WO2023113535A1 - Cold rolled steel sheet for enamel, having excellent anti-fishscale properties and method for manufacturing same - Google Patents

Cold rolled steel sheet for enamel, having excellent anti-fishscale properties and method for manufacturing same Download PDF

Info

Publication number
WO2023113535A1
WO2023113535A1 PCT/KR2022/020584 KR2022020584W WO2023113535A1 WO 2023113535 A1 WO2023113535 A1 WO 2023113535A1 KR 2022020584 W KR2022020584 W KR 2022020584W WO 2023113535 A1 WO2023113535 A1 WO 2023113535A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
cold
rolled steel
equation
enamel
Prior art date
Application number
PCT/KR2022/020584
Other languages
French (fr)
Korean (ko)
Inventor
김재익
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to CN202280082571.7A priority Critical patent/CN118414444A/en
Publication of WO2023113535A1 publication Critical patent/WO2023113535A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0278Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper

Definitions

  • the present invention relates to a steel sheet, and more particularly, to a cold-rolled steel sheet for vitreous enameling with excellent fishscale resistance and a manufacturing method thereof.
  • Enameled steel sheet is a surface-treated product in which corrosion resistance, weather resistance, heat resistance, and chemical resistance are improved by applying a glassy glaze on a base steel sheet such as a hot-rolled steel sheet or a cold-rolled steel sheet and then firing at a high temperature.
  • the enamel steel sheet is used as a material for building exteriors, home appliances, tableware, and various industrial uses.
  • rimmed steel was mainly used for the enamel steel sheet in the early stage, recently, as the continuous casting method is used to improve productivity, most of the materials are continuously cast by the continuous casting method.
  • Fishscale defects one of the problems of the enamel steel sheet, are supersaturated in the steel during the process of cooling after firing hydrogen dissolved in the steel during the manufacturing process of the enamel product, and then released to the surface of the steel over time. It is a defect that causes the enamel layer to fall off in the shape of meat vinyl.
  • OCA open coil annealing
  • the recently developed enamel steel sheet utilizes a continuous annealing process.
  • Enamel steel by the continuous annealing method using the continuous annealing process typically uses, for example, precipitates such as titanium (Ti) or inclusions secured by the non-deoxidation method as a hydrogen storage source based on ultra-low carbon steel.
  • precipitates such as titanium (Ti) or inclusions secured by the non-deoxidation method as a hydrogen storage source based on ultra-low carbon steel.
  • titanium nitride (TiN) titanium nitride
  • inclusions occurs in the continuous casting stage of the steelmaking process. This causes a decrease in workability and a direct problem in production load.
  • the titanium nitride mixed in the molten steel exists on the upper part of the steel plate and causes a blister defect, which is a typical bubble defect.
  • a large amount of added titanium forms a titanium-based oxide layer, which inhibits the adhesion between the steel plate and the glaze layer. cause problems
  • a technical problem to be solved by the present invention is to provide a high-strength cold-rolled steel sheet for vitreous enameling, which has a yield strength of 220 MPa or more after enameling, no bubble defects, and excellent enamel adhesion and fishscale resistance.
  • Another technical problem to be solved by the present invention is to provide a method for manufacturing a cold-rolled steel sheet having the above advantages.
  • the thickness of the oxide layer formed in an inward direction from the surface of the cold-rolled steel sheet may be 0.006 to 0.030 ⁇ m.
  • the cold-rolled steel sheet may satisfy Equation 1 below.
  • the cold-rolled steel sheet may satisfy Equation 2 below.
  • the cold-rolled steel sheet may satisfy Equation 3 below.
  • Equation 3 P c is the number of surface irregularities per unit centimeter (cm), R max is the maximum point roughness value ( ⁇ m), and S e is the temper reduction rate (%))
  • the cold-rolled steel sheet may have a yield strength of 220 MPa or more after enamel firing heat treatment. In one embodiment, the cold-rolled steel sheet may have enamel adhesion of 95% or more. In one embodiment, the hydrogen permeability ratio of the cold-rolled steel sheet may be 600 sec/mm 2 or more.
  • a method for manufacturing a cold-rolled steel sheet contains, by weight, C: 0.0003 to 0.003%, Mn: 0.25 to 0.55%, Si: 0.001 to 0.03%, Al: 0.0005 to 0.0015%, P: 0.01 to 0.03% S: 0.001 to 0.010%, Cu: 0.03 to 0.08%, N: 0.008 to 0.015%, Mo: 0.1 to 0.3%, O: 0.025 to 0.055% and the balance Fe and unavoidable impurities Reheating the slab to a temperature range of 1,150 to 1,280 ° C., hot rolling the heated slab to a finish hot rolling temperature range of 890 to 950 ° C., winding the hot-rolled hot-rolled steel sheet to a temperature range of 580 to 720 ° C.
  • Step cold-rolling the rolled hot-rolled steel sheet at a cold rolling reduction rate of 60 to 90%, annealing the cold-rolled cold-rolled steel sheet at an annealing temperature of 720 to 850 ° C. for 10 to 70 seconds, and a reduction rate of 2.5% or less It may include preparing an annealed sheet by temper rolling, and subjecting the annealed sheet to enamel firing heat treatment at a temperature range of 780 to 850 °C.
  • a method of manufacturing a cold-rolled steel sheet may satisfy Equation 1 below.
  • the method for manufacturing a cold-rolled steel sheet may satisfy Equation 2 below.
  • a method for manufacturing a cold-rolled steel sheet may satisfy Equation 3 below.
  • Equation 3 P c is the number of surface irregularities per unit centimeter (cm), R max is the maximum point roughness value ( ⁇ m), and S e is the temper reduction rate (%))
  • the cold-rolled steel sheet according to an embodiment of the present invention provides a cold-rolled steel sheet excellent in enamel adhesion and fishscale resistance by controlling the steel composition, and is used in various applications such as home appliances, chemical appliances, kitchen appliances, sanitary appliances, and interior and exterior materials for buildings. Can be used for absence.
  • a method for manufacturing a cold-rolled steel sheet according to another embodiment of the present invention may provide a method for manufacturing a cold-rolled steel sheet having the above advantages.
  • FIG. 1 is a schematic cross-sectional view of a cold-rolled steel sheet according to an embodiment.
  • first, second and third are used to describe, but are not limited to, various parts, components, regions, layers and/or sections. These terms are only used to distinguish one part, component, region, layer or section from another part, component, region, layer or section. Accordingly, a first part, component, region, layer or section described below may be referred to as a second part, component, region, layer or section without departing from the scope of the present invention.
  • % means weight%, and 1ppm is 0.0001 weight%.
  • the meaning of further including an additional element means replacing and including iron (Fe) as much as the additional amount of the additional element.
  • FIG. 1 is a schematic cross-sectional view of a cold-rolled steel sheet 100 according to an embodiment.
  • a cold-rolled steel sheet 100 includes a steel sheet base material 10 and an oxide layer 20. It is formed in an inward direction from both surfaces of the steel sheet base material 10 and the cold-rolled steel sheet 100, and includes an oxide layer 20 that is distinguished from the steel sheet base material 10.
  • C 0.0003 to 0.003%
  • Mn 0.25 to 0.55%
  • Si 0.001 to 0.03%
  • Al 0.0005 to 0.0015%
  • P 0.01 to 0.03%
  • S 0.001 to 0.010%
  • Cu 0.03 to 0.08%
  • N 0.008 to 0.015%
  • Mo 0.1 to 0.3%
  • O 0.025 to 0.055%
  • Fe and unavoidable impurities in weight%, C: 0.0003 to 0.003%, Mn: 0.25 to 0.55%, Si: 0.001 to 0.03%, Al: 0.0005 to 0.0015%
  • P 0.01 to 0.03%
  • S 0.001 to 0.010%
  • Cu 0.03 to 0.08%
  • N 0.008 to 0.015%
  • Mo 0.1 to 0.3%
  • O 0.025 to 0.055%
  • wt% may be expressed as %.
  • Carbon (C) is an element that affects steel sheet properties such as solid solution strengthening, aging, and cell defects.
  • the carbon content may be 0.0003 to 0.0030%. Specifically, the carbon content may range from 0.0005 to 0.0028%.
  • Manganese (Mn) is a typical solid solution strengthening element, which precipitates sulfur dissolved in steel in the form of manganese sulfide (MnS) to prevent hot shortness and promotes the precipitation of carbides.
  • the manganese content may be 0.25 to 0.55%. Specifically, the manganese content may range from 0.27 to 0.53%.
  • Silicon (Si) is an element that promotes the formation of precipitates that increase strength and act as a hydrogen storage source.
  • the silicon content may be 0.001 to 0.030%. Specifically, the silicon content may range from 0.002 to 0.028%.
  • Aluminum (Al) is used as a strong deoxidizer to remove oxygen from molten steel in the steelmaking stage, and is a representative element that fixes solid nitrogen.
  • the aluminum content may be 0.0005 to 0.0015%. Specifically, the aluminum content may range from 0.0006 to 0.0014%.
  • the fraction of inclusions acting as a hydrogen storage source is reduced to significantly increase the occurrence of fishscale, and the amount of dissolved nitrogen is lowered to secure a target material after firing. there is a problem.
  • the content of the aluminum is out of the lower limit of the range, it is used as the deoxidizer, and there is a problem in that the effect of fixing solid nitrogen is not expressed.
  • Phosphorus (P) is a solid solution strengthening element and an element that controls surface pickling.
  • the phosphorus content may be 0.01 to 0.03%. Specifically, the phosphorus content may range from 0.011 to 0.028%.
  • S is an element that causes red brittleness by combining with manganese (Mn).
  • the sulfur content may be 0.001 to 0.010%. Specifically, the sulfur content may range from 0.002 to 0.009%.
  • Copper (Cu) is an element added to improve solid solution strengthening and adhesion.
  • the copper content may be 0.03 to 0.08%. Specifically, the copper content may range from 0.032 to 0.078%.
  • the pickling speed is lowered in the acid treatment step, which is a pre-enamel process, so that the roughness characteristics suitable for the steel sheet cannot be obtained, resulting in a decrease in adhesion.
  • the content of copper is out of the lower limit of the range, there is a problem in that the effect such as the solid solution strengthening and the adhesion improvement is not expressed.
  • Nitrogen (N), along with carbon (C), is a representative interstitial solid solution strengthening element, and is an element for securing a target strength level after a firing process.
  • the nitrogen content may be 0.008 to 0.015%. Specifically, the nitrogen content may be 0.0083 to 0.0145%.
  • Molybdenum is an element that secures stable strength and provides a hydrogen storage source by forming various precipitates and oxides.
  • the molybdenum content may be 0.1 to 0.3%. Specifically, the molybdenum content may range from 0.11 to 0.29%.
  • Oxygen (O) is an essential element in forming inclusions that act as a hydrogen storage source for enamel steel.
  • the oxygen content may be 0.025 to 0.055%. Specifically, the oxygen content may range from 0.0255 to 0.0540%.
  • the unavoidable impurities refer to impurities that are unavoidably mixed in the manufacturing process of steelmaking and grain-oriented electrical steel sheets. Since unavoidable impurities are widely known, detailed descriptions are omitted.
  • the addition of elements other than the above-described alloy components is not excluded, and may be variously included within a range that does not impair the technical spirit of the present invention. When additional elements are included, they are included in place of Fe, which is the remainder.
  • the cold-rolled steel sheet 100 may include titanium (Ti), niobium (Nb), chromium (Cr), and vanadium (V).
  • the cold-rolled steel sheet for vitreous enameling with excellent fishscale resistance may optionally further contain at least one of Ti: 0.005% or less, Nb: 0.005% or less, Cr: 0.05% or less, and V: 0.003% or less.
  • the cold-rolled steel sheet 100 of the present invention not only does not arbitrarily add an element such as titanium (Ti), which has higher oxidizing properties than iron (Fe), but also controls the surface oxide layer, thereby improving the enamel adhesion between the steel sheet and the glaze. The same characteristics can be improved.
  • Ti titanium
  • Fe iron
  • the oxide layer 20 is formed in an inward direction from both surfaces of the cold-rolled steel sheet 100, which is the base material 10, and can be classified based on a point containing 5% of oxygen. Specifically, the thickness of the oxide layer was divided based on the point containing 5% of oxygen by analyzing the oxygen concentration from the surface to the inside of the cross section of the steel sheet. More specifically, the thickness of the oxide layer was measured using GDS (Glow Discharge Spectroscopy) starting from the point containing 5% of oxygen.
  • GDS Low Discharge Spectroscopy
  • the thickness of the oxide layer 20 may range from 0.006 to 0.030 ⁇ m. Specifically, the thickness of the oxide layer 20 may be 0.007 to 0.028 ⁇ m.
  • the thickness of the oxide layer 20 is out of the upper limit of the above range, there is a problem in that the surface properties of the steel sheet are deteriorated. If the thickness of the oxide layer 20 is outside the lower limit of the above range, the bonding force between the glaze layer and the steel sheet decreases, making it difficult to secure normal adhesion, resulting in a decrease in fishscale resistance.
  • an enamel product is a product in which an organic glaze is applied on a steel plate, and it is very important to secure adhesion between the steel plate and the glaze.
  • the main component of the glaze is composed of a silicon-oxide (SiO 2 ) system, and there is a problem of applying an expensive glaze such as NiO among the glaze components in order to prevent a decrease in adhesion to the steel plate.
  • the high-strength cold-rolled steel sheet for enamel having excellent enamel adhesion and fishscale resistance according to an embodiment of the present invention can improve enamel adhesion by controlling the thickness of the oxide layer on the surface of the steel sheet. Enamel adhesion can be improved by promoting covalent bonding with silicon (Si) atoms in the glaze layer by managing the thickness of the oxide layer composed of 90 wt% or more of iron oxide (FeO-based) within a certain range.
  • the cold-rolled steel sheet 100 satisfies Equation 1 below.
  • Equation 1 is a correlation between phosphorus (P) and copper (Cu) and silicon (Si). Equation 1 may range from 0.014 to 0.080. Specifically, Equation 1 may range from 0.0142 to 0.0798. By satisfying the above range, the cold-rolled steel sheet 100 can suppress enamel adhesion and surface bubble defects.
  • Equation 1 When the value of Equation 1 exceeds the upper limit of the range, gas inflow into the surface portion of the steel sheet increases, resulting in surface defects such as bubble defects, thereby reducing product reliability. When the value of Equation 1 is outside the lower limit of the range, there is a problem in that enamel properties such as enamel adhesion are deteriorated as the surface is not modified in the sulfuric acid pretreatment process.
  • the cold-rolled steel sheet 100 satisfies Equation 2 below.
  • Equation 2 is a correlation between aluminum (Al) and molybdenum (Mo) for carbon (C) and nitrogen (N).
  • Al aluminum
  • Mo molybdenum
  • Equation 2 above may be 0.0065 to 0.0310. Specifically, Equation 2 above may range from 0.0067 to 0.0305.
  • Equation 2 When the value of Equation 2 is outside the upper limit of the range, workability is good, but there is a problem in that the rolling and annealing sheetability is lowered and the manufacturing cost increases due to the increase in the amount of expensive alloy elements.
  • the value of Equation 2 When the value of Equation 2 is outside the lower limit of the range, there is a problem in that fishscale resistance is lowered as precipitation is not promoted, and workability is lowered as the amount of interstitial solid solution elements increases.
  • the cold-rolled steel sheet 100 satisfies Equation 3 below.
  • Equation 3 P c is the number of surface irregularities per unit centimeter (cm), R max is the maximum point roughness value ( ⁇ m), and S e is the temper reduction rate (%))
  • Equation 3 above may be 0.50 to 1.05. Specifically, Equation 3 above may range from 0.505 to 1.00. When the value of Equation 3 is outside the upper limit of the range, crystal grains of the steel sheet grow after the enamel firing process, resulting in a problem in securing target material and enamel characteristics. When the value of Equation 3 is out of the lower limit of the range, the wedge effect of the surface of the steel sheet is reduced, resulting in a decrease in adhesion to the glaze.
  • the cold-rolled steel sheet 100 may have a yield strength of 220 MPa or more after enamel firing heat treatment.
  • the yield strength of materials used for structural members is a physical property that determines dent resistance and shape freezing of members.
  • the yield strength after the enamel firing heat treatment is 220 MPa or more, there is an advantage in that the stability of the product is excellent in the heat treatment step for drying after the glaze treatment.
  • the cold-rolled steel sheet 100 may have enamel adhesion of 95% or more. Specifically, the enamel adhesion may be 96% or more. Within the above range, the cold-rolled steel sheet 100 can be used as a material for enamel even when an inexpensive glaze is used. When the enamel adhesion is lower than the above range, there is a problem in that the rate of occurrence of fish scale due to hydrogen in the steel increases.
  • the cold-rolled steel sheet 100 may have a hydrogen permeability ratio of 600 sec/mm 2 or more.
  • the hydrogen permeation rate may be 610 sec/mm 2 or more.
  • the upper limit of the hydrogen permeation ratio is not particularly limited, but may be, for example, 1,700 sec/mm 2 .
  • the hydrogen permeability ratio is a representative index for evaluating fishscale resistance indicating resistance to fishscale defects, which are fatal defects when enameled steel is applied, and means the ability to fix hydrogen into the cold-rolled steel sheet.
  • the hydrogen permeation ratio is a value expressed by dividing the time taken by generating hydrogen in one direction of the steel sheet and penetrating the hydrogen in the other direction opposite to one direction of the steel sheet, and dividing it by the square of the thickness of the material.
  • the hydrogen permeation ratio is excessively low, when the resistance of fishscale defects is evaluated by accelerated heat treatment at 200 ° C. for 24 hours after enamel treatment, the defect rate is more than 50%, so there is a problem in using it as a stable enamel product.
  • a method for manufacturing a cold-rolled steel sheet 100 includes, by weight, C: 0.0003 to 0.003%, Mn: 0.25 to 0.55%, Si: 0.001 to 0.03%, Al: 0.0005 to 0.0015%, P: 0.01 to 0.03%, S: 0.001 to 0.010%, Cu: 0.03 to 0.08%, N: 0.008 to 0.015%, Mo: 0.1 to 0.3%, O: 0.025 to 0.055%, with the balance Fe and unavoidable impurities Reheating the steel slab, hot-rolling the heated slab, winding the hot-rolled hot-rolled steel sheet, cold-rolling the coiled hot-rolled steel sheet, annealing and temper-rolling the cold-rolled cold-rolled steel sheet for annealing
  • a detailed description of the steel slab is the same as that of the cold-rolled steel sheet described above to the extent that it does not
  • Reheating the steel slab is a step for smoothly performing a subsequent hot rolling process and homogenizing the steel slab.
  • the heating may mean reheating.
  • the step of reheating the steel slab may be a step of hot rolling in the range of 1,150 to 1,280 °C.
  • the reheating temperature range may be 1,150 to 1,280 °C.
  • the upper limit of the temperature range is exceeded, the amount of surface scale increases at the slab heating temperature, resulting in increased material loss and increased energy costs due to the increase in heat source.
  • the temperature is outside the lower limit of the temperature range, the rolling load rapidly increases in the hot rolling process, resulting in deterioration in hot workability.
  • the step of reheating the steel slab may be performed at a finish hot rolling temperature in the range of 890 to 950 °C.
  • the finish hot rolling temperature may be carried out in a temperature range of 900 to 945 °C.
  • the step of winding the hot-rolled hot-rolled steel sheet may be performed at a temperature range of 580 to 720 °C. Specifically, the temperature range may be 590 to 700 °C.
  • the hot-rolled steel sheet may be cooled on a run-out table (ROT) before winding.
  • ROT run-out table
  • the step of pickling the hot-rolled steel sheet may be further included.
  • the pickling step may remove scale generated during hot rolling.
  • the step of cold rolling the coiled hot-rolled steel sheet may be performed at a cold rolling reduction ratio of 60 to 90%. Specifically, the cold rolling reduction may be performed in the range of 63 to 88%.
  • the step of preparing an annealed sheet by annealing and temper rolling the cold-rolled cold-rolled steel sheet may be performed at an annealing temperature range of 720 to 850 ° C. during the annealing, for 10 to 70 seconds in the annealing temperature range. can be performed
  • the steps of preparing an annealed sheet by annealing and temper rolling the cold-rolled cold-rolled steel sheet may be performed at a reduction ratio of 2.5% or less during the temper rolling.
  • the temper rolling it is possible to control the shape of the material and obtain a desired surface roughness.
  • the temper rolling may be performed in the range of a reduction ratio of 0.3 to 2.2%.
  • the step of enamel baking heat treatment of the annealed sheet may be a step of enamel firing heat treatment of the annealed sheet at a temperature range of 780 to 850 °C.
  • the enamel firing heat treatment may be a step for drying the enamel-treated glaze.
  • the temperature range may be 790 to 840 °C.
  • the temperature range When the temperature range is out of the upper limit, the surface defect rate increases due to the increase in the thickness of the oxide layer, and as the energy consumption increases, there is a problem that acts as a factor in increasing manufacturing cost.
  • the temperature range is outside the lower limit, the wettability of the glaze is lowered, and thus, adhesion to the enamel cannot be secured.
  • a detailed description of the steel slab is the same as that of the cold-rolled steel sheet described above to the extent that it does not contradict, and thus, duplicate descriptions will be omitted.
  • Heating the steel slab may be performed at 1,150 °C or higher.
  • a temperature of 1,150° C. or higher is required because the precipitate formed in the steel must be re-dissolved.
  • a hot-rolled steel sheet may be obtained by hot-rolling the heated slab.
  • hot finish rolling may be performed on the steel slab at a temperature of Ar3 or higher.
  • the temperature of Ar3 or higher may be 890 °C or higher.
  • rolling may be performed in the austenite single phase region.
  • the step of cooling the hot-rolled hot-rolled steel sheet is cooled so as to be maintained for a time range of 150 to 1,200 seconds. If it is out of the lower limit of the time range, there is a problem in that a large amount of pearlite phase is formed and carbide with a large size is generated in the final material. When the size of the carbide is large, there is a problem in that the carbide becomes a starting point of a crack and reduces a hole expansion rate.
  • the step of cooling the hot-rolled hot-rolled steel sheet may be cooled to 710 °C to be maintained at a temperature between 710 and 860 °C for 150 to 1,200 seconds.
  • the cooled hot-rolled steel sheet may be wound at 560 to 700 °C.
  • the step of winding the cooled hot-rolled steel sheet in order to secure a grain size suitable for strength and workability may be controlled within the winding temperature range.
  • the coiling temperature is excessively low, there is a problem in that crystal grains become excessively fine, and in case the coiling temperature is excessively high, there is a problem in that crystal grains become excessively coarse.
  • a cold-rolled steel sheet may be manufactured by cold rolling at a reduction ratio of 80 to 95%.
  • the thickness of the conventional hot-rolled steel sheet is 2 to 4 mm, and a reduction ratio of 80% or more is required to reduce the thickness of 0.4 mm.
  • the step of pickling may be further included prior to the step of cold rolling the coiled hot-rolled steel sheet.
  • the pickling step may remove scale generated during hot rolling.
  • the step of annealing the cold-rolled cold-rolled steel sheet is annealed at a temperature of 620 to 760 ° C. to prepare an annealed steel sheet.
  • a process of annealing at a sufficiently high temperature is required to allow recrystallization to occur.
  • a final steel sheet may be manufactured by secondary rolling the annealed cold-rolled steel sheet at a reduction ratio of 6 to 18%. If the reduction ratio is out of the upper limit, there is a problem in that the desired level of processability cannot be secured due to the decrease in elongation. If the reduction ratio is out of the lower limit value, there is a problem that it is not sufficient to obtain the target strength.
  • Equation 1 represents ([Cu] ⁇ [Si])/[P]
  • Equation 2 represents ([Al] ⁇ [Mo])/([C] + [N]).
  • [Cu], [Si], [P], [Al], [Mo], [C], and [N] in the above formulas 1 and 2 mean the respective weight%.
  • cold-rolled steel sheets were manufactured according to the manufacturing conditions disclosed in Table 2 below for the slab. Specifically, after maintaining the slab in a heating furnace for 2 hours, hot rolling was performed, and at this time, the thickness of the hot-rolled steel sheet was adjusted to 4.0 mm. The hot-rolled hot-rolled steel sheet was subjected to cold rolling at each reduction ratio after pickling and removing the oxide film on the surface.
  • Examples 1 to 9 use the slabs of inventive steels 1 to 5 included in the composition range of the present invention, the slab reheating temperature, finish hot rolling temperature, winding temperature, cold reduction rate, annealing of the present invention It was carried out within the range of temperature, holding time, temper rolling rate, and enamel firing temperature.
  • Comparative Examples 1 to 4 are controlled so that at least one of the manufacturing conditions in Table 2 does not correspond to the conditions of the present invention using the slabs of Inventive Steels 1 to 4 included in the composition range of the present invention.
  • comparative steels 1 to 5 of Table 1 were controlled so that the manufacturing conditions of Table 2 were included within the scope of the present invention.
  • Table 3 shows the thickness of the oxide layer, sheet permeability, yield strength, cell defect occurrence or not, The presence or absence of fish scale, enamel adhesion, and hydrogen permeability are shown.
  • the thickness of the oxide layer is determined by analyzing the oxygen concentration from the surface of the steel sheet to the inside using GDS (Glow Discharge Spectroscopy), and by dividing the oxide layer and the base material based on the point containing 5% oxygen, to the point containing 5% oxygen. The thickness was measured, measured three times, and the average value was displayed.
  • GDS Glow Discharge Spectroscopy
  • the sheet permeability when the operability is 90% or more compared to the productivity of ordinary materials in the casting, hot rolling, and cold rolling processes, it is good (indicated by “ ⁇ ”), and the productivity is less than 90% or the defect rate is 10% or more is marked as defective (marked with “ ⁇ ”).
  • tensile test specimens were prepared (standard ASTM 13B) for specimens subjected to firing and heat treatment for 15 minutes at each temperature in a firing furnace, and tensile tests were performed at a crosshead speed of 10 mm/min. It was measured by conducting a test.
  • Enamel treatment specimens were cut into appropriate sizes for each purpose to meet the purpose of the test, and after heat treatment was completely degreased, standard glaze (Check Frit), which was relatively vulnerable to fish scale defects, was applied and maintained at 300 ° C for 10 minutes. to remove moisture. After drying, the specimen was fired at each firing temperature for 15 minutes to highlight the difference in enamel characteristics such as adhesion, and then cooled to room temperature. Severe conditions that were easy to achieve were selected.
  • the specimens after the enamel treatment were subjected to a fishscale acceleration test in which they were kept in an oven at 200 °C for 24 hours. After the fishscale acceleration process, the presence or absence of fishscale defects is observed with the naked eye, and when no fishscale defects occur, it is marked as good (marked with “ ⁇ ”), and when the fishscale defects occur, it is marked as bad (“ ⁇ ”). ⁇ ”).
  • Enamel adhesion which evaluates the adhesion between the steel plate and the glaze, is evaluated by applying a certain load to the enamel layer with a steel ball as defined in ASTM C313-78, the American Society for Testing and Materials, and then evaluating the degree of conduction in this area. The degree was expressed as an index.
  • the enamel adhesion evaluation results set the goal of securing adhesion of 95% or more in terms of securing application stability in relatively inexpensive glazes.
  • the bubble defects are judged as excellent (marked as “ ⁇ ”) and poor (marked as “x”), respectively, by visually observing the enamel surface of the specimen kept in an oven at 200 ° C. for 24 hours after enamel treatment. did
  • the hydrogen permeation ratio is one of the indices for evaluating resistance to fishscale, a fatal defect of enamel.
  • EN10209-2013 European standard
  • hydrogen is generated in one direction of the steel sheet and hydrogen permeates to the other side.
  • Time (ts, unit: second) is measured, and this is a value expressed as the square of the material thickness (t, unit: mm), and is expressed as ts/t2 (unit: second/mm 2 ).
  • inventive Examples 1 to 9 satisfying various characteristics such as component composition, manufacturing conditions, surface characteristics, and oxidation layer thickness of the present invention not only have good sheet-permeability, but also have relevant properties such as the thickness of the oxide layer.
  • inventive examples 1 to 9 do not generate enamel defects such as fish scale and bubble defects, and have a hydrogen permeability ratio of 600 sec/mm2 or more, an enamel adhesion index of 95% or more, and a yield strength of 220 MPa after firing and heat treatment of the enamel.
  • Comparative Examples 5 to 9 which do not satisfy the composition of the present invention, the thickness of the surface oxide layer, the hydrogen permeation ratio, and enamel adhesion were not satisfied, and in most cases, fish scale or air bubble defects occurred even in visual observation after enamel treatment, resulting in a problem in applicability to the target use.
  • the composition of the present invention was satisfied, but , In Comparative Examples 1 to 4, in which manufacturing conditions in various annealing processes during hot rolling did not satisfy the management range of the present invention, the thickness of the surface oxide layer was outside the range suggested in the present invention, and the enamel adhesion was less than 95%.
  • the cold-rolled steel sheet for enamel having excellent enamel adhesion and fishscale resistance satisfies the above alloy composition and alloy range, thereby reducing the thickness of the oxide layer formed in the inward direction to an appropriate level. Through this, it is possible to provide a high-strength cold-rolled steel sheet for enamel with excellent fishscale resistance.
  • the cold-rolled steel sheet has significantly improved enamel characteristics even through high-speed continuous annealing operation, can maintain a high level of strength after enamel firing heat treatment, and optimizes surface roughness characteristics in the heat treatment and temper rolling step in a continuous annealing furnace to increase adhesion.
  • stable material properties can be secured even after high-temperature firing by suppressing crystal grain growth during enamel firing, such as residual nitrogen in the surface layer of the steel sheet.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

The present invention relates to a cold rolled steel sheet and a method for manufacturing same, the cold rolled steel sheet comprising, in wt%, 0.0003 to 0.003% of C, 0.25 to 0.55% of Mn, 0.001 to 0.03% of Si, 0.0005 to 0.0015% of Al, 0.01 to 0.03% of P, 0.001 to 0.010% of S, 0.03 to 0.08% of Cu, 0.008 to 0.015% of N, 0.1 to 0.3% of Mo, 0.025 to 0.055% of O, and a balance of Fe and inevitable impurities, and comprising an oxide layer, wherein the thickness of the oxide layer, which is formed from the surface of the cold rolled steel sheet toward the inside thereof, may be 0.006 to 0.030 μm.

Description

내피쉬스케일성이 우수한 법랑용 냉연강판 및 이의 제조 방법Cold-rolled steel sheet for enamel with excellent fishscale resistance and manufacturing method thereof
본 발명은 강판에 관한 것으로서, 더욱 상세하게는 내피쉬스케일성이 우수한 법랑용 냉연강판 및 이의 제조 방법에 관한 것이다.The present invention relates to a steel sheet, and more particularly, to a cold-rolled steel sheet for vitreous enameling with excellent fishscale resistance and a manufacturing method thereof.
법랑강판은 열연강판 또는 냉연강판과 같은 소지 강판 상에 유리질 유약을 도포한 후, 고온에서 소성시켜 내식성, 내후성, 내열성, 및 내화학성을 향상시킨 표면처리 제품이다. 상기 법랑강판은 건축 외장용, 가전용, 식기용 및 다양한 산업용 소재로 사용되고 있다.Enameled steel sheet is a surface-treated product in which corrosion resistance, weather resistance, heat resistance, and chemical resistance are improved by applying a glassy glaze on a base steel sheet such as a hot-rolled steel sheet or a cold-rolled steel sheet and then firing at a high temperature. The enamel steel sheet is used as a material for building exteriors, home appliances, tableware, and various industrial uses.
상기 법랑강판은 초기에는 림드강(Rimmed Steel)이 주로 활용되었지만, 최근, 생산성 개선을 위해 연속주조법이 활용됨에 따라, 상기 연속주조법에 의해 대부분의 소재들이 연속주주화되고 있다. 상기 법랑강판의 문제 중 하나인 피쉬스케일(Fishscale) 결함은 법랑 제품의 제조 공정 중 강내에 고용되어 있는 수소가 소성 후 냉각되는 과정에서 강중에 과포화되어 존재하다가 시간이 경과함에 따라 강의 표면으로 방출되면서 법랑층을 고기 비닐 모양으로 탈락시키는 결함이다.Although rimmed steel was mainly used for the enamel steel sheet in the early stage, recently, as the continuous casting method is used to improve productivity, most of the materials are continuously cast by the continuous casting method. Fishscale defects, one of the problems of the enamel steel sheet, are supersaturated in the steel during the process of cooling after firing hydrogen dissolved in the steel during the manufacturing process of the enamel product, and then released to the surface of the steel over time. It is a defect that causes the enamel layer to fall off in the shape of meat vinyl.
상기 피쉬스케일 결함이 발생할 경우, 결함 부위에 집중적으로 녹(Rust)이 발생하기 때문에 법랑 제품의 가치가 크게 저하되는 문제가 있다. 이에 따라, 상기 법랑강판 제조에 있어서, 피쉬스케일 결함을 방지하기 위해서는 강중에 고용된 수소를 잡아줄 수 있는 위치(Site)들을 강 내부에 다량 형성시키는 것과 관련된 다양한 방법이 활용되고 있다.When the fishscale defect occurs, there is a problem in that the value of the enamel product is greatly reduced because rust is intensively generated in the defect area. Accordingly, in the manufacture of the enamel steel sheet, in order to prevent the fishscale defect, various methods related to forming a large amount of sites capable of holding hydrogen dissolved in the steel inside the steel are utilized.
구체적으로, 상소둔법의 일종인 오픈 코일 열처리(Open Coil Annealing, OCA)법을 적용하여 가공성과 내피쉬스케일성을 확보하는 방안이 제안되고 있다. 그러나, 상기 방안은 열처리 공정이 비교적 긴 시간 소요되기 때문에, 생산성이 떨어지고, 제조 원가가 상승할 뿐만 아니라, 코일 내에 품질 편차가 크게 발생하는 문제가 있다. 또한, 열처리 공정에서의 탈탄 반응 제어가 용이하지 않아 탈탄이 과도하게 많이 진행되면서 법랑 소성 열처리 후에 강판의 결정립계가 연화되어 형상 동결성이 저하되는 문제도 있다.Specifically, a method of securing workability and fishscale resistance by applying an open coil annealing (OCA) method, which is a type of phase annealing, has been proposed. However, since the heat treatment process takes a relatively long time, the above method has problems in that productivity is lowered, manufacturing cost is increased, and quality deviation is greatly generated in the coil. In addition, since it is not easy to control the decarburization reaction in the heat treatment process, decarburization proceeds excessively, and the crystal grain boundaries of the steel sheet are softened after the enamel firing heat treatment, resulting in a decrease in shape freezing.
이와 같이, 장시간 소요되는 소둔에 따른 생산성 열위와 제조 원가 상승과 같은 문제를 극복하기 위해, 최근 개발된 법랑강판은 연속소둔 공정을 활용하고 있다. 상기 연속소둔 공정을 이용한 연속소둔법에 의한 법랑강은 통상적으로 극저탄소강을 기본으로 수소 흡장원으로서, 예를 들어 티타늄(Ti)과 같은 석출물 또는 미탈산법으로 확보된 개재물을 이용하고 있다. 그러나, 이 경우에도 많은 양의 탄질화물 형성 원소들이 필요함에 따라 원가 상승 및 통판성 저하의 요인으로 작용하고 있으며, 생성된 상기 석출물이나 상기 미탈산 개재물에 기인한 표면 결함 발생 문제는 근본적인 해결해야할 문제점이다.In this way, in order to overcome problems such as productivity inferiority and manufacturing cost increase due to long-time annealing, the recently developed enamel steel sheet utilizes a continuous annealing process. Enamel steel by the continuous annealing method using the continuous annealing process typically uses, for example, precipitates such as titanium (Ti) or inclusions secured by the non-deoxidation method as a hydrogen storage source based on ultra-low carbon steel. However, even in this case, as a large amount of carbonitride-forming elements are required, they act as a factor in cost increase and sheetability decrease, and the problem of surface defects caused by the generated precipitates or non-deoxidized inclusions is a fundamental problem to be solved. am.
티타늄계 석출물을 활용하는 법랑강판은 피쉬스케일의 원인이 되는 수소의 반응 억제를 위해 많은 양의 티타늄이 첨가됨에 따라 제강 공정의 연속주조 단계에서 티타늄 질화물(TiN)과 개재물에 의한 노출 막힘 현상이 발생하여 작업성 저하를 유발하고, 생산 부하의 직접적인 문제를 유발한다. 또한, 용강 내 혼입된 상기 티타늄 질화물이 강판의 상부에 존재하면서 대표적인 기포 결함인 블리스터(Blister) 결함을 유발할 뿐만 아니라, 다량 첨가된 티타늄은 티타늄계 산화층을 형성하여 강판과 유약층의 밀착성을 저해시키는 문제를 유발한다.As a large amount of titanium is added to suppress the reaction of hydrogen, which is the cause of fish scale, in the enamel steel sheet using titanium-based precipitates, exposure clogging due to titanium nitride (TiN) and inclusions occurs in the continuous casting stage of the steelmaking process. This causes a decrease in workability and a direct problem in production load. In addition, the titanium nitride mixed in the molten steel exists on the upper part of the steel plate and causes a blister defect, which is a typical bubble defect. In addition, a large amount of added titanium forms a titanium-based oxide layer, which inhibits the adhesion between the steel plate and the glaze layer. cause problems
또한, 법랑강판에 적용되는 법랑강의 경우, 대부분 구조부재의 소재를 사용함에 따라, 소재의 강도를 올림으로써 사용 부재의 경량화를 통한 경쟁력 강화를 추구하고 있으며, 이를 위해 법랑 공정에서 유약의 건조를 위해 행해지는 고온역에서의 소성 열처리 후의 쟂리 특성이 요구되고 있다. 상기 요구에 부응하기 위해, 상기 법랑강의 소성 후 항복강도를 220 MPa 이상 확보하는 것이 요구된다.In addition, in the case of enamel steel applied to enamel steel sheets, as most of the materials for structural members are used, the strength of the materials is raised to strengthen competitiveness through weight reduction of the members used. There is a demand for material properties after firing heat treatment in a high temperature range. In order to meet the above requirements, it is required to secure a yield strength of 220 MPa or more after firing the enameled steel.
본 발명이 해결하고자하는 기술적 과제는 법랑 처리 후의 항복강도가 220 MPa 이상이며, 기포 결함 발생이 없고, 법랑밀착성과 내피쉬스케일성이 우수한 법랑용 고강도 냉연강판을 제공하는 것이다.A technical problem to be solved by the present invention is to provide a high-strength cold-rolled steel sheet for vitreous enameling, which has a yield strength of 220 MPa or more after enameling, no bubble defects, and excellent enamel adhesion and fishscale resistance.
본 발명이 해결하고자하는 다른 기술적 과제는 상기 이점을 갖는 냉연강판을 제조하는 방법을 제공하는 것이다.Another technical problem to be solved by the present invention is to provide a method for manufacturing a cold-rolled steel sheet having the above advantages.
본 발명의 일 실시예에 따른, 냉연강판은, 중량%로, C: 0.0003 내지 0.003%, Mn: 0.25 내지 0.55%, Si: 0.001 내지 0.03%, Al: 0.0005 내지 0.0015%, P: 0.01 내지 0.03%, S: 0.001 내지 0.010%, Cu: 0.03 내지 0.08%, N: 0.008 내지 0.015%, Mo: 0.1 내지 0.3%, O: 0.025 내지 0.055% 및 잔부의 Fe와 불가피한 불순물을 포함하고, 산화층을 포함하며, 냉연강판의 표면으로부터 내부 방향으로 형성된 상기 산화층의 두께가 0.006 내지 0.030 ㎛일 수 있다.In the cold-rolled steel sheet according to an embodiment of the present invention, by weight, C: 0.0003 to 0.003%, Mn: 0.25 to 0.55%, Si: 0.001 to 0.03%, Al: 0.0005 to 0.0015%, P: 0.01 to 0.03 %, S: 0.001 to 0.010%, Cu: 0.03 to 0.08%, N: 0.008 to 0.015%, Mo: 0.1 to 0.3%, O: 0.025 to 0.055%, and the balance including Fe and unavoidable impurities, including an oxide layer And, the thickness of the oxide layer formed in an inward direction from the surface of the cold-rolled steel sheet may be 0.006 to 0.030 μm.
일 실시예에서, 냉연강판은 하기 식 1을 만족할 수 있다.In one embodiment, the cold-rolled steel sheet may satisfy Equation 1 below.
<식 1><Equation 1>
0.014 ≤ ([Cu] × [Si) / [P] ≤ 0.0800.014 ≤ ([Cu] × [Si) / [P] ≤ 0.080
(상기 식 1에서 [Cu], [Si], 및 [P]은 각각 Cu, Si, 및 P의 중량% 함량을 의미한다)(In Equation 1, [Cu], [Si], and [P] mean the weight % content of Cu, Si, and P, respectively)
일 실시예에서, 냉연강판은 하기 식 2를 만족할 수 있다.In one embodiment, the cold-rolled steel sheet may satisfy Equation 2 below.
<식 2><Equation 2>
0.0065 ≤ ([Al] × [Mo]) / ([C] + [N]) ≤ 0.03100.0065 ≤ ([Al] × [Mo]) / ([C] + [N]) ≤ 0.0310
(상기 식 2에서 [Al], [Mo], [C] 및 [N]은 각각 Al, Mo, C, 및 N의 중량% 함량을 의미한다)(In Equation 2, [Al], [Mo], [C] and [N] mean the weight % content of Al, Mo, C, and N, respectively)
일 실시예에서, 냉연강판은 하기 식 3을 만족할 수 있다.In one embodiment, the cold-rolled steel sheet may satisfy Equation 3 below.
<식 3><Equation 3>
0.50 ≤ (Rmax × 20Se) / Pc ≤ 1.050.50 ≤ (R max × 20S e ) / P c ≤ 1.05
(상기 식 3에서 Pc는 단위 센티미터(㎝)당 표면 요철의 수를, Rmax는 최대점 조도값(㎛), Se는 조질압하율(%)을 의미한다)(In Equation 3 above, P c is the number of surface irregularities per unit centimeter (cm), R max is the maximum point roughness value (μm), and S e is the temper reduction rate (%))
일 실시예에서, 냉연강판은 법랑 소성 열처리 후 항복강도가 220 MPa 이상일 수 있다. 일 실시예에서, 냉연강판은 법랑밀착성이 95 % 이상일 수 있다. 일 실시예에서, 냉연강판은 수소투과비가 600 초/mm2 이상일 수 있다.In one embodiment, the cold-rolled steel sheet may have a yield strength of 220 MPa or more after enamel firing heat treatment. In one embodiment, the cold-rolled steel sheet may have enamel adhesion of 95% or more. In one embodiment, the hydrogen permeability ratio of the cold-rolled steel sheet may be 600 sec/mm 2 or more.
본 발명의 다른 실시예에 따른, 냉연강판의 제조 방법은, 중량%로, C: 0.0003 내지 0.003%, Mn: 0.25 내지 0.55%, Si: 0.001 내지 0.03%, Al: 0.0005 내지 0.0015%, P: 0.01 내지 0.03%, S: 0.001 내지 0.010%, Cu: 0.03 내지 0.08%, N: 0.008 내지 0.015%, Mo: 0.1 내지 0.3%, O: 0.025 내지 0.055% 및 잔부의 Fe와 불가피한 불순물을 포함하는 강 슬라브를 1,150 내지 1,280 ℃의 온도 범위로 재가열하는 단계, 가열된 슬라브를 마무리 열간압연 온도 890 내지 950 ℃의 범위로 열간압연하는 단계, 열간압연된 열연강판을 580 내지 720 ℃의 온도 범위로 권취하는 단계, 권취된 상기 열연강판을 60 내지 90 %의 냉간압하율로 냉간압연하는 단계, 냉간압연된 냉연강판을 720 내지 850 ℃의 소둔 온도로, 10 내지 70 초 동안 소둔하고, 압하율 2.5 % 이하로 조질압연하여 소둔판을 제조하는 단계, 및 상기 소둔판을 780 내지 850 ℃의 온도 범위로 법랑 소성 열처리하는 단계를 포함할 수 있다.According to another embodiment of the present invention, a method for manufacturing a cold-rolled steel sheet contains, by weight, C: 0.0003 to 0.003%, Mn: 0.25 to 0.55%, Si: 0.001 to 0.03%, Al: 0.0005 to 0.0015%, P: 0.01 to 0.03% S: 0.001 to 0.010%, Cu: 0.03 to 0.08%, N: 0.008 to 0.015%, Mo: 0.1 to 0.3%, O: 0.025 to 0.055% and the balance Fe and unavoidable impurities Reheating the slab to a temperature range of 1,150 to 1,280 ° C., hot rolling the heated slab to a finish hot rolling temperature range of 890 to 950 ° C., winding the hot-rolled hot-rolled steel sheet to a temperature range of 580 to 720 ° C. Step, cold-rolling the rolled hot-rolled steel sheet at a cold rolling reduction rate of 60 to 90%, annealing the cold-rolled cold-rolled steel sheet at an annealing temperature of 720 to 850 ° C. for 10 to 70 seconds, and a reduction rate of 2.5% or less It may include preparing an annealed sheet by temper rolling, and subjecting the annealed sheet to enamel firing heat treatment at a temperature range of 780 to 850 °C.
일 실시예에서, 냉연강판의 제조 방법은 하기 식 1을 만족할 수 있다.In one embodiment, a method of manufacturing a cold-rolled steel sheet may satisfy Equation 1 below.
<식 1><Equation 1>
0.014 ≤ ([Cu] × [Si) / [P] ≤ 0.0800.014 ≤ ([Cu] × [Si) / [P] ≤ 0.080
(상기 식 1에서 [Cu], [Si], 및 [P]은 각각 Cu, Si, 및 P의 중량% 함량을 의미한다)(In Equation 1, [Cu], [Si], and [P] mean the weight % content of Cu, Si, and P, respectively)
일 실시예에서, 냉연강판의 제조 방법은 하기 식 2를 만족할 수 있다.In one embodiment, the method for manufacturing a cold-rolled steel sheet may satisfy Equation 2 below.
<식 2><Equation 2>
0.0065 ≤ ([Al] × [Mo]) / ([C] + [N]) ≤ 0.03100.0065 ≤ ([Al] × [Mo]) / ([C] + [N]) ≤ 0.0310
(상기 식 2에서 [Al], [Mo], [C] 및 [N]은 각각 Al, Mo, C, 및 N의 중량% 함량을 의미한다)(In Equation 2, [Al], [Mo], [C] and [N] mean the weight % content of Al, Mo, C, and N, respectively)
일 실시예에서, 냉연강판의 제조 방법은 하기 식 3을 만족할 수 있다.In one embodiment, a method for manufacturing a cold-rolled steel sheet may satisfy Equation 3 below.
<식 3><Equation 3>
0.50 ≤ (Rmax × 20Se) / Pc ≤ 1.050.50 ≤ (R max × 20S e ) / P c ≤ 1.05
(상기 식 3에서 Pc는 단위 센티미터(㎝)당 표면 요철의 수를, Rmax는 최대점 조도값(㎛), Se는 조질압하율(%)을 의미한다)(In Equation 3 above, P c is the number of surface irregularities per unit centimeter (cm), R max is the maximum point roughness value (μm), and S e is the temper reduction rate (%))
본 발명의 일 실시예에 따른 냉연강판은, 강 조성을 제어함으로써, 법랑밀착성 및 내피쉬스케일성이 우수한 냉연강판을 제공하여, 가전기기, 화학기기, 주방기기, 위생기기, 및 건물 내외장재와 같은 다양한 부재에 사용될 수 있다.The cold-rolled steel sheet according to an embodiment of the present invention provides a cold-rolled steel sheet excellent in enamel adhesion and fishscale resistance by controlling the steel composition, and is used in various applications such as home appliances, chemical appliances, kitchen appliances, sanitary appliances, and interior and exterior materials for buildings. Can be used for absence.
본 발명의 다른 실시예에 따른 냉연강판의 제조 방법은 상기 이점을 갖는 냉연강판을 제조하는 방법을 제공할 수 있다.A method for manufacturing a cold-rolled steel sheet according to another embodiment of the present invention may provide a method for manufacturing a cold-rolled steel sheet having the above advantages.
도 1은 일 실시예에 따른, 냉연강판의 단면 모식도이다.1 is a schematic cross-sectional view of a cold-rolled steel sheet according to an embodiment.
제1, 제2 및 제3 등의 용어들은 다양한 부분, 성분, 영역, 층 및/또는 섹션들을 설명하기 위해 사용되나 이들에 한정되지 않는다. 이들 용어들은 어느 부분, 성분, 영역, 층 또는 섹션을 다른 부분, 성분, 영역, 층 또는 섹션과 구별하기 위해서만 사용된다. 따라서, 이하에서 서술하는 제1 부분, 성분, 영역, 층 또는 섹션은 본 발명의 범위를 벗어나지 않는 범위 내에서 제2 부분, 성분, 영역, 층 또는 섹션으로 언급될 수 있다.Terms such as first, second and third are used to describe, but are not limited to, various parts, components, regions, layers and/or sections. These terms are only used to distinguish one part, component, region, layer or section from another part, component, region, layer or section. Accordingly, a first part, component, region, layer or section described below may be referred to as a second part, component, region, layer or section without departing from the scope of the present invention.
여기서 사용되는 전문 용어는 단지 특정 실시예를 언급하기 위한 것이며, 본 발명을 한정하는 것을 의도하지 않는다. 여기서 사용되는 단수 형태들은 문구들이 이와 명백히 반대의 의미를 나타내지 않는 한 복수 형태들도 포함한다. 명세서에서 사용되는 “포함하는”의 의미는 특정 특성, 영역, 정수, 단계, 동작, 요소 및/또는 성분을 구체화하며, 다른 특성, 영역, 정수, 단계, 동작, 요소 및/또는 성분의 존재나 부가를 제외시키는 것은 아니다.The terminology used herein is only for referring to specific embodiments and is not intended to limit the present invention. As used herein, the singular forms also include the plural forms unless the phrases clearly indicate the opposite. The meaning of "comprising" as used herein specifies particular characteristics, regions, integers, steps, operations, elements and/or components, and the presence or absence of other characteristics, regions, integers, steps, operations, elements and/or components. Additions are not excluded.
어느 부분이 다른 부분의 "위에" 또는 "상에" 있다고 언급하는 경우, 이는 바로 다른 부분의 위에 또는 상에 있을 수 있거나 그 사이에 다른 부분이 수반될 수 있다. 대조적으로 어느 부분이 다른 부분의 "바로 위에" 있다고 언급하는 경우, 그 사이에 다른 부분이 개재되지 않는다.When a part is referred to as being “on” or “on” another part, it may be directly on or on the other part or may be followed by another part therebetween. In contrast, when a part is said to be “directly on” another part, there is no intervening part between them.
다르게 정의하지는 않았지만, 여기에 사용되는 기술용어 및 과학용어를 포함하는 모든 용어들은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 일반적으로 이해하는 의미와 동일한 의미를 가진다. 보통 사용되는 사전에 정의된 용어들은 관련기술문헌과 현재 개시된 내용에 부합하는 의미를 가지는 것으로 추가 해석되고, 정의되지 않는 한 이상적이거나 매우 공식적인 의미로 해석되지 않는다.Although not defined differently, all terms including technical terms and scientific terms used herein have the same meaning as commonly understood by those of ordinary skill in the art to which the present invention belongs. Terms defined in commonly used dictionaries are additionally interpreted as having meanings consistent with related technical literature and currently disclosed content, and are not interpreted in ideal or very formal meanings unless defined.
또한, 특별히 언급하지 않는 한 %는 중량%를 의미하며, 1ppm 은 0.0001중량%이다.In addition, unless otherwise specified, % means weight%, and 1ppm is 0.0001 weight%.
본 발명의 일 실시예에서 추가 원소를 더 포함하는 것의 의미는 추가 원소의 추가량 만큼 잔부인 철(Fe)을 대체하여 포함하는 것을 의미한다.In one embodiment of the present invention, the meaning of further including an additional element means replacing and including iron (Fe) as much as the additional amount of the additional element.
이하, 본 발명의 실시예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.Hereinafter, embodiments of the present invention will be described in detail so that those skilled in the art can easily implement the present invention. However, the present invention may be embodied in many different forms and is not limited to the embodiments described herein.
도 1은 일 실시예에 따른, 냉연강판(100)의 단면 모식도이다.1 is a schematic cross-sectional view of a cold-rolled steel sheet 100 according to an embodiment.
도 1을 참조하면, 냉연강판(100)은 강판 모재(10) 및 산화층(20)을 포함한다. 강판 모재(10) 및 냉연강판(100)의 양 표면에서부터 내부 방향으로 형성되고, 강판 모재(10)와 구분되는 산화층(20)을 포함한다. 구체적으로, 본 발명의 일 실시예에 의한 냉연강판(100)은 중량%로, C: 0.0003 내지 0.003%, Mn: 0.25 내지 0.55%, Si: 0.001 내지 0.03%, Al: 0.0005 내지 0.0015%, P: 0.01 내지 0.03%, S: 0.001 내지 0.010%, Cu: 0.03 내지 0.08%, N: 0.008 내지 0.015%, Mo: 0.1 내지 0.3%, O: 0.025 내지 0.055% 및 잔부의 Fe와 불가피한 불순물을 포함한다.Referring to FIG. 1, a cold-rolled steel sheet 100 includes a steel sheet base material 10 and an oxide layer 20. It is formed in an inward direction from both surfaces of the steel sheet base material 10 and the cold-rolled steel sheet 100, and includes an oxide layer 20 that is distinguished from the steel sheet base material 10. Specifically, in the cold-rolled steel sheet 100 according to an embodiment of the present invention, in weight%, C: 0.0003 to 0.003%, Mn: 0.25 to 0.55%, Si: 0.001 to 0.03%, Al: 0.0005 to 0.0015%, P : 0.01 to 0.03%, S: 0.001 to 0.010%, Cu: 0.03 to 0.08%, N: 0.008 to 0.015%, Mo: 0.1 to 0.3%, O: 0.025 to 0.055%, and the balance Fe and unavoidable impurities. .
하기에서는 합금 성분 한정 이유를 설명한다. 이하, wt%는 %로 표기할 수 있다.In the following, the reason for limiting the alloy components will be explained. Hereinafter, wt% may be expressed as %.
탄소(C): 0.0003 내지 0.03 %Carbon (C): 0.0003 to 0.03%
탄소(C)는 고용 강화, 시효, 및 기포 결함과 같은 강판 특성에 영향을 미치는 원소이다. 상기 탄소의 함량은 0.0003 내지 0.0030 %일 수 있다. 구체적으로, 상기 탄소의 함량은 0.0005 내지 0.0028 % 범위일 수 있다.Carbon (C) is an element that affects steel sheet properties such as solid solution strengthening, aging, and cell defects. The carbon content may be 0.0003 to 0.0030%. Specifically, the carbon content may range from 0.0005 to 0.0028%.
상기 탄소의 함량이 상기 범위의 상한 값을 벗어나는 경우, 강도는 높아지나 소둔 시 집합조직의 발달을 방해하여 성형성이 저하되고, 법랑 소성 공정에서 법랑층 버블링(Bublling)에 의한 기포 결함을 유발하는 문제가 있다. 상기 탄소의 함량이 상기 범위의 하한 값을 벗어나는 경우, 강내 수소를 흡장하는 사이트로 작용하는 석출물의 석출량이 적어지고 소성 단계에서 입계 청정화에 따른 결정립 성장이 발생하여 가공성 및 법랑 특성을 저하시키는 문제가 있다.When the carbon content is outside the upper limit of the range, the strength is increased, but the development of the texture during annealing is hindered, and the formability is lowered, and bubble defects are caused by bubbling of the enamel layer in the enamel firing process. There is a problem with When the carbon content is outside the lower limit of the range, the amount of precipitate acting as a site for occluding hydrogen in the steel decreases, and crystal grain growth occurs due to grain boundary cleaning in the firing step, resulting in a problem of deteriorating workability and enamel characteristics. there is.
망간(Mn): 0.25 내지 0.55 %Manganese (Mn): 0.25 to 0.55%
망간(Mn)은 대표적인 고용 강화 원소로서 강 중에 고용된 황을 망간 황화물(MnS) 형태로 석출하여 적열 취성(Hot Shortness)을 방지하고 탄화물의 석출을 조장하는 원소이다. 상기 망간의 함량은 0.25 내지 0.55 %일 수 있다. 구체적으로, 상기 망간의 함량은 0.27 내지 0.53 % 범위일 수 있다.Manganese (Mn) is a typical solid solution strengthening element, which precipitates sulfur dissolved in steel in the form of manganese sulfide (MnS) to prevent hot shortness and promotes the precipitation of carbides. The manganese content may be 0.25 to 0.55%. Specifically, the manganese content may range from 0.27 to 0.53%.
상기 망간의 함량이 상기 범위의 상한 값을 벗어나는 경우, 중심 편석 생성에 따른 성형성 저하 및 강의 Ar3 변태 온도를 낮추어 법랑 소성 중에 변태가 발생하여 성형품이 변형되는 문제가 발생한다. 상기 망간의 함량이 상기 범위의 하한 값을 벗어나는 경우, 적열 취성을 방지하고 탄화물의 석출을 조장하는 상기 효과가 발현되지 않는 문제가 있다.When the content of manganese exceeds the upper limit of the range, problems in formability due to center segregation and lowering of the Ar3 transformation temperature of the steel cause transformation to occur during enamel firing, resulting in deformation of molded articles. When the content of manganese is outside the lower limit of the range, there is a problem in that the effect of preventing red-hot brittleness and encouraging precipitation of carbides is not expressed.
규소(Si): 0.001 내지 0.030 %Silicon (Si): 0.001 to 0.030%
규소(Si)는 강도 상승 및 수소 흡장원으로 작용하는 석출물의 형성을 촉진하는 원소이다. 상기 규소의 함량은 0.001 내지 0.030 %일 수 있다. 구체적으로, 상기 규소의 함량은 0.002 내지 0.028 % 범위일 수 있다.Silicon (Si) is an element that promotes the formation of precipitates that increase strength and act as a hydrogen storage source. The silicon content may be 0.001 to 0.030%. Specifically, the silicon content may range from 0.002 to 0.028%.
상기 규소의 함량이 상기 범위의 상한 값을 벗어나는 경우, 강판 표면에 산화 피막을 형성하여 법랑 밀착성이 감소하는 문제가 있다. 상기 규소의 함량이 상기 범위의 하한 값을 벗어나는 경우, 강도 상승 및 수소 흡장원으로 작용하는 상기 석출물이 형성되는 효과가 발현되지 않는 문제가 있다.When the silicon content exceeds the upper limit of the above range, an oxide film is formed on the surface of the steel sheet, resulting in reduced enamel adhesion. When the content of the silicon is out of the lower limit of the range, there is a problem in that the effect of increasing the strength and forming the precipitate acting as a hydrogen storage source is not expressed.
알루미늄(Al): 0.0005 내지 0.0015 %Aluminum (Al): 0.0005 to 0.0015%
알루미늄(Al)은 제강단계에서 용강 중 산소를 제거하는 강력한 탈산제로 사용되고, 고용 질소를 고착하는 대표적인 원소이다. 상기 알루미늄의 함량은 0.0005 내지 0.0015 %일 수 있다. 구체적으로, 상기 알루미늄의 함량은 0.0006 내지 0.0014 % 범위일 수 있다.Aluminum (Al) is used as a strong deoxidizer to remove oxygen from molten steel in the steelmaking stage, and is a representative element that fixes solid nitrogen. The aluminum content may be 0.0005 to 0.0015%. Specifically, the aluminum content may range from 0.0006 to 0.0014%.
상기 알루미늄의 함량이 상기 범위의 상한 값을 벗어나는 경우, 수소 흡장원으로 작용하는 개재물 분율을 감소시켜 피쉬스케일 발생이 현저히 증가할 뿐만 아니라, 고용 질소량을 낮추어 소성 후 목표로 하는 재질을 확보할 수 없는 문제가 있다. 상기 알루미늄의 함량이 상기 범위의 하한 값을 벗어나는 경우, 상기 탈산제로 사용되며, 고용 질소를 고착하는 효과가 발현되지 않는 문제가 있다.When the aluminum content is outside the upper limit of the range, the fraction of inclusions acting as a hydrogen storage source is reduced to significantly increase the occurrence of fishscale, and the amount of dissolved nitrogen is lowered to secure a target material after firing. there is a problem. When the content of the aluminum is out of the lower limit of the range, it is used as the deoxidizer, and there is a problem in that the effect of fixing solid nitrogen is not expressed.
인(P): 0.001 내지 0.010 %Phosphorus (P): 0.001 to 0.010%
인(P)은 고용강화 원소이며 표면 산세성을 제어하는 원소이다. 상기 인의 함량은 0.01 내지 0.03 % 일 수 있다. 구체적으로, 상기 인의 함량은 0.011 내지 0.028 % 범위일 수 있다.Phosphorus (P) is a solid solution strengthening element and an element that controls surface pickling. The phosphorus content may be 0.01 to 0.03%. Specifically, the phosphorus content may range from 0.011 to 0.028%.
상기 인의 함량이 상기 범위의 상한 값을 벗어나는 경우, 강판 내부에 편석층이 형성되어 성형성을 저하시킬 뿐만 아니라, 법랑 전처리 공정에서의 황산 반응성을 촉진하여 밀착성을 저하시키는 문제가 있다. 상기 인의 함량이 상기 범위의 하한 값을 벗어나는 경우, 목표로 하는 재질 및 표면 특성을 확보하기 어려운 문제가 있다.When the phosphorus content is outside the upper limit of the above range, a segregation layer is formed inside the steel sheet to deteriorate moldability, and adhesion is deteriorated by promoting sulfuric acid reactivity in the enamel pretreatment process. When the phosphorus content is out of the lower limit of the range, it is difficult to secure target material and surface characteristics.
황(S): 0.001 내지 0.010 %Sulfur (S): 0.001 to 0.010%
황(S)은 망간(Mn)과 결합하여 적열 취성을 유발하는 원소이다. 상기 황의 함량은 0.001 내지 0.010 %일 수 있다. 구체적으로, 상기 황의 함량은 0.002 내지 0.009 % 범위일 수 있다.Sulfur (S) is an element that causes red brittleness by combining with manganese (Mn). The sulfur content may be 0.001 to 0.010%. Specifically, the sulfur content may range from 0.002 to 0.009%.
상기 황의 함량이 상기 범위의 상한 값을 벗어나는 경우, 연성이 크게 저하되어 가공성을 저하시킬 뿐만 아니라, 망간 황화물이 과다하게 석출되어 제품의 피쉬스케일성에도 악 영향을 끼치는 문제가 있다. 상기 황의 함량이 상기 범위의 하한 값을 벗어나는 경우, 용접성을 저하시키는 문제가 있다.When the sulfur content is outside the upper limit of the range, ductility is greatly reduced to deteriorate processability, and manganese sulfide is excessively precipitated, which adversely affects the fishscale property of the product. When the sulfur content is out of the lower limit of the range, there is a problem of deteriorating weldability.
구리(Cu): 0.03 내지 0.08 %Copper (Cu): 0.03 to 0.08%
구리(Cu)는 고용 강화 및 밀착성을 향상시키기 위해 첨가하는 원소이다. 상기 구리의 함량은 0.03 내지 0.08 % 일 수 있다. 구체적으로, 상기 구리의 함량은 0.032 내지 0.078 % 범위일 수 있다.Copper (Cu) is an element added to improve solid solution strengthening and adhesion. The copper content may be 0.03 to 0.08%. Specifically, the copper content may range from 0.032 to 0.078%.
상기 구리의 함량이 상기 범위의 상한 값을 벗어나는 경우, 법랑 전처리 공정인 산처리 단계에서 산세 속도를 낮추어 강판에 적절한 조도 특성을 얻을 수 없어, 밀착성이 저하되는 문제가 있다. 상기 구리의 함량이 상기 범위의 하한 값을 벗어나는 경우, 상기 고용 강화 및 상기 밀착성 향상과 같은 효과가 발현되지 않는 문제가 있다.When the copper content is outside the upper limit of the range, the pickling speed is lowered in the acid treatment step, which is a pre-enamel process, so that the roughness characteristics suitable for the steel sheet cannot be obtained, resulting in a decrease in adhesion. When the content of copper is out of the lower limit of the range, there is a problem in that the effect such as the solid solution strengthening and the adhesion improvement is not expressed.
질소(N): 0.008 내지 0.015 %Nitrogen (N): 0.008 to 0.015%
질소(N)는 탄소(C)와 함께 대표적인 침입형 고용 강화 원소로서, 소성 공정 후 목표로 하는 강도 수준을 확보하기 위한 원소이다. 상기 질소의 함량은 0.008 내지 0.015 % 일 수 있다. 구체적으로 상기 질소의 함량은 0.0083 내지 0.0145 %일 수 있다.Nitrogen (N), along with carbon (C), is a representative interstitial solid solution strengthening element, and is an element for securing a target strength level after a firing process. The nitrogen content may be 0.008 to 0.015%. Specifically, the nitrogen content may be 0.0083 to 0.0145%.
몰리브덴(Mo): 0.1 내지 0.3 %Molybdenum (Mo): 0.1 to 0.3%
몰리브덴(Mo)은 다양한 석출물 및 산화물을 형성하여 안정적인 강도를 확보하고 수소 흡장원을 제공하는 원소이다. 상기 몰리브덴의 함량은 0.1 내지 0.3 % 일 수 있다. 구체적으로, 상기 몰리브덴의 함량은 0.11 내지 0.29 % 범위일 수 있다.Molybdenum (Mo) is an element that secures stable strength and provides a hydrogen storage source by forming various precipitates and oxides. The molybdenum content may be 0.1 to 0.3%. Specifically, the molybdenum content may range from 0.11 to 0.29%.
상기 몰리브덴의 함량이 상기 범위의 상한 값을 벗어나는 경우, 소둔 통판성을 저하시킬 뿐만 아니라, 표면 결함 발생율이 증가하는 문제가 있다. 상기 몰리브덴의 함량이 상기 범위의 하한 값을 벗어나는 경우, 상기 강도 확보 및 상기 수스 흡장원 제공과 같은 효과가 발현되지 않는 문제가 있다.When the content of molybdenum is out of the upper limit of the above range, there is a problem that not only the annealing sheetability is lowered, but also the occurrence rate of surface defects is increased. When the content of molybdenum is out of the lower limit of the range, there is a problem in that effects such as securing the strength and providing the Sous occlusion source are not expressed.
산소(O): 0.025 내지 0.055 %Oxygen (O): 0.025 to 0.055%
산소(O)는 법랑강의 수소 흡장원으로 작용하는 개재물을 형성하는데 있어 필수적인 원소이다. 상기 산소의 함량은 0.025 내지 0.055 % 일 수 있다. 구체적으로, 상기 산소의 함량은 0.0255 내지 0.0540 % 범위일 수 있다.Oxygen (O) is an essential element in forming inclusions that act as a hydrogen storage source for enamel steel. The oxygen content may be 0.025 to 0.055%. Specifically, the oxygen content may range from 0.0255 to 0.0540%.
상기 산소의 함량이 상기 범위의 상한 값을 벗어나는 경우, 제강 단계에서 내화물의 용손이 심하게 발생하고, 강판 표면 결함 발생율이 높아지는 문제가 있다. 상기 산소의 함량이 상기 범위의 하한 값을 벗어나는 경우, 상기 개재물이 형성되는 효과가 발현되지 않는 문제가 있다.When the oxygen content is outside the upper limit of the range, there is a problem in that dissolution loss of the refractory material occurs severely in the steelmaking step and the occurrence rate of surface defects of the steel sheet increases. When the oxygen content is out of the lower limit of the range, there is a problem in that the effect of forming the inclusions is not expressed.
잔부로 철(Fe)를 포함한다. 또한, 불가피한 불순물을 포함할 수 있다. 불가피한 불순믈은 제강 및 방향성 전기강판의 제조 과정에서 불가피하게 혼입되는 불순물을 의미한다. 불가피한 불순물에 대해서는 널리 알려져 있으므로, 구체적인 설명은 생략한다. 본 발명의 일 실시예예서 전술한 합금 성분 외에 원소의 추가를 배제하는 것은 아니며, 본 발명의 기술 사상을 해치지 않는 범위 내에서 다양하게 포함될 수 있다. 추가 원소를 더 포함하는 경우 잔부인 Fe를 대체하여 포함한다.It contains iron (Fe) as the remainder. In addition, it may contain unavoidable impurities. The unavoidable impurities refer to impurities that are unavoidably mixed in the manufacturing process of steelmaking and grain-oriented electrical steel sheets. Since unavoidable impurities are widely known, detailed descriptions are omitted. In one embodiment of the present invention, the addition of elements other than the above-described alloy components is not excluded, and may be variously included within a range that does not impair the technical spirit of the present invention. When additional elements are included, they are included in place of Fe, which is the remainder.
일 실시예에서, 냉연강판(100)은 티타늄(Ti), 니오븀(Nb), 크롬(Cr), 및 바나듐(V)를 포함할 수 있다. 상기 내피쉬스케일성이 우수한 법랑용 냉연강판은 선택적으로 Ti: 0.005 % 이하, Nb: 0.005 % 이하, Cr: 0.05 % 이하, 및 V: 0.003 % 이하 중 1 종 이상을 더 포함할 수 있다.In one embodiment, the cold-rolled steel sheet 100 may include titanium (Ti), niobium (Nb), chromium (Cr), and vanadium (V). The cold-rolled steel sheet for vitreous enameling with excellent fishscale resistance may optionally further contain at least one of Ti: 0.005% or less, Nb: 0.005% or less, Cr: 0.05% or less, and V: 0.003% or less.
이와 같이, 본 발명의 냉연강판(100)은 철(Fe)에 비하여 산화성이 높은 티타늄(Ti)과 같은 원소를 임의로 첨가하지 않을 뿐만 아니라, 표면 산화물층을 제어함으로써, 강판과 유약 간의 법랑밀착성과 같은 특성을 개선할 수 있다.As described above, the cold-rolled steel sheet 100 of the present invention not only does not arbitrarily add an element such as titanium (Ti), which has higher oxidizing properties than iron (Fe), but also controls the surface oxide layer, thereby improving the enamel adhesion between the steel sheet and the glaze. The same characteristics can be improved.
산화층(20)은 모재(10)인 냉연강판(100)의 양 표면에서부터 내부 방향으로 형성되는 것으로서, 산소를 5 % 포함하는 지점을 기준으로 구분할 수 있다. 구체적으로, 산화층의 두께는 강판 단면에 대하여, 표면에서부터 내부 방향으로 산소 농도를 분석하여 산소를 5 % 포함하는 지점을 기준으로 구분하였다. 더욱 구체적으로, 상기 산화층의 두께는 산소를 5 % 포함하는 지점을 기점으로 GDS(Glow Discharge Spectroscopy)를 활용하여 측정하였다.The oxide layer 20 is formed in an inward direction from both surfaces of the cold-rolled steel sheet 100, which is the base material 10, and can be classified based on a point containing 5% of oxygen. Specifically, the thickness of the oxide layer was divided based on the point containing 5% of oxygen by analyzing the oxygen concentration from the surface to the inside of the cross section of the steel sheet. More specifically, the thickness of the oxide layer was measured using GDS (Glow Discharge Spectroscopy) starting from the point containing 5% of oxygen.
일 실시예에서, 산화층(20)의 두께는 0.006 내지 0.030 ㎛ 범위일 수 있다. 산화층(20)의 두께는 구체적으로, 0.007 내지 0.028 ㎛ 일 수 있다. 산화층(20)의 두께는 상기 범위의 상한 값을 벗어나는 경우, 강판의 표면 특성이 저하되는 문제가 있다. 산화층(20)의 두께는 상기 범위의 하한 값을 벗어나는 경우, 유약층과 강판의 결합력이 저하되어 법량 밀착성을 확보하는 것이 어려워져 내피쉬스케일성도 저하되는 문제가 있다.In one embodiment, the thickness of the oxide layer 20 may range from 0.006 to 0.030 μm. Specifically, the thickness of the oxide layer 20 may be 0.007 to 0.028 μm. When the thickness of the oxide layer 20 is out of the upper limit of the above range, there is a problem in that the surface properties of the steel sheet are deteriorated. If the thickness of the oxide layer 20 is outside the lower limit of the above range, the bonding force between the glaze layer and the steel sheet decreases, making it difficult to secure normal adhesion, resulting in a decrease in fishscale resistance.
이와 같이, 법랑 제품은 강판 상에 유기물인 유약을 붙인 제품으로서, 강판과 유약의 밀착성을 확보하는 것이 매우 중요하다. 상기 유약의 주성분은 구체적으로, 실리콘-옥사이드(SiO2)계로 구성되며, 강판과의 밀착성 저하를 방지하기 위해 유약 성분 중 NiO와 같은 고가의 유약을 적용하는 문제가 있다. 본 발명의 일 실시예에 따른 법랑밀착성 및 내피쉬스케일성이 우수한 법랑용 고강도 냉연강판은 강판 표면의 산화층 두께를 제어함으로써 법랑밀착성을 개선할 수 있다. 90 중량% 이상의 철 산화물(FeO 계)로 구성된 산화층 두께를 일정 범위로 관리함으로써 유약층의 실리콘(Si) 원자와의 공유 결합을 촉진하여 법랑밀착성을 개선할 수 있다.As such, an enamel product is a product in which an organic glaze is applied on a steel plate, and it is very important to secure adhesion between the steel plate and the glaze. Specifically, the main component of the glaze is composed of a silicon-oxide (SiO 2 ) system, and there is a problem of applying an expensive glaze such as NiO among the glaze components in order to prevent a decrease in adhesion to the steel plate. The high-strength cold-rolled steel sheet for enamel having excellent enamel adhesion and fishscale resistance according to an embodiment of the present invention can improve enamel adhesion by controlling the thickness of the oxide layer on the surface of the steel sheet. Enamel adhesion can be improved by promoting covalent bonding with silicon (Si) atoms in the glaze layer by managing the thickness of the oxide layer composed of 90 wt% or more of iron oxide (FeO-based) within a certain range.
일 실시예에서, 냉연강판(100)은 하기 식 1을 만족한다.In one embodiment, the cold-rolled steel sheet 100 satisfies Equation 1 below.
<식 1><Equation 1>
0.014 ≤ ([Cu] × [Si) / [P] ≤ 0.0800.014 ≤ ([Cu] × [Si) / [P] ≤ 0.080
(상기 식 1에서 [Cu], [Si], 및 [P]은 각각 Cu, Si, 및 P의 중량% 함량을 의미한다)(In Equation 1, [Cu], [Si], and [P] mean the weight % content of Cu, Si, and P, respectively)
상기 식 1은 인(P)에 대한 구리(Cu) 및 규소(Si)에 대한 상관관계이다. 상기 식 1은 0.014 내지 0.080 범위일 수 있다. 구체적으로, 상기 식 1은 0.0142 내지 0.0798 범위일 수 있다. 상기 범위를 만족함으로써, 냉연강판(100)은 법랑 밀착성 및 표면 기포 결함이 억제될 수 있다.Equation 1 is a correlation between phosphorus (P) and copper (Cu) and silicon (Si). Equation 1 may range from 0.014 to 0.080. Specifically, Equation 1 may range from 0.0142 to 0.0798. By satisfying the above range, the cold-rolled steel sheet 100 can suppress enamel adhesion and surface bubble defects.
상기 식 1의 값이 상기 범위의 상한 값을 벗어나는 경우, 강판 표면부로의 가스 유입이 증가하여 기포 결함과 같은 표면 결함이 발생하여 제품의 신뢰성을 저하시키는 문제가 있다. 상기 식 1의 값이 상기 범위의 하한 값을 벗어나는 경우, 황산 전처리 과정에서의 표면 개질이 이루어지지 않음에 따라 법랑밀착성과 같은 법랑 특성이 저하되는 문제가 있다.When the value of Equation 1 exceeds the upper limit of the range, gas inflow into the surface portion of the steel sheet increases, resulting in surface defects such as bubble defects, thereby reducing product reliability. When the value of Equation 1 is outside the lower limit of the range, there is a problem in that enamel properties such as enamel adhesion are deteriorated as the surface is not modified in the sulfuric acid pretreatment process.
일 실시예에서, 냉연강판(100)은 하기 식 2를 만족한다.In one embodiment, the cold-rolled steel sheet 100 satisfies Equation 2 below.
<식 2><Equation 2>
0.0065 ≤ ([Al] × [Mo]) / ([C] + [N]) ≤ 0.03100.0065 ≤ ([Al] × [Mo]) / ([C] + [N]) ≤ 0.0310
(상기 식 2에서 [Al], [Mo], [C] 및 [N]은 각각 Al, Mo, C, 및 N의 중량% 함량을 의미한다)(In Equation 2, [Al], [Mo], [C] and [N] mean the weight % content of Al, Mo, C, and N, respectively)
상기 식 2는 탄소(C) 및 질소(N)에 대한 알루미늄(Al) 및 몰리브덴(Mo)에 대한 상관관계이다. 강내 탄소(C) 및 질소(N)의 경우, 알루미늄(Al) 및 몰리브덴(Mo)과 반응하여 탄질화물을 형성하고 잉여 고용 원소들은 법랑 소성 공정과 같은 고온에서의 열처리 적용 시에도 조직 성장을 억제함으로써, 형상동결성을 우수하게 제어할 뿐만 아니라, 이들 석출물들은 수소 흡장원으로써의 역할을 수행한다.Equation 2 is a correlation between aluminum (Al) and molybdenum (Mo) for carbon (C) and nitrogen (N). In the case of carbon (C) and nitrogen (N) in steel, it reacts with aluminum (Al) and molybdenum (Mo) to form carbonitrides, and surplus solid-solution elements suppress tissue growth even when heat treatment at high temperatures such as enamel firing is applied. By doing so, shape freezing is excellently controlled, and these precipitates play a role as a hydrogen storage source.
이에 따라, 각각의 합금 원소 뿐만 아니라, 복합적인 고용 원소들의 반응성을 고려할 필요가 있다. 상기 식 2는 0.0065 내지 0.0310 일 수 있다. 구체적으로, 상기 식 2는 0.0067 내지 0.0305 범위일 수 있다.Accordingly, it is necessary to consider the reactivity of not only each alloying element but also complex solid-solution elements. Equation 2 above may be 0.0065 to 0.0310. Specifically, Equation 2 above may range from 0.0067 to 0.0305.
상기 식 2의 값이 상기 범위의 상한 값을 벗어나는 경우, 가공성은 양호하지만, 압연 및 소둔 통판성이 저하되고 고가의 합금원소 사용량 증가에 따른 제조 원가 상승을 유발하는 문제가 있다. 상기 식 2의 값이 상기 범위의 하한 값을 벗어나는 경우, 석출이 조장되지 않음에 따라 내피쉬스케일성이 저하될 뿐만 아니라, 침입형 고용 원소량이 증가함에 따라 가공성이 저하되는 문제가 있다.When the value of Equation 2 is outside the upper limit of the range, workability is good, but there is a problem in that the rolling and annealing sheetability is lowered and the manufacturing cost increases due to the increase in the amount of expensive alloy elements. When the value of Equation 2 is outside the lower limit of the range, there is a problem in that fishscale resistance is lowered as precipitation is not promoted, and workability is lowered as the amount of interstitial solid solution elements increases.
일 실시예에서, 냉연강판(100)은 하기 식 3을 만족한다.In one embodiment, the cold-rolled steel sheet 100 satisfies Equation 3 below.
<식 3><Equation 3>
0.50 ≤ (Rmax × 20Se) / Pc ≤ 1.050.50 ≤ (R max × 20S e ) / P c ≤ 1.05
(상기 식 3에서 Pc는 단위 센티미터(㎝)당 표면 요철의 수를, Rmax는 최대점 조도값(㎛), Se는 조질압하율(%)을 의미한다)(In Equation 3 above, P c is the number of surface irregularities per unit centimeter (cm), R max is the maximum point roughness value (μm), and S e is the temper reduction rate (%))
상기 식 3은 0.50 내지 1.05 일 수 있다. 구체적으로, 상기 식 3은 0.505 내지 1.00 범위일 수 있다. 상기 식 3의 값이 상기 범위의 상한 값을 벗어나는 경우, 법랑 소성 처리 후 강판의 결정립이 성장하여 목표로 하는 재질 및 법랑 특성을 확보하는 문제가 있다. 상기 식 3의 값이 상기 범위의 하한 값을 벗어나는 경우, 강판 표면의 쐐기 효과가 감소하여 유약과의 밀착성이 저하되는 문제가 있다.Equation 3 above may be 0.50 to 1.05. Specifically, Equation 3 above may range from 0.505 to 1.00. When the value of Equation 3 is outside the upper limit of the range, crystal grains of the steel sheet grow after the enamel firing process, resulting in a problem in securing target material and enamel characteristics. When the value of Equation 3 is out of the lower limit of the range, the wedge effect of the surface of the steel sheet is reduced, resulting in a decrease in adhesion to the glaze.
일 실시예에서 냉연강판(100)은 법랑 소성 열처리 후 항복강도가 220 MPa 이상일 수 있다. 구조부재에 사용되는 소재의 항복강도는 내덴트성 및 부재의 형상 동결성을 좌우하는 물성이다. 법랑 제품의 경우, 가공 입측에서의 항복강도 뿐만 아니라, 법랑 유약 처리 후 건조를 위해 고온에서 장시간 열처리하는 단계를 거친 이후 항복강도가 제품의 안정성 검토에 주요 인자로 작용한다. 상기 법랑 소성 열처리 후 항복강도는 220 MPa 이상일 때, 유약 처리 후 건조를 위한 열처리 단계에서 제품의 안정성이 우수한 이점이 있다.In one embodiment, the cold-rolled steel sheet 100 may have a yield strength of 220 MPa or more after enamel firing heat treatment. The yield strength of materials used for structural members is a physical property that determines dent resistance and shape freezing of members. In the case of enamel products, not only the yield strength at the processing inlet side but also the yield strength after a long-term heat treatment at high temperature for drying after enamel glaze treatment acts as a major factor in examining the stability of the product. When the yield strength after the enamel firing heat treatment is 220 MPa or more, there is an advantage in that the stability of the product is excellent in the heat treatment step for drying after the glaze treatment.
일 실시예에서, 냉연강판(100)은 법랑밀착성이 95 % 이상의 범위일 수 있다. 구체적으로, 상기 법랑밀착성은 96 % 이상일 수 있다. 상기 범위에서, 저렴한 유약을 활용하더라도 법랑용 소재로 냉연 강판(100)을 활용할 수 있다. 상기 법랑밀착성이 상기 범위 보다 낮은 경우, 강내 수소에 의한 피쉬스케일 발생율이 높아지는 문제가 있다. In one embodiment, the cold-rolled steel sheet 100 may have enamel adhesion of 95% or more. Specifically, the enamel adhesion may be 96% or more. Within the above range, the cold-rolled steel sheet 100 can be used as a material for enamel even when an inexpensive glaze is used. When the enamel adhesion is lower than the above range, there is a problem in that the rate of occurrence of fish scale due to hydrogen in the steel increases.
일 실시예에서, 냉연강판(100)은 수소투과비가 600 초/mm2 이상일 수 있다. 구체적으로, 상기 수소투과비는 610초/mm2 이상일 수 있다. 상기 수소투과비의 상한 값은 특별히 한정하지 않으나, 예를 들어, 1,700 초/mm2 일 수 있다. 상기 수소 투과비는 법랑강의 적용 시 치명적인 결함인 피쉬스케일 결함의 저항성을 나타내는 내피쉬스케일성을 평가하는 대표적인 지수로서, 상기 냉연강판 내에 수소를 고착할 수 있는 능력을 의미한다. In one embodiment, the cold-rolled steel sheet 100 may have a hydrogen permeability ratio of 600 sec/mm 2 or more. Specifically, the hydrogen permeation rate may be 610 sec/mm 2 or more. The upper limit of the hydrogen permeation ratio is not particularly limited, but may be, for example, 1,700 sec/mm 2 . The hydrogen permeability ratio is a representative index for evaluating fishscale resistance indicating resistance to fishscale defects, which are fatal defects when enameled steel is applied, and means the ability to fix hydrogen into the cold-rolled steel sheet.
구체적으로, 상기 수소투과비는 강판의 일 방향에서 수소를 발생시키고 강판의 일 방향과 대향되는 타 방향으로 수소가 투과해 나오는 시간을 측정하여, 이를 소재 두께의 제곱으로 나누어 표기한 값이다. 상기 수소투과비가 과도하게 낮은 경우, 법랑 처리 후 200 ℃에서 24 시간 가속 열처리하여 피쉬스케일 결함의 저항성을 평가할 경우, 결함율이 50 % 이상으로 발생하여 안정적인 법랑 제품으로 사용하는데 있어 문제가 있다.Specifically, the hydrogen permeation ratio is a value expressed by dividing the time taken by generating hydrogen in one direction of the steel sheet and penetrating the hydrogen in the other direction opposite to one direction of the steel sheet, and dividing it by the square of the thickness of the material. When the hydrogen permeation ratio is excessively low, when the resistance of fishscale defects is evaluated by accelerated heat treatment at 200 ° C. for 24 hours after enamel treatment, the defect rate is more than 50%, so there is a problem in using it as a stable enamel product.
본 발명의 다른 실시예에 따른, 냉연강판(100)의 제조방법은 중량%로, C: 0.0003 내지 0.003 %, Mn: 0.25 내지 0.55 %, Si: 0.001 내지 0.03 %, Al: 0.0005 내지 0.0015 %, P: 0.01 내지 0.03 %, S: 0.001 내지 0.010 %, Cu: 0.03 내지 0.08 %, N: 0.008 내지 0.015 %, Mo: 0.1 내지 0.3 %, O: 0.025 내지 0.055 % 및 잔부의 Fe와 불가피한 불순물을 포함하는 강 슬라브를 재가열하는 단계, 가열된 슬라브를 열간압연하는 단계, 열간압연된 열연강판을 권취하는 단계, 권취된 상기 열연강판을 냉간압연하는 단계, 냉간압연된 냉연강판을 소둔 및 조질압연하여 소둔판을 제조하는 단계, 및 상기 소둔판을 법랑 소성 열처리하는 단계를 포함한다. 상기 강 슬라브에 대한 상세한 설명은 전술한 냉연 강판과 모순되지 않는 범위에서 동일한 바, 중복되는 설명은 생략한다.According to another embodiment of the present invention, a method for manufacturing a cold-rolled steel sheet 100 includes, by weight, C: 0.0003 to 0.003%, Mn: 0.25 to 0.55%, Si: 0.001 to 0.03%, Al: 0.0005 to 0.0015%, P: 0.01 to 0.03%, S: 0.001 to 0.010%, Cu: 0.03 to 0.08%, N: 0.008 to 0.015%, Mo: 0.1 to 0.3%, O: 0.025 to 0.055%, with the balance Fe and unavoidable impurities Reheating the steel slab, hot-rolling the heated slab, winding the hot-rolled hot-rolled steel sheet, cold-rolling the coiled hot-rolled steel sheet, annealing and temper-rolling the cold-rolled cold-rolled steel sheet for annealing A step of manufacturing a plate, and a step of subjecting the annealed plate to enamel firing heat treatment. A detailed description of the steel slab is the same as that of the cold-rolled steel sheet described above to the extent that it does not contradict, and thus, duplicate descriptions will be omitted.
강 슬라브를 재가열하는 단계는 후속되는 열간압연 공정을 원활하게 수행하고, 상기 강 슬라브를 균질화 처리하기 위한 단계이다. 상기 가열은 재가열을 의미할 수 있다.Reheating the steel slab is a step for smoothly performing a subsequent hot rolling process and homogenizing the steel slab. The heating may mean reheating.
일 실시예에서, 강 슬라브를 재가열하는 단계는 1,150 내지 1,280 ℃의 범위로 열간압연하는 단계일 수 있다. 구체적으로, 상기 재가열 온도 범위는 1,150 내지 1,280 ℃일 수 있다. 상기 온도 범위의 상한 값을 벗어나는 경우, 슬라브 가열 온도에서는 표면 스케일 양이 증가하여 재료의 손실이 커질 뿐만 아니라, 열원 상승에 따른 에너지 비용 증가의 문제가 대두된다. 상기 온도 범위의 하한 값을 벗어나는 경우, 열간압연 공정에서 압연 하중이 급격히 증가하여 열간 작업성이 저하되는 문제가 있다.In one embodiment, the step of reheating the steel slab may be a step of hot rolling in the range of 1,150 to 1,280 °C. Specifically, the reheating temperature range may be 1,150 to 1,280 °C. When the upper limit of the temperature range is exceeded, the amount of surface scale increases at the slab heating temperature, resulting in increased material loss and increased energy costs due to the increase in heat source. When the temperature is outside the lower limit of the temperature range, the rolling load rapidly increases in the hot rolling process, resulting in deterioration in hot workability.
일 실시예에서, 강 슬라브를 재가열하는 단계는 마무리 열간압연 온도가 890 내지 950 ℃의 온도 범위에서 수행될 수 있다. 구체적으로, 상기 마무리 열간압연 온도가 900 내지 945 ℃의 온도 범위에서 수행될 수 있다.In one embodiment, the step of reheating the steel slab may be performed at a finish hot rolling temperature in the range of 890 to 950 °C. Specifically, the finish hot rolling temperature may be carried out in a temperature range of 900 to 945 ℃.
상기 마무리 열간압연 온도가 상기 범위의 상한 값을 벗어나는 경우, 표면 스케일의 박리성이 떨어져 표면 결함 발생율이 높아지고 균일한 열간압연성이 확보되지 않음에 따라 충격 인성이 저하되는 문제가 있다. 상기 마무리 열간압연 온도가 상기 범위의 하한 값을 벗어나는 경우, 저온 영역에서 열간압연이 마무리 됨에 따라 결정립 혼립화가 급격하게 진해오디어 압연성 및 가공성의 저하를 초래하는 문제가 있다.When the finish hot rolling temperature is out of the upper limit of the range, there is a problem in that the peelability of the surface scale decreases and the incidence of surface defects increases and the impact toughness decreases as uniform hot rolling property is not secured. When the finish hot rolling temperature is out of the lower limit of the range, there is a problem in that the grain aggregation rapidly deteriorates the rollability and workability as the hot rolling is finished in the low temperature region.
일 실시예에서, 열간압연된 열연강판을 권취하는 단계는 580 내지 720 ℃의 온도 범위에서 수행될 수 있다. 구체적으로, 상기 온도 범위는 590 내지 700 ℃일 수 있다. 상기 열연강판은 권취 전에 런-아웃 테이블(Run-Out-Table, ROT)에서 냉각을 수행할 수 있다. In one embodiment, the step of winding the hot-rolled hot-rolled steel sheet may be performed at a temperature range of 580 to 720 °C. Specifically, the temperature range may be 590 to 700 °C. The hot-rolled steel sheet may be cooled on a run-out table (ROT) before winding.
상기 온도 범위의 상한 값을 벗어나는 경우, 권취 수행 시, 내식성이 저하되고 인(P)의 입계 편석을 촉진하여 냉간압연성이 저하되고 최종 제품의 가공성에도 악영향을 미치는 문제가 있다. 상기 온도 범위의 하한 값을 벗어나는 경우, 냉각과 균열처리하는 공정에서 폭 방향으로의 온도 불균일도가 증가함에 따라 석출 거동 차이에 의한 재질 편차가 커지고 법랑성이 저하되는 문제가 있다.If the temperature is out of the upper limit of the temperature range, corrosion resistance is lowered during winding, and grain boundary segregation of phosphorus (P) is promoted, thereby reducing cold rolling property and adversely affecting the workability of the final product. When the temperature is out of the lower limit of the temperature range, there is a problem in that the material variation due to the difference in precipitation behavior increases and the enamel property deteriorates as the temperature unevenness in the width direction increases in the cooling and soaking process.
일 실시예에서, 열간압연된 열연강판을 권취하는 단계 이후, 상기 열연강판을 산세하는 단계를 더 포함할 수 있다. 상기 산세하는 단계는 열간 압연 시 생성된 스케일을 제거할 수 있다.In one embodiment, after the step of winding the hot-rolled hot-rolled steel sheet, the step of pickling the hot-rolled steel sheet may be further included. The pickling step may remove scale generated during hot rolling.
일 실시예에서, 권취된 상기 열연강판을 냉간압연하는 단계는 60 내지 90 %의 냉간압하율로 수행될 수 있다. 구체적으로, 상기 냉간압하율은 63 내지 88 %의 범위에서 수행될 수 있다.In one embodiment, the step of cold rolling the coiled hot-rolled steel sheet may be performed at a cold rolling reduction ratio of 60 to 90%. Specifically, the cold rolling reduction may be performed in the range of 63 to 88%.
상기 냉간압하율이 상기 범위의 상한 값을 벗어나는 경우, 재질이 경화되어 가공성이 저하될 뿐만 아니라, 냉간압연기 부하가 증가하여 작업성이 저하되는 문제가 있다. 상기 냉간압하율이 상기 범위의 하한 값을 벗어나는 경우, 후속 열처리 공정에서의 재결정 구동력이 확보되지 않음에 따라 국부적으로 미재 결정립이 남아 있어 가공성이 저하되는 문제가 있다. When the cold rolling reduction ratio is out of the upper limit of the range, there is a problem in that the material is hardened and workability is lowered, as well as the cold rolling mill load is increased and workability is lowered. When the cold reduction ratio is out of the lower limit of the range, there is a problem in that workability is deteriorated because unreacted crystal grains remain locally as recrystallization driving force in the subsequent heat treatment process is not secured.
일 실시예에서, 냉간압연된 냉연강판을 소둔 및 조질압연하여 소둔판을 제조하는 단계는 상기 소둔 시 720 내지 850 ℃의 소둔 온도 범위에서 수행될 수 있고, 상기 소둔 온도 범위에서 10 내지 70 초 동안 수행될 수 있다.In one embodiment, the step of preparing an annealed sheet by annealing and temper rolling the cold-rolled cold-rolled steel sheet may be performed at an annealing temperature range of 720 to 850 ° C. during the annealing, for 10 to 70 seconds in the annealing temperature range. can be performed
상기 소둔 온도 범위의 상한 값을 벗어나는 경우, 고온 강도 저하에 의한 연화로 소둔 통판성이 저하되는 문제가 있다. 상기 소둔 온도 범위의 하한 값을 벗어나는 경우, 냉간압연에 의해 형성된 변형이 충분히 제거되지 않음에 따라 가공성이 현저히 저하되고 법랑특성을 확보할 수 없는 문제가 있다.When outside the upper limit of the annealing temperature range, there is a problem in that annealing passability is lowered due to softening due to a decrease in strength at high temperature. When the temperature is outside the lower limit of the annealing temperature range, the strain formed by cold rolling is not sufficiently removed, so that workability is significantly deteriorated and enamel characteristics cannot be secured.
상기 소둔 유지 시간이 상기 범위의 상한 값을 벗어나는 경우, 가공성은 양호하였지만 결정립 불균일도가 증가하여 법랑 특성을 열화시키는 문제가 있다. 상기 소둔 유지 시간이 상기 범위의 하한 값을 벗어나는 경우, 재결정이 완료되지 않아 미재결정립이 잔존함에 따라 성형성이 저하되는 문제가 있다.When the annealing holding time is outside the upper limit of the range, the workability is good, but the crystal grain non-uniformity increases, resulting in deterioration of enamel characteristics. When the annealing holding time is out of the lower limit of the range, there is a problem in that formability deteriorates as recrystallization is not completed and unrecrystallized grains remain.
일 실시예에서, 냉간압연된 냉연강판을 소둔 및 조질압연하여 소둔판을 제조하는 단계는, 상기 조질압연 시 2.5 % 이하의 압하율에서 수행될 수 있다. 상기 조질압연을 통하여 소재의 형상을 제어하고 원하는 표면조도를 얻을 수 있다. 구체적으로, 상기 조질압연은 0.3 내지 2.2 %의 압하율의 범위에서 수행될 수 있다.In one embodiment, the steps of preparing an annealed sheet by annealing and temper rolling the cold-rolled cold-rolled steel sheet may be performed at a reduction ratio of 2.5% or less during the temper rolling. Through the temper rolling, it is possible to control the shape of the material and obtain a desired surface roughness. Specifically, the temper rolling may be performed in the range of a reduction ratio of 0.3 to 2.2%.
상기 압하율의 범위가 상한 값을 벗어나는 경우, 가공경화에 의해 재질이 경화되고 가공성이 저하되는 문제가 있다. 또한, 법랑공정에서의 소성 열처리 시 조질압하율이 높은 경우, 변형유기(Strain Induced) 결정립 이상 성장이 발생하여 법랑 제품의 항복강도가 현저히 저하되어 내덴트성을 저하시키는 문제가 있다.When the range of the reduction ratio is out of the upper limit, there is a problem that the material is hardened by work hardening and workability is lowered. In addition, when the tempering reduction is high during firing heat treatment in the enamel process, strain-induced crystal grain growth occurs and the yield strength of the enamel product is significantly lowered, thereby reducing dent resistance.
일 실시예에서, 상기 소둔판을 법랑 소성 열처리하는 단계는 상기 소둔판을 780 내지 850 ℃의 온도 범위로 법랑 소성 열처리하는 단계일 수 있다. 상기 법랑 소성 열처리는 법랑 처리된 유약을 건조하기 위한 단계일 수 있다. 구체적으로, 상기 온도 범위는 790 내지 840 ℃일 수 있다.In one embodiment, the step of enamel baking heat treatment of the annealed sheet may be a step of enamel firing heat treatment of the annealed sheet at a temperature range of 780 to 850 °C. The enamel firing heat treatment may be a step for drying the enamel-treated glaze. Specifically, the temperature range may be 790 to 840 °C.
상기 온도 범위가 상한 값을 벗어나는 경우, 산화층 두께 증가로 표면 결함 발생율이 상승하고 에너지 사용량이 많아짐에 따라 제조 원가의 상승 요인으로 작용하는 문제가 있다. 상기 온도 범위가 하한 값을 벗어나는 경우, 유약의 젖음성이 저하되어 법랑 밀착 특성을 확보할 수 없는 문제가 있다.When the temperature range is out of the upper limit, the surface defect rate increases due to the increase in the thickness of the oxide layer, and as the energy consumption increases, there is a problem that acts as a factor in increasing manufacturing cost. When the temperature range is outside the lower limit, the wettability of the glaze is lowered, and thus, adhesion to the enamel cannot be secured.
이하, 실시예 및 비교예를 통해 본 발명에 따른 내피쉬스케일성이 우수한 법랑용 고강도 냉연강판 및 이의 제조 방법에 대해 상세하게 설명한다. 하기 실시예는 본 발명을 상세히 설명하기 위한 참조로, 본 발명이 이에 한정되는 것은 아니며, 여러 형태로 구현될 수 있다.Hereinafter, a high-strength cold-rolled steel sheet for porcelain enamel with excellent fishscale resistance and a manufacturing method thereof according to the present invention will be described in detail through Examples and Comparative Examples. The following examples are references for explaining the present invention in detail, but the present invention is not limited thereto, and may be implemented in various forms.
본 발명의 다른 실시예에 따른 냉연강판의 제조 방법은 탄소(C): 0.11~0.13%, 실리콘(Si): 0.05% 이하, 망간(Mn): 0.1~0.6%, 알루미늄(Al): 0.02~0.06%, 인(P): 0.015% 이하, 황(S): 0.015% 이하, 질소(N): 0.006% 이하, 잔부의 Fe 및 기타 불가피한 불순물을 포함하는 강 슬라브를 가열하는 단계, 가열된 슬라브를 열간압연하는 단계, 열간압연된 열연강판을 냉각하는 단계, 상기 냉각된 열연강판을 권취하는 단계, 권취된 상기 열연강판을 냉간압연하는 단계, 냉간압연된 냉연강판을 소둔하는 단계, 및 소둔된 냉연강판을 2차 압연하는 단계를 포함한다. 상기 강 슬라브에 대한 상세한 설명은 전술한 냉연 강판과 모순되지 않는 범위에서 동일한 바, 중복되는 설명은 생략한다.In a method for manufacturing a cold-rolled steel sheet according to another embodiment of the present invention, carbon (C): 0.11 to 0.13%, silicon (Si): 0.05% or less, manganese (Mn): 0.1 to 0.6%, aluminum (Al): 0.02 to 0.06% phosphorus (P): 0.015% or less, sulfur (S): 0.015% or less, nitrogen (N): 0.006% or less, heating a steel slab containing the balance of Fe and other unavoidable impurities, the heated slab hot-rolling, cooling the hot-rolled hot-rolled steel sheet, winding the cooled hot-rolled steel sheet, cold-rolling the coiled hot-rolled steel sheet, annealing the cold-rolled cold-rolled steel sheet, and annealing the Secondary rolling of the cold-rolled steel sheet is included. A detailed description of the steel slab is the same as that of the cold-rolled steel sheet described above to the extent that it does not contradict, and thus, duplicate descriptions will be omitted.
먼저, 강 슬라브를 가열한다. 상기 강 슬라브를 가열하는 단계는 1,150 ℃ 이상에서 수행될 수 있다. 상기 강 슬라브를 가열하는 단계는 강중에 생성된 석출물을 재고용시켜야 하기 때문에 1,150 ℃ 이상의 온도가 필요하다.First, the steel slab is heated. Heating the steel slab may be performed at 1,150 °C or higher. In the step of heating the steel slab, a temperature of 1,150° C. or higher is required because the precipitate formed in the steel must be re-dissolved.
다음으로, 가열된 슬라브를 열간압연하는 단계는 가열된 슬라브를 열간 압연하여 열연강판을 얻을 수 있다. 일 실시예에서, 상기 강 슬라브를 Ar3 이상의 온도에서 열간 마무리 압연이 수행될 수 있다. 상기 Ar3 이상의 온도는 890 ℃ 이상일 수 있다. 상기 열간 마무리 압연이 상기 Ar3 이상의 온도에서 수행됨에 따라, 오스테나이트 단상역에서 압연이 수행될 수 있다. 상기 온도 범위를 벗어나는 범위에서 압연이 수행될 경우, 불균일한 재질로 인해 압연 안정성이 떨어지는 문제가 있다.Next, in the step of hot-rolling the heated slab, a hot-rolled steel sheet may be obtained by hot-rolling the heated slab. In one embodiment, hot finish rolling may be performed on the steel slab at a temperature of Ar3 or higher. The temperature of Ar3 or higher may be 890 °C or higher. As the hot finish rolling is performed at a temperature of Ar3 or higher, rolling may be performed in the austenite single phase region. When rolling is performed in a range outside the above temperature range, there is a problem of poor rolling stability due to non-uniform material.
열간압연된 열연강판을 냉각하는 단계는 150 내지 1,200 초의 시간 범위 동안 유지되도록 냉각한다. 상기 시간 범위의 하한 값을 벗어나는 경우, 펄라이트 상이 다량으로 형성되어 최종 소재 내에 크기가 큰 탄화물이 발생하게 되는 문제가 있다. 상기 탄화물의 크기가 클 경우, 상기 탄화물이 크랙의 시발점이 되어 구멍확장율을 감소시키는 문제가 있다.The step of cooling the hot-rolled hot-rolled steel sheet is cooled so as to be maintained for a time range of 150 to 1,200 seconds. If it is out of the lower limit of the time range, there is a problem in that a large amount of pearlite phase is formed and carbide with a large size is generated in the final material. When the size of the carbide is large, there is a problem in that the carbide becomes a starting point of a crack and reduces a hole expansion rate.
상기 시간 범위의 상한 값을 벗어나는 경우, 펄라이트 상의 생성은 억제되지만 열연강판 표면의 산화에 의한 표면산화층이 두껩게 형성되는 문제가 있다. 상기 표면산화층이 두껍게 형성될 경우, 냉간압연 전 산세 시간이 길어질 뿐만 아니라, 표면결함을 유발할 가능성이 크게 증가하는 문제가 있다. 구체적으로, 열간압연된 열연강판을 냉각하는 단계는 710 내지 860 ℃ 사이의 온도에서 150 내지 1,200 초 간 유지되도록 710 ℃까지 냉각할 수 있다.When the upper limit of the time range is exceeded, the generation of the pearlite phase is suppressed, but there is a problem in that a thick surface oxide layer is formed due to oxidation of the surface of the hot-rolled steel sheet. When the surface oxide layer is formed to be thick, there is a problem in that the pickling time before cold rolling is increased and the possibility of causing surface defects is greatly increased. Specifically, the step of cooling the hot-rolled hot-rolled steel sheet may be cooled to 710 °C to be maintained at a temperature between 710 and 860 °C for 150 to 1,200 seconds.
상기 냉각된 열연강판을 권취하는 단계는 상기 냉각된 열연강판을 560 내지 700 ℃에서 권취할 수 있다. 강도 및 가공성에 적당한 크기의 결정립 사이즈를 확보하기 위해 상기 냉각된 열연강판을 권취하는 단계는 상기 권취 온도 범위로 제어할 수 있다. 상기 권취 온도가 과도하게 낮은 경우, 결정립이 과도하게 미세하게 되는 문제가 있고, 상기 권취 온도가 과도하게 높은 경우, 결정립이 과도하게 조대하게 되는 문제가 있다.In the winding of the cooled hot-rolled steel sheet, the cooled hot-rolled steel sheet may be wound at 560 to 700 °C. The step of winding the cooled hot-rolled steel sheet in order to secure a grain size suitable for strength and workability may be controlled within the winding temperature range. When the coiling temperature is excessively low, there is a problem in that crystal grains become excessively fine, and in case the coiling temperature is excessively high, there is a problem in that crystal grains become excessively coarse.
권취된 상기 열연강판을 냉간압연하는 단계는 80 내지 95 %의 압하율로 냉간압연하여 냉연강판을 제조할 수 있다. 통상적인 상기 열연강판의 두께는 2 내지 4 mm로, 0.4 mm의 두께를 줄이기 위해서 80 % 이상의 압하율이 필요하다.In the cold rolling of the rolled hot-rolled steel sheet, a cold-rolled steel sheet may be manufactured by cold rolling at a reduction ratio of 80 to 95%. The thickness of the conventional hot-rolled steel sheet is 2 to 4 mm, and a reduction ratio of 80% or more is required to reduce the thickness of 0.4 mm.
상기 압하율의 상한 값을 벗어나는 경우, 압연에 의한 변형저항이 과하게 증가하여 압연이 어려운 문제가 있다. 상기 압하율의 하한 값을 벗어나는 경우, 상기 냉연강판의 목표로 한 두께에 도달하지 못하는 문제가 있다.When the reduction ratio is out of the upper limit, the deformation resistance due to rolling is excessively increased, making rolling difficult. If the reduction ratio is out of the lower limit value, there is a problem that the target thickness of the cold-rolled steel sheet cannot be reached.
일 실시예에서, 권취된 상기 열연강판을 냉간압연하는 단계 이전에, 산세하는 단계를 더 포함할 수 있다. 상기 산세하는 단계는 열간 압연 시 생성된 스케일을 제거할 수 있다.In one embodiment, prior to the step of cold rolling the coiled hot-rolled steel sheet, the step of pickling may be further included. The pickling step may remove scale generated during hot rolling.
냉간압연된 냉연강판을 소둔하는 단계는 620 내지 760 ℃의 온도에서 소둔하여 소둔 강판을 제조한다. 상기 냉연강판의 소둔을 통해, 냉간압연 시 형성된 내부 응력을 제거하고 가공성을 확보할 수 있다. 상기 내부 응력을 제거하고, 상기 가공성을 확보하기 위해 재결정이 일어나도록 충분히 높은 온도에서 소둔하는 과정이 필요하다.The step of annealing the cold-rolled cold-rolled steel sheet is annealed at a temperature of 620 to 760 ° C. to prepare an annealed steel sheet. Through annealing of the cold-rolled steel sheet, it is possible to remove internal stress formed during cold rolling and secure workability. In order to remove the internal stress and secure the processability, a process of annealing at a sufficiently high temperature is required to allow recrystallization to occur.
상기 온도의 상한 값을 벗어나는 경우, 고온강도 저하에 의한 판파단 결함을 유발할 수 있다. 상기 온도의 하한 값을 벗어나는 경우, 본 발명의 성분계를 갖는 냉연강판의 재결정이 발생하지 않는 문제가 있다. If the temperature is out of the upper limit value, a plate breakage defect due to a decrease in high-temperature strength may be caused. When the temperature is out of the lower limit, there is a problem in that recrystallization of the cold-rolled steel sheet having the component system of the present invention does not occur.
소둔된 냉연강판을 2차 압연하는 단계는 상기 소둔된 냉연강판을 6 내지 18 %의 압하율로 2차 압연하여 최종 강판을 제조할 수 있다. 상기 압하율의 상한 값을 벗어나는 경우, 연신율의 하락에 의해 원하는 수준의 가공성을 확보하지 못하는 문제가 있다. 상기 압하율의 하한 값을 벗어나는 경우, 목표로한 강도를 얻기에 충분하지 않은 문제가 있다.In the secondary rolling of the annealed cold-rolled steel sheet, a final steel sheet may be manufactured by secondary rolling the annealed cold-rolled steel sheet at a reduction ratio of 6 to 18%. If the reduction ratio is out of the upper limit, there is a problem in that the desired level of processability cannot be secured due to the decrease in elongation. If the reduction ratio is out of the lower limit value, there is a problem that it is not sufficient to obtain the target strength.
이하, 실시예 및 비교예를 통해 본 발명에 따른 내피쉬스케일성이 우수한 법랑용 고강도 냉연강판 및 이의 제조 방법에 대해 상세하게 설명한다. 하기 실시예는 본 발명을 상세히 설명하기 위한 참조로, 본 발명이 이에 한정되는 것은 아니며, 여러 형태로 구현될 수 있다.Hereinafter, a high-strength cold-rolled steel sheet for vitreous enameling with excellent fishscale resistance according to the present invention and a manufacturing method thereof will be described in detail through Examples and Comparative Examples. The following examples are references for explaining the present invention in detail, but the present invention is not limited thereto, and may be implemented in various forms.
<발명강 1 내지 5와 비교강 1 내지 5에 따른 강 슬라브><Steel slabs according to Inventive Steels 1 to 5 and Comparative Steels 1 to 5>
하기 표 1은 발명강 1 내지 5와 비교강 1 내지 5에 대한 주요 성분들의 조성을 나타낸 것이다. 하기 표 1의 조성에 따른 합금 성분으로 전로, 2차 정련, 및 연주 공정을 경유한 슬라브를 제조하였다. 또한, 상기 주요 성분들의 조성에 따라, 식 1 및 식 2의 값을 나타낸다. 상기 식 1은 ([Cu] × [Si])/[P]을 나타내고, 상기 식 2는 ([Al] × [Mo])/([C] + [N])을 나타낸다. 상기 식 1 및 상기 식 2의 [Cu], [Si], [P], [Al], [Mo], [C], 및 [N]은 각각의 중량%를 의미한다.Table 1 below shows the composition of main components for Inventive Steels 1 to 5 and Comparative Steels 1 to 5. A slab was prepared through a converter, secondary refining, and casting process with the alloy components according to the composition of Table 1 below. In addition, the values of Equations 1 and 2 are shown according to the composition of the main components. Equation 1 represents ([Cu] × [Si])/[P], and Equation 2 represents ([Al] × [Mo])/([C] + [N]). [Cu], [Si], [P], [Al], [Mo], [C], and [N] in the above formulas 1 and 2 mean the respective weight%.
구분division CC MnMn SiSi AlAl PP SS NN CuCu OO MoMo (Cu*Si)/P
중량비
(Cu*Si)/P
weight ratio
(Al*Mo)/(C+N)
중량비
(Al*Mo)/(C+N)
weight ratio
발명강1invention steel 1 0.00150.0015 0.480.48 0.0080.008 0.00120.0012 0.0190.019 0.0080.008 0.00910.0091 0.0380.038 0.0280.028 0.260.26 0.01600.0160 0.02940.0294
발명강2invention steel 2 0.00260.0026 0.390.39 0.0140.014 0.00090.0009 0.0240.024 0.0050.005 0.01340.0134 0.0520.052 0.0310.031 0.140.14 0.03030.0303 0.00790.0079
발명강3invention steel 3 0.00100.0010 0.510.51 0.0110.011 0.00130.0013 0.0170.017 0.0070.007 0.01050.0105 0.0710.071 0.0480.048 0.180.18 0.04590.0459 0.02030.0203
발명강4Invention Steel 4 0.00220.0022 0.280.28 0.0240.024 0.00100.0010 0.0150.015 0.0030.003 0.01220.0122 0.0460.046 0.0450.045 0.270.27 0.07360.0736 0.01880.0188
발명강5invention steel 5 0.00090.0009 0.350.35 0.0060.006 0.00070.0007 0.0260.026 0.0040.004 0.01410.0141 0.0650.065 0.0370.037 0.200.20 0.01500.0150 0.00930.0093
비교강1comparative steel 1 0.00520.0052 0.340.34 0.0120.012 0.00090.0009 0.0030.003 0.0050.005 0.01240.0124 0.0250.025 0.0020.002 0.120.12 0.10000.1000 0.00610.0061
비교강2comparative steel 2 0.00180.0018 0.120.12 0.0100.010 0.03250.0325 0.0260.026 0.0030.003 0.00350.0035 0.4090.409 0.0270.027 0.220.22 0.15730.1573 1.34911.3491
비교강3comparative lecture 3 0.00210.0021 0.680.68 0.0070.007 0.00030.0003 0.0380.038 0.0070.007 0.01040.0104 0.0430.043 0.0750.075 0.010.01 0.00790.0079 0.00020.0002
비교강4comparative lecture 4 0.00270.0027 0.420.42 0.2150.215 0.00090.0009 0.0250.025 0.0040.004 0.01720.0172 0.0510.051 0.0300.030 0.920.92 0.43860.4386 0.04160.0416
비교강5comparative steel 5 0.06720.0672 0.290.29 0.0080.008 0.00120.0012 0.0480.048 0.0390.039 0.00970.0097 0.0530.053 0.0450.045 0.280.28 0.00880.0088 0.00440.0044
상기 표 1을 살펴보면, 상기 비교강들은 상기 발명강들과 비교하여, 본 발명의 강 조성 범위에 포함되지 않음을 확인할 수 있고, 이에 따라, 상기 식 1 및 식 2의 값에 포함되지 않음을 확인할 수 있다.Looking at Table 1, it can be confirmed that the comparative steels are not included in the composition range of the steel of the present invention compared to the inventive steels, and accordingly, it is confirmed that they are not included in the values of Equations 1 and 2 above. can
<실시예 1 내지 9 및 비교예 1 내지 9><Examples 1 to 9 and Comparative Examples 1 to 9>
하기 표 2는 상기 슬라브를 하기 표 2에서 개시하고 있는 제조 조건에 따라 냉연강판을 제조하였다. 구체적으로, 상기 슬라브를 가열로에서 2 시간 유지한 후 열간압연을 실시하였으며, 이때, 열연강판의 두께는 4.0 mm로 조절하였다. 열간압연된 열연강판은 산세 처리 후 표면의 산화 피막을 제거한 후 각각의 압하율로 냉각압연을 실시하였다.In Table 2 below, cold-rolled steel sheets were manufactured according to the manufacturing conditions disclosed in Table 2 below for the slab. Specifically, after maintaining the slab in a heating furnace for 2 hours, hot rolling was performed, and at this time, the thickness of the hot-rolled steel sheet was adjusted to 4.0 mm. The hot-rolled hot-rolled steel sheet was subjected to cold rolling at each reduction ratio after pickling and removing the oxide film on the surface.
구분division 강종steel grade 슬라브
재가열온도
(℃)
slab
reheat temperature
(℃)
마무리
열연온도
(℃)
finish
hot rolling temperature
(℃)
권취
온도
(℃)
winding
temperature
(℃)
냉간
압하율
(%)
cold
reduction rate
(%)
소둔
온도
(℃)
Annealing
temperature
(℃)
유지
시간
(초)
maintain
hour
(candle)
조질
압하율
(%)
tempering
reduction rate
(%)
(Rmax*20Se)/Pc (R max *20S e )/P c value 법랑
소성온도
(℃)
enamel
firing temperature
(℃)
실시예1Example 1 발명강1invention steel 1 12201220 910910 680680 7070 750750 6060 0.80.8 0.5291 0.5291 820820
실시예2Example 2 발명강1invention steel 1 12201220 910910 680680 7575 780780 4040 1.31.3 0.7257 0.7257 820820
실시예3Example 3 발명강1invention steel 1 12201220 910910 680680 8080 830830 1515 1.91.9 0.9927 0.9927 820820
실시예4Example 4 발명강2invention steel 2 12401240 940940 640640 6565 780780 5050 0.50.5 0.6032 0.6032 800800
실시예5Example 5 발명강2invention steel 2 12401240 940940 640640 8585 820820 2020 1.51.5 0.8850 0.8850 800800
실시예6Example 6 발명강3invention steel 3 12601260 920920 660660 7575 750750 3535 0.80.8 0.5821 0.5821 830830
실시예7Example 7 발명강4Invention Steel 4 12401240 920920 620620 7575 820820 2020 1.21.2 0.6903 0.6903 830830
실시예8Example 8 발명강5invention steel 5 12501250 920920 620620 8080 800800 4040 1.91.9 0.9656 0.9656 830830
실시예9Example 9 발명강5invention steel 5 12501250 920920 620620 7070 830830 4040 2.02.0 0.9770 0.9770 830830
비교예1Comparative Example 1 발명강1invention steel 1 10801080 750750 680680 8080 880880 9090 0.80.8 0.4231 0.4231 820820
비교예2Comparative Example 2 발명강2invention steel 2 12201220 940940 780780 5050 820820 3030 2.92.9 1.2022 1.2022 750750
비교예3Comparative Example 3 발명강3invention steel 3 12501250 920920 480480 7575 680680 55 0.80.8 0.35720.3572 890890
비교예4Comparative Example 4 발명강4Invention Steel 4 12501250 970970 620620 9595 820820 2020 0.10.1 0.1504 0.1504 820820
비교예5Comparative Example 5 비교강1comparative steel 1 12401240 910910 640640 7575 820820 4040 0.50.5 0.2015 0.2015 820820
비교예6Comparative Example 6 비교강2comparative steel 2 12401240 910910 640640 7575 820820 3030 1.21.2 0.41530.4153 820820
비교예7Comparative Example 7 비교강3comparative lecture 3 12401240 910910 640640 8080 800800 6060 1.61.6 1.3246 1.3246 820820
비교예8Comparative Example 8 비교강4comparative lecture 4 12401240 910910 640640 8080 800800 2020 0.80.8 0.3913 0.3913 820820
비교예9Comparative Example 9 비교강5comparative steel 5 12401240 910910 640640 8080 800800 4040 1.21.2 0.42340.4234 820820
상기 표 2를 살펴보면, 실시예 1 내지 9는 본 발명의 조성 범위에 포함되는 발명강 1 내지 5의 슬라브를 이용하여, 본 발명의 슬라브 재가열온도, 마무리 열연온도, 권취온도, 냉간 압하율, 소둔 온도, 유지 시간, 조질 압연율, 및 법랑 소성온도 범위에서 수행한 것이다. 이에 반해, 비교예 1 내지 4 는 본 발명의 조성 범위에 포함되는 발명강 1 내지 4의 슬라브를 이용하여, 상기 표 2의 제조 조건 중 적어도 하나가 본 발명의 조건에 해당하지 않도록 제어한 것이다. 또한, 비교예 5 내지 9는 상기 표 1의 비교강 1 내지 5를 상기 표 2의 제조 조건이 본 발명의 범위에 포함되도록 제어한 것이다.Looking at Table 2, Examples 1 to 9 use the slabs of inventive steels 1 to 5 included in the composition range of the present invention, the slab reheating temperature, finish hot rolling temperature, winding temperature, cold reduction rate, annealing of the present invention It was carried out within the range of temperature, holding time, temper rolling rate, and enamel firing temperature. On the other hand, Comparative Examples 1 to 4 are controlled so that at least one of the manufacturing conditions in Table 2 does not correspond to the conditions of the present invention using the slabs of Inventive Steels 1 to 4 included in the composition range of the present invention. In Comparative Examples 5 to 9, comparative steels 1 to 5 of Table 1 were controlled so that the manufacturing conditions of Table 2 were included within the scope of the present invention.
<냉연강판의 특성 측정 결과><Measurement results of cold-rolled steel sheet properties>
하기 표 3은 상기 표 1의 발명강 및 비교강을 상기 표 2의 제조 조건에서 제조한 실시예 1 내지 9 및 비교예 1 내지 9의 산화층의 두께, 통판성, 항복강도, 기포 결함 발생 유무, 피쉬스케일 발생 유무, 법랑밀착성, 및 수소투과비를 나타낸다.Table 3 below shows the thickness of the oxide layer, sheet permeability, yield strength, cell defect occurrence or not, The presence or absence of fish scale, enamel adhesion, and hydrogen permeability are shown.
상기 산화층의 두께는 GDS(Glow Discharge Spectroscopy)를 활용하여 강판 표면에서부터 내부 방향으로 산소 농도를 분석하여 산소를 5 % 포함하는 지점을 기준으로 산화층과 모재를 구분하여 산소를 5 % 포함하는 지점까지의 두께를 측정하고, 이를 3회 측정하여 평균 값을 표시하였다. 상기 통판성의 경우, 연주, 열연, 및 냉연 공정에서 통상 소재의 생산성에 비하여 90 % 이상의 조업성을 나타내면 양호(“○”로 표시한다)이고, 생산성이 90 % 미만이거나 결함 발생율이 10 % 이상인 경우는 불량(“×”로 표시한다)으로 표시한다.The thickness of the oxide layer is determined by analyzing the oxygen concentration from the surface of the steel sheet to the inside using GDS (Glow Discharge Spectroscopy), and by dividing the oxide layer and the base material based on the point containing 5% oxygen, to the point containing 5% oxygen. The thickness was measured, measured three times, and the average value was displayed. In the case of the sheet permeability, when the operability is 90% or more compared to the productivity of ordinary materials in the casting, hot rolling, and cold rolling processes, it is good (indicated by “○”), and the productivity is less than 90% or the defect rate is 10% or more is marked as defective (marked with “×”).
상기 항복강도는 강판에 대해 법랑 유약 건조 공정을 모사하기 위해, 소성로에서 각각의 온도로 15 분 동안 소성 열처리한 시편에 대하여 인장시험편을 제작(규격 ASTM 13B)하여 크로스헤드 스피드 10 mm/분으로 인장시험을 실시하여 측정하였다.In order to simulate the enamel glaze drying process for the steel sheet, tensile test specimens were prepared (standard ASTM 13B) for specimens subjected to firing and heat treatment for 15 minutes at each temperature in a firing furnace, and tensile tests were performed at a crosshead speed of 10 mm/min. It was measured by conducting a test.
법랑처리 시편은 시험 목적에 부응하도록 용도별 적당한 크기로 절단하였으며 열처리가 완료된 법랑 처리용 시편은 완전히 탈지한 후 피쉬스케일 결함에 비교적 취약한 표준 유약(Check Frit)을 도포하고, 300 ℃에서 10 분 동안 유지하여 수분을 제거하였다. 건조가 끝난 시편은 밀착성과 같은 법랑 특성의 차별성을 부각하기 위해 각각의 소성온도에서 15분 간 소성 처리를 실시한 후 상온까지 냉각하였으며, 이때 소성로의 분위기 조건은 노점 온도 20 ℃로 피쉬스케일 결함이 발생하기 쉬운 가혹한 조건을 선택하였다.Enamel treatment specimens were cut into appropriate sizes for each purpose to meet the purpose of the test, and after heat treatment was completely degreased, standard glaze (Check Frit), which was relatively vulnerable to fish scale defects, was applied and maintained at 300 ° C for 10 minutes. to remove moisture. After drying, the specimen was fired at each firing temperature for 15 minutes to highlight the difference in enamel characteristics such as adhesion, and then cooled to room temperature. Severe conditions that were easy to achieve were selected.
법랑 처리가 완료된 시편은 200 ℃의 오븐에서 24 시간 동안 유지하는 피쉬스케일 가속 실험을 실시하였다. 상기 피쉬스케일 가속 처리 후 피쉬스케일 결함 발생 유무를 육안으로 관찰하여, 피쉬스케일 결함이 발생하지 않은 경우에는 양호(“○”로 표시한다)로 표시하고, 상기 피쉬스케일 결함이 발생한 경우에는 불량(“×”로 표시한다)으로 표시한다.The specimens after the enamel treatment were subjected to a fishscale acceleration test in which they were kept in an oven at 200 °C for 24 hours. After the fishscale acceleration process, the presence or absence of fishscale defects is observed with the naked eye, and when no fishscale defects occur, it is marked as good (marked with “○”), and when the fishscale defects occur, it is marked as bad (“○”). ×”).
강판과 유약간의 밀착성을 평가한 법랑밀착성은 미국 재료시험협회규격, ASTM C313-78에 정의된 바와 같이 강구로 법랑층에 일정 하중을 가한 후 이 부위의 통전 정도를 평가함으로써 법랑 유약층의 탈락 정도를 지수화하여 나타내었다. 본 발명에서 법랑밀착성 평가 결과는 비교적 저가 유약에서의 적용 안정성 확보 측면에서 95 % 이상의 밀착성 확보를 목표로 설정하였다.Enamel adhesion, which evaluates the adhesion between the steel plate and the glaze, is evaluated by applying a certain load to the enamel layer with a steel ball as defined in ASTM C313-78, the American Society for Testing and Materials, and then evaluating the degree of conduction in this area. The degree was expressed as an index. In the present invention, the enamel adhesion evaluation results set the goal of securing adhesion of 95% or more in terms of securing application stability in relatively inexpensive glazes.
상기 기포 결함은 법랑 처리 후 200 ℃의 오븐에서 24 시간 동안 유지한 시편에 대하여 법랑 표면을 육안으로 관찰하여, 각각 우수(“○”로 표시한다) 및 불량(“×”로 표시한다)으로 판정하였다. 상기 수소투과비는 법랑의 치명적인 결함인 피쉬스케일에 대한 저항성을 평가하는 지수 중 하나로, 유럽 규격(EN10209-2013)에 표기된 실험법에 의해 강판의 한 방향에서 수소를 발생시키고 반대편으로 수소가 투과해 나온 시간(ts, 단위: 초)을 측정하여, 이를 소재 두께(t, 단위: mm) 제곱으로 표시한 값으로, ts/t2 (단위: 초/mm2)로 나타낸다.The bubble defects are judged as excellent (marked as “○”) and poor (marked as “x”), respectively, by visually observing the enamel surface of the specimen kept in an oven at 200 ° C. for 24 hours after enamel treatment. did The hydrogen permeation ratio is one of the indices for evaluating resistance to fishscale, a fatal defect of enamel. According to the test method indicated in the European standard (EN10209-2013), hydrogen is generated in one direction of the steel sheet and hydrogen permeates to the other side. Time (ts, unit: second) is measured, and this is a value expressed as the square of the material thickness (t, unit: mm), and is expressed as ts/t2 (unit: second/mm 2 ).
구 분division 산화층
두께 (㎛)
oxide layer
Thickness (㎛)
통판성permeability 항복강도
(㎫)
yield strength
(MPa)
기포 결함
발생 유무
bubble defect
Occurrence or not
피쉬스케일
발생 유무
fish scale
Occurrence or not
법랑밀착성
(%)
Adhesion to enamel
(%)
수소투과비
(초/㎟)
hydrogen permeation ratio
(second/㎟)
발명예1Invention example 1 0.0240.024 OO 247247 OO OO 98.998.9 10081008
발명예2Invention example 2 0.0190.019 OO 254254 OO OO 100.0100.0 11261126
발명예3Invention example 3 0.0120.012 OO 263263 OO OO 99.299.2 989989
발명예4Invention example 4 0.0100.010 OO 256256 OO OO 99.599.5 883883
발명예5Invention Example 5 0.0170.017 OO 277277 OO OO 99.499.4 10141014
발명예6Example 6 0.0260.026 OO 309309 OO OO 99.399.3 942942
발명예7Example 7 0.0220.022 OO 284284 OO OO 100.0100.0 12031203
발명예8Invention Example 8 0.0150.015 OO 251251 OO OO 98.898.8 869869
발명예9Inventive Example 9 0.0090.009 OO 271271 OO OO 99.499.4 972972
비교예1Comparative Example 1 0.0360.036 XX 202202 OO XX 75.575.5 548548
비교예2Comparative Example 2 0.0030.003 XX 104104 XX XX 80.980.9 508508
비교예3Comparative Example 3 0.0020.002 XX 148148 XX XX 82.482.4 498498
비교예4Comparative Example 4 0.0040.004 XX 211211 XX XX 80.180.1 412412
비교예5Comparative Example 5 0.0030.003 OO 158158 XX XX 87.487.4 525525
비교예6Comparative Example 6 0.0040.004 XX 166166 OO XX 70.370.3 392392
비교예7Comparative Example 7 0.0010.001 OO 169169 XX XX 82.482.4 438438
비교예8Comparative Example 8 0.0020.002 XX 194194 XX XX 84.784.7 306306
비교예9Comparative Example 9 0.0030.003 OO 241241 XX XX 58.458.4 284284
상기 표 3을 참조하면, 본 발명의 성분 조성, 제조 조건, 표면 특성, 치 산화층 두께와 같은 다양한 특성을 모두 만족하는 발명예 1 내지 9는 통판성이 양호할 뿐만 아니라, 산화층의 두께와 같은 관련 지수들이 본 발명의 범위를 만족하였다. 또한, 발명예 1 내지 9는 피쉬스케일 및 기포 결함과 같은 법랑 결함법랑 결함이 발생하지 않을 뿐만 아니라, 수소투과비 600 초/mm2 이상, 법랑밀착성 지수 95 % 이상, 법랑 소성 열처리 후 항복강도 220 MPa 이상을 만족하여 본 발명이 목표로 하였던 특성을 확보할 수 있다.이에 반해, 본 발명의 조성을 만족하지 못하는 비교예 5 내지 9의 경우, 대부분 본 발명에서 제시한 표면 산화층의 두께, 수소투과비, 및 법랑밀착성 등을 만족하지 못하였을 뿐만 아니라, 대부분의 경우, 법랑 처리 후 육안 관찰에서도 피쉬스케일이나 기포 결함이 발생하여 목표로 하는 용도로의 적용성에 문제가 있다.또한, 본 발명의 조성을 만족하였으나, 열간압연시의 제반 소둔 공정에서의 제조 조건이 본 발명의 관리 범위를 만족하지 못한 비교예 1 내지 4는 표면 산화층의 두께가 본 발명에서 제시한 범위를 벗어났으며, 법랑밀착성이 95 % 미만이거나, 법랑 처리 후 기포 결함 또는 피쉬스케일과 같은 법랑 결함이 발생하는 것을 확인할 수 있었으며, 통판성이 좋지 않았으며, 법랑 소성 열처리 후의 항복강도도 220 MPa 미만으로 나타나는 것과 같이 전체적으로 목표로 하는 특성을 확보할 수 없었다.이와 같이, 본 발명의 일 실시예에 따른, 법랑밀착성 및 내피쉬스케일성이 우수한 법랑용 냉연강판은 상기 합금 조성 및 합금 범위를 만족함으로써, 내부 방향으로 형성된 산화층의 두께를 적정 수준으로 제어할 수 있고, 이를 통해 내피쉬스케일성이 우수한 법랑용 고강도 냉연강판을 제공할 수 있다.Referring to Table 3, Inventive Examples 1 to 9 satisfying various characteristics such as component composition, manufacturing conditions, surface characteristics, and oxidation layer thickness of the present invention not only have good sheet-permeability, but also have relevant properties such as the thickness of the oxide layer. The indices met the scope of the present invention. In addition, inventive examples 1 to 9 do not generate enamel defects such as fish scale and bubble defects, and have a hydrogen permeability ratio of 600 sec/mm2 or more, an enamel adhesion index of 95% or more, and a yield strength of 220 MPa after firing and heat treatment of the enamel. By satisfying the above, it is possible to secure the characteristics targeted by the present invention. On the other hand, in the case of Comparative Examples 5 to 9, which do not satisfy the composition of the present invention, the thickness of the surface oxide layer, the hydrogen permeation ratio, and enamel adhesion were not satisfied, and in most cases, fish scale or air bubble defects occurred even in visual observation after enamel treatment, resulting in a problem in applicability to the target use. In addition, the composition of the present invention was satisfied, but , In Comparative Examples 1 to 4, in which manufacturing conditions in various annealing processes during hot rolling did not satisfy the management range of the present invention, the thickness of the surface oxide layer was outside the range suggested in the present invention, and the enamel adhesion was less than 95%. Or, it was confirmed that enamel defects such as bubble defects or fish scales occurred after enamel treatment, and the sheetability was poor, and the yield strength after enamel firing heat treatment was less than 220 MPa. As described above, the cold-rolled steel sheet for enamel having excellent enamel adhesion and fishscale resistance according to an embodiment of the present invention satisfies the above alloy composition and alloy range, thereby reducing the thickness of the oxide layer formed in the inward direction to an appropriate level. Through this, it is possible to provide a high-strength cold-rolled steel sheet for enamel with excellent fishscale resistance.
또한, 상기 냉연강판은 고속 연속소둔 조업을 통해서도 법랑 특성이 현저히 향상되며 법랑 소성 열처리 후의 강도 수준이 높게 유지될 수 있고, 연속소둔로에서 열처리 및 조질압연 단계에서 표면 조도 특성을 적정화하여 밀착성을 높일 수 있으며, 강판 내 표면층 잔류 질소와 같은 법랑 소성 시의 결정립 성장을 억제함으로써 고온 소성 후에도 안정적인 재질 특성을 확보할 수 있다.In addition, the cold-rolled steel sheet has significantly improved enamel characteristics even through high-speed continuous annealing operation, can maintain a high level of strength after enamel firing heat treatment, and optimizes surface roughness characteristics in the heat treatment and temper rolling step in a continuous annealing furnace to increase adhesion. In addition, stable material properties can be secured even after high-temperature firing by suppressing crystal grain growth during enamel firing, such as residual nitrogen in the surface layer of the steel sheet.
본 발명은 상기 구현예 및/또는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 구현예 및/또는 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.The present invention is not limited to the above embodiments and / or embodiments, but can be manufactured in various different forms, and those skilled in the art to which the present invention belongs may change the technical spirit or essential features of the present invention. It will be appreciated that it may be embodied in other specific forms without Therefore, it should be understood that implementations and/or examples described above are illustrative in all respects and not restrictive.

Claims (11)

  1. 중량%로, C: 0.0003 내지 0.003%, Mn: 0.25 내지 0.55%, Si: 0.001 내지 0.03%, Al: 0.0005 내지 0.0015%, P: 0.01 내지 0.03%, S: 0.001 내지 0.010%, Cu: 0.03 내지 0.08%, N: 0.008 내지 0.015%, Mo: 0.1 내지 0.3%, O: 0.025 내지 0.055% 및 잔부의 Fe와 불가피한 불순물을 포함하고,In weight percent, C: 0.0003 to 0.003%, Mn: 0.25 to 0.55%, Si: 0.001 to 0.03%, Al: 0.0005 to 0.0015%, P: 0.01 to 0.03%, S: 0.001 to 0.010%, Cu: 0.03 to 0.03% 0.08%, N: 0.008 to 0.015%, Mo: 0.1 to 0.3%, O: 0.025 to 0.055%, and the balance Fe and unavoidable impurities,
    산화층을 포함하며,contains an oxide layer;
    냉연강판의 표면으로부터 내부 방향으로 형성된 상기 산화층의 두께가 0.006 내지 0.030 ㎛인 냉연강판.A cold-rolled steel sheet having a thickness of 0.006 to 0.030 μm of the oxide layer formed in an inward direction from the surface of the cold-rolled steel sheet.
  2. 제1 항에 있어서,According to claim 1,
    하기 식 1을 만족하는 냉연강판.A cold-rolled steel sheet that satisfies Equation 1 below.
    <식 1><Equation 1>
    0.014 ≤ ([Cu] × [Si) / [P] ≤ 0.0800.014 ≤ ([Cu] × [Si) / [P] ≤ 0.080
    (상기 식 1에서 [Cu], [Si], 및 [P]은 각각 Cu, Si, 및 P의 중량% 함량을 의미한다)(In Equation 1, [Cu], [Si], and [P] mean the weight % content of Cu, Si, and P, respectively)
  3. 제1 항에 있어서,According to claim 1,
    하기 식 2를 만족하는 냉연강판.A cold-rolled steel sheet that satisfies Equation 2 below.
    <식 2><Equation 2>
    0.0065 ≤ ([Al] × [Mo]) / ([C] + [N]) ≤ 0.03100.0065 ≤ ([Al] × [Mo]) / ([C] + [N]) ≤ 0.0310
    (상기 식 2에서 [Al], [Mo], [C] 및 [N]은 각각 Al, Mo, C, 및 N의 중량% 함량을 의미한다)(In Equation 2, [Al], [Mo], [C] and [N] mean the weight % content of Al, Mo, C, and N, respectively)
  4. 제1 항에 있어서,According to claim 1,
    하기 식 3을 만족하는 냉연강판.A cold-rolled steel sheet that satisfies Equation 3 below.
    <식 3><Equation 3>
    0.50 ≤ (Rmax × 20Se) / Pc ≤ 1.050.50 ≤ (R max × 20S e ) / P c ≤ 1.05
    (상기 식 3에서 Pc는 단위 센티미터(㎝)당 표면 요철의 수를, Rmax는 최대점 조도값(㎛), Se는 조질압하율(%)을 의미한다)(In Equation 3 above, P c is the number of surface irregularities per unit centimeter (cm), R max is the maximum point roughness value (μm), and S e is the temper reduction rate (%))
  5. 제1 항에 있어서,According to claim 1,
    법랑 소성 열처리 후 항복강도가 220 MPa 이상인 냉연강판.Cold-rolled steel sheet with a yield strength of 220 MPa or more after enamel firing heat treatment.
  6. 제1 항에 있어서,According to claim 1,
    법랑밀착성이 95 % 이상인 냉연강판.Cold-rolled steel sheet with enamel adhesion of 95% or more.
  7. 제1 항에 있어서,According to claim 1,
    수소투과비가 600 초/mm2 이상인 냉연강판.Cold-rolled steel sheet with a hydrogen permeability of 600 sec/mm 2 or more.
  8. 중량%로, C: 0.0003 내지 0.003%, Mn: 0.25 내지 0.55%, Si: 0.001 내지 0.03%, Al: 0.0005 내지 0.0015%, P: 0.01 내지 0.03%, S: 0.001 내지 0.010%, Cu: 0.03 내지 0.08%, N: 0.008 내지 0.015%, Mo: 0.1 내지 0.3%, O: 0.025 내지 0.055% 및 잔부의 Fe와 불가피한 불순물을 포함하는 강 슬라브를 1,150 내지 1,280 ℃의 온도 범위로 재가열하는 단계;In weight percent, C: 0.0003 to 0.003%, Mn: 0.25 to 0.55%, Si: 0.001 to 0.03%, Al: 0.0005 to 0.0015%, P: 0.01 to 0.03%, S: 0.001 to 0.010%, Cu: 0.03 to 0.03% Reheating a steel slab containing 0.08%, N: 0.008 to 0.015%, Mo: 0.1 to 0.3%, O: 0.025 to 0.055% and balance Fe and unavoidable impurities to a temperature range of 1,150 to 1,280 °C;
    가열된 슬라브를 마무리 열간압연 온도 890 내지 950 ℃의 범위로 열간압연하는 단계;Hot rolling the heated slab at a finishing hot rolling temperature in the range of 890 to 950 ° C;
    열간압연된 열연강판을 580 내지 720 ℃의 온도 범위로 권취하는 단계;Winding the hot-rolled hot-rolled steel sheet in a temperature range of 580 to 720 °C;
    권취된 상기 열연강판을 60 내지 90 %의 냉간압하율로 냉간압연하는 단계;cold-rolling the coiled hot-rolled steel sheet at a cold-rolling reduction ratio of 60 to 90%;
    냉간압연된 냉연강판을 720 내지 850 ℃의 소둔 온도로, 10 내지 70 초 동안 소둔하고, 압하율 2.5 % 이하로 조질압연하여 소둔판을 제조하는 단계; 및Annealing the cold-rolled cold-rolled steel sheet at an annealing temperature of 720 to 850 ° C. for 10 to 70 seconds, and temper rolling at a reduction ratio of 2.5% or less to prepare an annealed sheet; and
    상기 소둔판을 780 내지 850 ℃의 온도 범위로 법랑 소성 열처리하는 단계를 포함하는 냉연강판의 제조 방법.Method for producing a cold-rolled steel sheet comprising the step of subjecting the annealed sheet to enamel firing heat treatment in a temperature range of 780 to 850 ° C.
  9. 제8 항에 있어서,According to claim 8,
    하기 식 1을 만족하는 냉연강판의 제조 방법.A method for manufacturing a cold-rolled steel sheet that satisfies Equation 1 below.
    <식 1><Equation 1>
    0.014 ≤ ([Cu] × [Si) / [P] ≤ 0.0800.014 ≤ ([Cu] × [Si) / [P] ≤ 0.080
    (상기 식 1에서 [Cu], [Si], 및 [P]은 각각 Cu, Si, 및 P의 중량% 함량을 의미한다)(In Equation 1, [Cu], [Si], and [P] mean the weight % content of Cu, Si, and P, respectively)
  10. 제8 항에 있어서,According to claim 8,
    하기 식 2를 만족하는 냉연강판의 제조 방법.A method for manufacturing a cold-rolled steel sheet that satisfies Equation 2 below.
    <식 2><Equation 2>
    0.0065 ≤ ([Al] × [Mo]) / ([C] + [N]) ≤ 0.03100.0065 ≤ ([Al] × [Mo]) / ([C] + [N]) ≤ 0.0310
    (상기 식 2에서 [Al], [Mo], [C] 및 [N]은 각각 Al, Mo, C, 및 N의 중량% 함량을 의미한다)(In Equation 2, [Al], [Mo], [C] and [N] mean the weight % content of Al, Mo, C, and N, respectively)
  11. 제8 항에 있어서,According to claim 8,
    하기 식 3을 만족하는 냉연강판의 제조 방법.A method for manufacturing a cold-rolled steel sheet that satisfies Equation 3 below.
    <식 3><Equation 3>
    0.50 ≤ (Rmax × 20Se) / Pc ≤ 1.050.50 ≤ (R max × 20S e ) / P c ≤ 1.05
    (상기 식 3에서 Pc는 단위 센티미터(㎝)당 표면 요철의 수를, Rmax는 최대점 조도값(㎛), Se는 조질압하율(%)을 의미한다)(In Equation 3 above, P c is the number of surface irregularities per unit centimeter (cm), R max is the maximum point roughness value (μm), and S e is the temper reduction rate (%))
PCT/KR2022/020584 2021-12-17 2022-12-16 Cold rolled steel sheet for enamel, having excellent anti-fishscale properties and method for manufacturing same WO2023113535A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280082571.7A CN118414444A (en) 2021-12-17 2022-12-16 Cold-rolled enameling steel sheet excellent in fishscale resistance and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210182136A KR20230092603A (en) 2021-12-17 2021-12-17 Cold rolled steel sheet for enamel having excellent anti-fishscale and method of manufacturing thereof
KR10-2021-0182136 2021-12-17

Publications (1)

Publication Number Publication Date
WO2023113535A1 true WO2023113535A1 (en) 2023-06-22

Family

ID=86773128

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/020584 WO2023113535A1 (en) 2021-12-17 2022-12-16 Cold rolled steel sheet for enamel, having excellent anti-fishscale properties and method for manufacturing same

Country Status (3)

Country Link
KR (1) KR20230092603A (en)
CN (1) CN118414444A (en)
WO (1) WO2023113535A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020027565A (en) * 2000-06-23 2002-04-13 데라카도 료우지 Steel sheet for porcelain enamel excellent in forming property, aging property and enameling characteristics and method for producing the same
KR20020049921A (en) * 2000-12-20 2002-06-26 이구택 A method for manufacturing porcelain enamel steel sheet for non-hairline crack
JP2006037215A (en) * 2004-07-30 2006-02-09 Nippon Steel Corp Steel sheet for enameling having good adhesion to enameling, production method therefor, and enameled product
KR20090043570A (en) * 2006-09-19 2009-05-06 신닛뽄세이테쯔 카부시키카이샤 Works for enameling and enameled products
KR20210080723A (en) * 2019-12-20 2021-07-01 주식회사 포스코 Steel sheet for enamel and method of manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020027565A (en) * 2000-06-23 2002-04-13 데라카도 료우지 Steel sheet for porcelain enamel excellent in forming property, aging property and enameling characteristics and method for producing the same
KR20020049921A (en) * 2000-12-20 2002-06-26 이구택 A method for manufacturing porcelain enamel steel sheet for non-hairline crack
JP2006037215A (en) * 2004-07-30 2006-02-09 Nippon Steel Corp Steel sheet for enameling having good adhesion to enameling, production method therefor, and enameled product
KR20090043570A (en) * 2006-09-19 2009-05-06 신닛뽄세이테쯔 카부시키카이샤 Works for enameling and enameled products
KR20210080723A (en) * 2019-12-20 2021-07-01 주식회사 포스코 Steel sheet for enamel and method of manufacturing the same

Also Published As

Publication number Publication date
CN118414444A (en) 2024-07-30
KR20230092603A (en) 2023-06-26

Similar Documents

Publication Publication Date Title
WO2015174605A1 (en) High-strength cold rolled steel sheet having excellent ductility, hot-dip galvanized steel sheet and method for manufacturing same
WO2018117501A1 (en) Ultra-high strength steel sheet having excellent bendability and manufacturing method therefor
WO2020067752A1 (en) High-strength cold rolled steel sheet having high hole expansion ratio, high-strength hot-dip galvanized steel sheet, and manufacturing methods therefor
WO2023022445A1 (en) Steel material for hot forming, hot-formed member, and manufacturing method therefor
WO2021125858A2 (en) Enamel steel sheet and manufacturing method therefor
WO2019124781A1 (en) Zinc-based plated steel sheet having excellent room temperature aging resistance and bake hardenability, and method for producing same
WO2019132179A1 (en) High-strength high-toughness hot-rolled steel sheet and manufacturing method therefor
WO2021117989A1 (en) Cold rolled steel sheet with ultra-high strength, and manufacturing method therefor
WO2013154254A1 (en) High carbon hot rolled steel sheet having excellent uniformity and method for manufacturing same
WO2020067702A1 (en) Cold-rolled steel plate for porcelain enameling having excellent fishscale resistance and method of manufacturing same
WO2023113535A1 (en) Cold rolled steel sheet for enamel, having excellent anti-fishscale properties and method for manufacturing same
KR20200073788A (en) Porcelain enamel steel sheet excellent in fish scale resistance and enamel adhesion property and manufacturing method thereof
WO2022139313A1 (en) Steel sheet for porcelain enamel, and method of manufacturing same
KR102265183B1 (en) Porcelain enamel steel sheet excellent in fish scale resistance and enamel adhesion property and manufacturing method thereof
WO2020111739A2 (en) Cold-rolled steel plate for enameling and method for manufacturing same
WO2021261884A1 (en) High-strength austenitic stainless steel with excellent productivity and cost reduction effect and method for producing same
WO2023121039A1 (en) Steel sheet for enamel and method of manufacturing same
WO2022131795A1 (en) High-strength cold-rolled enamel steel sheet with excellent adhesion, and method of manufacturing same
WO2022098132A1 (en) Steel sheet for enameling and method for manufacturing same
WO2023224200A1 (en) Ultra-high strength galvanized steel sheet with excellent weldability and manufacturing method therefor
WO2019039774A1 (en) Ferritic stainless steel having enhanced low-temperature impact toughness and method for producing same
WO2023113558A1 (en) Cold-rolled steel sheet and galvanized steel sheet with excellent press formability and method of manufacturing thereof
WO2024080657A1 (en) Steel sheets and methods for manufacturing same
WO2024136317A1 (en) Cold-rolled steel sheet and manufacturing method therefor
WO2023085660A1 (en) Ultrahigh-strength steel sheet with excellent bendability and stretch flangeability, and manufacturing method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22908000

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2024/007521

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2022908000

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022908000

Country of ref document: EP

Effective date: 20240717