WO2023113550A1 - Dendritic cell-mimicking functional nanostructure, and method for producing same - Google Patents

Dendritic cell-mimicking functional nanostructure, and method for producing same Download PDF

Info

Publication number
WO2023113550A1
WO2023113550A1 PCT/KR2022/020615 KR2022020615W WO2023113550A1 WO 2023113550 A1 WO2023113550 A1 WO 2023113550A1 KR 2022020615 W KR2022020615 W KR 2022020615W WO 2023113550 A1 WO2023113550 A1 WO 2023113550A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
dendritic cell
spherical core
dendritic
nanoparticles
Prior art date
Application number
PCT/KR2022/020615
Other languages
French (fr)
Korean (ko)
Inventor
하상준
문채원
김다혜
홍진기
김태현
이유진
Original Assignee
주식회사 포투가바이오
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220176132A external-priority patent/KR20230091817A/en
Application filed by 주식회사 포투가바이오 filed Critical 주식회사 포투가바이오
Publication of WO2023113550A1 publication Critical patent/WO2023113550A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/5123Organic compounds, e.g. fats, sugars
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/5176Compounds of unknown constitution, e.g. material from plants or animals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5192Processes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders

Definitions

  • the present invention relates to a dendritic cell-mimicking functional nanostructure and a method for preparing the same.
  • Cancer is the number one cause of death in Korea.
  • Representative cancer treatment methods may include surgical operation to remove cancer, radiation treatment, and chemical drug treatment, but these treatment methods have a problem in that they have a poor prognosis and serious side effects.
  • the main cause of cancer is formation of tumors by cancer cells that have not been removed according to the immune response due to reduced immunity or immune evasion of cancer cells. Therefore, immuno-anticancer therapy that can help cancer treatment by increasing the patient's own immune response can be a fundamental cancer treatment.
  • Most of the currently developed immuno-anticancer treatments directly inject drugs that enhance immune function, but drug injection still has limitations in that the delivery efficiency is very low and additional side effects may exist. Accordingly, research is focused on the development of therapeutic agents capable of dramatically increasing cancer treatment efficiency, reducing recurrence rates and side effects, and enhancing immune function.
  • the nanoparticle-cellularization technology uses the entire cell membrane of a specific cell as a coating material to physically cloak the surface of the nanoparticle. It can maintain the complex properties of the cell membrane along with proteins, lipids, and carbohydrates, and thus the surface of the nanoparticle.
  • the characteristics of a specific cell can be implemented as it is.
  • Non-Patent Document 0001 Hu, Che-Ming J., et al. Nature, 2015, 526(7571) 118-12
  • Non-Patent Document 0002 Brian T. Luk et al., Theranostics. 2016, 6(7), 1004-1101
  • Non-Patent Document 0003 Q. Jiang et al., Biomaterials 2019, 192, 292-308
  • the present disclosure seeks to more effectively implement the cancer treatment effect according to the increase in the immune response by using cells having an antigen presenting function beyond the material limitations of the prior art. Specifically, through a structure that mimics dendritic cells, cytotoxic T cells are directly activated according to the antigen presenting function of dendritic cells in the body, inducing selective death of cancer cells, and providing excellent immunotherapy effects by increasing the immune response. is to do
  • an object of the present disclosure is to impart functionality through the design of nanostructures to realize more marked activation of cytotoxic T cells and to provide more enhanced immunotherapeutic effects.
  • Dendritic cell-mimicking structure in order to achieve the above object is non-spherical core particles; And a shell comprising a cell membrane of lipid molecules derived from dendritic cells; the shell may be characterized in that it comprises a bilayer of the lipid molecules.
  • the non-spherical core particles may be prepared by template the shape of dendritic cells.
  • the non-spherical core particle may have an elliptical, rod-shaped, plate-shaped or irregular shape.
  • the non-spherical core particle may be a one-dimensional or two-dimensional nanostructure.
  • the surface of the non-spherical core particle may be negatively charged.
  • the surface of the non-spherical core particle may form a bond with at least one component included in the shell.
  • the non-spherical core particles are organic polymer nanoparticles, metal organic framework nanoparticles, metal nanoparticles, metal oxide nanoparticles, solid lipid nanoparticles, magnetic nanoparticles, It may be one or two or more selected from the group consisting of photothermal conversion nanoparticles, nucleic acid-containing nanoparticles, and protein-containing nanoparticles.
  • the non-spherical core particles may have an average particle diameter of 50 nm to 50 ⁇ m.
  • the non-spherical core particle may have an aspect ratio of 1.1 to 6.0.
  • the shell may further include a component derived from a cell membrane of a cell different from dendritic cells.
  • the surface of the shell may be labeled with a physiologically active polymer, physiologically active component or protein.
  • the method for manufacturing a dendritic cell-mimicking structure includes (S10) purifying a cell membrane from dendritic cells; (S20) forming a cell membrane suspension by treating the cell membrane with ultrasonic waves; (S30) filtering the cell membrane suspension through a membrane filter to obtain liposomes; and (S40) mixing the non-spherical core particles and the liposomes, and then performing filter compression to obtain non-spherical particles having a cell membrane introduced therein.
  • a step of negatively charging the surface of the non-spherical core particle may be further included.
  • the dendritic cell-mimicking structure according to the present disclosure introduces the antigen-presenting ability to the surface of the nanoparticle as it is, and the antigen-presenting function of the dendritic cell is preserved and at the same time, it is not killed, and the targeting function and the photothermal effect function of the nanoparticle are additionally imparted and strengthened. It can provide a functional immuno-anticancer treatment effect.
  • the dendritic cell-mimicking structure according to the present disclosure can provide an effect of increasing an immune response by staying in the body for a long period of time and continuously inducing proliferation and differentiation of T cells.
  • the dendritic cell-mimicking structure according to the present disclosure has the advantage of minimizing side effects through a method of stimulating the patient's own immune system and selectively removing cancer cells of a microscopic size or metastasis that are difficult to diagnose.
  • the dendritic cell-mimicking structure according to the present disclosure has anticancer activity by itself and can be used as an immunotherapeutic agent, and stronger anticancer activity can be expected through combination with other anticancer agents, so it is useful for the development of new anticancer agents that exhibit strong anticancer effects. can be utilized
  • the dendritic cell-mimicking structure according to the present disclosure is designed as a structure to minimize uptake due to being recognized as an external antigen by immune cells in the body, so that the activation effect of cytotoxic T cells is more excellently realized and the immunotherapeutic effect is further strengthened. can provide.
  • Rods 1 to 5 have different colors, and accordingly, UV-Vis absorption wavelengths are all different.
  • FIG. 3 is a graph showing the results of ICP-MS analysis of gold nanorod particles prepared according to Preparation Example 1 of the present invention. It can be confirmed that a sufficient amount of particles was produced at a concentration of 50 ⁇ g/ml or more for all of Rods 1 to 5.
  • GNRs gold nanorods
  • Canton GNRs negatively charged particles
  • 5 is a graph showing the results of analyzing cell viabilit of Rods 1 to 3 after CTAB treatment and citration.
  • FIG. 6 shows a TEM image of gold nanorods coated with a dendritic cell membrane.
  • DC dendritic cells
  • BMDC bone marrow dendritic cells
  • DC rod3 dendritic cell membrane-coated gold nanorods
  • Numerical ranges include lower and upper limits and all values within that range, increments logically derived from the form and breadth of the range being defined, all values defined therein, and the upper and lower limits of the numerical range defined in different forms. includes all possible combinations of Unless otherwise specifically defined in the specification of the present invention, values outside the numerical range that may occur due to experimental errors or rounding of values are also included in the defined numerical range.
  • AR aspect ratio
  • nanoparticle or “nanostructure” may refer to a length, width or diameter ranging from 1 nm to 50 ⁇ m.
  • the dendritic cell-mimicking structure according to the present disclosure preserves the antigen-presenting function of dendritic cells by introducing the antigen-presenting ability of dendritic cells to the surface of nanoparticles, and at the same time significantly increases immune anti-cancer treatment through the targeting function and photothermal effect of nanoparticles. to provide an effect.
  • DC Dendritic cells
  • APCs antigen presenting cells
  • naive T cells naive ell
  • MHC I/II major histocompatibility complex I/II
  • co-stimulatory molecules such as CD80 and CD86
  • cell adhesion molecules such as ICAM-1
  • a dendritic cell-mimicking structure for implementing the antigen presenting function of dendritic cells includes non-spherical core particles; And a shell comprising a cell membrane of lipid molecules derived from dendritic cells; the shell may be characterized in that it includes a bilayer of the lipid molecules.
  • Dendritic cells are present in peripheral tissues, receive activation signals by external stimulation signals, and mature. At the same time, external protein antigens are presented to MHC class I and II in the form of peptides. Thereafter, dendritic cells migrate to the draining lymphnode, bind to T cells having a T cell receptor (TCR) that can bind to the MHC-peptide complex on the surface of dendritic cells, and express CD80, CD86, etc. in dendritic cells. Costimulatory ligands complete activation of T cells by co-binding with CD28, a costimulatory receptor expressed on T cells. Activated T cells proliferate and differentiate, migrate from lymph nodes to peripheral tissues, and can eliminate cells expressing foreign antigens (eg, cancer cells).
  • TCR T cell receptor
  • the dendritic cell-mimicking structure according to the present disclosure functions as a strong T cell activator for activating the cellular immune function, and can further act as an immune cell therapeutic agent.
  • Non-spherical core particles according to the present disclosure may be one-dimensional or two-dimensional nanostructures.
  • Specific examples of the one-dimensional or two-dimensional nanostructures include carbon nanoribbons, carbon nanotubes, graphene, graphene oxide, reduced graphene oxide, MXene, metal nanorods, metal nanowires, or metal nanoplatelets ( platelet), but is not limited thereto.
  • non-spherical core particles include biocompatible organic polymer nanoparticles, metal organic framework nanoparticles, metal nanoparticles, metal oxide nanoparticles, solid lipid nanoparticles, magnetic nanoparticles, and light-to-heat conversion nanoparticles.
  • it may be one or two or more selected from the group consisting of nucleic acid-containing nanoparticles and protein-containing nanoparticles.
  • the nanomaterial itself has no toxicity and has photosensitivity, so that it can be applied to photothermal therapy.
  • organic polymer nanoparticles include polyacetylene, polyaniline, polypyrrole, polythiophene, poly(1,4-phenylenevinylene), poly(1,4-phenylene sulfide), and poly(fluorenylene). tinylene) and at least one selected from the group consisting of derivatives thereof.
  • metal nanoparticles include copper (Cu), nickel (Ni), cobalt (Co), iron (Fe), zinc (Zn), titanium (Ti), chromium (Cr), silver (Ag), gold It may be at least one selected from the group consisting of (Au), platinum (Pt), aluminum (Al), and composites thereof.
  • the metal oxide nanoparticles may be single metal oxide nanoparticles or multi-metal oxide nanoparticles, and the metal may be at least one selected from cerium (Ce), manganese (Mn), and iron (Fe).
  • a ligand compound such as albumin or dextran may be additionally coupled for dispersibility in vivo.
  • the non-spherical core particle may be elliptical, rod-shaped, plate-shaped or irregular.
  • the uptake by macrophages increases as the particle size is larger and the particle is closer to a spherical shape.
  • the dendritic cell-mimicking structure including a shell including non-spherical core particles and a dendritic cell-derived cell membrane can be designed as a structure to minimize the uptake rate by immune cells according to recognition as a foreign antigen when introduced into the body. .
  • Non-spherical core particles according to the present disclosure may have an average particle diameter of 50 nm to 50 ⁇ m, 60 to 1000 nm, or 80 to 500 nm.
  • the non-spherical core particle may be a one-dimensional nanostructure, and the aspect ratio (length/width) of the non-spherical core particle may have a value greater than 1.
  • the aspect ratio is 1.1 to 10.0, 1.1 to 8,0, 1,1 to 6.0, 1.2 to 10.0, 1.2 to 8.0, 1.2 to 6.0, 1.5 to 10.0, 1.5 to 8.0, 1.5 to 6.0, 2.0 to 6.0 or 2.0 to 2.0. May be 5.0.
  • the non-spherical core particle may be a gold nanorod, and may have a maximum absorption wavelength of 700 to 800 nm.
  • the non-spherical core particle has a non-spherical shape and has the maximum absorption wavelength as described above, it is possible to minimize uptake by macrophages and maximize T cell activation.
  • the non-spherical core particles may be gold nanoparticles that can maintain a safe state in the body and are easily surface-modified, but are not limited thereto.
  • the shell formed on the outside of the non-spherical core particle may include a cell membrane of lipid molecules derived from dendritic cells, and may specifically include a bilayer of lipid molecules.
  • the first lipid molecule layer facing the outside of the shell may be oriented to exhibit a stronger negative charge compared to the second lipid molecule layer facing the surface of the non-spherical core particle.
  • the shell containing the cell membrane of the lipid molecule may be thinly and uniformly coated on the surface of the non-spherical core particle in the range of 2 to 50 nm, narrowly 5 to 20 nm.
  • the surface of the non-spherical core particle may be negatively charged for improved colloidal stability when the lipid molecule is coated with the cell membrane.
  • Methods known in the art can be used to obtain negatively charged non-spherical core particles.
  • a particle with a negatively charged surface can be obtained through citric acid treatment.
  • the surface of the non-spherical core particle may form a bond with at least one component included in the shell.
  • the bond may be a variety of chemical bonds such as a covalent bond, an ionic bond, or a complex.
  • the shell may further include components derived from cell membranes of cells different from dendritic cells.
  • the surface of the shell may be labeled with a bioactive polymer, a bioactive component, or a protein.
  • the physiologically active component may mean a cytokine for cell signaling.
  • Non-limiting examples may include chemokines, interferons, interleukins, lymphokines, tumor necrosis factors, monokines and colony stimulating factors.
  • cytokines include BMP (Bone morphogenetic protein) family, CCL (Cheomkine ligands) family, CMTM (CKLF-like MARVEL transmembrane domain containing member) family, CXCL (C-X-C motif ligand ligand) family, GDF (Growth/differentiation factor) family, growth hormone, IFN (Interferon) family, IL (Interleukin) family, TNF (Tumor necrosis factors) family, GPI (glycophosphatidylinositol), SLUPR-1 (Secreted Ly-6/uPAR-Related Protein 1), SLUPR-2 ( Secreted Ly-6/uPAR-Related Protein 2) and combinations thereof.
  • BMP Bone morphogenetic protein
  • CCL Cheomkine ligands
  • CMTM CKLF-like MARVEL transmembrane domain containing member
  • CXCL C-X-C motif ligand ligand
  • the cytokine induces or inhibits transcription factors or growth factors essential for the differentiation of T cells, and mediates the growth and differentiation of other immune cells, thereby further enhancing the effect of immunotherapeutic treatment of the dendritic cell-mimicking structure according to the present disclosure.
  • the dendritic cell-mimicking structure according to the present disclosure may be used for various purposes such as cancer treatment, treatment or prevention of immune diseases, and may be specifically provided in the form of a pharmaceutical composition for cancer treatment.
  • cancer is a general term for various malignant solid tumors that are expandable through local and metastasis by invasion, and specific examples include B-cell lymphoma, non-small cell lung cancer, small cell lung cancer, basal cell carcinoma, and squamous cell carcinoma of the skin. , colorectal cancer, melanoma, head and neck squamous cancer, hepatocellular carcinoma, gastric cancer, sarcoma, gastroesophageal cancer, renal cell carcinoma, glioblastoma, pancreatic cancer, bladder cancer, prostate cancer, breast cancer, cutaneous T-cell lymphoma, Merkel cell carcinoma, or multiple myeloma may, but is not limited thereto.
  • the pharmaceutical composition for treating cancer is used to modify, maintain or preserve pH, osmoticity, viscosity, sterility, transparency, color, isotonicity, odor, stability, dissolution rate or release rate, adsorption or penetration.
  • Formulation materials may be included.
  • the pharmaceutical composition may be administered orally or parenterally.
  • parenteral administration include intravenous, intramuscular, subcutaneous, intraorbital, intracapsular, intraperitoneal, intrarectal, intracisternal, intravascular, and intradermal administration to a patient, and may be administered to a patient through a skin patch or transdermally. It can also be administered through the skin using iontophoresis, respectively.
  • the present disclosure may provide a method for preparing a dendritic cell mimic structure.
  • the dendritic cell-mimicking nanostructure according to the present disclosure is prepared by extracting cell membranes of activated dendritic cells and filter extruding them together with the nanoparticles to induce the cell membranes to be introduced onto the surface of the nanoparticles.
  • (S10) purifying cell membranes from dendritic cells; (S20) forming a cell membrane suspension by treating the cell membrane with ultrasonic waves; (S30) filtering the cell membrane suspension through a membrane filter to obtain liposomes; and (S40) mixing the non-spherical core particles and the liposomes, and then performing filter compression to obtain non-spherical particles having a cell membrane introduced therein.
  • Purifying cell membranes from dendritic cells may be performed through rapid freezing-thawing and centrifugation. Thereafter, the purified cell membrane may be treated with ultrasonic waves to form a cell membrane suspension of hundreds of nanometers or several micrometers. When the cell membrane suspension is filtered through a membrane filter, cell membrane liposomes having a desired size can be obtained.
  • the prepared nonspherical core particles and cell membrane liposomes are mixed and filter compressed to obtain nonspherical core-shell particles into which cell membranes have been introduced. That is, a form in which the cell membrane of dendritic cells is coated on the surface of the non-spherical core particle is obtained.
  • (S50) pulsing the antigen to the non-spherical particles into which the cell membrane has been introduced; further including, a dendritic cell-mimicking functional structure that functions as a dendritic cell can be completed.
  • the step of pulsing the antigen into the nanoparticle into which the cell membrane is introduced is a step in which the antigen is loaded on the cell membrane by exposing the dendritic non-spherical particle to the antigen, which can induce activation of strong antigen-specific T cells. there is.
  • the antigen may be a tumor antigen-derived peptide or protein, and the tumor antigen may be a tumor-associated antigen or a tumor-specific antigen.
  • the tumor antigen may be a protein or peptide derived from ovalbumin (OVA), lymphocytic choriomeningitis mammarenavirus (LCMV) glycoprotein, or retrovirus protein. More specifically, it may be a cancer antigen peptide or protein of OVA257-264, GP33-41, or p15E models.
  • OVA ovalbumin
  • LCMV lymphocytic choriomeningitis mammarenavirus
  • retrovirus protein More specifically, it may be a cancer antigen peptide or protein of OVA257-264, GP33-41, or p15E models.
  • the antigen in human cancer antigens, (1) HER2/Neu, tyrosinase, gp100, MART, HPV E6/E7, EBV EBNA-1, carcinoembryonic antigen, a-fetoprotein, GM2, GD2, testis antigen, prostate antigen, and CD20 and (2) tumor-specific antigens including neoantigens that can be produced by various mutations.
  • the antigen may be one or two or more different peptides of the aforementioned cancer antigen peptide.
  • the pulsing may be performed by various pulsing protocols known in the art, but more preferably, pulsing may be performed by mixing the tumor antigen-derived peptide or protein with a tumor antigen-derived peptide or protein for 0.5 to 6 hours under 5% CO 2 and 37° C. humidified conditions.
  • the antigen when treating OVA 257-264 and GP 33-41 antigens, 0.1 to 0.3 ⁇ g / ml, and when treating p15E antigen, treatment at a concentration of 2 to 7 ⁇ g / ml , the antigen can be pulsed by storing in a 37° C. incubator for 30 minutes after treatment.
  • the antigen-pulsed dendritic cell-mimicking functional construct has excellent cancer targeting function due to its nano-sized size, is stable, and has a large surface area to volume ratio, so it can easily contact T cells. Therefore, an effective anti-cancer immune response can be induced through the activation of the dendritic cell-mimicking functional structure and the activation of the specific T cell response accordingly. In addition, since there is no risk of death in the body, there is an advantage that the circulation time in the body is very long.
  • the dendritic cell-mimicking functional structure according to the present disclosure is prepared by fusing a liposome prepared by sonicating a dendritic cell-derived cell membrane and nanoparticles, and the fusion may mean mixing and co-extruding the liposome and the nanoparticle. .
  • the dendritic cell-derived cell membrane After ultrasonic treatment of the dendritic cell-derived cell membrane, it is filtered through a nano-sized membrane filter to obtain liposomes having a particle size of 200 nm or less.
  • the particle diameter of the liposome may be specifically 50 to 150 nm.
  • the surface zeta potential of the dendritic cell-mimicking nanostructure according to the present disclosure may be -40 to -20 mV, specifically -35 to -25 mV.
  • the present disclosure may provide a drug delivery system or device including the above-described dendritic cell-mimicking nanostructure.
  • the present disclosure may provide a pharmaceutical composition comprising the above-described dendritic cell-mimicking nanostructure and a pharmaceutically acceptable carrier or excipient.
  • a suspension obtained by diluting 40 ml of CTAB-GNR with water was concentrated in an ultrafiltration cell using a membrane filter, the residue was diluted in water, and the suspension was centrifuged again.
  • the residue was redispersed in 0.15% by weight of Na-PSS, the suspension was centrifuged again, and the residue was redispersed in 0.7% by weight of Na-PSS to obtain PSS-stabilized gold nanorods (PSS-GNR).
  • PSS-GNR PSS-stabilized gold nanorods
  • Gold nanorods whose surface is negatively charged after citric acid treatment have a surface potential of -30 to -40 mV in distilled water, so that coating can be achieved through interaction with cell membranes without problems due to electrostatic repulsion, and without aggregation. It can stably retain its shape.
  • FIG. 5 shows the results of evaluating the cell viability of human dermal fibroblasts with respect to CTAB-GNR and citric acid-treated gold nanorods.
  • Cell viability which was as low as 40% or less, reached 100% after treatment with citric acid, confirming that most of the cell toxicity was removed.
  • the dendritic cell mimic structure has a length-width of [1] 110 nm to 20 nm (Aspect Ratio 5.5), [2] 120 nm to 65 nm (Aspect Ratio 1.85), [3] 60 nm to 20 nm (Aspect Ratio 3.5) , [4] 180 nm ⁇ 100 nm (Aspect Ratio 1.8), and [5] 135 nm ⁇ 75 nm (Aspect Ratio 1.8) that a cell membrane coating having a thickness of about 10-20 nm is formed on the surface of the gold nanorod You can check.
  • the surface charge was confirmed by measuring the zeta potential of the dendritic cell membrane (DC), the dendritic cell mimicking structure (Rod1 to Rod5) and the spherical dendritic cell mimicking structure (S60), and the results are shown in FIG. 7 .
  • the strong negative zeta potential of the gold nanorods dispersed with citric acid before coating the dendritic cell membrane shows a relatively low value after coating the cell membrane.
  • potential values similar to those of the dendritic cell membrane were shown, confirming that the cell membrane coating was successfully performed.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Zoology (AREA)
  • Botany (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Medicinal Preparation (AREA)

Abstract

The present invention relates to a dendritic cell-mimicking functional structure comprising: a non-spherical core particle; and a shell including a cell membrane of lipid molecules derived from a dendritic cell, and to a method for producing same, wherein the dendritic cell-mimicking functional structure significantly achieves the effect of stable T cell activation in the body, and can thus provide an enhanced immuno-anticancer treatment effect.

Description

수지상세포 모방 기능성 나노구조체 및 이의 제조방법Dendritic cell-mimicking functional nanostructure and its preparation method
본 발명은 수지상세포 모방 기능성 나노구조체 및 이의 제조방법에 관한 것이다.The present invention relates to a dendritic cell-mimicking functional nanostructure and a method for preparing the same.
암은 우리나라 국민 사망원인 중 1위를 차지하고 있다. 대표적인 암치료방법은 암을 절제하는 외과적 수술, 방사선 치료, 화학약물 치료가 있을 수 있는데, 이들 치료방법은 예후가 불량하고 심각한 부작용이 뒤따른다는 문제점이 있다.Cancer is the number one cause of death in Korea. Representative cancer treatment methods may include surgical operation to remove cancer, radiation treatment, and chemical drug treatment, but these treatment methods have a problem in that they have a poor prognosis and serious side effects.
암 발생은 면역력 감소 또는 암세포의 면역회피 작용으로 인해 면역반응에 따라 제거되지 못한 암세포의 종양 형성을 주요 원인으로 들 수 있다. 따라서 환자 본인의 면역 반응을 증대시켜 암 치료를 도울 수 있는 면역항암치료제는 근본적인 암 치료법이 될 수 있다. 현재 개발된 면역항암치료제는 면역기능을 높이는 약물을 직접 주입하는 것이 대부분인데, 약물 주입술은 전달 효율이 매우 낮고, 추가 부작용이 존재할 수 있다는 점에서 여전히 한계가 존재한다. 이에 따라 암 치료 효율을 획기적으로 높이고, 재발율 및 부작용을 낮추면서 면역기능을 증대시킬 수 있는 치료제의 개발에 연구가 집중되고 있다.The main cause of cancer is formation of tumors by cancer cells that have not been removed according to the immune response due to reduced immunity or immune evasion of cancer cells. Therefore, immuno-anticancer therapy that can help cancer treatment by increasing the patient's own immune response can be a fundamental cancer treatment. Most of the currently developed immuno-anticancer treatments directly inject drugs that enhance immune function, but drug injection still has limitations in that the delivery efficiency is very low and additional side effects may exist. Accordingly, research is focused on the development of therapeutic agents capable of dramatically increasing cancer treatment efficiency, reducing recurrence rates and side effects, and enhancing immune function.
한편, 나노기술을 바이오 의료 분야에 접목한 나노-바이오 융합기술에 대한 연구가 지속되어 오고 있다. 하지만 대부분의 나노재료는 합성을 통해 얻어지며, 나노재료를 이용한 표면 개질 시, 합성물이 첨가되는 과정이 수반되므로 체내 독성, 원치 않는 면역반응 유도, 암 유발 등의 부작용이 생길 수 있다. 그러므로 생체를 직접 모사하는 방식의 표면 개질 방법을 사용하여 부작용을 최소화하고, 생체특성에 따라 다양한 기능을 구현할 수 있도록 함으로써 기존 나노기술이 가진 한계점을 극복할 수 있다.On the other hand, research on nano-bio convergence technology that grafts nanotechnology to the biomedical field has been continued. However, most nanomaterials are obtained through synthesis, and surface modification using nanomaterials involves adding a compound, which can cause side effects such as toxicity in the body, induction of unwanted immune responses, and induction of cancer. Therefore, it is possible to overcome the limitations of existing nanotechnology by minimizing side effects by using a surface modification method that directly simulates a living body and implementing various functions according to the characteristics of a living body.
특히 나노입자-세포화 기술은 특정 세포의 전체 세포막을 코팅 재료로 활용하여 나노입자 표면을 물리적으로 클로킹(Cloaking)하는 기술로 단백질, 지질 및 탄수화물과 함께 세포막의 복합적 성질을 유지할 수 있어 나노입자 표면에 특정 세포의 특성을 그대로 구현할 수 있다.In particular, the nanoparticle-cellularization technology uses the entire cell membrane of a specific cell as a coating material to physically cloak the surface of the nanoparticle. It can maintain the complex properties of the cell membrane along with proteins, lipids, and carbohydrates, and thus the surface of the nanoparticle. The characteristics of a specific cell can be implemented as it is.
2015년 University of California의 Liangfang Zhang연구팀에서 처음으로 혈소판을 PLGA(poly(lactic-co-glycolic) acid) 입자 표면에 도입한 기술을 바탕으로, 현재까지 다양한 세포에 적용되고 있다.In 2015, the research team of Liangfang Zhang at the University of California first introduced platelets to the surface of PLGA (poly(lactic-co-glycolic) acid) particles, and it has been applied to various cells to date.
PLGA 코어에 독소루비신(doxorubicin)을 담지한 후, 적혈구 막으로 코팅하여 면역적합성 나노캐리어를 제조해 고형 종양을 제거하거나, 적혈구 막과 암세포의 세포막을 멜라닌 나노입자에 동시에 코팅하여 하이브리드 세포막을 지닌 나노입자를 제조해 체내 순환시간을 증가시키고 종양 표적능을 증대시킨 연구가 보고되었다.After supporting doxorubicin on the PLGA core, coat it with a red blood cell membrane to prepare an immunocompatible nanocarrier to remove solid tumors, or coat the red blood cell membrane and cancer cell membrane on melanin nanoparticles at the same time to nanoparticles with hybrid cell membranes. was manufactured to increase circulation time in the body and increase tumor targeting ability.
하지만 종래의 세포막 코팅 기술은 대부분 암세포, 혈액세포 위주로 진행되었고, 그 응용 역시 혈액 내 안정적 전달 등을 목표로 하는 연구들이 주를 이루었다. 또한 암세포막을 항원으로 직접 도입하여 체내에 전달하는 경우, 항원 내성으로 인한 면역반응 저하, 암세포 유래 물질에 대한 거부감 등의 단점이 존재한다. 따라서 직접적인 항원제시 면역세포의 기능을 가질 수 있는 면역치료제를 개발하여 중간 과정 없이 T 세포의 분화 및 증식을 유도하는 것이 매우 필요하다.However, most of the conventional cell membrane coating technologies have been conducted mainly on cancer cells and blood cells, and their applications have also mainly focused on studies aimed at stable delivery in the blood. In addition, when cancer cell membranes are directly introduced as antigens and delivered into the body, there are disadvantages such as a decrease in immune response due to antigen resistance and a feeling of rejection against cancer cell-derived substances. Therefore, it is very necessary to develop an immunotherapeutic agent capable of directly functioning as an antigen-presenting immune cell and induce differentiation and proliferation of T cells without an intermediate process.
[선행기술문헌][Prior art literature]
[비특허문헌][Non-Patent Literature]
(비특허문헌 0001) Hu, Che-Ming J., et al. Nature, 2015, 526(7571) 118-12(Non-Patent Document 0001) Hu, Che-Ming J., et al. Nature, 2015, 526(7571) 118-12
(비특허문헌 0002) Brian T. Luk et al., Theranostics. 2016, 6(7), 1004-1101(Non-Patent Document 0002) Brian T. Luk et al., Theranostics. 2016, 6(7), 1004-1101
(비특허문헌 0003) Q. Jiang et al., Biomaterials 2019, 192, 292-308(Non-Patent Document 0003) Q. Jiang et al., Biomaterials 2019, 192, 292-308
본 개시는 종래기술의 재료적인 한계에서 벗어나 항원제시 기능을 가지는 세포를 사용하여 면역반응 증대에 따른 암치료 효과를 보다 효과적으로 구현하고자 한다. 구체적으로, 수지상세포를 모방하는 구조체를 통해, 체내에서 수지상세포의 항원제시 기능에 따라 세포독성 T 세포를 직접 활성화하여 암세포의 선택적 사멸을 유도하고, 면역 반응을 증대시켜 우수한 면역항암치료 효과를 제공하는 것이다.The present disclosure seeks to more effectively implement the cancer treatment effect according to the increase in the immune response by using cells having an antigen presenting function beyond the material limitations of the prior art. Specifically, through a structure that mimics dendritic cells, cytotoxic T cells are directly activated according to the antigen presenting function of dendritic cells in the body, inducing selective death of cancer cells, and providing excellent immunotherapy effects by increasing the immune response. is to do
또한 본 개시는 나노구조체의 설계를 통해 기능성을 부여하여 세포독성 T 세포의 활성화를 보다 현저하게 구현하며 보다 더 강화된 면역항암치료 효과를 제공하는 것을 목적으로 한다.In addition, an object of the present disclosure is to impart functionality through the design of nanostructures to realize more marked activation of cytotoxic T cells and to provide more enhanced immunotherapeutic effects.
상기 목적을 달성하기 위하여 본 개시에 따른 수지상세포 모방 구조체는 비구형 코어 입자; 및 수지상세포로부터 유래된 지질 분자의 세포막을 포함하는 쉘;을 포함하는 구조체로서, 상기 쉘은 상기 지질 분자의 이중층을 포함하는 것을 특징으로 할 수 있다.Dendritic cell-mimicking structure according to the present disclosure in order to achieve the above object is non-spherical core particles; And a shell comprising a cell membrane of lipid molecules derived from dendritic cells; the shell may be characterized in that it comprises a bilayer of the lipid molecules.
본 발명의 일 구현예에 있어서, 상기 비구형 코어 입자는 수지상세포의 형상을 템플레이트하여 제조된 것일 수 있다.In one embodiment of the present invention, the non-spherical core particles may be prepared by template the shape of dendritic cells.
본 발명의 일 구현예에 있어서, 상기 비구형 코어 입자는 타원형, 로드형, 판상형 또는 비정형 형상을 가질 수 있다.In one embodiment of the present invention, the non-spherical core particle may have an elliptical, rod-shaped, plate-shaped or irregular shape.
본 발명의 일 구현예에 있어서, 상기 비구형 코어 입자는 1차원 또는 2차원 나노구조체인 것일 수 있다.In one embodiment of the present invention, the non-spherical core particle may be a one-dimensional or two-dimensional nanostructure.
본 발명의 일 구현예에 있어서, 상기 비구형 코어 입자의 표면은 음으로 하전된 것일 수 있다.In one embodiment of the present invention, the surface of the non-spherical core particle may be negatively charged.
본 발명의 일 구현예에 있어서, 상기 비구형 코어 입자의 표면은 상기 쉘에 포함되는 적어도 하나의 성분과 결합을 형성하는 것일 수 있다.In one embodiment of the present invention, the surface of the non-spherical core particle may form a bond with at least one component included in the shell.
본 발명의 일 구현예에 있어서, 상기 비구형 코어 입자는 유기 고분자 나노입자, 금속 유기골격체 나노입자, 금속 나노입자, 금속산화물 나노입자, 고체상 지질 나노입자(solid lipid nanoparticle), 자성 나노입자, 광열 변환 나노입자 및 핵산 함유 나노입자, 단백질 함유 나노입자로 이루어진 군에서 선택되는 하나 또는 둘 이상일 수 있다.In one embodiment of the present invention, the non-spherical core particles are organic polymer nanoparticles, metal organic framework nanoparticles, metal nanoparticles, metal oxide nanoparticles, solid lipid nanoparticles, magnetic nanoparticles, It may be one or two or more selected from the group consisting of photothermal conversion nanoparticles, nucleic acid-containing nanoparticles, and protein-containing nanoparticles.
본 발명의 일 구현예에 있어서, 상기 비구형 코어 입자는 50 ㎚ 내지 50 ㎛의 평균입경을 가질 수 있다.In one embodiment of the present invention, the non-spherical core particles may have an average particle diameter of 50 nm to 50 μm.
본 발명의 일 구현예에 있어서, 상기 비구형 코어 입자는 종횡비가 1.1 내지 6.0일 수 있다.In one embodiment of the present invention, the non-spherical core particle may have an aspect ratio of 1.1 to 6.0.
본 발명의 일 구현예에 있어서, 상기 쉘은 수지상세포와는 상이한 세포의 세포막으로부터 유래된 성분을 더 포함할 수 있다.In one embodiment of the present invention, the shell may further include a component derived from a cell membrane of a cell different from dendritic cells.
본 발명의 일 구현예에 있어서, 상기 쉘의 표면은 생리활성 고분자, 생리활성 성분 또는 단백질이 표지된 것일 수 있다.In one embodiment of the present invention, the surface of the shell may be labeled with a physiologically active polymer, physiologically active component or protein.
또한 본 개시에 따른 수지상세포 모방 구조체 제조방법은 (S10) 수지상세포로부터 세포막을 정제하는 단계; (S20) 상기 세포막에 초음파를 처리하여 세포막 현탁액을 형성하는 단계; (S30) 상기 세포막 현탁액을 멤브레인 필터를 통해 여과하여 리포좀을 수득하는 단계; 및 (S40) 비구형 코어 입자 및 상기 리포좀을 혼합한 후, 필터압축하여 세포막이 도입된 비구형 입자를 수득하는 단계;를 포함할 수 있다.In addition, the method for manufacturing a dendritic cell-mimicking structure according to the present disclosure includes (S10) purifying a cell membrane from dendritic cells; (S20) forming a cell membrane suspension by treating the cell membrane with ultrasonic waves; (S30) filtering the cell membrane suspension through a membrane filter to obtain liposomes; and (S40) mixing the non-spherical core particles and the liposomes, and then performing filter compression to obtain non-spherical particles having a cell membrane introduced therein.
본 발명의 일 구현예에 있어서, 상기 (S40) 단계 이전, 비구형 코어 입자의 표면을 음으로 하전시키는 단계를 더 포함할 수 있다.In one embodiment of the present invention, before the step (S40), a step of negatively charging the surface of the non-spherical core particle may be further included.
본 개시에 따른 수지상세포 모방 구조체는 항원제시능을 그대로 나노입자 표면에 도입하여, 수지상세포의 항원제시기능은 보존함과 동시에 사멸하지 않고 나노입자의 표적화 기능 및 광열효과 기능을 추가적으로 부여하여 강화된 기능의 면역항암치료 효과를 제공할 수 있다.The dendritic cell-mimicking structure according to the present disclosure introduces the antigen-presenting ability to the surface of the nanoparticle as it is, and the antigen-presenting function of the dendritic cell is preserved and at the same time, it is not killed, and the targeting function and the photothermal effect function of the nanoparticle are additionally imparted and strengthened. It can provide a functional immuno-anticancer treatment effect.
본 개시에 따른 수지상세포 모방 구조체는 장기간 체내에서 체류하며 T 세포의 증식 및 분화를 지속적으로 유도함으로써 면역반응을 증대시키는 효과를 제공할 수 있다. The dendritic cell-mimicking structure according to the present disclosure can provide an effect of increasing an immune response by staying in the body for a long period of time and continuously inducing proliferation and differentiation of T cells.
본 개시에 따른 수지상세포 모방 구조체는 환자 자신의 면역 시스템을 자극하는 방법을 통해 부작용을 최소화할 수 있고, 진단이 어려운 미세 크기의 암세포 또는 전이된 암세포를 선택적으로 제거할 수 있는 이점이 있다. The dendritic cell-mimicking structure according to the present disclosure has the advantage of minimizing side effects through a method of stimulating the patient's own immune system and selectively removing cancer cells of a microscopic size or metastasis that are difficult to diagnose.
본 개시에 따른 수지상세포 모방 구조체는 그 자체로도 항암활성을 가져 면역항암치료제로 사용될 수 있으며, 다른 항암제와의 병용을 통해 더욱 강한 항암활성을 기대할 수 있으므로 강력한 항암효과를 나타내는 새로운 항암제 개발에 유용하게 활용될 수 있다.The dendritic cell-mimicking structure according to the present disclosure has anticancer activity by itself and can be used as an immunotherapeutic agent, and stronger anticancer activity can be expected through combination with other anticancer agents, so it is useful for the development of new anticancer agents that exhibit strong anticancer effects. can be utilized
본 개시에 따른 수지상세포 모방 구조체는 체내 면역세포에 의해 외부 항원으로 인식됨으로 인한 섭취를 최소화하기 위한 구조로 설계됨으로써 세포독성 T 세포의 활성화 효과를 보다 탁월하게 구현하며 보다 더 강화된 면역항암치료 효과를 제공할 수 있다.The dendritic cell-mimicking structure according to the present disclosure is designed as a structure to minimize uptake due to being recognized as an external antigen by immune cells in the body, so that the activation effect of cytotoxic T cells is more excellently realized and the immunotherapeutic effect is further strengthened. can provide.
도 1은 본 발명 제조예 1에 따라 제조된 다양한 색상을 띠는 금 나노로드에 관한 것으로, Rod 1 내지 Rod 5는 색상이 모두 다르며, 이에 따라 UV-Vis 흡수 파장 역시 모두 상이한 결과를 보여준다. 1 relates to gold nanorods having various colors prepared according to Preparation Example 1 of the present invention. Rods 1 to 5 have different colors, and accordingly, UV-Vis absorption wavelengths are all different.
도 2는 본 발명 제조예 1에 따라 제조된 금 나노로드의 TEM 이미지를 나타낸 것이다.2 shows a TEM image of gold nanorods prepared according to Preparation Example 1 of the present invention.
도 3은 본 발명 제조예 1에 따라 제조된 금 나노로드 입자의 ICP-MS 분석 결과를 나타낸 그래프이다. Rod 1 내지 Rod 5 모두 농도가 50 ㎍/㎖ 이상으로 충분한 양의 입자가 제조됨을 확인할 수 있다.3 is a graph showing the results of ICP-MS analysis of gold nanorod particles prepared according to Preparation Example 1 of the present invention. It can be confirmed that a sufficient amount of particles was produced at a concentration of 50 μg/ml or more for all of Rods 1 to 5.
도 4는 제조예 1에 따라 제조된 금 나노로드(GNR)의 표면 전하를 나타낸 그래프로서, 양으로 하전된 CTAB GNR에서 표면 개질처리되어 최종적으로 음으로 하전된 입자(Citrate GNR)를 수득하였다. 4 is a graph showing the surface charge of gold nanorods (GNRs) prepared according to Preparation Example 1, and finally negatively charged particles (Citrate GNRs) were obtained by surface modification on positively charged CTAB GNRs.
도 5는 CTAB 처리 및 citration 이후의 Rod 1 내지 Rod 3의 cell viabilit를 분석한 결과를 나타낸 그래프이다. 5 is a graph showing the results of analyzing cell viabilit of Rods 1 to 3 after CTAB treatment and citration.
도 6은 수지상세포막으로 코팅된 금 나노로드의 TEM 이미지를 나타낸 것이다.6 shows a TEM image of gold nanorods coated with a dendritic cell membrane.
도 7은 수지상세포(DC) 및 수지상세포막 코팅 전후의 표면 제타전위값을 나타낸 그래프이다. 7 is a graph showing surface zeta potential values before and after coating dendritic cells (DC) and dendritic cell membranes.
도 8은 금 나노로드에 수지상세포막을 코팅시킨 후, 이를 BCA assay를 이용하여 protein 정량을 측정한 결과를 나타낸 것으로서, 세포막이 성공적으로 코팅되었음을 검증하였다. 8 shows the result of measuring protein quantification using BCA assay after coating the dendritic cell membrane on the gold nanorod, and it was verified that the cell membrane was successfully coated.
도 9는 골수유래 수지상세포(Bone marrow Dendritic cell, BMDC)와 본 발명에 따른 수지상세포막 코팅된 금 나노라드(DC rod3)의 FACS 수행 결과를 나타낸 것으로서 이를 통해 T cell 증식효과를 평가하였다.9 shows the results of FACS performance of bone marrow dendritic cells (BMDC) and dendritic cell membrane-coated gold nanorods (DC rod3) according to the present invention, through which the T cell proliferation effect was evaluated.
이하, 첨부된 도면 및 실시예들을 참조하여 본 발명에 따른 수지상세포 모방 기능성 구조체 및 이의 제조방법에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 다만, 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며, 여기에서 설명하는 구현예에 한정되지 않는다. 또한, 청구범위에 의하여 한정되는 보호범위를 제한하고자 하는 것도 아니다.Hereinafter, with reference to the accompanying drawings and embodiments, a dendritic cell-mimicking functional structure and a manufacturing method thereof according to the present invention will be described in detail so that those skilled in the art can easily carry out the present invention. However, the present invention may be implemented in many different forms, and is not limited to the embodiments described herein. Nor is it intended to limit the scope of protection defined by the claims.
본 발명의 설명에 사용되는 기술 용어 및 과학 용어에 있어서 다른 정의가 없다면, 이 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 통상적으로 이해하고 있는 의미를 가지며, 하기의 설명에서 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 설명은 생략한다.Unless otherwise defined, the technical and scientific terms used in the description of the present invention have meanings commonly understood by those of ordinary skill in the art to which this invention belongs, and the gist of the present invention in the following description Descriptions of well-known functions and configurations that may be unnecessarily obscure are omitted.
본 명세서에서 사용되는 수치 범위는 하한치와 상한치와 그 범위 내에서의 모든 값, 정의되는 범위의 형태와 폭에서 논리적으로 유도되는 증분, 이중 한정된 모든 값 및 서로 다른 형태로 한정된 수치 범위의 상한 및 하한의 모든 가능한 조합을 포함한다. 본 발명의 명세서에서 특별한 정의가 없는 한 실험 오차 또는 값의 반올림으로 인해 발생할 가능성이 있는 수치범위 외의 값 역시 정의된 수치범위에 포함된다.Numerical ranges, as used herein, include lower and upper limits and all values within that range, increments logically derived from the form and breadth of the range being defined, all values defined therein, and the upper and lower limits of the numerical range defined in different forms. includes all possible combinations of Unless otherwise specifically defined in the specification of the present invention, values outside the numerical range that may occur due to experimental errors or rounding of values are also included in the defined numerical range.
본 명세서에서 사용되는 단수 형태는 문맥에서 특별한 지시가 없는 한 복수 형태도 포함하는 것으로 의도할 수 있다.The singular form used herein may be intended to include the plural form as well, unless the context dictates otherwise.
본 명세서의 용어, "포함한다"는 "구비한다", "함유한다", "가진다" 또는 "특징으로 한다" 등의 표현과 등가의 의미를 가지는 개방형 기재이며, 추가로 열거되어 있지 않은 요소, 재료 또는 공정을 배제하지 않는다. The term "comprises" in the present specification is an open description having the same meaning as expressions such as "comprises", "includes", "has" or "characterized by", elements not additionally listed, No materials or processes are excluded.
본 명세서의 용어, “종횡비 (Aspect Ratio, AR)”는 길이를 폭으로 나눈 비율로서 정의되며, 이때 길이는 입자의 가장 긴 치수의 길이이며, 폭은 입자의 가장 짧은 길이로서 정의될 수 있다.As used herein, the term “aspect ratio (AR)” is defined as the ratio of the length divided by the width, where the length is the length of the longest dimension of the particle, and the width can be defined as the shortest length of the particle.
본 명세서의 용어, “나노입자” 또는 “나노구조체”는 1 ㎚ 내지 50 ㎛ 범위의 길이, 폭 또는 직경을 의미할 수 있다. As used herein, the term “nanoparticle” or “nanostructure” may refer to a length, width or diameter ranging from 1 nm to 50 μm.
이하, 본 발명에 대해 구체적으로 설명한다.Hereinafter, the present invention will be specifically described.
본 개시에 따른 수지상세포 모방 구조체는 수지상세포의 항원제시능을 나노입자 표면에 도입하여, 수지상세포의 항원 제시 기능을 보존하면서, 동시에 나노입자의 표적화 기능 및 광열 효과를 통해 현저히 증대된 면역 항암 치료 효과를 제공하고자 한다. The dendritic cell-mimicking structure according to the present disclosure preserves the antigen-presenting function of dendritic cells by introducing the antigen-presenting ability of dendritic cells to the surface of nanoparticles, and at the same time significantly increases immune anti-cancer treatment through the targeting function and photothermal effect of nanoparticles. to provide an effect.
수지상세포 (Dendrictic cell, DC)는 강력한 항원제시 세포 (antigen presenting cells, APC)로서, 체내 면역반응 유도 및 면역 조절에 중요한 역할을 담당한다. 항원과 접한 적이 없는 원시 T 세포 (naive ell)를 활성화시켜, 1차면역반응 (primary immune response)을 유도할 수 있고, 항원 특이적인 후천성 기억면역을 유도할 수 있는 면역세포로 기능할 수 있다. 또한 세포막 표면에 주조직 적합성 복합체 (major histocompatibility complex I/II: MHC I/II)뿐만 아니라, CD80 및 CD86과 같은 보조자극인자 (co-stimulatory molecules) 및 ICAM-1과 같은 세포부착 분자 (cell adhesion molecules)가 고도로 발현되어 있으며, T 세포 활성화와 관련된 인터페론, IL-12, IL-18 등의 다양한 사이토카인을 다량 분비함으로써, 강력한 항원제시 기능을 나타낼 수 있다.Dendritic cells (DC) are powerful antigen presenting cells (APCs) that play an important role in inducing and regulating immune responses in the body. By activating naive T cells (naive ell) that have never encountered an antigen, they can induce a primary immune response and function as immune cells capable of inducing antigen-specific acquired memory immunity. In addition, major histocompatibility complex I/II (MHC I/II), as well as co-stimulatory molecules such as CD80 and CD86, and cell adhesion molecules such as ICAM-1 are present on the cell membrane surface. molecules) are highly expressed, and by secreting large amounts of various cytokines such as interferon, IL-12, and IL-18 related to T cell activation, it can exhibit a strong antigen presenting function.
수지상세포의 상기 항원제시 기능을 구현하기 위한, 본 개시에 따른 수지상세포 모방 구조체는 비구형 코어 입자; 및 수지상세포로부터 유래된 지질 분자의 세포막을 포함하는 쉘;을 포함하고, 상기 쉘은 상기 지질 분자의 이중층을 포함하는 것을 특징으로 할 수 있다.A dendritic cell-mimicking structure according to the present disclosure for implementing the antigen presenting function of dendritic cells includes non-spherical core particles; And a shell comprising a cell membrane of lipid molecules derived from dendritic cells; the shell may be characterized in that it includes a bilayer of the lipid molecules.
수지상세포는 말초 조직에 존재하여, 외부자극 신호에 의해 활성 신호를 받게 되어 성숙된다. 동시에 외부 단백질 항원을 펩타이드 형태로 MHC class I, II 에 제시한다. 이후, 수지상세포는 배수 림프절(draining lymphnode)로 이동하여, 수지상세포 표면의 MHC-펩타이드 복합체와 결합가능한 T 세포 수용체(TCR)을 보유한 T 세포와 결합하고, 수지상세포에서 발현되는 CD80, CD86과 같은 공동자극 리간드가 T 세포에서 발현되는 공동자극 수용체인 CD28과 보조적으로 결합하여 T 세포를 완전하게 활성화한다. 활성화된 T 세포는 증식 및 분화하여 림프절에서 말초조직으로 이동하며, 외부 항원을 발현하는 세포(예. 암세포)를 제거할 수 있다.Dendritic cells are present in peripheral tissues, receive activation signals by external stimulation signals, and mature. At the same time, external protein antigens are presented to MHC class I and II in the form of peptides. Thereafter, dendritic cells migrate to the draining lymphnode, bind to T cells having a T cell receptor (TCR) that can bind to the MHC-peptide complex on the surface of dendritic cells, and express CD80, CD86, etc. in dendritic cells. Costimulatory ligands complete activation of T cells by co-binding with CD28, a costimulatory receptor expressed on T cells. Activated T cells proliferate and differentiate, migrate from lymph nodes to peripheral tissues, and can eliminate cells expressing foreign antigens (eg, cancer cells).
본 개시에 따른 수지상세포 모방 구조체는 상기 세포성 면역 기능을 활성화하기 위한 강력한 T 세포 activator로 기능하며, 나아가 면역 세포 치료제로 작용할 수 있다.The dendritic cell-mimicking structure according to the present disclosure functions as a strong T cell activator for activating the cellular immune function, and can further act as an immune cell therapeutic agent.
본 개시에 따른 비구형 코어 입자는 1차원 또는 2차원 나노구조체일 수 있다. 상기 1차원 또는 2차원 나노구조체의 구체적인 예를 들면, 탄소 나노리본, 탄소 나노튜브, 그래핀, 산화그래핀, 환원된 산화그래핀, 맥신, 금속 나노로드, 금속 나노와이어 또는 금속 나노 판상체(platelet)일 수 있으나, 이에 제한되지 않는다.Non-spherical core particles according to the present disclosure may be one-dimensional or two-dimensional nanostructures. Specific examples of the one-dimensional or two-dimensional nanostructures include carbon nanoribbons, carbon nanotubes, graphene, graphene oxide, reduced graphene oxide, MXene, metal nanorods, metal nanowires, or metal nanoplatelets ( platelet), but is not limited thereto.
또한 상기 비구형 코어 입자는 생체적합성을 가지는 유기 고분자 나노입자, 금속 유기골격체 나노입자, 금속 나노입자, 금속산화물 나노입자, 고체상 지질 나노입자(solid lipid nanoparticle), 자성 나노입자, 광열 변환 나노입자 및 핵산 함유 나노입자, 단백질 함유 나노입자로 이루어진 군에서 선택되는 하나 또는 둘 이상일 수 있다. 구체적으로 나노물질 자체의 독성이 없으면서 광 감응성을 가지고 있어 광열치료에 적용이 가능한 것이면 더욱 바람직하다. In addition, the non-spherical core particles include biocompatible organic polymer nanoparticles, metal organic framework nanoparticles, metal nanoparticles, metal oxide nanoparticles, solid lipid nanoparticles, magnetic nanoparticles, and light-to-heat conversion nanoparticles. And it may be one or two or more selected from the group consisting of nucleic acid-containing nanoparticles and protein-containing nanoparticles. Specifically, it is more preferable if the nanomaterial itself has no toxicity and has photosensitivity, so that it can be applied to photothermal therapy.
유기 고분자 나노입자의 구체적인 예를 들면, 폴리아세틸렌, 폴리아닐린, 폴리피롤, 폴리티오펜, 폴리(1,4-페닐렌비닐렌), 폴리(1,4-페닐렌 설파이드), 폴리(플루오레닐렌에티닐렌) 및 이들의 유도체로 이루어진 군으로부터 선택된 적어도 하나일 수 있다.Specific examples of organic polymer nanoparticles include polyacetylene, polyaniline, polypyrrole, polythiophene, poly(1,4-phenylenevinylene), poly(1,4-phenylene sulfide), and poly(fluorenylene). tinylene) and at least one selected from the group consisting of derivatives thereof.
금속 나노입자의 구체적인 예를 들면, 구리(Cu), 니켈(Ni), 코발트(Co), 철(Fe), 아연(Zn), 티탄(Ti), 크롬(Cr), 은(Ag), 금(Au), 백금(Pt), 알루미늄(Al) 및 이들의 복합체로 이루어진 군으로부터 선택된 적어도 하나일 수 있다.Specific examples of metal nanoparticles include copper (Cu), nickel (Ni), cobalt (Co), iron (Fe), zinc (Zn), titanium (Ti), chromium (Cr), silver (Ag), gold It may be at least one selected from the group consisting of (Au), platinum (Pt), aluminum (Al), and composites thereof.
금속 산화물 나노입자는 단일금속 산화물 나노입자 또는 다중금속 산화물 나노입자일 수 있고, 상기 금속은 세륨(Ce), 망간(Mn) 또는 철(Fe)에서 선택되는 하나 이상일 수 있다. 이때 생체 내 분산성을 위해 추가로 알부민, 덱스트란 등의 리간드 화합물이 결합될 수 있다.The metal oxide nanoparticles may be single metal oxide nanoparticles or multi-metal oxide nanoparticles, and the metal may be at least one selected from cerium (Ce), manganese (Mn), and iron (Fe). At this time, a ligand compound such as albumin or dextran may be additionally coupled for dispersibility in vivo.
일 예에 있어서, 비구형 코어 입자는 타원형, 로드형, 판상형 또는 비정형일 수 있다. 외부 항원으로 인식될 경우 사이즈가 큰 입자일수록, 구형에 가까운 입자일수록 대식세포에 의한 섭취율이 증가한다. 이러한 측면에서 비구형 코어 입자 및 수지상세포 유래 세포막을 포함하는 쉘을 포함하는 수지상세포 모방 구조체는 생체 내 도입 시 외부 항원으로의 인식에 따른 면역세포에 의한 섭취율을 최소화하기 위한 구조로 설계될 수 있다. In one example, the non-spherical core particle may be elliptical, rod-shaped, plate-shaped or irregular. When recognized as an external antigen, the uptake by macrophages increases as the particle size is larger and the particle is closer to a spherical shape. In this respect, the dendritic cell-mimicking structure including a shell including non-spherical core particles and a dendritic cell-derived cell membrane can be designed as a structure to minimize the uptake rate by immune cells according to recognition as a foreign antigen when introduced into the body. .
본 개시에 따른 비구형 코어 입자는 50 ㎚ 내지 50 ㎛, 60 내지 1000 ㎚, 또는 80 내지 500 ㎚의 평균 입경을 가질 수 있다. Non-spherical core particles according to the present disclosure may have an average particle diameter of 50 nm to 50 μm, 60 to 1000 nm, or 80 to 500 nm.
구체적인 일 예에 있어서, 비구형 코어 입자는 1차원 나노구조체일 수 있으며, 비구형 코어 입자의 종횡비 (길이/폭)는 1보다 큰 값을 가질 수 있다. 구체적으로 종횡비는 1.1 내지 10.0, 1.1 내지 8,0, 1,1 내지 6.0, 1.2 내지 10.0, 1.2 내지 8.0, 1.2 내지 6.0, 1.5 내지 10.0, 1.5 내지 8.0, 1.5 내지 6.0, 2.0 내지 6.0 또는 2.0 내지 5.0일 수 있다. In a specific example, the non-spherical core particle may be a one-dimensional nanostructure, and the aspect ratio (length/width) of the non-spherical core particle may have a value greater than 1. Specifically, the aspect ratio is 1.1 to 10.0, 1.1 to 8,0, 1,1 to 6.0, 1.2 to 10.0, 1.2 to 8.0, 1.2 to 6.0, 1.5 to 10.0, 1.5 to 8.0, 1.5 to 6.0, 2.0 to 6.0 or 2.0 to 2.0. May be 5.0.
비한정적인 일 예에 있어서, 비구형 코어 입자는 금 나노로드일 수 있고, 최대 흡광 파장이 700 내지 800 ㎚인 것일 수 있다. 비구형 코어 입자가 비구형 형상을 가지며 상술한 바와 같은 최대 흡광 파장을 가짐에 따라 대식세포에 의한 섭취를 최소화하여, T 세포의 활성화 작용을 극대화할 수 있다.In one non-limiting example, the non-spherical core particle may be a gold nanorod, and may have a maximum absorption wavelength of 700 to 800 nm. As the non-spherical core particle has a non-spherical shape and has the maximum absorption wavelength as described above, it is possible to minimize uptake by macrophages and maximize T cell activation.
본 개시에 따른 비제한적인 일 실시형태로서 비구형 코어 입자는 환원전위가 높아 체내에서 안전한 상태를 유지할 수 있고, 표면 개질이 용이한 금 나노입자일 수 있으나, 이에 제한되지 않는다.As a non-limiting embodiment according to the present disclosure, the non-spherical core particles may be gold nanoparticles that can maintain a safe state in the body and are easily surface-modified, but are not limited thereto.
비구형 코어 입자의 외부에 형성되는 쉘은 수지상세포로부터 유래된 지질 분자의 세포막을 포함할 수 있고, 구체적으로 지질 분자의 이중층을 포함하는 것일 수 있다. 이때 쉘 외부를 향한 제1 지질 분자층은 비구형 코어 입자 표면을 향한 제2 지질 분자층에 비하여 전기적으로 더 강한 음전하를 나타내도록 배향될 수 있다. The shell formed on the outside of the non-spherical core particle may include a cell membrane of lipid molecules derived from dendritic cells, and may specifically include a bilayer of lipid molecules. At this time, the first lipid molecule layer facing the outside of the shell may be oriented to exhibit a stronger negative charge compared to the second lipid molecule layer facing the surface of the non-spherical core particle.
상기 지질 분자의 세포막을 포함하는 쉘은 2 내지 50 ㎚, 좁게는 5 내지 20 ㎚의 범위로 비구형 코어 입자의 표면에 얇고 균일하게 코팅될 수 있다.The shell containing the cell membrane of the lipid molecule may be thinly and uniformly coated on the surface of the non-spherical core particle in the range of 2 to 50 nm, narrowly 5 to 20 nm.
상기 지질 분자의 세포막 코팅 시 개선된 콜로이드 안정성을 위해 비구형 코어 입자의 표면은 음전하로 하전된 것일 수 있다. 음으로 하전된 비구형 코어 입자를 수득하기 위하여 이 기술분야에 공지된 방법을 사용할 수 있다. 일 예시로서, 시트르산 처리를 통해 음으로 하전된 표면을 갖는 입자를 수득할 수 있다. The surface of the non-spherical core particle may be negatively charged for improved colloidal stability when the lipid molecule is coated with the cell membrane. Methods known in the art can be used to obtain negatively charged non-spherical core particles. As an example, a particle with a negatively charged surface can be obtained through citric acid treatment.
또한 쉘과의 안정적인 결합을 위하여 비구형 코어 입자의 표면은 상기 쉘에 포함되는 적어도 하나의 성분과 결합을 형성하는 것일 수 있다. 상기 결합은 공유결합, 이온결합 또는 착체 등의 다양한 화학결합이 가능할 수 있다.In addition, for stable bonding with the shell, the surface of the non-spherical core particle may form a bond with at least one component included in the shell. The bond may be a variety of chemical bonds such as a covalent bond, an ionic bond, or a complex.
상기 쉘은 수지상세포와는 상이한 세포의 세포막으로부터 유래된 성분을 더 포함할 수 있다.The shell may further include components derived from cell membranes of cells different from dendritic cells.
상기 쉘의 표면은 생리활성 고분자, 생리활성 성분 또는 단백질이 표지된 것일 수 있다. 구체적으로 상기 생리활성 성분은 세포 신호전달을 위한 사이토카인을 의미할 수 있다. 비제한적인 예로서, 케모카인, 인터페론, 인터루킨, 림포카인, 종양 괴사 인자, 모노카인 및 콜로니 자극 인자들을 포함할 수 있다. 보다 구체적으로 사이토카인은 BMP (Bone morphogenetic protein) 패밀리, CCL (Cheomkine ligands) 패밀리, CMTM (CKLF-like MARVEL transmembrane domain containing member) 패밀리, CXCL (C-X-C motif ligand ligand) 패밀리, GDF (Growth/differentiation factor) 패밀리, 성장 호르몬, IFN (Interferon) 패밀리, IL (Interleukin) 패밀리, TNF (Tumor necrosis factors) 패밀리, GPI(glycophosphatidylinositol), SLUPR-1(Secreted Ly-6/uPAR-Related Protein 1), SLUPR-2(Secreted Ly-6/uPAR-Related Protein 2) 및 이들의 조합으로 구성된 군으로부터 선택되는 어느 하나일 수 있다. 상기 사이토카인은 T 세포의 분화에 필수적인 전사인자 또는 성장인자를 유도 또는 억제하며, 다른 면역세포의 성장 및 분화를 매개함으로써, 본 개시에 따른 수지상세포 모방 구조체의 면역항암 치료의 효과를 보다 강화할 수 있다. 본 개시에 따른 수지상세포 모방 구조체는 암 치료용, 면역질환 치료 또는 예방용 등 다양한 용도로 사용될 수 있으며, 구체적으로 암 치료용 약학적 조성물의 형태로 제공될 수 있다.The surface of the shell may be labeled with a bioactive polymer, a bioactive component, or a protein. Specifically, the physiologically active component may mean a cytokine for cell signaling. Non-limiting examples may include chemokines, interferons, interleukins, lymphokines, tumor necrosis factors, monokines and colony stimulating factors. More specifically, cytokines include BMP (Bone morphogenetic protein) family, CCL (Cheomkine ligands) family, CMTM (CKLF-like MARVEL transmembrane domain containing member) family, CXCL (C-X-C motif ligand ligand) family, GDF (Growth/differentiation factor) family, growth hormone, IFN (Interferon) family, IL (Interleukin) family, TNF (Tumor necrosis factors) family, GPI (glycophosphatidylinositol), SLUPR-1 (Secreted Ly-6/uPAR-Related Protein 1), SLUPR-2 ( Secreted Ly-6/uPAR-Related Protein 2) and combinations thereof. The cytokine induces or inhibits transcription factors or growth factors essential for the differentiation of T cells, and mediates the growth and differentiation of other immune cells, thereby further enhancing the effect of immunotherapeutic treatment of the dendritic cell-mimicking structure according to the present disclosure. there is. The dendritic cell-mimicking structure according to the present disclosure may be used for various purposes such as cancer treatment, treatment or prevention of immune diseases, and may be specifically provided in the form of a pharmaceutical composition for cancer treatment.
일 예시에 따르면, 암은 침윤에 의해 국부적 및 전이를 통해 확장가능한 각종 악성 고형 종양 등을 총징하는 것으로서, 구체적인 예로는 B-세포 림프종, 비소세포 폐암, 소세포 폐암, 기저세포 암종, 피부 편평세포암종, 직장결장암, 흑색종, 두경부 편평암, 간세포암, 위암, 육종, 위식도암, 신세포 암종, 교모세포종, 췌장암, 방광암, 전립선암, 유방암, 피부 T-세포 림프종, 머켈세포 암종 또는 다발성 골수종일 수 있으나 이에 제한되지 않는다.According to one example, cancer is a general term for various malignant solid tumors that are expandable through local and metastasis by invasion, and specific examples include B-cell lymphoma, non-small cell lung cancer, small cell lung cancer, basal cell carcinoma, and squamous cell carcinoma of the skin. , colorectal cancer, melanoma, head and neck squamous cancer, hepatocellular carcinoma, gastric cancer, sarcoma, gastroesophageal cancer, renal cell carcinoma, glioblastoma, pancreatic cancer, bladder cancer, prostate cancer, breast cancer, cutaneous T-cell lymphoma, Merkel cell carcinoma, or multiple myeloma may, but is not limited thereto.
일 예시에 따르면, 암 치료용 약학적 조성물은 pH, 삼투도, 점도, 무균성, 투명도, 색상, 등장성, 냄새, 안정성, 용해 속도 또는 방출 속도, 흡착 또는 침투를 변형, 유지 또는 보존하기 위한 제형 물질을 포함할 수 있다. According to one example, the pharmaceutical composition for treating cancer is used to modify, maintain or preserve pH, osmoticity, viscosity, sterility, transparency, color, isotonicity, odor, stability, dissolution rate or release rate, adsorption or penetration. Formulation materials may be included.
상기 약학적 조성물은 경구 또는 비경구로 투여될 수 있다. 비경구의 예로는, 정맥내, 근육내, 피하, 안와내, 피막내, 복강내, 직장내, 수조내, 혈관내, 진피내를 포함하는 다양한 경로로 환자에게 투여될 수 있으며, 피부 패치 또는 경피 이온도입법을 각각 이용하여 피부를 통해서도 투여될 수 있다.The pharmaceutical composition may be administered orally or parenterally. Examples of parenteral administration include intravenous, intramuscular, subcutaneous, intraorbital, intracapsular, intraperitoneal, intrarectal, intracisternal, intravascular, and intradermal administration to a patient, and may be administered to a patient through a skin patch or transdermally. It can also be administered through the skin using iontophoresis, respectively.
또한 본 개시는 수지상세포 모방 구조체 제조방법을 제공할 수 있다. In addition, the present disclosure may provide a method for preparing a dendritic cell mimic structure.
본 개시에 따른 수지상세포 모방 나노구조체는 활성화된 수지상세포의 세포막을 추출하고, 나노입자와 함께 필터압출하여 세포막이 나노입자 표면에 도입되도록 유도하는 방식에 따라 제조된다. The dendritic cell-mimicking nanostructure according to the present disclosure is prepared by extracting cell membranes of activated dendritic cells and filter extruding them together with the nanoparticles to induce the cell membranes to be introduced onto the surface of the nanoparticles.
구체적으로, (S10) 수지상세포로부터 세포막을 정제하는 단계; (S20) 상기 세포막에 초음파를 처리하여 세포막 현탁액을 형성하는 단계; (S30) 상기 세포막 현탁액을 멤브레인 필터를 통해 여과하여 리포좀을 수득하는 단계; 및 (S40) 비구형 코어 입자 및 상기 리포좀을 혼합한 후, 필터압축하여 세포막이 도입된 비구형 입자를 수득하는 단계;를 포함할 수 있다.Specifically, (S10) purifying cell membranes from dendritic cells; (S20) forming a cell membrane suspension by treating the cell membrane with ultrasonic waves; (S30) filtering the cell membrane suspension through a membrane filter to obtain liposomes; and (S40) mixing the non-spherical core particles and the liposomes, and then performing filter compression to obtain non-spherical particles having a cell membrane introduced therein.
수지상세포로부터 세포막을 정제하는 단계는 급속 냉동-해동 및 원심분리를 통하여 진행될 수 있다. 이후 정제된 세포막에 초음파를 처리하여, 수백 나노 또는 수 마이크로 단위의 세포막 현탁액을 형성할 수 있다. 상기 세포막 현탁액을 멤브레인 필터를 통해 여과하면 원하는 크기의 세포막 리포좀을 수득할 수 있다. Purifying cell membranes from dendritic cells may be performed through rapid freezing-thawing and centrifugation. Thereafter, the purified cell membrane may be treated with ultrasonic waves to form a cell membrane suspension of hundreds of nanometers or several micrometers. When the cell membrane suspension is filtered through a membrane filter, cell membrane liposomes having a desired size can be obtained.
준비된 비구형 코어 입자와 세포막 리포좀을 혼합하고, 필터압축하여 세포막이 도입된 비구형 코어-쉘 입자를 수득할 수 있다. 즉, 수지상세포의 세포막이 상기 비구형 코어 입자 표면에 코팅된 형태가 얻어진다.The prepared nonspherical core particles and cell membrane liposomes are mixed and filter compressed to obtain nonspherical core-shell particles into which cell membranes have been introduced. That is, a form in which the cell membrane of dendritic cells is coated on the surface of the non-spherical core particle is obtained.
이때 (S50) 세포막이 도입된 비구형 입자에 항원을 펄싱하는 단계;를 더 포함하여, 수지상세포의 기능을 하는 수지상세포 모방 기능성 구조체를 완성할 수 있다.At this time, (S50) pulsing the antigen to the non-spherical particles into which the cell membrane has been introduced; further including, a dendritic cell-mimicking functional structure that functions as a dendritic cell can be completed.
상기 세포막이 도입된 나노입자에 항원을 펄싱하는 단계는 수지상세포화된 상기 비구형 입자를 항원에 노출시킴으로써 항원이 세포막에 탑재되는 단계로서, 이를 통해 강력한 항원 특이적 T 세포의 활성화를 유도할 수 있다.The step of pulsing the antigen into the nanoparticle into which the cell membrane is introduced is a step in which the antigen is loaded on the cell membrane by exposing the dendritic non-spherical particle to the antigen, which can induce activation of strong antigen-specific T cells. there is.
상기 항원은 종양 항원 유래 펩타이드 또는 단백질일 수 있고, 상기 종양 항원은 종양 연관 항원 또는 종양 특이 항원일 수 있다. 구체적으로 예를 들면, 생쥐 암 모델에 있어서, 오브알부민(ovalbumin, OVA), LCMV(Lymphocytic choriomeningitis mammarenavirus) glycoprotein, retrovirus protein 유래의 단백질 또는 펩타이드일 수 있다. 보다 구체적으로 OVA257-264, GP33-41, p15E 모델의 암 항원 펩타이드 또는 단백질일 수 있다. The antigen may be a tumor antigen-derived peptide or protein, and the tumor antigen may be a tumor-associated antigen or a tumor-specific antigen. Specifically, for example, in a mouse cancer model, it may be a protein or peptide derived from ovalbumin (OVA), lymphocytic choriomeningitis mammarenavirus (LCMV) glycoprotein, or retrovirus protein. More specifically, it may be a cancer antigen peptide or protein of OVA257-264, GP33-41, or p15E models.
또한 인간 암 항원에 있어서, (1) HER2/Neu, tyrosinase, gp100, MART, HPV E6/E7, EBV EBNA-1, carcinoembryonic antigen, a-fetoprotein, GM2, GD2, testis antigen, prostate antigen, 및 CD20를 포함하는 종양 연관 항원 및 (2) 다양한 돌연변이에 의해 생성될 수 있는 신생항원(neoantigen)을 포함하는 종양 특이 항원으로부터 유래된 펩타이드 또는 단백질일 수 있다. 바람직하게는 상기 항원은 상술한 암 항원 펩타이드 1종 또는 2종 이상의 상이한 펩타이드일 수 있다.In addition, in human cancer antigens, (1) HER2/Neu, tyrosinase, gp100, MART, HPV E6/E7, EBV EBNA-1, carcinoembryonic antigen, a-fetoprotein, GM2, GD2, testis antigen, prostate antigen, and CD20 and (2) tumor-specific antigens including neoantigens that can be produced by various mutations. Preferably, the antigen may be one or two or more different peptides of the aforementioned cancer antigen peptide.
상기 펄싱은 당업계에 알려진 다양한 펄싱 프로토콜이 가능하나, 보다 좋게는 5% CO2 및 37℃ 가습 조건에서 0.5 내지 6 시간 동안 종양 항원 유래 펩타이드 또는 단백질과 혼합 배양하여 펄싱을 수행하는 것일 수 있다. The pulsing may be performed by various pulsing protocols known in the art, but more preferably, pulsing may be performed by mixing the tumor antigen-derived peptide or protein with a tumor antigen-derived peptide or protein for 0.5 to 6 hours under 5% CO 2 and 37° C. humidified conditions.
구체적으로 본 발명의 비제한적인 일 예로서, OVA257-264, GP33-41 항원을 처리하는 경우 0.1 내지 0.3 ㎍/㎖, p15E 항원을 처리하는 경우 2 내지 7 ㎍/㎖의 농도로 처리하며, 처리 후 30분간 37 ℃ 인큐베이터에서 보관함으로써 상기 항원을 펄싱할 수 있다.Specifically, as a non-limiting example of the present invention, when treating OVA 257-264 and GP 33-41 antigens, 0.1 to 0.3 μg / ml, and when treating p15E antigen, treatment at a concentration of 2 to 7 μg / ml , the antigen can be pulsed by storing in a 37° C. incubator for 30 minutes after treatment.
항원이 펄싱된 수지상세포 모방 기능성 구조체는 나노사이즈의 크기로 인하여 암 표적기능이 매우 뛰어나며(negative targeting), 안정적이고, 부피 대비 넓은 표면적을 가지고 있기 때문에 T 세포와 쉽게 접촉할 수 있다. 따라서 수지상세포 모방 기능성 구조체의 활성화 및 그에 따른 특이적인 T 세포 반응의 활성화를 통해 효과적인 항암 면역반응을 유발할 수 있다. 또한, 체내에서 사멸의 위험이 없기 때문에 체내 순환 시간이 굉장히 길다는 장점이 있다.The antigen-pulsed dendritic cell-mimicking functional construct has excellent cancer targeting function due to its nano-sized size, is stable, and has a large surface area to volume ratio, so it can easily contact T cells. Therefore, an effective anti-cancer immune response can be induced through the activation of the dendritic cell-mimicking functional structure and the activation of the specific T cell response accordingly. In addition, since there is no risk of death in the body, there is an advantage that the circulation time in the body is very long.
본 개시에 따른 수지상세포 모방 기능성 구조체는 수지상세포 유래의 세포막을 초음파 처리하여 제조된 리포좀과 나노입자를 융합하여 제조한 것으로서, 상기 융합은 리포좀 및 나노입자를 혼합하여 공압출하는 것을 의미할 수 있다.The dendritic cell-mimicking functional structure according to the present disclosure is prepared by fusing a liposome prepared by sonicating a dendritic cell-derived cell membrane and nanoparticles, and the fusion may mean mixing and co-extruding the liposome and the nanoparticle. .
구체적으로 상기 수지상세포 유래의 세포막을 초음파 처리한 후, 나노사이즈의 멤브레인 필터를 통해 여과하여, 입경 200 ㎚이하의 리포좀을 수득할 수 있다. 상기 리포좀의 입경은 구체적으로 50 내지 150 ㎚일 수 있다. Specifically, after ultrasonic treatment of the dendritic cell-derived cell membrane, it is filtered through a nano-sized membrane filter to obtain liposomes having a particle size of 200 nm or less. The particle diameter of the liposome may be specifically 50 to 150 nm.
본 개시에 따른 수지상세포 모방 나노구조체의 표면 제타전위는 -40 내지 -20 ㎷, 구체적으로 -35 내지 -25 ㎷일 수 있다.The surface zeta potential of the dendritic cell-mimicking nanostructure according to the present disclosure may be -40 to -20 ㎷, specifically -35 to -25 ㎷.
또한 본 개시는 상술한 수지상세포 모방 나노구조체를 포함하는 약물전달시스템 또는 디바이스를 제공할 수 있다.In addition, the present disclosure may provide a drug delivery system or device including the above-described dendritic cell-mimicking nanostructure.
또한 본 개시는 다른 양태로서, 상술한 수지상세포 모방 나노구조체 및 약학적으로 허용되는 담체 또는 부형제를 포함하는 약학적 조성물을 제공할 수 있다. In another aspect, the present disclosure may provide a pharmaceutical composition comprising the above-described dendritic cell-mimicking nanostructure and a pharmaceutically acceptable carrier or excipient.
이하 실시예를 통해 본 발명에 대해 더욱 상세히 설명한다. 다만 하기의 실시예는 본 발명을 상세히 설명하기 위한 하나의 참조일 뿐 본 발명이 이에 한정되는 것은 아니며, 여러 형태로 구현될 수 있다.The present invention will be described in more detail through the following examples. However, the following examples are only references for explaining the present invention in detail, and the present invention is not limited thereto, and may be implemented in various forms.
제조예 1. 비구형 코어 입자 제조Preparation Example 1. Preparation of non-spherical core particles
바이알에 0.1 M CTAB 10 ㎖, 및 0.001 M HauCl4 2.5 ㎖를 넣고 교반하여, 추가로 환원제로서 0.01 M NaBH4 600 ㎕를 넣고 교반 속도를 높여 2분 간 섞어준 뒤 3~5 ㎚의 금 나노입자가 형성된 금 시드를 수득하였다. 30분간 금 시드를 숙성시킨 후, 5개의 250 ㎖ 삼각 플라스크에 각각 CTAB 0.075 M, 0.075 M, 0.1 M, 0.1 M, 0.1 M을 첨가하고, 온도를 30 ℃로 맞춰주었다. 여기에 각각 0.004 M AgNO3 4.8 ㎖, 3.6 ㎖, 2.4 ㎖, 2.4 ㎖, 4.8 ㎖를 첨가하고 15분간 방치한 뒤 0.064 M 아스코르브산을 250 ㎕씩 첨가하여 제조된 성장 용액에 앞서 수득한 금 시드를 각각 80 ㎕, 80 ㎕, 160 ㎕, 2 ㎕, 40 ㎕씩 첨가하여 12시간 동안 어두운 상태에서 교반하지 않고 실온에 보관하였다. 투명한 성장 용액이 와인색으로 변하게 되면 금 나노로드가 성장하는 것을 의미한다. 색변화 발생 후, 금 나노로드의 결정성장 반응을 완료하였다. 이후 원심분리하고 증류수로 2회 세척하여, 5가지 CTAB로 안정화된 금 나노로드(CTAB-GNR)를 수득하였다.10 ml of 0.1 M CTAB and 2.5 ml of 0.001 M HauCl 4 were added to the vial, stirred, and 600 μl of 0.01 M NaBH 4 was added as a reducing agent. After mixing for 2 minutes by increasing the stirring speed, 3-5 nm gold nanoparticles were added. A gold seed was obtained. After aging the gold seeds for 30 minutes, CTAB 0.075 M, 0.075 M, 0.1 M, 0.1 M, and 0.1 M were added to five 250 ml Erlenmeyer flasks, respectively, and the temperature was adjusted to 30 °C. After adding 4.8 ml, 3.6 ml, 2.4 ml, 2.4 ml, and 4.8 ml of 0.004 M AgNO 3 , respectively, and leaving it for 15 minutes, 250 μl of 0.064 M ascorbic acid was added to the prepared growth solution. 80 μl, 80 μl, 160 μl, 2 μl, and 40 μl were added, respectively, and stored at room temperature without stirring in the dark for 12 hours. When the transparent growth solution turns wine-colored, it means that gold nanorods grow. After the color change occurred, the crystal growth reaction of the gold nanorods was completed. After centrifugation and washing with distilled water twice, gold nanorods (CTAB-GNR) stabilized with 5 types of CTAB were obtained.
CTAB-GNR 40 ㎖를 물로 희석한 현탁액을 멤브레인 필터를 사용하여 한외여과 셀에서 농축하고, 잔류물을 물에 희석한 후 다시 현탁액을 원심분리하였다. 잔류물을 0.15 중량%의 Na-PSS에 재분산시키고, 다시 현탁액을 원심분리한 후, 잔류물을 0.7 중량%의 Na-PSS에 재분산시켜, PSS로 안정화된 금 나노로드(PSS-GNR)를 합성하였다. 이를 5 mM 30 ㎖의 시트르산나트륨을 처리하여 재분산시키고 12시간 동안 실온에 보관하였다. 이와 같은 방식으로 2회 반복하여 음으로 하전된 citrate-GNR을 수득하였다. A suspension obtained by diluting 40 ml of CTAB-GNR with water was concentrated in an ultrafiltration cell using a membrane filter, the residue was diluted in water, and the suspension was centrifuged again. The residue was redispersed in 0.15% by weight of Na-PSS, the suspension was centrifuged again, and the residue was redispersed in 0.7% by weight of Na-PSS to obtain PSS-stabilized gold nanorods (PSS-GNR). was synthesized. This was redispersed by treatment with 30 ml of 5 mM sodium citrate and stored at room temperature for 12 hours. This method was repeated twice to obtain negatively charged citrate-GNR.
*GNR: Gold Nano Rod*GNR: Gold Nano Rod
*CTAB: cetyltrimethylammonium bromide*CTAB: cetyltrimethylammonium bromide
*PSS: polystyrenesulfonate*PSS: polystyrenesulfonate
실험예 1. 제조예 1에 따라 제조된 비구형 코어 입자의 안정성 평가Experimental Example 1. Evaluation of stability of non-spherical core particles prepared according to Preparation Example 1
<1-1. 표면 제타 전위><1-1. surface zeta potential>
제조된 CTAB-GNR의 경우 콜로이드 안정성이 떨어져 하루가 경과하기도 전 입자의 응집이 육안으로 관찰되었다. 동적광산란식 나노입도분석기(DLS, SZ100, Horiba)를 이용하여 콜로이드 안정성을 위한 시트르산 처리 전후의 금 나노로드 입자의 표면 제타 전위를 측정하여 도 4에 나타내었다.In the case of the prepared CTAB-GNR, colloidal stability was poor, and particle aggregation was observed with the naked eye even before a day had elapsed. The surface zeta potential of the gold nanorod particles before and after citric acid treatment for colloidal stability was measured using a dynamic light scattering nanoparticle size analyzer (DLS, SZ100, Horiba) and is shown in FIG. 4 .
시트르산 처리 후 표면이 음으로 하전된 금 나노로드는 증류수 내에서 -30~-40 ㎷의 표면 전위를 가짐으로써 정전기적 반발로 인한 문제없이, 세포막과 상호작용을 통해 코팅이 이루어질 수 있고, 응집없이 안정적으로 형태를 보존할 수 있다.Gold nanorods whose surface is negatively charged after citric acid treatment have a surface potential of -30 to -40 ㎷ in distilled water, so that coating can be achieved through interaction with cell membranes without problems due to electrostatic repulsion, and without aggregation. It can stably retain its shape.
<1-2. 세포 생존율><1-2. cell viability>
CTAB-GNR 및 시트르산 처리된 금 나노로드에 대하여 인간 진피 섬유아세포의 세포 생존율을 평가한 결과를 도 5에 나타내었다. 40% 이하로 낮았던 cell viability가 시트르산 처리 후, 100%에 달하여 세포의 독성이 대부분 제거됨을 확인할 수 있다.5 shows the results of evaluating the cell viability of human dermal fibroblasts with respect to CTAB-GNR and citric acid-treated gold nanorods. Cell viability, which was as low as 40% or less, reached 100% after treatment with citric acid, confirming that most of the cell toxicity was removed.
실시예 1. 수지상세포 모방 구조체 제조Example 1. Preparation of dendritic cell mimic structure
6주~8주령 Naive B6 마우스(Orient Bio)의 대퇴골에서 분리된 골수세포로부터 분화된 수지상세포를 추출하여, 2,000 rpm에서 5분간 원심분리하여 순수한 수지상세포를 수득하였다. 이후, Protease Inhibitor Tablet-PBS buffer를 처리하여 1~2×106 cells/㎖ 농도로 분산시켰다. 그리고 -70 ℃에서 급속 냉동, 상온에서의 해동 과정 및 원심분리를 거쳐 세포막만을 정제하였다. 이후 20%의 진폭으로, 3초 켜기/끄기 및 사이클간 2초의 냉각기를 갖는 3초 1회전을 총 60회 수행하는 초음파(VC505, Sonics & materials)를 처리하여, 마이크로 단위의 세포막 현탁액을 확보하였으며, 이를 나노 사이즈의 필터를 갖는 폴리카보네이트 막 (기공크기 1 ㎛, 400 ㎚, 100 ㎚)으로 걸러내 각 기공 크기의 직경을 갖는 나노 리포좀을 생성하였다.Dendritic cells differentiated from bone marrow cells isolated from femurs of 6- to 8-week-old Naive B6 mice (Orient Bio) were extracted and centrifuged at 2,000 rpm for 5 minutes to obtain pure dendritic cells. Thereafter, the Protease Inhibitor Tablet-PBS buffer was treated and dispersed at a concentration of 1-2×10 6 cells/ml. Then, only cell membranes were purified through rapid freezing at -70 ° C, thawing at room temperature, and centrifugation. Thereafter, ultrasonic waves (VC505, Sonics & materials) performed with 20% amplitude, 3 sec on/off and 3 sec 1 rotation with 2 sec cooling between cycles for a total of 60 times were processed to obtain cell membrane suspension in micro units. , This was filtered with a polycarbonate membrane (pore size of 1 μm, 400 nm, and 100 nm) having a nano-sized filter to produce nano-liposomes having a diameter of each pore size.
상기 제조예 1에 따라 제조된 비구형 코어 입자 5 ㎕ 및 상기 나노 리포좀 1 ㎖을 혼합한 후, 함께 필터압축 (filter extrusion)하여, 수지상세포 모방 구조체를 제조하였다. 상기 제조된 수지상세포 모방 구조체에 0.2 ㎍/㎖의 OVA257-264 항원을 약 30분간 37 ℃에서 처리함으로써 MHC class I, II 표면에 항원을 제시할 수 있도록 유도하여, 항원이 펄싱된 수지상세포 모방 나노구조체를 제조하였다. After mixing 5 μl of the non-spherical core particle prepared according to Preparation Example 1 and 1 ml of the nano-liposome, they were subjected to filter extrusion together to prepare a dendritic cell-mimicking structure. By treating the prepared dendritic cell-mimicking structure with 0.2 μg/ml of OVA 257-264 antigen at 37° C. for about 30 minutes, the antigen is induced to be presented on the surface of MHC class I and II, mimicking dendritic cells pulsed with the antigen. A nanostructure was prepared.
실험예 2. 수지상세포 모방 구조체의 특성 분석Experimental Example 2. Characteristic analysis of dendritic cell mimic structure
실시예 1에 따른 수지상세포 모방 구조체가 제대로 제조되었는지를 확인하기 위하여 물리화학적 및 생물학적 분석을 실시하였다.In order to confirm whether the dendritic cell-mimicking structure according to Example 1 was properly prepared, physicochemical and biological analyzes were performed.
<2-1. TEM 이미지 분석><2-1. TEM image analysis>
도 6은 수지상세포 모방 구조체 제조 후, TEM 이미지를 나타낸 것이다. 수지상세포 모방 구조체는 길이-폭이 [1] 110 ㎚~20 ㎚ (Aspect Ratio 5.5), [2] 120 ㎚~65 ㎚ (Aspect Ratio 1.85), [3] 60 ㎚~20 ㎚ (Aspect Ratio 3.5), [4] 180 ㎚~100 ㎚ (Aspect Ratio 1.8), 및 [5] 135 ㎚~75 ㎚ (Aspect Ratio 1.8)인 금 나노로드 표면에 약 10-20 ㎚ 정도의 두께를 가지는 세포막 코팅이 이루어진 것을 확인할 수 있다. 6 shows a TEM image after fabrication of the dendritic cell mimic structure. The dendritic cell mimic structure has a length-width of [1] 110 nm to 20 nm (Aspect Ratio 5.5), [2] 120 nm to 65 nm (Aspect Ratio 1.85), [3] 60 nm to 20 nm (Aspect Ratio 3.5) , [4] 180 nm ~ 100 nm (Aspect Ratio 1.8), and [5] 135 nm ~ 75 nm (Aspect Ratio 1.8) that a cell membrane coating having a thickness of about 10-20 nm is formed on the surface of the gold nanorod You can check.
<2-2. 표면 제타전위 측정><2-2. Surface zeta potential measurement>
수지상세포막(DC), 수지상세포 모방 구조체 (Rod1~Rod5) 및 구형을 나타내는 수지상세포 모방 구조체 (S60) 의 제타전위 측정을 통해 표면 전하를 확인하였고, 그 결과는 도 7에 나타내었다.The surface charge was confirmed by measuring the zeta potential of the dendritic cell membrane (DC), the dendritic cell mimicking structure (Rod1 to Rod5) and the spherical dendritic cell mimicking structure (S60), and the results are shown in FIG. 7 .
수지상세포막 코팅 전 시트르산으로 분산된 금 나노로드의 강한 음의 제타 전위는 세포막 코팅 이후, 상대적으로 낮아진 값을 나타냄을 확인할 수 있다. 또한 본 발명에 따른 수지상세포 모방 구조체들의 경우 수지상세포막과 유사한 전위 값을 나타나 성공적으로 세포막 코팅이 이루어졌음을 확인할 수 있다.It can be confirmed that the strong negative zeta potential of the gold nanorods dispersed with citric acid before coating the dendritic cell membrane shows a relatively low value after coating the cell membrane. In addition, in the case of the dendritic cell mimicking structures according to the present invention, potential values similar to those of the dendritic cell membrane were shown, confirming that the cell membrane coating was successfully performed.
실험예 3. 수지상세포 모방 구조체의 T 세포 활성화 Experimental Example 3. T cell activation of dendritic cell mimic structure
96 well U bottom plate에 P14 mouse로부터 분리한 CD8 T 세포 5×104개, DC를 1×104개를 활용하여 실시예 1에 따라 제조된 수지상세포 모방 구조체 중 일부(rod 3)를 같은 well에 배양액 10% RPMI 200 ㎕을 통해 넣고, 37 ℃에서 3일간 공배양하였다. 3일 후, 해당 플레이트를 인큐베이터에서 회수하여 형광이 달린 항체를 통해 염색을 진행하고 유세포 분석기를 통하여 CD8 T 세포의 활성화 정도를 분석하였다. 그 결과는 도 9에 나타내었다.Some of the dendritic cell-mimicking constructs (rod 3) prepared in Example 1 using 5 × 10 4 CD8 T cells and 1 × 10 4 DCs isolated from P14 mice were placed in a 96-well U bottom plate in the same well. Into the culture medium through 200 μl of 10% RPMI, and co-cultured at 37 ° C. for 3 days. After 3 days, the plate was recovered from the incubator, stained with a fluorescent antibody, and the degree of activation of CD8 T cells was analyzed by flow cytometry. The results are shown in FIG. 9 .
수지상세포 모방 나노구조체에 OVA257-264를 처리하지 않고 CD8 T 세포와 공배양을 진행한 경우에는 T 세포 증식척도인 CTV가 늘어나지 않는 것을 확인할 수 있었으며, 마찬가지로 해당 그룹에서 활성화 척도인 CD44나, 기능성 사이토카인인 IFNγ, IL-2, TNFα 등도 CD8 T 세포에서 거의 나오지 않는 것을 확인할 수 있다. 반면, 수지상세포 모방 나노구조체에 OVA257-264를 처리하여 P14에서 분리한 CD8 T 세포의 T 세포 수용체에 결합할 수 있도록 처리한 결과, CTV가 진행되어 CD8 T 세포가 증식한 것을 확인할 수 있다. 대조군으로서 골수 유래 수지상세포(BMDC)와 균등한 정도로 CD44, IFNγ, TNFα, IL-2 모두 발현율이 높아 T 세포의 증식 및 활성화 효과가 우수하게 나타났음을 확인할 수 있다. When the dendritic cell-mimicking nanostructure was not treated with OVA 257-264 and co-cultured with CD8 T cells, it was confirmed that CTV, a measure of T cell proliferation, did not increase. Similarly, CD44, an activation measure, and functional It can be seen that cytokines such as IFNγ, IL-2, TNFα, etc. are also rarely released from CD8 T cells. On the other hand, as a result of treating the dendritic cell mimicking nanostructure with OVA 257-264 so that it can bind to the T cell receptor of CD8 T cells isolated at P14, it can be confirmed that CD8 T cells proliferated as a result of CTV progression. As a control group, it can be seen that the expression rates of CD44, IFNγ, TNFα, and IL-2 were all high to the same extent as those of bone marrow-derived dendritic cells (BMDC), and the T cell proliferation and activation effects were excellent.
이상과 같이 본 발명에서는 특정된 사항들과 한정된 실시예에 의해 설명되었으나 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다. As described above, the present invention has been described with specific details and limited examples, but this is only provided to help a more general understanding of the present invention, the present invention is not limited to the above examples, and the field to which the present invention belongs Those skilled in the art can make various modifications and variations from these descriptions.
따라서, 본 발명의 사상은 설명된 실시예에 국한되어 정해져서는 아니되며, 후술하는 청구범위뿐 아니라 이 청구범위와 균등하거나 등가적 변형이 있는 모든 것들은 본 발명 사상의 범주에 속한다고 할 것이다.Therefore, the spirit of the present invention should not be limited to the described embodiments and should not be determined, and all things equivalent or equivalent to the claims as well as the following claims belong to the scope of the present invention.

Claims (13)

  1. 비구형 코어 입자; 및 수지상세포로부터 유래된 지질 분자의 세포막을 포함하는 쉘;을 포함하는 구조체로서, 상기 쉘은 상기 지질 분자의 이중층을 포함하는 것을 특징으로 하는 수지상세포 모방 구조체.non-spherical core particles; and a shell comprising cell membranes of lipid molecules derived from dendritic cells, wherein the shell comprises a bilayer of the lipid molecules.
  2. 제 1항에 있어서,According to claim 1,
    상기 비구형 코어 입자는 타원형, 로드형, 판상형 또는 비정형 형상을 가지는, 수지상세포 모방 구조체.The non-spherical core particles have an elliptical, rod-shaped, plate-shaped or atypical shape, dendritic cell-mimicking structure.
  3. 제 1항에 있어서,According to claim 1,
    상기 비구형 코어 입자는 1차원 또는 2차원 나노구조체인, 수지상세포 모방 구조체.The non-spherical core particles are one-dimensional or two-dimensional nanostructures, dendritic cell mimic structure.
  4. 제 1항에 있어서,According to claim 1,
    상기 비구형 코어 입자의 표면은 음으로 하전된, 수지상세포 모방 구조체.The surface of the non-spherical core particle is negatively charged, dendritic cell-mimicking structure.
  5. 제 1항에 있어서,According to claim 1,
    상기 비구형 코어 입자의 표면은 상기 쉘에 포함되는 적어도 하나의 성분과 결합을 형성하는, 수지상세포 모방 구조체.The surface of the non-spherical core particle forms a bond with at least one component included in the shell, dendritic cell-mimicking structure.
  6. 제 1항에 있어서,According to claim 1,
    상기 비구형 코어 입자는 유기 고분자 나노입자, 금속 유기골격체 나노입자, 금속 나노입자, 금속산화물 나노입자, 고체상 지질 나노입자(solid lipid nanoparticle), 자성 나노입자, 광열 변환 나노입자, 핵산 함유 나노입자, 및 단백질 함유 나노입자로 이루어진 군에서 선택되는 하나 또는 둘 이상인, 수지상세포 모방 구조체.The non-spherical core particles include organic polymer nanoparticles, metal organic framework nanoparticles, metal nanoparticles, metal oxide nanoparticles, solid lipid nanoparticles, magnetic nanoparticles, photothermal conversion nanoparticles, and nucleic acid-containing nanoparticles. , And one or two or more selected from the group consisting of protein-containing nanoparticles, dendritic cell-mimicking structure.
  7. 제 1항에 있어서,According to claim 1,
    상기 비구형 코어 입자는 50 ㎚ 내지 50 ㎛의 평균입경을 가지는, 수지상세포 모방 구조체.The non-spherical core particles have an average particle diameter of 50 nm to 50 μm, dendritic cell-mimicking structure.
  8. 제 1항에 있어서,According to claim 1,
    상기 비구형 코어 입자는 종횡비가 1.1 내지 6.0인, 수지상세포 모방 구조체.The non-spherical core particles have an aspect ratio of 1.1 to 6.0, dendritic cell-mimicking structure.
  9. 제 1항에 있어서,According to claim 1,
    상기 쉘은 수지상세포와는 상이한 세포의 세포막으로부터 유래된 성분을 더 포함하는, 수지상세포 모방 구조체.The shell further comprises a component derived from the cell membrane of a cell different from dendritic cells, dendritic cell-mimicking structure.
  10. 제 1항에 있어서,According to claim 1,
    상기 쉘의 표면은 생리활성 고분자, 생리활성 성분 또는 단백질이 표지된 것인, 수지상세포 모방 구조체.The surface of the shell is a physiologically active polymer, physiologically active component or protein is labeled, dendritic cell-mimicking structure.
  11. (S10) 수지상세포로부터 세포막을 정제하는 단계;(S10) purifying cell membranes from dendritic cells;
    (S20) 상기 세포막에 초음파를 처리하여 세포막 현탁액을 형성하는 단계;(S20) forming a cell membrane suspension by treating the cell membrane with ultrasonic waves;
    (S30) 상기 세포막 현탁액을 멤브레인 필터를 통해 여과하여 리포좀을 수득하는 단계; 및(S30) filtering the cell membrane suspension through a membrane filter to obtain liposomes; and
    (S40) 비구형 코어 입자 및 상기 리포좀을 혼합한 후, 필터압축하여 세포막이 도입된 비구형 입자를 수득하는 단계;를 포함하는 수지상세포 모방 구조체 제조방법.(S40) mixing the non-spherical core particles and the liposomes and filter-compressing them to obtain non-spherical particles having cell membranes;
  12. 제 11항에 있어서,According to claim 11,
    상기 (S40) 단계 이전, 비구형 코어 입자의 표면을 음으로 하전시키는 단계를 더 포함하는, 수지상세포 모방 구조체 제조방법.Prior to the step (S40), a method for manufacturing a dendritic cell-mimicking structure, further comprising the step of negatively charging the surface of the non-spherical core particle.
  13. 제 11항에 있어서,According to claim 11,
    상기 비구형 코어 입자의 종횡비는 1.1 내지 6.0인, 수지상세포 모방 구조체 제조방법.The aspect ratio of the non-spherical core particles is 1.1 to 6.0, dendritic cell mimic structure manufacturing method.
PCT/KR2022/020615 2021-12-16 2022-12-16 Dendritic cell-mimicking functional nanostructure, and method for producing same WO2023113550A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20210181040 2021-12-16
KR10-2021-0181040 2021-12-16
KR10-2022-0176132 2022-12-15
KR1020220176132A KR20230091817A (en) 2021-12-16 2022-12-15 Dendritic cell-mimicking functional nanostructures and a method for manufacturing the same

Publications (1)

Publication Number Publication Date
WO2023113550A1 true WO2023113550A1 (en) 2023-06-22

Family

ID=86773154

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/020615 WO2023113550A1 (en) 2021-12-16 2022-12-16 Dendritic cell-mimicking functional nanostructure, and method for producing same

Country Status (2)

Country Link
KR (1) KR20240013831A (en)
WO (1) WO2023113550A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190126452A (en) * 2013-11-01 2019-11-11 예일 유니버시티 Modular particles for immunotherapy
KR20190137906A (en) * 2017-04-21 2019-12-11 코스타 쎄라퓨틱스 인크. Membrane Lipid Coated Nanoparticles and Methods of Use
US20200289666A1 (en) * 2016-03-28 2020-09-17 The Johns Hopkins University Biomimetic anisotropic polymeric particles with naturally derived cell membranes for enhanced drug delivery
CN113181354A (en) * 2021-04-25 2021-07-30 中国农业科学院兰州兽医研究所 Foot-and-mouth disease bionic nano vaccine based on dendritic cells and preparation method and application thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190126452A (en) * 2013-11-01 2019-11-11 예일 유니버시티 Modular particles for immunotherapy
US20200289666A1 (en) * 2016-03-28 2020-09-17 The Johns Hopkins University Biomimetic anisotropic polymeric particles with naturally derived cell membranes for enhanced drug delivery
KR20190137906A (en) * 2017-04-21 2019-12-11 코스타 쎄라퓨틱스 인크. Membrane Lipid Coated Nanoparticles and Methods of Use
CN113181354A (en) * 2021-04-25 2021-07-30 中国农业科学院兰州兽医研究所 Foot-and-mouth disease bionic nano vaccine based on dendritic cells and preparation method and application thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LI YANHUA, TANG KUN, ZHANG XIA, PAN WEI, LI NA, TANG BO: "A dendritic cell-like biomimetic nanoparticle enhances T cell activation for breast cancer immunotherapy", CHEMICAL SCIENCE, ROYAL SOCIETY OF CHEMISTRY, UNITED KINGDOM, vol. 13, no. 1, 22 December 2021 (2021-12-22), United Kingdom , pages 105 - 110, XP093073624, ISSN: 2041-6520, DOI: 10.1039/D1SC03525H *

Also Published As

Publication number Publication date
KR20240013831A (en) 2024-01-30

Similar Documents

Publication Publication Date Title
Zhou et al. Immunologically modified MnFe2O4 nanoparticles to synergize photothermal therapy and immunotherapy for cancer treatment
Zhao et al. In situ photothermal activation of necroptosis potentiates black phosphorus-mediated cancer photo-immunotherapy
Rancan et al. Skin penetration and cellular uptake of amorphous silica nanoparticles with variable size, surface functionalization, and colloidal stability
Iranpour et al. Enhanced stimulation of anti-breast cancer T cells responses by dendritic cells loaded with poly lactic-co-glycolic acid (PLGA) nanoparticle encapsulated tumor antigens
CN109078183B (en) Bionic multifunctional nano preparation based on cancer cell membrane and preparation method and application thereof
CN111467483A (en) Preparation method and application of magnetic nano microcarrier wrapping tumor cell membrane
CN111346236B (en) Tumor antigen-loaded polydopamine nanoparticle and preparation method and application thereof
Zhao et al. A hybrid bacterium with tumor-associated macrophage polarization for enhanced photothermal-immunotherapy
WO2022199138A1 (en) Nano artificial antigen presenting cell, preparation method therefor and use thereof
CN112294776B (en) Reduction response type carbon dot drug-loaded nanocluster coated with cell membrane and preparation and application thereof
WO2021127814A1 (en) Photo-nanovaccine for cancer treatment, preparation method therefor and application thereof
CN115197908A (en) Extraction and modification method of natural killer cell-derived exosome and application thereof
CN116139097A (en) Macrophage-loaded nano-composite anti-tumor targeting drug delivery system and preparation method and application thereof
Desai et al. Biomaterial-based platforms for modulating immune components against cancer and cancer stem cells
WO2023113550A1 (en) Dendritic cell-mimicking functional nanostructure, and method for producing same
WO2024128870A1 (en) Dendritic cell-mimicking functional nanostructure and constructing method therefor
CN109468275B (en) Dendritic cell inducer and preparation method and application thereof
KR20230091817A (en) Dendritic cell-mimicking functional nanostructures and a method for manufacturing the same
CN110898228B (en) Tumor self-targeting photoisomerization nano-carrier and preparation method thereof
WO2023113545A1 (en) DENDRITIC CELL-MIMETIC FUNCTIONAL NANOSTRUCTURE COMPRISING αPD-1, AND PREPARATION METHOD THEREFOR
WO2023113546A1 (en) DENDRITIC CELL-MIMICKING FUNCTIONAL NANOSTRUCTURE COMPRISING αCTLA-4 AND METHOD FOR PREPARING SAME
Bhargava et al. Assessment of tumor antigen-loaded solid lipid nanoparticles as an efficient delivery system for dendritic cell engineering
KR20220080681A (en) Dendritic cell-mimicking nanostructures for application as immuno-cancer therapeutic agents and method for manufacturing the same
WO2007105171A2 (en) Killing of selected cells
KR102567421B1 (en) Dendritic cell-mimicking functional nanostructures comprising CTLA-4 and a method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22908015

Country of ref document: EP

Kind code of ref document: A1