WO2023113508A1 - Structures for physical unclonable function using spontaneous chiral symmetry breaking and method of preparing same - Google Patents

Structures for physical unclonable function using spontaneous chiral symmetry breaking and method of preparing same Download PDF

Info

Publication number
WO2023113508A1
WO2023113508A1 PCT/KR2022/020502 KR2022020502W WO2023113508A1 WO 2023113508 A1 WO2023113508 A1 WO 2023113508A1 KR 2022020502 W KR2022020502 W KR 2022020502W WO 2023113508 A1 WO2023113508 A1 WO 2023113508A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
hnf
photonic crystal
chiral
Prior art date
Application number
PCT/KR2022/020502
Other languages
French (fr)
Korean (ko)
Inventor
윤동기
박건형
박혜원
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220161465A external-priority patent/KR20230092744A/en
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Publication of WO2023113508A1 publication Critical patent/WO2023113508A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/22Compounds containing nitrogen bound to another nitrogen atom
    • C08K5/23Azo-compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/02Liquid crystal materials characterised by optical, electrical or physical properties of the components, in general
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/24Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing nitrogen-to-nitrogen bonds
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Definitions

  • the present invention relates to a structure for preventing physical replication using spontaneous chiral symmetry breaking and a method for manufacturing the same, and more particularly, by using a chiral photonic crystal in which chiral symmetry breaking occurs, it is non-replicable and can be observed with an optical microscope and a mobile phone camera.
  • a physical unclonable structure using spontaneous chiral symmetry breaking which forms a chiral random pattern and uses it for a physical unclonable function (PUF), and a manufacturing method thereof.
  • a chiral material has an optical activity, and an optical rotation phenomenon in which a polarization axis of linearly polarized light passing through a chiral medium rotates clockwise or counterclockwise occurs.
  • the degree and direction of rotation is due to the intrinsic properties and chirality of the material.
  • chiral organic materials contain a chiral center in their molecular structure.
  • achiral molecules form chiral structures through self-assembly.
  • there is no preference for right- or left-handed chiral structures so the two structures are randomly formed. This is called ‘spontaneous chiral symmetry breaking’ and it is known that the probability of formation of structures with different chirality is 50%.
  • PUF physical unclonable function
  • Non-Patent Documents 2 to 20 when the security code is leaked to the outside, there is a problem that it becomes vulnerable to hacking and requires a new device for new security. Moreover, it has a disadvantage that it can be easily detected by a general method (Non-Patent Documents 3, 5, 7, 8, 10, 12, 17, 19 and 22).
  • the inventors of the present invention formed a non-replicable chiral random pattern using a chiral photonic crystal in which chiral symmetry breaking occurs, and made it a physically unclonable function (PUF). By using it, it is possible to have high information density and security while showing high performance in characteristics such as reproducibility, uniqueness, unpredictability, and reconfigurability. It was confirmed that the desired patterning can be produced through the photo-lithography method, and the present invention was completed.
  • An object of the present invention is to provide a chiral structure for PUF having excellent reproducibility, originality, unpredictability, reconfigurability, high information density and security, and a manufacturing method thereof.
  • the present invention provides an HNF photonic crystal structure obtained by randomly patterning helical nanofilaments (HNF) in which bent liquid crystal molecules are grown in a twisted layered structure by self-assembly.
  • HNF helical nanofilaments
  • the present invention also includes (a) irradiating ultraviolet rays to helical nanofilament (HNF) to align the axis of the liquid crystal contained in the HNF perpendicular to the direction of irradiation of the ultraviolet rays; and (b) forming an HNF photonic crystal by cooling the vertically aligned HNF to a B4 phase temperature of the liquid crystal to reorient an axis of the liquid crystal parallel to an ultraviolet irradiation direction to obtain an HNF photonic crystal structure.
  • HNF helical nanofilament
  • HNF helical nanofilament
  • the black triangles represent the information density calculated from the ranks for area, roundness, aspect ratio, and orientation. Red triangles are information densities computed from ranks for locations; (d) information density according to the number of unit cells; (e) Misrecognition rates calculated from the ranks for each morphological feature.
  • the yellow, purple, green, blue, and cyan lines are for direction, roundness, aspect ratio, area, and position, respectively.
  • FIG. 4 is (a) a polarized light microscope image of a patterned HNF photonic crystal; (b) A schematic diagram of the linear polarization rotation phenomenon occurring in an area not irradiated with UV light (left) and an area irradiated with UV light (right); (c) a graph of optical rotation ( ⁇ ) according to wavelength in an area not irradiated with ultraviolet light; (d) a graph of optical rotation according to wavelength in an area irradiated with ultraviolet light; (e) It is the color coordinate system of each chiral domain according to the angle of the polarizer.
  • Sf similarity index obtained through pairwise comparison with matrices obtained from experimental images.
  • FIG. 6 is (a) a schematic diagram of a process of registering a matrix obtained from the morphological features of a patterned photonic crystal in a database and a process of authenticating a matrix obtained from the morphological features of a newly fabricated photonic crystal through an existing database; (b) Reliability evaluation of the proposed authentication method according to the number of unit cells. Red, light blue, and blue bars denote true-negative rate (TNR), false-negative rate (FNR), and true-positive rate (TPR), respectively; (c) Robustness test against noise. Green, purple, and orange lines mean when the number of unit cells is 64, 128, and 256, respectively; (d) It is a drawing of the reproducibility test using different microscopes according to the number of unit cells.
  • an organic molecular structure in which spontaneous chiral symmetry breaking occurs is made of a photonic crystal, and the randomness generated during spontaneous chiral symmetry breaking is recorded in a film form.
  • the film produced is a single film with high information density. It was confirmed that it can be used as a PUF and shows high performance in reproducibility, uniqueness, unpredictability, and reconfigurability.
  • the present invention relates to an HNF photonic crystal structure obtained by randomly patterning helical nanofilaments (HNF) in which bent liquid crystal molecules are grown in a twisted layered structure by self-assembly.
  • HNF helical nanofilaments
  • HNF helical nanofilament
  • the term 'photonic crystal' used in the present invention refers to a structure having a lattice period of a length similar to the wavelength of light (several hundred nm). Interference occurs, and light at a wavelength that causes constructive interference is reflected. Even in the case of HNF, it has a grating period of several hundred nm, and when they are arranged, a photonic crystal reflecting light of a specific wavelength can be formed (HNF photonic crystal).
  • 'B4 phase temperature of liquid crystal' used in the present invention varies depending on the molecular structure, but most of the molecules used in the present invention are known to have a B4 phase at a temperature of 140 ° C or lower.
  • the term 'random pattern' refers to a pattern in which HNF photonic crystals twisted in different directions are randomly formed at a level of several microns.
  • random patternization' used in the present invention can be interpreted as a concept of two-dimensional random arrangement of random patterns. To put it simply, it can be seen as randomly scattering black and white random shapes on a two-dimensional plane. That is, it can be referred to as two-dimensional random pattern production.
  • the present invention uses spontaneous chiral symmetry breaking, one of the characteristics of randomness in nature, to record randomness on an optically observable film and apply it as a physical unclonable function (PUF).
  • PEF physical unclonable function
  • the film produced through this suggests that it can be used as a PUF with high information density as a single film, and the produced PUF film can be used in terms of reproducibility, uniqueness, unpredictability, and reconfigurability. It was confirmed that high performance was exhibited.
  • spontaneous chiral symmetry breaking was used to fabricate a new PUF.
  • Spontaneous chiral symmetry breaking occurs when a material has a chiral structure and there is no preference for one chiral property. It is known from many studies that the probability of having different chirality in a material is 50% when this symmetry breaking occurs.
  • Chiral symmetry breaking occurs in various organic molecules or supramolecules, but in a situation where substances having different chirality are mixed, detecting their chirality is not easily detected by conventional methods, so it is difficult to detect it as PUF. application was not possible.
  • the present invention solves the above problems by using a material having a helical nano filament (HNF) structure and suggests that it can be applied to PUF.
  • HNF helical nano filament
  • the bent liquid crystal molecule may be at least one selected from the group consisting of azobenzene-dimer, MHOBOW of Formula 1 and NOBOW of Formula 2:
  • the azobenzene-dimer may be represented by Formula 3:
  • L is a straight-chain or branched-chain alkylene group, a cycloalkylene group, a haloalkylene group, an arylene group, a heteroarylene group, an arylenealkylene group, an alkylenearylene group, an alkyleneheteroarylene group, a heteroarylenealkylene group,
  • An alkylene ester group or an alkylene amide group, and the heteroarylene group is a divalent radical containing a heteroatom selected from fluorine, oxygen, sulfur and nitrogen,
  • R 1 and R 2 are each independently selected from a straight-chain or branched-chain alkyl group, a cycloalkyl group, a haloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, a heteroaryl group, an aryloxy group, an alkoxyheteroaryl group, a heteroaryloxyalkyl group, An alkylheteroaryl group, an alkylaryl group, an arylalkyl group, an alkylheteroaryl group, an alkylester group, an alkylamide group, or an acryl group, and the heteroaryl group is a monovalent radical containing a heteroatom selected from fluorine, oxygen, sulfur, and nitrogen. .
  • the straight-chain alkylene group is a C1-C12 straight-chain alkylene group
  • the branched-chain alkylene group is a C1-C12 branched-chain alkylene group
  • the cycloalkylene group is a C3-C13 cycloalkylene group.
  • the haloalkylene group is a C1-C12 alkylene group substituted with fluorine, chlorine or iodine
  • the arylene group is a C6-C13 arylene group
  • the heteroarylene group is a C5-C13 heteroarylene group
  • the arylene alkylene group is a C7 -C13 arylene alkylene group, alkylene arylene group C7-C13 alkylene arylene group, alkylene heteroarylene group C6-C13 alkylene heteroarylene group, heteroarylene alkylene group C6-C13 heteroaryl group It may be a lenalkylene group.
  • substituted refers to a case in which any one or a plurality of hydrogen atoms of a designated atom are substituted by a substituent of a designated group, and the condition is that the designated atom must not exceed the normal valence, and as a result, stable after substitution. It is necessary to create a compound.
  • the straight-chain alkyl group is a C1-C12 straight-chain alkyl group
  • the branched-chain alkyl group is a C1-C12 branched-chain alkyl group
  • the cycloalkyl group is a C3-C13 cycloalkyl group
  • the haloalkyl group is A C1-C12 alkyl group substituted with fluorine, chlorine or iodine
  • an alkoxy group is a C1-C12 alkoxy group
  • a cycloalkoxy group is a C3-C13 cycloalkoxy group
  • an aryl group is a C6-C13 aryl group
  • a heteroaryl group is a C5- C13 heteroaryl group
  • aryloxy group is C7-C12 aryloxy group
  • alkoxyheteroaryl group is C7-C13 alkoxyheteroaryl group
  • heteroaryloxyalkyl group is C
  • the present invention provides: (a) irradiating ultraviolet rays to helical nanofilament (HNF) to align the axis of the liquid crystal contained in the HNF perpendicular to the direction of irradiation of the ultraviolet rays; and (b) forming an HNF photonic crystal by cooling the vertically aligned HNF to a B4 phase temperature of the liquid crystal to reorient an axis of the liquid crystal parallel to an ultraviolet irradiation direction to obtain an HNF photonic crystal structure. It relates to a method for manufacturing an HNF photonic crystal structure.
  • a helical nanofilament structure using curved liquid crystal molecules can be expressed by introducing an azo group into a dimer molecule in which two rod-shaped liquid crystal molecules are bound by a flexible alkyl group.
  • the liquid crystal molecules including the azo group are irradiated with ultraviolet light, they have a property of being aligned perpendicular to the direction of ultraviolet light irradiation.
  • unpolarized ultraviolet rays are irradiated from the high-temperature nematic/smectic phase to align the liquid crystals, and the supramolecular helical nanofilament structure that develops as the temperature decreases can be controlled.
  • the azobenzene-dimer may be represented by Formula 4:
  • R 1 and R 2 are each independently a straight-chain or branched-chain alkyl group, a cycloalkyl group, a haloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, a heteroaryl group, an aryloxy group, an alkoxyheteroaryl group, and a heteroaryl group.
  • An oxyalkyl group, an alkylheteroaryl group, an alkylaryl group, an arylalkyl group, an alkylheteroaryl group, an alkylester group, an alkylamide group, or an acryl group, and a heteroaryl group containing a heteroatom selected from fluorine, oxygen, sulfur, and nitrogen. is a radical
  • the azobenzene dimer may be one or more selected from the group consisting of Chemical Formula 4-1, Chemical Formula 4-2, Chemical Formula 4-3 and Chemical Formula 4-4.
  • the structure can be used for a physical unclonable function (PUF).
  • PEF physical unclonable function
  • the structure may be in the form of a film or flake.
  • the bent liquid crystal molecules in particular, the azobenzene-dimer, are as described above.
  • a photoreactive molecule may be used to control a supramolecular structure formed by liquid crystal molecules, thereby forming a photonic crystal.
  • a sandwich cell composed of a black substrate and a transparent substrate is fabricated, liquid crystal is injected into the cell in the isotropic phase, and after the injection is completed, a photomask is placed on the cell and cooling is performed while irradiating ultraviolet light thereon.
  • the supramolecular structure of the portion irradiated with ultraviolet rays is regularly controlled, and a photonic crystal pattern in the visible light region is formed.
  • the formed photonic crystal can be reversibly reused by raising and lowering the temperature. This is a technological technology for the commercialization of photonic crystals, such as simplification of the existing photonic crystal manufacturing process, reduction of material cost, and reusable patterning.
  • the non-photonic crystallized HNF film was not manufactured with a security code, but only the HNF photonic crystal film was manufactured with a security code, and then statistical analysis was performed.
  • the HNF photonic crystal film can be easily manufactured in the desired shape and size in the photolithography step of the manufacturing process, and the chiral random pattern is clearly distinguished by the optical rotation phenomenon occurring in the chiral photonic crystal (FIG. 1).
  • this chiral photonic crystal is formed, since there is no preference for the chiral direction, both the right twisted structure and the left twisted structure are formed with equal probability.
  • the random pattern film produced in this way can guarantee uniqueness, high information density, and high recognition rate among the characteristics of PUF (FIGS. 4 and 5), and has excellent characteristics in unpredictability and reconfigurability. show However, it has low reproducibility due to the pixel-based image processing method.
  • additional patterning such as alignment marks through metal deposition can be used, but the material used in the present invention has a liquid crystal phase. As a result, high randomness may be lost or structure formation may be hindered.
  • ultraviolet rays When ultraviolet rays are irradiated on azobenzene-dimer molecules containing an azo moiety, they have the property of being oriented perpendicular to the direction of ultraviolet irradiation. Using this, ultraviolet rays are irradiated from the high-temperature nematic/smectic phase to align liquid crystals, and HNF structures that are expressed as their temperature goes down are controlled. The axis of the controlled helical HNF is reorientated parallel to the direction of ultraviolet irradiation to form a chiral photonic crystal in which the helical pitch of the helical structure is formed in the visible light region.
  • a photonic crystal patterning process uses a conventional photolithography process. Patterned HNF photonic crystals are formed by selectively irradiating ultraviolet rays using a photomask with a desired pattern, and at the same time, HNF photonic crystals twisted in different directions are randomly formed.
  • the present invention has a high degree of freedom for the shape of the pattern. It is possible to create a desired deterministic security code, rather than patterning that only serves as a simple alignment display, and hide a chiral random pattern that functions as a PUF inside the code. As shown in FIG. 4, a QR code is produced through a patterning process and a chiral random pattern is hidden therein, enabling double security and producing a code with very high security that cannot be duplicated (FIG. 8 and FIG. 9).
  • the fabricated patterned photonic crystallization film can be reconstructed through heat treatment and an additional exposure process.
  • a new pattern can be fabricated through an iterative process, and it can be confirmed that a new chiral random pattern is formed even if the fabricated pattern uses the same sample (FIG. 10).
  • this film shows that it has a reconfigurability function that can produce a completely new random pattern by an additional process when exposed to hacking. It was confirmed that this PUF film produced by chiral spontaneous symmetry breaking has a stable structure up to ⁇ 110 ° C, and is stable in most polar protic solvents encountered in everyday life. In addition, if it is made large enough, it can be observed through a general smartphone, so accessibility is excellent.
  • a sandwich cell using two glass substrates was fabricated. The distance between the two substrates was maintained using silica beads of several ⁇ m.
  • the liquid crystal sample was injected into the cell using capillary force at around 170° C., which is the temperature of the isotropic phase.
  • a photomask having a desired pattern was placed on the upper plate, and then ultraviolet light having a wavelength of 365 nm was irradiated thereon to perform a photolithography process.
  • liquid crystal molecules were oriented by ultraviolet rays and cooled at a uniform cooling rate (1°C/min) to cause phase transition at the same time.
  • a temperature controller (Linkam TMS94) was used to control the cooling rate.
  • HNF photonic crystal exhibits a reflective color due to the uniformly formed helical nanostructure.
  • HNF having a size (>10 ⁇ m) that can be observed with a general optical polarization microscope is formed. HNFs in both directions are randomly formed, and these patterns are produced as digitized codes through image processing using Matlab.
  • the azobenzene-dimer used in this example is a compound represented by Chemical Formula 4-2, and formed a chiral structure having a size (>10 ⁇ m) that can be observed with a general optical polarizing microscope (FIG. 1).
  • FOG. 1 a general optical polarizing microscope
  • ultraviolet rays When ultraviolet rays are irradiated on azobenzene-dimer molecules containing an azo moiety, they have the property of being oriented perpendicular to the direction of ultraviolet irradiation. Using this, ultraviolet rays are irradiated from the high-temperature nematic/smectic phase to align liquid crystals, and HNF structures that are expressed as their temperature decreases are controlled. The axis of the controlled helical HNF is reorientated parallel to the direction of ultraviolet irradiation to form a chiral photonic crystal in which the helical pitch of the helical structure is formed in the visible light region.
  • the non-photonic crystallized HNF film was not produced with a security code, but only the HNF photonic crystal film was produced with a security code, and then statistical analysis was performed.
  • the HNF photonic crystal film can be easily manufactured in the desired shape and size in the photolithography step of the manufacturing process, and the chiral random pattern is clearly distinguished by the optical rotation phenomenon occurring in the chiral photonic crystal (FIG. 1).
  • the security code was produced only for the HNF photonic crystal film, and the binarization and digitization method was newly improved to exponentially increase the information density of the security code.
  • each circular photonic crystal is defined as one unit cell.
  • Chiral random patterns are distributed in each unit cell, and are separated into right-handed and left-handed chiral patterns according to color differences. Chiral patterns separated into right-handedness and left-handedness are further classified according to the morphological characteristics of the pattern, which include the number of patterns, area, roundness, aspect ratio, location, and alignment direction.
  • each unit cell includes two types of chirality, information on six types of morphological features can be stored in a 6x6x2 matrix.
  • the information density can be dramatically improved to about 1013,000 when the number of unit cells of the security code is 256 by appropriately adjusting the interval between classes for each feature, and the false recognition rate has the advantage of minimizing It takes an astronomical amount of time, about 10199 years, to predict the password of a security code with an information density of about 1013000 using brute force trials. Therefore, by newly improving the binarization and digitization method, the originality of the further improved security code, high information density, and high recognition rate can be guaranteed.
  • the improved authentication method provides a fast authentication method and a reading reliability of 99.9% or higher based on hierarchical authentication of morphological characteristics.
  • the authenticated security code is stored in a database in the form of a matrix.
  • the newly created chiral pattern is digitized in the form of a matrix and compared with the data stored in the database through a five-step screening process by calculating a similarity index. For example, if the similarity index for the 'direction' morphological feature exceeds the threshold, the value for the next morphological feature is compared, and it is determined as true if all five steps are passed. However, if the similarity index does not exceed the threshold, the screening process is terminated and the newly created chiral pattern is determined to be false.
  • the recognition rate increases as the number of unit cells increases, shows a high recognition rate for external noise, and reproducible results are obtained even when observed with different microscopes.
  • the newly proposed hierarchical authentication method does not require additional algorithmic modification when a new sample is added to the database, and on average it takes 5.14 seconds to determine true and 2.34 seconds to determine false, ensuring high accuracy and fast authentication speed. .
  • the fabricated patterned photonic crystallization film can be reconstructed through heat treatment and an additional exposure process. It was confirmed that a new pattern can be fabricated through an iterative process, and that a new chiral random pattern is formed even if the fabricated pattern uses the same sample (FIG. 10). This means that the manufacturer cannot predict which chiral random pattern will be formed and that replication is also impossible.
  • this film has reconfigurability to produce a completely new random pattern by an additional process when exposed to hacking.
  • this PUF film produced by chiral spontaneous symmetry breaking has a stable structure up to ⁇ 110 ° C, and is stable in most polar protic solvents encountered in everyday life. In addition, if it is made large enough, it can be observed through a general smartphone, so accessibility is excellent.
  • a non-replicable chiral random pattern is formed using a chiral photonic crystal in which chiral symmetry breaking occurs, and it is confirmed that this can be applied to a PUF.
  • a chiral structure in a film can be detected simply by rotating the polarizer, and it can be digitized and applied as a security code.
  • Chiral domains through spontaneous chiral symmetry breaking of the material proposed in the present invention are formed much larger than the diffraction limit of visible light, can form photonic crystals, and have the characteristics of being easily observable by an optical method. Therefore, unlike other materials in which chiral domains are difficult to observe, it makes it possible to apply it as a film with security.
  • the present invention is a security code based on chiral optical characteristics, which is easy to manufacture and difficult to detect by a general method compared to other optical PUFs.
  • the photolithography-based fabrication process enables the fabrication of a double security code that hides a non-deterministic pattern in a deterministic pattern, so it has high versatility compared to previously reported technologies and much better performance than existing known technologies (exponentially increased information density, It has the advantage of having a high and fast recognition rate) and originality.
  • the present invention is a technology having high information density and security, and has the advantage of being able to produce desired patterning through an existing photolithography process. This can replace all existing systems for personal authentication or security at the point when existing security keys become invalid in the upcoming quantum computing era.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

The present invention relates to structures for a physical unclonable function using spontaneous chiral symmetry breaking and a method of preparing same. More specifically, by using a chiral photonic crystal, in which chiral symmetry breaking occurs, to form an unclonable chiral random pattern that can be observed with an optical microscope and a mobile phone camera, and using the chiral random pattern in a physical unclonable function (PUF), it is possible to produce, through existing photo-lithography methods, a desired pattern that is highly secure, has high information density, and exhibits high performance in properties such as reproducibility, uniqueness, high information density, high recognition ratio, unpredictability, or reconfigurability.

Description

자발적 카이랄 대칭파괴를 이용한 물리적 복제방지용 구조체 및 그 제조방법Structure for preventing physical replication using spontaneous chiral symmetry breaking and manufacturing method thereof
본 발명은 자발적 카이랄 대칭파괴를 이용한 물리적 복제방지용 구조체 및 그 제조방법에 관한 것으로서, 보다 상세하게는 카이랄 대칭파괴가 발생하는 카이랄 광결정을 이용하여 복제 불가능하며 광학 현미경 및 휴대폰 카메라로 관찰 가능한 카이랄 랜덤 패턴을 형성하고, 이를 물리적 복제 방지 기술(Physical unclonable function, PUF)에 이용하는 자발적 카이랄 대칭파괴를 이용한 물리적 복제방지용 구조체 및 그 제조방법에 관한 것이다.The present invention relates to a structure for preventing physical replication using spontaneous chiral symmetry breaking and a method for manufacturing the same, and more particularly, by using a chiral photonic crystal in which chiral symmetry breaking occurs, it is non-replicable and can be observed with an optical microscope and a mobile phone camera. A physical unclonable structure using spontaneous chiral symmetry breaking, which forms a chiral random pattern and uses it for a physical unclonable function (PUF), and a manufacturing method thereof.
카이랄성 물질은 광학 활성(optical activity)을 가지는데, 카이랄 매질을 통과하는 선형편광 빛의 편광 축이 시계방향 혹은 반시계방향으로 회전하는 광학 회전 현상이 발생한다. 회전하는 정도와 방향은 물질의 고유 특성과 카이랄성에 기인한다. 일반적으로 카이랄 유기 소재는 분자구조에 카이랄 중심을 포함하고 있다. 하지만 비카이랄성 분자가 자가조립(self-assembly)을 통해 카이랄 구조체를 형성하는 경우도 있다. 이 경우에는 오른쪽성 또는 왼쪽성 카이랄 구조체에 대한 선호도가 없어 두 구조체가 랜덤하게 형성된다. 이를 ‘자발적 카이랄 대칭파괴((spontaneous chiral symmetry breaking))’라 부르며 서로 다른 카이랄성을 가지는 구조체가 형성될 확률은 50%라고 알려져 있다.A chiral material has an optical activity, and an optical rotation phenomenon in which a polarization axis of linearly polarized light passing through a chiral medium rotates clockwise or counterclockwise occurs. The degree and direction of rotation is due to the intrinsic properties and chirality of the material. In general, chiral organic materials contain a chiral center in their molecular structure. However, there are cases in which achiral molecules form chiral structures through self-assembly. In this case, there is no preference for right- or left-handed chiral structures, so the two structures are randomly formed. This is called ‘spontaneous chiral symmetry breaking’ and it is known that the probability of formation of structures with different chirality is 50%.
물리적 복제방지 기술(Physical unclonable function, PUF)을 기반으로 하는 인증 시스템은 위조 불가능한 위조 방지를 위해 최근에 개발되었다. 물리적 단방향 함수(Physical one-way function)라고도 하는 PUF는 동일한 공정으로 개발되는 반도체의 구조에 미세한 변화를 주어 물리적으로 복제를 못 하게 보안키를 생성하는 기술로서, 고유하고 쉽게 복제가 불가능한 지문과 유사한 기능을 가진 물리적 개체를 나타낸다. PUF는 대부분의 집적 회로(Integrated circuit, IC)에서 하드웨어의 물리적 미세 구조의 고유한 무작위성을 이용하여 제작된다. 칩 제조 프로세스에는 수십억 개의 장치를 통합하기 위한 여러 복잡한 리소그래피 단계가 포함되기 때문에 칩 간의 물리적 미세 구조의 차이는 피할 수 없고 예측할 수 없으므로 해커가 한정된 기간 내에 칩의 복제본을 제작하는 것은 불가하다. 또한 기존의 IC 기반의 PUF는 해커에 의한 브루트 포스 시험(Brute force trials)을 사용한 데이터 암호 해독에 비 결정론적 지수 시간(nondeterministic exponential time)이 필요하기 때문에 지금까지는 강력한 보안 방법이었다. 그러나 양자 컴퓨터가 개발되면서 기존의 IC 기반의 PUF는 쉽게 위험에 노출 해질 것이기 때문에 보다 높은 엔트로피 정보를 저장할 수 있고 복제가 불가능한 새로운 방식의 PUF가 필요하다.An authentication system based on a physical unclonable function (PUF) has recently been developed for unforgeable anti-counterfeiting. PUF, also known as physical one-way function, is a technology that creates a security key that prevents physical copying by making subtle changes to the structure of semiconductors developed in the same process. Represents a physical entity with a function. PUFs are fabricated using the inherent randomness of the physical microstructure of hardware in most integrated circuits (ICs). Since the chip fabrication process involves many complex lithography steps to integrate billions of devices, differences in the physical microstructure between chips are unavoidable and unpredictable, making it impossible for hackers to create clones of chips within a finite timeframe. In addition, conventional IC-based PUFs have been a strong security method so far because nondeterministic exponential time is required for data decryption using brute force trials by hackers. However, as quantum computers are developed, existing IC-based PUFs will be easily exposed to risks, so a new type of PUF that can store higher entropy information and is impossible to duplicate is needed.
비특허문헌 2~20에서는 보안코드가 외부에 유출되었을 경우, 해킹에 취약해지며 새로운 보안을 위해서는 새로운 소자를 필요로 하다는 문제점이 존재한다. 더욱이 일반적인 방법으로는 쉽게 검출이 가능하다는 단점을 가지고 있다(비특허문헌 3, 5, 7, 8, 10, 12, 17, 19 및 22).In Non-Patent Documents 2 to 20, when the security code is leaked to the outside, there is a problem that it becomes vulnerable to hacking and requires a new device for new security. Moreover, it has a disadvantage that it can be easily detected by a general method ( Non-Patent Documents 3, 5, 7, 8, 10, 12, 17, 19 and 22).
이에, 본 발명자들은 상기 문제점을 해결하기 위하여 예의 노력한 결과, 카이랄 대칭파괴가 발생하는 카이랄 광결정을 이용하여 복제 불가능한 카이랄 랜덤 패턴을 형성하고 이를 물리적 복제 방지 기술(Physical unclonable function, PUF)로 이용함으로써 재현성(reproducibility), 독창성(uniqueness), 예측 불가능성(unpredictability), 재구성 가능성(reconfigurability)과 같은 특성에서 높은 성능을 보임과 동시에 높은 정보 밀도와 보안성을 가질 수 있고, 기존의 포토리소그래피(photo-lithography) 방법을 통해 원하는 패터닝을 제작 가능하다는 것을 확인하고, 본 발명을 완성하게 되었다.Therefore, as a result of diligent efforts to solve the above problems, the inventors of the present invention formed a non-replicable chiral random pattern using a chiral photonic crystal in which chiral symmetry breaking occurs, and made it a physically unclonable function (PUF). By using it, it is possible to have high information density and security while showing high performance in characteristics such as reproducibility, uniqueness, unpredictability, and reconfigurability. It was confirmed that the desired patterning can be produced through the photo-lithography method, and the present invention was completed.
[선행기술문헌][Prior art literature]
[특허문헌][Patent Literature]
대한민국 등록특허 제10-2249409호Republic of Korea Patent No. 10-2249409
대한민국 등록특허 제10-2195795호Republic of Korea Patent No. 10-2195795
대한민국 등록특허 제10-1328975호Republic of Korea Patent No. 10-1328975
[비특허문헌][Non-Patent Literature]
1. Babaei, A. & Schiele, G. Physical Unclonable Functions in the Internet of Things: State of the Art and Open Challenges. Sensors 19, 3208 (2019).1. Babaei, A. & Schiele, G. Physical Unclonable Functions in the Internet of Things: State of the Art and Open Challenges. Sensors 19, 3208 (2019).
2. Pappu, R. Physical One-Way Functions. Science 297, 2026-2030 (2002).2. Pappu, R. Physical One-Way Functions. Science 297, 2026-2030 (2002).
3. Lin, Y. et al. Unclonable Micro-Texture with Clonable Micro-Shape towards Rapid, Convenient, and Low-Cost Fluorescent Anti-Counterfeiting Labels. Small 17, 2100244 (2021).3. Lin, Y. et al. Unclonable Micro-Texture with Clonable Micro-Shape towards Rapid, Convenient, and Low-Cost Fluorescent Anti-Counterfeiting Labels. Small 17, 2100244 (2021).
4. Zhang, T. et al. Random Nanofracture-Enabled Physical Unclonable Function. Adv. Mater. Technol. 6, 2001073 (2021).4. Zhang, T. et al. Random Nanofracture-Enabled Physical Unclonable Function. Adv. Mater. Technol. 6, 2001073 (2021).
5. Hu, Y. et al. Flexible and Biocompatible Physical Unclonable Function Anti-Counterfeiting Label. Adv. Funct. Mater. 31, 2102108 (2021).5. Hu, Y. et al. Flexible and Biocompatible Physical Unclonable Function Anti-Counterfeiting Label. Adv. Funct. Mater. 31, 2102108 (2021).
6. Jing, L. et al. Multigenerational Crumpling of 2D Materials for Anticounterfeiting Patterns with Deep Learning Authentication. Matter 3, 2160-2180 (2020).6. Jing, L. et al. Multigenerational Crumpling of 2D Materials for Anticounterfeiting Patterns with Deep Learning Authentication. Matter 3, 2160-2180 (2020).
7. Martinez, P. et al. Laser Generation of Sub-Micrometer Wrinkles in a Chalcogenide Glass Film as Physical Unclonable Functions. Adv. Mater. 32, 2003032 (2020).7. Martinez, P. et al. Laser Generation of Sub-Micrometer Wrinkles in a Chalcogenide Glass Film as Physical Unclonable Functions. Adv. Mater. 32, 2003032 (2020).
8. Liu, Y. et al. Unclonable Perovskite Fluorescent Dots with Fingerprint Pattern for Multilevel Anticounterfeiting. ACS Appl. Mater. Interfaces 12, 39649-39656 (2020).8. Liu, Y. et al. Unclonable Perovskite Fluorescent Dots with Fingerprint Pattern for Multilevel Anticounterfeiting. ACS Appl. Mater. Interfaces 12, 39649-39656 (2020).
9. Hu, Z. et al. Physically unclonable cryptographic primitives using self-assembled carbon nanotubes. Nature Nanotech 11, 559-565 (2016).9. Hu, Z. et al. Physically unclonable cryptographic primitives using self-assembled carbon nanotubes. Nature Nanotech 11, 559-565 (2016).
10. Liu, Y. et al. Inkjet-printed unclonable quantum dot fluorescent anti-counterfeiting labels with artificial intelligence authentication. Nat. Commun. 10, 2409 (2019).10. Liu, Y. et al. Inkjet-printed unclonable quantum dot fluorescent anti-counterfeiting labels with artificial intelligence authentication. Nat. Commun. 10, 2409 (2019).
11. Arppe-Tabbara, R., Tabbara, M. & Sørensen, T. J. Versatile and Validated Optical Authentication System Based on Physical Unclonable Functions. ACS Appl. Mater. Interfaces 11, 6475-6482 (2019).11. Arppe-Tabbara, R., Tabbara, M. & Sørensen, T. J. Versatile and Validated Optical Authentication System Based on Physical Unclonable Functions. ACS Appl. Mater. Interfaces 11, 6475-6482 (2019).
12. Carro-Temboury, M. R., Arppe, R., Vosch, T. & Sørensen, T. J. An optical authentication system based on imaging of excitation-selected lanthanide luminescence. Sci. Adv. 4, e1701384 (2018).12. Carro-Temboury, M. R., Arppe, R., Vosch, T. & Sørensen, T. J. An optical authentication system based on imaging of excitation-selected lanthanide luminescence. Sci. Adv. 4, e1701384 (2018).
13. Zhang, R. et al. Nanoscale diffusive memristor crossbars as physical unclonable functions. Nanoscale 10, 2721-2726 (2018).13. Zhang, R. et al. Nanoscale diffusive memristor crossbars as physical unclonable functions. Nanoscale 10, 2721-2726 (2018).
14. Hwang, K.-M. et al. Nano-electromechanical Switch Based on a Physical Unclonable Function for Highly Robust and Stable Performance in Harsh Environments. ACS Nano 11, 12547-12552 (2017).14. Hwang, K.-M. et al. Nano-electromechanical Switch Based on a Physical Unclonable Function for Highly Robust and Stable Performance in Harsh Environments. ACS Nano 11, 12547-12552 (2017).
15. Geng, Y. et al. High-fidelity spherical cholesteric liquid crystal Bragg reflectors generating unclonable patterns for secure authentication. Sci. Rep. 6, 26840 (2016).15. Geng, Y. et al. High-fidelity spherical cholesteric liquid crystal Bragg reflectors generating unclonable patterns for secure authentication. Sci. Rep. 6, 26840 (2016).
16. Demirok, U. K., Burdick, J. & Wang, J. Orthogonal Multi-Readout Identification of Alloy Nanowire Barcodes. J. Am. Chem. Soc. 131, 22-23 (2009).16. Demirok, U. K., Burdick, J. & Wang, J. Orthogonal Multi-Readout Identification of Alloy Nanowire Barcodes. J. Am. Chem. Soc. 131, 22-23 (2009).
17. Tian, L. et al. Plasmonic Nanogels for Unclonable Optical Tagging. ACS Appl. Mater. Interfaces 11 (2016).17. Tian, L. et al. Plasmonic Nanogels for Unclonable Optical Tagging. ACS Appl. Mater. Interfaces 11 (2016).
18. Bae, H. J. et al. Self-organization of maze-like structures via guided wrinkling. Sci. Adv. 3, e1700071 (2017).18. Bae, H. J. et al. Self-organization of maze-like structures via guided wrinkling. Sci. Adv. 3, e1700071 (2017).
19. Gu, Y. et al. Gap-enhanced Raman tags for physically unclonable anticounterfeiting labels. Nat. Commun. 11, 516 (2020).19. Gu, Y. et al. Gap-enhanced Raman tags for physically unclonable anticounterfeiting labels. Nat. Commun. 11, 516 (2020).
20. Nakayama, K. Optical security device providing fingerprint and designed pattern indicator using fingerprint texture in liquid crystal. Opt. Eng. 51, 040506 (2012).20. Nakayama, K. Optical security device providing fingerprint and designed pattern indicator using fingerprint texture in liquid crystal. Opt. Eng. 51, 040506 (2012).
21. Wali, A. et al. Biological physically unclonable function. Commun. Phys. 2, 39 (2019).21. Wali, A. et al. Biologically and physically unclonable function. Commun. Phys. 2, 39 (2019).
22. Leem, J. W. et al. Edible unclonable functions. Nat. Commun. 11, 328 (2020).22. Leem, J. W. et al. Edible unclonable functions. Nat. Commun. 11, 328 (2020).
발명의 요약Summary of Invention
본 발명의 목적은 재현성, 독창성, 예측 불가능성, 재구성 가능성이 우수하고, 높은 정보 밀도와 보안성을 가지는 PUF용 카이랄 구조체 및 그 제조방법을 제공하는데 있다.An object of the present invention is to provide a chiral structure for PUF having excellent reproducibility, originality, unpredictability, reconfigurability, high information density and security, and a manufacturing method thereof.
상기 목적을 달성하기 위하여, 본 발명은 굽은형 액정분자가 자기조립에 의해 꼬인 층상 구조로 성장되어 있는 나선형 나노필라멘트((helical nanofilament, HNF)를 랜덤 패턴화시켜 수득된 HNF 광결정 구조체를 제공한다.In order to achieve the above object, the present invention provides an HNF photonic crystal structure obtained by randomly patterning helical nanofilaments (HNF) in which bent liquid crystal molecules are grown in a twisted layered structure by self-assembly.
본 발명은 또한, (a) 나선형 나노필라멘트(helical nanofilament, HNF)에 자외선을 조사하여 상기 HNF에 함유된 액정의 축을 자외선 조사방향에 대해 수직으로 배향시키는 단계; 및 (b) 상기 수직으로 배향된 HNF를 상기 액정의 B4상 온도까지 냉각시킴으로써 상기 액정의 축을 자외선 조사방향에 대해 평행으로 재배향시켜 HNF 광결정을 형성하여 HNF 광결정 구조체를 수득하는 단계를 포함하는 상기 HNF 광결정 구조체의 제조방법을 제공한다.The present invention also includes (a) irradiating ultraviolet rays to helical nanofilament (HNF) to align the axis of the liquid crystal contained in the HNF perpendicular to the direction of irradiation of the ultraviolet rays; and (b) forming an HNF photonic crystal by cooling the vertically aligned HNF to a B4 phase temperature of the liquid crystal to reorient an axis of the liquid crystal parallel to an ultraviolet irradiation direction to obtain an HNF photonic crystal structure. A method for manufacturing an HNF photonic crystal structure is provided.
도 1은 (a) 아조벤젠-다이머(azobenzene-dimer) 분자로부터 자가조립을 통해 형성된 나선형 나노필라멘트(helical nanofilament, HNF); (b) HNF 광결정을 제작하는 방법에 대한 모식도; (c) 광패턴화된 HNF 광결정과 숨은 카이랄 랜덤패턴의 편광 현미경 이미지이다.1 shows (a) a helical nanofilament (HNF) formed through self-assembly from azobenzene-dimer molecules; (b) a schematic diagram of a method for fabricating an HNF photonic crystal; (c) A polarized light microscope image of a photopatterned HNF photonic crystal and a hidden chiral random pattern.
도 2는 (a) HNF 광결정 필름의 Θ=80°실험 이미지를 이용하여 이진화 (binarization)하는 방법; (b) 각 카이랄 도메인의 6가지 형태적 특징; (c) 유닛 셀 하나에 대한 정보 밀도(encoding capacity). 검정색 세모는 면적, 진원도, 가로 세로의 비, 방향에 대한 계급으로부터 계산된 정보 밀도. 빨간색 세모는 위치에 대한 계급으로부터 계산된 정보 밀도; (d) 유닛 셀 개수에 따른 정보 밀도; (e) 각각의 형태적 특징에 대한 계급으로부터 계산된 오인식률. 노란색, 보라색, 초록색, 파란색, 하늘색 선은 각각 방향, 진원도, 가로 세로의 비, 면적, 위치에 대한 것이다.Figure 2 is (a) a method of binarization using Θ = 80 ° experimental image of the HNF photonic crystal film; (b) six morphological features of each chiral domain; (c) Encoding capacity for one unit cell. The black triangles represent the information density calculated from the ranks for area, roundness, aspect ratio, and orientation. Red triangles are information densities computed from ranks for locations; (d) information density according to the number of unit cells; (e) Misrecognition rates calculated from the ranks for each morphological feature. The yellow, purple, green, blue, and cyan lines are for direction, roundness, aspect ratio, area, and position, respectively.
도 3은 유닛 셀이 64개인 광결정의 (a) Θ=90°및 (c) Θ=80°의 실험 이미지; (b) (a) 이미지에서 패턴화된 광결정 영역을 구분함으로써 얻어진 이진화 이미지; (d) (b)와 (c) 이미지의 곱으로 얻어진 이미지; (e) 패턴된 광결정 영역의 경계선 설정; (f) 각각의 유닛 셀의 중심 설정; (g) 처리된 이미지를 특정 사이즈를 가지는 유닛 셀 이미지로 나눔; (h) 이미지 흑백 처리; (i) 도메인의 카이랄성에 따라 이미지 이진화; (j) 카이랄성에 따라 각각의 도메인 분리; (k) 각 도메인의 형태적 특징 추출을 나타낸 도면이다.3 shows experimental images of (a) Θ=90° and (c) Θ=80° of a photonic crystal having 64 unit cells; (b) a binarized image obtained by segmenting the patterned photonic crystal region in (a) image; (d) an image obtained by multiplying (b) and (c) images; (e) setting the boundary of the patterned photonic crystal region; (f) centering of each unit cell; (g) dividing the processed image into unit cell images having a specific size; (h) image black and white processing; (i) image binarization according to the chirality of the domain; (j) separation of each domain according to chirality; (k) It is a diagram showing morphological feature extraction of each domain.
도 4는 (a) 패턴된 HNF 광결정의 편광 현미경 이미지; (b) 자외선이 조사되지 않은 영역(왼쪽)과 자외선이 조사된 영역(오른쪽)에서 발생하는 선형 편광 회전 현상에 대한 모식도; (c) 자외선이 조사되지 않은 영역에서 파장에 따른 광학 회전(optical rotation, α)에 대한 그래프; (d) 자외선이 조사된 영역에서 파장에 따른 광학 회전에 대한 그래프; (e) 편광판 각도에 따른 각 카이랄 도메인의 색 좌표계이다.4 is (a) a polarized light microscope image of a patterned HNF photonic crystal; (b) A schematic diagram of the linear polarization rotation phenomenon occurring in an area not irradiated with UV light (left) and an area irradiated with UV light (right); (c) a graph of optical rotation (α) according to wavelength in an area not irradiated with ultraviolet light; (d) a graph of optical rotation according to wavelength in an area irradiated with ultraviolet light; (e) It is the color coordinate system of each chiral domain according to the angle of the polarizer.
도 5는 실험 이미지로부터 얻어진 행렬과 쌍별 비교를 통해 얻어진 유사성 지수(Similarity index, Sf). (a) 샘플을 두 번 스캔함으로써 얻어진 두 개의 6 x 6 x 128 행렬 데이터; (b) 128 개의 2차원 행렬을 비교함으로써 유사성 지수를 계산하는 방법에 대한 예시에 대한 도면이다.5 is a similarity index (Sf) obtained through pairwise comparison with matrices obtained from experimental images. (a) two 6 x 6 x 128 matrix data obtained by scanning the sample twice; (b) It is a diagram for an example of a method for calculating a similarity index by comparing 128 two-dimensional matrices.
도 6은 (a) 패턴된 광결정의 형태적 특징으로부터 얻은 행렬을 데이터베이스에 등록하는 과정 및 새로 제작된 광결정의 형태적 특징으로부터 얻은 행렬을 기존 데이터베이스를 통해 인증하는 과정에 대한 모식도; (b) 유닛 셀 개수에 따른 제안된 인증 방식의 신뢰성 평가. 빨간색, 하늘색, 파란색 막대는 각각 진음성(True-negative rate, TNR), 위음성(False-negative rate, FNR), 진양성(True-positive rate, TPR)을 의미한다; (c) 노이즈에 대한 견고성 테스트. 초록색, 보라색, 주황색 선은 각각 유닛 셀이 64개일 때, 128개일 때, 256개일 때를 의미한다; (d) 유닛 셀 개수에 따라 서로 다른 현미경을 이용한 재현성 테스트에 대한 도면이다.6 is (a) a schematic diagram of a process of registering a matrix obtained from the morphological features of a patterned photonic crystal in a database and a process of authenticating a matrix obtained from the morphological features of a newly fabricated photonic crystal through an existing database; (b) Reliability evaluation of the proposed authentication method according to the number of unit cells. Red, light blue, and blue bars denote true-negative rate (TNR), false-negative rate (FNR), and true-positive rate (TPR), respectively; (c) Robustness test against noise. Green, purple, and orange lines mean when the number of unit cells is 64, 128, and 256, respectively; (d) It is a drawing of the reproducibility test using different microscopes according to the number of unit cells.
도 7은 계층적 인증 방법을 통해 (a) 참을 인증할 때와 (b) 거짓을 인증할 때 소요되는 시간에 대한 분포도; (c) 유닛 셀 개수에 따라 단계별로 감소하는 데이터베이스의 양에 대한 도면이다.7 is a distribution diagram of the time required for (a) true authentication and (b) false authentication through hierarchical authentication methods; (c) It is a diagram of the amount of database that decreases step by step according to the number of unit cells.
도 8은 노이즈에 대한 견고성 테스트에 사용된 이미지이다.8 is an image used for a robustness test against noise.
도 9는 서로 다른 현미경을 이용한 재현성 테스트에 사용된 이미지들. (a) 정립 현미경으로 얻어진 이미지들; (b) 도립 현미경으로 얻어진 이미지들이다9 is images used in reproducibility tests using different microscopes. (a) Images obtained with an upright microscope; (b) These are images obtained with an inverted microscope
도 10은 (a) 재구성 가능성(reconfigurability) 테스트를 위한 Θ=80°, 90°, 100°일 때의 편광현미경 이미지 같은 샘플을 재구성하여 다른 패턴을 얻을 수 있으며 매 시행에 따라 서로 다른 카이랄 랜덤 구조가 얻어진다. 제작된 카이랄 광결정의 (b) 열 안정성 테스트와 (c) 용매 안정성 테스트. (d) 스마트 폰을 이용하여 카이랄 랜덤 패턴을 관찰한 도면이다.10 shows (a) different patterns can be obtained by reconstructing the same sample as a polarizing microscope image when Θ = 80 °, 90 °, and 100 ° for a reconfigurability test, and different chiral random structure is obtained. (b) Thermal stability test and (c) solvent stability test of the fabricated chiral photonic crystal. (d) It is a view of observing a chiral random pattern using a smart phone.
발명의 상세한 설명 및 구체적인 구현예DETAILED DESCRIPTION OF THE INVENTION AND SPECIFIC EMBODIMENTS
다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술 분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 갖는다. 일반적으로, 본 명세서에서 사용된 명명법은 본 기술 분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. In general, the nomenclature used herein is one well known and commonly used in the art.
본 발명은 자발적 카이랄 대칭파괴가 발생하는 유기분자 구조체를 광결정(photonic crystal)으로 제작하고 자발적 카이랄 대칭파괴시 발생하는 랜덤성을 필름 형태로 기록하여 제작한 필름은 단일 필름으로 정보 밀도가 높은 PUF로 사용가능하며, 재현성(reproducibility), 독창성(uniqueness), 예측 불가능성(unpredictability), 재구성 가능성(reconfigurability)에서 높은 성능을 보인다는 것을 확인하였다.In the present invention, an organic molecular structure in which spontaneous chiral symmetry breaking occurs is made of a photonic crystal, and the randomness generated during spontaneous chiral symmetry breaking is recorded in a film form. The film produced is a single film with high information density. It was confirmed that it can be used as a PUF and shows high performance in reproducibility, uniqueness, unpredictability, and reconfigurability.
따라서, 본 발명은 일 관점에서 굽은형 액정분자가 자기조립에 의해 꼬인 층상 구조로 성장되어 있는 나선형 나노필라멘트((helical nanofilament, HNF)를 랜덤 패턴화시켜 수득된 HNF 광결정 구조체에 관한 것이다.Accordingly, in one aspect, the present invention relates to an HNF photonic crystal structure obtained by randomly patterning helical nanofilaments (HNF) in which bent liquid crystal molecules are grown in a twisted layered structure by self-assembly.
이하, 본 발명을 상세하게 기술한다.Hereinafter, the present invention will be described in detail.
본 발명에 사용되는 용어, ‘나선형 나노필라멘트(helical nanofilament, HNF)’는 굽은형 형태를 가지는 액정분자가 200~300 nm 정도의 격자 주기로 꼬인 층상구조를 이루며 성장한 구조를 의미한다.The term 'helical nanofilament (HNF)' used in the present invention refers to a structure in which liquid crystal molecules having a curved shape are twisted with a lattice period of about 200 to 300 nm to form a layered structure.
본 발명에 사용되는 용어, ‘광결정’은 빛의 파장과 비슷한 길이(수백 nm)의 격자 주기를 갖는 구조체를 의미하는데, 빛이 입자이면서 파동 성질을 가지기 때문에 이러한 격자주기에서 파장에 따라 보강 및 상쇄 간섭이 일어나고 보강간섭을 일으키는 파장의 빛은 반사된다. HNF의 경우에도 수백 nm 수준의 격자 주기를 가져, 이들이 배열되었을 때, 특정 파장의 빛을 반사하는 광결정이 형성될 수 있다(HNF 광결정).The term 'photonic crystal' used in the present invention refers to a structure having a lattice period of a length similar to the wavelength of light (several hundred nm). Interference occurs, and light at a wavelength that causes constructive interference is reflected. Even in the case of HNF, it has a grating period of several hundred nm, and when they are arranged, a photonic crystal reflecting light of a specific wavelength can be formed (HNF photonic crystal).
본 발명에 사용되는 용어, ‘액정의 B4상 온도’는 분자구조에 따라 다르지만, 본 발명에 사용되는 분자들 대부분은 140℃ 이하의 온도에서 B4상을 갖는 것으로 알려져 있다.The term 'B4 phase temperature of liquid crystal' used in the present invention varies depending on the molecular structure, but most of the molecules used in the present invention are known to have a B4 phase at a temperature of 140 ° C or lower.
본 발명에 사용되는 용어, ‘랜덤 패턴(random pattern)’이란 서로 다른 방향으로 꼬인 HNF 광결정이 수마이크로 수준으로 랜덤하게 형성하는 패턴을 의미한다.As used herein, the term 'random pattern' refers to a pattern in which HNF photonic crystals twisted in different directions are randomly formed at a level of several microns.
본 발명에 사용되는 용어, ‘랜덤 패턴화(random patternization)’는 랜덤 패턴의 이차원 무작위 배열이라는 개념으로 해석할 수 있다. 쉽게 말하면 흑과 백의 랜덤 모양을 2차원 평면 위에 무작위 하게 뿌린다고 보면 된다. 즉, 이차원 랜덤 패턴 제작이라고 할 수 있다.The term 'random patternization' used in the present invention can be interpreted as a concept of two-dimensional random arrangement of random patterns. To put it simply, it can be seen as randomly scattering black and white random shapes on a two-dimensional plane. That is, it can be referred to as two-dimensional random pattern production.
본 발명은 자연계의 무작위성을 나타내는 특징 중 하나인 자발적 카이랄 대칭파괴(spontaneous chiral symmetry breaking)를 이용하여 무작위성을 광학적 관찰이 가능한 필름에 기록하여 물리적 복제방지 기술(Physical unclonable function, PUF)로 응용한 것이다.The present invention uses spontaneous chiral symmetry breaking, one of the characteristics of randomness in nature, to record randomness on an optically observable film and apply it as a physical unclonable function (PUF). will be.
기존의 등록된 특허에서는 카이랄 광결정의 형성 및 색 변조 기술에 중점을 두고 있다. 본 발명에서는 카이랄 광결정의 광학 활성을 이용할 뿐만 아니라 자발적으로 생성되는 서로 다른 방향의 카이랄 구조체를 이용하여 PUF로의 응용가능성을 제시할 수 있다. 자발적 카이랄 대칭파괴가 발생하는 유기분자 구조체를 광결정(photonic crystal)으로 제작하여 자발적 카이랄 대칭파괴시 발생하는 자연계의 랜덤성을 필름 형태로 기록한다. 이미지 처리 과정을 통해 기록된 랜덤성을 디지털 코드로 변환시킬 수 있다. 또한 통계적 접근법을 통하여 기록된 랜덤성이 이상적인 랜덤성에 가깝다는 것을 증명하였다. 이를 통해 제작된 필름은 단일 필름으로 정보 밀도가 높은 PUF로 사용가능 함을 제시하고, 제작된 PUF 필름은 재현성(reproducibility), 독창성(uniqueness), 예측 불가능성(unpredictability), 재구성 가능성(reconfigurability)에서 높은 성능을 보이는 것을 확인하였다.Existing registered patents focus on the formation and color modulation technology of chiral photonic crystals. In the present invention, not only the optical activity of chiral photonic crystals is used, but also the possibility of application to PUFs can be suggested by using spontaneously generated chiral structures in different directions. An organic molecular structure in which spontaneous chiral symmetry breaking occurs is made of a photonic crystal, and the randomness of the natural world that occurs when spontaneous chiral symmetry breaking occurs is recorded in the form of a film. Recorded randomness can be converted into a digital code through an image processing process. Also, through a statistical approach, it was proved that the recorded randomness is close to the ideal randomness. The film produced through this suggests that it can be used as a PUF with high information density as a single film, and the produced PUF film can be used in terms of reproducibility, uniqueness, unpredictability, and reconfigurability. It was confirmed that high performance was exhibited.
본 발명에서는 새로운 PUF를 제작하기 위해 자발적 카이랄 대칭 파괴를 이용하였다. 자발적 카이랄 대칭파괴는 물질이 카이랄 구조를 가지게 될 때, 한쪽 카이랄성의 선호도가 없을 때 발생한다. 많은 연구에서 이러한 대칭파괴가 일어날 때 물질 내에서 서로 다른 카이랄성을 가질 확률이 50%인 것으로 알려져 있다. 다양한 유기분자 또는 초분자 구조체(supramolecule)에서 카이랄 대칭파괴가 일어나지만, 서로 다른 카이랄성을 가지는 물질이 섞여 있는 상황에서 이들의 카이랄성을 검출하는 것은 기존의 방법으로 쉽게 검출하지 못하여 PUF로의 응용이 불가능하였다. 이를 해결하기 위해 본 발명에서는 나선형 나노필라멘트(helical nano filament, HNF) 구조를 가지는 물질을 이용하여 앞선 문제를 해결하고 PUF로 응용 가능함을 제시하였다.In the present invention, spontaneous chiral symmetry breaking was used to fabricate a new PUF. Spontaneous chiral symmetry breaking occurs when a material has a chiral structure and there is no preference for one chiral property. It is known from many studies that the probability of having different chirality in a material is 50% when this symmetry breaking occurs. Chiral symmetry breaking occurs in various organic molecules or supramolecules, but in a situation where substances having different chirality are mixed, detecting their chirality is not easily detected by conventional methods, so it is difficult to detect it as PUF. application was not possible. In order to solve this problem, the present invention solves the above problems by using a material having a helical nano filament (HNF) structure and suggests that it can be applied to PUF.
본 발명에 있어서, 상기 굽은형 액정분자는 아조벤젠-다이머, 화학식 1의 MHOBOW 및 화학식 2의 NOBOW로 구성된 군에서 선택된 1종 이상일 수 있다:In the present invention, the bent liquid crystal molecule may be at least one selected from the group consisting of azobenzene-dimer, MHOBOW of Formula 1 and NOBOW of Formula 2:
[화학식 1][Formula 1]
Figure PCTKR2022020502-appb-img-000001
Figure PCTKR2022020502-appb-img-000001
[화학식 2][Formula 2]
Figure PCTKR2022020502-appb-img-000002
Figure PCTKR2022020502-appb-img-000002
본 발명에 있어서, 상기 아조벤젠-다이머는 화학식 3으로 표시될 수 있다:In the present invention, the azobenzene-dimer may be represented by Formula 3:
[화학식 3][Formula 3]
Figure PCTKR2022020502-appb-img-000003
Figure PCTKR2022020502-appb-img-000003
화학식 3에서 L은 직쇄형 또는 분지쇄형 알킬렌기, 사이클로알킬렌기, 할로알킬렌기, 아릴렌기, 헤테로아릴렌기, 아릴렌알킬렌기, 알킬렌아릴렌기, 알킬렌헤테로아릴렌기, 헤테로아릴렌알킬렌기, 알킬렌 에스테르기 또는 알킬렌 아마이드기이고, 헤테로아릴렌기는 불소, 산소, 황 및 질소 중에서 선택된 헤테로원자를 함유하는 2가 라디칼이며,In Formula 3, L is a straight-chain or branched-chain alkylene group, a cycloalkylene group, a haloalkylene group, an arylene group, a heteroarylene group, an arylenealkylene group, an alkylenearylene group, an alkyleneheteroarylene group, a heteroarylenealkylene group, An alkylene ester group or an alkylene amide group, and the heteroarylene group is a divalent radical containing a heteroatom selected from fluorine, oxygen, sulfur and nitrogen,
R1 및 R2는 각각 독립적으로 직쇄형 또는 분지쇄형 알킬기, 사이클로알킬기, 할로알킬기, 알콕시기, 사이클로알콕시기, 아릴기, 헤테로아릴기, 아릴옥시기, 알콕시헤테로아릴기, 헤테로아릴옥시알킬기, 알킬헤테로아릴기, 알킬아릴기, 아릴알킬기, 알킬헤테로아릴기, 알킬에스테르기, 알킬아미드기 또는 아크릴기이고, 헤테로아릴기는 불소, 산소, 황 및 질소 중에서 선택된 헤테로원자를 함유하는 1가 라디칼이다.R 1 and R 2 are each independently selected from a straight-chain or branched-chain alkyl group, a cycloalkyl group, a haloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, a heteroaryl group, an aryloxy group, an alkoxyheteroaryl group, a heteroaryloxyalkyl group, An alkylheteroaryl group, an alkylaryl group, an arylalkyl group, an alkylheteroaryl group, an alkylester group, an alkylamide group, or an acryl group, and the heteroaryl group is a monovalent radical containing a heteroatom selected from fluorine, oxygen, sulfur, and nitrogen. .
화학식 3의 L에 있어서, 바람직하게는, 직쇄형 알킬렌기는 C1-C12의 직쇄형 알킬렌기, 분지쇄형 알킬렌기는 C1-C12의 분지쇄형 알킬렌기, 사이클로알킬렌기는 C3-C13의 사이클로알킬렌기, 할로알킬렌기는 플루오린, 클로린 또는 아이오드로 치환된 C1-C12의 알킬렌기, 아릴렌기는 C6-C13의 아릴렌기, 헤테로아릴렌기는 C5-C13의 헤테로아릴렌기, 아릴렌알킬렌기는 C7-C13의 아릴렌알킬렌기, 알킬렌아릴렌기는 C7-C13의 알킬렌아릴렌기, 알킬렌헤테로아릴렌기는 C6-C13의 알킬렌헤테로아릴렌기, 헤테로아릴렌알킬렌기는 C6-C13의 헤테로아릴렌알킬렌기일 수 있다.In L of Formula 3, preferably, the straight-chain alkylene group is a C1-C12 straight-chain alkylene group, the branched-chain alkylene group is a C1-C12 branched-chain alkylene group, and the cycloalkylene group is a C3-C13 cycloalkylene group. , The haloalkylene group is a C1-C12 alkylene group substituted with fluorine, chlorine or iodine, the arylene group is a C6-C13 arylene group, the heteroarylene group is a C5-C13 heteroarylene group, the arylene alkylene group is a C7 -C13 arylene alkylene group, alkylene arylene group C7-C13 alkylene arylene group, alkylene heteroarylene group C6-C13 alkylene heteroarylene group, heteroarylene alkylene group C6-C13 heteroaryl group It may be a lenalkylene group.
본 발명에서 사용한 용어 "치환된"은 지정된 원자의 어느 하나 혹은 다수개의 수소원자가 지정된 그룹의 치환기에 의해 치환된 것을 말하며, 그 조건은 상기 지정된 원자는 정상적인 원자가를 초과하지 말아야 하며 결과적으로 치환 후 안정한 화합물을 생성하여야 되는 것이다.As used herein, the term "substituted" refers to a case in which any one or a plurality of hydrogen atoms of a designated atom are substituted by a substituent of a designated group, and the condition is that the designated atom must not exceed the normal valence, and as a result, stable after substitution. It is necessary to create a compound.
화학식 1의 R1 및 R2에 있어서, 바람직하게는, 직쇄형 알킬기는 C1-C12의 직쇄형 알킬기, 분지쇄형 알킬기는 C1-C12의 분지쇄형 알킬기, 사이클로알킬기는 C3-C13의 사이클로알킬기, 할로알킬기는 플루오린, 클로린 또는 아이오드로 치환된 C1-C12의 알킬기, 알콕시기는 C1-C12의 알콕시기, 사이클로알콕시기는 C3-C13의 사이클로알콕시기, 아릴기는 C6-C13의 아릴기, 헤테로아릴기는 C5-C13의 헤테로아릴기, 아릴옥시기는 C7-C12의 아릴옥시기, 알콕시헤테로아릴기는 C7-C13의 알콕시헤테로아릴기, 헤테로아릴옥시알킬기는 C7-C13의 헤테로아릴옥시알킬기, 알킬헤테로아릴기는 C7-C13의 알킬헤테로아릴기, 알킬아릴기는 C7-C13의 알킬아릴기, 아릴알킬기는 C7-C13의 아릴알킬기, 알킬헤테로아릴기는 C6-C13의 알킬헤테로아릴기, 알킬에스테르기는 C2-C13의 알킬에스테르기, 알킬아미드기는 C1-C12의 알킬아미드기일 수 있다.In R1 and R2 of Formula 1, preferably, the straight-chain alkyl group is a C1-C12 straight-chain alkyl group, the branched-chain alkyl group is a C1-C12 branched-chain alkyl group, the cycloalkyl group is a C3-C13 cycloalkyl group, and the haloalkyl group is A C1-C12 alkyl group substituted with fluorine, chlorine or iodine, an alkoxy group is a C1-C12 alkoxy group, a cycloalkoxy group is a C3-C13 cycloalkoxy group, an aryl group is a C6-C13 aryl group, a heteroaryl group is a C5- C13 heteroaryl group, aryloxy group is C7-C12 aryloxy group, alkoxyheteroaryl group is C7-C13 alkoxyheteroaryl group, heteroaryloxyalkyl group is C7-C13 heteroaryloxyalkyl group, alkylheteroaryl group is C7-C13 C13 alkylheteroaryl group, alkylaryl group is C7-C13 alkylaryl group, arylalkyl group is C7-C13 arylalkyl group, alkylheteroaryl group is C6-C13 alkylheteroaryl group, alkyl ester group is C2-C13 alkyl ester The group, the alkylamide group may be a C1-C12 alkylamide group.
본 발명은 다른 관점에서 (a) 나선형 나노필라멘트(helical nanofilament, HNF)에 자외선을 조사하여 상기 HNF에 함유된 액정의 축을 자외선 조사방향에 대해 수직으로 배향시키는 단계; 및 (b) 상기 수직으로 배향된 HNF를 상기 액정의 B4상 온도까지 냉각시킴으로써 상기 액정의 축을 자외선 조사방향에 대해 평행으로 재배향시켜 HNF 광결정을 형성하여 HNF 광결정 구조체를 수득하는 단계를 포함하는 상기 HNF 광결정 구조체의 제조방법에 관한 것이다.In another aspect, the present invention provides: (a) irradiating ultraviolet rays to helical nanofilament (HNF) to align the axis of the liquid crystal contained in the HNF perpendicular to the direction of irradiation of the ultraviolet rays; and (b) forming an HNF photonic crystal by cooling the vertically aligned HNF to a B4 phase temperature of the liquid crystal to reorient an axis of the liquid crystal parallel to an ultraviolet irradiation direction to obtain an HNF photonic crystal structure. It relates to a method for manufacturing an HNF photonic crystal structure.
본 발명의 일 실시예에서는 두 개의 막대형 액정분자가 유연한 알킬 그룹으로 묶여있는 2량체(dimer) 분자에 아조기를 도입하여 굽은형 액정분자를 이용한 나선형 나노 필라멘트 구조를 발현할 수 있다. 아조기를 포함하는 액정분자는 자외선이 조사되었을 때, 그들의 배향을 자외선조사 방향에 대해 수직하게끔 배향되는 성질을 가지고 있다. 이를 이용하여 고온의 네마틱/스멕틱 상으로부터 비편광 자외선을 조사하여 액정을 배향시키고, 이들의 온도가 내려감에 따라 발현하는 초분자 나선형 나노 필라멘트 구조체를 제어할 수 있다.In one embodiment of the present invention, a helical nanofilament structure using curved liquid crystal molecules can be expressed by introducing an azo group into a dimer molecule in which two rod-shaped liquid crystal molecules are bound by a flexible alkyl group. When the liquid crystal molecules including the azo group are irradiated with ultraviolet light, they have a property of being aligned perpendicular to the direction of ultraviolet light irradiation. Using this, unpolarized ultraviolet rays are irradiated from the high-temperature nematic/smectic phase to align the liquid crystals, and the supramolecular helical nanofilament structure that develops as the temperature decreases can be controlled.
본 발명에 있어서, 바람직하게는 상기 아조벤젠-다이머는 화학식 4로 표시될 수 있다:In the present invention, preferably, the azobenzene-dimer may be represented by Formula 4:
[화학식 4][Formula 4]
Figure PCTKR2022020502-appb-img-000004
Figure PCTKR2022020502-appb-img-000004
화학식 4에서 R1 및 R2는 각각 독립적으로 직쇄형 또는 분지쇄형 알킬기, 사이클로알킬기, 할로알킬기, 알콕시기, 사이클로알콕시기, 아릴기, 헤테로아릴기, 아릴옥시기, 알콕시헤테로아릴기, 헤테로아릴옥시알킬기, 알킬헤테로아릴기, 알킬아릴기, 아릴알킬기, 알킬헤테로아릴기, 알킬에스테르기, 알킬아미드기 또는 아크릴기이고, 헤테로아릴기는 불소, 산소, 황 및 질소 중에서 선택된 헤테로원자를 함유하는 1가 라디칼이다.In Formula 4, R 1 and R 2 are each independently a straight-chain or branched-chain alkyl group, a cycloalkyl group, a haloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, a heteroaryl group, an aryloxy group, an alkoxyheteroaryl group, and a heteroaryl group. An oxyalkyl group, an alkylheteroaryl group, an alkylaryl group, an arylalkyl group, an alkylheteroaryl group, an alkylester group, an alkylamide group, or an acryl group, and a heteroaryl group containing a heteroatom selected from fluorine, oxygen, sulfur, and nitrogen. is a radical
본 발명의 보다 구체적인 실시예로서, 상기 아조벤젠 다이머는 화학식 4-1, 화학식 4-2, 화학식 4-3 및 화학식 4-4로 구성된 군에서 1종 이상 선택될 수 있다.As a more specific embodiment of the present invention, the azobenzene dimer may be one or more selected from the group consisting of Chemical Formula 4-1, Chemical Formula 4-2, Chemical Formula 4-3 and Chemical Formula 4-4.
[화학식 4-1][Formula 4-1]
Figure PCTKR2022020502-appb-img-000005
Figure PCTKR2022020502-appb-img-000005
[화학식 4-2][Formula 4-2]
Figure PCTKR2022020502-appb-img-000006
Figure PCTKR2022020502-appb-img-000006
[화학식 4-3][Formula 4-3]
Figure PCTKR2022020502-appb-img-000007
Figure PCTKR2022020502-appb-img-000007
[화학식 4-4][Formula 4-4]
Figure PCTKR2022020502-appb-img-000008
Figure PCTKR2022020502-appb-img-000008
본 발명에 있어서, 상기 구조체를 PUF(Physical unclonable function, 물리적 복제방지 기술)에 이용할 수 있다.In the present invention, the structure can be used for a physical unclonable function (PUF).
본 발명에 있어서, 상기 구조체는 필름 또는 플레이크(flake) 형태일 수 있다.In the present invention, the structure may be in the form of a film or flake.
본 발명의 제조방법에 있어서, 굽은형 액정분자, 그 중에서 아조벤젠-다이머에 관한 내용은 상기에 언급한 바와 같다.In the production method of the present invention, the bent liquid crystal molecules, in particular, the azobenzene-dimer, are as described above.
본 발명의 일 실시예에서는 광반응 분자를 이용하여 액정분자가 형성하는 초분자 구조체를 제어하고 이를 통해 광결정을 형성할 수 있다. 검정색 기판과 투명한 기판으로 이루어진 샌드위치 셀을 제작하고, 등방상에서 액정을 셀 안으로 주입하고, 주입이 완료된 후, 셀 위에 포토마스크를 배치시키고 그 위로 자외선을 조사하면서 냉각을 진행한다. 자외선이 조사된 부분의 초분자 구조체가 규칙적으로 제어되고, 가시광 영역의 광결정 패턴이 형성된다. 형성된 광결정은 온도를 올렸다 내리는 방법을 통해서 가역적인 재사용이 가능하다. 이는 기존의 광결정 제작 공정의 간소화, 소재 단가 감축, 재사용이 가능한 패터닝 등 광결정의 상용화를 위한 획기적인 기술이다.In one embodiment of the present invention, a photoreactive molecule may be used to control a supramolecular structure formed by liquid crystal molecules, thereby forming a photonic crystal. A sandwich cell composed of a black substrate and a transparent substrate is fabricated, liquid crystal is injected into the cell in the isotropic phase, and after the injection is completed, a photomask is placed on the cell and cooling is performed while irradiating ultraviolet light thereon. The supramolecular structure of the portion irradiated with ultraviolet rays is regularly controlled, and a photonic crystal pattern in the visible light region is formed. The formed photonic crystal can be reversibly reused by raising and lowering the temperature. This is a groundbreaking technology for the commercialization of photonic crystals, such as simplification of the existing photonic crystal manufacturing process, reduction of material cost, and reusable patterning.
본 발명에 광결정화가 되지 않은 HNF 필름은 보안 코드로 제작하지 않고, 오로지 HNF 광결정 필름에 대해서만 보안 코드로 제작한 후 통계학적 분석을 진행하였다. HNF 광결정 필름은 제작 과정의 포토리소그래피 단계에서 원하는 모양과 크기로 제작이 용이하며, 카이랄 광결정에서 발생하는 광학 회전 현상에 의해 카이랄 랜덤 패턴이 뚜렷하게 구별된다(도 1). 이 카이랄 광결정이 형성될 때, 카이랄 방향에 대한 선호도가 없으므로, 오른쪽 꼬인 구조체와 왼쪽 꼬인 구조체가 모두 같은 확률로 형성된다. 이미지 처리와 통계학적 접근을 통해서 서로 다른 방향으로 꼬여 있을 확률과 이들의 배치가 자연계의 무작위성의 수준과 비슷한 무작위성을 가진 랜덤 패턴(random pattern)을 가지고 있는 것을 확인할 수 있다(도 1). 이렇게 제작한 랜덤 패턴 필름은 PUF의 특징 중 독창성(uniqueness), 높은 정보 밀도, 높은 인식률을 보장할 수 있고(도 4 및 도 5), 예측 불가능성(unpredictability), 재구성 가능성(reconfigurability)에 우수한 특성을 보인다. 하지만, 픽셀기반의 이미지 처리방법으로 인하여 낮은 재현성(reproducibility)을 가진다. 이를 해결하기 위해 금속 증착을 통한 정렬 표시(align mark)와 같은 추가적 패터닝을 이용할 수 있지만, 본 발명에 사용한 물질은 액정상(liquid crystal phase)을 가지는데 금속으로 된 정렬 표시를 사용할 경우 표면화학적 이유에 의하여 높은 무작위성을 잃거나 구조체 형성이 방해를 받을 수 있다.In the present invention, the non-photonic crystallized HNF film was not manufactured with a security code, but only the HNF photonic crystal film was manufactured with a security code, and then statistical analysis was performed. The HNF photonic crystal film can be easily manufactured in the desired shape and size in the photolithography step of the manufacturing process, and the chiral random pattern is clearly distinguished by the optical rotation phenomenon occurring in the chiral photonic crystal (FIG. 1). When this chiral photonic crystal is formed, since there is no preference for the chiral direction, both the right twisted structure and the left twisted structure are formed with equal probability. Through image processing and statistical approaches, it can be confirmed that the probability of being twisted in different directions and their arrangement have a random pattern with a randomness similar to the level of randomness in nature (Fig. 1). The random pattern film produced in this way can guarantee uniqueness, high information density, and high recognition rate among the characteristics of PUF (FIGS. 4 and 5), and has excellent characteristics in unpredictability and reconfigurability. show However, it has low reproducibility due to the pixel-based image processing method. In order to solve this problem, additional patterning such as alignment marks through metal deposition can be used, but the material used in the present invention has a liquid crystal phase. As a result, high randomness may be lost or structure formation may be hindered.
아조 작용기(azo moiety)를 포함하는 아조벤젠-다이머(azobenzene-dimer) 분자에 자외선이 조사되었을 때, 그들의 배향을 자외선조사 방향에 대해 수직하게끔 배향되는 성질을 가지고 있다. 이를 이용하여 고온의 네마틱/스멕틱 상으로부터 자외선을 조사하여 액정을 배향 시키고, 이들의 온도가 내려 감에 따라 발현하는 HNF 구조체를 제어한다. 제어된 나선형 HNF의 축은 자외선 조사방향에 대해서 평행하게 재배향되어, 나선구조체의 주기 구조(helical pitch)가 가시광 영역에 형성된 카이랄 광결정을 형성한다. 카이랄성을 가지는 광결정의 경우, 광학 활성으로 인해 입사된 선형편광 빛이 회전하는 광학 회전 현상이 존재한다. 구동 파장 영역(photonic band gap)에서 광학 회전이 증폭하는 특징이 있으며, 파장마다 광학 회전의 정도와 방향이 다르게 나타난다. 이러한 회전 정도는 편광현미경에서 하나의 편광판을 회전시키며 검출할 수 있다. 포토마스크를 도입하여 패턴된 카이랄 광결정을 제작하여 정렬 표시 역할을 하게 하였으며 발생하는 광학 회전의 경향성을 이용하여 색으로 카이랄 성을 구별할 수 있는 필름을 제작하였다(도 4). 자발적 카이랄 대칭파괴와 광결정의 형성은 독립적인 사건으로 발생하기 때문에, 광결정화 공정 이후에도 도 2에서 확인한 무작위성이 패터닝 후에도 유지됨을 확인할 수 있었다. 이미지 처리를 통해 이러한 랜덤 패턴을 디지털화 코드로 제작할 수 있었다(도 5). 서로 다른 현미경을 통해 제작된 여러 개의 패턴들을 분석하였을 때, 낮은 False acceptance rate (FAR)와 False rejection rate (FRR)을 가지며 서로 같은 패턴과 다른 패턴을 구별할 수 있음을 확인할 수 있다. 이는 광결정을 형성하지 않은 랜덤 패턴에서 발생한 낮은 재현성(reproducibility) 문제를 해결할 수 있음을 의미한다(도 6 및 7).When ultraviolet rays are irradiated on azobenzene-dimer molecules containing an azo moiety, they have the property of being oriented perpendicular to the direction of ultraviolet irradiation. Using this, ultraviolet rays are irradiated from the high-temperature nematic/smectic phase to align liquid crystals, and HNF structures that are expressed as their temperature goes down are controlled. The axis of the controlled helical HNF is reorientated parallel to the direction of ultraviolet irradiation to form a chiral photonic crystal in which the helical pitch of the helical structure is formed in the visible light region. In the case of a photonic crystal having chirality, an optical rotation phenomenon in which incident linearly polarized light rotates due to optical activity exists. Optical rotation is amplified in the driving wavelength region (photonic band gap), and the degree and direction of optical rotation are different for each wavelength. This degree of rotation can be detected by rotating one polarizer in a polarizing microscope. A photomask was introduced to produce a patterned chiral photonic crystal to serve as an alignment mark, and a film capable of distinguishing chirality by color was produced using the tendency of optical rotation that occurs (FIG. 4). Since the spontaneous chiral symmetry breaking and photonic crystal formation occur as independent events, it was confirmed that the randomness confirmed in FIG. 2 is maintained even after the photonic crystallization process, even after patterning. Through image processing, these random patterns could be produced as digitized codes (FIG. 5). When several patterns manufactured through different microscopes are analyzed, it can be confirmed that the same pattern and different patterns can be distinguished with a low false acceptance rate (FAR) and false rejection rate (FRR). This means that it is possible to solve the problem of low reproducibility occurring in random patterns without forming photonic crystals (FIGS. 6 and 7).
광결정의 패터닝 공정은 기존의 포토리소그래피 공정을 이용한다. 원하는 패턴의 포토마스크를 이용해 선택적으로 자외선을 조사함으로써 패턴화된 HNF 광결정을 형성하고, 동시에 서로 다른 방향으로 꼬인 HNF 광결정이 랜덤하게 형성시킨다. A photonic crystal patterning process uses a conventional photolithography process. Patterned HNF photonic crystals are formed by selectively irradiating ultraviolet rays using a photomask with a desired pattern, and at the same time, HNF photonic crystals twisted in different directions are randomly formed.
본 발명에서는 패턴의 모양 제작에 대해 높은 자유도를 가지고 있다. 단순 정렬 표시 기능만 하는 패터닝이 아닌 원하는 결정론적(deterministic) 보안 코드를 제작하고 이 코드 내부에 PUF 기능을 하는 카이랄 랜덤 패턴을 숨길 수 있다. 도 4에 나타낸 바와 같이, 패터닝 공정으로 QR코드를 제작하고 그 내부에 카이랄 랜덤 패턴을 숨겨 이중 보안이 가능하며, 복제할 수 없는 매우 높은 보안성을 가진 코드를 제작할 수 있다(도 8 및 도 9).In the present invention, it has a high degree of freedom for the shape of the pattern. It is possible to create a desired deterministic security code, rather than patterning that only serves as a simple alignment display, and hide a chiral random pattern that functions as a PUF inside the code. As shown in FIG. 4, a QR code is produced through a patterning process and a chiral random pattern is hidden therein, enabling double security and producing a code with very high security that cannot be duplicated (FIG. 8 and FIG. 9).
제작된 패턴된 광결절정 필름은 열처리와 추가적인 노광 공정을 통해 재구성 가능하다. 반복적인 공정을 통해 새로운 패턴 제작이 가능하며, 제작된 패턴은 같은 샘플을 이용하였더라도 새로운 카이랄 랜덤 패턴이 형성된 것을 확인할 수 있다(도 10). 이는 제작자 또한 어떤 카이랄 랜덤 패턴이 형성되는지 예측할 수 없으며 복제 또한 불가능하다는 것을 의미한다. 또한 이 필름은 해킹에 노출되었을 시 추가적 공정에 의해 완전히 새로운 랜덤 패턴을 제작할 수 있는 재구성 가능성(reconfigurability) 기능이 있음을 보여준다. 카이랄 자발적 대칭파괴로 제작된 이 PUF 필름은 ~110℃까지 안정한 구조를 가짐을 확인하였고, 일상생활에서 접할 수 있는 대부분의 극성 양성자성 용매에 안정한 것을 확인할 수 있다. 또한 충분히 크게 만들면 일반 스마트폰을 통해 관찰이 가능하여 접근성도 우수하다. The fabricated patterned photonic crystallization film can be reconstructed through heat treatment and an additional exposure process. A new pattern can be fabricated through an iterative process, and it can be confirmed that a new chiral random pattern is formed even if the fabricated pattern uses the same sample (FIG. 10). This means that neither the producer nor the predictor of which chiral random pattern will be formed cannot be replicated. In addition, this film shows that it has a reconfigurability function that can produce a completely new random pattern by an additional process when exposed to hacking. It was confirmed that this PUF film produced by chiral spontaneous symmetry breaking has a stable structure up to ~110 ° C, and is stable in most polar protic solvents encountered in everyday life. In addition, if it is made large enough, it can be observed through a general smartphone, so accessibility is excellent.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.Hereinafter, preferred embodiments are presented to aid understanding of the present invention, but the following examples are merely illustrative of the present invention, and various changes and modifications are possible within the scope and spirit of the present invention. It is obvious to those skilled in the art, It goes without saying that these variations and modifications fall within the scope of the appended claims.
[실시예][Example]
실시예 1: 랜덤 패턴화된 HNF 광결정의 PUF 필름의 제조Example 1: Preparation of PUF Film of Randomly Patterned HNF Photonic Crystals
우선 두개의 유리 기판을 이용한 샌드위치 셀을 제작하였다. 두 기판은 수 μm의 실리카 비드를 이용하여 그 간격을 유지하였다. 액정시료를 등방상의 온도인 약 170℃ 부근에서 모세관 힘을 이용하여 셀 안에 주입하였다. 액정 주입이 완료된 후, 상판 위에 원하는 패턴의 포토마스크를 올려둔 후, 그 위로 365 nm의 파장을 가지는 자외선을 조사하여 포토리소그래피 과정을 진행하였다. 이때, 자외선에 의해 액정분자가 배향되고 이와 동시에 상전이를 일으키기 위해서 균일한 냉각속도(1℃/min)로 냉각시켰다. 여기서 냉각속도 제어는 온도조절장치(Linkam TMS94)를 이용하였다. 냉각은 고체상태인 B4 상까지 진행하며, 총 소요시간은 약 30분 가량 소요되었다. 최종적으로 만들어진 HNF 광결정은 균일하게 형성된 나선형 나노 구조로 인해서 반사색을 나타낸다. 사용한 아조벤젠-다이머(azobenzene-dimer)의 경우 일반 광학 편광현미경으로 관찰할 수 있는 크기(>10 μm)의 HNF를 형성한다. 두 방향의 HNF가 모두 랜덤하게 형성되고 이 패턴들은 Matlab을 이용한 이미지 처리를 통해 디지털화된 코드로 제작된다.First, a sandwich cell using two glass substrates was fabricated. The distance between the two substrates was maintained using silica beads of several μm. The liquid crystal sample was injected into the cell using capillary force at around 170° C., which is the temperature of the isotropic phase. After the injection of the liquid crystal was completed, a photomask having a desired pattern was placed on the upper plate, and then ultraviolet light having a wavelength of 365 nm was irradiated thereon to perform a photolithography process. At this time, liquid crystal molecules were oriented by ultraviolet rays and cooled at a uniform cooling rate (1°C/min) to cause phase transition at the same time. Here, a temperature controller (Linkam TMS94) was used to control the cooling rate. Cooling proceeded to the solid B4 phase, and the total required time was about 30 minutes. The final HNF photonic crystal exhibits a reflective color due to the uniformly formed helical nanostructure. In the case of the used azobenzene-dimer, HNF having a size (>10 μm) that can be observed with a general optical polarization microscope is formed. HNFs in both directions are randomly formed, and these patterns are produced as digitized codes through image processing using Matlab.
본 실시예에 사용한 아조벤젠-다이머(azobenzene-dimer)는 화학식 4-2의 화합물로서, 일반 광학 편광현미경으로 관찰할 수 있는 크기(>10 μm)의 카이랄 구조체를 형성하였다(도 1). 이 카이랄 구조체가 형성될 때, 카이랄 방향에 대한 선호도가 없으므로, 오른쪽 꼬인 구조체와 왼쪽 꼬인 구조체가 모두 같은 확률로 형성되었다. 도 2 및 도 3에 나타낸 바와 같이, 이미지 처리와 통계학적 접근을 통해서 서로 다른 방향으로 꼬여 있을 확률과 이들의 배치가 자연계의 무작위성의 수준과 비슷한 무작위성을 가지고 있는 것을 확인하였다.The azobenzene-dimer used in this example is a compound represented by Chemical Formula 4-2, and formed a chiral structure having a size (>10 μm) that can be observed with a general optical polarizing microscope (FIG. 1). When this chiral structure was formed, since there was no preference for the chiral direction, both the right twisted structure and the left twisted structure were formed with equal probability. As shown in FIGS. 2 and 3, it was confirmed through image processing and statistical approaches that the probabilities of being twisted in different directions and their arrangement have randomness similar to the level of randomness in nature.
[화학식 4-2][Formula 4-2]
Figure PCTKR2022020502-appb-img-000009
Figure PCTKR2022020502-appb-img-000009
아조 작용기(azo moiety)를 포함하는 아조벤젠-다이머(azobenzene-dimer) 분자에 자외선이 조사되었을 때, 그들의 배향을 자외선조사 방향에 대해 수직하게끔 배향되는 성질을 가지고 있다. 이를 이용하여 고온의 네마틱/스멕틱 상으로부터 자외선을 조사하여 액정을 배향시키고, 이들의 온도가 내려감에 따라 발현하는 HNF 구조체를 제어한다. 제어된 나선형 HNF의 축은 자외선 조사방향에 대해서 평행하게 재배향되어, 나선구조체의 주기 구조(helical pitch)가 가시광 영역에 형성된 카이랄 광결정을 형성한다. 카이랄성을 가지는 광결정의 경우, 광학 활성으로 인해 입사된 선형편광 빛이 회전하는 광학 회전 현상이 존재한다. 구동 파장 영역(photonic band gap)에서 광학 회전이 증폭하는 특징이 있으며, 파장마다 광학 회전의 정도와 방향이 다르게 나타난다. 이러한 회전 정도는 편광현미경에서 하나의 편광판을 회전시키며 검출할 수 있다. 포토마스크를 도입하여 패턴된 카이랄 광결정을 제작하여 정렬 표시 역할을 하게 하였으며 발생하는 광학 회전의 경향성을 이용하여 색으로 카이랄성을 구별할 수 있는 필름을 제작하였다(도 4).When ultraviolet rays are irradiated on azobenzene-dimer molecules containing an azo moiety, they have the property of being oriented perpendicular to the direction of ultraviolet irradiation. Using this, ultraviolet rays are irradiated from the high-temperature nematic/smectic phase to align liquid crystals, and HNF structures that are expressed as their temperature decreases are controlled. The axis of the controlled helical HNF is reorientated parallel to the direction of ultraviolet irradiation to form a chiral photonic crystal in which the helical pitch of the helical structure is formed in the visible light region. In the case of a photonic crystal having chirality, an optical rotation phenomenon in which incident linearly polarized light rotates due to optical activity exists. Optical rotation is amplified in the driving wavelength region (photonic band gap), and the degree and direction of optical rotation are different for each wavelength. This degree of rotation can be detected by rotating one polarizer in a polarizing microscope. A photomask was introduced to produce a patterned chiral photonic crystal to serve as an alignment mark, and a film capable of distinguishing chirality by color was produced using the tendency of optical rotation that occurs (FIG. 4).
광결정화가 되지 않은 HNF 필름은 보안 코드로 제작하지 않고, 오로지 HNF 광결정 필름에 대해서만 보안 코드로 제작한 후 통계학적 분석을 진행하였다. HNF 광결정 필름은 제작 과정의 포토리소그래피 단계에서 원하는 모양과 크기로 제작이 용이하며, 카이랄 광결정에서 발생하는 광학 회전 현상에 의해 카이랄 랜덤 패턴이 뚜렷하게 구별된다(도 1).The non-photonic crystallized HNF film was not produced with a security code, but only the HNF photonic crystal film was produced with a security code, and then statistical analysis was performed. The HNF photonic crystal film can be easily manufactured in the desired shape and size in the photolithography step of the manufacturing process, and the chiral random pattern is clearly distinguished by the optical rotation phenomenon occurring in the chiral photonic crystal (FIG. 1).
실시예 2: HNF 필름의 실험 이미지의 이진화 및 디지털화 방법Example 2: Binarization and digitization method of experimental image of HNF film
도 2 및 도 3에 나타낸 바와 같이, HNF 광결정 필름에 대해서만 보안코드 제작을 진행하였으며, 보안코드의 정보 밀도를 기하급수적으로 증가시키기 위해 이진화 및 디지털화 하는 방식을 새롭게 개선하였다. 그 방법은 다음과 같다. 우선, 패턴화된 HNF 광결정 필름의 Θ=80°실험 이미지를 얻는다. 여기서 각각의 원 모양의 광결정을 하나의 유닛 셀(unit cell)로 정의한다. 각각의 유닛 셀 안에는 카이랄 랜덤 패턴이 분포해 있으며, 색 차이에 따라 오른손성과 왼손성 카이랄 패턴으로 분리된다. 오른손성과 왼손성으로 분리된 카이랄 패턴은 패턴의 형태적 특징으로 더 분류가 되는데, 이 특징에는 패턴의 개수, 면적, 원형률, 가로 세로의 비, 위치, 정렬방향이 포함된다. 각각의 유닛 셀은 두 가지 카이랄성을 포함하기 때문에 6 종류의 형태적 특징에 대한 정보는 6 x 6 x 2 형태의 행렬로 저장될 수 있다. 기존 이진화 및 디지털화 방법과 다르게 새롭게 개선된 방법에서는, 각 특징에 대한 계급의 간격을 적절히 조절함으로써, 보안 코드의 유닛 셀 개수가 256개 일 때 정보 밀도를 약 1013000까지 획기적으로 향상시킬 수 있으며 오인식률을 최소화할 수 있다는 장점이 있다. 브루트 포스 시험(Brute force trials)을 사용하여 정보 밀도가 약 1013000인 보안코드의 암호를 예측하는 데에는 약 10199년이라는 천문학적 시간이 걸린다. 따라서, 이진화 및 디지털화 방법을 새롭게 개선함으로써 더욱 향상된 보안코드의 독창성, 높은 정보 밀도, 높은 인식률을 보장할 수 있다.As shown in FIGS. 2 and 3, the security code was produced only for the HNF photonic crystal film, and the binarization and digitization method was newly improved to exponentially increase the information density of the security code. Here's how. First, a Θ=80° experimental image of the patterned HNF photonic crystal film is obtained. Here, each circular photonic crystal is defined as one unit cell. Chiral random patterns are distributed in each unit cell, and are separated into right-handed and left-handed chiral patterns according to color differences. Chiral patterns separated into right-handedness and left-handedness are further classified according to the morphological characteristics of the pattern, which include the number of patterns, area, roundness, aspect ratio, location, and alignment direction. Since each unit cell includes two types of chirality, information on six types of morphological features can be stored in a 6x6x2 matrix. Unlike the existing binarization and digitization methods, in the newly improved method, the information density can be dramatically improved to about 1013,000 when the number of unit cells of the security code is 256 by appropriately adjusting the interval between classes for each feature, and the false recognition rate has the advantage of minimizing It takes an astronomical amount of time, about 10199 years, to predict the password of a security code with an information density of about 1013000 using brute force trials. Therefore, by newly improving the binarization and digitization method, the originality of the further improved security code, high information density, and high recognition rate can be guaranteed.
실시예 3: 보안코드의 인증 방법Example 3: Security code authentication method
개선된 인증 방식은 형태적 특징의 계층적 인증 기반으로 빠른 인증 방식과 99.9% 이상의 판독 신뢰성을 제공한다. 먼저, 인증된 보안 코드는 행렬의 형태로 데이터베이스에 저장된다. 그 다음, 새로 제작된 카이랄 패턴은 행렬의 형태로 디지털화 되며 5 단계의 심사 과정을 통해 데이터베이스에 저장된 데이터와 유사성 지수를 계산함으로써 비교된다. 예를 들면, ‘방향’형태적 특징에 대한 유사성 지수가 threshold를 초과하면, 다음 형태적 특징에 대한 값이 비교되고 5가지 단계를 모두 통과하면 참으로 판별된다. 하지만 유사성 지수가 threshold를 초과하지 못하면, 심사 과정은 종결되며 새로 제작된 카이랄 패턴은 거짓으로 판별된다. 뿐만 아니라 유닛 셀의 개수가 많아질수록 인식률은 높아지며, 외부 노이즈에 대해서도 높은 인식률을 보이고, 서로 다른 현미경으로 관찰하여도 재현성 있는 결과가 나타난다. 새롭게 제시한 계층적 인증 방법은 새로운 샘플이 데이터베이스에 추가될 때 추가적인 알고리즘 변형이 필요 없으며, 평균적으로 참을 판별하는 데에는 5.14초, 거짓을 판별하는 데에는 2.34초가 소요되어 높은 정확도와 빠른 인증 속도를 보장한다.The improved authentication method provides a fast authentication method and a reading reliability of 99.9% or higher based on hierarchical authentication of morphological characteristics. First, the authenticated security code is stored in a database in the form of a matrix. Then, the newly created chiral pattern is digitized in the form of a matrix and compared with the data stored in the database through a five-step screening process by calculating a similarity index. For example, if the similarity index for the 'direction' morphological feature exceeds the threshold, the value for the next morphological feature is compared, and it is determined as true if all five steps are passed. However, if the similarity index does not exceed the threshold, the screening process is terminated and the newly created chiral pattern is determined to be false. In addition, the recognition rate increases as the number of unit cells increases, shows a high recognition rate for external noise, and reproducible results are obtained even when observed with different microscopes. The newly proposed hierarchical authentication method does not require additional algorithmic modification when a new sample is added to the database, and on average it takes 5.14 seconds to determine true and 2.34 seconds to determine false, ensuring high accuracy and fast authentication speed. .
실시예 4: PUF 필름의 재구성 가능성Example 4: Reconstitution potential of PUF film
제작된 패턴된 광결절정 필름은 열처리와 추가적인 노광 공정을 통해 재구성이 가능하다. 반복적인 공정을 통해 새로운 패턴 제작이 가능하며, 제작된 패턴은 같은 샘플을 이용하더라도 새로운 카이랄 랜덤 패턴이 형성된 것을 확인하였다(도 10). 이는 제작자 또한 어떤 카이랄 랜덤패턴이 형성되는지 예측할 수 없으며 복제 또한 불가능하다는 것을 의미한다.The fabricated patterned photonic crystallization film can be reconstructed through heat treatment and an additional exposure process. It was confirmed that a new pattern can be fabricated through an iterative process, and that a new chiral random pattern is formed even if the fabricated pattern uses the same sample (FIG. 10). This means that the manufacturer cannot predict which chiral random pattern will be formed and that replication is also impossible.
또한 이 필름은 해킹에 노출되었을 시 추가적 공정에 의해 완전히 새로운 랜덤 패턴을 제작할 수 있는 재구성 가능성(reconfigurability)이 있음을 확인하였다.In addition, it was confirmed that this film has reconfigurability to produce a completely new random pattern by an additional process when exposed to hacking.
카이랄 자발적 대칭파괴로 제작된 이 PUF 필름은 ~110℃까지 안정한 구조를 가짐을 확인하였고, 일상생활에서 접할 수 있는 대부분의 극성 양성자성 용매에 안정한 것을 확인할 수 있다. 또한 충분히 크게 만들면 일반 스마트폰을 통해 관찰이 가능하여 접근성도 우수하다.It was confirmed that this PUF film produced by chiral spontaneous symmetry breaking has a stable structure up to ~110 ° C, and is stable in most polar protic solvents encountered in everyday life. In addition, if it is made large enough, it can be observed through a general smartphone, so accessibility is excellent.
본 발명에서는 카이랄 대칭파괴가 발생하는 카이랄 광결정을 이용하여 복제 불가능한 카이랄 랜덤 패턴을 형성하고 이를 PUF로 응용 가능하다는 것을 확인하였다. 단순히 편광판을 회전시킴으로써 한 필름에서 있는 카이랄 구조체를 검출할 수 있으며, 이를 디지털화 하여 보안 코드로 응용가능하다.In the present invention, a non-replicable chiral random pattern is formed using a chiral photonic crystal in which chiral symmetry breaking occurs, and it is confirmed that this can be applied to a PUF. A chiral structure in a film can be detected simply by rotating the polarizer, and it can be digitized and applied as a security code.
본 발명에서 제시하고 있는 물질의 자발적 카이랄 대칭파괴를 통한 카이랄 도메인들은 가시 광선의 회절한계보다 훨씬 더 크게 형성되며 광 결정 형성이 가능하고, 손쉽게 광학적 방법으로 쉽게 관찰 가능하다는 특징을 가지고 있다. 그러므로, 쉽게 카이랄 도메인을 관찰하기 힘든 다른 물질들과는 다르게 보안성을 가지는 필름으로의 응용을 가증하게 해준다Chiral domains through spontaneous chiral symmetry breaking of the material proposed in the present invention are formed much larger than the diffraction limit of visible light, can form photonic crystals, and have the characteristics of being easily observable by an optical method. Therefore, unlike other materials in which chiral domains are difficult to observe, it makes it possible to apply it as a film with security.
기존 PUF에 비해 간단한 공정으로 제작 가능하며, 재현성(reproducibility), 독창성(uniqueness), 예측 불가능성(unpredictability), 재구성 가능성(reconfigurability)과 같은 특성에서 높은 성능을 보인다.Compared to existing PUFs, it can be manufactured with a simpler process and shows high performance in characteristics such as reproducibility, uniqueness, unpredictability, and reconfigurability.
종래기술에서는 보안 코드가 외부에 유출되었을 경우, 해킹에 취약해지며 새로운 보안을 위해서는 새로운 소자를 필요로 한다. 그러나 본 발명은 보안코드가 해킹을 당하였을 때, 후처리 공정으로 소자의 파괴없이 새로운 보안코드의 생성이 가능하다. 또한 추가적인 얼라인 마커(align marker)나 물질 없이 하나의 유기물로 구현 가능하기 때문에 높은 보안성에 비해 제작공정이 쉽다.In the prior art, when the security code is leaked to the outside, it becomes vulnerable to hacking and requires a new device for new security. However, in the present invention, when the security code is hacked, a new security code can be generated without destroying the device through a post-processing process. In addition, since it can be implemented as a single organic material without additional align markers or materials, the manufacturing process is easy compared to high security.
또한, 본 발명은 카이랄 광학 특성에 기인한 보안코드로서 제작이 용이하고, 다른 광학적 PUF에 비해 일반적인 방법으로는 쉽게 검출하기 어렵다. 포토리소그래피에 기반한 제작 공정은 결정론적 패턴에 비결정론적 패턴을 숨기는 이중 보안 코드 제작을 가능하게 해주어, 이미 보고된 기술에 비해 범용성이 높고 기존 공지 기술 대비 훨씬 우수한 성능(기하급수적으로 증가된 정보 밀도, 높고 빠른 인식률)과 독창성을 가진다는 장점이 있다.In addition, the present invention is a security code based on chiral optical characteristics, which is easy to manufacture and difficult to detect by a general method compared to other optical PUFs. The photolithography-based fabrication process enables the fabrication of a double security code that hides a non-deterministic pattern in a deterministic pattern, so it has high versatility compared to previously reported technologies and much better performance than existing known technologies (exponentially increased information density, It has the advantage of having a high and fast recognition rate) and originality.
본 발명은 높은 정보 밀도와 보안성을 가지는 기술이며, 기존의 포토리소그래피 공정을 통해 원하는 패터닝을 제작 가능하다는 장점을 가지고 있다. 이는 다가올 양자 컴퓨팅 시대에 기존의 보안키들이 무효화되는 시점에서 개인의 인증 또는 보안을 위한 기존의 모든 시스템들을 대체할 수 있다.The present invention is a technology having high information density and security, and has the advantage of being able to produce desired patterning through an existing photolithography process. This can replace all existing systems for personal authentication or security at the point when existing security keys become invalid in the upcoming quantum computing era.
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적 기술은 단지 바람직한 실시 양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.Having described specific parts of the present invention in detail above, it will be clear to those skilled in the art that these specific descriptions are only preferred embodiments, and the scope of the present invention is not limited thereby. will be. Accordingly, the substantial scope of the present invention will be defined by the claims and their equivalents.

Claims (12)

  1. 굽은형 액정분자가 자기조립에 의해 꼬인 층상 구조로 성장되어 있는 나선형 나노필라멘트((helical nanofilament, HNF)를 랜덤 패턴화시켜 수득된 HNF 광결정 구조체.An HNF photonic crystal structure obtained by randomly patterning helical nanofilaments (HNF) in which bent liquid crystal molecules are grown in a twisted layered structure by self-assembly.
  2. 제1항에 있어서, 상기 굽은형 액정분자는 아조벤젠-다이머, 화학식 1의 MHOBOW 및 화학식 2의 NOBOW로 구성된 군에서 선택된 1종 이상인 것을 특징으로 하는 HNF 광결정 구조체.The HNF photonic crystal structure according to claim 1, wherein the bent liquid crystal molecule is at least one selected from the group consisting of azobenzene-dimer, MHOBOW of Chemical Formula 1 and NOBOW of Chemical Formula 2.
    [화학식 1][Formula 1]
    Figure PCTKR2022020502-appb-img-000010
    Figure PCTKR2022020502-appb-img-000010
    [화학식 2][Formula 2]
    Figure PCTKR2022020502-appb-img-000011
    Figure PCTKR2022020502-appb-img-000011
  3. 제2항에 있어서, 상기 아조벤젠-다이머는 화학식 3으로 표시되는 것을 특징으로 하는 HNF 광결정 구조체:The HNF photonic crystal structure according to claim 2, wherein the azobenzene-dimer is represented by Formula 3:
    [화학식 3][Formula 3]
    Figure PCTKR2022020502-appb-img-000012
    Figure PCTKR2022020502-appb-img-000012
    화학식 3에서 L은 직쇄형 또는 분지쇄형 알킬렌기, 사이클로알킬렌기, 할로알킬렌기, 아릴렌기, 헤테로아릴렌기, 아릴렌알킬렌기, 알킬렌아릴렌기, 알킬렌헤테로아릴렌기, 헤테로아릴렌알킬렌기, 알킬렌 에스테르기 또는 알킬렌 아마이드기이고, 헤테로아릴렌기는 불소, 산소, 황 및 질소 중에서 선택된 헤테로원자를 함유하는 2가 라디칼이며,In Formula 3, L is a straight-chain or branched-chain alkylene group, a cycloalkylene group, a haloalkylene group, an arylene group, a heteroarylene group, an arylenealkylene group, an alkylenearylene group, an alkyleneheteroarylene group, a heteroarylenealkylene group, An alkylene ester group or an alkylene amide group, and the heteroarylene group is a divalent radical containing a heteroatom selected from fluorine, oxygen, sulfur and nitrogen,
    R1 및 R2는 각각 독립적으로 직쇄형 또는 분지쇄형 알킬기, 사이클로알킬기, 할로알킬기, 알콕시기, 사이클로알콕시기, 아릴기, 헤테로아릴기, 아릴옥시기, 알콕시헤테로아릴기, 헤테로아릴옥시알킬기, 알킬헤테로아릴기, 알킬아릴기, 아릴알킬기, 알킬헤테로아릴기, 알킬에스테르기, 알킬아미드기 또는 아크릴기이고, 헤테로아릴기는 불소, 산소, 황 및 질소 중에서 선택된 헤테로원자를 함유하는 1가 라디칼이다.R 1 and R 2 are each independently selected from a straight-chain or branched-chain alkyl group, a cycloalkyl group, a haloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, a heteroaryl group, an aryloxy group, an alkoxyheteroaryl group, a heteroaryloxyalkyl group, An alkylheteroaryl group, an alkylaryl group, an arylalkyl group, an alkylheteroaryl group, an alkylester group, an alkylamide group, or an acryl group, and the heteroaryl group is a monovalent radical containing a heteroatom selected from fluorine, oxygen, sulfur, and nitrogen. .
  4. 제3항에 있어서, 상기 아조벤젠-다이머는 화학식 4로 표시되는 것을 특징으로 하는 HNF 광결정 구조체:The HNF photonic crystal structure according to claim 3, wherein the azobenzene-dimer is represented by Chemical Formula 4:
    [화학식 4][Formula 4]
    Figure PCTKR2022020502-appb-img-000013
    Figure PCTKR2022020502-appb-img-000013
    화학식 4에서 R1 및 R2는 각각 독립적으로 직쇄형 또는 분지쇄형 알킬기, 사이클로알킬기, 할로알킬기, 알콕시기, 사이클로알콕시기, 아릴기, 헤테로아릴기, 아릴옥시기, 알콕시헤테로아릴기, 헤테로아릴옥시알킬기, 알킬헤테로아릴기, 알킬아릴기, 아릴알킬기, 알킬헤테로아릴기, 알킬에스테르기, 알킬아미드기 또는 아크릴기이고, 헤테로아릴기는 불소, 산소, 황 및 질소 중에서 선택된 헤테로원자를 함유하는 1가 라디칼이고, n은 3~11의 홀수이다.In Formula 4, R 1 and R 2 are each independently a straight-chain or branched-chain alkyl group, a cycloalkyl group, a haloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, a heteroaryl group, an aryloxy group, an alkoxyheteroaryl group, and a heteroaryl group. An oxyalkyl group, an alkylheteroaryl group, an alkylaryl group, an arylalkyl group, an alkylheteroaryl group, an alkylester group, an alkylamide group, or an acryl group, and a heteroaryl group containing a heteroatom selected from fluorine, oxygen, sulfur, and nitrogen. is a radical, and n is an odd number from 3 to 11.
  5. 제4항에 있어서, 상기 아조벤젠 다이머는 화학식 4-1, 화학식 4-2, 화학식 4-3 및 화학식 4-4로 구성된 군에서 1종 이상 선택되는 것을 특징으로 하는 HNF 광결정 구조체.The HNF photonic crystal structure according to claim 4, wherein the azobenzene dimer is at least one selected from the group consisting of Formula 4-1, Formula 4-2, Formula 4-3, and Formula 4-4.
    [화학식 4-1][Formula 4-1]
    Figure PCTKR2022020502-appb-img-000014
    Figure PCTKR2022020502-appb-img-000014
    [화학식 4-2][Formula 4-2]
    Figure PCTKR2022020502-appb-img-000015
    Figure PCTKR2022020502-appb-img-000015
    [화학식 4-3][Formula 4-3]
    Figure PCTKR2022020502-appb-img-000016
    Figure PCTKR2022020502-appb-img-000016
    [화학식 4-4][Formula 4-4]
    Figure PCTKR2022020502-appb-img-000017
    Figure PCTKR2022020502-appb-img-000017
  6. 제1항에 있어서, 물리적 복제방지용인 것을 특징으로 하는 HNF 광결정 구조체.The HNF photonic crystal structure according to claim 1, which is for physical copy protection.
  7. 제1항에 있어서, 필름 또는 플레이크(flake) 형태인 것을 특징으로 하는 HNF 광결정 구조체.The HNF photonic crystal structure according to claim 1, which is in the form of a film or flake.
  8. 다음 단계를 포함하는 제1항의 HNF 광결정 구조체의 제조방법:A manufacturing method of the HNF photonic crystal structure of claim 1 comprising the following steps:
    (a) 나선형 나노필라멘트(helical nanofilament, HNF)에 자외선을 조사하여 상기 HNF에 함유된 액정의 축을 자외선 조사방향에 대해 수직으로 배향시키는 단계; 및(a) irradiating ultraviolet rays to helical nanofilaments (HNFs) to vertically orient an axis of liquid crystal contained in the HNFs with respect to a direction of irradiation of ultraviolet rays; and
    (b) 상기 수직으로 배향된 HNF를 상기 액정의 B4상 온도까지 냉각시킴으로써 상기 액정의 축을 자외선 조사방향에 대해 평행으로 재배향시켜 HNF 광결정을 형성하여 HNF 광결정 구조체를 수득하는 단계.(b) forming an HNF photonic crystal by cooling the vertically aligned HNF to the B4 phase temperature of the liquid crystal to reorient the axis of the liquid crystal parallel to the direction of ultraviolet irradiation to obtain an HNF photonic crystal structure.
  9. 제8항에 있어서, 상기 굽은형 액정분자는 아조벤젠-다이머, 화학식 1의 MHOBOW 및 화학식 2의 NOBOW로 구성된 군에서 선택된 1종 이상인 것을 특징으로 하는 HNF 광결정 구조체의 제조방법:The method of claim 8, wherein the bent liquid crystal molecule is at least one selected from the group consisting of azobenzene-dimer, MHOBOW of Formula 1, and NOBOW of Formula 2:
    [화학식 1][Formula 1]
    Figure PCTKR2022020502-appb-img-000018
    Figure PCTKR2022020502-appb-img-000018
    [화학식 2][Formula 2]
    Figure PCTKR2022020502-appb-img-000019
    Figure PCTKR2022020502-appb-img-000019
  10. 제9항에 있어서, 상기 아조벤젠-다이머는 화학식 3으로 표시되는 것을 특징으로 하는 HNF 광결정 구조체의 제조방법:The method of claim 9, wherein the azobenzene-dimer is represented by Chemical Formula 3:
    [화학식 3][Formula 3]
    Figure PCTKR2022020502-appb-img-000020
    Figure PCTKR2022020502-appb-img-000020
    화학식 3에서 L은 직쇄형 또는 분지쇄형 알킬렌기, 사이클로알킬렌기, 할로알킬렌기, 아릴렌기, 헤테로아릴렌기, 아릴렌알킬렌기, 알킬렌아릴렌기, 알킬렌헤테로아릴렌기, 헤테로아릴렌알킬렌기, 알킬렌 에스테르기 또는 알킬렌 아마이드기이고, 헤테로아릴렌기는 불소, 산소, 황 및 질소 중에서 선택된 헤테로원자를 함유하는 2가 라디칼이며,In Formula 3, L is a straight-chain or branched-chain alkylene group, a cycloalkylene group, a haloalkylene group, an arylene group, a heteroarylene group, an arylenealkylene group, an alkylenearylene group, an alkyleneheteroarylene group, a heteroarylenealkylene group, An alkylene ester group or an alkylene amide group, and the heteroarylene group is a divalent radical containing a heteroatom selected from fluorine, oxygen, sulfur and nitrogen,
    R1 및 R2는 각각 독립적으로 직쇄형 또는 분지쇄형 알킬기, 사이클로알킬기, 할로알킬기, 알콕시기, 사이클로알콕시기, 아릴기, 헤테로아릴기, 아릴옥시기, 알콕시헤테로아릴기, 헤테로아릴옥시알킬기, 알킬헤테로아릴기, 알킬아릴기, 아릴알킬기, 알킬헤테로아릴기, 알킬에스테르기, 알킬아미드기 또는 아크릴기이고, 헤테로아릴기는 불소, 산소, 황 및 질소 중에서 선택된 헤테로원자를 함유하는 1가 라디칼이다.R 1 and R 2 are each independently selected from a straight-chain or branched-chain alkyl group, a cycloalkyl group, a haloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, a heteroaryl group, an aryloxy group, an alkoxyheteroaryl group, a heteroaryloxyalkyl group, An alkylheteroaryl group, an alkylaryl group, an arylalkyl group, an alkylheteroaryl group, an alkylester group, an alkylamide group, or an acryl group, and the heteroaryl group is a monovalent radical containing a heteroatom selected from fluorine, oxygen, sulfur, and nitrogen. .
  11. 제10항에 있어서, 상기 아조벤젠-다이머는 화학식 4로 표시되는 것을 특징으로 하는 HNF 광결정 구조체의 제조방법:11. The method of claim 10, wherein the azobenzene-dimer is represented by Chemical Formula 4:
    [화학식 4][Formula 4]
    Figure PCTKR2022020502-appb-img-000021
    Figure PCTKR2022020502-appb-img-000021
    화학식 4에서 R1 및 R2는 각각 독립적으로 직쇄형 또는 분지쇄형 알킬기, 사이클로알킬기, 할로알킬기, 알콕시기, 사이클로알콕시기, 아릴기, 헤테로아릴기, 아릴옥시기, 알콕시헤테로아릴기, 헤테로아릴옥시알킬기, 알킬헤테로아릴기, 알킬아릴기, 아릴알킬기, 알킬헤테로아릴기, 알킬에스테르기, 알킬아미드기 또는 아크릴기이고, 헤테로아릴기는 불소, 산소, 황 및 질소 중에서 선택된 헤테로원자를 함유하는 1가 라디칼이고, n은 3~11의 홀수이다.In Formula 4, R 1 and R 2 are each independently a straight-chain or branched-chain alkyl group, a cycloalkyl group, a haloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, a heteroaryl group, an aryloxy group, an alkoxyheteroaryl group, and a heteroaryl group. An oxyalkyl group, an alkylheteroaryl group, an alkylaryl group, an arylalkyl group, an alkylheteroaryl group, an alkylester group, an alkylamide group, or an acryl group, and a heteroaryl group containing a heteroatom selected from fluorine, oxygen, sulfur, and nitrogen. is a radical, and n is an odd number from 3 to 11.
  12. 제11항에 있어서, 상기 아조벤젠-다이머는 화학식 4-1, 화학식 4-2, 화학식 4-3 및 화학식 4-4로 구성된 군에서 1종 이상 선택되는 것을 특징으로 하는 HNF 광결정 구조체의 제조방법:The method of claim 11, wherein the azobenzene-dimer is at least one selected from the group consisting of Chemical Formula 4-1, Chemical Formula 4-2, Chemical Formula 4-3, and Chemical Formula 4-4:
    [청구항 4-1][Claim 4-1]
    Figure PCTKR2022020502-appb-img-000022
    Figure PCTKR2022020502-appb-img-000022
    [청구항 4-2][Claim 4-2]
    Figure PCTKR2022020502-appb-img-000023
    Figure PCTKR2022020502-appb-img-000023
    [청구항 4-3][Claim 4-3]
    Figure PCTKR2022020502-appb-img-000024
    Figure PCTKR2022020502-appb-img-000024
    [청구항 4-4][Claim 4-4]
    Figure PCTKR2022020502-appb-img-000025
    Figure PCTKR2022020502-appb-img-000025
PCT/KR2022/020502 2021-12-17 2022-12-15 Structures for physical unclonable function using spontaneous chiral symmetry breaking and method of preparing same WO2023113508A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20210181789 2021-12-17
KR10-2021-0181789 2021-12-17
KR1020220161465A KR20230092744A (en) 2021-12-17 2022-11-28 Structures for Physical Unclonable Function Using Spontaneous Chiral Symmetry Breaking and Method of Preparing the Same
KR10-2022-0161465 2022-11-28

Publications (1)

Publication Number Publication Date
WO2023113508A1 true WO2023113508A1 (en) 2023-06-22

Family

ID=86773136

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/020502 WO2023113508A1 (en) 2021-12-17 2022-12-15 Structures for physical unclonable function using spontaneous chiral symmetry breaking and method of preparing same

Country Status (1)

Country Link
WO (1) WO2023113508A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190110956A (en) * 2018-03-21 2019-10-01 한국과학기술원 Photonic Crystal Comprising Photo-Responsive Molecules and Method of Preparing the Same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190110956A (en) * 2018-03-21 2019-10-01 한국과학기술원 Photonic Crystal Comprising Photo-Responsive Molecules and Method of Preparing the Same

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CIOBANU CATALINA IONICA, BERLADEAN IULIAN, EPURE ELENA-LUIZA, SIMION AUREL, LISA GABRIELA, BOUSSOUALEM YAHIA, CARLESCU IRINA: "Mesomorphic and Thermal Behavior of Symmetric Bent-Core Liquid Crystal Compounds Derived from Resorcinol and Isophthalic Acid", CRYSTALS, vol. 11, no. 10, pages 1215, XP093073609, DOI: 10.3390/cryst11101215 *
LU XUYANG; HONG LINGYU; SENGUPTA KAUSHIK: "15.9 An integrated optical physically unclonable function using process-sensitive sub-wavelength photonic crystals in 65nm CMOS", 2017 IEEE INTERNATIONAL SOLID-STATE CIRCUITS CONFERENCE (ISSCC), IEEE, 5 February 2017 (2017-02-05), pages 272 - 273, XP033073547, DOI: 10.1109/ISSCC.2017.7870366 *
PARK WONGI, WOLSKA JOANNA M., POCIECHA DAMIAN, GORECKA EWA, YOON DONG KI: "Direct Visualization of Optical Activity in Chiral Substances Using a Helical Nanofilament (B4) Liquid Crystal Phase", ADVANCED OPTICAL MATERIALS, WILEY, DE, vol. 7, no. 23, 1 December 2019 (2019-12-01), DE , pages 1901399, XP093073608, ISSN: 2195-1071, DOI: 10.1002/adom.201901399 *
PARK WONGI, YANG MINYONG, PARK HYEWON, WOLSKA JOANNA M., AHN HYUNGJU, SHIN TAE JOO, POCIECHA DAMIAN, GORECKA EWA, YOON DONG KI: "Directing Polymorphism in the Helical Nanofilament Phase", CHEMISTRY - A EUROPEAN JOURNAL, JOHN WILEY & SONS, INC, DE, vol. 27, no. 24, 26 April 2021 (2021-04-26), DE, pages 7108 - 7113, XP093073606, ISSN: 0947-6539, DOI: 10.1002/chem.202005221 *

Similar Documents

Publication Publication Date Title
US10259251B2 (en) Security token and authentication
Li et al. Patterned photonic crystals for hiding information
Nagano et al. Synergy effect on morphology switching: real‐time observation of photo‐orientation of microphase separation in a block copolymer
US5974150A (en) System and method for authentication of goods
US11046887B2 (en) Photonic crystal comprising photo-responsive molecules and method of preparing the same
Lin et al. Unclonable Micro‐Texture with Clonable Micro‐Shape towards Rapid, Convenient, and Low‐Cost Fluorescent Anti‐Counterfeiting Labels
Wu et al. A High-Security mutual authentication system based on structural color-based physical unclonable functions labels
EP3119683B1 (en) Deposition process based on stencil mask and application to the fabrication of tags supporting multi-functional traceable codes
CN102998733A (en) Optical biometric security element
Park et al. Racemized photonic crystals for physical unclonable function
WO2023113508A1 (en) Structures for physical unclonable function using spontaneous chiral symmetry breaking and method of preparing same
Wu et al. Dynamic structural color display based on femtosecond laser variable polarization processing
Kumar et al. Unclonable Anti‐Counterfeiting Labels Based on Microlens Arrays and Luminescent Microparticles
KR20230092744A (en) Structures for Physical Unclonable Function Using Spontaneous Chiral Symmetry Breaking and Method of Preparing the Same
Meijs et al. Pixelated Physical Unclonable Functions through Capillarity-Assisted Particle Assembly
Liu et al. Light‐Induced In Situ Dynamic Ordered Wrinkling with Arbitrarily Tailorable Wrinkling Orientation for Photoresponsive Soft Photonics
Bakan et al. Reversible decryption of covert nanometer-thick patterns in modular metamaterials
US20210165984A1 (en) Polarization-based coding/encryption using organic charge-transfer materials
Li et al. Tensor Network-Encrypted Physical Anti-counterfeiting Passport for Digital Twin Authentication
Donato et al. Liquid Crystalline Network Microstructures for Stimuli Responsive Labels with Multi‐Level Encryption
RU2776598C1 (en) Method for recording and reading information on colorless transparent polymer films
Bruno et al. Cholesteric Liquid Crystals Based Micro‐Fingerprints Generator for Anti‐Counterfeiting Labels
NL2009193B1 (en) Token based identification.
KR100626276B1 (en) Method for optical data recording
Im et al. Four-Dimensional Physical Unclonable Functions and Cryptographic Applications Based on Time-Varying Chaotic Phosphorescent Patterns

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22907975

Country of ref document: EP

Kind code of ref document: A1