable by a processor to identify a set of multiple test points for a trajectory for a device under test, where adjacent test points of the set of multiple test points are associated with respective correlation matrix distances, perform an interpolation of each channel parameter of a set of multiple channel parameters between the adjacent test points over respective time periods based on the respective correlation matrix distances, and transmit, via a test antenna and to the device under test within a test chamber, a set of multiple signals over the respective time periods, where the set of multiple signals generate the interpolated channel parameters between the test antenna and the device under test.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, performing the interpolation of each channel parameter may include operations, features, means, or instructions for performing, based on the respective correlation matrix distance between a first set of adjacent test points being less than a threshold, the interpolation of each channel parameter of the set of multiple channel parameters based on a first set of channel parameters associated  with a first test point of the first set of adjacent test points and a second set of channel parameters associated with a second test point of the first set of adjacent test points over the respective time period.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the first set of adjacent test points may be each associated with a first line-of-sight condition and may have a first quantity of clusters.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, performing the interpolation of each channel parameter may include operations, features, means, or instructions for performing, based on the respective correlation matrix distance between a second set of adjacent test points being greater than a threshold, the interpolation of at least one channel parameter of the set of multiple channel parameters between a corresponding channel parameter associated with a third test point of the second set of adjacent test points and a virtual parameter associated with a fourth test point of the second set of adjacent test points over the respective time period, where a power metric for the virtual parameter may be set to a predetermined power level.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, at least one of a line-of-sight condition or a quantity of clusters may be different between the third test point and the fourth test point.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for identifying a first set of multiple clusters associated with the fourth test point, where a cluster associated with the fourth test point may be excluded in a second set of multiple clusters associated with the third test point, generating a virtual cluster for the third test point having channel parameters set to the predetermined power level, and performing the interpolation of each channel parameter of the set of multiple channel parameters between the second set of adjacent test points over the respective time period, where performing the interpolation includes interpolating the channel parameters between the virtual cluster associated with the third test point and the cluster associated with the fourth test point.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for identifying a line-of-sight sub-path associated with the fourth test point, where the line-of-sight sub-path may be excluded in the third test point, generating a virtual sub-path associated with the third test point having channel parameters set to the predetermined power level, and performing the interpolation of each channel parameter of the set of multiple channel parameters between the second set of adjacent test points over the respective time period, where performing the interpolation includes interpolating the channel parameters between the virtual sub-path associated with the third test point and the line-of-sight sub-path associated with the fourth test point.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, 
Figure PCTCN2021139911-appb-000001
and where D includes a correlation matrix distance between the adjacent test points, R 1 includes a spatial correlation matrix for a first test point, and R 2 includes a spatial correlation matrix for a second test point.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, 
Figure PCTCN2021139911-appb-000002
and where P (t) includes the interpolated channel parameters at a time t, P (a) includes a first channel parameter of the set of multiple channel parameters between the adjacent test points, P (b) includes a second channel parameter of a set of multiple channel parameters between the adjacent test points, and T ab includes a respective time period between the adjacent test points.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the set of multiple channel parameters include an angle, an angle spread, a delay, a cluster power, a K-factor, a path loss, a speed of the device under test, a cross-polarization ratio, or any combination thereof.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 illustrates an example of a wireless communications system that supports dynamic over-the-air testing in accordance with aspects of the present disclosure.
FIG. 2 illustrates an example of a testing environment that supports dynamic over-the-air testing in accordance with aspects of the present disclosure.
FIG. 3 illustrates an example of a test scenario that supports dynamic over-the-air testing in accordance with aspects of the present disclosure.
FIGs. 4 and 5 show block diagrams of devices that support dynamic over-the-air testing in accordance with aspects of the present disclosure.
FIG. 6 shows a block diagram of a communications manager that supports dynamic over-the-air testing in accordance with aspects of the present disclosure.
FIG. 7 shows a diagram of a system including a device that supports dynamic over-the-air testing in accordance with aspects of the present disclosure.
FIGs. 8 through 12 show flowcharts illustrating methods that support dynamic over-the-air testing in accordance with aspects of the present disclosure.
DETAILED DESCRIPTION
In some wireless communications systems, some beamforming techniques may be used to enable high throughput communications in higher frequencies (e.g., mmW frequencies, Frequency Range 2 (FR2) ) . These beamforming techniques may be verified through tests, however current test mechanisms may be limiting. For example, an orientation of a device (e.g., a user equipment (UE) ) under test and a direction of the test (e.g., the orientation of an antenna with respect to the device under test) may be determined before a test and remain the same during the test. Even if device performance is measured over multiple test directions, the device may be provided sufficient beam dwell-time between updates to the test geometry such that the test may fail to verify dynamic beam management. In addition, some channel modeling techniques for FR2 over-the-air testing may be stationary (e.g., fixed) such that large-scale channel characteristics may be fixed during emulation of a channel. As such, some FR2 over-the-air modeling and testing techniques may produce results that fail to accurately verify device performance in FR2.
Techniques described herein enable modeling of a dynamic channel, which includes large-scale channel characteristics, for higher frequency over-the-air testing. In  some examples, a wireless device (e.g., which may include an emulator and an antenna used to generate and transmit signals emulating particular channel parameters) may identify multiple test points for a trajectory for a device under test (e.g., a UE) . In some examples, adjacent test points may be associated with respective correlation matrix distances, where a correlation matrix distance may represent a similarity of channel parameters between the adjacent test points. The wireless device may perform an interpolation of each channel parameter between the adjacent test points over respective time periods based on the respective correlation matrix distances. For example, the wireless device may perform the interpolation based on whether a correlation matrix distance for the adjacent test points satisfies or fails to satisfy a threshold. In some examples, the wireless device may transmit, via an antenna and to the device under test within the test chamber, multiple signals which may generate the interpolated channel parameters between the antenna and the device. The generated interpolated channel parameters may emulate a dynamic channel with channel characteristics that vary throughout the channel (e.g., between test points) rather than remain static (e.g., fixed) . As such, the described techniques may verify the performance of the device in the FR2 by emulating the dynamic geometry of a channel in a testing environment.
Aspects of the disclosure are initially described in the context of wireless communications systems. Aspects of the disclosure are then described in the context of testing environments and testing scenarios. Aspects of the disclosure are further illustrated by and described with reference to apparatus diagrams, system diagrams, and flowcharts that relate to dynamic over-the-air testing.
FIG. 1 illustrates an example of a wireless communications system 100 that supports dynamic over-the-air testing in accordance with aspects of the present disclosure. The wireless communications system 100 may include one or more base stations 105, one or more UEs 115, and a core network 130. In some examples, the wireless communications system 100 may be a Long Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, an LTE-A Pro network, or a New Radio (NR) network. In some examples, the wireless communications system 100 may support enhanced broadband communications, ultra-reliable communications, low latency communications, communications with low-cost and low-complexity devices, or any combination thereof.
The base stations 105 may be dispersed throughout a geographic area to form the wireless communications system 100 and may be devices in different forms or having different capabilities. The base stations 105 and the UEs 115 may wirelessly communicate via one or more communication links 125. Each base station 105 may provide a coverage area 110 over which the UEs 115 and the base station 105 may establish one or more communication links 125. The coverage area 110 may be an example of a geographic area over which a base station 105 and a UE 115 may support the communication of signals according to one or more radio access technologies.
The UEs 115 may be dispersed throughout a coverage area 110 of the wireless communications system 100, and each UE 115 may be stationary, or mobile, or both at different times. The UEs 115 may be devices in different forms or having different capabilities. Some example UEs 115 are illustrated in FIG. 1. The UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115, the base stations 105, or network equipment (e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment) , as shown in FIG. 1.
In some examples, one or more components of the wireless communications system 100 may operate as or be referred to as a network node. As used herein, a network node may refer to any UE 115, base station 105, entity of a core network 130, apparatus, device, or computing system configured to perform any techniques described herein. For example, a network node may be a UE 115. As another example, a network node may be a base station 105. As another example, a first network node may be configured to communicate with a second network node or a third network node. In one aspect of this example, the first network node may be a UE 115, the second network node may be a base station 105, and the third network node may be a UE 115. In another aspect of this example, the first network node may be a UE 115, the second network node may be a base station 105, and the third network node may be a base station 105. In yet other aspects of this example, the first, second, and third network nodes may be different. Similarly, reference to a UE 115, a base station 105, an apparatus, a device, or a computing system may include disclosure of the UE 115, base station 105, apparatus, device, or computing system being a network node. For example, disclosure that a UE 115 is configured to receive information from a base station 105  also discloses that a first network node is configured to receive information from a second network node. In this example, consistent with this disclosure, the first network node may refer to a first UE 115, a first base station 105, a first apparatus, a first device, or a first computing system configured to receive the information; and the second network node may refer to a second UE 115, a second base station 105, a second apparatus, a second device, or a second computing system.
The base stations 105 may communicate with the core network 130, or with one another, or both. For example, the base stations 105 may interface with the core network 130 through one or more backhaul links 120 (e.g., via an S1, N2, N3, or other interface) . The base stations 105 may communicate with one another over the backhaul links 120 (e.g., via an X2, Xn, or other interface) either directly (e.g., directly between base stations 105) , or indirectly (e.g., via core network 130) , or both. In some examples, the backhaul links 120 may be or include one or more wireless links.
One or more of the base stations 105 described herein may include or may be referred to by a person having ordinary skill in the art as a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or a giga-NodeB (either of which may be referred to as a gNB) , a Home NodeB, a Home eNodeB, or other suitable terminology.
UE 115 may include or may be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, where the “device” may also be referred to as a unit, a station, a terminal, or a client, among other examples. A UE 115 may also include or may be referred to as a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer. In some examples, a UE 115 may include or be referred to as a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or a machine type communications (MTC) device, among other examples, which may be implemented in various objects such as appliances, or vehicles, meters, among other examples.
The UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115 that may sometimes act as relays as well as the  base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
The UEs 115 and the base stations 105 may wirelessly communicate with one another via one or more communication links 125 over one or more carriers. The term “carrier” may refer to a set of radio frequency spectrum resources having a defined physical layer structure for supporting the communication links 125. For example, a carrier used for a communication link 125 may include a portion of a radio frequency spectrum band (e.g., a bandwidth part (BWP) ) that is operated according to one or more physical layer channels for a given radio access technology (e.g., LTE, LTE-A, LTE-APro, NR) . Each physical layer channel may carry acquisition signaling (e.g., synchronization signals, system information) , control signaling that coordinates operation for the carrier, user data, or other signaling. The wireless communications system 100 may support communication with a UE 115 using carrier aggregation or multi-carrier operation. A UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a carrier aggregation configuration. Carrier aggregation may be used with both frequency division duplexing (FDD) and time division duplexing (TDD) component carriers.
Signal waveforms transmitted over a carrier may be made up of multiple subcarriers (e.g., using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT-S-OFDM) ) . In a system employing MCM techniques, a resource element may consist of one symbol period (e.g., a duration of one modulation symbol) and one subcarrier, where the symbol period and subcarrier spacing are inversely related. The number of bits carried by each resource element may depend on the modulation scheme (e.g., the order of the modulation scheme, the coding rate of the modulation scheme, or both) . Thus, the more resource elements that a UE 115 receives and the higher the order of the modulation scheme, the higher the data rate may be for the UE 115. A wireless communications resource may refer to a combination of a radio frequency spectrum resource, a time resource, and a spatial resource (e.g., spatial layers or beams) , and the use of multiple spatial layers may further increase the data rate or data integrity for communications with a UE 115.
The time intervals for the base stations 105 or the UEs 115 may be expressed in multiples of a basic time unit which may, for example, refer to a sampling period of T s=1/ (Δf max·N f) seconds, where Δf max may represent the maximum supported subcarrier spacing, and N f may represent the maximum supported discrete Fourier transform (DFT) size. Time intervals of a communications resource may be organized according to radio frames each having a specified duration (e.g., 10 milliseconds (ms) ) . Each radio frame may be identified by a system frame number (SFN) (e.g., ranging from 0 to 1023) .
Each frame may include multiple consecutively numbered subframes or slots, and each subframe or slot may have the same duration. In some examples, a frame may be divided (e.g., in the time domain) into subframes, and each subframe may be further divided into a number of slots. Alternatively, each frame may include a variable number of slots, and the number of slots may depend on subcarrier spacing. Each slot may include a number of symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period) . In some wireless communications systems 100, a slot may further be divided into multiple mini-slots containing one or more symbols. Excluding the cyclic prefix, each symbol period may contain one or more (e.g., N f) sampling periods. The duration of a symbol period may depend on the subcarrier spacing or frequency band of operation.
A subframe, a slot, a mini-slot, or a symbol may be the smallest scheduling unit (e.g., in the time domain) of the wireless communications system 100 and may be referred to as a transmission time interval (TTI) . In some examples, the TTI duration (e.g., the number of symbol periods in a TTI) may be variable. Additionally or alternatively, the smallest scheduling unit of the wireless communications system 100 may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) ) .
Physical channels may be multiplexed on a carrier according to various techniques. A physical control channel and a physical data channel may be multiplexed on a downlink carrier, for example, using one or more of time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques. A control region (e.g., a control resource set (CORESET) ) for a physical control channel may be defined by a number of symbol periods and may  extend across the system bandwidth or a subset of the system bandwidth of the carrier. One or more control regions (e.g., CORESETs) may be configured for a set of the UEs 115. For example, one or more of the UEs 115 may monitor or search control regions for control information according to one or more search space sets, and each search space set may include one or multiple control channel candidates in one or more aggregation levels arranged in a cascaded manner. An aggregation level for a control channel candidate may refer to a number of control channel resources (e.g., control channel elements (CCEs) ) associated with encoded information for a control information format having a given payload size. Search space sets may include common search space sets configured for sending control information to multiple UEs 115 and UE-specific search space sets for sending control information to a specific UE 115.
Each base station 105 may provide communication coverage via one or more cells, for example a macro cell, a small cell, a hot spot, or other types of cells, or any combination thereof. The term “cell” may refer to a logical communication entity used for communication with a base station 105 (e.g., over a carrier) and may be associated with an identifier for distinguishing neighboring cells (e.g., a physical cell identifier (PCID) , a virtual cell identifier (VCID) , or others) . In some examples, a cell may also refer to a geographic coverage area 110 or a portion of a geographic coverage area 110 (e.g., a sector) over which the logical communication entity operates. Such cells may range from smaller areas (e.g., a structure, a subset of structure) to larger areas depending on various factors such as the capabilities of the base station 105. For example, a cell may be or include a building, a subset of a building, or exterior spaces between or overlapping with geographic coverage areas 110, among other examples.
A macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by the UEs 115 with service subscriptions with the network provider supporting the macro cell. A small cell may be associated with a lower-powered base station 105, as compared with a macro cell, and a small cell may operate in the same or different (e.g., licensed, unlicensed) frequency bands as macro cells. Small cells may provide unrestricted access to the UEs 115 with service subscriptions with the network provider or may provide restricted access to the UEs 115 having an association with the small cell (e.g., the UEs 115 in a closed subscriber group (CSG) , the UEs 115 associated with users in a home or office) . A base  station 105 may support one or multiple cells and may also support communications over the one or more cells using one or multiple component carriers.
In some examples, a carrier may support multiple cells, and different cells may be configured according to different protocol types (e.g., MTC, narrowband IoT (NB-IoT) , enhanced mobile broadband (eMBB) ) that may provide access for different types of devices.
In some examples, a base station 105 may be movable and therefore provide communication coverage for a moving geographic coverage area 110. In some examples, different geographic coverage areas 110 associated with different technologies may overlap, but the different geographic coverage areas 110 may be supported by the same base station 105. In other examples, the overlapping geographic coverage areas 110 associated with different technologies may be supported by different base stations 105. The wireless communications system 100 may include, for example, a heterogeneous network in which different types of the base stations 105 provide coverage for various geographic coverage areas 110 using the same or different radio access technologies.
Some UEs 115, such as MTC or IoT devices, may be low cost or low complexity devices and may provide for automated communication between machines (e.g., via Machine-to-Machine (M2M) communication) . M2M communication or MTC may refer to data communication technologies that allow devices to communicate with one another or a base station 105 without human intervention. In some examples, M2M communication or MTC may include communications from devices that integrate sensors or meters to measure or capture information and relay such information to a central server or application program that makes use of the information or presents the information to humans interacting with the application program. Some UEs 115 may be designed to collect information or enable automated behavior of machines or other devices. Examples of applications for MTC devices include smart metering, inventory monitoring, water level monitoring, equipment monitoring, healthcare monitoring, wildlife monitoring, weather and geological event monitoring, fleet management and tracking, remote security sensing, physical access control, and transaction-based business charging.
The wireless communications system 100 may be configured to support ultra-reliable communications or low-latency communications, or various combinations thereof. For example, the wireless communications system 100 may be configured to support ultra-reliable low-latency communications (URLLC) . The UEs 115 may be designed to support ultra-reliable, low-latency, or critical functions. Ultra-reliable communications may include private communication or group communication and may be supported by one or more services such as push-to-talk, video, or data. Support for ultra-reliable, low-latency functions may include prioritization of services, and such services may be used for public safety or general commercial applications. The terms ultra-reliable, low-latency, and ultra-reliable low-latency may be used interchangeably herein.
In some examples, a UE 115 may also be able to communicate directly with other UEs 115 over a device-to-device (D2D) communication link 135 (e.g., using a peer-to-peer (P2P) or D2D protocol) . One or more UEs 115 utilizing D2D communications may be within the geographic coverage area 110 of a base station 105. Other UEs 115 in such a group may be outside the geographic coverage area 110 of a base station 105 or be otherwise unable to receive transmissions from a base station 105. In some examples, groups of the UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group. In some examples, a base station 105 facilitates the scheduling of resources for D2D communications. In other cases, D2D communications are carried out between the UEs 115 without the involvement of a base station 105.
The core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions. The core network 130 may be an evolved packet core (EPC) or 5G core (5GC) , which may include at least one control plane entity that manages access and mobility (e.g., a mobility management entity (MME) , an access and mobility management function (AMF) ) and at least one user plane entity that routes packets or interconnects to external networks (e.g., a serving gateway (S-GW) , a Packet Data Network (PDN) gateway (P-GW) , or a user plane function (UPF) ) . The control plane entity may manage non-access stratum (NAS) functions such as mobility,  authentication, and bearer management for the UEs 115 served by the base stations 105 associated with the core network 130. User IP packets may be transferred through the user plane entity, which may provide IP address allocation as well as other functions. The user plane entity may be connected to IP services 150 for one or more network operators. The IP services 150 may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched Streaming Service.
Some of the network devices, such as a base station 105, may include subcomponents such as an access network entity 140, which may be an example of an access node controller (ANC) . Each access network entity 140 may communicate with the UEs 115 through one or more other access network transmission entities 145, which may be referred to as radio heads, smart radio heads, or transmission/reception points (TRPs) . Each access network transmission entity 145 may include one or more antenna panels. In some configurations, various functions of each access network entity 140 or base station 105 may be distributed across various network devices (e.g., radio heads and ANCs) or consolidated into a single network device (e.g., a base station 105) .
The wireless communications system 100 may operate using one or more frequency bands, typically in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) . Generally, the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band because the wavelengths range from approximately one decimeter to one meter in length. The UHF waves may be blocked or redirected by buildings and environmental features, but the waves may penetrate structures sufficiently for a macro cell to provide service to the UEs 115 located indoors. The transmission of UHF waves may be associated with smaller antennas and shorter ranges (e.g., less than 100 kilometers) compared to transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
The wireless communications system 100 may also operate in a super high frequency (SHF) region using frequency bands from 3 GHz to 30 GHz, also known as the centimeter band, or in an extremely high frequency (EHF) region of the spectrum (e.g., from 30 GHz to 300 GHz) , also known as the millimeter band. In some examples, the wireless communications system 100 may support millimeter wave (mmW) communications between the UEs 115 and the base stations 105, and EHF antennas of  the respective devices may be smaller and more closely spaced than UHF antennas. In some examples, this may facilitate use of antenna arrays within a device. The propagation of EHF transmissions, however, may be subject to even greater atmospheric attenuation and shorter range than SHF or UHF transmissions. The techniques disclosed herein may be employed across transmissions that use one or more different frequency regions, and designated use of bands across these frequency regions may differ by country or regulating body.
The wireless communications system 100 may utilize both licensed and unlicensed radio frequency spectrum bands. For example, the wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) radio access technology, or NR technology in an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band. When operating in unlicensed radio frequency spectrum bands, devices such as the base stations 105 and the UEs 115 may employ carrier sensing for collision detection and avoidance. In some examples, operations in unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating in a licensed band (e.g., LAA) . Operations in unlicensed spectrum may include downlink transmissions, uplink transmissions, P2P transmissions, or D2D transmissions, among other examples.
base station 105 or a UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming. The antennas of a base station 105 or a UE 115 may be located within one or more antenna arrays or antenna panels, which may support MIMO operations or transmit or receive beamforming. For example, one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower. In some examples, antennas or antenna arrays associated with a base station 105 may be located in diverse geographic locations. A base station 105 may have an antenna array with a number of rows and columns of antenna ports that the base station 105 may use to support beamforming of communications with a UE 115. Likewise, a UE 115 may have one or more antenna arrays that may support various MIMO or beamforming operations. Additionally or alternatively, an antenna panel may support radio frequency beamforming for a signal transmitted via an antenna port.
Beamforming, which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a base station 105, a UE 115) to shape or steer an antenna beam (e.g., a transmit beam, a receive beam) along a spatial path between the transmitting device and the receiving device. Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that some signals propagating at particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference. The adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying amplitude offsets, phase offsets, or both to signals carried via the antenna elements associated with the device. The adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
base station 105 or a UE 115 may use beam sweeping techniques as part of beam forming operations. For example, a base station 105 may use multiple antennas or antenna arrays (e.g., antenna panels) to conduct beamforming operations for directional communications with a UE 115. Some signals (e.g., synchronization signals, reference signals, beam selection signals, or other control signals) may be transmitted by a base station 105 multiple times in different directions. For example, the base station 105 may transmit a signal according to different beamforming weight sets associated with different directions of transmission. Transmissions in different beam directions may be used to identify (e.g., by a transmitting device, such as a base station 105, or by a receiving device, such as a UE 115) a beam direction for later transmission or reception by the base station 105.
Some signals, such as data signals associated with a particular receiving device, may be transmitted by a base station 105 in a single beam direction (e.g., a direction associated with the receiving device, such as a UE 115) . In some examples, the beam direction associated with transmissions along a single beam direction may be determined based on a signal that was transmitted in one or more beam directions. For example, a UE 115 may receive one or more of the signals transmitted by the base  station 105 in different directions and may report to the base station 105 an indication of the signal that the UE 115 received with a highest signal quality or an otherwise acceptable signal quality.
In some examples, transmissions by a device (e.g., by a base station 105 or a UE 115) may be performed using multiple beam directions, and the device may use a combination of digital precoding or radio frequency beamforming to generate a combined beam for transmission (e.g., from a base station 105 to a UE 115) . The UE 115 may report feedback that indicates precoding weights for one or more beam directions, and the feedback may correspond to a configured number of beams across a system bandwidth or one or more sub-bands. The base station 105 may transmit a reference signal (e.g., a cell-specific reference signal (CRS) , a channel state information reference signal (CSI-RS) ) , which may be precoded or unprecoded. The UE 115 may provide feedback for beam selection, which may be a precoding matrix indicator (PMI) or codebook-based feedback (e.g., a multi-panel type codebook, a linear combination type codebook, a port selection type codebook) . Although these techniques are described with reference to signals transmitted in one or more directions by a base station 105, a UE 115 may employ similar techniques for transmitting signals multiple times in different directions (e.g., for identifying a beam direction for subsequent transmission or reception by the UE 115) or for transmitting a signal in a single direction (e.g., for transmitting data to a receiving device) .
A receiving device (e.g., a UE 115) may try multiple receive configurations (e.g., directional listening) when receiving various signals from the base station 105, such as synchronization signals, reference signals, beam selection signals, or other control signals. For example, a receiving device may try multiple receive directions by receiving via different antenna subarrays, by processing received signals according to different antenna subarrays, by receiving according to different receive beamforming weight sets (e.g., different directional listening weight sets) applied to signals received at multiple antenna elements of an antenna array, or by processing received signals according to different receive beamforming weight sets applied to signals received at multiple antenna elements of an antenna array, any of which may be referred to as “listening” according to different receive configurations or receive directions. In some examples, a receiving device may use a single receive configuration to receive along a  single beam direction (e.g., when receiving a data signal) . The single receive configuration may be aligned in a beam direction determined based on listening according to different receive configuration directions (e.g., a beam direction determined to have a highest signal strength, highest signal-to-noise ratio (SNR) , or otherwise acceptable signal quality based on listening according to multiple beam directions) .
The wireless communication system 100 may support some beamforming techniques (e.g., analog, hybrid) that may enable high throughput in FR2. The beamforming techniques may be verified by testing the behavior of a device (e.g., a UE 115) in FR2 environments. In some examples, an orientation of the device (e.g., a physical orientation of the device under test in a test chamber) and a test direction (e.g., the direction an antenna is oriented with respect to the device in the test chamber) may be determined before a test and may remain the same during the test (e.g., the orientation of the device and the test direction may be fixed) . In addition, even in cases where a performance of the device may be measured in multiple test directions, the device may be provided sufficient beam-swell time (e.g., enough time to perform beam refinement procedures) between updates to the test geometry such that test fails to verify dynamic beam management of the device. However, fixing testing conditions, inaccurately testing dynamic beam management, or both may result a test that fails to reflect a true user experience.
In some examples, some channel modeling applied to FR2 over-the-air testing may be stationary. That is, the channel modeling may include multi-path effects and fast-fading, however large-scale channel characteristics may be fixed during emulation of the channel. For example, if the device moves and experiences a fast-fading channel during the test, the propagation environment of the channel (e.g., a path loss) may remain the same. In addition to the multi-path effect and fast-fading, a channel may also have parameters such as changes to propagation angles, delays, and polarizations, and transitions between line-of-sight (LOS) and non-LOS (NLOS) conditions. However, current channel modeling may fail to consider dynamic radio conditions and large-scale channel characteristics such as angular power distribution, a power delay profile, a Doppler power spectrum, and LOS and NLOS conditions, which may vary over a time period that the channel is being emulated.
Techniques described herein enable modeling of a dynamic channel, which includes large-scale channel characteristics, for FR2 over-the-air testing. In some examples, a wireless device (e.g., which may include an emulator and an antenna used to generate and transmit signals emulating particular channel parameters) may identify multiple test points for a trajectory for a device under test. In some examples, adjacent test points may be associated with respective correlation matrix distances, where a correlation matrix distance may represent a similarity of channel parameters between the adjacent test points. The wireless device may perform an interpolation of each channel parameter between the adjacent test points over respective time periods based on the respective correlation matrix distances. For example, the wireless device may perform the interpolation based on whether a correlation matrix distance for the adjacent test points satisfies or fails to satisfy a threshold. In some examples, the wireless device may transmit, via an antenna and to the device under test within the test chamber, multiple signals which may generate the interpolated channel parameters between the antenna and the device. As such, the described techniques may verify the performance of the device in the FR2 by emulating the dynamic geometry of a channel in a testing environment.
FIG. 2 illustrates an example of a testing environment 200 that supports dynamic over-the-air testing in accordance with aspects of the present disclosure. In some examples, the testing environment 200 may implement aspects of the wireless communications system 100 or may be implemented by aspects of the wireless communications system 100. For example, the testing environment 200 may include a device 205 (e.g., a UE) and a wireless device 210, which may be examples of corresponding devices described herein. In some examples, wireless device 210 may include a channel emulator 215 and an antenna 220, which may generate and transmit signals 225 that emulate particular channel parameters to the device 205. The device 205 and the antenna 220 may be inside of a test chamber 230, and the channel emulator 215 may be inside or at least partially outside of the test chamber 230.
The testing environment 200 may support emulating a dynamic channel in the test chamber 230 for accurate FR2 over-the-air testing of the device 205. For example, the wireless device 210 may emulate channel characteristics that vary during a test duration (e.g., between test points) rather than remain fixed. As such, the testing  environment 200 may support dynamic over-the-air testing, where the test may measure the response of the device 205 to changes in the channel characteristics (e.g., instead of testing the device 205 in a static environment) . In some examples, the wireless device 210 may identify multiple test points for a trajectory for the device 205. The trajectory of the device 205 may model channel characteristics that occur due to different distances or orientations between the device 205 and the wireless device 210 over time. The testing environment may be able to control a physical orientation of the device 205 in the test chamber 230. For example, the device 205 may be on a rotating device 235, which may rotate the device 205 to face different directions with respect to the antenna 220 (e.g., while the location of the device 205 within the test chamber 230 may remain fixed) . However, the device 205 is generally maintained in a same orientation throughout a given test. In some examples, adjacent test points (e.g., two test points of the multiple test points on the trajectory that are located next to each other) may be associated with respective correlation matrix distances, where a correlation matrix distance may represent a similarity of channel parameters between the adjacent test points. For example, the trajectory of the device 205 may be divided into the multiple test points based on the similarity between channel parameters associated with each test point.
The correlation matrix distance may be used as a criteria for measuring similarity between the channel parameters associated with adjacent test points, and may be given as Equation 1:
Figure PCTCN2021139911-appb-000003
where D may represent a correlation matrix distance between two adjacent test points, R i may represent a spatial correlation matrix for an adjacent test point i, ‖R if may represent a Frobenius norm of the spatial correlation matrix R i, tr (R 1R 2) may represent a trace of matrix R 1R 2, and R may represent a correlation matrix of a channel which may be calculated as R=E {H*H H} , where (H)  H may represent a Hermitian transpose, and E {H*H H} may represent an expectation operator.
In some examples, the wireless device 210 may perform an interpolation of each channel parameter between the adjacent test points over respective time periods  based on the respective correlation matrix distances. For example, the wireless device 210 may perform the interpolation if a respective correlation matrix distance fails to satisfy a threshold, indicating that the channel parameters between the adjacent test points are relatively similar, if a respective correlation matrix distance satisfies the threshold, indicating that the channel parameters between the adjacent test points are relatively different, or both. Satisfying the threshold may mean that the correlation matrix distance is greater than the threshold while not satisfying the threshold may mean that the correlation matrix distance is less than or less than or equal to the threshold. Alternatively, satisfying the threshold may mean that the correlation matrix distance is greater than or greater than or equal to the threshold while not satisfying the threshold may mean that the correlation matrix distance is less than the threshold.
The wireless device 210 may interpolate the channel parameters according to Equation 2:
Figure PCTCN2021139911-appb-000004
where P (a) and P (b) may represent respective channel parameters associated with a test point a and a test point b, T ab may represent a time between the test point a and the test point b, and P (t) may represent an interpolated channel parameter between a test point a and a test point b at a time t. In some examples, the channel parameters may include an angle (e.g., interpolated in degree units) , an angle spread (e.g., interpolated in degree units) , a delay (e.g., interpolated in nanoseconds) , a cluster power (e.g., interpolated in linear units) , a K-factor (e.g., interpolated in linear units) , a path loss, a device speed (e.g., interpolated in meters per second) , a cross-polarization ratio (e.g., interpolated in decibel units) , or any other channel parameters.
In some examples, the wireless device 210 may transmit, via the antenna 220 and to the device 205 within the test chamber 230, multiple signals 225 over the respective time periods, including a signal 225-a and a signal 225-b. The signals 225 may each generate the interpolated channel parameters between the antenna and the device 205 such that the device 205 is tested under dynamic channel conditions.
FIG. 3 illustrates an example of a test scenario 300 that supports dynamic over-the-air testing in accordance with aspects of the present disclosure. In some  examples, the test scenario 300 may be implemented to model and test the performance of a device (e.g., a UE) in an FR2 communications system. The test scenario 300 may include a device trajectory 305 and test points 310, where each set of adjacent test points 310 may be associated with a respective correlation matrix distance.
As described herein with reference to FIG. 2, the device trajectory 305 may support dynamic over-the-air testing to measure the response of the device to changes in channel characteristics. For example, rather than testing the device in a static environment, the test scenario 300 may emulate varying channel parameters between the test points 310 over a duration of the test and test how the response of the device changes with varying channel parameters. In some examples, the device trajectory 305 may be divided into multiple test points 310 based on a similarity of channel parameters between adjacent test points 310 (e.g., two test points 310 that are next to each other on the device trajectory 305) . The similarity between the channel parameters may be determined using respective correlation matrix distances. For example, a first set of channel parameters associated with a test point 310-a (e.g., test point 1–1) and a second set of channel parameters associated with a test point 310-b (e.g., test point 1–2) may fail to satisfy a threshold (e.g., X) . As such, the first set of channel parameters and the second set of channel parameters (e.g., the channel parameters between the test point 310-a and the test point 310-b) may have a relatively high similarity. In some other examples, the first set of channel parameters associated with the test point 310-b and a third set of channel parameters associated with a test point 310-c (e.g., a test point 2–1) may satisfy the threshold. As such, the first set of channel parameters and the third set of channel parameters (e.g., the channel parameters between the test point 310-b and the test point 310-c) may have a relatively low similarity.
In some cases, multiple sets of adjacent test points 310 may be associated with respective correlation matrix distances in a similar way. For example, channel parameters between the test point 310-c and a test point 310-d (e.g., a test point 2–2) may have a relatively high similarity based on a respective correlation matrix distance being less than (e.g., failing to satisfy) the threshold, while channel parameters between the test point 310-d and a test point 310-e (e.g., a test point 3–1) may have a relatively low similarity based on a respective correlation matrix distance being greater than (e.g., satisfying) the threshold. In addition, channel parameters between the test point 310-e  and a test point 310-f (e.g., a test point 3–2) may have a relatively high similarity while channel parameters between the test point 310-f and a test point 310-g (e.g., a test point 4–1) may have a relatively low similarity, channel parameters between the test point 310-g and a test point 310-h (e.g., a test point 4–2) may have a relatively high similarity, and so on.
As the device trajectory 305 is divided into the test points 310 to perform a test, channel conditions between each test point 310 may be unknown to the wireless device (e.g., wireless device 210) . As such, the wireless device (e.g., a channel emulator of the wireless device) may interpolate channel parameters between sets of adjacent test points to emulate the channel and changes to the channel between different test points 310. For example, the wireless device may perform a channel emulation 315-a between the test point 310-a and the test point 310-b, a channel emulation 315-b between the test point 310-b and the test point 310-c, and so on for the remaining sets of adjacent test points. The channel emulations 315 may enable the wireless device to transmit signals to a device under test, where the signals may generate the interpolated channel parameters.
In some cases, for a first set of adjacent test points with a relatively high similarity, a wireless device may use Equation 2 to interpolate (e.g., linearly interpolate) each channel parameter between each test point 310 of the first set of adjacent test points. That is, the wireless device may interpolate channel parameter between the test point 310-a and the test point 310-b (e.g., the first set of adjacent test points) based on a respective correlation matrix distance between the test point 310-a and the test point 310-b being less than a threshold using Equation 1 (e.g., the correlation matrix distance is greater than X) . In some examples, the test point 310-a and the test point 310-b may each be associated with an LOS condition and may have a first quantity of clusters that is the same for both test points 310.
Additionally or alternatively, for a second set of adjacent test points with a relatively low similarity, the wireless device may use Equation 2 to interpolate each channel parameter between the each test point of the second set of adjacent test points while considering a birth and death criteria. For example, based on a correlation matrix distance for the test point 310-b and the test point 310-c being greater than a threshold, at least one LOS condition or a quantity of clusters between the test point 310-b and the  test point 310-c (e.g., the second set of adjacent test points) may be different. The wireless device may interpolate at least one channel parameter between a corresponding channel parameter associated with the test point 310-b and a virtual parameter associated with the test point 310-c over a respective time period, where a power metric for the virtual parameter may be set to a predetermined power level.
In some cases, a cluster may refer to an object in a channel that reflects energy to a device under test (e.g., within a test chamber) in multiple paths. In some cases, a signal may reflect off of a cluster (e.g., a metallic or glass object) and as such, its energy may be reflected to the UE via one or more sub-paths. For example, an area with a large quantity of buildings (e.g., a cluster delay line (CDL) -C (CDL-C) scenario) may cause a relatively higher refraction of a device than a rural area with few buildings. The test scenario 300 may include different quantities of clusters modeled throughout a test chamber, where each cluster may have properties such as delays, angles, angle spreads, and the like.
In some examples, a quantity of clusters (e.g., N) may be associated with the test point 310-b and a different quantity of clusters (e.g., N+1) may be associated with the test point 310-c. That is, the wireless device may identify a first set of clusters associated with the test point 310-c, wherein a cluster associated with the test point 310-c may be excluded from a second set of clusters associated with the test point 310-b (e.g., the test point 310-c may be associated with more clusters than the test point 310-b) . The wireless device may set a virtual (e.g., non-existent) N+1 cluster for the test point 310-b having channel parameters set to a predetermined power level (e.g., a null or very low power level) . For example, the wireless device may generate a virtual cluster for the test point 310-b (e.g., which is associated with fewer clusters than the test point 310-c) , where the virtual cluster may have a power of -100 dB. The wireless device may perform the interpolation of each channel parameter between the test point 310-b and the test point 310-c over the respective time period by interpolating the channel parameters between the virtual cluster associated with the test point 310-b and the cluster associated with the test point 310-c. As such, the wireless device may calculate the power of each cluster of between the test point 310-b and the test point 310-c.
In some examples, an LOS condition between the test point 310-b and the test point 310-c may change based on the relatively low similarity between the test points 310. For example, the test points 310 may experience transitions from LOS to NLOS conditions, or from NLOS conditions to LOS conditions. The wireless device may identify an LOS sub-path associated with the test point 310-c and excluded from the test point 310-b. In some cases, the wireless device may generate a virtual sub-path associated with the test point 310-b having channel parameters set to a predetermined power level (e.g., a null or very low power level) . For example, a direct LOS may be defined by a K-factor, and the wireless device may generate the virtual sub-path with a power of -100 dB. The wireless device may perform the interpolation of each channel parameter between the test point 310-b and the test point 310-c over the respective time period, which may include interpolating the channel parameters between the virtual sub-path associated with the test point 310-b and the LOS sub-path associated with the test point 310-c.
FIG. 4 shows a block diagram 400 of a device 405 that supports dynamic over-the-air testing in accordance with aspects of the present disclosure. The device 405 may be an example of aspects of a wireless device as described herein. The device 405 may include a receiver 410, a transmitter 415, and a communications manager 420. The device 405 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 410 may provide a means for receiving information such as packets, user data, control information, or any combination thereof associated with various information channels (e.g., control channels, data channels, information channels related to dynamic over-the-air testing) . Information may be passed on to other components of the device 405. The receiver 410 may utilize a single antenna or a set of multiple antennas.
The transmitter 415 may provide a means for transmitting signals generated by other components of the device 405. For example, the transmitter 415 may transmit information such as packets, user data, control information, or any combination thereof associated with various information channels (e.g., control channels, data channels, information channels related to dynamic over-the-air testing) . In some examples, the  transmitter 415 may be co-located with a receiver 410 in a transceiver module. The transmitter 415 may utilize a single antenna or a set of multiple antennas.
The communications manager 420, the receiver 410, the transmitter 415, or various combinations thereof or various components thereof may be examples of means for performing various aspects of dynamic over-the-air testing as described herein. For example, the communications manager 420, the receiver 410, the transmitter 415, or various combinations or components thereof may support a method for performing one or more of the functions described herein.
In some examples, the communications manager 420, the receiver 410, the transmitter 415, or various combinations or components thereof may be implemented in hardware (e.g., in communications management circuitry) . The hardware may include a processor, a DSP, an ASIC, an FPGA or other programmable logic device, a discrete gate or transistor logic, discrete hardware components, or any combination thereof configured as or otherwise supporting a means for performing the functions described in the present disclosure. In some examples, a processor and memory coupled with the processor may be configured to perform one or more of the functions described herein (e.g., by executing, by the processor, instructions stored in the memory) .
Additionally or alternatively, in some examples, the communications manager 420, the receiver 410, the transmitter 415, or various combinations or components thereof may be implemented in code (e.g., as communications management software or firmware) executed by a processor. If implemented in code executed by a processor, the functions of the communications manager 420, the receiver 410, the transmitter 415, or various combinations or components thereof may be performed by a general-purpose processor, a DSP, a CPU, an ASIC, an FPGA, or any combination of these or other programmable logic devices (e.g., configured as or otherwise supporting a means for performing the functions described in the present disclosure) .
In some examples, the communications manager 420 may be configured to perform various operations (e.g., receiving, monitoring, transmitting) using or otherwise in cooperation with the receiver 410, the transmitter 415, or both. For example, the communications manager 420 may receive information from the receiver 410, send information to the transmitter 415, or be integrated in combination with the receiver  410, the transmitter 415, or both to receive information, transmit information, or perform various other operations as described herein.
The communications manager 420 may support wireless communications at a wireless device in accordance with examples as disclosed herein. For example, the communications manager 420 may be configured as or otherwise support a means for identifying a set of multiple test points for a trajectory for a device under test, where adjacent test points of the set of multiple test points are associated with respective correlation matrix distances. The communications manager 420 may be configured as or otherwise support a means for performing an interpolation of each channel parameter of a set of multiple channel parameters between the adjacent test points over respective time periods based on the respective correlation matrix distances. The communications manager 420 may be configured as or otherwise support a means for transmitting, via a test antenna and to the device under test within a test chamber, a set of multiple signals over the respective time periods, where the set of multiple signals generate the interpolated channel parameters between the test antenna and the device under test.
By including or configuring the communications manager 420 in accordance with examples as described herein, the device 405 (e.g., a processor controlling or otherwise coupled to the receiver 410, the transmitter 415, the communications manager 420, or a combination thereof) may support techniques for modeling and testing dynamic channel conditions in FR2, which may improve testing accuracy and as such, improve performance in verifying a device response in an FR2 environment.
FIG. 5 shows a block diagram 500 of a device 505 that supports dynamic over-the-air testing in accordance with aspects of the present disclosure. The device 505 may be an example of aspects of a device 405 or a wireless device as described herein. The device 505 may include a receiver 510, a transmitter 515, and a communications manager 520. The device 505 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 510 may provide a means for receiving information such as packets, user data, control information, or any combination thereof associated with various information channels (e.g., control channels, data channels, information channels related to dynamic over-the-air testing) . Information may be passed on to other  components of the device 505. The receiver 510 may utilize a single antenna or a set of multiple antennas.
The transmitter 515 may provide a means for transmitting signals generated by other components of the device 505. For example, the transmitter 515 may transmit information such as packets, user data, control information, or any combination thereof associated with various information channels (e.g., control channels, data channels, information channels related to dynamic over-the-air testing) . In some examples, the transmitter 515 may be co-located with a receiver 510 in a transceiver module. The transmitter 515 may utilize a single antenna or a set of multiple antennas.
The device 505, or various components thereof, may be an example of means for performing various aspects of dynamic over-the-air testing as described herein. For example, the communications manager 520 may include a test point identification component 525, an interpolation component 530, a signal transmission component 535, or any combination thereof. The communications manager 520 may be an example of aspects of a communications manager 420 as described herein. In some examples, the communications manager 520, or various components thereof, may be configured to perform various operations (e.g., receiving, monitoring, transmitting) using or otherwise in cooperation with the receiver 510, the transmitter 515, or both. For example, the communications manager 520 may receive information from the receiver 510, send information to the transmitter 515, or be integrated in combination with the receiver 510, the transmitter 515, or both to receive information, transmit information, or perform various other operations as described herein.
The communications manager 520 may support wireless communications at a wireless device in accordance with examples as disclosed herein. The test point identification component 525 may be configured as or otherwise support a means for identifying a set of multiple test points for a trajectory for a device under test, where adjacent test points of the set of multiple test points are associated with respective correlation matrix distances. The interpolation component 530 may be configured as or otherwise support a means for performing an interpolation of each channel parameter of a set of multiple channel parameters between the adjacent test points over respective time periods based on the respective correlation matrix distances. The signal transmission component 535 may be configured as or otherwise support a means for  transmitting, via a test antenna and to the device under test within a test chamber, a set of multiple signals over the respective time periods, where the set of multiple signals generate the interpolated channel parameters between the test antenna and the device under test.
FIG. 6 shows a block diagram 600 of a communications manager 620 that supports dynamic over-the-air testing in accordance with aspects of the present disclosure. The communications manager 620 may be an example of aspects of a communications manager 420, a communications manager 520, or both, as described herein. The communications manager 620, or various components thereof, may be an example of means for performing various aspects of dynamic over-the-air testing as described herein. For example, the communications manager 620 may include a test point identification component 625, an interpolation component 630, a signal transmission component 635, a correlation matrix distance component 640, a cluster component 645, a LOS component 650, or any combination thereof. Each of these components may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
The communications manager 620 may support wireless communications at a wireless device in accordance with examples as disclosed herein. The test point identification component 625 may be configured as or otherwise support a means for identifying a set of multiple test points for a trajectory for a device under test, where adjacent test points of the set of multiple test points are associated with respective correlation matrix distances. The interpolation component 630 may be configured as or otherwise support a means for performing an interpolation of each channel parameter of a set of multiple channel parameters between the adjacent test points over respective time periods based on the respective correlation matrix distances. The signal transmission component 635 may be configured as or otherwise support a means for transmitting, via a test antenna and to the device under test within a test chamber, a set of multiple signals over the respective time periods, where the set of multiple signals generate the interpolated channel parameters between the test antenna and the device under test.
In some examples, to support performing the interpolation of each channel parameter, the correlation matrix distance component 640 may be configured as or  otherwise support a means for performing, based on the respective correlation matrix distance between a first set of adjacent test points being less than a threshold, the interpolation of each channel parameter of the set of multiple channel parameters based on a first set of channel parameters associated with a first test point of the first set of adjacent test points and a second set of channel parameters associated with a second test point of the first set of adjacent test points over the respective time period.
In some examples, the first set of adjacent test points are each associated with a first line-of-sight condition and have a first quantity of clusters.
In some examples, to support performing the interpolation of each channel parameter, the correlation matrix distance component 640 may be configured as or otherwise support a means for performing, based on the respective correlation matrix distance between a second set of adjacent test points being greater than a threshold, the interpolation of at least one channel parameter of the set of multiple channel parameters between a corresponding channel parameter associated with a third test point of the second set of adjacent test points and a virtual parameter associated with a fourth test point of the second set of adjacent test points over the respective time period, where a power metric for the virtual parameter is set to a predetermined power level.
In some examples, at least one of a line-of-sight condition or a quantity of clusters is different between the third test point and the fourth test point.
In some examples, the cluster component 645 may be configured as or otherwise support a means for identifying a first set of multiple clusters associated with the fourth test point, where a cluster associated with the fourth test point is excluded in a second set of multiple clusters associated with the third test point. In some examples, the cluster component 645 may be configured as or otherwise support a means for generating a virtual cluster for the third test point having channel parameters set to the predetermined power level. In some examples, the interpolation component 630 may be configured as or otherwise support a means for performing the interpolation of each channel parameter of the set of multiple channel parameters between the second set of adjacent test points over the respective time period, where performing the interpolation includes interpolating the channel parameters between the virtual cluster associated with the third test point and the cluster associated with the fourth test point.
In some examples, the LOS component 650 may be configured as or otherwise support a means for identifying a line-of-sight sub-path associated with the fourth test point, where the line-of-sight sub-path is excluded in the third test point. In some examples, the LOS component 650 may be configured as or otherwise support a means for generating a virtual sub-path associated with the third test point having channel parameters set to the predetermined power level. In some examples, the interpolation component 630 may be configured as or otherwise support a means for performing the interpolation of each channel parameter of the set of multiple channel parameters between the second set of adjacent test points over the respective time period, where performing the interpolation includes interpolating the channel parameters between the virtual sub-path associated with the third test point and the line-of-sight sub-path associated with the fourth test point.
In some examples, 
Figure PCTCN2021139911-appb-000005
and where D includes a correlation matrix distance between the adjacent test points, R 1 includes a spatial correlation matrix for a first test point, and R 2 includes a spatial correlation matrix for a second test point.
In some examples, to support interpolation, the interpolation component 630 may be configured as or otherwise support a means for 
Figure PCTCN2021139911-appb-000006
and where P (T) includes the interpolated channel parameters at a time t, P (a) includes a first channel parameter of the set of multiple channel parameters between the adjacent test points, P (b) includes a second channel parameter of a set of multiple channel parameters between the adjacent test points, and T ab includes a respective time period between the adjacent test points.
In some examples, the set of multiple channel parameters include an angle, an angle spread, a delay, a cluster power, a K-factor, a path loss, a speed of the device under test, a cross-polarization ratio, or any combination thereof.
FIG. 7 shows a diagram of a system 700 including a device 705 that supports dynamic over-the-air testing in accordance with aspects of the present disclosure. The device 705 may be an example of or include the components of a device 405, a device 505, or a wireless device as described herein. The device 705 may include  components for bi-directional voice and data communications including components for transmitting and receiving communications, such as a communications manager 720, an I/O controller 710, a transceiver 715, an antenna 725, a memory 730, code 735, and a processor 740. These components may be in electronic communication or otherwise coupled (e.g., operatively, communicatively, functionally, electronically, electrically) via one or more buses (e.g., a bus 745) .
The I/O controller 710 may manage input and output signals for the device 705. The I/O controller 710 may also manage peripherals not integrated into the device 705. In some cases, the I/O controller 710 may represent a physical connection or port to an external peripheral. In some cases, the I/O controller 710 may utilize an operating system such as
Figure PCTCN2021139911-appb-000007
Figure PCTCN2021139911-appb-000008
or another known operating system. Additionally or alternatively, the I/O controller 710 may represent or interact with a modem, a keyboard, a mouse, a touchscreen, or a similar device. In some cases, the I/O controller 710 may be implemented as part of a processor, such as the processor 740. In some cases, a user may interact with the device 705 via the I/O controller 710 or via hardware components controlled by the I/O controller 710.
In some cases, the device 705 may include a single antenna 725. However, in some other cases, the device 705 may have more than one antenna 725, which may be capable of concurrently transmitting or receiving multiple wireless transmissions. The transceiver 715 may communicate bi-directionally, via the one or more antennas 725, wired, or wireless links as described herein. For example, the transceiver 715 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver. The transceiver 715 may also include a modem to modulate the packets, to provide the modulated packets to one or more antennas 725 for transmission, and to demodulate packets received from the one or more antennas 725. The transceiver 715, or the transceiver 715 and one or more antennas 725, may be an example of a transmitter 415, a transmitter 515, a receiver 410, a receiver 510, or any combination thereof or component thereof, as described herein.
The memory 730 may include RAM and ROM. The memory 730 may store computer-readable, computer-executable code 735 including instructions that, when executed by the processor 740, cause the device 705 to perform various functions  described herein. The code 735 may be stored in a non-transitory computer-readable medium such as system memory or another type of memory. In some cases, the code 735 may not be directly executable by the processor 740 but may cause a computer (e.g., when compiled and executed) to perform functions described herein. In some cases, the memory 730 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
The processor 740 may include an intelligent hardware device (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) . In some cases, the processor 740 may be configured to operate a memory array using a memory controller. In some other cases, a memory controller may be integrated into the processor 740. The processor 740 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 730) to cause the device 705 to perform various functions (e.g., functions or tasks supporting dynamic over-the-air testing) . For example, the device 705 or a component of the device 705 may include a processor 740 and memory 730 coupled with or to the processor 740, the processor 740 and memory 730 configured to perform various functions described herein.
The communications manager 720 may support wireless communications at a wireless device in accordance with examples as disclosed herein. For example, the communications manager 720 may be configured as or otherwise support a means for identifying a set of multiple test points for a trajectory for a device under test, where adjacent test points of the set of multiple test points are associated with respective correlation matrix distances. The communications manager 720 may be configured as or otherwise support a means for performing an interpolation of each channel parameter of a set of multiple channel parameters between the adjacent test points over respective time periods based on the respective correlation matrix distances. The communications manager 720 may be configured as or otherwise support a means for transmitting, via a test antenna and to the device under test within a test chamber, a set of multiple signals over the respective time periods, where the set of multiple signals generate the interpolated channel parameters between the test antenna and the device under test.
By including or configuring the communications manager 720 in accordance with examples as described herein, the device 705 may support techniques for modeling and testing dynamic channel conditions in FR2, which may improve testing accuracy and as such, improve performance in verifying a device response in an FR2 environment.
In some examples, the communications manager 720 may be configured to perform various operations (e.g., receiving, monitoring, transmitting) using or otherwise in cooperation with the transceiver 715, the one or more antennas 725, or any combination thereof. For example, the communications manager 720 may be configured to receive or transmit messages or other signaling as described herein via the transceiver 715. Although the communications manager 720 is illustrated as a separate component, in some examples, one or more functions described with reference to the communications manager 720 may be supported by or performed by the processor 740, the memory 730, the code 735, or any combination thereof. For example, the code 735 may include instructions executable by the processor 740 to cause the device 705 to perform various aspects of dynamic over-the-air testing as described herein, or the processor 740 and the memory 730 may be otherwise configured to perform or support such operations.
FIG. 8 shows a flowchart illustrating a method 800 that supports dynamic over-the-air testing in accordance with aspects of the present disclosure. The operations of the method 800 may be implemented by a wireless device or its components as described herein. For example, the operations of the method 800 may be performed by a wireless device as described with reference to FIGs. 1 through 7. In some examples, a wireless device may execute a set of instructions to control the functional elements of the wireless device to perform the described functions. Additionally or alternatively, the wireless device may perform aspects of the described functions using special-purpose hardware.
At 805, the method may include identifying a set of multiple test points for a trajectory for a device under test, where adjacent test points of the set of multiple test points are associated with respective correlation matrix distances. The operations of 805 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 805 may be performed by a test point identification  component 625 as described with reference to FIG. 6. Additionally or alternatively, means for performing 805 may, but not necessarily, include, for example, antenna 725, transceiver 715, communications manager 720, memory 730 (including code 735) , processor 740 and/or bus 745.
At 810, the method may include performing an interpolation of each channel parameter of a set of multiple channel parameters between the adjacent test points over respective time periods based on the respective correlation matrix distances. The operations of 810 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 810 may be performed by an interpolation component 630 as described with reference to FIG. 6. Additionally or alternatively, means for performing 810 may, but not necessarily, include, for example, antenna 725, transceiver 715, communications manager 720, memory 730 (including code 735) , processor 740 and/or bus 745.
At 815, the method may include transmitting, via a test antenna and to the device under test within a test chamber, a set of multiple signals over the respective time periods, where the set of multiple signals generate the interpolated channel parameters between the test antenna and the device under test. The operations of 815 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 815 may be performed by a signal transmission component 635 as described with reference to FIG. 6. Additionally or alternatively, means for performing 815 may, but not necessarily, include, for example, antenna 725, transceiver 715, communications manager 720, memory 730 (including code 735) , processor 740 and/or bus 745.
FIG. 9 shows a flowchart illustrating a method 900 that supports dynamic over-the-air testing in accordance with aspects of the present disclosure. The operations of the method 900 may be implemented by a wireless device or its components as described herein. For example, the operations of the method 900 may be performed by a wireless device as described with reference to FIGs. 1 through 7. In some examples, a wireless device may execute a set of instructions to control the functional elements of the wireless device to perform the described functions. Additionally or alternatively, the wireless device may perform aspects of the described functions using special-purpose hardware.
At 905, the method may include identifying a set of multiple test points for a trajectory for a device under test, where adjacent test points of the set of multiple test points are associated with respective correlation matrix distances. The operations of 905 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 905 may be performed by a test point identification component 625 as described with reference to FIG. 6. Additionally or alternatively, means for performing 905 may, but not necessarily, include, for example, antenna 725, transceiver 715, communications manager 720, memory 730 (including code 735) , processor 740 and/or bus 745.
At 910, the method may include performing, based on the respective correlation matrix distance between a first set of adjacent test points being less than a threshold, the interpolation of each channel parameter of the set of multiple channel parameters based on a first set of channel parameters associated with a first test point of the first set of adjacent test points and a second set of channel parameters associated with a second test point of the first set of adjacent test points over the respective time period. The operations of 910 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 910 may be performed by a correlation matrix distance component 640 as described with reference to FIG. 6. Additionally or alternatively, means for performing 910 may, but not necessarily, include, for example, antenna 725, transceiver 715, communications manager 720, memory 730 (including code 735) , processor 740 and/or bus 745.
At 915, the method may include transmitting, via a test antenna and to the device under test within a test chamber, a set of multiple signals over the respective time periods, where the set of multiple signals generate the interpolated channel parameters between the test antenna and the device under test. The operations of 915 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 915 may be performed by a signal transmission component 635 as described with reference to FIG. 6. Additionally or alternatively, means for performing 915 may, but not necessarily, include, for example, antenna 725, transceiver 715, communications manager 720, memory 730 (including code 735) , processor 740 and/or bus 745.
FIG. 10 shows a flowchart illustrating a method 1000 that supports dynamic over-the-air testing in accordance with aspects of the present disclosure. The operations of the method 1000 may be implemented by a wireless device or its components as described herein. For example, the operations of the method 1000 may be performed by a wireless device as described with reference to FIGs. 1 through 7. In some examples, a wireless device may execute a set of instructions to control the functional elements of the wireless device to perform the described functions. Additionally or alternatively, the wireless device may perform aspects of the described functions using special-purpose hardware.
At 1005, the method may include identifying a set of multiple test points for a trajectory for a device under test, where adjacent test points of the set of multiple test points are associated with respective correlation matrix distances. The operations of 1005 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1005 may be performed by a test point identification component 625 as described with reference to FIG. 6. Additionally or alternatively, means for performing 1005 may, but not necessarily, include, for example, antenna 725, transceiver 715, communications manager 720, memory 730 (including code 735) , processor 740 and/or bus 745.
At 1010, the method may include performing, based on the respective correlation matrix distance between a second set of adjacent test points being greater than a threshold, the interpolation of at least one channel parameter of the set of multiple channel parameters between a corresponding channel parameter associated with a third test point of the second set of adjacent test points and a virtual parameter associated with a fourth test point of the second set of adjacent test points over the respective time period, where a power metric for the virtual parameter is set to a predetermined power level. The operations of 1010 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1010 may be performed by a correlation matrix distance component 640 as described with reference to FIG. 6. Additionally or alternatively, means for performing 1010 may, but not necessarily, include, for example, antenna 725, transceiver 715, communications manager 720, memory 730 (including code 735) , processor 740 and/or bus 745.
At 1015, the method may include transmitting, via a test antenna and to the device under test within a test chamber, a set of multiple signals over the respective time periods, where the set of multiple signals generate the interpolated channel parameters between the test antenna and the device under test. The operations of 1015 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1015 may be performed by a signal transmission component 635 as described with reference to FIG. 6. Additionally or alternatively, means for performing 1015 may, but not necessarily, include, for example, antenna 725, transceiver 715, communications manager 720, memory 730 (including code 735) , processor 740 and/or bus 745.
FIG. 11 shows a flowchart illustrating a method 1100 that supports dynamic over-the-air testing in accordance with aspects of the present disclosure. The operations of the method 1100 may be implemented by a wireless device or its components as described herein. For example, the operations of the method 1100 may be performed by a wireless device as described with reference to FIGs. 1 through 7. In some examples, a wireless device may execute a set of instructions to control the functional elements of the wireless device to perform the described functions. Additionally or alternatively, the wireless device may perform aspects of the described functions using special-purpose hardware.
At 1105, the method may include identifying a first set of multiple clusters associated with a fourth test point, where a cluster associated with the fourth test point is excluded in a second set of multiple clusters associated with a third test point. The operations of 1105 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1105 may be performed by a cluster component 645 as described with reference to FIG. 6. Additionally or alternatively, means for performing 1105 may, but not necessarily, include, for example, antenna 725, transceiver 715, communications manager 720, memory 730 (including code 735) , processor 740 and/or bus 745.
At 1110, the method may include generating a virtual cluster for the third test point having channel parameters set to the predetermined power level. The operations of 1110 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1110 may be performed by a cluster  component 645 as described with reference to FIG. 6. Additionally or alternatively, means for performing 1110 may, but not necessarily, include, for example, antenna 725, transceiver 715, communications manager 720, memory 730 (including code 735) , processor 740 and/or bus 745.
At 1115, the method may include performing the interpolation of each channel parameter of the set of multiple channel parameters between the second set of adjacent test points over the respective time period, where performing the interpolation includes interpolating the channel parameters between the virtual cluster associated with the third test point and the cluster associated with the fourth test point. The operations of 1115 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1115 may be performed by an interpolation component 630 as described with reference to FIG. 6. Additionally or alternatively, means for performing 1115 may, but not necessarily, include, for example, antenna 725, transceiver 715, communications manager 720, memory 730 (including code 735) , processor 740 and/or bus 745.
FIG. 12 shows a flowchart illustrating a method 1200 that supports dynamic over-the-air testing in accordance with aspects of the present disclosure. The operations of the method 1200 may be implemented by a wireless device or its components as described herein. For example, the operations of the method 1200 may be performed by a wireless device as described with reference to FIGs. 1 through 7. In some examples, a wireless device may execute a set of instructions to control the functional elements of the wireless device to perform the described functions. Additionally or alternatively, the wireless device may perform aspects of the described functions using special-purpose hardware.
At 1205, the method may include identifying a line-of-sight sub-path associated with a fourth test point, where the line-of-sight sub-path is excluded in a third test point. The operations of 1205 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1205 may be performed by a LOS component 650 as described with reference to FIG. 6. Additionally or alternatively, means for performing 1205 may, but not necessarily, include, for example, antenna 725, transceiver 715, communications manager 720, memory 730 (including code 735) , processor 740 and/or bus 745.
At 1210, the method may include generating a virtual sub-path associated with the third test point having channel parameters set to the predetermined power level. The operations of 1210 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1210 may be performed by a LOS component 650 as described with reference to FIG. 6. Additionally or alternatively, means for performing 1210 may, but not necessarily, include, for example, antenna 725, transceiver 715, communications manager 720, memory 730 (including code 735) , processor 740 and/or bus 745.
At 1215, the method may include performing the interpolation of each channel parameter of the set of multiple channel parameters between the second set of adjacent test points over the respective time period, where performing the interpolation includes interpolating the channel parameters between the virtual sub-path associated with the third test point and the line-of-sight sub-path associated with the fourth test point. The operations of 1215 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1215 may be performed by an interpolation component 630 as described with reference to FIG. 6. Additionally or alternatively, means for performing 1215 may, but not necessarily, include, for example, antenna 725, transceiver 715, communications manager 720, memory 730 (including code 735) , processor 740 and/or bus 745.
The following provides an overview of aspects of the present disclosure:
Aspect 1: A method for wireless communications at a wireless device, comprising: identifying a plurality of test points for a trajectory for a device under test, wherein adjacent test points of the plurality of test points are associated with respective correlation matrix distances; performing an interpolation of each channel parameter of a plurality of channel parameters between the adjacent test points over respective time periods based at least in part on the respective correlation matrix distances; and transmitting, via a test antenna and to the device under test within a test chamber, a plurality of signals over the respective time periods, wherein the plurality of signals generate the interpolated channel parameters between the test antenna and the device under test.
Aspect 2: The method of aspect 1, wherein performing the interpolation of each channel parameter comprises: performing, based at least in part on the respective correlation matrix distance between a first set of adjacent test points being less than a threshold, the interpolation of each channel parameter of the plurality of channel parameters based at least in part on a first set of channel parameters associated with a first test point of the first set of adjacent test points and a second set of channel parameters associated with a second test point of the first set of adjacent test points over the respective time period.
Aspect 3: The method of aspect 2, wherein the first set of adjacent test points are each associated with a first line-of-sight condition and have a first quantity of clusters.
Aspect 4: The method of any of aspects 1 through 3, wherein performing the interpolation of each channel parameter comprises: performing, based at least in part on the respective correlation matrix distance between a second set of adjacent test points being greater than a threshold, the interpolation of at least one channel parameter of the plurality of channel parameters between a corresponding channel parameter associated with a third test point of the second set of adjacent test points and a virtual parameter associated with a fourth test point of the second set of adjacent test points over the respective time period, wherein a power metric for the virtual parameter is set to a predetermined power level.
Aspect 5: The method of aspect 4, wherein at least one of a line-of-sight condition or a quantity of clusters is different between the third test point and the fourth test point.
Aspect 6: The method of any of aspects 4 through 5, further comprising: identifying a first plurality of clusters associated with the fourth test point, wherein a cluster associated with the fourth test point is excluded in a second plurality of clusters associated with the third test point; generating a virtual cluster for the third test point having channel parameters set to the predetermined power level; and performing the interpolation of each channel parameter of the plurality of channel parameters between the second set of adjacent test points over the respective time period, wherein performing the interpolation comprises interpolating the channel parameters between  the virtual cluster associated with the third test point and the cluster associated with the fourth test point.
Aspect 7: The method of any of aspects 4 through 6, further comprising: identifying a line-of-sight sub-path associated with the fourth test point, wherein the line-of-sight sub-path is excluded in the third test point; generating a virtual sub-path associated with the third test point having channel parameters set to the predetermined power level; performing the interpolation of each channel parameter of the plurality of channel parameters between the second set of adjacent test points over the respective time period, wherein performing the interpolation comprises interpolating the channel parameters between the virtual sub-path associated with the third test point and the line-of-sight sub-path associated with the fourth test point.
Aspect 8: The method of any of aspects 1 through 7, wherein the respective correlation matrix distances comprise
Figure PCTCN2021139911-appb-000009
and wherein D comprises a correlation matrix distance between the adjacent test points, R 1 comprises a spatial correlation matrix for a first test point, and R 2 comprises a spatial correlation matrix for a second test point.
Aspect 9: The method of any of aspects 1 through 8, wherein the interpolation comprises: P
Figure PCTCN2021139911-appb-000010
and wherein P (T) comprises the interpolated channel parameters at a time t, P (a) comprises a first channel parameter of the plurality of channel parameters between the adjacent test points, P (b) comprises a second channel parameter of a plurality of channel parameters between the adjacent test points, and T ab comprises a respective time period between the adjacent test points.
Aspect 10: The method of any of aspects 1 through 9, wherein the plurality of channel parameters comprise an angle, an angle spread, a delay, a cluster power, a K-factor, a path loss, a speed of the device under test, a cross-polarization ratio, or any combination thereof.
Aspect 11: An apparatus for wireless communications at a wireless device, comprising a memory, a transceiver, and at least one processor of a wireless device, the at least one processor coupled with the memory and the transceiver, the at least one  processor configured to cause the apparatus to perform a method of any of aspects 1 through 10.
Aspect 12: An apparatus for wireless communications at a wireless device, comprising at least one means for performing a method of any of aspects 1 through 10.
Aspect 13: A non-transitory computer-readable medium storing code for wireless communications at a wireless device, the code comprising instructions executable by a processor to perform a method of any of aspects 1 through 10.
It should be noted that the methods described herein describe possible implementations, and that the operations and the steps may be rearranged or otherwise modified and that other implementations are possible. Further, aspects from two or more of the methods may be combined.
Although aspects of an LTE, LTE-A, LTE-A Pro, or NR system may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR networks. For example, the described techniques may be applicable to various other wireless communications systems such as Ultra Mobile Broadband (UMB) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, as well as other systems and radio technologies not explicitly mentioned herein.
Information and signals described herein may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
The various illustrative blocks and components described in connection with the disclosure herein may be implemented or performed with a general-purpose processor, a DSP, an ASIC, a CPU, an FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor  may be a microprocessor, but in the alternative, the processor may be any processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
The functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described herein may be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. A non-transitory storage medium may be any available medium that may be accessed by a general-purpose or special-purpose computer. By way of example, and not limitation, non-transitory computer-readable media may include RAM, ROM, electrically erasable programmable ROM (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor. Also, any connection is properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of computer-readable medium. Disk and disc, as used herein, include CD, laser disc,  optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.
As used herein, including in the claims, “or” as used in a list of items (e.g., a list of items prefaced by a phrase such as “at least one of” or “one or more of” ) indicates an inclusive list such that, for example, a list of at least one of A, B, or C means A or B or C or AB or AC or BC or ABC (i.e., A and B and C) . Also, as used herein, the phrase “based on” shall not be construed as a reference to a closed set of conditions. For example, an example step that is described as “based on condition A” may be based on both a condition A and a condition B without departing from the scope of the present disclosure. In other words, as used herein, the phrase “based on” shall be construed in the same manner as the phrase “based at least in part on. ”
The term “determine” or “determining” encompasses a wide variety of actions and, therefore, “determining” can include calculating, computing, processing, deriving, investigating, looking up (such as via looking up in a table, a database, or another data structure) , ascertaining and the like. Also, “determining” can include receiving (such as receiving information) , accessing (such as accessing data in a memory) and the like. Also, “determining” can include resolving, selecting, choosing, establishing and other such similar actions.
In the appended figures, similar components or features may have the same reference label. Further, various components of the same type may be distinguished by following the reference label by a dash and a second label that distinguishes among the similar components. If just the first reference label is used in the specification, the description is applicable to any one of the similar components having the same first reference label irrespective of the second reference label, or other subsequent reference label.
The description set forth herein, in connection with the appended drawings, describes example configurations and does not represent all the examples that may be implemented or that are within the scope of the claims. The term “example” used herein means “serving as an example, instance, or illustration, ” and not “preferred” or  “advantageous over other examples. ” The detailed description includes specific details for the purpose of providing an understanding of the described techniques. These techniques, however, may be practiced without these specific details. In some instances, known structures and devices are shown in block diagram form in order to avoid obscuring the concepts of the described examples.
The description herein is provided to enable a person having ordinary skill in the art to make or use the disclosure. Various modifications to the disclosure will be apparent to a person having ordinary skill in the art, and the generic principles defined herein may be applied to other variations without departing from the scope of the disclosure. Thus, the disclosure is not limited to the examples and designs described herein but is to be accorded the broadest scope consistent with the principles and novel features disclosed herein.

Claims (30)

  1. A method for wireless communications at a wireless device, comprising:
    identifying a plurality of test points for a trajectory for a device under test, wherein adjacent test points of the plurality of test points are associated with respective correlation matrix distances;
    performing an interpolation of each channel parameter of a plurality of channel parameters between the adjacent test points over respective time periods based at least in part on the respective correlation matrix distances; and
    transmitting, via a test antenna and to the device under test within a test chamber, a plurality of signals over the respective time periods, wherein the plurality of signals generate the interpolated channel parameters between the test antenna and the device under test.
  2. The method of claim 1, wherein performing the interpolation of each channel parameter comprises:
    performing, based at least in part on the respective correlation matrix distance between a first set of adjacent test points being less than a threshold, the interpolation of each channel parameter of the plurality of channel parameters based at least in part on a first set of channel parameters associated with a first test point of the first set of adjacent test points and a second set of channel parameters associated with a second test point of the first set of adjacent test points over the respective time period.
  3. The method of claim 2, wherein the first set of adjacent test points are each associated with a first line-of-sight condition and have a first quantity of clusters.
  4. The method of claim 1, wherein performing the interpolation of each channel parameter comprises:
    performing, based at least in part on the respective correlation matrix distance between a second set of adjacent test points being greater than a threshold, the interpolation of at least one channel parameter of the plurality of channel parameters between a corresponding channel parameter associated with a third test point of the  second set of adjacent test points and a virtual parameter associated with a fourth test point of the second set of adjacent test points over the respective time period, wherein a power metric for the virtual parameter is set to a predetermined power level.
  5. The method of claim 4, wherein at least one of a line-of-sight condition or a quantity of clusters is different between the third test point and the fourth test point.
  6. The method of claim 4, further comprising:
    identifying a first plurality of clusters associated with the fourth test point, wherein a cluster associated with the fourth test point is excluded in a second plurality of clusters associated with the third test point;
    generating a virtual cluster for the third test point having channel parameters set to the predetermined power level; and
    performing the interpolation of each channel parameter of the plurality of channel parameters between the second set of adjacent test points over the respective time period, wherein performing the interpolation comprises interpolating the channel parameters between the virtual cluster associated with the third test point and the cluster associated with the fourth test point.
  7. The method of claim 4, further comprising:
    identifying a line-of-sight sub-path associated with the fourth test point, wherein the line-of-sight sub-path is excluded in the third test point;
    generating a virtual sub-path associated with the third test point having channel parameters set to the predetermined power level;
    performing the interpolation of each channel parameter of the plurality of channel parameters between the second set of adjacent test points over the respective time period, wherein performing the interpolation comprises interpolating the channel parameters between the virtual sub-path associated with the third test point and the line-of-sight sub-path associated with the fourth test point.
  8. The method of claim 1, wherein the respective correlation matrix distances comprise
    Figure PCTCN2021139911-appb-100001
    and wherein D comprises a correlation matrix distance between the adjacent test points, R 1 comprises a spatial correlation  matrix for a first test point, and R 2 comprises a spatial correlation matrix for a second test point.
  9. The method of claim 1, wherein the interpolation comprises
    Figure PCTCN2021139911-appb-100002
    and wherein P (t) comprises the interpolated channel parameters at a time t, P (a) comprises a first channel parameter of the plurality of channel parameters between the adjacent test points, P (b) comprises a second channel parameter of a plurality of channel parameters between the adjacent test points, and T ab comprises a respective time period between the adjacent test points.
  10. The method of claim 1, wherein the plurality of channel parameters comprise an angle, an angle spread, a delay, a cluster power, a K-factor, a path loss, a speed of the device under test, a cross-polarization ratio, or any combination thereof.
  11. An apparatus for wireless communications, comprising:
    a memory;
    a transceiver; and
    at least one processor of a wireless device, the at least one processor coupled with the memory and the transceiver, and the at least one processor configured to cause the apparatus to:
    identify a plurality of test points for a trajectory for a device under test, wherein adjacent test points of the plurality of test points are associated with respective correlation matrix distances;
    perform an interpolation of each channel parameter of a plurality of channel parameters between the adjacent test points over respective time periods based at least in part on the respective correlation matrix distances; and
    transmit, via a test antenna and to the device under test within a test chamber, a plurality of signals over the respective time periods, wherein the plurality of signals generate the interpolated channel parameters between the test antenna and the device under test.
  12. The apparatus of claim 11, the at least one processor configured to cause the apparatus to perform the interpolation of each channel parameter further configured to cause the apparatus to:
    perform, based at least in part on the respective correlation matrix distance between a first set of adjacent test points being less than a threshold, the interpolation of each channel parameter of the plurality of channel parameters based at least in part on a first set of channel parameters associated with a first test point of the first set of adjacent test points and a second set of channel parameters associated with a second test point of the first set of adjacent test points over the respective time period.
  13. The apparatus of claim 12, wherein the first set of adjacent test points are each associated with a first line-of-sight condition and have a first quantity of clusters.
  14. The apparatus of claim 11, the at least one processor configured to cause the apparatus to perform the interpolation of each channel parameter further configured to cause the apparatus to:
    perform, based at least in part on the respective correlation matrix distance between a second set of adjacent test points being greater than a threshold, the interpolation of at least one channel parameter of the plurality of channel parameters between a corresponding channel parameter associated with a third test point of the second set of adjacent test points and a virtual parameter associated with a fourth test point of the second set of adjacent test points over the respective time period, wherein a power metric for the virtual parameter is set to a predetermined power level.
  15. The apparatus of claim 14, wherein at least one of a line-of-sight condition or a quantity of clusters is different between the third test point and the fourth test point.
  16. The apparatus of claim 14, the at least one processor further configured to cause the apparatus to:
    identify a first plurality of clusters associated with the fourth test point, wherein a cluster associated with the fourth test point is excluded in a second plurality of clusters associated with the third test point;
    generate a virtual cluster for the third test point having channel parameters set to the predetermined power level; and
    perform the interpolation of each channel parameter of the plurality of channel parameters between the second set of adjacent test points over the respective time period, wherein performing the interpolation comprises interpolating the channel parameters between the virtual cluster associated with the third test point and the cluster associated with the fourth test point.
  17. The apparatus of claim 14, the at least one processor further configured to cause the apparatus to:
    identify a line-of-sight sub-path associated with the fourth test point, wherein the line-of-sight sub-path is excluded in the third test point;
    generate a virtual sub-path associated with the third test point having channel parameters set to the predetermined power level;
    perform the interpolation of each channel parameter of the plurality of channel parameters between the second set of adjacent test points over the respective time period, wherein performing the interpolation comprises interpolating the channel parameters between the virtual sub-path associated with the third test point and the line-of-sight sub-path associated with the fourth test point.
  18. The apparatus of claim 11, wherein the respective correlation matrix distances comprise
    Figure PCTCN2021139911-appb-100003
    and wherein D comprises a correlation matrix distance between the adjacent test points, R 1 comprises a spatial correlation matrix for a first test point, and R 2 comprises a spatial correlation matrix for a second test point.
  19. The apparatus of claim 11, wherein the interpolation comprises
    Figure PCTCN2021139911-appb-100004
    and wherein P (t) comprises the interpolated channel parameters at a time t, P (a) comprises a first channel parameter of the plurality of channel parameters between the adjacent test points, P (b) comprises a second channel parameter of a plurality of channel parameters between the adjacent test points, and T ab comprises a respective time period between the adjacent test points.
  20. The apparatus of claim 11, wherein the plurality of channel parameters comprise an angle, an angle spread, a delay, a cluster power, a K-factor, a path loss, a speed of the device under test, a cross-polarization ratio, or any combination thereof.
  21. A non-transitory computer-readable medium storing code for wireless communications at a wireless device, the code comprising instructions executable by a processor to:
    identify a plurality of test points for a trajectory for a device under test, wherein adjacent test points of the plurality of test points are associated with respective correlation matrix distances;
    perform an interpolation of each channel parameter of a plurality of channel parameters between the adjacent test points over respective time periods based at least in part on the respective correlation matrix distances; and
    transmit, via a test antenna and to the device under test within a test chamber, a plurality of signals over the respective time periods, wherein the plurality of signals generate the interpolated channel parameters between the test antenna and the device under test.
  22. The non-transitory computer-readable medium of claim 21, wherein the instructions to perform the interpolation of each channel parameter are executable by the processor to:
    perform, based at least in part on the respective correlation matrix distance between a first set of adjacent test points being less than a threshold, the interpolation of each channel parameter of the plurality of channel parameters based at least in part on a first set of channel parameters associated with a first test point of the first set of adjacent test points and a second set of channel parameters associated with a second test point of the first set of adjacent test points over the respective time period.
  23. The non-transitory computer-readable medium of claim 22, wherein the first set of adjacent test points are each associated with a first line-of-sight condition and have a first quantity of clusters.
  24. The non-transitory computer-readable medium of claim 21, wherein the instructions to perform the interpolation of each channel parameter are executable by the processor to:
    perform, based at least in part on the respective correlation matrix distance between a second set of adjacent test points being greater than a threshold, the interpolation of at least one channel parameter of the plurality of channel parameters between a corresponding channel parameter associated with a third test point of the second set of adjacent test points and a virtual parameter associated with a fourth test point of the second set of adjacent test points over the respective time period, wherein a power metric for the virtual parameter is set to a predetermined power level.
  25. The non-transitory computer-readable medium of claim 24, wherein at least one of a line-of-sight condition or a quantity of clusters is different between the third test point and the fourth test point.
  26. The non-transitory computer-readable medium of claim 24, wherein the instructions are further executable by the processor to:
    identify a first plurality of clusters associated with the fourth test point, wherein a cluster associated with the fourth test point is excluded in a second plurality of clusters associated with the third test point;
    generate a virtual cluster for the third test point having channel parameters set to the predetermined power level; and
    perform the interpolation of each channel parameter of the plurality of channel parameters between the second set of adjacent test points over the respective time period, wherein performing the interpolation comprises interpolating the channel parameters between the virtual cluster associated with the third test point and the cluster associated with the fourth test point.
  27. The non-transitory computer-readable medium of claim 24, wherein the instructions are further executable by the processor to:
    identify a line-of-sight sub-path associated with the fourth test point, wherein the line-of-sight sub-path is excluded in the third test point;
    generate a virtual sub-path associated with the third test point having channel parameters set to the predetermined power level;
    perform the interpolation of each channel parameter of the plurality of channel parameters between the second set of adjacent test points over the respective time period, wherein performing the interpolation comprises interpolating the channel parameters between the virtual sub-path associated with the third test point and the line-of-sight sub-path associated with the fourth test point.
  28. The non-transitory computer-readable medium of claim 21, the wherein the respective correlation matrix distances comprise
    Figure PCTCN2021139911-appb-100005
    and wherein D comprises a correlation matrix distance between the adjacent test points, R 1 comprises a spatial correlation matrix for a first test point, and R 2 comprises a spatial correlation matrix for a second test point.
  29. The non-transitory computer-readable medium of claim 21, wherein the interpolation comprises
    Figure PCTCN2021139911-appb-100006
    and wherein P (t) comprises the interpolated channel parameters at a time t, P (a) comprises a first channel parameter of the plurality of channel parameters between the adjacent test points, P (b) comprises a second channel parameter of a plurality of channel parameters between the adjacent test points, and T ab comprises a respective time period between the adjacent test points.
  30. An apparatus for wireless communications at a wireless device, comprising:
    means for identifying a plurality of test points for a trajectory for a device under test, wherein adjacent test points of the plurality of test points are associated with respective correlation matrix distances;
    means for performing an interpolation of each channel parameter of a plurality of channel parameters between the adjacent test points over respective time periods based at least in part on the respective correlation matrix distances; and
    means for transmitting, via a test antenna and to the device under test within a test chamber, a plurality of signals over the respective time periods, wherein the plurality of signals generate the interpolated channel parameters between the test antenna and the device under test.
PCT/CN2021/139911 2021-12-21 2021-12-21 Dynamic over-the-air testing WO2023115300A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/139911 WO2023115300A1 (en) 2021-12-21 2021-12-21 Dynamic over-the-air testing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/139911 WO2023115300A1 (en) 2021-12-21 2021-12-21 Dynamic over-the-air testing

Publications (1)

Publication Number Publication Date
WO2023115300A1 true WO2023115300A1 (en) 2023-06-29

Family

ID=86900840

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/139911 WO2023115300A1 (en) 2021-12-21 2021-12-21 Dynamic over-the-air testing

Country Status (1)

Country Link
WO (1) WO2023115300A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105844023A (en) * 2016-03-25 2016-08-10 北京航空航天大学 Testability modeling method covering uncertainty of test point
US20170019154A1 (en) * 2015-07-16 2017-01-19 Spirent Communications, Inc. Massive mimo array emulation
CN107425895A (en) * 2017-06-21 2017-12-01 西安电子科技大学 A kind of 3D MIMO statistical channel modeling methods based on actual measurement
CN109617638A (en) * 2017-09-30 2019-04-12 是德科技股份有限公司 Radio channel emulator with dynamically changeable channel model
CN113541826A (en) * 2021-07-12 2021-10-22 东南大学 Four-dimensional air interface performance test method of dynamic scene channel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170019154A1 (en) * 2015-07-16 2017-01-19 Spirent Communications, Inc. Massive mimo array emulation
CN105844023A (en) * 2016-03-25 2016-08-10 北京航空航天大学 Testability modeling method covering uncertainty of test point
CN107425895A (en) * 2017-06-21 2017-12-01 西安电子科技大学 A kind of 3D MIMO statistical channel modeling methods based on actual measurement
CN109617638A (en) * 2017-09-30 2019-04-12 是德科技股份有限公司 Radio channel emulator with dynamically changeable channel model
CN113541826A (en) * 2021-07-12 2021-10-22 东南大学 Four-dimensional air interface performance test method of dynamic scene channel

Similar Documents

Publication Publication Date Title
US20210234598A1 (en) Antenna group-specific parameter configuration in millimeter wave communications
US11395155B2 (en) Virtual serving beam tracking in millimeter wave wireless systems
US20220070708A1 (en) Techniques to enhance beam reporting for non-communication signals
KR20240022505A (en) Phase pre-compensation for misalignment
US20240114427A1 (en) Discovery of reconfigurable surfaces
US11937137B2 (en) Physical layer measurement without reporting for user equipment mobility
US11729646B2 (en) Subband reference signal measurements
WO2022016303A1 (en) Uplink tracking reference signal techniques in wireless communications
US11700049B2 (en) Techniques for beam switching in wireless communications
US11611896B2 (en) Measurement techniques for reporting beams
US20230092664A1 (en) Managing wireless communications for leaky-wave antennas
WO2023115300A1 (en) Dynamic over-the-air testing
WO2023087203A1 (en) Method and apparatus for codebook design for closed loop operation
US11445509B1 (en) Downlink beam management using a configurable deflector
US11665555B2 (en) Reciprocity report for wireless communications systems
WO2023039832A1 (en) Configuring parameters of a reconfigurable surface
US20230129783A1 (en) Transmission configuration indication state configuration for sensing-assisted communication
US11863276B2 (en) Directional channel access using a narrow beam with multiple spatial streams
US11646784B2 (en) Uplink beam management using a configurable deflector
WO2023279226A1 (en) Channel estimation based beam determination in holographic multiple-in multiple-out system
US20240089976A1 (en) Sidelink-assisted node verification
WO2023123174A1 (en) Hexagonal antenna lattice for multiple-input, multiple-output communications with beamforming
US20240040415A1 (en) Perception-aided beam-based communications
WO2023159469A1 (en) Orbital angular momentum multiplexing using different quantities of transmit and receive antenna subarrays
WO2023137658A1 (en) Methods and apparatuses for initial access

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21968454

Country of ref document: EP

Kind code of ref document: A1