WO2023113584A1 - Eardrum membrane made of human collagen for repairing eardrum injuries - Google Patents

Eardrum membrane made of human collagen for repairing eardrum injuries Download PDF

Info

Publication number
WO2023113584A1
WO2023113584A1 PCT/MX2022/050118 MX2022050118W WO2023113584A1 WO 2023113584 A1 WO2023113584 A1 WO 2023113584A1 MX 2022050118 W MX2022050118 W MX 2022050118W WO 2023113584 A1 WO2023113584 A1 WO 2023113584A1
Authority
WO
WIPO (PCT)
Prior art keywords
collagen
repair
eardrum
membrane
solution
Prior art date
Application number
PCT/MX2022/050118
Other languages
Spanish (es)
French (fr)
Inventor
Juan Pablo AGUILAR ALEMÁN
Grecia Andrea CARDOSO HERNÁNDEZ
Brenda Karen AGUILLON ESTRADA
Beni CAMACHO PÉREZ
Original Assignee
Top Health, S.A.P.I. De C.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Top Health, S.A.P.I. De C.V. filed Critical Top Health, S.A.P.I. De C.V.
Publication of WO2023113584A1 publication Critical patent/WO2023113584A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/18Internal ear or nose parts, e.g. ear-drums
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/39Connective tissue peptides, e.g. collagen, elastin, laminin, fibronectin, vitronectin, cold insoluble globulin [CIG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/22Polypeptides or derivatives thereof, e.g. degradation products
    • A61L27/24Collagen

Definitions

  • the present invention is related to biotechnology and medical science in general, in particular, it is related to methods for repairing tissue lesions and more specifically it refers to a method for obtaining a crosslinked type I human collagen tympanic membrane of single use, used as a scaffold to repair eardrum perforations caused by the insertion of foreign objects into the ear, sudden changes in pressure (barotrauma), acoustic trauma, infections and/or middle ear injuries.
  • the tympanic membrane is a thin, semi-transparent division between the external auditory canal and the middle ear. When sound enters the outer ear, the sound waves reach the tympanic membrane causing it to vibrate, the vibrations are subsequently transferred to the ossicles in the middle ear which transfer the vibratory signals to the inner ear. It is here where the cochlea converts acoustic vibrations into nerve signals that can be interpreted by the nervous system.
  • the membrane The tympanic membrane is composed of a thin connective tissue membrane covered by an epithelial layer on the outer ear and by mucosa on the inner surface.
  • the patient may present pain, bleeding, hearing loss, tinnitus and vertigo. Diagnosis is based on visual inspection, through otoscopy. In general, no specific treatment is needed to treat perforated eardrums, since, in most cases, the eardrum tends to heal in a period ranging from a few weeks to up to three months without the need for an admixture. treatment.
  • oral antibiotics or ear drops may be prescribed to prevent or treat an infection.
  • treatments to repair the tympanic membrane perforation include everything from placing a tympanic patch, in a process known as myringoplasty, to the surgical procedure (tympanoplasty). Surgery may be necessary for perforations that persist > 2 months, when there is impairment of the ossicular chain, or lesions involving the inner ear.
  • otitis media infections
  • chronic otitis media may develop, where infections are recurrent and there is a possibility that the infection may pass into the inner ear, resulting in damage to the auditory ossicles (ear bones) and affecting the patient's hearing.
  • a persistent ear infection also slows the repair process of the eardrum, by maintaining a constant state of inflammation in response to said infection.
  • infections cause an accumulation of fluids in the middle ear, the presence of these fluids increases the pressure inside the ear, which can result in a ruptured eardrum due to barotrauma.
  • eardrum patches made from different materials. Among the most used are autologous temporal fascia or cartilage grafts, being the reference pattern in the treatment of tympanic perforations; allogeneic grafts, and synthetic and biological materials are also used, depending on the nature of the perforation.
  • the artificial tympanic membrane is produced by using silk protein or silk protein complex solution obtained from the cocoon or by mixing it with collagen, alginic acid, PEG ( po I ieti I eng I ico I ) or Pluronic F-127, etc.
  • the process for obtaining the artificial tympanic membrane of said document is very different from our invention and uses silk protein as raw material which, optionally, can be mixed with collagen, alginic acid, PEG ( p o I i eti I e n g I i c o I ) or Pluronic F-127.
  • said membrane does not provide the benefits of the human collagen tympanic membrane of the present invention, it is not capable of adhering properly and staying in the lesion site throughout the treatment, it does not It has a suitable thickness and porosity to favor the transmission of ambient sound to the inner ear.
  • Some of the products described commercially or in other patents are not able to adhere and stay at the lesion site throughout the treatment.
  • An example is cigarette paper or rice paper patches that tend to move along the surface of the eardrum or detach from it, exposing the area of the lesion and, therefore, failing to fulfill the function of a patch. Due to the above, it is common in these cases that a second medical intervention is required to reposition the patch in the appropriate area, which can cause inconveniences for the patient.
  • Some of the products described commercially or in other patents use biological materials, derived from the extracellular matrix, such as hyaluronic acid, which can promote the formation of granular tissue which, although necessary for the healing process, if generated in an uncontrolled manner, can lead to the formation of fibrotic tissue that it would affect the mobility of the tympanic membrane and, therefore, its function in the transmission of ambient sound to the inner ear.
  • biological materials derived from the extracellular matrix
  • hyaluronic acid which can promote the formation of granular tissue which, although necessary for the healing process, if generated in an uncontrolled manner, can lead to the formation of fibrotic tissue that it would affect the mobility of the tympanic membrane and, therefore, its function in the transmission of ambient sound to the inner ear.
  • the production of the membrane with a controlled porosity in this type of products is a sophisticated and complex process that requires specialized equipment, which represents an increase in production costs.
  • Some of the products described commercially or in other patents use biological materials derived from the extracellular matrix, such as collagen; however, it is xenogeneic collagen that presents a higher risk of provoking an inflammatory response, because it comes from a different species from that of the recipient (patient).
  • Some of the products described commercially or in other patents contain human collagen; however, the product has not been treated with proteases, so some regions of the collagen chain, responsible for provoking an antigenic response, may still be present, and generate an inflammatory response in the patient.
  • the main objective of the present invention is to make available a human collagen tympanic membrane for the repair of tympanic lesions that presents appropriate physical, chemical, mechanical and biological properties for its implementation in the treatment of tympanic lesions and/or perforations.
  • Another objective of the invention is to provide said human collagen tympanic membrane for the repair of tympanic lesions that, in addition, is made from a biological, degradable, highly biocompatible material and whose obtaining does not involve performing a surgical procedure on the patient, unlike autologous grafts.
  • Another objective of the invention is to provide said human collagen tympanic membrane for the repair of tympanic lesions that, in addition, temporarily provides a scaffold and a physical barrier that separates the middle ear from the external ear, while the tissue repair is carried out. and the continuity of the eardrum is reestablished.
  • Another objective of the invention is to provide said human collagen tympanic membrane for the repair of tympanic lesions that, moreover, can be offered at a lower cost than currently available products and with greater effectiveness, due to its allogeneic protein nature.
  • Another objective of the invention is to provide said human collagen tympanic membrane for the repair of tympanic lesions that, in addition, allows it to be incorporated on the damaged tympanic membrane tissue and that offers a greater retention capacity allowing the addition of substances, factors or additives to the product that enhances its repair function, or that serve to broaden the purpose of use of the collagen membrane.
  • Another objective of the invention is to provide said human collagen tympanic membrane for the repair of eardrum injuries that, in addition, offers greater mechanical performance so that it resembles the resistance and flexibility of the human eardrum and can remain in the application site without breaking, detaching. , move, degrade prematurely or generate a thickening in the tissue or abnormality in the eardrum that harms the patient.
  • Another objective of the invention is to provide a standardized and optimized process for the manufacture of a human collagen tympanic membrane for the repair of tympanic lesions, which allows dispensing with more sophisticated techniques and a lower production cost than similar products in the market, without compromising quality.
  • Another objective of the invention is to provide a standardized and optimized process for the manufacture of a human collagen tympanic membrane for the repair of tympanic lesions, which also reduces the risk of infection by external pathogenic agents and accelerates the closure of the perforation of the eardrum. eardrum.
  • the second problem to solve was that the dimensions of the product should be similar to the human tympanic membrane, especially in thickness, since a patch that is too thick could hinder and slow down the healing of the lesion, in addition to the risk of decreased hearing capacity of the patient during treatment due to the thickening of the tissue and consequent loss of mobility of the tympanic membrane. This was resolved by testing different I i o fi I i z a t i o n conditions and incorporating a pressing process to produce human collagen structures with controlled characteristics.
  • the product despite being a sheet, presented a porous structure with the appropriate pore size to promote cell adhesion and migration.
  • This point was resolved by optimizing the concentration of the collagen solution and, therefore, the amount of collagen contained in each membrane.
  • the next problem to solve was related to the functionality of the product.
  • the collagen membrane In order for the membrane to perform its function correctly, it is necessary that it be adaptable and resistant to the natural environment of the application site.
  • the collagen membrane has to be able to adhere to the eardrum and withstand pressure changes between the outer ear and the inner ear, without detaching from the eardrum. In addition, it must be flexible so as not to interfere with the vibrations of the eardrum and not affect the hearing capacity of the patient.
  • the human collagen tympanic membrane of the present invention was made with allogeneic bioactive compounds in order to lessen the patient's inflammatory response and contribute to a faster healing process and decrease the risk of possible complications. This was resolved by previously implementing a standardized and optimized production line for obtaining human collagen with high yields, and its conditioning to meet specific dimensional requirements, to through a simple and low-cost process.
  • the present invention refers to a single-use crosslinked type I human collagen tympanic membrane, used as a scaffold in the repair of perforated eardrums caused by the insertion of foreign objects into the ear, sudden changes in pressure ( barotraumas), acoustic traumas, infections and/or lesions of the middle ear.
  • the allogeneic nature of the type I human collagen tympanic membrane guarantees a more efficient repair process, since intraspecific biocompatibility allows a more controlled inflammatory response, unlike products manufactured from bio-materials from other animals. .
  • the human collagen tympanic membrane represents an alternative to current treatments, contributing to a more dynamic repair and in less time that prevents possible future complications such as infections, recurrent perforations or extensive damage to the middle ear and/or internal, and avoiding, in some cases, the surgical procedure.
  • the human collagen tympanic membrane of the present invention consists of a human collagen membrane, with physical, chemical, mechanical and biological characteristics that establish it as an appropriate alternative for the repair of tympanic injuries and/or perforations.
  • the process for producing human collagen tympanic membrane in accordance with the present invention consists of the following stages, carried out in a temperature range of 2 - 25°C, reaching temperatures of up to -80°C in the stages of I i of i I i zation .
  • a) Condition the tissue obtained from human amniotic membrane, tendon and fascia, removing tissues or fluids that are not of interest to the process and reducing the particle size in a uniform manner to a size between 0.5 mm and 2 mm with a mill. drum or rotor, to achieve a better interaction between solutions and tissue in subsequent steps.
  • a type I human collagen tympanic membrane is obtained, with a purity of > 80% and concentration of ⁇ 30 mg/mL or ⁇ 15 mg/cm 2 , of controlled dimensions of 0.5 to 15 cm in diameter or side, and 0.01 -10 mm thick and preferably 1 cm in diameter or side, and thickness of 0.03 - 0.3 mm), with a porosity of 80 to 99% and a pore size of between 10 and 200 pm.
  • the membrane is flexible, absorbable, adherent, resistant to the internal pressures of the ear and biocompatible.
  • the membrane is cut, according to the dimensions of the lesion observed, and later, it is hydrated with physiological solution, antibiotic solution or any other that the doctor considers appropriate.
  • the moist membrane is placed over the eardrum, accessing through the ear canal and completely covering the lesion site.
  • the membrane adheres to the eardrum due to its hydrophilic nature.
  • the collagen membrane provides a provisional support that heals the discontinuity of the eardrum, allowing some transmissibility of sound waves, and on which the cells of the eardrum can migrate from the edge of the wound to the center, and will generate the epithelial and fibrous layers that will close the wound.
  • the average porosity of the elaborated membranes was 83.81 ⁇ 7.09.
  • the smallest pores have a size ranging from 10 to 13.81 ⁇ 4.94 pm, while the largest ones range from 100-200 pm, especially in the cross section of the membrane, which contributes to cell adhesion and migration on the membrane, as described later.
  • the thickness of the membrane is 234.79 ⁇ 47.44 m.
  • the membrane presents an average moisture retention percentage of 1304.07 ⁇ 166.81 %, and the mass increase was 14.04 ⁇ 1.67 times the original weight (Ps). Noting that, despite the fact that the membrane absorbed liquids, there was no turgor of it, and the dimensions of the membrane were not affected.
  • Tissue glue to improve adherence of the membrane to the implant site
  • an antibiotic solution to treat or prevent an ear infection while the eardrum is being repaired
  • growth factors and/or autologous or allogeneic mesenchymal cells that, due to their signaling capacity, can promote or enhance biochemical pathways related to wound healing and tissue repair
  • any synthetic or biological substance, compound or molecule that, due to its bioactive or therapeutic nature, can be used to improve or accelerate tissue repair processes, or as a treatment for any deterioration, alteration or damage to health.
  • Figure 1 shows a block diagram of the process for obtaining the human collagen tympanic membrane for the repair of tympanic lesions, in accordance with the present invention.
  • Figure 2 shows a gel graph of eIectrophoresis with the collagens extracted from human amniotic membrane, tendon and fascia, in accordance with the process of the present invention.
  • Figure 3 shows an image of a prototype human collagen tympanic membrane, in one of its presentations, in accordance with the present invention.
  • Figures 4A and 4B show an image that corresponds to the superficial and transversal analysis, respectively, of the collagen membrane, presenting a hierarchical porosity.
  • Figures 5A and 5B show two images obtained by cytochemical staining with 4',6-diamidino-2-pheni I indo I (DAPI) showing the cell migration in a human collagen tympanic membrane in accordance with the present invention, after 15 days of culture, with 4X and 20X objectives, respectively.
  • DAPI 4',6-diamidino-2-pheni I indo I
  • Figure 6A shows an image of a human collagen tympanic membrane for tympanic injury repair, in accordance with the present invention, which has been subjected to contact with blood and is subjected to manipulation with forceps showing their resistance to manipulation. for placement in the damaged tympanic membrane.
  • Figure 6B shows an image of a human collagen tympanic membrane for tympanic injury repair, in accordance with the present invention, which has been adhered onto the surface of a balloon to demonstrate its ability to adhere to surfaces.
  • Figure 6C shows an image of a human collagen tympanic membrane for tympanic injury repair, in accordance with the present invention, that has been adhered onto the surface of a balloon and stretched to demonstrate its resistance to tearing. expansion.
  • Figure 6D shows an image of a human collagen tympanic membrane for tympanic injury repair, in accordance with the present invention, which has been adhered onto the surface of a balloon and stretched showing its ability to preserve shape and properties when returning to the original shape.
  • Figure 7 shows an image of a human collagen tympanic membrane for tympanic injury repair, in accordance with the present invention, subjected to absorption tests to determine the percentage moisture retention that the structure allowed.
  • the manufacturing process of the human collagen tympanic membrane for the repair of tympanic lesions has been standardized and optimized, disregarding more sophisticated techniques that allow, without compromising quality, a cost of production lower than that of similar products on the market.
  • a human collagen tympanic membrane is presented for the repair of tympanic lesions, which can be offered at a lower cost than currently available products and with greater effectiveness, due to its protein nature.
  • the process to produce the human collagen tympanic membrane for the repair of tympanic lesions ranges from the isolation of the tissue to obtaining the collagen, as well as its subsequent transformation into bi- or three-dimensional structures. It consists of a total of nine main steps: tissue conditioning, pre-treatment, extraction, precipitation, dialysis, lyophilization, molding, pressing, and cross-linking, as well as an optional compression step.
  • This process makes it possible to extract allogeneic type I collagen, and with it, adjust it to the appropriate dimensions and chemically condition it (crosslink it) to achieve functional characteristics in vivo, in the intended application. Finally, this last process allows adaptation to be able to get up to speed and thus reach the desirable in vitro and in vivo degradation conditions.
  • the process for producing human collagen tympanic membrane in accordance with the present invention consists of the following stages, carried out in a temperature range of 2 - 25°C, reaching temperatures down to -80°C in the I i of i I i zation stages. a) Condition the tissue obtained from human amniotic membrane, tendon and fascia, removing tissues or fluids that are not of interest to the process and reducing the particle size in a uniform manner to a size between 0.5 mm and 2 mm with a mill. drum or rotor, to achieve a better interaction between solutions and tissue in subsequent steps.
  • b) Pre-treat the previously conditioned tissue, exposing it to a 0.05 - 2 M sodium hydroxide solution, using 50 - 1000 mL per gram of dry tissue, with efficient magnetic stirring at 100 - 500 RPM and for a period of 1 hour to 24 hours, in order to remove surface proteins and leave the collagen fibers exposed; b 1) Wash with distilled water to neutralize the pH of the tissue until it reaches a pH between 7 and 8, before the next step; c) Extract the collagen by enzymatic hydrolysis by subjecting the tissue to an acid solution of acetic acid at a concentration of 0.02 - 0.5 M and using 50 - 1000 L per kg of dry tissue, together with 50 - 1000 g of pepsin per kg of tissue.
  • d) Precipitate the collagen by bringing the resulting collagen solution (450 mL of solution per g of dry tissue) to a high salt concentration, adding 20 - 100 g of sodium chloride per 1 L of collagen solution, homogenizing the solution with magnetic stirring and allowing the ionic interaction of the salt with the collagen molecules to generate their precipitation, for a period of between 2 to 6 hours; subsequently, sieve the resulting solution to a particle size of 50 to 900 ⁇ m; where the fibers recovered from the sieve are solubilized again in an acetic acid solution, using 50 - 1000 mL of acetic acid per g of dry tissue); e) Dialyze the collagen solution in order to purify the solution of excess salt present in the collagen solution, in a dynamic dialysis system in which the collagen is placed inside a 12 to 14 kDa porous membrane to expel impurities when introduced to a dialysis buffer consisting of a solution with a low concentration of 0.02 - 0.5 M acetic acid; where the
  • the membrane is subjected to evaluation.
  • Figure 2 shows the electrophoresis gel with the collagens extracted from human amniotic membrane, tendon and fascia.
  • M Molecular weight marker.
  • Lane 1 Collagen type I standard (0.5 mg/mL).
  • Lane 2 Collagen from tendon (1 mg/mL).
  • Lane 2 Amniotic membrane collagen (1 mg/mL).
  • Lane 4 Fascia collagen (1 mg/mL).
  • the absorbance of the samples was 0.1 ⁇ 0.02, being below the reference value of 0.15.
  • concentration of formaldehyde in the collagen structures is less than 0.001% and meets the requirements stipulated by the FEUM.
  • a type I human collagen tympanic membrane is obtained, with a purity of > 80% and a concentration of ⁇ 30 mg/mL or ⁇ 15 mg/cm 2 , of controlled dimensions (1 cm in diameter or side, and thickness of 0.03 - 0.3 mm), with a porosity of 80 to 99% and a pore size of between 10 and 200 ⁇ m.
  • the membrane is flexible, absorbable, adherent, resistant to the internal pressures of the ear and biocompatible.
  • the membrane is cut, according to the dimensions of the lesion observed, and later, it is hydrated with physiological solution, antibiotic solution or any other that the doctor considers appropriate.
  • the moist membrane is placed over the eardrum, accessing through the ear canal and completely covering the lesion site.
  • the membrane adheres to the eardrum due to its hydrophilic nature.
  • the collagen membrane provides a provisional support that heals the discontinuity of the eardrum, allowing some transmissibility of sound waves, and on which the cells of the eardrum can migrate from the edge of the wound to the center, and will generate the epithelial and fibrous layers that will close the wound.
  • porosity provides the necessary space for cell migration through the scaffold and for the formation of the extracellular matrix; while the permeability allows the influx of nutrients and the elution of metabolic waste, for which it is sought that the devices have high porosity and high permeability.
  • the dimensions of the structures were measured and the volume of the structures (Vm) was determined.
  • the membranes were weighed individually, prior to experimentation (Wo). Subsequently, they were immersed in 5 mL of absolute ethanol and left for 24 h at room temperature. After time, the collagen structures were removed and the superficial excess of liquid was removed with a filter paper. The membranes were immediately weighed (W2 ) and the percentage of porosity was determined, according to the following formula, where p is the density of absolute ethanol:
  • Figure 4A shows the collapsed structure of the scaffold, creating smooth surfaces, but maintaining a porous structure with heterogeneity in pore size, as well as in their morphology.
  • a heterogeneous microstructure is desirable in tissue engineering, since it resembles the complex hierarchical structure found in biological systems; different pore sizes influence different cellular processes.
  • Nanopores ⁇ 100 nm are important for the formation of collagen fibers and extracellular matrix, while macropores (100 m-mm) influence cell seeding, distribution, migration, and neovascularization in vivo.
  • the scaffolds must allow the formation of functional gap junctions, and the appropriate interaction with other cells and/or with the extracellular matrix.
  • the pore size should be large enough to ensure cell nutrition but not too large to prevent cell migration.
  • Cell migration through the membrane requires a balance between cell size, adhesion, pore size, and surface topography. Scaffolds with pore sizes from 50 nm to 12 ⁇ m regulate cell adhesion, cell-cell interaction, and migration across the membrane. scaffolding with size pore > 100 pm have a greater number of functional units necessary for the regeneration of various tissues.
  • a pore size range of 20-120 pm had been established, optimal for cell viability and activity. It was shown that cell adhesion decreased with increasing pore size, attributing to the fact that smaller pores (120 pm) offer a greater surface area to which cells can adhere, after inoculation. However, after 7 days of culture, a higher cell count was observed in scaffolds with larger pore sizes (150-200 pm and 300-350 pm). On the other hand, 325 pm pore sizes facilitated greater cell infiltration through the scaffold, exhibiting a uniform cell distribution, migrating completely from the edge to the center of the scaffold.
  • the smallest pores have a size of 13.81 ⁇ 4.94 pm, while the largest ones range between 100-200 pm, especially, in the cross section of the membrane (see Figure 4B). , which contributes to cell adhesion and migration in the membrane, as described later.
  • the thickness of the membrane has values of 168.92 pm, 201.25 pm and 268.34 pm, being able to establish the average thickness of 234.79 ⁇ 47.44 pm.
  • the thickness of the tympanic membrane varies depending on the different zones that compose it, but in general, most authors have agreed on a thickness of between 30-150 m (Van der Jeught, 2013).
  • Cell migration is a crucial property that the graft must fulfill, since this is the principle for tissue repair.
  • the healing mechanism of an eardrum injury is different from that of other parts of the body, for example, the skin.
  • the response of the tissues is to begin a series of phases of hemostasis, inflammation, cell proliferation and, finally, cell migration; in the case of the tympanic membrane, cell migration precedes proliferation.
  • granulation tissue usually develops and serves as the basis for re-epithelialization; in the case of the eardrum, the squamous epithelium develops first, followed by the rest of the epithelial layer, and concludes with the fibrous layer.
  • fibroblasts were cultured on its surface and the culture was kept incubated for 15 days (37°C, 5% CO2). By cytochemical staining with 4',6-diamidino-2-phenytoindol (DAPI), fibroblast nuclei were visualized, According to figures 5A and 5B it was possible to observe that the collagen membrane supported the growth of fibroblasts and the cells were able to migrate through the entire structure, despite its compaction. Cells can be distinguished individually by staining of the nuclei (see arrows), on top of the collagen scaffold; or as areas of light (see circles) due to the high cell density present, in the lower planes of the membrane, evidencing excellent cell infiltration. Additionally, the collagen membranes remained intact and were easily handled, even after being in culture.
  • DAPI 4',6-diamidino-2-phenytoindol
  • the initial dry weight (Ws) of a membrane is recorded. Subsequently, the membrane is completely immersed in 20 meters of MiliQ water and allowed to settle for 72 h at room temperature. After the period, the membrane is removed from the water and the excess water is allowed to drain for 1 minute. Next, it is weighed, noting the final wet weight (Ph).
  • the moisture retention percentage (R%) is determined, according to the following formula:
  • the membrane presents an average moisture retention percentage of 1304.07 ⁇ 166.81 %, and the mass increase was 14.04 ⁇ 1.67 times the original weight (Ps). Noting that, despite the fact that the membrane absorbed liquids, there was no turgor of it, and the dimensions of the membrane were not affected (see figure 7).
  • Various substances can be added to the membrane, such as: Tissue glue to improve adherence of the membrane to the implant site; an antibiotic solution to treat or prevent an ear infection while the eardrum is being repaired; growth factors and/or autologous or allogeneic mesenchymal cells that, due to their signaling capacity, can promote or enhance biochemical pathways related to wound healing and tissue repair; nanoparticles for the dosed release of drugs or any other substance that can be used to treat any symptom or condition of the wound;
  • any synthetic or biological substance, compound or molecule that, due to its bioactive or therapeutic nature, can be used to improve or accelerate tissue repair processes, or as a treatment for any deterioration, alteration or damage to health.

Abstract

The present invention relates to an eardrum membrane made of human collagen for repairing eardrum injuries, said membrane exhibiting physical, chemical, mechanical and biological properties suitable for its implementation in the treatment of eardrum injuries and/or perforations. The membrane temporarily provides a scaffold and a physical barrier that separates the middle ear from the outer ear, while the tissue is being repaired and the continuity of the eardrum is restored, said membrane characterised in that it comprises a purity > 80% and a concentration of < 30 mg/mL or < 15 mg/cm2, having controlled dimensions of 0.5 to 15 cm in diameter or side, and 0.01 -10 mm in thickness and preferably 1 cm in diameter or side, and 0.03 - 0.3 mm in thickness, with a porosity from 80 to 99% and a pore size between 10 and 200 pm, and in that it further comprises at least one of a tissue glue, an antibiotic solution, drugs, growth factors and/or autologous or allogeneic mesenchymal cells, nanoparticles for the metered release of drugs or the mixtures thereof.

Description

MEMBRANA TIMPÁNICA DE COLÁGENO HUMANO PARA LA REPARACIÓN DE LESIONES DE TÍMPANO HUMAN COLLAGEN TYMPANIC MEMBRANE FOR THE REPAIR OF EAR DAMAGES
CAMPO DE LA INVENCIÓN FIELD OF THE INVENTION
La presente invención está relacionada con la biotecnología y la ciencia médica en lo general, en lo particular, se relaciona con métodos para reparar lesiones tisulares y más específicamente se refiere a un método para la obtención de una membrana timpánica de colágeno humano tipo I entrecruzado de un solo uso, utilizada como andamio en la reparación de perforaciones del timpano, provocadas por la inserción de objetos extraños en el oido, cambios repentinos de presión (barotraumas), traumas acústicos, infecciones y/o lesiones del oido medio. The present invention is related to biotechnology and medical science in general, in particular, it is related to methods for repairing tissue lesions and more specifically it refers to a method for obtaining a crosslinked type I human collagen tympanic membrane of single use, used as a scaffold to repair eardrum perforations caused by the insertion of foreign objects into the ear, sudden changes in pressure (barotrauma), acoustic trauma, infections and/or middle ear injuries.
ANTECEDENTES DE LA INVENCIÓN BACKGROUND OF THE INVENTION
La membrana timpánica es una división delgada y semitransparente entre el canal auditivo externo y el oido medio. Cuando el sonido entra al oido externo, las ondas sonoras alcanzan la membrana timpánica haciendo que ésta vibre, las vibraciones son transferidas posteriormente a los huesecillos en el oido medio que transfieren las señales vibratorias al oido interno. Es aquí, donde la cóclea convierte las vibraciones acústicas en señales nerviosas que pueden ser interpretadas por el sistema nervioso. La membrana timpánica está compuesta de una membrana delgada de tejido conectivo cubierta por una capa epitelial en la parte del oido externo y por mucosa en la superficie interna. The tympanic membrane is a thin, semi-transparent division between the external auditory canal and the middle ear. When sound enters the outer ear, the sound waves reach the tympanic membrane causing it to vibrate, the vibrations are subsequently transferred to the ossicles in the middle ear which transfer the vibratory signals to the inner ear. It is here where the cochlea converts acoustic vibrations into nerve signals that can be interpreted by the nervous system. the membrane The tympanic membrane is composed of a thin connective tissue membrane covered by an epithelial layer on the outer ear and by mucosa on the inner surface.
Ante una perforación de membrana timpánica, el paciente puede presentar dolor, hemorragia, hipoacusia, acúfenos y vértigo. El diagnóstico se basa en la inspección visual, a través de la otoscopía. Por lo general, no se necesita de un tratamiento especifico para tratar las perforaciones de timpano, ya que, en la mayoría de los casos, el timpano tiende a sanar en un periodo comprendido desde unas cuantas semanas o hasta tres meses sin necesidad de aplicar un tratamiento. Opcionalmente, se pueden prescribir antibióticos orales o en forma de gotas óticas, para prevenir o tratar una infección. Faced with a perforation of the tympanic membrane, the patient may present pain, bleeding, hearing loss, tinnitus and vertigo. Diagnosis is based on visual inspection, through otoscopy. In general, no specific treatment is needed to treat perforated eardrums, since, in most cases, the eardrum tends to heal in a period ranging from a few weeks to up to three months without the need for an admixture. treatment. Optionally, oral antibiotics or ear drops may be prescribed to prevent or treat an infection.
No obstante, cuando se trata de lesiones más severas que sanan lentamente, que se complican, donde la perforación involucra los bordes del timpano o si representa > 30% de la membrana timpánica, o si se desarrolla un padecimiento crónico, los tratamientos para reparar la perforación incluyen desde colocar un parche timpánico, en un proceso conocido como miringoplastia, hasta el procedimiento quirúrgico (timpanoplastia). La cirugía puede ser necesaria para las perforaciones que persisten > 2 meses, cuando hay alteración de la cadena de huesecillos, o lesiones que afectan el oido interno. However, when it comes to more severe lesions that heal slowly, that become complicated, where the perforation involves the edges of the eardrum or if it represents > 30% of the tympanic membrane, or if a chronic condition develops, treatments to repair the tympanic membrane perforation include everything from placing a tympanic patch, in a process known as myringoplasty, to the surgical procedure (tympanoplasty). Surgery may be necessary for perforations that persist > 2 months, when there is impairment of the ossicular chain, or lesions involving the inner ear.
Si la lesión en el timpano permanece, agentes patógenos pueden penetrar hasta el oido medio y causar infecciones (otitis media); en algunos casos, se puede desarrollar otitis media crónica, donde las infecciones son recurrentes y existe la posibilidad de que la infección pase al oido interno, resultando en un daño a los osículos auditivos (huesecillos del oido) y afectando la audición del paciente. If the lesion in the eardrum remains, pathogens can penetrate to the middle ear and cause infections (otitis media); in In some cases, chronic otitis media may develop, where infections are recurrent and there is a possibility that the infection may pass into the inner ear, resulting in damage to the auditory ossicles (ear bones) and affecting the patient's hearing.
Una infección persistente en el oido, además, retarda el proceso de reparación del timpano, al mantenerse un estado de inflamación constante, en respuesta a dicha infección. Por otra parte, y aun cuando la perforación se haya resuelto, las infecciones causan una acumulación de fluidos en el oido medio, la presencia de estos fluidos aumenta la presión dentro del oido, lo que puede resultar en la ruptura del timpano por barotrauma. A persistent ear infection also slows the repair process of the eardrum, by maintaining a constant state of inflammation in response to said infection. On the other hand, and even when the perforation has resolved, infections cause an accumulation of fluids in the middle ear, the presence of these fluids increases the pressure inside the ear, which can result in a ruptured eardrum due to barotrauma.
Existen parches timpánicos elaborados a partir de distintos materiales. Entre los más empleados se encuentran los injertos autólogos de fascia temporal o cartílago, siendo el patrón de referencia en el tratamiento de perforaciones timpánicas; injertos alogénicos, y de materiales sintéticos y biológicos también son usados, dependiendo de la naturaleza de la perforación. There are eardrum patches made from different materials. Among the most used are autologous temporal fascia or cartilage grafts, being the reference pattern in the treatment of tympanic perforations; allogeneic grafts, and synthetic and biological materials are also used, depending on the nature of the perforation.
Existen parches de papel de cigarro, cintas adhesivas de látex (Steri-Strip) o parches de seda, que se usan principalmente para perforaciones o laceraciones traumáticas pequeñas o agudas. También existen en el mercado parches de ácido hialurónico, de submucosa del intestino delgado, quitosano, tejido adiposo, de colágeno, injertos de matriz dérmica acelular, de fibrinógeno, enriquecidos con factores de crecimiento. There are cigarette paper patches, latex adhesive tapes (Steri-Strip) or silk patches, which are mainly used for small or sharp traumatic perforations or lacerations. There are also patches on the market made of hyaluronic acid, small intestine submucosa, chitosan, adipose tissue, collagen, acellular dermal matrix grafts, fibrinogen, enriched with growth factors.
Además de parches e injertos, existen suspensiones tópicas o en spray, suspensiones que gelifican o polimerizan por la adición de un estimulo químico, por ejemplo, luz UV, y forman un gel en el sitio de la lesión. In addition to patches and grafts, there are topical or spray suspensions, suspensions which gel or polymerize on the addition of a chemical stimulus, eg UV light, and form a gel at the lesion site.
Se realizó una búsqueda para determinar el estado de la técnica más cercano, encontrándose los siguientes documentos: A search was carried out to determine the closest state of the art, finding the following documents:
Se ubicó el documento US2007162119A1 de Johnson Alan J. del 08 de enero de 2007, que revela una prótesis de membrana timpánica prefabricada, que incluye un trozo de lámina de colágeno procesada con una solución diluida de formalina. La pieza de hoja de colágeno se moldea sobre una superficie de una herramienta que tiene una forma que se asemeja a la membrana timpánica natural de un sujeto humano. El trozo de lámina de colágeno se procesa con una solución diluida de formalina para que la prótesis de membrana timpánica resultante conserve la forma. La prótesis de membrana timpánica es semirrígida, pero flexible, y está empaquetada en un recipiente sustancialmente rígido para proteger su forma durante el envio y almacenamiento. Document US2007162119A1 by Johnson Alan J. dated January 08, 2007 was located, which reveals a prefabricated tympanic membrane prosthesis, which includes a piece of collagen sheet processed with a dilute solution of formalin. The piece of collagen foil is molded onto a surface of a tool that is shaped to resemble the natural tympanic membrane of a human subject. The piece of collagen foil is processed with a dilute formalin solution so that the resulting tympanic membrane prosthesis retains its shape. The tympanic membrane prosthesis is semi-rigid, yet flexible, and is packaged in a substantially rigid container to protect its shape during shipping and storage.
Sin embargo, no es capaz de adherirse adecuadamente y mantenerse en el sitio de la lesión durante todo el tratamiento, no presenta un espesor y una porosidad adecuada para favorecer la transmisión del sonido ambiental hacia el oido interno. Se ubicó el documento JP2010259767A de Park Chan Hum et al. del 29 de junio de 2009, que revela una membrana timpánica artificial que utiliza proteina de seda que tiene una estructura en forma de película, obtenida desmineralizando y secando la proteina de seda (o fibroína de seda) o la solución del complejo de proteina de seda después de eliminar la sericina del capullo o fibra de seda. La membrana timpánica artificial promueve la reproducción de la membrana timpánica perforada por una enfermedad o accidente inesperado, proporciona un borde fino de la membrana timpánica reproducida y tiene una excelente biocompatibilidad y transparencia y una facilidad de uso eficaz. La membrana timpánica artificial se produce utilizando proteina de seda o solución de complejo de proteina de seda obtenida del capullo o mezclándola con colágeno, ácido algínico, PEG ( p o I i e t i I e n g I i c o I ) o Pluronic F-127, etc. However, it is not capable of adhering properly and staying at the lesion site throughout the treatment, and it does not have adequate thickness and porosity to favor the transmission of ambient sound to the inner ear. Document JP2010259767A by Park Chan Hum et al. of June 29, 2009, disclosing an artificial tympanic membrane using silk protein having a film-like structure, obtained by demineralizing and drying silk protein (or silk fibroin) or silk protein complex solution after removing the sericin from the cocoon or silk fiber. The artificial tympanic membrane promotes the reproduction of the tympanic membrane perforated by unexpected disease or accident, provides a thin border of the reproduced tympanic membrane, and has excellent biocompatibility and transparency and effective ease of use. The artificial tympanic membrane is produced by using silk protein or silk protein complex solution obtained from the cocoon or by mixing it with collagen, alginic acid, PEG ( po I ieti I eng I ico I ) or Pluronic F-127, etc.
Como se puede observar, el proceso de obtención de la membrana timpánica artificial de dicho documento es muy diferente a nuestra invención y como materia prima emplea proteina de seda que, opcionalmente, puede mezclarse con colágeno, ácido algínico, PEG ( p o I i eti I e n g I i c o I ) o Pluronic F-127. A pesar de que se menciona que tiene una excelente biocompatibilidad, dicha membrana no aporta las bondades de la membrana timpánica de colágeno humano de la presente invención, no es capaz de adherirse adecuadamente y mantenerse en el sitio de la lesión durante todo el tratamiento, no presenta un espesor y una porosidad adecuada para favorecer la transmisión del sonido ambiental hacia el oido interno. As can be seen, the process for obtaining the artificial tympanic membrane of said document is very different from our invention and uses silk protein as raw material which, optionally, can be mixed with collagen, alginic acid, PEG ( p o I i eti I e n g I i c o I ) or Pluronic F-127. Despite the fact that it is mentioned that it has excellent biocompatibility, said membrane does not provide the benefits of the human collagen tympanic membrane of the present invention, it is not capable of adhering properly and staying in the lesion site throughout the treatment, it does not It has a suitable thickness and porosity to favor the transmission of ambient sound to the inner ear.
Algunos de los productos descritos comercialmente o en otras patentes no son capaces de adherirse y mantenerse en el sitio de la lesión durante todo el tratamiento. Un ejemplo son los parches de papel de cigarro o papel arroz que tienden a desplazarse por la superficie del timpano o despegarse del mismo, dejando descubierta la zona de la lesión y, por ende, fallando en cumplir la función de parche. Debido a lo anterior, es común que en estos casos se requiera de una segunda intervención médica para recolocar el parche en la zona adecuada, lo que puede generar inconvenientes al paciente. Some of the products described commercially or in other patents are not able to adhere and stay at the lesion site throughout the treatment. An example is cigarette paper or rice paper patches that tend to move along the surface of the eardrum or detach from it, exposing the area of the lesion and, therefore, failing to fulfill the function of a patch. Due to the above, it is common in these cases that a second medical intervention is required to reposition the patch in the appropriate area, which can cause inconveniences for the patient.
Otros productos comerciales o patentes están elaborados a partir de materiales sintéticos, por lo que no pueden ser degradados por el cuerpo, y es necesario una segunda intervención médica para retirar el parche. Aunado a lo anterior, debido a su naturaleza sintética, este tipo de productos suele suscitar una respuesta inflamatoria más notoria, lo que ralentiza el proceso de curación y puede generar molestias en el paciente. Other commercial or patented products are made from synthetic materials, so they cannot be broken down by the body, and a second medical intervention is necessary to remove the patch. In addition to the above, due to their synthetic nature, this type of product tends to provoke a more noticeable inflammatory response, which slows down the healing process and can cause discomfort in the patient.
Algunos de los productos descritos comercialmente o en otras patentes, utilizan injertos de tejidos autólogos que, aunque representan el patrón de referencia en el tratamiento de perforaciones timpánicas, involucran un procedimiento quirúrgico sobre una zona donadora, y el procedimiento quirúrgico para implantar el injerto sobre el timpano, lo que prolonga los tiempos de recuperación del paciente, aumenta los costos del tratamiento e involucra un mayor riesgo por las complicaciones propias de la cirugía. Some of the products described commercially or in other patents use autologous tissue grafts that, although they represent the gold standard in the treatment of tympanic perforations, involve a surgical procedure on a donor area, and the surgical procedure to implant the graft on the eardrum, which prolongs patient recovery times, increases treatment costs, and involves a greater risk of complications of surgery.
Algunos de los productos descritos comercialmente o en otras patentes, emplean materiales biológicos, derivados de la matriz extracelular, como el ácido hialurónico, que pueden promover la formación de tejido granular que, aunque necesario para el proceso de curación, si se genera de forma descontrolada, puede originar la formación de tejido fibrótico que afectaría la movilidad de la membrana timpánica y, por ende, su función en la transmisión del sonido ambiental hacia el oido interno. Además, la elaboración de la membrana con una porosidad controlada en este tipo de productos es un proceso sofisticado y complejo que requiere de equipo especializado, lo que representa un aumento en los costos de producción. Some of the products described commercially or in other patents, use biological materials, derived from the extracellular matrix, such as hyaluronic acid, which can promote the formation of granular tissue which, although necessary for the healing process, if generated in an uncontrolled manner, can lead to the formation of fibrotic tissue that it would affect the mobility of the tympanic membrane and, therefore, its function in the transmission of ambient sound to the inner ear. In addition, the production of the membrane with a controlled porosity in this type of products is a sophisticated and complex process that requires specialized equipment, which represents an increase in production costs.
Algunos de los productos descritos comercialmente o en otras patentes, emplean materiales biológicos, derivados de la matriz extracelular, como el colágeno; sin embargo, se trata de colágeno xenogénico que presenta mayor riesgo de suscitar una respuesta inflamatoria, debido a que proviene de una especie distinta a la del receptor (paciente). Some of the products described commercially or in other patents use biological materials derived from the extracellular matrix, such as collagen; however, it is xenogeneic collagen that presents a higher risk of provoking an inflammatory response, because it comes from a different species from that of the recipient (patient).
Otros productos descritos comercialmente o en otras patentes, utilizan altas concentraciones de colágeno, mientras que otros procesos describen métodos especializados y más complejos para la elaboración del parche. Other products described commercially or in other patents use high concentrations of collagen, while other processes describe specialized and more complex methods for making the patch.
Alguno de los productos descritos comercialmente o en otras patentes, contienen colágeno humano; sin embargo, el producto no ha sido tratado con proteasas, por lo que algunas regiones de la cadena de colágeno, responsables de provocar una respuesta antigénica, pueden estar aún presentes, y generar una respuesta inflamatoria en el paciente. Some of the products described commercially or in other patents contain human collagen; however, the product has not been treated with proteases, so some regions of the collagen chain, responsible for provoking an antigenic response, may still be present, and generate an inflammatory response in the patient.
Ante la necesidad de contar con una membrana timpánica de colágeno humano tipo I entrecruzado de un solo uso, utilizada como andamio en la reparación de perforaciones del timpano, provocadas por la inserción de objetos extraños en el oido, cambios repentinos de presión (barotraumas), traumas acústicos, infecciones y/o lesiones del oido medio, o como parte de un procedimiento quirúrgico, fue que se desarrolló la presente invención. Given the need for a single-use, cross-linked type I human collagen tympanic membrane, used as a scaffold in the repair of perforated eardrums caused by the insertion of foreign objects into the ear, sudden pressure changes (barotraumas), acoustic traumas, infections and/or injuries of the middle ear, or as part of a surgical procedure, it was that the present invention was developed.
OBJETIVOS DE LA INVENCIÓN OBJECTIVES OF THE INVENTION
La presente invención tiene como objetivo principal hacer disponible una membrana timpánica de colágeno humano para la reparación de lesiones de timpano que presente propiedades físicas, químicas, mecánicas y biológicas apropiadas para su implementación en el tratamiento de lesiones y/o perforaciones de timpano. The main objective of the present invention is to make available a human collagen tympanic membrane for the repair of tympanic lesions that presents appropriate physical, chemical, mechanical and biological properties for its implementation in the treatment of tympanic lesions and/or perforations.
Otro objetivo de la invención es proveer dicha membrana timpánica de colágeno humano para la reparación de lesiones de timpano que, además, esté fabricado a partir de un material biológico, degradable, altamente biocompatible y cuya obtención no involucre realizar un procedimiento quirúrgico sobre el paciente, a diferencia de los injertos autólogos. Otro objetivo de la invención es proveer dicha membrana timpánica de colágeno humano para la reparación de lesiones de timpano que, además, proporcione temporalmente un andamio y una barrera física que separe el oido medio del oido externo, mientras se lleva a cabo la reparación del tejido y se reestablece la continuidad del timpano. Another objective of the invention is to provide said human collagen tympanic membrane for the repair of tympanic lesions that, in addition, is made from a biological, degradable, highly biocompatible material and whose obtaining does not involve performing a surgical procedure on the patient, unlike autologous grafts. Another objective of the invention is to provide said human collagen tympanic membrane for the repair of tympanic lesions that, in addition, temporarily provides a scaffold and a physical barrier that separates the middle ear from the external ear, while the tissue repair is carried out. and the continuity of the eardrum is reestablished.
Otro objetivo de la invención es proveer dicha membrana timpánica de colágeno humano para la reparación de lesiones de timpano que, además, se pueda ofrecer a un menor costo que los productos actualmente disponibles y con mayor efectividad, debido a su naturaleza proteica alogénica. Another objective of the invention is to provide said human collagen tympanic membrane for the repair of tympanic lesions that, moreover, can be offered at a lower cost than currently available products and with greater effectiveness, due to its allogeneic protein nature.
Otro objetivo de la invención es proveer dicha membrana timpánica de colágeno humano para la reparación de lesiones de timpano que, además, permita incorporase sobre el tejido de la membrana timpánica dañada y que ofrezca una mayor capacidad de retención permitiendo añadir sustancias, factores o aditamentos al producto que potencien su función reparadora, o que sirvan para ampliar la finalidad de uso de la membrana de colágeno. Another objective of the invention is to provide said human collagen tympanic membrane for the repair of tympanic lesions that, in addition, allows it to be incorporated on the damaged tympanic membrane tissue and that offers a greater retention capacity allowing the addition of substances, factors or additives to the product that enhances its repair function, or that serve to broaden the purpose of use of the collagen membrane.
Otro objetivo de la invención es proveer dicha membrana timpánica de colágeno humano para la reparación de lesiones de timpano que, además, ofrezca mayores prestaciones mecánicas para que asemeje la resistencia y flexibilidad del timpano humano y pueda permanecer en el sitio de aplicación sin romperse, despegarse, desplazarse, degradarse prematuramente o generar un engrosamiento en el tejido o anomalía en el tímpano que perjudique al paciente. Another objective of the invention is to provide said human collagen tympanic membrane for the repair of eardrum injuries that, in addition, offers greater mechanical performance so that it resembles the resistance and flexibility of the human eardrum and can remain in the application site without breaking, detaching. , move, degrade prematurely or generate a thickening in the tissue or abnormality in the eardrum that harms the patient.
Otro objetivo de la invención es proveer un proceso estandarizado y optimizado para la fabricación de una membrana timpánica de colágeno humano para la reparación de lesiones de timpano, que permita prescindir de técnicas más sofisticadas y un costo de producción más bajo que el de productos similares en el mercado, sin comprometer la calidad. Another objective of the invention is to provide a standardized and optimized process for the manufacture of a human collagen tympanic membrane for the repair of tympanic lesions, which allows dispensing with more sophisticated techniques and a lower production cost than similar products in the market, without compromising quality.
Otro objetivo de la invención es proveer un proceso estandarizado y optimizado para la fabricación de una membrana timpánica de colágeno humano para la reparación de lesiones de timpano, que además disminuya el riesgo de una infección por agentes patógenos externos y acelere el cierre de la perforación del timpano. Another objective of the invention is to provide a standardized and optimized process for the manufacture of a human collagen tympanic membrane for the repair of tympanic lesions, which also reduces the risk of infection by external pathogenic agents and accelerates the closure of the perforation of the eardrum. eardrum.
Y todas aquellas cualidades y objetivos que se harán aparentes al realizar una descripción general y detallada de la presente invención apoyados en las modalidades ¡lustradas. And all those qualities and objectives that will become apparent when carrying out a general and detailed description of the present invention supported by the illustrated modalities.
BREVE DESCRIPCIÓN DEL INVENTO BRIEF DESCRIPTION OF THE INVENTION
Durante el diseño y desarrollo de la membrana timpánica para la reparación de lesiones de timpano de la presente invención se presentaron diversos problemas a resolver para construir un prototipo funcional. El principal problema consistía en elaborar un producto altamente biocompatible, que no generara una respuesta inmune acentuada y que estuviera constituido por un material bioactivo que promoviera el proceso de curación. En relación con esto, se encontró sorprendentemente que el colágeno de origen humano cumplía con estos requerimientos, ya que la b i o co m p ati b i I i d a d intraespecifica representa una ventaja respecto a los materiales utilizados en otros productos ya existentes. During the design and development of the tympanic membrane for the repair of tympanic lesions of the present invention, various problems arose to be solved in order to build a functional prototype. The main problem was to develop a highly biocompatible product that did not generate a heightened immune response and that was made up of a bioactive material that promoted the healing process. In this regard, it was surprisingly found that collagen of human origin complied with these requirements, since intraspecific biocompatibility represents an advantage over materials used in other existing products.
El segundo problema para resolver fue que las dimensiones del producto fueran semejantes a la membrana timpánica del ser humano, especialmente en el espesor ya que, un parche demasiado grueso podría entorpecer y ralentizar la curación de la lesión, además del riesgo de la disminución de la capacidad auditiva del paciente durante el tratamiento por el engrosamiento del tejido y consecuente pérdida de la movilidad de la membrana timpánica. Lo anterior se resolvió probando con distintas condiciones de I i o f i I i z a c i ó n y la incorporación de un proceso de prensado para producir estructuras de colágeno humano con características controladas. The second problem to solve was that the dimensions of the product should be similar to the human tympanic membrane, especially in thickness, since a patch that is too thick could hinder and slow down the healing of the lesion, in addition to the risk of decreased hearing capacity of the patient during treatment due to the thickening of the tissue and consequent loss of mobility of the tympanic membrane. This was resolved by testing different I i o fi I i z a t i o n conditions and incorporating a pressing process to produce human collagen structures with controlled characteristics.
De igual forma, se tenia que garantizar que el producto, a pesar de ser una lámina, presentara una estructura porosa con el tamaño de poro adecuado para promover la adhesión y migración celular. Este punto se resolvió optimizando la concentración de la solución de colágeno y, por ende, la cantidad de colágeno contenido en cada membrana. El siguiente problema para resolver estaba relacionado con la funcionalidad del producto. Para que la membrana pueda desempeñar su función correctamente, es necesario que sea adaptable y resistente al entorno natural del sitio de aplicación. La membrana de colágeno tiene que ser capaz de adherirse al timpano y soportar los cambios de presiones entre el oido externo y el oido interno, sin desprenderse del timpano. Además, debe ser flexible para no interferir con las vibraciones del timpano y no afectar la capacidad auditiva del paciente. Esto se resolvió aumentando las propiedades mecánicas de la membrana de colágeno a través del sistema controlado de entrecruzamiento de colágeno. Una vez establecida una correlación entre el grado de entrecruzamiento y la caracterización de las prestaciones mecánicas, la membrana se testeó en un ambiente simulado donde se mimetizaron las condiciones del oido. En esta etapa, la membrana cumplió con los requerimientos de flexibilidad, adhesión, resistencia y migración celular, además de observarse una capacidad de retención de líquidos a pesar de su estructura colapsada. Similarly, it had to be guaranteed that the product, despite being a sheet, presented a porous structure with the appropriate pore size to promote cell adhesion and migration. This point was resolved by optimizing the concentration of the collagen solution and, therefore, the amount of collagen contained in each membrane. The next problem to solve was related to the functionality of the product. In order for the membrane to perform its function correctly, it is necessary that it be adaptable and resistant to the natural environment of the application site. The collagen membrane has to be able to adhere to the eardrum and withstand pressure changes between the outer ear and the inner ear, without detaching from the eardrum. In addition, it must be flexible so as not to interfere with the vibrations of the eardrum and not affect the hearing capacity of the patient. This was solved by increasing the mechanical properties of the collagen membrane through the controlled system of collagen crosslinking. Once a correlation was established between the degree of crosslinking and the characterization of the mechanical performance, the membrane was tested in a simulated environment where the ear conditions were mimicked. At this stage, the membrane met the requirements for flexibility, adhesion, resistance and cell migration, in addition to observing a liquid retention capacity despite its collapsed structure.
La membrana timpánica de colágeno humano de la presente invención se elaboró con compuestos bioactivos alogénicos con el fin de aminorar la respuesta inflamatoria del paciente y contribuir a un proceso de curación más rápido y disminuir el riesgo de posibles complicaciones. Esto se resolvió al implementar previamente una linea de producción estandarizada y optimizada para la obtención de colágeno humano con altos rendimientos, y su acondicionado para cumplir requisitos dimensionales específicos, a través de un proceso sencillo y de bajo costo. The human collagen tympanic membrane of the present invention was made with allogeneic bioactive compounds in order to lessen the patient's inflammatory response and contribute to a faster healing process and decrease the risk of possible complications. This was resolved by previously implementing a standardized and optimized production line for obtaining human collagen with high yields, and its conditioning to meet specific dimensional requirements, to through a simple and low-cost process.
Primeramente, se buscó alcanzar las dimensiones a través de, únicamente, el proceso de liofilización. Modificando la cantidad de solución de colágeno a liofilizar y la concentración de ésta, se buscó que, al retirar la humedad, se generara una membrana de colágeno. No obstante, estos ajustes dieron como resultado membranas incompletas, muy frágiles, de superficie no uniforme, o que no eran manipuladles. En otros casos, solo se obtuvieron fibras dispersas de colágeno. En las concentraciones y volúmenes de solución más altos, se obtenía una estructura tridimensional, asemejando a una esponja. Firstly, it was sought to achieve the dimensions through, only, the lyophilization process. By modifying the amount of collagen solution to be lyophilized and its concentration, it was sought that, upon removing the moisture, a collagen membrane would be generated. However, these adjustments resulted in membranes that were incomplete, very fragile, with an uneven surface, or that were not manipulable. In other cases, only dispersed collagen fibers were obtained. At the highest concentrations and solution volumes, a three-dimensional structure was obtained, resembling a sponge.
Debido a lo anterior, se optó por encontrar la combinación de concentración minima de colágeno y volumen mínimo de la solución, con la cual se obtenía el andamio con el menor espesor posible, asegurando que se formara una estructura de superficie completa, que fuera uniforme y que fuera resistente a la manipulación. Simultáneamente, se experimentó fabricar una biopelícula, generando un hidrogel a partir de la solución de colágeno, y dejando secar hasta obtener una fina capa de colágeno que asemejaba una lámina de plástico. Esta última opción se descartó por la ausencia de poros y se continuó con la elaboración de una esponja de colágeno. Due to the above, it was decided to find the combination of minimum collagen concentration and minimum volume of the solution, with which the scaffold with the least possible thickness was obtained, ensuring that a complete surface structure was formed, that it was uniform and that was resistant to manipulation. Simultaneously, experiments were carried out to manufacture a biofilm, generating a hydrogel from the collagen solution, and allowing it to dry until obtaining a thin layer of collagen that resembled a plastic sheet. This last option was discarded due to the absence of pores and the preparation of a collagen sponge continued.
Una vez que se determinaron las relaciones entre la concentración de la solución de colágeno y el volumen a emplear de la misma, con la que se obtuvieron los andamios que más se ajustaban a los requerimientos, se discutió la posibilidad de colapsar la estructura mecánicamente, a través de un prensado. Se probaron distintos parámetros de prensado, incluyendo la fuerza aplicada y el tiempo de compresión. Algunos andamios no soportaron la presión y se rompieron, ya sea por su bajo contenido de colágeno o porque los parámetros de prensado fueron excesivos; por otra parte, algunos andamios si mostraron una reducción del espesor, pero recuperaban su forma original después de unos segundos, esto debido a su alto contenido de colágeno o a que los parámetros de prensado, contrario al caso anterior, no eran efectivos. De igual forma, se procedió a determinar la relación fuerza aplicada- tiempo en el que se obtuvieran membranas integras y que mantuvieran la reducción del espesor, incluso aunque fueran rehidratadas. Once the relationships between the concentration of the collagen solution and the volume to be used were determined, with Once the scaffoldings that best met the requirements were obtained, the possibility of collapsing the structure mechanically, through pressing, was discussed. Different pressing parameters were tested, including the applied force and the compression time. Some scaffolds did not withstand the pressure and broke, either because of their low collagen content or because the pressing parameters were excessive; On the other hand, some scaffolds did show a reduction in thickness, but recovered their original shape after a few seconds, this due to their high collagen content or because the pressing parameters, contrary to the previous case, were not effective. In the same way, we proceeded to determine the applied force-time relationship in which integral membranes were obtained and that they maintained the reduction in thickness, even if they were rehydrated.
Finalmente, y como se ha mencionado anteriormente, para asegurar que el producto cumpla su finalidad de uso en el ambiente real de aplicación, se realizó una correlación entre el grado de entrecruzamiento del colágeno, abordado a través de un ensayo de digestibilidad in vitro, en conjunto con técnica colorimétrica de TNBS (2,4,6-ácido trinitrobencenosulfónico); y la caracterización de las propiedades mecánicas exhibidas, a través de una máquina universal especial para tejidos y materiales biológicos. La membrana fue hidratada con solución fisiológica y/o sangre, observándose preservación de la estructura y capacidad de retención con un incremento máximo de 20 veces su peso original, y sin que se perdiera la facilidad de manipulación del producto. Posteriormente, la membrana húmeda se colocó en un cuerpo esférico flexible, manteniéndose adherida a la superficie, y expandiéndose y contrayéndose conforme se inflaba el material. Durante este esfuerzo de elongación, la membrana no se rompió, ni rasgó y, durante la retracción, recuperó sus dimensiones originales, no se dobló ni se formaron surcos o arrugas excesivas. Finally, and as previously mentioned, to ensure that the product fulfills its purpose of use in the real environment of application, a correlation was made between the degree of collagen crosslinking, addressed through an in vitro digestibility test, in set with TNBS (2,4,6-trinitrobenzenesulfonic acid) colorimetric technique; and the characterization of the mechanical properties exhibited, through a special universal machine for tissues and biological materials. The membrane was hydrated with physiological solution and/or blood, observing preservation of the structure and retention capacity with a maximum increase of 20 times its original weight, and without losing the ease of handling of the product. Subsequently, the wet membrane was placed in a flexible spherical body, remaining attached to the surface, expanding and contracting as the material inflated. During this elongation effort, the membrane did not rupture or tear and, during retraction, it recovered its original dimensions, it did not fold, nor did it form excessive grooves or wrinkles.
De manera general la presente invención se refiere a una membrana timpánica de colágeno humano tipo I entrecruzado de un solo uso, utilizada como andamio en la reparación de perforaciones del timpano, provocadas por la inserción de objetos extraños en el oido, cambios repentinos de presión (barotraumas), traumas acústicos, infecciones y/o lesiones del oido medio. In general, the present invention refers to a single-use crosslinked type I human collagen tympanic membrane, used as a scaffold in the repair of perforated eardrums caused by the insertion of foreign objects into the ear, sudden changes in pressure ( barotraumas), acoustic traumas, infections and/or lesions of the middle ear.
La naturaleza alogénica de la membrana timpánica de colágeno humano tipo I garantiza un proceso de reparación más eficiente, debido a que la biocompatibilidad intraespecifica permite una respuesta inflamatoria más controlada, a diferencia de productos fabricados a partir de b i o m ate r i a I e s provenientes de otros animales. The allogeneic nature of the type I human collagen tympanic membrane guarantees a more efficient repair process, since intraspecific biocompatibility allows a more controlled inflammatory response, unlike products manufactured from bio-materials from other animals. .
Con relación a lo anterior, la membrana timpánica de colágeno humano representa una alternativa a los tratamientos actuales, contribuyendo a una reparación más dinámica y en menor tiempo que previene posibles complicaciones futuras como infecciones, perforaciones recurrentes o un daño extendido al oido medio y/o interno, y evitando, en algunos casos, el procedimiento quirúrgico. La membrana timpánica de colágeno humano de la presente invención consiste en una membrana de colágeno humano, con características físicas, químicas, mecánicas y biológicas que la establecen como una alternativa apropiada para la reparación de lesiones y/o perforaciones de timpano. In relation to the above, the human collagen tympanic membrane represents an alternative to current treatments, contributing to a more dynamic repair and in less time that prevents possible future complications such as infections, recurrent perforations or extensive damage to the middle ear and/or internal, and avoiding, in some cases, the surgical procedure. The human collagen tympanic membrane of the present invention consists of a human collagen membrane, with physical, chemical, mechanical and biological characteristics that establish it as an appropriate alternative for the repair of tympanic injuries and/or perforations.
En términos generales el proceso para producir membrana timpánica de colágeno humano de conformidad con la presente invención consta de las siguientes etapas, realizadas en un rango de temperatura de 2 - 25°C, alcanzando temperaturas de hasta - 80°C en las etapas de I i of i I i zac i ó n . a) Acondicionar el tejido obtenido de membrana amniótica, tendón y fascia humanos, removiendo tejidos o fluidos que no sean de interés para el proceso y reduciendo el tamaño de partícula de una manera uniforme a un tamaño de entre 0.5 mm a 2 mm con un molino de tambor o rotor, para lograr una mejor interacción entre las soluciones y el tejido en los pasos posteriores. b) Pre-tratar el tejido previamente acondicionado, exponiéndolo a una solución de hidróxido de sodio a 0.05 - 2 M, empleando 50 - 1000 mL por gramo de tejido seco, con agitación magnética eficiente de 100 - 500 RPM y por un periodo de 1 hora a 24 horas, con la finalidad de retirar proteínas superficiales y dejar las fibras de colágeno expuestas; b 1 ) Lavar con agua destilada para neutralizar el pH del tejido hasta tener un pH de entre 7 a 8, antes del siguiente paso; c) Extraer el colágeno mediante hidrólisis enzimática sometiendo el tejido a una solución ácida de ácido acético a una concentración de 0.02 - 0.5 M y usando 50 - 1000 L por kg de tejido seco, conjuntamente con 50 - 1000 g de pepsina por kg de tejido seco, para propiciar una solubilización más rápida del colágeno y propiciar una eliminación especifica y controlada de los grupos carboxilo y amino terminales de la molécula; en donde la extracción se realiza en un periodo de tres dias realizando adiciones de solución ácida intermedias (se inicia con 200 mL de ácido acético y 0.05 - 0.5 g de pepsina por g de tejido seco y después de 48 horas se adicionan 250 mL de ácido acético por g de tejido seco para propiciar el desarrollo de la reacción y en donde se eliminan los residuos de estructuras del tejido no colágenas por medio de una filtración con un tamiz de 50 - 900 m y se continúa con el proceso. d) Precipitar el colágeno llevando la solución resultante de colágeno (450 mL de solución por g de tejido seco) a una concentración alta de sal, agregando de 20 - 100 g de cloruro de sodio por 1 L de solución de colágeno, homogenizando la solución con agitación magnética y dejando que la interacción iónica de la sal con las moléculas de colágeno genere la precipitación de las mismas, durante un tiempo de entre 2 a 6 horas; posteriormente, tamizar la solución resultante a un tamaño de partícula de 50 a 900 m; en donde las fibras recuperadas del tamiz se solubilizan nuevamente en una solución de ácido acético, empleando 50 - 1000 mL de ácido acético por g de tejido seco; e) Dializar la solución de colágeno con la finalidad de purificar la solución del exceso de sal presente en la solución de colágeno, en un sistema de diálisis dinámica en el que el colágeno se coloca dentro de una membrana porosa de 12 a 14 kDa para expulsar las impurezas al introducirse a un buffer de diálisis que consiste en una solución con baja concentración de ácido acético de 0.02 - 0.5 M; en donde el intercambio de moléculas de sal entre ambas soluciones se origina por el diferencial de concentración de las mismas, de la solución de colágeno con una concentración de sales de 0.5 -2 M hacia la solución de ácido acético sin presencia de sales, y es acelerado por la superficie de contacto y el flujo del buffer; esta etapa dura de dos a cinco dias, durante los cuales el buffer se mantiene en recirculación y se cambia después de 6 a 48 horas; también se monitorea la conductividad de ambas soluciones y se detiene el proceso cuando el colágeno alcanza la misma conductividad que el buffer al inicio de la etapa (0.10 -0.5 mS/cm). f) Liofilizar la solución de colágeno purificada sometiéndola a un ciclo de liofilización para concentrar las fibras de colágeno, favoreciendo su preservación; para esto la solución se congela a una temperatura de entre -10°C y -80°C y posteriormente se somete a una presión de vacio de 0.02 - 0.2 mbar (2 - 20 Pa) por un periodo de tiempo de uno a cuatro dias, durante el cual se retira el agua y solventes en forma de vapor, secando el colágeno sin dañar las fibras; en donde el colágeno resultante se pesa y distribuye de acuerdo a lo requerido en el siguiente paso. g) Moldear y liofilizar por segunda ocasión, en donde, dependiendo de la aplicación y función esperada, se elige una concentración de 0.5 a 30 mg de colágeno por mL de ácido acético con molaridad de 0.02 a 0.5 M; una vez solubilizado, el colágeno se coloca en moldes que permitan generar la estructura con las dimensiones deseadas; nuevamente se realiza la liofilización de la solución a una temperatura de entre -10°C y -80°C y una presión de vacio de 0.02 - 0.2 mbar (2 -20 Pa), con la excepción de que se realiza una congelación controlada que consiste en retirar el calor al disminuir gradualmente la temperatura de la placa con la que se encuentra en contacto el molde y la solución de colágeno, permitiendo que los cristales de agua y ácido acético sean uniformes y variados, acomodando las fibras para generar un tamaño de poro promedio estimado; h) Prensar la estructura de colágeno que, considerando la aplicación y función que deba desempeñar el producto, es sometida a una fuerza mecánica determinada de entre 100 - 5000 N para compactar sus dimensiones a un valor deseado desde 0.001 - 10 mm y aumentar su densidad fibrilar. i) Entrecruzar las piezas de colágeno sometiéndolas a una atmósfera de vapor de formaldehido en un aparato de entrecruzamiento, a un tiempo de exposición de entre 1 a 90 minutos y concentración de la nube de vapor del reactivo de 0.1 a 100 ppm, resultando en un entrecruzamiento controlado que permita reforzar la unión entre fibras para brindar mejores propiedades físicas a la estructura. In general terms, the process for producing human collagen tympanic membrane in accordance with the present invention consists of the following stages, carried out in a temperature range of 2 - 25°C, reaching temperatures of up to -80°C in the stages of I i of i I i zation . a) Condition the tissue obtained from human amniotic membrane, tendon and fascia, removing tissues or fluids that are not of interest to the process and reducing the particle size in a uniform manner to a size between 0.5 mm and 2 mm with a mill. drum or rotor, to achieve a better interaction between solutions and tissue in subsequent steps. b) Pre-treat the previously conditioned tissue, exposing it to a 0.05 - 2 M sodium hydroxide solution, using 50 - 1000 mL per gram of dry tissue, with efficient magnetic stirring at 100 - 500 RPM and for a period of 1 hour to 24 hours, in order to remove surface proteins and leave the collagen fibers exposed; b 1) Wash with distilled water to neutralize the pH of the tissue until it reaches a pH between 7 and 8, before the next step; c) Extract the collagen by enzymatic hydrolysis subjecting the tissue to an acid solution of acetic acid at a concentration of 0.02 - 0.5 M and using 50 - 1000 L per kg of dry tissue, together with 50 - 1000 g of pepsin per kg of dry tissue, to promote more rapid collagen solubilization and promote a specific and controlled elimination of the terminal carboxyl and amino groups of the molecule; where the extraction is carried out in a period of three days making additions of intermediate acid solution (begins with 200 mL of acetic acid and 0.05 - 0.5 g of pepsin per g of dry tissue and after 48 hours 250 mL of acid are added acetic acid per g of dry tissue to promote the development of the reaction and where residues of non-collagenous tissue structures are removed by means of filtration with a 50 - 900 m sieve and the process is continued d) Precipitate the collagen bringing the resulting collagen solution (450 mL of solution per g of dry tissue) to a high salt concentration, adding 20 - 100 g of sodium chloride per 1 L of collagen solution, homogenizing the solution with magnetic stirring and leaving that the ionic interaction of the salt with the collagen molecules generates their precipitation, for a period of between 2 to 6 hours; subsequently, sieve the resulting solution to a particle size of 50 to 900 µm; where the fibers recovered from the screen are solubilized again in an acetic acid solution, using 50 - 1000 mL of acetic acid per g of dry fabric; e) Dialyze the collagen solution in order to purify the solution from excess salt present in the collagen solution, in a dynamic dialysis system in which collagen is placed within a 12-14 kDa porous membrane to expel impurities by introducing it into a dialysis buffer consisting of a low concentration 0.02-0.5 M acetic acid solution; where the exchange of salt molecules between both solutions originates from their concentration differential, from the collagen solution with a salt concentration of 0.5 -2 M to the acetic acid solution without the presence of salts, and is accelerated by contact surface and buffer flow; this stage lasts from two to five days, during which the buffer is kept in recirculation and is changed after 6 to 48 hours; The conductivity of both solutions is also monitored and the process is stopped when the collagen reaches the same conductivity as the buffer at the beginning of the stage (0.10 -0.5 mS/cm). f) Freeze-drying the purified collagen solution by subjecting it to a freeze-drying cycle to concentrate the collagen fibers, favoring their preservation; For this, the solution is frozen at a temperature between -10°C and -80°C and is subsequently subjected to a vacuum pressure of 0.02 - 0.2 mbar (2 - 20 Pa) for a period of one to four days. , during which water and solvents are removed in the form of steam, drying the collagen without damaging the fibers; where the resulting collagen is weighed and distributed according to what is required in the next step. g) Mold and lyophilize for the second time, where, depending on the application and expected function, a concentration of 0.5 to 30 mg of collagen per mL of acetic acid with a molarity of 0.02 to 0.5 M is chosen; once solubilized, the collagen is placed in molds that allow to generate the structure with the desired dimensions; again, the lyophilization of the solution is carried out at a temperature between -10°C and -80°C and a vacuum pressure of 0.02 - 0.2 mbar (2 -20 Pa), with the exception that a controlled freezing is carried out that It consists of removing the heat by gradually decreasing the temperature of the plate with which the mold and the collagen solution are in contact, allowing the crystals of water and acetic acid to be uniform and varied, accommodating the fibers to generate a size of estimated average pore; h) Press the collagen structure that, considering the application and function that the product must perform, is subjected to a determined mechanical force of between 100 - 5000 N to compact its dimensions to a desired value from 0.001 - 10 mm and increase its density. fibrillar. i) Crosslink the collagen pieces by subjecting them to a formaldehyde vapor atmosphere in a crosslinking apparatus, at an exposure time of between 1 to 90 minutes and a concentration of the reagent vapor cloud of 0.1 to 100 ppm, resulting in a Controlled crosslinking that allows to reinforce the union between fibers to provide better physical properties to the structure.
De acuerdo con el proceso para producir membrana timpánica de colágeno humano de conformidad con la presente invención anteriormente descrito, se obtiene una membrana timpánica de colágeno humano tipo I, con una pureza de > 80% y concentración de < 30 mg/mL o < 15 mg/cm2 , de dimensiones controladas de 0.5 a 15 cm de diámetro o de lado, y 0.01 -10 mm de espesor y preferentemente de 1 cm de diámetro o de lado, y espesor de 0.03 - 0.3 mm), con una porosidad del 80 a 99% y tamaño de poro de entre 10 a 200 pm. According to the process for producing human collagen tympanic membrane in accordance with the present invention described above, a type I human collagen tympanic membrane is obtained, with a purity of > 80% and concentration of < 30 mg/mL or < 15 mg/cm 2 , of controlled dimensions of 0.5 to 15 cm in diameter or side, and 0.01 -10 mm thick and preferably 1 cm in diameter or side, and thickness of 0.03 - 0.3 mm), with a porosity of 80 to 99% and a pore size of between 10 and 200 pm.
La membrana es flexible, reabsorbible, adherible, resistente a las presiones internas del oido y biocompatible. The membrane is flexible, absorbable, adherent, resistant to the internal pressures of the ear and biocompatible.
La membrana se recorta, de acuerdo con las dimensiones de la lesión observada, y posteriormente, se hidrata con solución fisiológica, solución de antibióticos o alguna otra que el médico considere apropiado. La membrana húmeda se coloca sobre el timpano, accediendo por el canal auditivo y cubriendo totalmente el sitio de la lesión. La membrana se adhiere al timpano por su carácter hidrofílico. De esta forma, la membrana de colágeno provee un soporte provisional que subsana la discontinuidad del timpano, permitiendo cierta transmisibilidad de las ondas de sonido, y sobre el cual las células del timpano pueden migrar desde el borde de la herida hacia el centro, y generarán las capas epitelial y fibrosa que cerrarán la herida. The membrane is cut, according to the dimensions of the lesion observed, and later, it is hydrated with physiological solution, antibiotic solution or any other that the doctor considers appropriate. The moist membrane is placed over the eardrum, accessing through the ear canal and completely covering the lesion site. The membrane adheres to the eardrum due to its hydrophilic nature. In this way, the collagen membrane provides a provisional support that heals the discontinuity of the eardrum, allowing some transmissibility of sound waves, and on which the cells of the eardrum can migrate from the edge of the wound to the center, and will generate the epithelial and fibrous layers that will close the wound.
La porosidad promedio de las membranas elaboradas fue de 83.81 ± 7.09. The average porosity of the elaborated membranes was 83.81 ± 7.09.
En la membrana fabricada de acuerdo con la presente invención, los poros más pequeños tienen un tamaño que van desde 10 a 13.81 ± 4.94 pm, mientras que los más grandes oscilan entre 100-200 pm, especialmente en la sección transversal de la membrana, lo que contribuye a la adhesión y la migración celular en la membrana, como se describe posteriormente. In the membrane manufactured according to the present invention, the smallest pores have a size ranging from 10 to 13.81 ± 4.94 pm, while the largest ones range from 100-200 pm, especially in the cross section of the membrane, which contributes to cell adhesion and migration on the membrane, as described later.
El espesor de la membrana es de 234.79 ± 47.44 m. The thickness of the membrane is 234.79 ± 47.44 m.
La membrana presenta un porcentaje de retención promedio de humedad de 1304.07 ± 166.81 %, y el incremento de masa fue de 14.04 ± 1.67 veces el peso original (Ps). Resaltando que, a pesar de que la membrana absorbía líquidos, no hubo una turgencia de la misma, y no se vieron afectadas las dimensiones de la membrana. The membrane presents an average moisture retention percentage of 1304.07 ± 166.81 %, and the mass increase was 14.04 ± 1.67 times the original weight (Ps). Noting that, despite the fact that the membrane absorbed liquids, there was no turgor of it, and the dimensions of the membrane were not affected.
A la membrana se le pueden adicionar diversas sustancias, tales como: Pegamento tisular para mejorar la adherencia de la membrana al sitio de implante; una solución de antibiótico para tratar o prevenir una infección del oido mientras se repara el timpano; factores de crecimiento y/o células mesenquimales autólogas o alogénicas que, por su capacidad de señalización puedan promover o potenciar las rutas bioquímicas relacionadas a la curación de heridas y reparación de tejidos; nanoparticulas para la liberación dosificada de fármacos o alguna otra sustancia que pueda servir para el tratamiento de algún síntoma o padecimiento de la herida; en general, cualquier sustancia, compuesto o molécula, sintética o biológica que, por su naturaleza bioactiva o terapéutica pueda emplearse para el mejoramiento o aceleramiento de los procesos de reparación tisular, o como tratamiento a cualquier deterioro, alteración o daño a la salud. Para comprender mejor las características de la invención se acompaña a la presente descripción, como parte integrante de la misma, los dibujos con carácter ilustrativo más no limitativo, que se describen a continuación. Various substances can be added to the membrane, such as: Tissue glue to improve adherence of the membrane to the implant site; an antibiotic solution to treat or prevent an ear infection while the eardrum is being repaired; growth factors and/or autologous or allogeneic mesenchymal cells that, due to their signaling capacity, can promote or enhance biochemical pathways related to wound healing and tissue repair; nanoparticles for the dosed release of drugs or any other substance that can be used to treat any symptom or condition of the wound; In general, any synthetic or biological substance, compound or molecule that, due to its bioactive or therapeutic nature, can be used to improve or accelerate tissue repair processes, or as a treatment for any deterioration, alteration or damage to health. In order to better understand the characteristics of the invention, the present description is accompanied, as an integral part thereof, by the drawings with an illustrative but non-limiting nature, which are described below.
BREVE DESCRIPCIÓN DE LAS FIGURAS BRIEF DESCRIPTION OF THE FIGURES
La figura 1 muestra un diagrama de bloques del proceso para la obtención de la membrana timpánica de colágeno humano para la reparación de lesiones de timpano, de conformidad con la presente invención. Figure 1 shows a block diagram of the process for obtaining the human collagen tympanic membrane for the repair of tympanic lesions, in accordance with the present invention.
La figura 2 muestra una gráfica de gel de e I e ctrofo re si s con los colágenos extraídos de membrana amniótica, tendón y fascia humanos, de conformidad con el proceso de la presente invención. Figure 2 shows a gel graph of eIectrophoresis with the collagens extracted from human amniotic membrane, tendon and fascia, in accordance with the process of the present invention.
La figura 3 muestra una imagen de un prototipo de la membrana timpánica de colágeno humano, en una de sus presentaciones, de conformidad con la presente invención. Figure 3 shows an image of a prototype human collagen tympanic membrane, in one of its presentations, in accordance with the present invention.
Las figuras 4A y 4B muestran una imagen que corresponden al análisis superficial y transversal, respectivamente, de la membrana de colágeno, presentando una porosidad jerárquica. Figures 4A and 4B show an image that corresponds to the superficial and transversal analysis, respectively, of the collagen membrane, presenting a hierarchical porosity.
Las figuras 5A y 5B muestran dos imágenes obtenidas por tinción citoquímica con 4 ' , 6 - d i a m i d i n o - 2 - f e n i I i n d o I (DAPI) que muestra la migración celular en una membrana timpánica de colágeno humano de conformidad con la presente invención, después de 15 dias de cultivo, con objetivos 4X y 20X, respectivamente. Figures 5A and 5B show two images obtained by cytochemical staining with 4',6-diamidino-2-pheni I indo I (DAPI) showing the cell migration in a human collagen tympanic membrane in accordance with the present invention, after 15 days of culture, with 4X and 20X objectives, respectively.
La figura 6A muestra una imagen de una membrana timpánica de colágeno humano para la reparación de lesiones de timpano, de conformidad con la presente invención, que se ha sometido en contacto con sangre y se somete a manipulación con pinzas que muestran sus resistencia a la manipulación para su colocación en la membrana timpánica dañada. Figure 6A shows an image of a human collagen tympanic membrane for tympanic injury repair, in accordance with the present invention, which has been subjected to contact with blood and is subjected to manipulation with forceps showing their resistance to manipulation. for placement in the damaged tympanic membrane.
La figura 6B muestra una imagen de una membrana timpánica de colágeno humano para la reparación de lesiones de timpano, de conformidad con la presente invención, que se ha adherido sobre la superficie de un globo para demostrar su capacidad de adherencia a las superficies. Figure 6B shows an image of a human collagen tympanic membrane for tympanic injury repair, in accordance with the present invention, which has been adhered onto the surface of a balloon to demonstrate its ability to adhere to surfaces.
La figura 6C muestra una imagen de una membrana timpánica de colágeno humano para la reparación de lesiones de timpano, de conformidad con la presente invención, que se ha adherido sobre la superficie de un globo y se ha sometido a estiramiento para demostrar su resistencia a la expansión. Figure 6C shows an image of a human collagen tympanic membrane for tympanic injury repair, in accordance with the present invention, that has been adhered onto the surface of a balloon and stretched to demonstrate its resistance to tearing. expansion.
La figura 6D muestra una imagen de una membrana timpánica de colágeno humano para la reparación de lesiones de timpano, de conformidad con la presente invención, que se ha adherido sobre la superficie de un globo y se ha sometido a estiramiento mostrando su capacidad de preservar la forma y propiedades al regresar a la forma original. Figure 6D shows an image of a human collagen tympanic membrane for tympanic injury repair, in accordance with the present invention, which has been adhered onto the surface of a balloon and stretched showing its ability to preserve shape and properties when returning to the original shape.
La figura 7 muestra una imagen de una membrana timpánica de colágeno humano para la reparación de lesiones de timpano, de conformidad con la presente invención, sometida a pruebas de absorción para determinar el porcentaje de retención de humedad que permitía la estructura. Figure 7 shows an image of a human collagen tympanic membrane for tympanic injury repair, in accordance with the present invention, subjected to absorption tests to determine the percentage moisture retention that the structure allowed.
Para una mejor comprensión del invento, se procederá a hacer la descripción detallada de alguna de las modalidades de este, mostrada en los dibujos que, con fines ilustrativos mas no limitativos, se anexan a la presente descripción. For a better understanding of the invention, a detailed description of some of its modalities will be made, shown in the drawings that, for illustrative but not limiting purposes, are attached to this description.
DESCRIPCIÓN DETALLADA DEL INVENTO DETAILED DESCRIPTION OF THE INVENTION
Los detalles característicos de la membrana timpánica de colágeno humano para la reparación de lesiones de timpano se muestran claramente en la siguiente descripción y en los dibujos ilustrativos que se anexan, sirviendo los mismos signos de referencia para señalar las mismas partes. The characteristic details of the human collagen tympanic membrane for tympanic injury repair are clearly shown in the following description and the attached illustrative drawings, the same reference numerals serving to denote the same parts.
El proceso de fabricación de la membrana timpánica de colágeno humano para la reparación de lesiones de timpano ha sido estandarizado y optimizado, prescindiendo de técnicas más sofisticadas que permiten, sin comprometer la calidad, un costo de producción más bajo que el de productos similares en el mercado. De esta forma, se presenta una membrana timpánica de colágeno humano para la reparación de lesiones de timpano, que se puede ofrecer a un menor costo que los productos actualmente disponibles y con mayor efectividad, debido a su naturaleza proteica. The manufacturing process of the human collagen tympanic membrane for the repair of tympanic lesions has been standardized and optimized, disregarding more sophisticated techniques that allow, without compromising quality, a cost of production lower than that of similar products on the market. In this way, a human collagen tympanic membrane is presented for the repair of tympanic lesions, which can be offered at a lower cost than currently available products and with greater effectiveness, due to its protein nature.
El proceso para producir la membrana timpánica de colágeno humano para la reparación de lesiones de timpano abarca desde el aislamiento del tejido hasta la obtención del colágeno, asi como su posterior transformación en estructuras b¡ o tridimensionales. Consta de un total de nueve etapas principales: acondicionado de tejido, pre-tratamiento, extracción, precipitación, diálisis, liofilización, moldeado, prensado, y entrecruzamiento, asi como una etapa opcional de compresión. The process to produce the human collagen tympanic membrane for the repair of tympanic lesions ranges from the isolation of the tissue to obtaining the collagen, as well as its subsequent transformation into bi- or three-dimensional structures. It consists of a total of nine main steps: tissue conditioning, pre-treatment, extraction, precipitation, dialysis, lyophilization, molding, pressing, and cross-linking, as well as an optional compression step.
Este proceso permite extraer colágeno tipo I alogénico, y con ello, ajustarlo a las dimensiones adecuadas y acondicionarlo químicamente (entrecruzarlo) para conseguir características funcionales in vivo, en la aplicación destinada. Finalmente, este último proceso permite adecuarse para poderse poner al punto y con ello alcanzar las condiciones de degradación in vitro e in vivo deseables. This process makes it possible to extract allogeneic type I collagen, and with it, adjust it to the appropriate dimensions and chemically condition it (crosslink it) to achieve functional characteristics in vivo, in the intended application. Finally, this last process allows adaptation to be able to get up to speed and thus reach the desirable in vitro and in vivo degradation conditions.
De acuerdo con la figura 1, en términos generales el proceso para producir membrana timpánica de colágeno humano de conformidad con la presente invención consta de las siguientes etapas, realizadas en un rango de temperatura de 2 - 25°C, alcanzando temperaturas de hasta -80°C en las etapas de I i of i I i zac i ó n . a) Acondicionar el tejido obtenido de membrana amniótica, tendón y fascia humanos, removiendo tejidos o fluidos que no sean de interés para el proceso y reduciendo el tamaño de partícula de una manera uniforme a un tamaño de entre 0.5 mm a 2 mm con un molino de tambor o rotor, para lograr una mejor interacción entre las soluciones y el tejido en los pasos posteriores. b) Pre-tratar el tejido previamente acondicionado, exponiéndolo a una solución de hidróxido de sodio a 0.05 - 2 M, empleando 50 - 1000 mL por gramo de tejido seco, con agitación magnética eficiente de 100 - 500 RPM y por un periodo de 1 hora a 24 horas, con la finalidad de retirar proteínas superficiales y dejar las fibras de colágeno expuestas; b 1 ) Lavar con agua destilada para neutralizar el pH del tejido hasta tener un pH de entre 7 a 8, antes del siguiente paso; c) Extraer el colágeno mediante hidrólisis enzimática sometiendo el tejido a una solución ácida de ácido acético a una concentración de 0.02 - 0.5 M y usando 50 - 1000 L por kg de tejido seco, conjuntamente con 50 - 1000 g de pepsina por kg de tejido seco, para propiciar una s o I u b i I i z a c i ó n más rápida del colágeno y propiciar una eliminación especifica y controlada de los grupos carboxilo y amino terminales de la molécula; en donde la extracción se realiza en un periodo de tres dias realizando adiciones de solución ácida intermedias (se inicia con 200 mL de ácido acético y 0.05 - 0.5 g de pepsina por g de tejido seco y después de 48 horas se adicionan 250 mL de ácido acético por g de tejido seco para propiciar el desarrollo de la reacción y en donde se eliminan los residuos de estructuras del tejido no colágenas por medio de una filtración con un tamiz de 50 - 900 m y se continúa con el proceso. d) Precipitar el colágeno llevando la solución resultante de colágeno (450 mL de solución por g de tejido seco) a una concentración alta de sal, agregando de 20 - 100 g de cloruro de sodio por 1 L de solución de colágeno, homogenizando la solución con agitación magnética y dejando que la interacción iónica de la sal con las moléculas de colágeno genere la precipitación de las mismas, durante un tiempo de entre 2 a 6 horas; posteriormente, tamizar la solución resultante a un tamaño de partícula de 50 a 900 m; en donde las fibras recuperadas del tamiz se solubilizan nuevamente en una solución de ácido acético, empleando 50 - 1000 mL de ácido acético por g de tejido seco); e) Dializar la solución de colágeno con la finalidad de purificar la solución del exceso de sal presente en la solución de colágeno, en un sistema de diálisis dinámica en el que el colágeno se coloca dentro de una membrana porosa de 12 a 14 kDa para expulsar las impurezas al introducirse a un buffer de diálisis que consiste en una solución con baja concentración de ácido acético de 0.02 - 0.5 M; en donde el intercambio de moléculas de sal entre ambas soluciones se origina por el diferencial de concentración de las mismas, de la solución de colágeno con una concentración de sales de 0.5 -2 M hacia la solución de ácido acético sin presencia de sales, y es acelerado por la superficie de contacto y el flujo del buffer; esta etapa dura de dos a cinco dias, durante los cuales el buffer se mantiene en recirculación y se cambia después de 6 a 48 horas; también se monitorea la conductividad de ambas soluciones y se detiene el proceso cuando el colágeno alcanza la misma conductividad que el buffer al inicio de la etapa (0.10 -0.5 mS/cm). f) Liofilizar la solución de colágeno purificada sometiéndola a un ciclo de liofilización para concentrar las fibras de colágeno, favoreciendo su preservación; para esto la solución se congela a una temperatura de entre -10°C y -80°C y posteriormente se somete a una presión de vacio de 0.02 - 0.2 mbar (2 - 20 Pa) por un periodo de tiempo de uno a cuatro dias, durante el cual se retira el agua y solventes en forma de vapor, secando el colágeno sin dañar las fibras; en donde el colágeno resultante se pesa y distribuye de acuerdo a lo requerido en el siguiente paso. g) Moldear y liofilizar por segunda ocasión, en donde, dependiendo de la aplicación y función esperada, se elige una concentración de 0.5 a 30 mg de colágeno por mL de ácido acético con molaridad de 0.02 a 0.5 M; una vez solubilizado, el colágeno se coloca en moldes que permitan generar la estructura con las dimensiones deseadas; nuevamente se realiza la liofilización de la solución a una temperatura de entre -10°C y -80°C y una presión de vacio de 0.02 - 0.2 mbar (2 -20 Pa), con la excepción de que se realiza una congelación controlada que consiste en retirar el calor al disminuir gradualmente la temperatura de la placa con la que se encuentra en contacto el molde y la solución de colágeno, permitiendo que los cristales de agua y ácido acético sean uniformes y variados, acomodando las fibras para generar un tamaño de poro promedio estimado; h) Prensar la estructura de colágeno que, considerando la aplicación y función que deba desempeñar el producto, es sometida a una fuerza mecánica determinada de entre 100 - 5000 N para compactar sus dimensiones a un valor deseado desde 0.001 - 10 mm y aumentar su densidad fibrilar. i) Entrecruzar las piezas de colágeno sometiéndolas a una atmósfera de vapor de formaldehido en un aparato de entrecruzamiento, a un tiempo de exposición de entre 1 a 90 minutos y concentración de la nube de vapor del reactivo de 0.1 a 100 ppm, resultando en un entrecruzamiento controlado que permita reforzar la unión entre fibras para brindar mejores propiedades físicas a la estructura. According to figure 1, in general terms the process for producing human collagen tympanic membrane in accordance with the present invention consists of the following stages, carried out in a temperature range of 2 - 25°C, reaching temperatures down to -80°C in the I i of i I i zation stages. a) Condition the tissue obtained from human amniotic membrane, tendon and fascia, removing tissues or fluids that are not of interest to the process and reducing the particle size in a uniform manner to a size between 0.5 mm and 2 mm with a mill. drum or rotor, to achieve a better interaction between solutions and tissue in subsequent steps. b) Pre-treat the previously conditioned tissue, exposing it to a 0.05 - 2 M sodium hydroxide solution, using 50 - 1000 mL per gram of dry tissue, with efficient magnetic stirring at 100 - 500 RPM and for a period of 1 hour to 24 hours, in order to remove surface proteins and leave the collagen fibers exposed; b 1) Wash with distilled water to neutralize the pH of the tissue until it reaches a pH between 7 and 8, before the next step; c) Extract the collagen by enzymatic hydrolysis by subjecting the tissue to an acid solution of acetic acid at a concentration of 0.02 - 0.5 M and using 50 - 1000 L per kg of dry tissue, together with 50 - 1000 g of pepsin per kg of tissue. dry, to promote a more rapid so I ubi I ization of the collagen and promote a specific and controlled elimination of the terminal carboxyl and amino groups of the molecule; where the extraction is carried out in a period of three days making additions of intermediate acid solution (begins with 200 mL of acetic acid and 0.05 - 0.5 g of pepsin per g of dry tissue and after 48 hours 250 mL of acid are added acetic acid per g of dry tissue to propitiate the development of the reaction and where the residues of non-collagenous tissue structures are eliminated by means of a filtration with a 50 - 900 m sieve and the process is continued. d) Precipitate the collagen by bringing the resulting collagen solution (450 mL of solution per g of dry tissue) to a high salt concentration, adding 20 - 100 g of sodium chloride per 1 L of collagen solution, homogenizing the solution with magnetic stirring and allowing the ionic interaction of the salt with the collagen molecules to generate their precipitation, for a period of between 2 to 6 hours; subsequently, sieve the resulting solution to a particle size of 50 to 900 µm; where the fibers recovered from the sieve are solubilized again in an acetic acid solution, using 50 - 1000 mL of acetic acid per g of dry tissue); e) Dialyze the collagen solution in order to purify the solution of excess salt present in the collagen solution, in a dynamic dialysis system in which the collagen is placed inside a 12 to 14 kDa porous membrane to expel impurities when introduced to a dialysis buffer consisting of a solution with a low concentration of 0.02 - 0.5 M acetic acid; where the exchange of salt molecules between both solutions originates from their concentration differential, from the collagen solution with a salt concentration of 0.5 -2 M to the acetic acid solution without the presence of salts, and is accelerated by contact surface and buffer flow; This stage lasts from two to five days, during which the buffer is kept in recirculation and is changed after 6 to 48 hours; The conductivity of both solutions is also monitored and the process is stopped when the collagen reaches the same conductivity as the buffer at the beginning of the stage (0.10 -0.5 mS/cm). f) Freeze-drying the purified collagen solution by subjecting it to a freeze-drying cycle to concentrate the collagen fibers, favoring their preservation; For this, the solution is frozen at a temperature between -10°C and -80°C and is subsequently subjected to a vacuum pressure of 0.02 - 0.2 mbar (2 - 20 Pa) for a period of one to four days. , during which water and solvents are removed in the form of steam, drying the collagen without damaging the fibers; where the resulting collagen is weighed and distributed according to what is required in the next step. g) Mold and lyophilize for the second time, where, depending on the application and expected function, a concentration of 0.5 to 30 mg of collagen per mL of acetic acid with a molarity of 0.02 to 0.5 M is chosen; once solubilized, the collagen is placed in molds that make it possible to generate the structure with the desired dimensions; again, the lyophilization of the solution is carried out at a temperature between -10°C and -80°C and a vacuum pressure of 0.02 - 0.2 mbar (2 -20 Pa), with the exception that a controlled freezing is carried out that It consists of removing the heat by gradually decreasing the temperature of the plate with which the mold and the collagen solution are in contact, allowing the crystals of water and acetic acid to be uniform and varied, accommodating the fibers to generate a size of estimated average pore; h) Press the collagen structure that, considering the application and function that the product must perform, is subjected to a determined mechanical force of between 100 - 5000 N to compact its dimensions to a desired value from 0.001 - 10 mm and increase its density. fibrillar. i) Crosslink the collagen pieces by subjecting them to a formaldehyde vapor atmosphere in a crosslinking apparatus, at an exposure time of between 1 to 90 minutes and a concentration of the reagent vapor cloud of 0.1 to 100 ppm, resulting in a Controlled crosslinking that allows to reinforce the union between fibers to provide better physical properties to the structure.
Al final del proceso la membrana se somete a evaluación. At the end of the process the membrane is subjected to evaluation.
Por medio de electroforesis SDS-PAGE, se determinó la identidad los tipos de colágeno obtenidos con el proceso de extracción de colágeno antes descrito. La figura 2 muestra el gel de electroforesis con los colágenos extraídos de membrana amniótica, tendón y fascia humanos. Gel de SDS-PAGE para muestras de colágeno. M: Marcador de peso molecular. Carril 1: Estándar de colágeno tipo I (0.5 mg/mL). Carril 2: Colágeno de tendón (1 mg/mL). Carril 2: Colágeno de membrana amniótica (1 mg/mL). Carril 4: Colágeno de fascia (1 mg/mL). By means of SDS-PAGE electrophoresis, the identity of the collagen types obtained with the collagen extraction process described above was determined. Figure 2 shows the electrophoresis gel with the collagens extracted from human amniotic membrane, tendon and fascia. SDS-PAGE gel for collagen samples. M: Molecular weight marker. Lane 1: Collagen type I standard (0.5 mg/mL). Lane 2: Collagen from tendon (1 mg/mL). Lane 2: Amniotic membrane collagen (1 mg/mL). Lane 4: Fascia collagen (1 mg/mL).
Para todas las muestras, se observaron dos bandas de mayor intensidad con un tamaño aproximado de 116 y 130 kDa. For all samples, two bands of higher intensity with an approximate size of 116 and 130 kDa were observed.
Lo anterior demuestra que con el proceso de obtención y purificación de colágeno se aisló colágeno tipo I, puesto que las bandas visualizadas tienen un tamaño cercano a los 112 y a los 95 kDa, correspondientes a las dos cadenas a1 y a la cadena a2, respectivamente (Santos, et al., 2013); además de coincidir con el patrón de bandas que exhibió el estándar comercial de colágeno tipo I (ver figura 2). The foregoing demonstrates that with the process of obtaining and Collagen purification Type I collagen was isolated, since the visualized bands are close to 112 and 95 kDa in size, corresponding to the two a1 chains and the a2 chain, respectively (Santos, et al., 2013); in addition to coinciding with the band pattern exhibited by the commercial type I collagen standard (see figure 2).
Una vez identificado el tipo de colágeno, se determinó la pureza del mismo al cuantificar, colorimétricamente, el contenido de hidroxiprolina. En la tabla 1 se muestra la concentración de hidroxiprolina y el porcentaje de colágeno. Once the type of collagen was identified, its purity was determined by quantifying, colorimetrically, the hydroxyproline content. Table 1 shows the concentration of hydroxyproline and the percentage of collagen.
Tabla 1.- Concentración de hidroxiprolina y el porcentaje de colágeno obtenido por el proceso de la presente invención. Table 1.- Hydroxyproline concentration and the percentage of collagen obtained by the process of the present invention.
Concentración de Concentración de Concentration of Concentration of
Porcentaje dePercentage of
Muestra Hidroxiprolina colágeno colágeno (%)Sample Hydroxyproline collagen collagen (%)
(mg/mg) (mg/mL) (mg/mg) (mg/mL)
Tendón 0.112 0.8371 83.7Tendon 0.112 0.8371 83.7
Membrana Membrane
0.145 1.0732 107.30.145 1.0732 107.3
Amniótica amniotic
Lo anterior coincide con el contenido de hidroxiprolina de 0.135 mg/mg en colágeno tipo I proveniente de mamíferos (Capella- Monsonis, et al., 2018). Además, se demuestra que, el colágeno obtenido de tendón humano y de membrana amniótica, corresponde a un colágeno de gran pureza y que más del 80% del contenido proteico de las muestras se traduce en proteínas colágenas. Finalmente, debido a que el proceso de entrecruzamiento se realiza con formaldehido, se determinó el contenido de formaldehido residual en las membranas de colágeno, de acuerdo con la Farmacopea de los Estados Unidos Mexicanos (FEUM), en el Suplemento para Dispositivos Médicos. En la tabla 2 se condensan los resultados obtenidos. El valor de absorbancia obtenido para la solución de referencia de formaldehido 0.001% (m/v) fue de 0.15. This coincides with the hydroxyproline content of 0.135 mg/mg in type I collagen from mammals (Capella-Monsonis, et al., 2018). In addition, it is demonstrated that the collagen obtained from human tendon and amniotic membrane corresponds to a collagen of great purity and that more than 80% of the protein content of the samples is translated into collagen proteins. Finally, because the crosslinking process is carried out with formaldehyde, the residual formaldehyde content in the collagen membranes was determined, according to the Pharmacopeia of the United Mexican States (FEUM), in the Supplement for Medical Devices. Table 2 summarizes the results obtained. The absorbance value obtained for the 0.001% (m/v) formaldehyde reference solution was 0.15.
Tabla 2.- Absorbancia de las estructuras de colágeno entrecruzadas, obtenido por el proceso de la presente invención. Table 2.- Absorbance of the crosslinked collagen structures, obtained by the process of the present invention.
Peso de Agua (mL) Ácido Cromotrópico AbsorbanciaWater Weight (mL) Chromotropic Acid Absorbance
Estructuras (mg) (mL) Structures (mg) (mL)
0.8 0.16 3.2 O.1O0.8 0.16 3.2 O.1O
0.8 0.16 3.2 0.080.8 0.16 3.2 0.08
0.8 0.16 3.2 0.12 0.8 0.16 3.2 0.12
De acuerdo con los resultados anteriores, se obtiene que, en promedio, la absorbancia de las muestras fue de 0.1 ± 0.02, siendo por debajo del valor de referencia de 0.15. Lo anterior indica que la concentración de formaldehído en las estructuras de colágeno es menor al 0.001% y cumple con los requisitos estipulados por la FEUM. According to the previous results, it is obtained that, on average, the absorbance of the samples was 0.1 ± 0.02, being below the reference value of 0.15. The above indicates that the concentration of formaldehyde in the collagen structures is less than 0.001% and meets the requirements stipulated by the FEUM.
De acuerdo con el proceso para producir membrana timpánica de colágeno humano de conformidad con la presente invención anteriormente descrito, se obtiene una membrana timpánica de colágeno humano tipo I, con una pureza de > 80% y concentración de < 30 mg/mL o < 15 mg/cm2, de dimensiones controladas (1 cm de diámetro o de lado, y espesor de 0.03 - 0.3 mm), con una porosidad del 80 a 99% y tamaño de poro de entre 10 a 200 m.According to the process for producing human collagen tympanic membrane in accordance with the present invention described above, a type I human collagen tympanic membrane is obtained, with a purity of > 80% and a concentration of < 30 mg/mL or < 15 mg/cm 2 , of controlled dimensions (1 cm in diameter or side, and thickness of 0.03 - 0.3 mm), with a porosity of 80 to 99% and a pore size of between 10 and 200 µm.
La membrana es flexible, reabsorbible, adherible, resistente a las presiones internas del oido y biocompatible. The membrane is flexible, absorbable, adherent, resistant to the internal pressures of the ear and biocompatible.
La membrana se recorta, de acuerdo con las dimensiones de la lesión observada, y posteriormente, se hidrata con solución fisiológica, solución de antibióticos o alguna otra que el médico considere apropiado. La membrana húmeda se coloca sobre el timpano, accediendo por el canal auditivo y cubriendo totalmente el sitio de la lesión. La membrana se adhiere al timpano por su carácter hidrofílico. De esta forma, la membrana de colágeno provee un soporte provisional que subsana la discontinuidad del timpano, permitiendo cierta transmisibilidad de las ondas de sonido, y sobre el cual las células del timpano pueden migrar desde el borde de la herida hacia el centro, y generarán las capas epitelial y fibrosa que cerrarán la herida. The membrane is cut, according to the dimensions of the lesion observed, and later, it is hydrated with physiological solution, antibiotic solution or any other that the doctor considers appropriate. The moist membrane is placed over the eardrum, accessing through the ear canal and completely covering the lesion site. The membrane adheres to the eardrum due to its hydrophilic nature. In this way, the collagen membrane provides a provisional support that heals the discontinuity of the eardrum, allowing some transmissibility of sound waves, and on which the cells of the eardrum can migrate from the edge of the wound to the center, and will generate the epithelial and fibrous layers that will close the wound.
En la elaboración de andamios para ingeniería de tejidos, tanto la porosidad como la permeabilidad son aspectos importantes ya que, la porosidad provee el espacio necesario para la migración celular a través del andamio y para la formación de la matriz extracelular; mientras que la permeabilidad permite la afluencia de los nutrientes y la elución de los desechos metabólicos, por lo que se busca que los dispositivos tengan alta porosidad y alta permeabilidad. In the development of scaffolds for tissue engineering, both the porosity and permeability are important aspects, since porosity provides the necessary space for cell migration through the scaffold and for the formation of the extracellular matrix; while the permeability allows the influx of nutrients and the elution of metabolic waste, for which it is sought that the devices have high porosity and high permeability.
Para determinar la porosidad de la membrana de colágeno, se midieron las dimensiones de las estructuras y se determinó el volumen de las estructuras (Vm). Las membranas se pesaron individualmente, previo a la experimentación (Wo). Posteriormente, se sumergieron en 5 mL de etanol absoluto y se dejaron por 24 h a temperatura ambiente. Transcurrido el tiempo, se retiraron las estructuras de colágeno y se quitó el exceso superficial de liquido, con un papel filtro. Las membranas se pesaron inmediatamente (W2 ) y se determinó el porcentaje de porosidad, de acuerdo con la siguiente fórmula, donde p es la densidad del etanol absoluto:
Figure imgf000035_0001
To determine the porosity of the collagen membrane, the dimensions of the structures were measured and the volume of the structures (Vm) was determined. The membranes were weighed individually, prior to experimentation (Wo). Subsequently, they were immersed in 5 mL of absolute ethanol and left for 24 h at room temperature. After time, the collagen structures were removed and the superficial excess of liquid was removed with a filter paper. The membranes were immediately weighed (W2 ) and the percentage of porosity was determined, according to the following formula, where p is the density of absolute ethanol:
Figure imgf000035_0001
(3.30 mg — 1.20 mg)/(789.7 mg/cm3 (3.30 mg — 1.20 mg)/(789.7 mg/cm 3
Pl% x 100 = 91.91%Pl% x 100 = 91.91%
0.00289 cm3 0.00289 cm3
(3.50 mg — 0.8 mg)/(789.7 mg/cm3) (3.50 mg — 0.8 mg)/(789.7 mg/cm 3 )
P2% x 100 = 80.76% 0.00423 cm3 P2 % x 100 = 80.76% 0.00423 cm3
(3.10 mg — 1.10 mg)/(789.7 mg/cm3') (3.10 mg — 1.10 mg)/(789.7 mg/cm 3 ')
P3% x 100 = 78.75%P3 % x 100 = 78.75%
0.00322 cm3 La porosidad promedio de las membranas elaboradas fue de 83.81 ± 7.09. 0.00322 cm3 The average porosity of the elaborated membranes was 83.81 ± 7.09.
En relación con lo anterior, se realizó un análisis por microscopía SEM para determinar el tamaño de poro. En la figura 4A se puede observar la estructura colapsada del andamio, creando superficies lisas, pero manteniendo una estructura porosa con heterogeneidad en el tamaño de poro, asi como en la morfología de los mismos. Una microestructu ra heterogénea es deseable en la ingeniería de tejidos, ya que asemeja la compleja estructura jerárquica, que se encuentran en los sistemas biológicos; diferentes tamaños de poro tienen influencia en distintos procesos celulares. Los nanoporos (< 100 nm) son importantes para la formación de fibras de colágeno y matriz extracelular, mientras que los macroporos (100 m - mm) influyen en la siembra celular, distribución, migración y neovascularización in vivo. In relation to the above, an analysis by SEM microscopy was performed to determine the pore size. Figure 4A shows the collapsed structure of the scaffold, creating smooth surfaces, but maintaining a porous structure with heterogeneity in pore size, as well as in their morphology. A heterogeneous microstructure is desirable in tissue engineering, since it resembles the complex hierarchical structure found in biological systems; different pore sizes influence different cellular processes. Nanopores (<100 nm) are important for the formation of collagen fibers and extracellular matrix, while macropores (100 m-mm) influence cell seeding, distribution, migration, and neovascularization in vivo.
Los andamios deben permitir la formación de las uniones gap funcionales, y la interacción apropiada con otras células y/o con la matriz extracelular. Para contacto indirecto célula-célula, el tamaño de poro debe ser lo suficientemente grande para asegurar la nutrición celular pero no muy largo para evitar la migración celular. La migración celular a través de la membrana requiere de un balance entre tamaño celular, adhesión, tamaño de poro y la topografía de la superficie. Andamios con tamaños de poro de 50 nm a 12 m regulan la adhesión celular, la interacción célula-célula y la migración a través de la membrana. Los andamios con tamaño de poro > 100 pm tienen un mayor número de unidades funcionales necesarias para la regeneración de varios tejidos. The scaffolds must allow the formation of functional gap junctions, and the appropriate interaction with other cells and/or with the extracellular matrix. For indirect cell-cell contact, the pore size should be large enough to ensure cell nutrition but not too large to prevent cell migration. Cell migration through the membrane requires a balance between cell size, adhesion, pore size, and surface topography. Scaffolds with pore sizes from 50 nm to 12 µm regulate cell adhesion, cell-cell interaction, and migration across the membrane. scaffolding with size pore > 100 pm have a greater number of functional units necessary for the regeneration of various tissues.
Para regeneración de piel se había establecido un rango de tamaño de poro de 20 -120 pm, óptimo para viabilidad y actividad celular. Se demostró que la adhesión celular disminuyó al incrementar el tamaño de poro, atribuyéndose a que, poros más pequeños (120 pm) ofrecen mayor área superficial a la cual se pueden adherir las células, después de la inoculación. No obstante, después de 7 dias de cultivo, se observó un mayor conteo celular en andamios con tamaños de poro mayores (150-200 pm y 300-350 pm). Por otra parte, tamaños de poro de 325 pm facilitaban una mayor infiltración celular a través del andamio, exhibiendo una distribución celular uniforme, migrando completamente del borde hasta el centro del andamio. For skin regeneration, a pore size range of 20-120 pm had been established, optimal for cell viability and activity. It was shown that cell adhesion decreased with increasing pore size, attributing to the fact that smaller pores (120 pm) offer a greater surface area to which cells can adhere, after inoculation. However, after 7 days of culture, a higher cell count was observed in scaffolds with larger pore sizes (150-200 pm and 300-350 pm). On the other hand, 325 pm pore sizes facilitated greater cell infiltration through the scaffold, exhibiting a uniform cell distribution, migrating completely from the edge to the center of the scaffold.
En la membrana fabricada de acuerdo con la presente invención, los poros más pequeños tienen un tamaño de 13.81 ± 4.94 pm, mientras que los más grandes oscilan entre 100-200 pm, especialmente, en la sección transversal de la membrana (ver Figura 4B), lo que contribuye a la adhesión y la migración celular en la membrana, como se describe posteriormente. In the membrane manufactured according to the present invention, the smallest pores have a size of 13.81 ± 4.94 pm, while the largest ones range between 100-200 pm, especially, in the cross section of the membrane (see Figure 4B). , which contributes to cell adhesion and migration in the membrane, as described later.
Igualmente, se puede observar en la figura 4B, que el espesor de la membrana tiene valores de 168.92 pm, 201.25 pm y 268.34 pm, pudiendo establecerse el espesor promedio de 234.79 ± 47.44 pm. El espesor de la membrana timpánica varia en función de las diferentes zonas que la componen, pero en general, la mayoría de los autores han convenido en un espesor de entre 30-150 m (Van der Jeught, 2013). Se ha observado que, durante la reparación de la membrana timpánica, existe la posibilidad de una hiperproliferación de la capa epitelial, lo que genera un engrosamiento de la membrana timpánica y, por ende, se extiende el proceso de sanación, además de que puede afectar temporalmente la capacidad auditiva del paciente (Kim et al., 2017). Por tal motivo, la reducción del espesor de las estructuras de colágeno es importante, para no sumar volumen a la zona lesionada y contribuir a una proliferación más controlada. Likewise, it can be observed in figure 4B that the thickness of the membrane has values of 168.92 pm, 201.25 pm and 268.34 pm, being able to establish the average thickness of 234.79 ± 47.44 pm. The thickness of the tympanic membrane varies depending on the different zones that compose it, but in general, most authors have agreed on a thickness of between 30-150 m (Van der Jeught, 2013). It has been observed that, during repair of the tympanic membrane, there is the possibility of a hyperproliferation of the epithelial layer, which generates a thickening of the tympanic membrane and, therefore, extends the healing process, in addition to the fact that it can affect temporarily the hearing ability of the patient (Kim et al., 2017). For this reason, reducing the thickness of the collagen structures is important, so as not to add volume to the injured area and contribute to a more controlled proliferation.
La migración celular es una propiedad crucial que debe cumplir el injerto, ya que éste es el principio para la reparación de tejidos. En particular, el mecanismo de curación de una herida de timpano es diferente al de otras partes del cuerpo, por ejemplo, la piel. Normalmente, ante una lesión, la respuesta de los tejidos es comenzar una serie de fases de hemostasia, inflamación, proliferación celular y, finalmente, migración celular; en el caso de la membrana timpánica la migración celular precede a la proliferación. Además, por lo general el tejido de granulación se desarrolla y sirve como base para la reepitelización; en el caso del timpano, el epitelio escamoso se desarrolla primero, seguido por el resto de la capa epitelial y concluye con la capa fibrosa. Asi mismo, se ha observado que los puntos de mayor proliferación en la membrana timpánica son el anillo y el mango del martillo. Por otra parte, la particularidad con el timpano es que el borde de la herida está suspendido, no existe una matriz de tejido subyacente que pueda soportar el epitelio en regeneración y los vasos migratorios que, por necesidad, deben derivarse de la lámina propia circundante (Teh et al., 2013). Cell migration is a crucial property that the graft must fulfill, since this is the principle for tissue repair. In particular, the healing mechanism of an eardrum injury is different from that of other parts of the body, for example, the skin. Normally, when faced with an injury, the response of the tissues is to begin a series of phases of hemostasis, inflammation, cell proliferation and, finally, cell migration; in the case of the tympanic membrane, cell migration precedes proliferation. In addition, granulation tissue usually develops and serves as the basis for re-epithelialization; in the case of the eardrum, the squamous epithelium develops first, followed by the rest of the epithelial layer, and concludes with the fibrous layer. Likewise, it has been observed that the points of greatest proliferation in the tympanic membrane are the ring and the handle of the malleus. On the other hand, the particularity with the eardrum is that the edge of the wound is suspended, there is no underlying tissue matrix that can support the regenerating epithelium and migratory vessels that, by necessity, must be derived from the surrounding lamina propria (Teh et al., 2013).
En relación con lo anterior, en un estudio se comparó la interacción de fibroblastos humanos con la matriz extracelular de dermis descelularizada de porcino y humano, encontrándose que, la dermis descelularizada de origen humano presentaba una mayor infiltración de fibroblastos y una mayor distancia recorrida desde la superficie de inoculación (Armour et al., 2006). In relation to the above, in a study the interaction of human fibroblasts with the extracellular matrix of decellularized porcine and human dermis was compared, finding that the decellularized dermis of human origin presented a greater infiltration of fibroblasts and a greater distance traveled from the inoculation surface (Armour et al., 2006).
Se realizaron estudios de migración celular al cultivar fibroblastos humanos sobre la membrana timpánica de colágeno. En dichos estudios se observó que los fibroblastos proliferaban y se infiltraban en la estructura porosa de la membrana (ver figuras 5A a 5B) lo que demuestra que la membrana permitiría la migración de las células desde los bordes de la lesión, hasta el centro de la misma, donde las células comiencen la deposición de componentes proteicos que reparen la continuidad de las capas de la membrana timpánica. Cell migration studies were performed by culturing human fibroblasts on the collagen tympanic membrane. In these studies, it was observed that fibroblasts proliferated and infiltrated the porous structure of the membrane (see figures 5A to 5B), which demonstrates that the membrane would allow cells to migrate from the edges of the lesion to the center of the lesion. itself, where the cells begin the deposition of protein components that repair the continuity of the layers of the tympanic membrane.
Para evaluar la capacidad de la membrana de colágeno para promover la migración celular, se cultivaron fibroblastos sobre la superficie de la misma y se mantuvo el cultivo en incubación por 15 dias (37°C, 5% CO2). Por tinción citoquímica con 4 ' , 6 - d i a m i d i n o - 2-feni l¡ ndol (DAPI), se visualizaron los núcleos de los fibroblastos, de acuerdo con las figuras 5A y 5B se pudo observar que la membrana de colágeno soportó el crecimiento de fibroblastos y las células pudieron migrar a través de toda la estructura, a pesar de su compactación. Las células se pueden distinguir individualmente por la tinción de los núcleos (ver flechas), en la parte superior de la estructura de colágeno; o como zonas de luminosidad (ver circuios) debido a la alta densidad celular presente, en los planos inferiores de la membrana, evidenciando una excelente infiltración celular. Adicionalmente, las membranas de colágeno se mantuvieron integras y fueron fácilmente manipuladles, aún después de haber estado en cultivo. To evaluate the capacity of the collagen membrane to promote cell migration, fibroblasts were cultured on its surface and the culture was kept incubated for 15 days (37°C, 5% CO2). By cytochemical staining with 4',6-diamidino-2-phenytoindol (DAPI), fibroblast nuclei were visualized, According to figures 5A and 5B it was possible to observe that the collagen membrane supported the growth of fibroblasts and the cells were able to migrate through the entire structure, despite its compaction. Cells can be distinguished individually by staining of the nuclei (see arrows), on top of the collagen scaffold; or as areas of light (see circles) due to the high cell density present, in the lower planes of the membrane, evidencing excellent cell infiltration. Additionally, the collagen membranes remained intact and were easily handled, even after being in culture.
Para evaluar la resistencia mecánica de la membrana, se realizaron pruebas de comportamiento en húmedo. Primeramente, la membrana de colágeno se sumergió en sangre recién extraída, y se colocó sobre un globo inflado, para evaluar adhesión y resistencia a la expansión, ya que los cambios de presión en el oido son cercanos a la presión atmosférica. To evaluate the mechanical resistance of the membrane, wet behavior tests were carried out. First, the collagen membrane was immersed in freshly drawn blood, and placed on an inflated balloon, to assess adhesion and resistance to expansion, since pressure changes in the ear are close to atmospheric pressure.
Las membranas de colágeno mostraron resistencia a la manipulación, después de estar en contacto con sangre. Mantenían la forma definida de membrana, se adherían a las superficies y soportaron la fuerza de extensión al inflar el globo. Las figuras 6A, 6B, 6C y 6D muestran evidencia de lo anterior. The collagen membranes showed resistance to manipulation, after being in contact with blood. They maintained the defined membrane shape, adhered to surfaces, and withstood the force of extension as the balloon was inflated. Figures 6A, 6B, 6C and 6D show evidence of this.
Como parte de la caracterización física de la membrana, se realizaron pruebas de absorción para determinar el porcentaje de retención que permitía la estructura. Para ello, se siguió el método descrito por la Farmacopea de los Estados Unidos Mexicanos, en el Suplemento para Dispositivos Médicos. As part of the physical characterization of the membrane, absorption tests were performed to determine the percentage of retention allowed by the structure. For this, the method described by the Pharmacopoeia of the United Mexican States, in the Supplement for Medical Devices, was followed.
Se registra el peso inicial en seco (Ps) de una membrana. Posteriormente, la membrana se sumerge completamente en 20 mide agua MiliQ y se deja reposar por 72 h a temperatura ambiente Terminado el periodo, se remueve la membrana del agua y se deja escurrir el exceso de agua por 1 minuto. Seguidamente, se pesa, anotando el peso final en húmedo (Ph). Se determina el porcentaje de retención de humedad (R%), de acuerdo con la siguiente fórmula:
Figure imgf000041_0001
The initial dry weight (Ws) of a membrane is recorded. Subsequently, the membrane is completely immersed in 20 meters of MiliQ water and allowed to settle for 72 h at room temperature. After the period, the membrane is removed from the water and the excess water is allowed to drain for 1 minute. Next, it is weighed, noting the final wet weight (Ph). The moisture retention percentage (R%) is determined, according to the following formula:
Figure imgf000041_0001
(11 — 0.9) mg (11 — 0.9)mg
/?lo/o — - - - — -X 100 = 1122.22% 0.9 mg /?lo/ o — - - - — -X 100 = 1122.22% 0.9 mg
(21.7 - 1.4) mg (21.7 - 1.4)mg
/?2o/o — - - — - - — - x 100 = 1450% /?2o /o — - - — - - — - x 100 = 1450%
1.4 mg 1.4mg
(21.6 - 1.5) mg (21.6 - 1.5)mg
/?3o/o — - - - - - — - x 100 = 1340% /?3o /o — - - - - - — - x 100 = 1340%
1.5 mg 1.5mg
De acuerdo con lo anterior, se determinó que la membrana presenta un porcentaje de retención promedio de humedad de 1304.07 ± 166.81 %, y el incremento de masa fue de 14.04 ± 1.67 veces el peso original (Ps). Resaltando que, a pesar de que la membrana absorbía líquidos, no hubo una turgencia de la misma, y no se vieron afectadas las dimensiones de la membrana (ver figura 7). A la membrana se le pueden adicionar diversas sustancias, tales como: Pegamento tisular para mejorar la adherencia de la membrana al sitio de implante; una solución de antibiótico para tratar o prevenir una infección del oido mientras se repara el timpano; factores de crecimiento y/o células mesenquimales autólogas o alogénicas que, por su capacidad de señalización puedan promover o potenciar las rutas bioquímicas relacionadas a la curación de heridas y reparación de tejidos; nanoparticulas para la liberación dosificada de fármacos o alguna otra sustancia que pueda servir para el tratamiento de algún síntoma o padecimiento de la herida; en general, cualquier sustancia, compuesto o molécula, sintética o biológica que, por su naturaleza bioactiva o terapéutica pueda emplearse para el mejoramiento o aceleramiento de los procesos de reparación tisular, o como tratamiento a cualquier deterioro, alteración o daño a la salud. In accordance with the above, it was determined that the membrane presents an average moisture retention percentage of 1304.07 ± 166.81 %, and the mass increase was 14.04 ± 1.67 times the original weight (Ps). Noting that, despite the fact that the membrane absorbed liquids, there was no turgor of it, and the dimensions of the membrane were not affected (see figure 7). Various substances can be added to the membrane, such as: Tissue glue to improve adherence of the membrane to the implant site; an antibiotic solution to treat or prevent an ear infection while the eardrum is being repaired; growth factors and/or autologous or allogeneic mesenchymal cells that, due to their signaling capacity, can promote or enhance biochemical pathways related to wound healing and tissue repair; nanoparticles for the dosed release of drugs or any other substance that can be used to treat any symptom or condition of the wound; In general, any synthetic or biological substance, compound or molecule that, due to its bioactive or therapeutic nature, can be used to improve or accelerate tissue repair processes, or as a treatment for any deterioration, alteration or damage to health.
El invento ha sido descrito suficientemente como para que una persona con conocimientos medios en la materia pueda reproducir y obtener los resultados que mencionamos en la presente invención. The invention has been sufficiently described so that a person with average knowledge in the matter can reproduce and obtain the results that we mention in the present invention.

Claims

REIVINDICACIONES Habiendo descrito suficientemente la invención, se reclama como propiedad lo contenido en las siguientes cláusulas reivindicatorías. CLAIMS Having sufficiently described the invention, the content of the following claim clauses is claimed as property.
1.- Una membrana timpánica de colágeno humano para la reparación de lesiones de timpano y/o lesiones epiteliales, caracterizada por comprender una pureza de > 80% y una concentración de < 30 mg/mL o < 15 mg/cm2, de dimensiones controladas que van de 0.5 a 15 cm de diámetro o de lado, y 0.01 -10 mm de espesor, con una porosidad del 80 a 99% y tamaño de poro de entre 10 a 200 m. 1.- A human collagen tympanic membrane for the repair of tympanic lesions and/or epithelial lesions, characterized by comprising a purity of > 80% and a concentration of < 30 mg/mL or < 15 mg/cm 2 , of dimensions controlled that go from 0.5 to 15 cm in diameter or side, and 0.01 -10 mm thick, with a porosity of 80 to 99% and pore size of between 10 to 200 µm.
2.- La membrana timpánica de colágeno humano para la reparación de lesiones de timpano de acuerdo con la reivindicación 1, caracterizada porque es de colágeno alogénico. 2.- The human collagen tympanic membrane for the repair of tympanic lesions according to claim 1, characterized in that it is made of allogeneic collagen.
3.- La membrana timpánica de colágeno humano para la reparación de lesiones de timpano de acuerdo con la reivindicación 1, caracterizada porque es de colágeno tipo I. 3. The human collagen tympanic membrane for the repair of eardrum lesions according to claim 1, characterized in that it is made of type I collagen.
4.- La membrana timpánica de colágeno humano para la reparación de lesiones de timpano de acuerdo con la reivindicación 1, caracterizada porque tiene una porosidad del 80 a 99%. 4. The human collagen tympanic membrane for the repair of eardrum lesions according to claim 1, characterized in that it has a porosity of 80 to 99%.
5.- La membrana timpánica de colágeno humano para la reparación de lesiones de timpano de acuerdo con la reivindicación 1, caracterizada porque tiene espesor de 0.03 - 0.3 mm. 5. The human collagen tympanic membrane for the repair of eardrum lesions according to claim 1, characterized in that it has a thickness of 0.03 - 0.3 mm.
6.- La membrana timpánica de colágeno humano para la reparación de lesiones de timpano de acuerdo con la reivindicación 1, caracterizada porque tiene un porcentaje de retención promedio de humedad de 1304.07 ± 166.81 % y el incremento de masa de < 30 veces el peso original. 6.- The human collagen tympanic membrane for the repair of eardrum lesions according to claim 1, characterized in that it has an average moisture retention percentage of 1304.07 ± 166.81% and the mass increase of <30 times the original weight .
7.- La membrana timpánica de colágeno humano para la reparación de lesiones de timpano de acuerdo con la reivindicación 1, caracterizada porque, además, comprende al menos una sustancia, compuesto o molécula, sintética o biológica que, por su naturaleza bioactiva o terapéutica mejore o acelere los procesos de reparación tisular de la lesión del timpano. 7. The human collagen tympanic membrane for the repair of eardrum lesions according to claim 1, characterized in that it also comprises at least one synthetic or biological substance, compound or molecule that, due to its bioactive or therapeutic nature, improves o accelerate the tissue repair processes of the eardrum lesion.
8.- La membrana timpánica de colágeno humano para la reparación de lesiones de timpano de acuerdo con la reivindicación 1, caracterizada porque dicha sustancia, compuesto o molécula, sintética o biológica se selecciona de al menos uno de pegamento tisular, una solución de antibiótico, fármacos, factores de crecimiento y/o células mesenquimales autólogas o alogénicas, nanoparticulas para la liberación dosificada de fármacos o sus mezclas. 8. The human collagen tympanic membrane for the repair of tympanic lesions according to claim 1, characterized in that said synthetic or biological substance, compound or molecule is selected from at least one of tissue glue, an antibiotic solution, drugs, growth factors and/or autologous or allogeneic mesenchymal cells, nanoparticles for the dosed release of drugs or their mixtures.
9.- Un proceso para producir una membrana timpánica de colágeno humano para la reparación de lesiones de timpano caracterizado por que comprende las etapas de: a) Acondicionar el tejido obtenido de membrana amniótica, tendón y fascia humanos; b) Pre-tratar el tejido previamente acondicionándolo con una solución de hidróxido de sodio; b1) Lavar con agua destilada para neutralizar el pH del tejido; c) Extraer el colágeno mediante hidrólisis enzimática; d) Precipitar el colágeno a una concentración alta de sal, agregando cloruro de sodio; e) Dializar la solución de colágeno en un buffer de diálisis para expulsar las impurezas; f) Liofilizar la solución de colágeno; g) Moldear y liofilizar por segunda ocasión para generar la estructura con las dimensiones deseadas; h) Prensar la estructura de colágeno; y i) Entrecruzar las piezas de colágeno sometiéndolas a una atmósfera de vapor de formaldehido en un aparato de entrecruzamiento. 9.- A process for producing a human collagen tympanic membrane for the repair of tympanic lesions, characterized in that it comprises the steps of: a) Conditioning the tissue obtained from the human amniotic membrane, tendon and fascia; b) Pre-treat the fabric previously conditioning it with a sodium hydroxide solution; b1) Wash with distilled water to neutralize the pH of the tissue; c) Extracting the collagen by enzymatic hydrolysis; d) Precipitate the collagen at a high salt concentration, adding sodium chloride; e) Dialyze the collagen solution in a dialysis buffer to expel impurities; f) Lyophilize the collagen solution; g) Mold and lyophilize a second time to generate the structure with the desired dimensions; h) Pressing the collagen structure; and i) Crosslinking the collagen pieces by subjecting them to a formaldehyde vapor atmosphere in a crosslinking apparatus.
10.- El proceso para producir una membrana timpánica de colágeno humano para la reparación de lesiones de timpano de acuerdo con la reivindicación 9, caracterizado porque se lleva cabo en un rango de temperatura de 2 - 25°C, alcanzando temperaturas de hasta - 80°C en las etapas de liofilización. 10.- The process for producing a human collagen tympanic membrane for the repair of eardrum lesions according to claim 9, characterized in that it is carried out in a temperature range of 2 - 25°C, reaching temperatures of up to -80 °C in the lyophilization stages.
11.- El proceso para producir una membrana timpánica de colágeno humano para la reparación de lesiones de timpano de acuerdo con la reivindicación 9, caracterizado porque en la etapa de acondicionar el tejido obtenido de membrana amniótica, tendón y fascia humanos se remueven los tejidos o fluidos que no sean de interés para el proceso y se reduce el tamaño de partícula de una manera uniforme a un tamaño de entre 0.5 mm a 2 mm con un molino de tambor o rotor, para lograr una mejor interacción entre las soluciones y el tejido en los pasos posteriores. 11.- The process for producing a human collagen tympanic membrane for the repair of tympanic lesions according to claim 9, characterized in that in the step of conditioning the tissue obtained from the human amniotic membrane, tendon and fascia, the tissues are removed or fluids that are not of interest to the process and the particle size is reduced in a uniform way to a size between 0.5 mm to 2 mm with a drum or rotor mill, to achieve a better interaction between the solutions and the tissue in the subsequent steps.
12.- El proceso para producir una membrana timpánica de colágeno humano para la reparación de lesiones de timpano de acuerdo con la reivindicación 9, caracterizado porque en la etapa de pretratamiento del tejido, éste se expone a una solución de hidróxido de sodio a 0.05 - 2 M, empleando 50 - 1000 mL por gramo de tejido seco, con agitación magnética eficiente de 100 - 500 RPM y por un periodo de 1 hora a 24 horas, con la finalidad de retirar proteínas superficiales y dejar las fibras de colágeno expuestas; 12. The process for producing a human collagen tympanic membrane for the repair of eardrum lesions according to claim 9, characterized in that in the tissue pretreatment stage, it is exposed to a sodium hydroxide solution at 0.05 - 2 M, using 50 - 1000 mL per gram of dry tissue, with efficient magnetic agitation of 100 - 500 RPM and for a period of 1 hour to 24 hours, in order to remove surface proteins and leave the collagen fibers exposed;
13.- El proceso para producir una membrana timpánica de colágeno humano para la reparación de lesiones de timpano de acuerdo con la reivindicación 9, caracterizado porque en la etapa de lavado se ajuste el pH a un pH de entre 7 a 8. 13. The process for producing a human collagen tympanic membrane for the repair of tympanic lesions according to claim 9, characterized in that in the washing step the pH is adjusted to a pH between 7 and 8.
14.- El proceso para producir una membrana timpánica de colágeno humano para la reparación de lesiones de timpano de acuerdo con la reivindicación 9, caracterizado porque en la etapa de extracción del colágeno mediante hidrólisis enzimática, se somete el tejido a una solución ácida de ácido acético a una concentración de 0.02 - 0.5 M y usando 50 - 1000 L por kg de tejido seco, conjuntamente con 50 - 1000 g de pepsina por kg de tejido seco, para propiciar una solubilización más rápida del colágeno y propiciar una eliminación especifica y controlada de los grupos carboxil o y amino terminales de la molécula. 14.- The process for producing a human collagen tympanic membrane for the repair of eardrum lesions according to claim 9, characterized in that in the collagen extraction step by enzymatic hydrolysis, the tissue is subjected to an acid solution of acid acetic acid at a concentration of 0.02 - 0.5 M and using 50 - 1000 L per kg of dry tissue, together with 50 - 1000 g of pepsin per kg of dry tissue, to promote a more rapid solubilization of collagen and promote a specific and controlled elimination of the carboxyl and amino terminal groups of the molecule.
15.- El proceso para producir una membrana timpánica de colágeno humano para la reparación de lesiones de timpano de acuerdo con la reivindicación 14, caracterizado porque la extracción se realiza en un periodo de tres dias realizando adiciones de solución ácida intermedias, iniciando con 200 mL de ácido acético y 0.05 - 0.5 g de pepsina por g de tejido seco y después de 48 horas se adicionan 250 mL de ácido acético por g de tejido seco para propiciar el desarrollo de la reacción y en donde se eliminan los residuos de estructuras del tejido no colágenas por medio de una filtración con un tamiz de 50 - 900 m. 15.- The process for producing a human collagen tympanic membrane for the repair of tympanic lesions according to Claim 14, characterized in that the extraction is carried out over a period of three days making intermediate acid solution additions, starting with 200 mL of acetic acid and 0.05 - 0.5 g of pepsin per g of dry tissue and after 48 hours 250 are added. mL of acetic acid per g of dry tissue to promote the development of the reaction and where residues of non-collagenous tissue structures are removed by filtration with a 50-900 µm sieve.
16.- El proceso para producir una membrana timpánica de colágeno humano para la reparación de lesiones de timpano de acuerdo con la reivindicación 9, caracterizado porque la etapa de precipitación del colágeno la solución resultante de colágeno (450 mL de solución por g de tejido seco) se lleva a una concentración alta de sal, agregando de 20 - 100 g de cloruro de sodio por 1 L de solución de colágeno, homogenizando la solución con agitación magnética y dejando que la interacción iónica de la sal con las moléculas de colágeno genere la precipitación de las mismas, durante un tiempo de entre 2 a 6 horas; posteriormente, tamizar la solución resultante a un tamaño de partícula de 50 a 900 m; en donde las fibras recuperadas del tamiz se solubilizan nuevamente en una solución de ácido acético, empleando 50 - 1000 mL de ácido acético por g de tejido seco; 16.- The process for producing a human collagen tympanic membrane for the repair of tympanic lesions according to claim 9, characterized in that the collagen precipitation step is the resulting collagen solution (450 mL of solution per g of dry tissue ) is brought to a high salt concentration, adding 20 - 100 g of sodium chloride per 1 L of collagen solution, homogenizing the solution with magnetic stirring and allowing the ionic interaction of the salt with the collagen molecules to generate the precipitation of the same, during a time between 2 to 6 hours; subsequently, sieve the resulting solution to a particle size of 50 to 900 µm; where the fibers recovered from the screen are solubilized again in an acetic acid solution, using 50 - 1000 mL of acetic acid per g of dry fabric;
17.- El proceso para producir una membrana timpánica de colágeno humano para la reparación de lesiones de timpano de acuerdo con la reivindicación 9, caracterizado porque la etapa de dializar la solución de colágeno para purificar la solución del exceso de sal presente en la solución de colágeno, se realiza en un sistema de diálisis dinámica en el que el colágeno se coloca dentro de una membrana porosa de 12 a 14 kDa para expulsar las impurezas al introducirse a un buffer de diálisis que consiste en una solución con baja concentración de ácido acético de 0.02 - 0.5 M; en donde el intercambio de moléculas de sal entre ambas soluciones se origina por el diferencial de concentración de las mismas, de la solución de colágeno con una concentración de sales de 0.5 -2 M hacia la solución de ácido acético sin presencia de sales, y es acelerado por la superficie de contacto y el flujo del buffer; esta etapa dura de dos a cinco dias, durante los cuales el buffer se mantiene en recirculación y se cambia después de 6 a 48 horas; monitoreando la conductividad de ambas soluciones y se detiene el proceso cuando el colágeno alcanza la misma conductividad que el buffer al inicio de la etapa (0.10 -0.5 mS/cm). 17.- The process for producing a human collagen tympanic membrane for the repair of tympanic lesions according to Claim 9, characterized in that the step of dialysing the collagen solution to purify the solution of excess salt present in the collagen solution, is performed in a dynamic dialysis system in which the collagen is placed inside a porous membrane of 12 to 14 kDa to expel impurities when introduced to a dialysis buffer consisting of a low concentration solution of 0.02 - 0.5 M acetic acid; where the exchange of salt molecules between both solutions originates from their concentration differential, from the collagen solution with a salt concentration of 0.5 -2 M to the acetic acid solution without the presence of salts, and is accelerated by contact surface and buffer flow; this stage lasts from two to five days, during which the buffer is kept in recirculation and is changed after 6 to 48 hours; monitoring the conductivity of both solutions and the process is stopped when the collagen reaches the same conductivity as the buffer at the beginning of the stage (0.10 -0.5 mS/cm).
18.- El proceso para producir una membrana timpánica de colágeno humano para la reparación de lesiones de timpano de acuerdo con la reivindicación 9, caracterizado porque en la etapa de liofilizar la solución de colágeno purificada, ésta se congela a una temperatura de entre -10°C y -80°C y posteriormente se somete a una presión de vacio de 0.02 - 0.2 mbar (2 - 20 Pa) por un periodo de tiempo de uno a cuatro dias, durante el cual se retira el agua y solventes en forma de vapor, secando el colágeno sin dañar las fibras. 18.- The process for producing a human collagen tympanic membrane for the repair of eardrum lesions according to claim 9, characterized in that in the step of lyophilizing the purified collagen solution, it is frozen at a temperature between -10 °C and -80 °C and subsequently subjected to a vacuum pressure of 0.02 - 0.2 mbar (2 - 20 Pa) for a period of one to four days, during which water and solvents are removed in the form of steam, drying the collagen without damaging the fibers.
19.- El proceso para producir una membrana timpánica de colágeno humano para la reparación de lesiones de timpano de acuerdo con la reivindicación 9, caracterizado porque en la etapa de moldear y liofilizar por segunda ocasión, se elige una concentración de 0.5 a 30 mg de colágeno por mL de ácido acético con molaridad de 0.02 a 0.5 M; una vez solubilizado, el colágeno se coloca en moldes para generar la estructura con las dimensiones deseadas; nuevamente se realiza la liofilización de la solución a una temperatura de entre -10°C y -80°C y una presión de vacio de 0.02 - 0.2 mbar (2 -20 Pa), con la excepción de que se realiza una congelación controlada que consiste en retirar el calor al disminuir gradualmente la temperatura de la placa con la que se encuentra en contacto el molde y la solución de colágeno, permitiendo que los cristales de agua y ácido acético sean uniformes y variados, acomodando las fibras para generar un tamaño de poro promedio estimado. 19.- The process to produce a collagen tympanic membrane for the repair of eardrum lesions according to claim 9, characterized in that in the step of molding and lyophilizing for the second time, a concentration of 0.5 to 30 mg of collagen is chosen per mL of acetic acid with a molarity of 0.02 to 0.5 m; once solubilized, the collagen is placed in molds to generate the structure with the desired dimensions; again, the lyophilization of the solution is carried out at a temperature between -10°C and -80°C and a vacuum pressure of 0.02 - 0.2 mbar (2 -20 Pa), with the exception that a controlled freezing is carried out that It consists of removing the heat by gradually decreasing the temperature of the plate with which the mold and the collagen solution are in contact, allowing the crystals of water and acetic acid to be uniform and varied, accommodating the fibers to generate a size of estimated average pore.
20.- El proceso para producir una membrana timpánica de colágeno humano para la reparación de lesiones de timpano de acuerdo con la reivindicación 9, caracterizado porque en la etapa de prensar la estructura de colágeno, ésta es sometida a una fuerza mecánica determinada de entre 100 - 5000 N para compactar sus dimensiones a un valor deseado desde 0.001 - 10 mm y aumentar su densidad fibrilar. 20.- The process for producing a human collagen tympanic membrane for the repair of eardrum lesions according to claim 9, characterized in that in the step of pressing the collagen structure, it is subjected to a determined mechanical force of between 100 - 5000 N to compact its dimensions to a desired value from 0.001 - 10 mm and increase its fibrillar density.
21.- El proceso para producir una membrana timpánica de colágeno humano para la reparación de lesiones de timpano de acuerdo con la reivindicación 9, caracterizado porque en la etapa de entrecruzar las piezas de colágeno, éstas se someten a una atmósfera de vapor de formaldehido en un aparato de entrecruzamiento, a un tiempo de exposición de entre 1 a 90 minutos y concentración de la nube de vapor del reactivo de 0.1 a 100 ppm, resultando en un entrecruzamiento controlado que permita reforzar la unión entre fibras para brindar mejores propiedades físicas a la estructura. 21.- The process for producing a human collagen tympanic membrane for the repair of eardrum lesions according to claim 9, characterized in that in the step of crosslinking the pieces of collagen, they are subjected to an atmosphere of formaldehyde vapor in an apparatus of crosslinking, at an exposure time of between 1 to 90 minutes and concentration of the reagent vapor cloud from 0.1 to 100 ppm, resulting in a controlled crosslinking that allows reinforcing the union between fibers to provide better physical properties to the structure.
PCT/MX2022/050118 2021-12-14 2022-12-01 Eardrum membrane made of human collagen for repairing eardrum injuries WO2023113584A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
MXMX/A/2021/015642 2021-12-14
MX2021015642A MX2021015642A (en) 2021-12-14 2021-12-14 Human collagen tympanic membrane for repairing tympanums injuries.

Publications (1)

Publication Number Publication Date
WO2023113584A1 true WO2023113584A1 (en) 2023-06-22

Family

ID=86773149

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MX2022/050118 WO2023113584A1 (en) 2021-12-14 2022-12-01 Eardrum membrane made of human collagen for repairing eardrum injuries

Country Status (2)

Country Link
MX (1) MX2021015642A (en)
WO (1) WO2023113584A1 (en)

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
GOYCOOLEA MARCOS V., MUCHOW DAVID C., SCHOLZ MATT T., SIRVIO LARRY M., STYPULKOWSKI PAUL H.: "In Search of Missing Links in Otology. I. Development of a Collagen-Based Biomaterial ", THE LARYNGOSCOPE, WILEY-BLACKWELL, UNITED STATES, vol. 101, no. 7, 1 July 1991 (1991-07-01), United States , pages 717 - 726, XP093076832, ISSN: 0023-852X, DOI: 10.1288/00005537-199107000-00005 *
KIM HYUN-WOOK, YEO IN-JUN, HWANG KO-EUN, SONG DONG-HEON, KIM YONG-JAE, HAM YOUN-KYUNG, JEONG TAE-JUN, CHOI YUN-SANG, KIM CHEON-JEI: "Isolation and Characterization of Pepsin-soluble Collagens from Bones, Skins, and Tendons in Duck Feet", HAN-GUG CHUGSAN SIGPUM HAG-HOEJI - KOREAN SOCIETY FOR FOOD SCIENCE OF ANIMAL RESOURCES, HAN-GUG CHUGSAN SIGPUM HAG-HOEJI, KR, vol. 36, no. 5, 31 October 2016 (2016-10-31), KR , pages 665 - 670, XP093076831, ISSN: 1225-8563, DOI: 10.5851/kosfa.2016.36.5.665 *
KIM SOO HYEON, LEE HO JUN, YOO JI-CHUL, PARK HYUN JUNG, JEONG JU YEON, SEO YE BEEN, SULTAN MD. TIPU, KIM SOON HEE, LEE OK JOO, PAR: "Novel transparent collagen film patch derived from duck’s feet for tympanic membrane perforation", JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION., VSP, UTRECHT., NL, vol. 29, no. 7-9, 13 June 2018 (2018-06-13), NL , pages 997 - 1010, XP093076829, ISSN: 0920-5063, DOI: 10.1080/09205063.2017.1374031 *
PERKINS ET AL.: "Tympanic membrane reconstruction using formaldehyde-formed autogenous temporalis fascia: Twenty years' experience", OTOLARYNGOLOGY AND HEAD AND NECK SURGERY, vol. 114, no. 3, 1 March 1996 (1996-03-01), Rochester, Us, pages 366 - 379, XP005149010, ISSN: 0194-5998, DOI: 10.1016/S0194-5998(96)70205-X *
SHEN YI, REDMOND SHARON L., TEH BING MEI, YAN SHENG, WANG YAN, ATLAS MARCUS D., DILLEY RODNEY J., ZHENG MINGHAO, MARANO ROBERT J.: "Tympanic membrane repair using silk fibroin and acellular collagen scaffolds : Tympanic Membrane Repair Using Silk and Collagen Scaffolds", THE LARYNGOSCOPE, WILEY-BLACKWELL, UNITED STATES, vol. 123, no. 8, 1 August 2013 (2013-08-01), United States , pages 1976 - 1982, XP093076834, ISSN: 0023-852X, DOI: 10.1002/lary.23940 *
WIDIYANTI PRIHARTINI, ANGTIKA RARA SETYA, GITHANADI BRILLYANA, KHARISMA DITYA HANIF, ASYRAF TARIKH OMAR, WARDANI ADITA: "Collagen-chitosan-glycerol bio-composite as artificial tympanic membrane for ruptured inner ear organ", JOURNAL OF PHYSICS: CONFERENCE SERIES, INSTITUTE OF PHYSICS PUBLISHING, GB, vol. 853, 1 May 2017 (2017-05-01), GB , pages 012029, XP093076836, ISSN: 1742-6588, DOI: 10.1088/1742-6596/853/1/012029 *

Also Published As

Publication number Publication date
MX2021015642A (en) 2023-06-15

Similar Documents

Publication Publication Date Title
ES2304343T3 (en) AGENT FOR THE TREATMENT OF WOUNDS.
ES2338464T3 (en) COMPOSITE MATERIAL, ESPECIALLY FOR MEDICAL USE, AND PROCEDURE TO PRODUCE THE MATERIAL.
ES2326873T3 (en) SURGICAL DEVICE FOR TREATMENT OR SKIN ANALYSIS.
US5665391A (en) Cultured, full-thickness integument substitutes based on three-dimensional matrix membranes
US9763777B2 (en) Device for ear drum repair
KR101604150B1 (en) Agent for regenerating tympanic membrane or external auditory canal
US20080113007A1 (en) Sheet-Shaped Composition Utilizing Amnion and Method of Preparing the Same
CN112569399B (en) Photo-crosslinking/electrostatic spinning preparation and application of hydrogel composite scaffold with double-layer skin structure
Jang et al. Regeneration of chronic tympanic membrane perforation using 3D collagen with topical umbilical cord serum
US11529437B2 (en) Biological tissue matrix material, preparation method therefor and use thereof in otological repair material
ES2299423T3 (en) NEW MATERIAL BASED ON NATURAL COLLAGEN WITH IMPROVED PROPERTIES FOR USE IN HUMAN AND VETERINARY MEDICINE, AND MANUFACTURING METHOD OF THE SAME.
KR20210062589A (en) How to use crosslinked protein foams and multivalent cell scaffolds
KR101778386B1 (en) Method of manufacturing collagen patch for eardrum regeneration and collagen patch for eardrum regeneration manufactured by the method
US9370604B2 (en) Planar implant
ES2874082T3 (en) Collagen film manufacturing process with ultraviolet light, collagen film manufactured with it and biomaterial prepared with collagen film
KR20000057130A (en) Artificial esophagus
WO2023113584A1 (en) Eardrum membrane made of human collagen for repairing eardrum injuries
Mustafa et al. Chitosan applications used in medical therapy of tissue regeneration
JPH05192363A (en) Wound covering material
KR20160142758A (en) Manufacturing method of collagen film using ultraviolet rays and collagen film manufactured by using the same and biomaterials manufactured by using the collagen film
Saraiva Novel therapeutic approaches for skin regeneration
CN115518201A (en) Collagen-based artificial skin with three-layer composite structure and preparation method thereof
Fernandes Development of Polymeric Matrices for the Application in Skin Regeneration
CN108744038A (en) A kind of anti-adhesion biomimetic repair membrane
AU2015200344A1 (en) Device For Ear Drum Repair

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22908047

Country of ref document: EP

Kind code of ref document: A1